INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment

can adversely affect reproduction.

In the unlikely event that the author did not send UMI a compiete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overiaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

TOWARDS AN IMPLEMENTATION OF SchemalLog — A
DATABASE PROGRAMMING LANGUAGE

ALANOLY JOSEPH ANDREWS

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

DECEMBER 1997
(© ALANOLY JOSEPH ANDREWS, 1998

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your file Votre reference

Our fila Notre retérence
The author has granted a non- L’ auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimeés
reproduced without the author’s ou autrement reproduits sans son
permission. autcrisation.

Canada

0-612-39984-2

Abstract

Towards An Implementation of SchemalLog — A Database
Programming Language

Alanoly Joseph Andrews

The efficient implementation of advanced database programming languages calls
for investigating novel architectures and algorithms. In this thesis, we discuss our
implementation of SchemaLog , a logic-based database programming language, capa-
ble of offering a powerful platform for a variety of database applications involving
data/meta-data querying and restructuring. Our architecture for the implementation
is based on compiling SchemaLog constructs into an extended version of relational
algebra called Schema Algebra (SA). We modify the new operators in this alge-
bra to suit our implementation, and we illustrate how a SchemaLog program can
be evaluated by conversion into an expression in SA. Based on this algebra, we
develop a top-down algorithm, using the Rule/Goal Tree method, for evaluating
SchemaLog programs. We then discuss three alternative storage structures for the
implementation and study their effect on the efficiency of implementation. For each
storage structure, we propose strategies for implementing our algebraic operators.
We have implemented all these algorithms, using MicroSoft Access DBMS running
on Windows 3.1, and have run an extensive set of experiments for evaluating the
efficiency of alternative strategies under a varied mix of querying and restructuring
operations and varying parameters on the type and size of data. We discuss the re-

sults of our experiments and make recommendations on the type of storage structures

to be used.

iii

Acknowledgments

It should come as no surprise that I start by acknowledging my debt of gratitude to
Prof. Laks V.S. Lakshmanan, my thesis advisor and supervisor. He has played a
major role throughout the work I have done towards this presentation of my thesis
and has seen to it that it has finally seen the light of day. His erudition in the area
of logic and databases is well-known. The long list of publications in the subject in
the last few years bears ample testimony to that assertion. It is my hope that some
of that expertise, as well as enthusiasm for continued research has rubbed off on his
students, including me.

My work in this thesis is based in part on the work done by Iyer Subramanian, alias
Subbu, for his doctoral dissertation. During the course of my work of implementation,
I naturally had to spend long hours with Subbu to share ideas on such “inane” topics
as data structures, algorithms, etc. (not to mention the more interesting hours we
had discussing more “pagan” subjects). I am grateful to Subbu for the valuable
contributions he has made to making this thesis a reality.

Another fellow-student with whom I have had close contact through the years
in Concordia is Nematollaah Shiri. Though not directly involved with my area of
research, Shiri was a constant presence, a friend to whom I could turn in any circum-
stance.

Financial support for this thesis was provided in part by the Natural Sciences
and Engineering Research Council of Canada and the Fonds Pour Formation De
Chercheurs Et L’Aide A La Recherche of Quebec.

I would also like to thank the support staff in the Computer Science Department:
the analysts (Stan Swiercz deserves special mention here), and the secretaries (in
particular, Edwina, Halina and Stephanie) for their quick response to questions and
problems.

Finally, I would like to thank the members of my own family (my wife Mary, and

iv

my children Deepti, Preeti and Jyoti) for their love and support for me during some
difficult years. The early years of my stay in Montreal were spent with my brother
Jose. I would like to express here my gratitude to him, his wife Ruby and their
children. Thanks also to my brother James who, too, was a pillar of support during

the past years.

Contents

List of Figures
List of Tables

1 Introduction

1.1 Opening Remarks oo
1.2 Outlineof the thesis « « i o i i i i e e e e e e e e e e e
1.3 Contributions of thisthesis - ¢ o o o o oo

2 Basics of SchemaLog and Schema Algebra

2.1 Imntroduction v o i i e e e e e
2.2 Syntax of Schemalog « -« 4 o oo oo
2.3 Operators in Schema Algebra

2.3.1 Definitions of Operators
24 FurtherExamples
2.5 Concluding Remarks

3 Top-Down Processing of Schemalog Programs

3.1 Imtroduction i i i e e e
3.2 Atomizing a SchemaLog program
3.3 Outline of the Top-Down Processing procedure
3.4 Top-Down Algorithm for Schemalog -

3.5 Example of Rule-Goal Tree Expansion in Schemalog . .

3.6 Conclusion . . . « v v o i i e

4 Physical Storage Architectures
4.1 Introductiom ¢ o i i i e e e e e e

vi

N

o oo o O

4.2 Conventional Storage oo oot e 35

421 Selection v ot i i e e e e e e e e e e e e e e e 35
422 Projection i i e e e e e e e 37
423 JOIN . v v i e 38
4.2.4 TFetching Relation Names 40
4.2.5 Fetching Relations and their Schemas 40
42.6 Querying Data and Meta-data 40
427 Creating Relations 42
4.2.8 Creating Relations with Schemas 42
4.2.9 Creating Relations with Schema and Data 43

43 Reduced Storageo 44
431 Selection v v v i e e e e e e e e e e e 45

432 Projection . . . o . .« oottt e e e e e e 46
433 JOIM . . v v i e 47
4.3.4 Fetching Relation Names 48
4.3.5 Fetching Relations and their Schemas 48
4.3.6 Querying Data and Meta-data 49
4.3.7 Creating Relations 51
4.3.8 Creating Relations with Schemas 51
4.3.9 Creating Relations with Schema and Data 51

4.4 Reduced, Atomized Storage 52
4.4.1 Selection . « « v v v i e e e e e e e e e e e e e e e e e 54
442 Projectiont ..o 54
443 JOIN « o v e e e e e e e e e e e e e e e e e e e 55
4,44 Fetching Relation Names 56
4.4.5 Fetching Relations and their Schemas 56
4.4.6 Querying Data and Meta-data 56
4.47 Creating Relations 58
4.48 Creating Relations with Schemas 59
4.4.9 Creating Relations with Schema and Data 59

45 Conclusion v v v e i e e e e e e e e e e e e e e e 60
5 Experimental Results 62
51 Introduction ¢« v o v b e e e e e e e e e e e e 62

5.2 Preparation of the Test Bed 62

5.3 Implementation of Schema Algebra operators 63
5.3.1 Experimental Results and Graphs 64

54 Analysisof Results oo 81
5.4.1 Individual Operations 81

54.2 Mixof Operations 82

5.4.3 Effect of table size on cost of SA4 operations 83

5.5 Conclusion v 4 e e i e e e e e e e e e e e e e e e e e e 87

6 Conclusion 88
6.1 COMPATISOM . . = « v v o v v e e v e e e e e e e e e e 88
6.2 SUMIMATY .« « « & v ¢ o o v o o e e e e et e s e e e e e e e 90
6.3 Future Work o i i e e e e e 91
Bibliography 92

viii

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
3.1
4.1
4.2
4.3
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

Example [llustrating Database Restructuring - « « « = o« . . 9
The NYSE Database . . - « - ¢« v v v it v ittt e e e e e 11
Example for creating relation schemas 15
Example for creating and populating relations 16
ri:theresultof Step 1 . - L Lo 19
ro: theresultof Step 2 oo 20
rg: theresultof Step 3 . - Lo oo 20
rq: theresultof Step 4 oL Lo 20
rs: theresultof Step 5 o oo ool 21
Theresultof Step 6. L o 22
Example of Rule/Goal Tree 33
Conventional Storage Tables 45
Reduced Storage Tables 46
Reduced, Atomized Storage Tables 53
Individual Operations (from Table 5.1) 66
Mix of Operations (from Table 5.1) 67
Individual Operations (from Table 5.2) 68
Mix of Operations (from Table 5.2) 68
Individual Operations (from Table 5.3) 69
Mix of Operztions (from Table 5.3) 70
Individual Operations (from Table 5.4) 71
Mix of Operations (from Table 5.4) 71
Individual Operations (from Table 5.5) 72
Mix of Operations (from Table 5.5) 73
Individual Operations (from Table 5.6) 75
Mix of Operations (from Table 5.6) 75

ix

5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26

Individual Operations (from Table 5.7) 76

Mix of Operations (from Table 5.7) 76
Individual Operations (from Table 58) 7
Mix of Operations (from Table 5.8) 7
Individual Operations (from Table 5.9) 78
Mix of Operations (from Table 5.9) 79
Individual Operations (from Table 5.10) 80
Mix of Operations (from Table 5.10) 80
Selection« ¢t i i e e e e e e e 84
Projection o Lo e e e e 84
Join . .. L e e e e e e e e e e 85
Single Pattern Querying (gamsing), 85
Multiple Pattern Querying (gamult), 86
Creating Tables, Schema; Adding Rows (Var-Rho) 86

List of Tables

5.1 Execution time with table size of 500, join density 0.25 64
5.2 Execution time with table size of 1000, join density 0.25 67
5.3 Execution time with table size of 2500, join density 0.25 69
5.4 Execution time with table size of 5000, join demsity 0.25 70
5.5 Execution time with table size of 10000, join density 0.25 72
5.6 Execution time with table size of 500, join density 0.5 74
5.7 Execution time with table size of 1000, join density 0.5 74
5.8 Execution time with table size of 2500, join density 0.5 T4
5.9 Execution time with table size of 5000, join density 0.5 78
5.10 Execution time with table size of 10000, join density 0.5 79

xi

Chapter 1

Introduction

1.1 Opening Remarks

We are living in the middle of an electronic “Information Revolution”. The printed
medium which has so far dominated the storage and dissemination of information is
being supplanted by the electronic medium. Our store of knowledge itself has not
grown that dramatically; what has in fact happened is that the numerous repositories
of information have been linked to one another and been made accessible to anyone
possessing the basic hardware and software.

The most common type of store in the electronic medium is a database system.
The information in this type of store is well-managed and easy to get to in a systematic
manner. The great advance that we have made in networking various data repositories
has brought with it several thorny issues which need to be resolved if we are to take
full advantage of all the information that has been suddenly made available to us.

A basic problem with our current network of information sources is that of incom-
patibility. Tools and methods of interacting with the data in one store need not work
in another store. The pressing need is for “interoperable” systems which would be
able to manage multiple information sources in a seamless manner and enable users
to pose search queries which are applicable over the entire network of information
sites.

Even within the same information source, within a well-structured environment
such as a database management system (DBMS), a query against one database may

be “incompatible” against another. This is because what is considered as “data”

in one database could be seen as part of the “schema” in another. Existing query
languages do not allow the user to ask for elements of the schema itself to form part
of the output.

It is in this context that we introduce SchemalLog , a powerful language for ad-
vanced database logic programming first proposed by Lakshmanan et al., in [LSS93,
LSS96] and later expatiated upon by Subramanian in [Sub97]. It was established
there that SchemaLog can offer a powerful platform in a variety of settings including
multi-database interoperability, database programming with schema browsing, coop-
erative query answering, computing forms of aggregate queries which are beyond the
scope of conventional database query languages, database restructuring, and, in the
context of the World Wide Web (WWW), querying and restructuring Web pages.
SchemaLog has a higher order syntax, but has a first-order semantics. Indeed, it has
a sound and complete proof theory as shown in [LSS96], [Sub97].

A prototype platform for interoperability among a number of INGRES databases
was completed recently [LSPS95], based on a fragment of Schemalog.

The theoretical basis for the use of SchemaLog as a powerful database program-
ming language even in the context of a single database was established in the papers
we have already referred to earlier. The main goal of this thesis, is to establish
the practical basis for this claim by describing efficient architectures and algorithms
for the implementation of Schemalog as a database programming language, in the
context of a single database.

In the efficient implementation of a language like SchemaLog , we can distinguish

two types of optimization issues:

e problems peculiar to the querying of a federation of homogeneous/heterogeneous

databases.

e problems that arise even within the context of a single database because of
requirements such as data/meta-data interaction and the dynamic restructuring

of data and schema

These two types of issues are clearly orthogonal and can be tackled indepen-
dently of each other. The first area has been partially studied recently in [LSPS95]
which provided a prototype platform for interoperability among a number of INGRES
databases. The focus in this thesis is on the second area, that of implementation

issues in a single database context.

1.2 Owutline of the thesis

The major goal of this thesis has been to work towards an implementation of SchemaLog
as a database programming language. Although SchemalLog as a language has the
capability of addressing a federation of databases, we have restricted ourselves in this

study, as mentioned earlier, to the context of a single database.

1. Since our implementation is based on the SchemaLlog language, which is a
recently-developed language and not that widely-known, we have gone to some
detail in Chapter 2 to give the reader sufficient information on the syntax and
semantics of the language to understand what follows in the rest of the thesis.
Later in the chapter, we present the new operators in Schema Algebra (SA),
with examples to illustrate their use. The basic theoretical notions in this chap-
ter are derived from [LSS96], and [Sub97]. We have made several modifications
to the syntax and semantics of the operators in order to suit a single database
context. New and detailed examples have been provided to illustrate the work-
ing of the operators as well as the translation of a sample SchemaLog program

into the procedural level of algebraic operators.

2. For database applications, it is important that querying and restructuring be
implemented in a set-oriented manner, as opposed to the “tuple-at-a-time”
paradigm of Prolog. In chapter 3 , we present the theoretical basis for a top-
down implementation of SchemaLog following the set-oriented Rule/Goal Tree
(RGT) evaluation method of Datalog. Detailed algorithms for the RGT evalua-
tion are set forth, and an example of a Rule-Goal Tree for a specific SchemaLog

program has also been worked out.

3. Any implementation, if it is to be efficient, needs to have suitable storage struc-
tures. Since SchemaLog treats schema elements on the same level as data
elements, traditional storage structures may prove unsuitable. With this in
mind, we present, in chapter 4, three different physical storage architectures.
For each of these architectures we have developed new algorithms to implement
the various operators in SA . For each algorithm, a theoretical cost estimate

has also been done.

4. To test the practical efficacy of the storage strategies introduced in chapter
4, we implemented a few chosen SA operators (according to the algorithms
presented in Chapter 4) in all the three strategies using the MS-Access DBMS.
We ran a number of experiments, varying such parameters as table size, join
density and selection density. The results of these experiments were tabulated
and also plotted on graphs. Details of these experiments form the contents of

chapter 5.

5. Chapter 6 concludes our study with a summary, a comparison of our work to
similar other practical implementations, and some pointers to future research

in the area.

1.3 Contributions of this thesis

We have just seen an overview of the contents of this thesis. We conclude this intro-
ductory chapter with a listing of what we consider to be the significant contributions

of this thesis.

1. SchemaLog had been designed by its authors to suit a variety of needs in
database programming in such diverse environments as multi-database inter-
operability and world-wide-web querying. In order to study in detail the is-
sues peculiar to a single database setting, we have, in this thesis, modified the

SchemalLog syntax and semantics to suit such a context.

2. Schema Algebra as proposed in [Sub97] contains complexities of syntax which
are not required in a single database setting. We have, therefore, in this thesis
developed a simplified version of the Algebra needed for a procedural view of

the high-level SchemaLog language.

3. Being a database programming language, it is important that an evaluation of
a SchemaLog program yield a set of tuples in the output. To achieve this we
have proposed a top-down evaluation based on the well-known Rule-Goal Tree
method. We have devised the algorithms needed to implement this method in
the case of SchemaLog programs. We have also defined the role that the Schema

Algebra operators play within the top-down evaluation process.

.O!

To improve the efficiency of the evaluation process, we have proposed three
different ways of storing and accessing the data used in a SchemaLog program.
One of them is an adaptation of the conventional storage strategy, and the
other two have been specially devised to have relevance in the context of the

implementation of the “restructuring” operators of Schemalog .

In each of the three strategies mentioned, above we have evolved algorithms to
implement some of the key operators in Schema Algebra. A theoretical estimate

of the cost involved in an implementation of each of the algorithms is also worked

out.

Finally, we ran a number of experiments to test the performances of the vari-
ous storage strategies under varying conditions of data size and data contents.
Based on our detailed tabulations of the results, we were able to provide valuable

pointers as to the best implementation strategies to be followed.

Chapter 2

Basics of SchemaLog and Schema
Algebra

2.1 Introduction

This chapter provides a condensed view of those aspects of SchemaLog which are
needed for a proper understanding of this thesis. Section 2.2 gives an abbreviated view
of the syntax of SchemalLog. The semantics of the language is illustrated by means of
an example later in the section. Section 2.3 is devoted to a more detailed discussion
of the Algebraic Operators in Schema Algebra, an algebra that has been developed in
order to implement the SchemaLog language. The chapter concludes with a section
containing a further examples to illustrate Schemalog rules and Schema Algebra

operators.

2.2 Syntax of SchemaLog

We introduce here the syntax of SchemaLog and illustrate the semantics informally
via examples. The syntax we will use is an adaptation of the full SchemaLog given
in [Sub97] and [LSS96] to a single database context. For a full and formal account,
the reader is referred to [Sub97].

SchemalLog features three! kinds of basic expressions, called atoms. Their notation

as well as an informal meaning is given below.

! Actually, full SchemaLog features four. In a single database context, these reduce to three.

e (rel) - thereis a relation named (rel) in the database.

o (rel)[(attr)] - thereis a relation named (rel) in the database, and the schema

of (rel) includes an attribute named (attr).

o (rel)[(tid) : (attr)—(val)] - there is a relation named (rel) in the database,
and the schema of (rel) includes an attribute named (attr), and furthermore

(rel) contains a tuple (¢id) which has value (val) under column (attr).

In the above, (rel), (tid), (attr), and (val) are arbitrary first-order terms, built
up as usual from a vocabulary including constants, function symbols, and variables.
In this thesis, for simplicity, we shall deal only with function-free Schemalog.

Molecules are expressions of the form (rel)[(tid) : (attr);—(val)y,..., (attr),
—(val),] and are a syntactic sugar for the conjunction (rel)[(tid) : {attr); — (val)i]
A--- A (rel)[(tid) : (attr),—(val),]. The (tid) acts as a “glue” to combine the pieces
from different atoms together. Existential “don’t care” tid variables appearing in rule
bodies can be omitted (see Example 2.1).

Besides these, Schemalog also uses programming predicates of the form p(t1,- .- ,%5)
where p is an n-ary predicate symbol and ¢; are terms. While programming predi-
cates can be simulated using SchemaLog molecules, they add to programming conve-
nience. We use the generic term database predicates to refer to SchemaLog atoms and
molecules. The main difference between database predicates and programming pred-
icates is that the former are used as an “interface” to relations — either existing in a
database (i.e. the so-called EDB relations) or created by database programs written
in SchemaLog (i.e. the so-called IDB relations) ~ whose schematic information (i.e.
names of relations and their attributes) is regarded just as important as data, and
needs to be queried and manipulated. On the other hand, programming predicates
are used as a convenient device for storing intermediate results in computations, or
sometimes for storing results of queries, where no particular attention is paid to the
schema under which such results are stored. The term database relations refers to
relations corresponding to database predicates, while programming relations refer to
relations corresponding to programming predicates. When no confusion arises, we re-
fer to database relations, simply as relations. It should be pointed out that in classical
deductive database query languages such as Datalog, and actual prototypes which are

based on them, the only kind of predicates supported are programming predicates.

As a result, the schematic information of all relations is essentially ignored in such
languages.

[LSS96] provides a number of examples to illustrate the semantics of SchemaLog
programs, and the various terminologies and conventions introduced above. In this
section, we provide one example. A few more examples will follow later on in the

Chapter, in Section 2.4

Example 2.1 Consider a stock exchange database that stores quarterly information
on the companies traded in the exchange. The database also contains overall infor-
mation on how the various industries are performing in each quarter. The following

is the schema of this database.

stocks(comp, ticker, industry)
ind_review(industry, quarter, asp, aeps)
ibm(quarter, asp, aeps)

msft(quarter, asp, aeps)

zon(quarter, asp, aeps)

The stocks relation contains information on each company, its ticker name and its
type of business. The ind_review relation maintains information on the average share
price (asp) and the average earnings per share (aeps) of each business category, on a
quarterly basis. The other relations in the database are named after the companies
traded in the exchange and carry information related to the quarterly performance
of the relevant company.

The following is a SchemaLog program that restructures the above database such
that the restructured database presents a summary of all the information present in
the original database.

A[T : quarter—Q, ticker—T, A'— V', comp_per f = V] «— stocks[ticker—T,
A’ V'), A’ # ticker, T[quarter—Q, A—V], A # quarter

A[X : quarter—Q,ind_per f—V] «— A[X : industry— B],
ind_review|quarter—Q, industry— B, A—V], A # quarter,
A # industry

The tables generated by the above rules are shown in Figure 2.1. Such a repre-
sentation allows one to compare the quarterly performance of each company with the
overall performance of the particular industry (e.g., computers) as a whole. A key
point to note here is that the schema (and hence tuples) of the output tables is being

assembled “piecemeal” by the above rules. [

quarter | ticker company industry | comp-perf | ind-perf
1 xon Exxon Corp oil 0.14 0.16
aeDs 1 ibm IBM Corp computer 0.26 0.24
P 2 msft | Microsoft Corp | computer 0.28 0.25
quarter | ticker | company | industry | comp-perf | ind-perf
asp

Figure 2.1: Example Illustrating Database Restructuring

2.3 Operators in Schema Algebra

Our approach to the implementation of SchemaLog is based on compiling constructs in
SchemalLog into corresponding operations in an extended version of relational algebra,
called Schema Algebra, or SA for short. This algebra, described in detail in [Sub97]
includes conventional relational algebra as a proper subset and features extensions
that facilitate meta-data querying and restructuring. Specifically, SA consists of the

following kinds of operations.

1. Classical RA operators: these are capable of querying all relations (programming

as well as database).

2. Operators which take a programming relation as input parameter along with

some additional parameters, query the data and schema of (database) relations

9

relative to the parameters and present the output as programming relations.

They map relations in a database to programming relations.

3. Operators which take a programming relation as input, along with some pa-
rameters and restructure the information in the input relation according to the
supplied parameters . Thus, these operators map programming relations into

database relations.

Operators of type (2) and (3) are new and unique to SA . In principle, SA can
well be defined in the context of a federation of databases. Indeed, operations of
type 1 and 2 were defined in such a context in [LSS96] and it was proved that they
have an expressive power equivalent to that of SchemaLog programs containing only
programming predicates in rule heads.

The main difference between classical RA operators and the new SA operators is
that the latter treat both the schema of relations and the data in them in a uniform
manner. In other words, the schema is given first class status. Classical RA has no
means of retrieving or restructuring the schema of relations.

Throughout the thesis, we shall use the database pertaining to the New York
Stock Exchange, shown in Figure 2.2, as a running example. The data is based on
the actual data maintained at the URL http://www.ai.mit.edu/ stocks.html. For
brevity, only small parts of the actual database are shown.

2.3.1 Definitions of Operators

The classical relational algebra operators — selection, projection, join, union, inter-
section, difference, cartesian product — are defined in the usual manner.

We give below the definitions of the operators of type (2) and (3). The definitions
below, although based on those given in [Sub97], have been modified to fit into a single
database context. The algorithms and the implementations described in Chapters 4
and 5 also assume a single database environment.

We start with a descriptive definition of what a database is, in the SchemaLog
context. The Herbrand Base HB is the set of all facts that we can express in the
language of SchemalLog , i.e, all literals of the form r[t : a—wv] such that r,£,a and
v are constants. Then, all literals of HB in which the value of r is the name of
a relation in the “Extensional Database” (i.e., the physically stored database) form

10

Name Ticker Type
Exxon Corp xon oil
stocks IBM Corp ibm | computer
Microsoft Corp | msft | computer
Date High | Low | Close | Volume
95/06/16 | 93.62 | 92.62 | 92.62 | 2696.8
ibm | 95/06/19 | 94.62 | 93.25 | 94.62 | 2078.7
95/06/20 | 98.00 | 93.87 | 97.75 | 3568.9
95/06/21 | 98.62 | 97.12 | 97.12 | 3580.5
Date High | Low | Close | Volume
95/06/16 | 72.25 | 71.37 | 72.12 | 3420.6
xon | 95/06/19 | 72.25 | 71.50 | 71.50 826.1
95/06/20 | 71.37 | 70.00 | 70.12 | 1267.3
95/06/21 | 70.00 | 68.75 | 69.25 1792.2
Date High | Low | Close | Volume
95/06/16 | 87.50 | 84.87 | 87.00 | 5767.5
msft | 95/06/19 | 89.87 | 86.87 | 89.62 | 4410.1
95/06/20 | 91.37 | 89.75 | 91.37 | 3541.9
95/06/21 | 92.37 | 90.00 | 90.50 | 3583.8

Figure 2.2: The NYSE Database

11

what can be called EHB (or, the extensional part of the Herbrand Base). It is this
set of ground atoms that we call the “database”. Note that in a Schemalog atom,
the schema information about a relation is also available since the position of the
constants in the atom denote whether it is a relation name, an attribute name or a
value (the usual “data”). For a formal definition, please refer to [Sub97]. The idea
is to view a database as a function, say d, which when given a symbol, maps it to
a function, say s, which when given a symbol, maps it to another function, say v,

which when given a tid, maps it to a value.

Definition 2.1 (Fetching relation names) p() = {r | is the name of a relation

in the database}.

Operator, p, is a O-ary operator. It returns as output the names of all relations
in the database.

E.g., p() would return the set {stocks, tbm, msft, zon}, w.r.t. the stock market
database of Figure 2.2. Notice that the output of p() includes both base and derived

(database) relations, in general.

Definition 2.2 (Fetching relations and their schemas) Let s be a programmning
relation of arity k and i < k a positive number. Then ai(s) = {(r,a) | r € m:(s), r is

the name of a relation in the database, and r has an atiribute with name a}.

This operator, a, takes a programming relation as input and a column number as
parameter. It then interprets the values appearing in that column as possible relation
names in the database, and retrieves the names of their attributes. Note that m:(s)
denotes the classical projection.

As an example, suppose s = {(ms ft, micsrosoft, 100), (hp, hewlett-packard, 200)}.
Then ey (s) = {(msft, date), (msft, high), (msft, low),(msft,close), (msft, volume)}.
Notice that no output corresponding to Ap is produced since kp does not correspond

to any relation name in the database.

Before presenting the definition of the next operator, we need the notion of a
pattern, introduced in [LSS96] in a different context and further extended in [Sub97].

A pattern is of one of the following forms: ‘a—v’, ‘a— ’,¢ —v’,or ¢ — . Intuitively,

a pattern may be viewed as an attribute value pair, where either the attribute or the

12

value component (or both) of the pair could be missing. The next two operators
defined here use a pattern to query data and meta-data in a database. This is
achieved using a notion of satisfaction.

Let r be a relation, ¢ a tuple in r, and p a pattern. Then we say ¢ satisfies p

provided one of the following conditions holds:

e pis of the form e—w, and r has a as one of its attributes and t[a] = v. In this

case, the attribute value pair (a,v) is said to be a witness pair.

e pis of the form a— , and r has a as one of its attributes. In this case, the

attribute value pair (a,v) where t[a] = v, is said to be a witness pair.

e pis of the form —wv, and there is some attribute b in the schema of r, such
that ¢[b] = v. In this case, for every attribute b for which ¢[b] = v, (b, v) is said

to be a witness pair.

® pisof the form — . In this case, for every attribute a of r, and every value

v such that t[a] = v, (a,v) is 2 witness pair.

Definition 2.3 (Querying data and meta-data) Let s be any programming rela-
tion of arity k, 1 < k any number, and let p be any pattern. Then v;x(s) = {(r,t, a,v) |

r € mi(s),t is the id of a tuple that satisfies p, and (a,v) is an associated witness pair}.

This operator, -, allows us to relate data to meta-data. It takes as input a
programming relation, a column number and a pattern as parameters, and returns as
output the details of all tuples in the database which satisfy the pattern.

E.g., let s = {zon,ibm}. Then Y in—(s) = {(zon,t4, high,72.25), ..., (zon, 17,
high,70.00), (ibm,t8, high, 93.62), ..., (ibm,t11, high,98.62)}.

Next we introduce an operator, which can be derived from the previous operators.
The main motivation for this operator is query processing efficiency. The analogy
is that in classical relational algebra, the join is a derived operator which is helpful
in efficient query processing, compared with the Cartesian product. This operator ,
~”, behaves essentially the same as v except that it does not explicitly extract tuple
ids, and it deals with a conjunction of patterns in one shot. We denote a conjunction

of patterns as (py,...,pn), where each p; is a pattern. Satisfaction of conjunctions of

13

patterns is defined in the obvious manner: a tuple satisfies a conjunctive pattern if it

satisfies all patterns in the conjunction.

Definition 2.4 (Querying conjunctive patterns) Let s be a programming rela-

tion, i a column number, and {pi,...,p,) a conjunctive pattern, where each p; is of

one of the the forms — ‘a—v’‘a— ¢ —wv’, or‘ — . Then v, ..(s) =
{(r,a1,v1,...,8n,0s) | T € w(S), T is the name of a relation in the database, a; ’s
are attributes in the schema of r, and there is a tuple t € r such that t[as,...,as] =

Vi,...,Vn, and t satisfies (p1,-..,Pn)}-

This operator takes a programming relation of arity k as input, a column number
i < k and a conjunctive pattern as parameters, and returns as output the details of
all parts of the database queried about using the conjunctive pattern.

E.g.,let s = {stock}. Then for the stock market database, 71\ icker— —scomputer)(S)

= {(stock, ticker, ibm, type, computer), (stock,ticker,msft,type, computer)}.

The relation between 4 and 4 can be expressed formally as:

’)’,{;\(m,,mp,,)(S) = 032=86A,...A84(n~1)-2=84n~2 (Yimp2 () X -+ X Vispn(5))

This completes the definition of operators that extract the information in relations
and convert it into programming relations.

We next turn to the type (3) (restructuring) operators.

Definition 2.5 (Creating relations) For a programming relation s and a column
number i, k;(s) creates a relation named r for each r € wi(s), if such a relation does

not already exist.

In other words, the operator, k, takes a programming relation of arity k£ as in-
put and a column number 7 < k as a parameter and creates relations with names
corresponding to the entries appearing in column ¢ of the input relation.

E.g., k1 ({(close), (high), (low), (volume)} creates the relations close, high, low,

volume (whose schema is not yet defined).

Definition 2.6 (Creating relations with schemas) For a programming relation

s and column numbers i, §, &; ;j(s) creates a relation r with attributes a,, ..., a, ezactly
when o (1 ;(s)) = {(r,@1),-..,(r,a,)}, whenever such a relation does not already
ezxist.

14

This operator, ¢, takes a programming relation of arity k as input and two column
numbers i,j < k as parameters. It creates relations with names corresponding to
the entries in column ¢ whose schemas are determined by interpreting the entries
appearing column j as the attributes associated with the relation names in column z.

For example, let s = {(close, date), (close,ibm), (close, ms ft), (close, zon), (volume,
date), (volume, ibm), (volume, msft), (volume,zon)}. Then ¢ ,(r) will create two
relations close and volume both with the schema {date,ibm,msoft,zon}, and with

no data, as shown in Figure 2.3.

date | ibm | msft | xon

close

date | ibm | msft | xon

volume

Figure 2.3: Example for creating relation schemas

Definition 2.7 (Creating and populating relations with schemas) The oper-
atOT 0ijkigr...qm(S) creates a relation r with attributes ai,...,an ezactly when og—«

(7:5(s)) = {(r,a1),...,(r,an)}, whenever such a relation does not already ezist. Fur-

thermore, it populates the relation r with a tuple t such that t[ay, . .., an] = (v1,. .., Un)
ezactly when 3t,,...,tn € 1 such that t;[i,5,k] = (s,a:,v:), Tije ({tn,---,ta}) =
{(s,a1,v1),.-.,(5,6n,vn)}, and finally, ti[g1,...,gm] = -+ = ta[gr,... ,gm]. When

the relation s already exists, the tuples generated above are appended to this relation.

In less formal language, o takes a programming relation of arity k as input, three
column numbers i, j, k£ and another list of column numbers g1,...,gm as parameters
and returns as output several relations structured according to the interpretation of
column 7 entries as relation names, column j entries as attribute names, and column
k entries as values. The facts thus produced form pieces of larger tuples which are

put together based on equality on the columns g1,...,9m-

15

For example, let r =
{(close, ibm,95/06/21,97.12),
(close, ms ft,95/06/21,90.50),
(close, zon,95/06/21, 69.25),
(close,ibm,95/06/20,97.75),
(close,ms ft,95/06/20,91.37),
(close, zon,95/06/20, 69.25),
(close, date,95/06/21,95/06/21),
(close, date, 95/06/20,95/06/20)}.

Then p; 2,4.3(r) will create the relation shown in Figure 2.4.

date ibm | msft | xon
close| 95/06/20 | 97.75 | 91.37 | 69.25
95/06/21 |{ 97.12 | 90.50 | 69.25

Figure 2.4: Example for creating and populating relations

It must be noted that this restructuring operator also has some limited update
capabilities. Whenever the relation corresponding to a newly generated tuple already

exists, the tuple is appended to such a relation (as a typical tuple insert).

For example, suppose that the relation close shown in Figure 2.4 already exists.
Let s =
(close, ms ft,95/06/19,90.50),
(close,zon,95/06/19,70.25),
(close,1bm,95/06/19,99.75),
(close, date,95/06/19,95/06/19)}.

Then p, 5 4.3(s) will have the effect of appending the tuple (95/06/19, 99.75, 90.50, 70.25)

to the eristing relation close.

16

2.4 Further Examples

We conclude this chapter with further examples which illustrate some of the features
of SchemaLog programs and also show how the various operators defined above are

actually used in the processing of a SchemaLog program to achieve desired results.

Example 2.2 The first example shows how queries involving data and meta-data
can be expressed in SchemaLog .

Consider the query “Determine companies such that the low of Microsoft stock
on some day is more than the high of the company’s stock on the same day.” In
SchemalLog, this would be expressed as

p(C1,Cp) «— stocks[name—Cy, ticker—Si], stocks[name—C,,ticker—Sa],
Si[date—D,low— L], S;[date—D, high—H], L > H.
?-p(microsoft,Cs). [|

Example 2.3 This example is a detailed demonstration of the working of the re-
structuring operator, @, with regard to a given input.

Consider the stock market database of Figure 2.2. The database stores information
related to individual stocks in different (database) relations, organised by the stock
ticker symbol. Figure 2.4 shows a restructured view of the information in the original
database. It permits a quick comparison of the closing prices of different stocks on
a given day. Such a restructuring is often referred to as cross-tabulation (crosstabs)
[GBLP96]. This restructuring can be done readily by writing the one-line SchemaLog
program

close[D : date—D, S—P] «— S[date—D, close—P), stocks[ticker—S].

In this program, both retrieving information from the input EDB, and presenting
the output are done through SchemalLog molecules. The rule computes attribute
value pairs forming any one tuple in the output relation close in a piecemeal manner.
The tuple id D acts as a “glue” and makes sure that all pieces related to one tuple
in the output relation close are correctly grouped together into one tuple.

For example, for the stock market data of Figure 2.2, the facts computed for close
are:

close[95/06/21 : date—95/06/21, ibm—97.125],
close[95/06/21 : date—95/06/21, msft—90.500], and

17

close[95/06/21 : date—95/06/21, ron—69.250].

Since all three facts have the same tuple id 95/06/21, they are correctly grouped

into one tuple
close[95/06/21 : date—95/06/21, bm—97.125, msft—90.500, zon—69.250].
]

Example 2.4 This example takes a generalized version of the program in Example
2.3 and illustrates how a Schemalog program can be rewritten in terms of the SA
operators we have described in this chapter.

Suppose it is required to restructure the information in the stock market database
such that it is readily possible to compare the relative performance of the various
stocks with respect to each of their properties — low, high, and closing prices and wvol-
ume of trading. The intended effect is that there would be separate relations organized
around each of the above properties which list the performances of various stocks in
each row, on a per day basis. It should be pointed out that such a query/restructuring
is not a whim. Indeed in stock market applications, such restructuring arises natu-
rally. In fact, the traditional approach to restructuring information is to write down
special code for this purpose. The disadvantage of this approach is that such code
tends to be specialized, ad hoc, and rather complex. Thus it does not permit gen-
eral forms of restructuring and does not admit easy modification. (See the URL
http://www.ai.mit.edu/stocks.html for details.)

In order to create separate relations corresponding to each of the properties close,
high, low and volume we need to make only a minor modification to the SchemaLog
program of Example 2.3.

A[D : date—D, S—P] «— S[date—D, A—P], A # date, stocks[ticker—S].

This program can be rewritten in the form of the following algebraic expression,

using the SA operators defined earlier:
24,1,5:3((0saz dater (7{\;(date—r,—>) (Tticker (stocks)))) U (7"2.2,3,4,3(7{\;(@::—9,—)) (Tticker (stocks)))))

The computation of the rather complex algebraic expression above can be easily
understood if broken down into a sequence of simpler computations storing interme-

diate results. In the steps given below, r; to rs are temporary relations.

18

1 = Teicker (Stocks)
r2 = 7{\;(date—+,—r)(rl)§
r3i=o S4;é‘da.te'(r2);

rq (=T 2,2,3,4,3(7‘2);

5 =713 U ry4;

I o

94.1.5;3(7‘5);

A detailed study of the result of each step above will help us to understand the

working of the SA operators, especially ¥* and po.
The result of Step 1 (above) is the relation r; which is given in Figure 2.5.

stocks

ticker
xon
ibm
msft

Figure 2.5: ry: the result of Step 1

In Step 2, every relation mentioned in r; of figure 2.5 is taken up and every row
of these relations is processed to fit the given pattern. For the sake of brevity, we
have processed only one row from each of the relations. The result is r, as given in
Figure 2.6.

Step 3 removes those rows from r; where the fourth column contains the string
“date”. The result is r3 as in Figure 2.7.

Step 4 eliminates some of the columns in r» and re-orders the other columns, and
produces the relation r4 in Figure 2.8.

Step 5 does a regular union of the tables 3 and r4 and writes the result in rs as
in Figure 2.9.

Finally, in Step 6 the g operator is applied to rs according the interpretation of
the input parameters. The result is the set of tables given in Figure 2.10. Please note
that processing only the rows of rs will produce merely the first row of each of the

tables in figure 2.10. This is because in Step 2 we did not process all the rows in the

19

xon | date | 95/06/16 | date | 95/06/16
xon | date | 95/06/16 | high 72.25
xon | date [95/06/16 | low 71.37
xon | date | 95/06/16 | close 72.12
xon | date | 95/06/16 | volume | 3420.6
ibm | date | 95/06/16 | date |95/06/16
ibm | date | 95/06/16 | high | 93.62
ibm | date | 95/06/16 | low 92.62
ibm | date | 95/06/16 | close 92.62
ibm | date | 95/06/16 | volume | 2696.8
msft | date | 95/06/16 | date | 95/06/16
msft | date | 95/06/16 | high 87.50
msft | date | 95/06/16 | low - | 84.87
msft | date | 95/06/16 | close 87.00
msft | date | 95/06/16 | volume | 5767.5

Figure 2.6: ry: the result of Step 2

xon | date | 95/06/16 | high | 72.25

xon | date |{ 95/06/16 | low 71.37

xon | date | 95/06/16 | close | 72.12

xon | date | 95/06/16 | volume | 3420.6
ibm | date | 95/06/16 | high | 93.62

ibm | date | 95/06/16 | low 92.62

ibm | date | 95/06/16 | close | 92.62

ibm | date | 95/06/16 | volume | 2696.8
msft | date | 95/06/16 | high | 87.50
msft | date | 95/06/16 | low 84.87
msft | date | 95/06/16 | close | 87.00
msft | date | 95/06/16 | volume | 5767.5

Figure 2.7: r3: the result of Step 3

date | date { 95/06/16 | high | 96/06/16
date | date | 95/06/16 | low | 96/06/16
date | date | 95/06/16 | close | 96/06/16
date | date | 95/06/16 | volume | 96/06/16

Figure 2.8: rq: the result of Step 4

20

xon | date | 95/06/16 | high 72.25
xon | date | 95/06/16 low 71.37
xon | date | 95/06/16 | close 72.12
xon | date | 95/06/16 | volume | 3420.6
ibm | date | 95/06/16 | high 93.62
ibm | date | 95/06/16 | low | 92.62
ibm | date | 95/06/16 | close 92.62
ibm | date | 95/06/16 | volume | 2696.8
msft | date | 95/06/16 | high 87.50
msft | date | 95/06/16 low 84.87
msft | date | 95/06/16 | close 87.00
msft | date | 95/06/16 | volume | 5767.5
date | date | 95/06/16 | high | 96/06/16
date | date | 95/06/16 | low | 96/06/16
date | date | 95/06/16 | close | 96/06/16
date | date | 95/06/16 | volume | 96/06/16

Figure 2.9: rs: the result of Step 5

input. The other rows in figure 2.10 are the result of the complete processing of the
input database of Figure 2.2.

A comparison of the database of Figure 2.2 with the one obtained in Figure 2.10
is a good illustration of the power and usefulness of the g operator. It can be seen
that the columns of figure 2.2 have become tables in figure 2.10 and the tables of

figure 2.2 have become columns in figure 2.10, with the data suitably reallocated.
a

2.5 Concluding Remarks

This chapter provided a basic introduction to the high-level database programming
language called SchemaLog. The syntax of the language was summarised and its
semantics illustrated by some examples (in Sections 2.2 and 2.4). Section 2.3 was a
rather detailed treatment of the algebraic operators needed to translate a SchemalLog
program into an equivalent algebraic expression. Both traditional Relational Alge-
braic Operators as well as some new ones specific to the needs of Schemalog were

defined and their semantics illustrated with examples where necessary. Finally in

21

Date

Xon

ibm

msft

high

95/06/16
95/06/19
95/06/20
95/06/21

72.25
72.25
71.37
70.00

93.62
94.62
98.00
98.62

87.50
89.87
91.37
92.37

Date

xon

ibm

msft

low

95/06/16
95/06/19
95/06/20
95/06/21

71.37
71.50
70.00
68.75

92.62
93.25
93.87
97.12

84.87
86.87
89.75
90.00

close

Date

Xon

ibm

msft

95/06/16
95/06/19
95/06,/20

95/06/21

72.12
71.50
70.12
69.25

92.62
94.62
97.75
97.12

87.00
89.62
91.37
90.50

Date

Xxon

ibm

msft

volume

95/06/16
95/06/19
95/06/20
95/06/21

3420.6

826.1
1267.3
1792.2

2698.8
2078.7
3568.9
3580.5

5767.5
4410.1
3541.9
3583.8

Figure 2.10: The result of Step 6

22

Section 2.4, Example 2.4 we showed how a Schemalog program can be expressed

in an equivalent algebraic expression. We concluded with a detailed example of the

step-by-step evaluation of a SchemaLog rule.
In a subsequent chapter, we shall provide algorithms for implementing the SA

operators in different storage strategies. A program and its equivalent algebraic ex-

pression, such as the one in Example 2.4, may then be readily implemented in the

required storage format.

23

Chapter 3

Top-Down Processing of

SchemaLog Programs

3.1 Introduction

In this chapter we discuss the top-down processing of SchemaLog programs. In par-
ticular, we investigate how the set oriented Rule/Goal Tree (RGT) evaluation method
[U1189] proposed for classical logic can be extended to the SchemalLog setting. Our
choice of this methodology is due to the fact that set-oriented query processing tech-
niques are more suitable for database applications as opposed to the tuple-at-a-time
paradigm of Prolog. At the guts of the algorithm we discuss here, lie the SA operators
defined in the previous chapter.

The rule/goal tree(RGT) is a representation of the sequence of exploration of the
goals, their rules, and their subgoals required to answer a query. The RGT evaluation
method is based on a depth-first search of the rule/goal tree in which a set of tuples
of bindings is obtained at each node of the tree. Details of the rule/goal tree as well

as the attendant query processing algorithm for classical logic can be found in [U1189].

The notion of unification plays an important role in the construction of RGTs.
Unification in Schemalog is different from its classical counterpart mainly because
SchemaLog requires unification of “literals” of unequal depth. [LSS96] discusses this

issue at depth and presents an algorithm for computing the most general unifier (mcu)

24

of two SchemalLog atoms. Based on the SchemaLog notion of unification, the conven-
tional algorithm for constructing the RGT of a program can be adapted to serve our
purpose of evaluating SchemaLog programs. An important consequence of the fact
that SchemaLog unification is performed on atoms is that we need to ‘atomize’ a
SchemaLog program (which in general might contain molecules) before applying the
top-down algorithm. Example 3.2 illustrates this point. We give an algorithm to

“atomize” any given Schemalog program.

The major strength of SchemaLog lies in its ability to express novel querying
as well as powerful restructuring operations. Our adaptation of the classical RGT
evaluation algorithm accounts for these unique features of SchemaLog . In the fol-
lowing, we sketch the major issues that arise in the development of such an algo-
rithm. After that, we present a comprehensive algorithm for the RGT evaluation
of a SchemalLog program. We conclude with an example of a RGT expansion of a

SchemaLog program.

3.2 Atomizing a Schemalog program

The use of “molecules” in a SchemaLog program makes for user convenience in read-
ing and writing programs. But when the program is to be evaluated in a top-down
paradigm, we need to use the program as input to such algorithms as unification
(discussed in [Sub97]) and Rule-Goal Tree Processing (discussed later in this Chap-
ter). Since these algorithms accept only SchemaLog atoms as input, all molecules in a
given SchemaLog program need to be atomized as a necessary pre-processing step to
top-down evaluation. In this section we first present an algorithm for “atomization”

and then illustrate its use with an example.

Algorithm 3.1 Atomization of a Schemalog program

Input: A Schemalog program

Output: A Schemalog program that contains no “molecules”
begin

for every rule in the given program

if the body of the rule contains a molecule

25

rewrite the body as a new body, B, such that
every molecule of the form r[t : a;—wv1, ..., an—Vg]
is written as r[t : a1—V1]A, ..., AT[t : an—vn)
if the molecule does not have a tuple-id,
supply a tuple-id, distinct from the ones used for other molecules.
if the head of the rule contains a molecule of the form
rlt 1 @101, oy Gm— V]
construct m rules of the form:

T[t : a1—+v1] —B
r[t : am—vm] «— B

end

We illustrate the working of the above algorithm with the following example:
Example 3.1 Let us revisit the one-rule SchemaLog program of Example 2.3:

close[D : date—D, S—P] «— S[date—~D, close—P], stocks|[ticker—S].

This rule contains molecules both in the head and in the body. Applying the
Atomization Algorithm to this rule yields the following two rules:

close[D : date—D] «— S[T : date—D], S[T : close—P], stocks(ticker— S|
close[D : S—»P] «— S[T : date—D], S[T : close—P], stocks[ticker—S]

As we can see, the two rules above do not contain any molecules.

3.3 Outline of the Top-Down Processing proce-
dure

At the very outset we should note that the area of top-down processing of logic
programs is a well-studied one. The relevant algorithms have been discussed and

analyzed in detail in logic programming literature. We shall, therefore, model our

26

algorithms on the classical ones and make modifications and additions to them for
the specific requirements of SchemalLog .

There are two operations which are often invoked during the top-down evaluation
of Schemalog programs — one for converting the database relations corresponding
to (programming) subgoals to relations over variables mentioned in that subgoal, and
the other for converting a (programming) relation for the body to a relation for the
head by translating from the viewpoint of variables to the viewpoint of arguments.
For Datalog (which is the classical programming language for deductive databases)?,
this switching between argument and variable viewpoints is accomplished by means
of procedures called atov() and vroa() [Ull89]. As SchemaLog atoms are syntacti-
cally different from their classical counterparts , the arov() and vroa() procedures
are somewhat different for our setting. Our approach efficiently realizes these same
operations by using the technique of first reducing the database predicate arguments
to a template that corresponds to a conventional predicate, and then applying the
classical version of the operations.

For instance, in our a2v() procedure, in order to convert a relation M into a
relation whose attributes correspond to variables appearing in a SchemaLog atom A
of the form o;[a; : a3 — a4, A is reduced to a template temp(ay, a2, a3, 04) and
the conventional atov() algorithm with the template and M as arguments is applied.
The adaptation of the vroa() algorithm is similar in nature.

At the heart of the RGT evaluation algorithm lies two mutually recursive proce-
dures — Expanp_coaL() and expanp_rULE(). Given a SchemaLog goal G and a relation
M that provides bindings for variables in G, expaND_GoaL()returns a relation R that
is the set of tuples (bound by M) that can be inferred from the database using the
program, and match G. expanp_rurLE() on the other hand, takes a rule r and the
initial bindings for the variables in this rule and generates a relation R that is the set
of tuples inferred from the database and the rule. Further, this procedure performs
the restructuring dictated by R and the head predicate of rule r. Thus the query-
ing and restructuring facets of SchemalLog query processing are neatly decoupled in
procedures ExpaND.GoAaL() and EXPAND_RULE() respectively.

EXPAND_GOAL() invokes the querying operations in SA via a procedure called

1For an introduction to Datalog, refer to [CGT89]

27

Query_coaL(). Corresponding to each type of SchemaLog atom, this procedure in-
vokes an appropriate S.A expression involving type (2) operations. For instance, the
call QUERY_GOAL(X[T : a—V]) invokes the operation os3=ta'Ys;, — (P). Procedure re-
STRUCTURE_HEAD(), called from ExpaND_RULE(), invokes an SA expression that includes
a type (3) operation corresponding to the head predicate of the SchemalLog rule under
expansion.

As in the classical case, a queue-based version of this algorithm based on a breadth-
first search of the RGT can be realized by queueing the calls to ExpaND_GoaL() and

exPAND_RULE() rather than stacking them.

3.4 Top-Down Algorithm for SchemalLog
In this section, we present the top-down query processing algorithm for SchemaLog .

Algorithm 3.2 RULE/GOAL TREE EVALUATION
Input: A Schemalog program, a database D, a query Go, and the relation My that
provides bindings for zero or more arguments of Gp.

Output: A set of tuples of bindings for variables in Gy, that satisfy the query
against D.

Body: The main components of the algorithm are procedures QUERY.-GOAL(),
RESTRUCTURE_HEAD(), and two mutually recursive procedures EXPAND_GOAL() and EX-
panp_rULE(). To account for the higher-order syntax of Schemal.og , procedures a2v()

and v2a() are implemented differently from their classical counterpart.

procedure a2v(A, M)
Input: A Schemalog atom A of the form B1[B, : B3 — [4] or an atom of a lesser
depth, and a relation M.
Output: A relation whose attributes are variables in A.
begin
construct a template temp(B;,...,Bk), 1 <i < k < 4, Bj is a variable
corresponding to an attribute of M and appears in A;
let Xi,...,X, be the distinct variables among B;, . . . , B;
let Q, the output relation have scheme Xi,...,X, and be empty;

28

for each tuplet in M
begin
if there is a term matching T for temp(B;, .. ., Bx) and tuplet,
add to Q, the tuple (7(X1),...,7(Xx))
end
return Q)

end

procedure v2a(A, R)
Input: A Schemalog atom A of the form Bi[B2 : Bz — PB4 or an atom of a lesser
depth, and a relation R with scheme (X, ... » Xn)-
begin
construct a predicate temp(B;, - .-, Bk), 1 <i <k <4, where Biy. -, Bk
are all the variable occurrences in A and B; is an attribute of R;
let S, the output relation be empty;
for each tuple t of relation R
begin
for each variable X appearing in temp, replace all occurrences of X
in temp by t[X];
add the resulting tuple (1,...,tm) to S
end
return S

end

procedure xpanp_coaL(M, G, R)

begin
if M = ¢ then
begin
R = ¢; return;
end
R=¢;

for each rule r with head H such that G is unifiable to H

29

begin
let T be the mgu from G to H;
compute So = a2v (t(H), M);
ExPAND RULE(Sp, 7(7));

end

R = querv_coaL(G) X M;

end

procedure expaND_RULE(Sp,T)
begin
letr=H «— Gq,...,Gk;
fori=1tok do
begin
M; = v2a(Gy, Si-1);
expanp_GoaL(M;, Gi, R:);
Q: = a2v(G:, R:);
S: = [I7(Si—1 ™ Q;); /* T is the set of variables that appear in the scheme
of S;_, or Q;, and also appear in one of H,Git1,...,Gx */
end
RESTRUCTURE_HEAD(H, Si)

end

procedure QUERY_GOAL(A)
Input: A Schemalog atom of the form (B, : 3 — Pa), or an atom of a lesser depth.
begin
case A is of depth:
1: if B is a constant, return og;=g, (p)
else return p;
2: return oasi-p,s1(p), Bi is a constant;
3: return o, 5i=p,7s1; — (P), Bi is a constant

end

30

procedure RESTRUCTURE_HEAD(A, P)
Input: A Schemalog atom of the form p1[B, : B3 — B4}, or an atom of a lesser depth,
and a relation P whose attributes correspond to variables in A.
Note: The unary function v used below, takes as argument a variable appearing
in A and returns the position of its corresponding attribute in P.
begin
case A is of depth
1: if By is a constant, return £,{5; }
else return Ky (s,)(P);
2: form a tuplet =< Biy..., B >, 1 <1 < k<2, B, .., P are all
the constants in A;
compute @ = P x {t};
return Sy (s,).v(8:)(Q);
3: form a tuplet =< Bi,..., B >, 1 <i < k< 4, Bi,..., Bk are all
the constants in A;
compute @ = P x {t};
return @y (s,)v(ss) v (6w () (@)
end

The algorithm starts off with an initial call to erpand_goal with the two input
parameters of a SchemaLog goal G and a relation M that provides the initial bindings
for the variables of G.

3.5 Example of Rule-Goal Tree Expansion

in SchemalLog

We now give an illustration of what a Rule-Goal Tree looks like when applied to a

SchemaLog program during top-down computation.

Example 3.2 Let us consider the following SchemaLog program: (from example 2.1)
A[T : quarter—Q,ticker—T, A=V’ comp_per f —V] «— stocks[ticker—T,
A'=V'), A’ # ticker, T[quarter—Q, A—V], A # quarter

31

A[X : quarter—Q,ind_per f—V] «— A[X : industry— B],
ind_review|quarter—Q, industry— B, A—V], A # quarter,

A # industry

with the query:
?-aeps[T : X —Y].

The following is the atomized version of this program:
A[T : quarter—Q] «— body,
A[T : ticker—T] «— body,
A[T : A'—V'] « body,
A[T : comp_per f—V] «— body,
A[X : quarter—Q)] «— body;
A[X :ind_perf—V] «— body,
where,
body, = stocks[Th : ticker—T), stocks[Ty : A'—=V’], A’ # ticker,
T[T; : quarter—Q), T[T, : A—=V], A # quarter
and,
body, = A[X : industry—B), ind review[T; : quarter—Q)], ind-review(T; :
industry— B], ind_review[T; : A—V], A # quarter, A # industry

By factoring out rule bodies into temporary predicates body;, re-computation is
avoided. Figure 3.1 shows the rule/goal tree for this example. For lack of space, only

two representative branches are shown in the figure.

Execution of our top-down algorithm invokes the < operation of the algebra for
the expanp_coaL() call corresponding to the subgoal stocks[T1: A’—V1] in Level 1.
Call to expanp_ruLE() for this rule invokes the p operation. In fact, the non-classical
algebraic operations (of type 2 or 3) are invoked at all the nodes depicted in this

example tree. .

32

Z0 m:X->Y]

T _

z0 [T:comp perf->Y] <-—- Ly [T:ind_perf->Y] <~

stocks{T1: ticker -> T}, stocks [T1: A’ -> V'], Z g [T: business -> B}, ind_review{T1: quarter -> Ql,
ind_review([T1: business -> B],
ind_review(T1: Z 9> Y]

l

Call to EDB

TIT2: quarter -> Q], T(T2: Z0 >Y]
l |

Z (T: business -> Y] <~—
stocks{T1: ticker -> T}, stocks {T1: business -> Y],
Call to EDB T(T2: quarter -> QJ, T[T2: A -> V]

l |

Call to EDB

Figure 3.1: Example of Rule/Goal Tree

3.6 Conclusion

In this chapter, we saw how a given SchemaLog program can be processed in a top-
down manner in procedures similar to the classical top-down processing of first order
logic programs. To accommodate the higher order of the Schemalog syntax, we need
to modify such well-known algorithms such as “unification”, “atomization”, “atov”,
“vtoa”, etc. The SchemaLog version of “unification” was addressed in [Sub97]. We
presented here the other algorithms mentioned above. The Rule-Goal Tree structure,
which is basic to the top-down processing paradigm, was also illustrated with an

example of a SchemalLog program.

33

om<gme

—

NCmg m e

Chapter 4

Physical Storage Architectures

4.1 Introduction

Asillustrated in the preceding chapters, SchemaLog possesses powerful capabilities for
querying data and meta-data of relations as well as for restructuring them. Supporting
these features in an implementation requires efficient storage structures. Recall that
SchemaLog is implemented by compiling its constructs into appropriate operations
in Schema Algebra (S.A). Clearly, depending on the chosen storage structures, the
underlying implementation strategy for the algebraic operations would differ.

In this chapter, we outline three alternative storage structures at the level of phys-
ical schemas. We also discuss the implementation of S.A operators (both conventional
and additional) corresponding to each of them. After each algorithm we discuss the
cost of implementing the algorithm in terms of tuple reads (or writes). We use tu-
ple reads as a theoretical way of comparing the costs among the various strategies.
The actual time taken for the various operations would be platform-dependent and
will vary according to such factors as disk space, main memory size, block size, clock
speed, etc. In a later chapter we shall also discuss a practical implementation of these
algorithms in MS-Access and compare the actual costs of the operations under the
various strategies.

Before we present the alternative storage structures, we remark that for existing
(i.e. base) database relations, it is unrealistic to suppose that they can be converted
into any form other than their existing form. For one thing, such a conversion would

incur a massive overhead. For another, this would disrupt applications running on

34

the existing database. [LSS96] discusses these issues in detail and argues that from
a practical perspective, the base relations should be preserved in their existing form.
Thus, we are really considering alternative storage structures for database relations

which are created or derived by SchemalLog programs.

4.2 Conventional Storage

The idea is to use the same schema. as for conventional database relations. In other
words, a relation r with attributes A, B, C would be implemented as a file of records
with those fields. Thus, derived database relations would be stored and accessed the
same way as base relations are.

We now present algorithms to implement some chosen operators.

4.2.1 Selection

We consider two principal cases: one in which the selection condition(s) involve(s)
only key attribute(s), and the other in which non-key attributes are also involved. In
the first case, we consider two possibilities: one in which there exists an index on the
key attribute(s), and the other in which no index exists. Assume that the selection

is done on a relation called r.

Algorithm 4.1 Selection on indezed key attribute(s)
begin
result = ¢
use the indez on the key attribute to read the relevant tuple(s)
result = result U tuple(s)
write result

end

Cost
In the worst case, the whole relation may need to be read and written once (e, if
all tuples are selected). For uniformity of comparison, we take the most common case

of selection, with the equality operator. Here, we read and write at most one tuple.

35

Next, we take up the case when there is no index on the key attribute. We make
the assumption that the file is ordered on the key attribute.

Algorithm 4.2 Selection on non-indezed key attribute(s)
begin
result = ¢
use binary search to locate the tuple(s) satisfying the given condition
if such tuples are found, result = result U tuple(s)
write result

end

Cost

The reading costs log,N;. Here (and in the following pages), N: stands for the
“average number of tuples in a relation”. The expression stands for the number of
tuples read during a binary search of the file containing the relation. The writing
involves at most one tuple (assuming equality selection).

The final case of selection we consider involves non-key attributes for which no

indexes exist.

Algorithm 4.3 Selection on non-key attribute(s)
begin
result = ¢
while there are tuples in r
read a tuple
check whether it satisfies the given condition
if it does, result = result U tuple
endwhile
write result

end

Cost
The reading costs N; (linear read of all tuples in the relation); the writing costs

S;. Sz stands for “selection density”. Selection Density for a specified column is

36

defined as the average number of times a specific value occurs in that column. The
number of distinct values in that column would then be N;/Sa.
Note that if secondary indexes are available, selection on non-key attributes can

be further optimized.

4.2.2 Projection

Projection involves two cases: one in which duplicates are not eliminated and the

other in which they are.

Algorithm 4.4 Projection without elimination of duplicates
begin
result = ¢
while there are tuples in T
read a tuple
remove unwanted attributes from the tuple
result = result U tuple
endwhile
write result

end

Cost
The reading costs Ny; and the writing, too, costs /NV;.

Algorithm 4.5 Projection with elimination of duplicates
begin
read in the relation r
sort r using the desired attribute(s) as key
write back v’ without duplicates and without the unwanted attributes

end

Cost
If the file is small enough to fit into main memory, the cost can be approximated
as (N:+ N!) where N is the number of tuples in a relation after duplicate elimination.

It can be considered equal to N:/ Sa.

37

For files larger than main memory, an external sort is required; the cost approxi-

mates to 4/N;.

4.2.3 Join

We consider two-way joins only, of relations r; and r;. And in the most general
case, we assume that no indexes are available. In the first case considered, the join

attribute(s) are a key of both r, and r,. Both relations are ordered on the key.

Algorithm 4.6 Join on Key attributes
begin
result = ¢
Let P, point to the first tuple of ry
Let P, point to the first tuple of ry
while there remain tuples in vy and ro
if the join attribute values in the two tuples match,
make the new join tuple t
result = result U ¢
move P, and P, down their respective relations
elseif P, value < P,
move P, down by a row
elseif P, value > P
move P, down by a row
endif
endwhile

end

Cost

The reading costs 2 x N since each relation is read once. The writing costs N; x Ju,
where J; stands for “Join Density”. Join Density is defined here as the ratio of the
number of tuples produced by the join to the number of tuples in a relation. It follows

that the number of tuples produced by the join is N; X Jg.

38

When the join attributes are not keys (and no indexes are available), the most
efficient method for the join, in most cases, is to first sort the two relations on the

join attribute(s) and then to make the join. This is traditionally known as a Sort Join.

Algorithm 4.7 Sort Join
begin
sort ry on the join attribute(s)
sort v, on the join attribute(s)
make the join as in Algorithm 4.6 above

end

Cost
We assume that each sort of a relation involves at least one read and one write of

all the tuples in the relation, making up a cost of 2 x N;. The total cost would, then,
be 2Nt + 2Nt + (2Nt + Nt X Jd).

Let us now consider the case when the join attributes have secondary indexes. We

(204
look at the joinr; . A=7r2.B r,.

Algorithm 4.8 Indezed Join
begin
repeat
read a block of r tuples with the same values on A
read the corresponding tuples in T2 (ie, with the same values for B
make the join and add the tuples to the result
until there are no more tuples in T,

end

Cost
The cost comes to 2N; + N, x Jj.

For more detailed discussions of Join strategies and cost computations, one can
refer to any standard Text on Databases such as [Des90], [KS91], [Ram97], [UL89].

39

4.2.4 Fetching Relation Names

We assume that the DBMS maintains the names of all its relations in its system tables.
The application of the p operator, then, involves one read through the corresponding
system table and a write of all relation names.

The cost would be N, x N, + N,, where N, is defined as the number of relations

in the database and N, as the average number of attributes in a relation.

4.2.5 Fetching Relations and their Schemas

Here again, we assume that the information on relations and their attributes is avail-
able in the form of system tables. The schema of a system table is generally of the
form (relation, attribute). The application of the « operator involves using the rela-
tion name (supplied as an argument to the operator) to search the system tables and
write out tuples of the form (relation, attribute) for each attribute in the relation.

The cost of this operation would be N, x N, for reading and N, x N, for writing.

4.2.6 Querying Data and Meta-data

Algorithm 4.9 v,(s) Querying with a single pattern
begin
Identify the relations involved by inspecting the ith column of relation s.
for each relation r thus identified
for each tuple t in 7
if t matches the pattern p, add to the result a tuple
of the form < r,tid,a,v > where tid is the tuple-id of
t and (a,v) is an associated witness pair
endfor
endfor

end

40

Cost
The reading cost can be written as N, x Ny, where N/ denotes the number of

relations involved in the operation.

Note that this is the worst-case scenario. The cost can be considerably reduced if
the pattern is of the form (a—) or (a—wv). In such cases, during the first step of the
algorithm above, we choose only relations with the attribute a in their schemas. Note
also that if there exists an index or an ordering on a, the algorithm can be further
optimized.

In the worst case, i.e., if the pattern is (—), we have the cost as N; x N X Nj.
Writing costs for the other patterns will vary widely depending on whether a and/or
v are known and what their actual values are. For a rough estimate, we use a factor
called “Pattern Density (Single)” or Py,. Pattern Density, in general, is defined as
the number of tuples that actually fit the pattern (whether single or multiple) to the
maximum number of tuples that could be formed. With this factor, then, we can

summarise the writing cost as Ny X N, x N/ X Py,.

begin -
Identify the relations involved by inspecting the ith column of relation s.
for each relation r thus identified
for each tuple t in r
if t matches the pattern (pi,...,Pn),
add to the result as many tuples as possible of the form
(r,a1,v1,- .. ,8n, V) using (a,v) combinations of tuple t
in all ways that fit the pattern
endfor
endfor

end

Cost
The reading cost is the same as that for the single pattern query, i.e., Ny x N|.
Here, too, the writing cost will vary widely according the number of patterns in
the condition, the number of attributes and other such factors. In cases where the

patterns do not contain any (or few) attribute names, each original tuple could be

41

used to compose a number of tuples in the output. We use the factor “Pattern Density
(Multiple)” or Pim to help us arrive at an expression for the cost. “Pattern Density”
has already been defined earlier. If each original tuple is used to make at most one
tuple in the output, the number of tuples written would be N; x N! X Pyp. If we
assume on the average that a tuple could be used to make N, tuples in the output,

the writing cost would be N; x N} x N, X Py

4.2.7 Creating Relations

Algorithm 4.11 x;(s)
begin
while there are rows to be considered in s (the given schemaless relation)
read a row
store the relation name from the i** column of s
endwhile
for each relation name r stored
create a table called
endfor

end

Cost
The reading cost is N; (if the “schemaless” relation is also considered to have the

average N; number of rows). This cost is negligible compared to the cost of creating

the tables which is obviously much larger.
The writing cost can be estimated to be N, x T., where N, is the number of

relations identified by & and T is the cost of creating a table.

4.2.8 Creating Relations with Schemas

Algorithm 4.12 ¢; ;(s)
begin
while there are rows to be considered in s (the given schemaless relation)

read a Tow

42

store the relation name from the i** column and the attribute name from
the jt* column of s in an appropriate data structure
endwhile
for each relation name r stored
create a table called r with the corresponding stored attributes
endfor

end

Cost
The reading and writing costs can be considered identical to that of the previous

operator, K.

4.2.9 Creating Relations with Schema and Data

In this operation, information about the schema of a table as well as about the data
contained in it arrive in a piecemeal fashion. Data can be added piecemeal to the
conventional relational storage. But the modification of schema is an expensive op-
eration and impractical to do “on the fly” as soon as a new column name appears
as input. In our algorithm below, all information about tables (old as well as new),
schema and data available in the “schemaless relation” (output by the computation
of a SchemaLog program) is stored in temporary data structures and used to make
temporary tables. When all expected information is in, these temporary tables are

joined (wherever possible) to existing database tables.

Algorithm 4.13 g; ;,;.,(s)
begin
while there are rows to be considered in s (the given schemaless relation)
read a row
store the relation name, attribute name, value and grouping
attribute value in an appropriate data structure
endwhile
for each relation name rel in the stored relation

create a table called temp_rel with the appropriate (stored) attributes

43

append tuples to the table (using the stored values)

endfor
for each temp.rel created
if 3 a relation named rel in the database
rel = rel X temp_rel
else create a relation rel = temp_rel
endfor

end

Cost

The cost (reading as well as writing) can be separated into the following parts:
reading in the Schemaless relation = N{ x N x N;
creating temporary data structures = Ny x N, X NV
creating temporary tables = N] x T,
writing to the temporary tables = Ny x N;
making joins with existing tables = N; x ‘joincost’

We have made use of previously defined terms. N/ stands for the average number

of tables that would be mentioned in the input.

4.3 Reduced Storage

The term reduced refers to the fact that SchemaLog admits a faithful first-order re-
duction, as established in [L.SS96]. The idea is that each relation in the database can
be “fiattened” and all the information in the database can be compiled into three rela-
tions — cally(R, T, A, V) (corresponding to R[T : A—V]), callz(R, A) (corresponding
to R[A]), and call;(R) (corresponding to R[]).

For example, consider Figure 4.1 which shows two tables of conventional data

storage.
In the “Reduced Storage”, this information would take the form of the tables

given in Figure 4.2

As pointed out earlier, in a practical setting, this flattening can only be applied
to “derived” database relations. Under reduced storage, meta-data querying is essen-
tially reduced to conventional data querying, and restructuring is reduced to updating

the call; relations. In other words, the extended operations of type (2) and (3) in

44

name | age city

John 35 | Montreal

Peter 42 | Toronto
Andrew | 31 | Montreal

person

name | company
works_in| John CIBC
Peter IBM

Figure 4.1: Conventional Storage Tables

SA are reduced to classical RA operations, under this storage. In particular, the
piecemeal computation of the operator @ under conventional storage reduces to nor-
mal computation (where entire tuples are computed at a time, rather than in parts).
By contrast, simple classical operations like selection and join translate into complex
operations in this storage method.

We now provide algorithms to implement the various Relational Algebraic Oper-
ators we had mentioned with regard to the Conventional Strategy. In the algorithms
and in the cost analysis which follow, we shall assume the presence of three indexes:
a primary key index on (relation, tid) and a secondary key indexes on attribute and
value. Considering that the whole database in this strategy consists practically of one

relation, the cally relation, a total of three indexes is a very reasonable overhead.

4.3.1 Selection

Algorithm 4.14 o,=,7
begin
scan the call; relation using the index on value
and write out the tuple set, S, with the value v, attribute a and relation
result = ¢
for each tuple in the set S
scan the cally relation for all tuples, P, in r
with the same tid (using the (relation,tid) indez)
result = result U P
endfor

end 45

Cost

Producing the tuple set S involves S; x N, tuple reads and S, tuple writes. There
is a further read of Sy tuples in the for loop and the final write of 53 x N, tuples in

the result.

call4

relation
call;| person
works_in
relation | attribute
person name
call, person age
person city
works_in | name
works_in | company
relation | tuple.d | attribute value
person t1 name John
person t1 age 35
person t city Montreal
person ta name Peter
works_in t1 name John
works_in t company | CIBC
works_in s name Peter
works_in 123 company IBM

4.3.2 Projection

Figure 4.2: Reduced Storage Tables

Algorithm 4.15 II,,

begin

result = ¢

.....

an”

scan the call, relation using the indez on r

46

for each tuple t thus retrieved
if the attribute is in the set {a1,...,an}
then, result = result Ut
endfor

end

Cost
The algorithm involves a read of N, x N tuples (i.e., the subset of the call, relation

corresponding to the relation r, and a write of n x N; result tuples, where n is the

number of attributes projected.

4.3.3 Join

When relation tuples are stored in the Reduced Storage strategy, the joinable tuples
have to be first located, and their #id’s used to locate the other reduced tuples that
form part of the conventional joined tuple. The basic outline of the algorithm is given

below.

Algorithm 4.16 r, a7,
begin
result = ¢
create a temporary relation temp rel with the scheme (r1,tidy, 12, tidy)
use a conventional join algorithm on two copies of the cally relation
to match tuples where the relation names and the atiribute names
correspond to the join requirement and the values are the same.
write out tuples of the form (ry,tidy,rs,tid;) into temp.rel
for each row t in temp_rel
retrieve all rows in cally with the same values for ry and tid;
for every row r thus retrieved
assign the new relation name (ie, the name of the joined table)
to the 1%t column
assign a tuple id

assign a new column name (if desired)

47

/* the contents of the value column are left the same*/
result = resultU r

endfor

retrieve all rows in cally with the same values for r, and tid,

for every row s thus retrieved
assign the new relation name (ie, the name of the joined table)

to the 1%t column

assign the tuple id /* same as for r above */
assign a new column name (if desired)
/* the contents of the value column are left the same*/
result = result U s

endfor

endfor

end

Cost
First we consider the cost of the join on. the two copies of cally. Using the Indexed

Join, this would be 2 x N, x N; +N; x N x Jy. At this stage the temp_rel mentioned
in the algorithm is estimated to contain about N; x N, x Jy tuples. In the remaining
part of the algorithm, for each row in temp_rel, the two for loops read and write
exactly N,tuples each. The cost for this part would then be 2 x Ny x N x Ja X N,
for the read and 2 x N; x N, x Jg X N, for the write.

4.3.4 Fetching Relation Names

In the Reduced Storage Strategy, the output of the p operator is simply the stored

call; relation.
The number of rows in call; usually very small and the cost the operation can be

considered negligible.

4.3.5 Fetching Relations and their Schemas

This operation, too, is somewhat trivial under this Storage scheme. An implementa-

tion of the operation a;(r) would simply produce a subset of the tuples in the cally

48

relation.
The cost can be estimated as N, x N, for reading and N, x N, for writing.

4.3.6 Querying Data and Meta-data

Querying with a single pattern is fairly straightforward. We only have to read out
tuples from cally corresponding to the relations identified by the operator and check

whether the tuples match the pattern.

Algorithm 4.17 «,,(s) Querying with a single patiern
begin
Identify the relations involved by inspecting the i** column of relation s.
for each relation r thus identified
for each tuple t in v
if t matches the pattern p, add t to the result
endfor
endfor

end

Cost

The reading cost can be written as N; x N, x N , where N/ denotes the number of
relations identified by the operator. This, again, is a basic and general algorithm. It
can be optimized according the nature of the pattern. If both attribute and value are
known, for example, the indexes on attribute and value can be used to go straight to
the tuples matching the pattern and then the relation names can be checked against
the required relation names.

Making use of the Py, factor (defined earlier), we can summarise the writing cost
as Ny x Ng x N} x Py,.

Querying for a multiple pattern is somewhat complex in this Strategy because of

the very nature of the storage method. Each row in calls contains information on a

49

single pattern only; hence, rows with the same tid have to be put together before we
can decide on the occurrence or otherwise of the given multiple pattern.

Another point to note here is that a single conventional row can produce a num-
ber of rows in the output in cases where one or more of the attribute positions are
left blank in the pattern. For example, if (Jokn,35, Montreal) is a tuple in the
relation person(name,age, city) and the given pattern is (— , —), then the N
operator would produce the following three tuples: (person,name,John,age, 35) ,
(person,name, John, city, Montreal) and (person,age, 35, city, Montreal). In gen-
eral, if there are N, attributes and p patterns, a single conventional tuple can produce
NaCp tuples in the output.

The algorithm below does not go into the details of implementation for each type

of pattern. It outlines a general procedure applicable in all cases.

Algorithm 4.18 v/, ..(s) Querying with a muitiple pattern
begin
Identify the relations involved by inspecting the i** column of relation s.
for each relation r thus identified
for each set R of tuples with the same tid
if the tuples in R match the pattern (p,...,pn),
add to the result as many tuples as possible of the form
(r,a1,v1,-..,0,,Vn) using (a,v) combinations of the tuple set R
in all ways that fit the pattern
endfor
endfor

end

Cost
The reading cost is the same as that for the single pattern query, i.e., N; x N X N/.
If each tuple set R (see algorithm above) is used to make at most one tuple in
the output, the number of tuples written would be N, x N/ X Py, where P;nis the
“Pattern Density” factor for a multiple pattern. If we assume on the average that
set R could be used to make N, tuples in the output, the writing cost would be
N¢ x N! x N, x Pym.

50

4.3.7 Creating Relations

The effect of the & operator in this Strategy is to add as many new rows to the call;

relation as there are relations to be created. The cost is negligible.

4.3.8 Creating Relations with Schemas

Algorithm 4.19 ¢; j(s)
begin
while there are rows to be considered in s (the given schemaless relation)
read a row
store the relation name from the i** column and the attribute name from
the jt* column of s in an appropriate data structure
endwhile
for each relation name r stored
for each atiribute a in r
insert a row (r,a) in the call, relation
endfor
insert a row (r) in the call; relation
endfor

end

Cost
N! x N, rows are written to the call; relation; and N} rows are written to the

call; relation.

4.3.9 Creating Relations with Schema and Data

This operation which was quite complex in the Conventional Strategy is quite straight-
forward under this Strategy. The given “Schemaless relation” is already in the same
format as the cally relation. And so we only need to take each row in the input,

rearrange the column values as specified in the operator and insert the row into cally.

ol

Algorithm 4.20 g; ;;.,(r)
begin
while tuples remain inr
read tuple T from r.

form a tuple < r,t,a,v > such that r,t,a, and v are the ith gth gtk

, and
k** components respectively of 7.
write the new tuple.
endwhile

end

Cost

Reading in the input relation needs N. x N, x N; tuple reads; and the same

number of tuples are written to the call, relation.

4.4 Reduced, Atomized Storage

This is really a refinement on the previous storage scheme. Since information per-
taining to several different database relations is lumped into one relation cally (and
also cally, cally) there is some attendant redundancy e.g., in the repetition of relation
names. One way to minimize this redundancy is to (i) separate information in differ-
ent database relations in their flattened representations, and (ii) split the information
corresponding to different attributes of the same relation, using the tuple id’s as a
glue.

A derived database relation of the form r(a1,...,a.) is physically stored in re-
lations physrel(r,a;)(tid,val),..., physrel(r,a,)(tid, val). Note that in this stor-
age scheme, physrel(r,a;) is the name of a relation used for physical storage while
{tid, val} is its schema. The first column in a physical relation corresponds to the
tuple-ids of tuples in the database relation r, and the second column contains the
values. The tuple < Z,v > in a physical relation physrel(r,a;) represents the fact
that a tuple : in relation r has value v on attribute a;.

To illustrate the above, let us consider the data in the conventional tables of Figure
4.1. In the “Reduced, Atomized Storage”, this information would take the form of
the tables given in Figure 4.3

tid | value
tl John
ta Peter
tz | Andrew

physrel(person,name)

tid | value
t 35
ts 42
t3 31

physrel(person,age)

tid value
t; | Montreal

t | Toronto
ts | Montreal

physrel(person, city)

tid | value
physrel(works_in,name)| t; | John
t2 | Peter

tid | value
physrel(works_in,company)| t; | CIBC
to | IBM

Figure 4.3: Reduced, Atomized Storage Tables

Thus, in this strategy, a derived database relation is stored using as many physical
relations as there are attributes in it — each such relation storing one column of the
database relation. The relation name and the attribute name corresponding to the
column are ‘encoded’ in the name of the physical relation. The SA operations are
interpreted against such a representation; for instance, operations that add attributes
to an existing relation translate in this strategy to operations that add new relations.
Many of the comments made for reduced storage also apply to reduced atomized stor-
age. Thus, we expect that this scheme will suit meta-data querying and restructuring

better than conventional data querying.

53

We now proceed to the algorithms for implementing Algebraic Operators under

this Strategy. Here we shall assume that each physrel relation is indexed on tid and

on value.

4.4.1 Selection

Algorithm 4.21 o,—,r
begin
for each tuple in physrel(r,a)
read tuple t
if t.val = v, write t to the output relation physrel(rou,a)
for each physrel(r,a;),a; # a
use the indez on tid to read from physrel(r,a;) the tuple with tid t.tid
write this tuple to the output relation physrel(rous, a:)
endfor
endfor

end

Cost

If S; is the “Selection Density” (defined earlier), the outer for loop executes Sy
times. And the inner loop executes N, times (actually N, — 1 times; but remember
that N,is considered an average value). There are therefore S; x N, tuple reads and

the same number of tuple writes.

4.4.2 Projection

If the projected attributes contain key attributes or if duplicate elimination is not
required, the projection operation is very simple in this strategy as it would involve

merely marking the appropriate physrels.

The algorithm below assumes that duplicate elimination is required in the result

of the projection.

54

Algorithm 4.22 I, ..(r)
begin
make a join on tid among all physrel(r,a;) wherei =1,...,n, retaining only
the value columns.
sort the resultant relation
write out the same relation eliminating duplicates
write out the n columns from this relation into n physrel relations
assigning new tid’s for each row

end

Cost

The cost of the Join (“indexed join”) is 2N; x J; X N;. Sorting and rewriting
involves approximately 2N; + N; tuple reads and writes. Writing the result into
physrel schemes costs n x N} where N stands for the number of tuples after duplicate

elimination and n represents the number of attributes projected.

4.4.3 Join

The complexity of a Join operation in this Strategy arises from the fact that infor-
mation on a single “conventional tuple” is scattered across several physical relations.
For a simple join such as r ba,—, s, first physrel(r,m) and physrel(s.n) are joined
in the conventional way. Thereafter the other columns in the “join” tuple will have
to be assembled one by one using the tid’s of r and s as glue. The assembled “join”
tuple will also have to be assigned a new tuple id. In the algorithm below a function

newtid(z, j) that generates a unique tid based on tid’s : and j is used.

Algorithm 4.23 r 0q,,=, s
begin

make a join on value between physrel(r,m) and physrel(s,n)

53

producing tuples of the form (r{tid], r[vall, s[tid], s[val])
for each row obtained above
for each relation physrel(r, a;)
read tuple t. with tid rftid] .
write (newtid(r(tid], s[tid]), t,[value]) in physrel(join, a;)
endfor
for each relation physrel(s, a;)
read tuple t, with tid sftid]
write (newtid(r(tid], s{tid]), t,[value]) in physrel(join,a;)
endfor
endfor

end

Cost
The cost of the first join is 2N; + Jz X N,. For each row produced by join, we have
two for loops, each loop consisting of one tuple read and one tuple write, and iterating

on the average N, times. The cost for this part, then, would be Jy x N; X 4N,.

4.4.4 Fetching Relation Names

Here we assume the existence of system tables (as in the “Conventional” Strategy).

The cost would be N; x N, tuple reads and N, tuple writes

4.4.5 Fetching Relations and their Schemas

The implementation of the operation a;(r) would also refer to the system tables. The

cost can be estimated as N, x N, for reading and N, x N, for writing.

4.4.6 Querying Data and Meta-data

In the Single Pattern query, if the attribute name is given in the pattern, we go
straight to only those physrel relations relevant to the given relation and attribute,

physrel(r,a). Otherwise, every physrel relation with the given relation name has to

56

be queried against the pattern. And if the value is given in the pattern, the index on

value can be used to speed up the operation.

Algorithm 4.24 v, (s) Querying with a single pattern

L3

begin
Identify the relations involved by inspecting the i** column of relation s.

for each relation r thus identified
for each physical relation physrel(r,a;)
read each tuple t
if t matches the pattern p, form an output tuple of the form
(r,tid, a;,value), where r and a; are taken
from the current physrel and tid, value are faken
from the current tuple t
endfor
endfor

end

Cost

In the most general case, i.e, if the pattern is { =), the reading cost can be
written as N; x N, x N! , where N! denotes the number of relations identified by
the operator.

Making use of the Py, factor, we can summarise the writing cost as N; x N, X
N! x Py,.

Querying for a multiple pattern introduces similar complexities here as in the
Reduced Strategy. Each physrel contains information on a single pattern only; hence,
rows with the same tid from different physrels have to be put together before we can
decide on the occurrence or otherwise of the given multiple pattern. The algorithm

below outlines a general procedure applicable in all types of patterns.

57

Algorithm 4.25 7/, _,.(s) Querying with a multiple patiern
begin
Identify the relations involved by inspecting the i** column of relation s.
for each relation r thus identified
select a physrel of the relation
for each tuple t in the physrel
select tuples with the same tid from the
remaining physrel’s of the relation
if the {a,v) combinations of this set of tuples
match the pattern (p1,-.-,Pn),
add to the result as many tuples as possible of the form
(r,ai,v1,---,an,vn) using (a,v) combinations from the
tuple set under consideration in all ways that fit the pattern
endfor

endfor

end

Cost

The reading cost is Ny x N, x N’ (same as that for the single pattern query).

If each “conventional” tuple (obtained by placing tuples with the same tid from
physrels of the same relation side by side) is used to make at most one tuple in
the output, the number of tuples written would be N; x N} x Py, where Pynis the
“Pattern Density” factor for a multiple pattern. If we assume on the average that
such a “conventional” tuple can be used to make NV, tuples in the output, ihe writing

cost would be N; x N! x N, X Pyn.

4.4.7 Creating Relations

The & operator in this Strategy would merely add relation names to the System

Table. The cost is negligible.

58

4.4.8 Creating Relations with Schemas

Algorithm 4.26 ¢; ;(s)
begin
while there are rows to be considered in s (the given schemaless relation)
read a row
store the relation name from the i** column and the attribute name from
the j** column of s in an appropriate data structure
endwhile
for each relation name r stored
for each attribute a in r
create a physical relation physrel(r,a)
with attributes tid and value
endfor
endfor

end

Cost
N! x N, physical relations are created. If T, is the cost of creating a table, the
total cost is N! x N, x T..

4.4.9 Creating Relations with Schema and Data

In this Strategy, too, the g operator has a simple implementation. We look at each row
input by the given “Schemaless” relation, check whether the physrel corresponding to

the relation and attribute exists and add the relevant tuple to the table.

Algorithm 4.27 g, ;,.,(r)
begin
for each tuple in the input relation r
read tuple t.
if the table physrel(t[z], t[j]) does not ezxist
create the table physrel(t(i],t[s])
add tuple < t[€),t[k] > to the relation physrel(t[z],t[j])
endfor

end
59

Cost

Reading in the input relation needs N! x N, x N; tuple reads; and the same
number of tuples are written to the various physrel relations. If we assume that on
the average half of the N relations are to be created, the cost of creating these tables

would be N/ x N, x T..

4.5 Conclusion

From long theoretical study as well as long practical usage, it is clear that the storage
of data in the conventional method of tables with well-defined schemes is well-suited to
the efficient implementation of the traditional Relational Algebraic Operators. Since
S A contains new operators both for querying as well as restructuring the database, the
question is whether the conventional storage methods are still the best for the purpose
of storing the data on which these operators are applied. We therefore presented in
this chapter two new storage strategies — the “reduced” storage, and the “reduced,
atomized” storage — which we consider might be more suitable for certain operations,
especially the restructuring operations introduced in SA. For all three strategies,
we presented algorithms for the implementation of SA operators and estimated the
theoretical cost.

If we consider the Join operator as representative of all querying operators and
the o operator as representative of the restructuring operators and compare their
theoretical costs across the three strategies, it is immediately evident that querying
costs are low in the Conventional Strategy and very high in the other two strategies.
As regards restructuring, the position is reversed: costs are high in the Conven-
tional Strategy and much lower in the other two. Comparing the theoretical costs
for the other querying and restructuring operations leads to similar conclusions. In
applications which have a high proportion of queries and relatively few restructuring
operations, the conventional storage method would therefore appear to the better
option. Where restructuring is frequent, one of the other two methods would appear
to be the better choice.

In the next chapter, we shall analyse the experimental results from the imple-
mentation of the three strategies discussed here. We shall see there whether the

60

theoretical results agree with the experimental results. And in the case of restructur-
ing operations in particular, the experimental results will help us to decide which of

the three strategies is the most efficient.

61

Chapter 5

Experimental Results

5.1 Introduction

This chapter presents a report on the practical implementation of the SA operators
under the various storage strategies presented in the previous chapter. In that Chap-
ter we also estimated the theoretical cost of the implementation of the S.A operators.
To supplement those theoretical estimates, we study in this chapter the actual run-
ning time of various querying and restructuring operations on databases of varying
sizes and other parameters such as Join Density and Selection Density. For each set
of parameters, we present a table of readings taken for the various operations under
the three strategies mentioned in the preceding chapter. Graphs on the table val-
ues illustrate the comparative suitability of the strategies for specific operations. We
conclude the chapter with an analysis of the results obtained.

The implementation was done in the MS-Access Database Management System
on the PC/Windows platform. All source code for the creation of tables for the test

bed, the working of the S A operators, etc. was written in Visual Basic.

5.2 Preparation of the Test Bed

The first task at the experimental stage was to prepare a set of tables (according to the
three Strategies under consideration) with adjustable parameters such as the number
of tuples per relation, the number of attributes per relation, the selection density of

various columns and the join density between two columns. On the implementation

62

interface the user is prompted to supply the number of tables to be created, the
number of columns in each table, the number of rows per table, the selection density
of a selected column in a table and the join density between two selected columns
in two tables. Making use of these parameters, the specified number of conventional
tables are created and data generated for each table.

Once the conventional database is ready, the user is asked to initiate the creation of
a Reduced database (the second storage Strategy discussed earlier). The data already

generated for the conventional database is used to create and populate the three call

tables in this Strategy.
The Reduced, Atomized Database (the third Strategy), too, is generated in like

manner from the conventionally stored data.

5.3 Implementation of Schema Algebra operators

Six operators from each of the three Strategies under consideration were taken up
for detailed coding and experimental study: three “traditional” relational algebra
operators and three operators specific only to SA . They are:

1. Selection
2. Projection
3. Join

4. Querying with Single Pattern (this will also be referred to later in an abbreviated

form as gamsing)
5. Querying with Multiple Pattern (sometimes abbreviated to gamult)

6. Creating and populating relations with schemas (abbreviated to war-rho)

Of these, the first five are merely querying operators which do not in any way
modify the database, whereas the sixth is a restructuring operator which can create
new tables, add new columns to existing tables and also insert rows(full or partial)
to the tables.

The implementation interface allows the user to choose any operation under any

strategy and specify the parameters for the operation, such as the table(s) to be used,

63

the selection or join condition to be applied, etc. Once all parameters (if required) for
the operation are filled in, the user initiates the operation and the program displays

the time taken (in milliseconds) for the operation to complete.

5.3.1 Experimental Results and Graphs

We now present the actual results of some experiments conducted on the test bed de-
scribed earlier. Execution time for the various operators were recorded under varying
conditions. As has been already mentioned, N; refers to the number of rows in the

table, J; to the Join Density and Sy to the Selection Density.

N; =500; Jg = 0.25; 5. =3
Operation | Time(S1) | Time(S2) | Time(S3)
Selection 934 1263 2307
Projection 879 1043 1318
Join 1043 10239 13193
Gamsing 1813 1263 2142
Gamult 2142 3186 1648
Var-rho 16066 7307 14499

Table 5.1: Execution time with table size of 500, join density 0.23

Table 5.1 shows the results of running the six operations on two tables of 500
tuples and 3 columns each, with a selection density of 3 for the column referred to in
the selection condition and a join density of 0.25 for the columns referred to in the
join condition. S1 refers to the “conventional” strategy, S2 to the “reduced” strategy
and S3 to the “reduced, atomized” strategy. All times are given in milliseconds.

The tables which follow, ie, Tables 5.2 to 5.10 show the results when tuple num-

bers and join densities are varied.

After each table, we present two graphs to illustrate the time variations involved
in the operations. The first graph, titled Individual Operations plots the six opera-
tions against the time taken, for each of the three storage strategies studied. The
second graph is titled Miz of Operations, and the motivation behind offering this
view is as follows. Processing a SchemaLog program typically consists of a mixture of

various operations from SA . To simulate this scenario, we have manually combined

64

the results of our timing experiments in varying proportions. The mixes we have

investigated are:
1. 100% querying operations
2. 75% querying and 25% restructuring operations
3. 50% querying and 50% restructuring operations
4. 25% querying and 75% restructuring operations

5. 100% restructuring operations

Within each of the above combinations, the load for querying is shared equally among
the different querying operations of SA and the load for restructuring is distributed
likewise. Among the six operators we have studied, the first five are strictly querying
operators and the last alone is a restructuring operator. Then, a mixture of 75%
querying and 25% restructuring operations would mean that each of Selection, Pro-
jection, Join, Gamsing and Gamult would be allocated 15% of the work load and
Var-Rho would be given 25%. It is our belief that such a study would better reveal the

performances of the various Strategies than specifically chosen SchemaLog programs

would.

Graph Labels
In all the graphs that follow:

the values on the Y-axis denote the time, in milliseconds

the values on Z-axis denote the three storage Strategies, viz:
S1 = Conventional Strategy
S2 = Reduced Strategy
S3 = Reduced, Atomized Strategy

In graphs titled “Individual Operations”, the values on the X-axis
refer to the six operators, viz:

Opl = Selection

Op2 = Projection

Op3 = Join

65

Op4 = Gamsing (Single Pattern Querying)
Op5 = Gamult (Multiple Pattern Querying)
Op6 = Var-rho (Creating relations, schemas; adding data)

In graphs titled “Mix of Operations”, the values on the X-axis
refer to the five different mixes of operations, viz;

M1: 100% querying operations
M2: 75% querying and 25% restructuring operations

M3: 50% querying and 50% restructuring operations
M4: 25% querying and 75% restructuring operations

M5: 100% restructuring operations

The two graphs for Table 5.1 are in figures 5.1 and 5.2.

Time{ms)

Figure 5.1: Individual Operations (from Table 5.1)

66

Figure 5.2: Mix of Operations (from Table 5.1)

2

M3

Querying—>Restructuring

ng

mS

N, =1000; J; =0.25; Sq = 3
Operation | Time(S1) | Time(S2) | Time(S3)
Selection 934 1208 2142
Projection 989 1099 1648
Join 1154 19528 26711
Gamsing 1812 1043 2307
Gamult 2527 3405 1648
Var-rho 29330 13021 27684

Table 5.2:

Execution time with table size of 1000, join density 0.25

67

Time(ms)

Time(ms)

“3
Querying-->Restructuring

s

Figure 5.4: Mix of Operations (from Table 5.2)

68

Time(ms)

N; =2500; Jg = 0.25; 54 = 3
Operation | Time(S1) | Time(S2) | Time(S3)
Selection 934 1209 2417
Projection 1318 1373 3594
Join 1538 60642 63741
Gamsing 2802 1098 2032
Gamult 3515 3845 1813
Var-rho 67887 40893 80395

Table 5.3: Execution time with table size of 2500, join density 0.25

Operations OP °P5 Oe6

Figure 5.5: Individual Operations (from Table 5.3)

69

Time (ms)

Querying—>Restructuring

M5

Figure 5.6: Mix of Operations (from Table 5.3)

N; = 5000; J; =0.25; 55 =3

Operation | Time(S1) | Time(S2) | Time(S3)
Selection 934 1374 2197
Projection 2417 1483 6956
Join 1978 111752 115703
Gamsing 4339 1153 1978
Gamult 5273 3570 1757
Var-rho 120767 69208 164790

70

Table 5.4: Execution time with table size of 5000, join density 0.25

Time (ms)

Time (ms)

Figure 5.7: Individual Operations (from Table 5.4)

M2 "
3 mMa

Querying—>Restructuring “ns

Figure 5.8: Mix of Operations (from Table 5.4)

71

Time (ms)

N; = 10000; J; = 0.25; Sq = 3
Operation | Time(S1) | Time(S2) | Time(S3)
Selection 1977 1977 2526
Projection 6316 3515 25114
Join 7634 249817 236131
Gamsing 7634 1208 2033
Gamult 8238 4064 2142
Var-rho 271672 182963 411960

Table 5.5: Execution time with table size of 10000, join density 0.25

OpS

Operations

Figure 5.9: Individual Operations (from Table 5.5)

72

Time (ms)

M3
Querying—>Restructuring

Figure 5.10: Mix of Operations

73

M5

(from Table 5.5)

N NP S L1

e v——

N; =500;J3 = 0.5;5; =3

Operation | Time(S1) | Time(S2) | Time(S3)
Selection 933 1208 2252
Projection 879 1154 1373
Join 1044 18222 25680
Gamsing 1647 1098 1977
Gamult 2362 3185 1868
Var-rho 15626 7469 14172

Table 5.6: Execution time with table size of 500, join density 0.5

N; =1000; J; = 0.5; 54 = 3

Operation | Time(S1) | Time(S2) | Time(S3)
Selection 989 1373 2526
Projection 1098 1209 1758
Join 1153 38117 50258
Gamnsing 2252 1098 2362
Gamult 2856 3295 1867
Var-rho 27464 12906 28338

Table 5.7:

Execution time with table size of 1000, join density 0.5

N; =2500; J; = 0.5; 54 =3

Operation | Time(S1) | Time(S2) | Time(S3)
Selection 879 1373 2527
Projection 1373 1538 3805
Join 1868 110357 118990
Gamsing 3240 1099 2307
Gamult 3954 3680 2087
Var-rho 67035 29504 79095

Table 5.8: Execution time with table size of 2500, join density 0.5

74

Time (ms)

Time (ms)

Operations OP 6

Figure 5.11: Individual Operations (from Table 5.6)

Querying—>Restructuring M5

Figure 5.12: Mix of Operations (from Table 5.6)

75

Time (ms)

Time (ms)

Operations

Figure 5.13:

MmSs

Querying-->Restructuring

Figure 5.14: Mix of Operations (from Table 5.7)

76

Time (ms)

Time (ms)

"2

M3
Querying—->Restructuring

M5

Figure 5.16: Mix of Operations (from Table 5.8)

77

Time (ms)

N; =5000;J3; =0.5;5; =3

Operation | Time(S1) | Time(S2) | Time(S3)
Selection 988 1483 2362
Projection 1813 1702 6840
Join 2033 229932 234200
Gamsing 5053 1044 2472
Gamult 5657 4099 2087
Var-rho 125956 73993 173010

78

Table 5.9: Execution time with table size of 5000, join density 0.5

Figure 5.17: Individual Operations (from Table 5.9)

Time (ms)

{
H
H
i
2
E3
s
3
§
£
H
K3

m3
Querying-->Restructuring

Ms

Figure 5.18: Mix of Operations (from Table 5.9)

N, =10000; J; = 0.5; Sqa = 3
Operation | Time(S1) | Time(S2) | Time(S3)
Selection 988 1923 2362
Projection 6811 3240 25749
Join 8624 471871 494273
Gamsing 8184 1154 2581
Gamult 8513 4339 1923
Var-rho 262709 212662 418500

Table 5.10: Execution time with table size of 10000, join density 0.5

79

Time (ms)

Time (ms)

Ops Op6

M
2 M3

Querying—>Restructuring “s

Figure 5.20: Mix of Operations (from Table 5.10)

80

5.4 Analysis of Results

5.4.1 Individual Operations

The various graphs where the performance of the various operators is plotted against
time (under the three Strategies) show great similarities. Refer to graphs in Figures
51,53,55,57,59, 511,513, 5.15, 5.17 and 5.19. It is quite clear that for
the purely querying operations (operators 1 to 5 in the graphs), the Conventional
storage strategy is decidedly superior. The other two Strategies show comparable
performances for all the querying operators but the Join. For the Reduced Strategy,
the peak in the graph for the Join can be attributed to the fact that the join is made
only on a fragment of the original conventional tuple and the full tuples have to be

reassembled once the results of the join are known.

To illustrate, consider the data in the conventional tables given in Figure 4.1. The
first table, person contains the tuple (John,35,Montreal) and the second, works_in,
contains the tuple (John,CIBC). In the Reduced form these two “conventional” tu-
ples would produce the following five tuples:

<person,t;,name,John>
<person,t;,age,35>
<person,t;,city,Montreal>
<works_in,t;,name,John>

<works_in,t,,company,CIBC>

Now if a join of person and works_on on the column name were required, the “con-
ventional” join would produce the single tuple <John,35,Montreal,CIBC>. In the
Reduced strategy, the joinability of ¢; and £, would have to be determined by looking
for a match on name (here, <person, t;,name,John> and <works.in,t;,name,John>).
A new tuple id (as well as a new table name) has then to be assigned to all tuples
with the existing id’s of ¢; and t, (to indicate that they can be reconstituted into
just one tuple in “conventional” form). In our case, the reduced tuples after the join
would be:

<newtable,t3,name,John>
<newtable,t;,age,35>

81

- <newtable,ts,city,Montreal >

<newtable,t3,company,CIBC>

A similar explanation can be given for the peak in the join plot for the Reduced, at-
omized storage. Here, too, the joinable tuples are determined, their ¢id’s established,
and the joined tuples assembled using the #id.

As regards restructuring operations (operator 6 in the graphs), the cost in the
Conventional Strategy is expectedly high. The operation involves such costly ele-
ments as changing table schema, creating new tables, etc. And again, as expected,
the Reduced Strategy has a low cost for restructuring. There are no new tables cre-
ated, nor is the existing schema changed. New tuples are merely added to existing
tables. The peak for restructuring in the plot for the Reduced, atomized storage may
be surprising, at first sight. True, some new tables may need to be created when
attributes are added to existing schema, but on the whole here the operation involves
adding rows to existing tables. On closer examination of the practical effects of the
restructuring, we, however, see that the various tables being created/modified have to
be successively opened and closed as tuples from the input “schemaless” relation are
being processed. Opening/closing of data sets is an operation that does incur some

overhead. This cost is essentially responsible for the observed peak for this Strategy.

5.4.2 Mix of Operations
Figures 5.2 , 54, 5.6 , 5.8 , 5.10, 5.12 , 5.14 , 5.16 , 5.18 and 5.20 show the cost

of a program that has a mix of operations (as explained earlier in this chapter). We
see that in an application used predominantly for querying operations, the conven-
tional storage strategy is superior. Querying costs for the reduced storage strategy are
somewhat higher. But as we move towards a greater mix of restructuring operations,
we see that the cost for conventional storage strategy (as also for the Reduced, at-
omized strategy) keeps on increasing sharply whereas the cost for the reduced strategy
remains fairly constant. In a SchemaLog application that has typically more restruc-
turing operations than querying operations, the preferred strategy should then be the
Reduced strategy. A mixture of the two strategies, in which the Conventional storage
is used for base relations and the Reduced strategy for derived relations would appear
to be appropriate. In this context it is worth noting that many emerging database
applications such as “Online Analytical Processing” (OLAP) technology ([CCS95))

82

have to deal with a considerable amount of restructuring operations.

5.4.3 Effect of table size on cost of SA operations

Yet another interesting use of the time data in the experimental tables given earlier is
to study the cost of the individual operations (in the various Strategies) with regard
to the size of the database tables. In our experiments, the size of the tables was varied
from 500 tuples to 10,000 tuples. There follow now the graphs corresponding to the

six operators studied.

Graph Labels
The labels on the Y-axis refer to time in milliseconds.
The labels on the X-axis refer to the size of a table
1 = 500 tuples
2 = 1000 tuples
3 = 2500 tuples
4 = 5000 tuples
5 = 10000 tuples
S1 refers to the Conventional Strategy
S2 refers to the Reduced Strategy
S3 refers to the Reduced, Atomized Strategy

83

Time (ms)

Time (ms)

2
3
Size of the Relation

Figure 5.21: Selection

2 3
Size of the Relation

Figure 5.22: Projection

84

2
3
Slze of the Relation

Figure 5.23: Join

Time (ms)

3
Size of the Relation

Figure 5.24: Single Pattern Querying (gamsing)

85

Time (ms)

Time (ms)

2
3

Size of the Relation

Figure 5.25: Multiple Pattern Querying (gamult)

2

3
Size of the Relation

Figure 5.26: Creating Tables, Schema; Adding Rows (Var-Rho)

86

Some points worth noting after a study of the graphs are:

1. In the Conventional Strategy, the cost of Selection and Join remain fairly con-
stant, irrespective of the size of the tables. This can be explained by the fact
that these operations work with only the “selected” and the “joinable” tuples

which are directly available from indexes, and exhaustive reads through the

tables are not required.

2. In the other two strategies, selection costs are fairly constant, but at a consid-
erably higher level than for the Conventional strategy. But Join costs rise quite
dramatically as the table size is increased. For any considerably-sized database

a join in the two non-conventional strategies is an expensive operation.

3. Restructuring costs rise with increase in table size, in all three strategies. But

the rise is least steep in the Reduced Strategy.

5.5 Conclusion

This Chapter presented the results of the experiments we conducted in implementing
S A operators under the three storage strategies in Chapter 4. The results comparing
the performances were tabulated in detail for varying conditions such as table size,
join density and selection density. Performances of the various strategies for a mix
of different operations (as likely to occur in a real-life scenario) were also illustrated
graphically. Another angle studied was the comparative performance of various op-
erations when table size was varied. The chapter concluded with a summary the
findings of the experiments. The most significant of these is that in conventional
querying operations, the “conventional” storage strategy is decidedly superior and
must be retained as the strategy of choice. But when restructuring operations are
involved, the “reduced” strategy has a clear edge over the others. And since modern
applications tend to have an increasing proportion of restructuring operations, this

strategy must find a place in an efficiency-oriented implementation.

87

Chapter 6
Conclusion

In this Chapter, we compare our work to some similar ones done in the field. We then
summarise the principal contributions of this thesis and conclude with mentioning the

possibilities for future work in the area.

6.1 Comparison

Here, we shall compare our work with similar work related to the implementation
of other higher-order logic database languages. We specifically consider four such

implementations:

1. Implementation of F-logic [KLW95], one of the most comprehensive logical ac-

counts for the object-oriented data model.

2. Implementation of Gulog, an object-oriented logic developed at Griffith Univer-
sity, Australia [Dob95].

3. Implementation of HiLog, a higher-order database logic programming language
developed at SUNY, Stony Brook [CKW89].

4. Implementation of F-logic in FLORID, developed at the University of Freiburg,

Germany.

Our comparison will deal with the implementations rather than the language

features. For a comparison of the languages, interested readers are referred to [LSS96].

88

In [Law93], Lawley describes the implementation of an interpreter for F-logic.
This is achieved by translating the F-logic syntax into an appropriate representation
in NU-Prolog, Quintus, Eclipse or XSB Prolog. As described by the author, the
goal of this implementation was simplicity — indeed the interpreter is just a few lines
of meta-programming code — rather than efficiency. While this is useful for running
small F-logic programs, it is not clear how this can be used in a real database context.

In [Lef93] Lefebvre describes an implementation of Gulog, as a declarative query
language for a deductive object-oriented database, with F-logic acting as an “applica-
tion programming language”. This implementation bootstraps on the implementation
of the F-logic interpreter above and inherits its limitations.

Sagonas and Warren [SW95] describe an efficient implementation of HiLog within
the WAM (Warren Abstract Machine) framework. Their idea is based on using a
first-order translation of HiLog different from the one used for the proof of first-
order semantics by the authors of HiLog. HiLog runs on top of XSB Prolog and fully
exploits the run time optimization of XSB Prolog. HiLog can, in fact, be implemented
thus in any Prolog system simply by changing its input/output predicates to support
terms that are expressed using higher-order syntax. The authors show experimentally
that Hilog programs that do not use any higher-order features execute at the same
speed as Prolog programs and that generic Hilog predicates, when compiled using
their special compilation scheme, execute at least an order of magnitude faster than
generic Prolog predicates.

This implementation again, though efficient, runs a HiLog program ultimately as
a Prolog program. The authors, too, view their work as a compile time program
specialisation pre-processing step. There is no attempt at a straight-forward trans-
lation of the higher-order Hilog syntax into a correspondingly expressive procedural
language.

FLORID, [FHKS97], developed at the Universities of Mannheim and Freiburg, is
described by its authors as a prototype environment in which the practical program-
ming aspects of F-logic can be tested. It is claimed that, in contrast to the Gulog
implementation, nearly all the distinctive features of F-logic have been realized in
FLORID. The prototype supports such aspects of the object-oriented model as mul-
tiple, non-monotonic inheritance. The evaluation strategy is bottom-up, using an

extension of Datalog methods. The authors themselves state that efficiency was not

89

the goal of this implementation, but rather the demonstration of all the features of
the language of F-logic.

We remark here that, while useful as a testing medium for the extensive features
of the F-logic language, FLORID does not seem, in its present form, to be suitable

in the area of large databases.

In contrast with all the above implementations, our implementation of SchemaLog

has the following unique features:

1. It is not based on translation into any other language like Prolog or encoding
into a lower-order syntax. Rather, our implementation is direct and follows a
straightforward translation of SchemaLog rules into a corresponding sequence
of procedural SA operations which, we have shown, can be implemented under

various physical storage architectures.

2. Schema Algebra is at the core of our implementation. This is especially suited
for set-oriented processing which is more appropriate for a database context as

opposed to a purely logic programming context.

3. To our knowledge, issues like meta-data querying and piecemeal computation

have not been dealt with in previous implementations.

4. One of our main objectives was efficiency of implementation in a large database
context. To this end, we proposed alternative strategies for storage and handling

of data, and evaluated their effectiveness with a series of experiments.

6.2 Summary

This thesis forms part of an on-going project on the full implementation of SchemaLog ,
an advanced database programming language. SchemalLog , with its higher order log-
ical syntax, has the capability of performing a variety of tasks that are essential in the
current state of information technology. We therefore began this dissertation with an
introduction to the basic theory of SchemaLog , its syntax and semantics. We followed
it up with detailed definitions and illustrations of the operators of Schema Algebra.

Since our implementation of SchemaLog was restricted to the single database context,

90

relevant modifications were made to the original definitions of Schemalog syntax and
of SA operators. It is upon these SA operators that our implementations are based.

The rules in a SchemaLog program can, like all logic language programs, be
evaluated top-down or bottom-up. We have chosen a top-down implementation. And
since we are working with databases expecting a set of tuples as answers to queries, we
chose the Rule/Goal Tree evaluation Method for the SchemaLog rules. We presented
a complete set of algorithms to deal with the RGT evaluation process as applied to
SchemaLog programs.

Realising that some of SchemaLog ’s novel constructs, which led to the definition
of some novel operators in the extended relational algebra called SA , would need
some novel methods of physical storage of data, we proposed three different storage
strategies. One of these is an extension of the conventional method, but the other two
were devised with particular attention to SchemaLog requirements such as restruc-
turing and piecemeal computation of tuples. We described the three strategies and
presented detailed algorithms for implementing the SA operators in all strategies,
as well as theoretical cost estimates for the implementation.

We followed this up with the presentation of the results of some extensive exper-
imental tests conducted on the SA operators under the various strategies. From
practical considerations and from the results of the experiments, we can recommend
that the most efficient way to implement SchemaLog programs would be to use the
“conventional” storage for existing database relations, and the “reduced” strategy for

the derived database relations.

6.3 Future Work

As we have stated on several occasions during the course of this thesis, this implemen-
tation of SchemaLog has been restricted to the single database context. Hence much
work remains to be done in order to achieve a full implementation of the many as-
pects of this powerful programming language. An implementation of SchemaLog for
multi-database interoperability among a federation of INGRES databases has been
done and is described in [LSPS95).

As noted in [Sub97], SA is not a sufficiently powerful language to express every
program in the full-fledged SchemaLog language. As it stands, not all SchemaLog

91

programs can be translated into an equivalent S4 expression. When SA has been
sufficiently developed to this purpose, work needs to be done on an implementation
that converts any given SchemaLog program to an equivalent SA expression and
sends it on for evaluation. In our work, we have supplied algorithms for a top-down
implementation and recommended physical storage structures that can efficiently hold
permanent and temporary tables during evaluation. There is as yet no single imple-
mented system that is able to achieve all of the above at the same time.

We have proposed a top-down method of evaluating SchemaLog programs by
adapting the classical RGT approach to the special needs of SchemaLog. Logic
programs can also be efficiently evaluated bottom-up. Research into how the bottom-
up evaluation methods of “Semi-Naive” coupled with “Magic Sets” can be tailored to
the requirements of SchemaLog can provide an interesting alternative to evaluating
SchemaLog programs.

Implementations of other aspects of SchemaLog and of SchemaSQL - a systematic
extension of standard SQL with the capabilities of SchemaLog features — are already
in progress. We feel confident that the contributions of this thesis will form part
of an integrated system that could fully realize in practice the extensive theoretical
possibilities thrown up by SchemaLog .

92

Bibliography

[AG87] Abiteboul, S. and Grumbach, S. Col: A logic-based language for complex
objects. In Proc. of Workshop on Database Programming Languages, pages
253-276, 1987.

[ALSS96] Andrews, A., Lakshmanan, L.V.S., Shiri, N., and Subramanian, I.LN. On
implementing Schemalog, an advanced database programming language.
International Conference on Information and Knowledge Management, Bal-
timore, MD., November 1996.

[CCS95] Codd, E.F., Codd, S.B., and Salley C.T. Providing olap (on-line analyt-
ical processing) to user-analysts: An it mandate, 1995. White paper —
URL:http://www.arborsoft.com/papers/codd TOC.html.

[CGT8Y] Ceri S., Gottlob G., and Tanca L. What you always wanted to know about
Datalog (and never dared to ask). IEFEE Transactions on Knowledge and
Data Engineering, 1(1). March 1989.

[Chi89] Chimenti, D. et al. The ldl system prototype. IEEE Trans. on Knowledge
and Data Eng., 2(1):76-90, 1989.

[CKW89] Chen, W., Kifer, M., and Warren, D.S. Hilog as a platform for database
language. In 2nd Intl. Workshop on Database Programming Languages, June
1989.

[CKW93] Chen, W., Kifer, M., and Warren, D.S. Hilog: A foundation for higher-
order logic programming. Journal of Logic Programming, 15(3):187-230,
1993.

[Des90] Desai, Bipin C. An Introduction to Database Systems. West Publishing
Company, N.Y., 1990.

93

[Dob95] Dobbie, Gillian. Foundations of deductive object-oriented database systems.
Phd dissertation, research report, University of Melbourne, Parkville, Aus-
tralia, March 1995.

[FHKS97] Frohn, J., Himmeroder, R, Kandzia, P.T. and Schlepphorst, C. How to
write F-logic programs in FLORID. Institut fur Informatik, University of
Freiburg, Freiburg, November 1997.

[GBLP96] Gray, J., Bosworth, A., Layman, A., and Pirahesh H. Data cube: A rela-
tional aggregation operator generalizing group-by, cross-tab, and sub-totals.
In Proceedings of the 12th International Conference on Data Engineering,
pages 152-159, 1996.

[KLW95] Kifer, M., Lausen, G, and Wu, J. Logical foundations for object-oriented
and frame-based languages. Journal of ACM, May 1995. (Tech. Rep., SUNY
Stony Brook, 1990).

[KS91] Korth, H.F. and Silbershatz, A. Database System Concepts. McGraw-Hill,
2nd edition, 1991,

[Law93] Lawley, M. J. A prolog interpreter for f-logic. Technical report, Griffith
University, 1993.

[Lef93] Lefebvre, Alexandre. Implementing an object-oriented database system us-
ing a deductive database system. Technical report, Griffith University, April
1993.

[LSPS95] Lakshmanan, L.V.S., Subramanian, I. N., Papoulis, Despina, and Shiri,
Nematollaah. A declarative system for multi-database interoperability. In
V. S. Alagar, editor, Proc. of the 4th International Conference on Algebraic
Methodology and Software Technology (AMAST), Montreal, Canada, July
1995. Springer-Verlag. Tools Demo.

[LSS93] Lakshmanan, L.V.S., Sadri, F., and Subramanian, I. N. On the logical
foundations of schema integration and evolution in heterogeneous database
systems. In Proc. 8rd International Conference on Deductive and Object-
Oriented Databases (DOOD ’93). Springer-Verlag, LNCS-760, December
1993.

94

[LSS96] Lakshmanan, L.V.S., Sadri, F., and Subramanian, I. N. Logic and algebraic
languages for interoperability in multidatabase systems. Technical report,
Concordia University, Montreal, Feb 1996. Accepted to the Journal of Logic
Programming (A preliminary version appeared in International Conference

on Deductive and Object Oriented Databases, December 1993.).

[RSS92] Ramakrishnan, R., Srivastava, D., and Sudarshan, S. Coral: Control, rela-
tions, and logic. In Proc. Int. Conf. on Very Large Databases, 1992.

[Ram97] Ramakrishnan, Raghu Database Management Systems. McGraw-Hill, 1997.

[Sub97] Subramanian, Narayana Iyer A Foundation for Integrating Heterogeneous
Data Sources. Doctoral Thesis, Department of Computer Science, Concordia
University, Montreal, Canada, 1997.

[SW95] Sagonas, Konstantinos and Warren, David S. Efficient execution of hilog in
wam-based prolog implementations. Technical report, Depertment of Com-
puter Science, State University of New York at Stony Brook, Stony Brook,
NY 11794-4400, 1995.

[UlI89] Ullman, J.D. Principles of Database and Knowledge-Base Systems, vol-

ume II. Computer Science Press, Maryland, 1989.

95

