l *' Nationa: Library Bibliothéque nationale

of Canada du Canada

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microfilming.
Every effort has been made to ensure the highest quality of
reproduction possible.

If pages are missing, contact the university which granted
the degree.

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction infull orin part of this microformis governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL-339 (r.88/04) c

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au microfilmage. Nous avons
tout fait pour assurer une qualité supérieure de reproduc-
tion.

S'i manque des pages, veuillez communiquer avec
luniversité qui a conféré le grade.

La qualité dimpression de cerlaines pages peut laisser a
désirer, surtout si les pages originales ont été dactylogra-
phiées 4 l'aide d'un ruban usé ou si f'université nous a fan
parvenir une photocopie de qualité inférisure.

La reproduction, méme partielle, de cette microforme est

soumise a la Loi canadier:ie sur le droit d'auteur, SRC
1970, ¢. C-30, et ses amendements subséquents.

Canada

The Homogeneous Multiprocessor:
Memory Modules and the Interbus Switch Controlier

Terry L. Segal

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering at
Concordia University
Montréal, Québec, Canada

February 1989

(© Terry L. Segal, 1989

Bibliothéque nationale

National Library
du Canada

of Canada

i+l

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

oA R T e T e e mee

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L’auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-53037-5

Canada

- fii -

ABSTRACT

The Homogeneous Multiprocessor:
Memory Modules and the Interbus Switch Controller

Terry L. Segal

The Homogeneous Multiprocessor is a tightly-coupled, MIMD architecture consist-
ing of a number of identical processing elements, and two types of interconnection path-
ways: (1) a distributively controlled network of switches (‘“‘extended buses’*) which per-
mits each processor to access the memory of its two immediate neighbours, and (2) a fast
local area network (H-Network) which permits each processor to communicate with all

the other processors in a point-to-point or broadcast mode.

The design and implementation of two memory systems is given, one being a
dynamic design incorporating error detection and correction to boost the reliability of
the system and the other a static design using the newest 32 Kilobyte static RAMSs,
These two memory modules are prototypes that will be used in the Homogenecous Mul-
tiprocessor. Depending on cost, efficiency, speed of operation and area required on the
circuit boards, one may be a better solution than the other. The Interbus Switch Con-
troller has been designed and tested using standard off the shelf integrated circuits. The
Interbus Switch Controller is a network of switches that are controlled in a distributive
fashion. The Interbus Switch Controller is capable of creating the extended bus to allow

a processor to access the memory modules of its two immediate neighbours.

- jv -

ACKNOWLEDGEMENTS

I would like to thank my parents Carole and Martin and my flancee, Kelly for
inspiring and supporting me during the endless hours of work.

I wish to express my sincerest gratitude to my thesis supervisor, Dr. N. J. Dimo-
poulos, for his caring guidance throughout my undergraduate and graduate studies. He
was always available to direct and to advise whenever the occasion arose.

1 would like to thank all the people who have been associated with this project,
especially Kin Li, M. Robillard and G. Gosselin for their assistance in making the

hardware operative.

Table of Contents

ABSTRAGT ...ttt sttt e s as e tese et s e e enes i
ACKNOWLEDGEMENTS ...ttt ettt e ee e ase ete e s iv
TABLE OF CONTENTS ..ottt ettt ettt e s ne e e v
LIST OF FIGURESottt serttereiar ettt e sttt re e st st e e vii
LIST OF TABLESooiteet ettt et tnes sttt ssms st be e st sease e ix
LIST OF SYMBOLS ...ttt esies e e sseeressrsebesre s sr s s et ent st esessannnas xi
LIST OF APPENDICEScccooiiiiiecttree ettt vttt s e st st st aen e e XV
CHAPTER 1: INtroductioncccocoiiiiiiiiiiiiniiiieiciiicie et eees 1
1.1 Classification of Architecturescoccooviiviiviiiiiiiiiecc e 2
1.2 Applications for Paralle]l PrOCESSOIScccoveiiiiiiiiiniieiieic s ieeeeein e, 3
1.3 Parallel Processor SEFUCLUTEScc.coiviiiiiiiiiieineeriiiisiieronesiinsiseeninsieresannnns 4
1.4 EXISUINE MUItiPTOCESSOTS 1viiiiiiiitiiieriirieriarierineriiiirirerieeratenrsnseninersnserassnns 5
) I T8 B N+ T 2 1R A1) o TR 5
1.4.2 The CHI*k .iiviiiiiiiiiiiiiiniii st ssen seb st s sseasas s ba e 7
| I 15¢ 0 0 T G0 11 1 11 0 T TSP PR .0
1.4.4 The Cosmic CUDeccvvviiiiiiiiiiiiiiiii s 12
1.4.5 The NYU Ultracomputercccoovvvviiinniiiininiiniiniienees e 13
1.5 The Homogeneous Multiprocessor Propercoovvviviiiiiiiniiiiiiienininennnn, 14

1.5.1 The Performance Analysis of the Homogeneous
MUItIPTOCESSOT .vvveiiieniinierieieiieee ettt ettt et e s e b enee e nran s aessras 20

1.5.2 Software Design for the Homogeneous

- Vi-

MU I DPTOCESSOT ...utieiiiiieii it ceeeiieveeeteseeeeuraesea st s s raresssessnnaararsnssssastnssatensensasanssnresrernss
1.8 Objectives of This ReSEATCRciceiiniiiiiiiiiiiiiiiiiiriee i vese s ennree e ereres
CHAPTER 2: The Interbus Switchc..oooiiiiiiiiii e
2.1 PRase] ..o e s s g
2.1.1 Design and Implementationc.ccccceveiririerieenriiiiiiirirecsneerienens
2.2 Phase Il ..o et e e e e st aes
2.2.1 Design and Implementationcccoviiviiniiiieiiniiiiiiiiesseneienesennnens
2.2.1.1 Normal Access without Potential Deadlock
2.2.1.2 Potential Deadlockcoooiimimmieciiiinniimiiiniircneeceniennnens

2.2.1.3 Amalgamation - Normal Access including
Potential Deadlockc.ccoiiviiiiiieeiiiiniiineniens vieernninnenn
2.3 Experimental Resultsc..ocooiiiiiiiiiiiiiic et ireres s e e s s
CHAPTER 3: Conclusion and Future Workccccccvvvviiiiiniiiieeinninininn,
Referencesooocviiiiiii o oo s er e RTTICPTOURRI

Appendicies

...

21

22

23

26

27

32

37

41

45

51

56

57

60

62

- vii -

List of Figures

1.1 The Block Diagram of the INOGUEccccviiviiiiiiiiiiiiiiire i e se e e saesere e
1.2 A 4X 4 BUutterfly SWItCR .ovviiiiiiiiiriininrireriirecirt s srisinsans et nseanes TN
1.3 A 16-Node BUtterfly PrOCESSOTccvuieiiiiitirineniiiritireieeeeatieiseteerrisrerasresseessesnins
1.4 The Block Diagram of a Module in the Cm*cccocoiuiiiiiiiiiiiiiiiiir e
1.5 A Cluster of COmPUter MOUUIES ...couiniiiiiiniiiiieeriir e et rrrcern e eers s snsebnnas
1.8 A INetWOTIK Of CIUSLEIS ...c.oiviiiiiiiiniriiiiiiiniiiren ittt e rea i sens s s
1.7 The Architecture of the C.IMIMP ...covniiiiiiiiiiiiii i e
1.8 The Structure of a Processor in the C.IMMPccococivininiiiinii
1.0 The Cosmic Cube Interconnection Networkcocceviniiiiiniiiinin i,
1.10 The Block Diagram of the NYU Ultracomputerccccoooiiiiiiiiiinnn
1.11 The Block Diagram of an Omega Network for N=8cc.cccoeiiiiiniiiniiinnnn..
1.12 A Block Diagram of a Node in the Homogeneous Multiprocessor
1.13 The Homogeneous Multiprocessor PrOPerccovivviiviiiiiiiiiiniiiiiiieinieiinin e
2.1 The Block Diagram of the Interbus Switch Controllercooevviiiiinincnnnn
2.2 State Diagram for Phase 1 ...t i e
2.3 Hardware Implementation for Phase Ic.cccoeiriiiniiiii i e,
2.4 ‘Timing Diagram for Mastering the BUsccoooiiiiii e
2.5 Casel of Potential Deadlockcccooovviiiiiiiieiiiiiii
2.6 Case Il of Potential Deadlockccoovmmmiiiiiiiiiiii
2.7 Case Il of Potential Deadlockccorerrone e

2.8 State Diagram for Handshaking During Phase Il ...

- viij -

2.9 Hardware Implementation for Handshaking During Phase IIee. 40
2.10 A Detailed Block Diagram of the Homogeneous Multiprocessorcc.eoue. 42
2.11 Hardware Implementation for Phase IIccccovivminniirimmmiiiiiiiniinneiennnn, 55
A.1 The Mitsubishi M5M4256S-15 Dynamic RAMc.cccoiiniiinicinniniinnnins, 63
A.2 A Simple StOrage SYSLEIMcccccceiiiiuiiiiiiiirriieriretieeiierniiiicaesatr e sias s seesnaresees 65
A.3 A Typical Data Storage System Employing Error Detection

AN COTTECLION ..viiviiiiiiciiiciiiiniiii e e s st s r s rerireeneee 66
A.4 The Dynamic Memory SUDSYSLEIMccoivieiiiiiiiniieiiieiiiiimiiiieeesiiiierenssrnmennies 74
A.5 The Am2960 Error Detection and Correction Unitcccoiiviiniiiniininn 76
A.8 The Am2062 Bus BUfTercccccieiiiiiiiininiiiniiiiiniiiie e ieeeen e s s veanianeeens 80
A.7 The Am2968 Dynamic MemoryCORtrollerccccoveviiiiiiiiniimiiin i, 81
A.8 The Layout of a Processor Node Incorporating the Dynamic Memory 88
A.9 The Schematic Design of the Dynamic MeMOIY ...ccciviiiiiiiiiicniciiniinicenninninn, 89
B.1 The Block Diagram of the Hitachi HM62256P Static RAM ..., 92
B.2 Timing Diagram for the Data Transfer Acknowledgecc..oooiviiiivinniiiiinnn, 96
B.3 The Layout of the Static Memory SubsyStemcccccovviiiiiiiiiiiiiiiiinnne. 98
B.4 The Schematic of the Static MEMOTY ...cccooviiiiiiiiiiiiiiiiiiiiieiiniri s eravesieesenne 99
D.1 Processor Schematics (Sheet 1 0f 3)ccoovimniiiiniiimniiiiiii e 111
D.2 Processor Schematics (Sheet 2 0f 3)cccciviiiiiiiiiiniiiiiiiii e e sonnes 112
D.3 Processor Schematics (Sheet 3 of 3) ...occvceeermreeiiniiiiininie i i s ersennees 113

- ix -
List of Tables
2.1 The Interbus MemOTY MAP ..ouciieiiirniiiiiriiieirirtonerteeereieessrtininteeesesesessessessasensrsenes
2.2 State Assignment for PRase]cc..ociiiiiiiiiiieniiiinieininiinieeiieriisessesisensnssensrsenns

2.3 State Assignment for the Handshaking in Phase 11

..

2.4 Truth Table for the 8286 Buffer

...

2.5 Truth Table for Closing the Interbus Switch

2.6 Truth Table for Address and Control Directional Signal

...................................

2.7 Truth Table for Data Direction in the Interbus Switch

.....................................

2.8 Casel of Potential Deadlock

...

2.9 Case Il of Potential Deadlock

..

2.10 Case IIlI of Potential Deadlock

..

2.11 State of the Switches During Potential Deadlockcoooeiiiiiiiiviiiiiiinci,
2.12 Switch Control INTOrMAatioNcoccoiiimiiiiiircri e e rrerre i e ee e s
2.13 Directional Control for the Interbus Switch ..o,
2.14 Truth Table for the Processor SWitChcccccocceiiiiiiiiiiiiniii e
2.15 Truth 1able for Address and Control sighals of the Interbus Switch .ol
2.16 Truth Table for Data Bus Direction Through the Interbus Switch
2.17 Truth Table for the State of the Interbus Switch ...l
A.1 Check POSILIONS ..iivviiiiiiiiiiiiiiiiiiiiii et e rr e s
A.2 Encoding a 4-Bit Message and Locating the Errorocoovivviiiiiiiiiiin,

A.3 Syndrome Bit Deflnitionccoooiiimiiiiiii e e

A4 Check Bit ENCOQINE .ivvvviiniiiiiiiiiiiiees crrieriiiteruiisenees et cirn ittt tts e eeiiiaiee s rssares

23

28

54

67

68

71

78

e A Pk & e Fpirend™ e

AS

B.1

B.2

B.3

MCB8000 t0 AMBIBT7 INLEITACE .ovuiivriieeiiieriiiiiieiiiernrecreenteneresenseerrtiees covsoressssnses 82
Memory Partition at the First Levelocvviiiimiiiiiiiirnrcrir e erien e 93
Truth Table for the 4-t0-16 DeCOURrSc.vcviiviiirieniirniiieitiierrer i eeeecerererisseesens 04

Symbol
Ay
ALU

AS

AS,

b

BE

BG
BGACK
BR
BR,,
BYTE/WORD
G

CAS
CLK
CLR

CS

DI
Ds
DTACK
DO
ERROR

EPROM

- Xj -

List of Symbols

Descript.cn
Address bit i
Arithmetic Logic Unit
Address Strobe
Address Strobe originatingfrom Processor i
Local bus
Back End
Bus Grant
Bus Grant Acknowledge
Bus Grant Acknowledge (from i to j)
Bus Request
Bus Request (from i to j)
8 or 16 bit data
Check bit i
Column Address Strobe
Clock
Clear Circuit
Chip Select
Data bit i
Data Input line
Data Strobe
Data Transfer Acknowledge
Data Output line
Single bit error

Electrically Programmable Read Only Memory

Page

23

93
31
17
17
a3
33
25

33

82
67

83

25
01
70
70
82
33
64
76

15

FE
HS,

IBS,

IBSW,

LG

LDsS

LE IN
LE OUT
m

M,

MMU

»18

MULT ERROR
n
Ny

OE

OE, cp

a‘;A.C.D]BSI.J
OE, ¢,pPS;
P,

PAS

PAS,

PBGACK

- xii -

Front End
Network station i

Interbus Switch Controller located between processor i and
processor j

Interbus Switch loca.cd between processor i and processor j§

Logical Closure for Interbus Switch located between pro-
cessor i and processor j

Lower Data Strobe

Latch Enable Input

Latch Enable Output

parity bits

Memory Module i

Memory Management Unit
Mass Storage

Multiple bit error

message bits

Message bit i

Output Enable

Output Enable for Processor i
Output Enable fo. Address, Control and Data lines

Output Enable for Address, Control and Data lines on
Interbus Switch between processor i and processor j

Output Enable for Address, Control and Data lines on
Processor Switch i

Processor i
Physical Address Strobe
Physical Address Strobe originating from Processor i

Physical Bus Grant Acknowledge

17

17

1?7

17

25

33

75

76

66

17

17

70

86

87

41

51

43

25

17

38

25

38

PBGACK

PD
PDTACK
PE
PLDS
PNC
PNI

PR

PS,

PS,IBS,,

RAS
RCLK

Request”

Sy

SLIJ

SR,

sTl 'j

- xiil -

Physical Bus Grant Acknowledge
Potential Deadlock

Pysical Data Transfer Acknowledge
Processing Element

Physical Lower Address Strobe
Processor Node Controller
Processor Network Interface

Preset Circuit

Processor Switch i

Processor switcih control line orginating from Interbus
Switch Controller i,j

Physical Upper Address Strobe

Sum of all requests

Bus request/grant

Request from Processor i

Read / Write Signal

Read / Write signal from processor i
Random Access Memory

Row Address Strobe

Refresh timer

Request originating from processor i and terminating at
processor j

Symdrome bit i

Status of Switch on Left of Interbus Switch located
between processors i and j

Status of Switch on Right of Interbus Switch located
between processors i and j

Interbus Switch Status (OPEN or non-OPEN)

a8

48

38

38

13

06

45

81

38

27

17

27

25

12

63

82

45

70

25

25

25

- Xiv -

Buffer Direction control
Directional Control for Address and Control lines
Directional Control for Data Lines

Directional Control for Address and Control lines on
Interbus Switch between processor i and processor j

Directional Control for Data lines on Interbus Switch
between processor i and processor j

Directional Control for Address and Control lines on Pro-
cessor Switch i

Directional Controtl for Data lines on Processor Switch i
Terminal

Upper Data Strobe

Write Enable

Decoder Output i

41

41

43

25

25

25

25

17

33

74

93

APPENDIX A:
APPENDIX B:
APPENDIX C:

APPENDIX D:

- XV -

List of Appendices

The Dynamic Memory SubsyStemcccccociiiiiniieeniieiiiinenserinanen 62
The Static Memory SubsyStemccooeiniiiiiiiieniniceee e, 00
Design of the Interbus Switch Controllercoiveviierecniiinnennne 100
Schematics for the Processor Subsystemcccocoviviierivecnrciiirenres 111

1. Introduction

In the past decade, the development of microprocessor technology and electronic
circuits along with the desire to have larger and faster compuwers have prompted an
increase in the research activities in the area of computer architecture. Computer
designers have proposed numerous distributed and multiprocessing architectures. These
systems have used mostly off the shelf commercially available components and more
recently, implementing specific aichitectures or specialized components, Very Large Scale

Integration (VLSI).

The definition of 2 multiprocessor is a computer that contains two or more proces-
sor units working on a shared memory under integrated control. However, the processor
units can have their own small local memories. There must exist an integrated operating
system which controls all of the hardware and software of the system. There are many
ways of organizing the interconnection network required by the multiprocessors such as:
a timed-shared bus; a crossbar switch; an n-dimensional cube; nearest neighbour

matrices; and a cluster bus to name a few.[12]

As defined in the past, a multiprocessing system consists of tWo or more processors
each of which can operate independently but at the same time can exchange information
via an interconnection network and/or shared memory. In the Homogeneous Multipro-
cessor Proper an interconnection network known as the InterProcessor Bus allows pro-

cessors to access the memories of their two immmediate neighbours,

Some of the more popular multiprocessing systems that have been proposed and
built that contain varying degrees of coupling and homogeneity are the Butterfly [2], the

Cm+ [19], the C.mmp [21], the Cosmic Cube [18], the NYU Ultracomputer (7], etc.

-92-

1.1 Classification of Architectures

There are four basic classifications for a computer. The four categories determined
by the multiplicity of instruction and data streams. These classifications were introduced
by Michael J. Flynn.

SISD : Single Instruction stream - Single Data stream

SIMD : Single Instruction stream - Multiple Data stream

MISD : Multiple Instruction stream - Single Data stream

MIMD : Multiple Instruction stream - Multiple Data stream

Most commercially available computers available today are SISD, they contain one

processor, control unit, and memory.

Array processors are SIMD. They contain multiple processing elements and one
control unit. Each of the processing elements receives the same Instructions to execute

on different data.

MISD computers contain n processing units. Each processing unit receives different
instructions to execute on the same data. The output of processor ¢ is used as the tnput

to processor J.

An MIMD computer consists of n processors that interact on an input derived from
the same data space shared by all processors. The computer is said to be lightly-coupled
if the degree of interaction among the processors is high.[10] In an MIMD system, care
must be taken to avoid unecessary overhead due to interference caused by accessing

shared resources such as main memory and synchronization.[6]

-3-

1.2 Applications for Parallel Processors

Just about any application can be accomplished on a parallel computer. The
justification for using one is a significant decrease in the time required to complete the
job. A most obvious example is weather forcasting. There is no point forcasting the
weather using a computer if the time required for the computations is greater than the
forcast time less the current time, i.e. if it is 9:00 AM, the weather being forcast is for
10:00 AM and the computer requires two hours to do the forcast. Reduction in computa-
tion time is a major justification, but it is not the only one. In some instances, the sheer

complexity of the problem may be a factor.
There are various categories where parallel computers can play a major role.
Weather forcasting: Solving the general circulation model equations.

Oceanography and Astrophysics: Ocean climate, fishery management, ocean

resources, and tides.

Artificial Intelligence and Automation: Image processing, pattern recognition, com-
puter vision, speech understanding, machine interface, CAD/CAM/CAI/OA, intelligent

robotics, expert systems, and knowledge engineering.

Finite element analysis: Design of dams, bridges, ships, jets, buildings, and space

vehicles. I.LE. large systems of algebraic an partial differential equations.

Computational dynamics: Aircralt and spacecraft lift, turbulence studies.

A host of other applications are also applicable: remote sensing, energy resources
exploration, seismic exploration, reservoir modeling, plasma fusion power, nuclear reactor

safety, computer assisted tomography, genetic engineering, weapon research and

defense.[10]

1.3 Parallel Processor Structures

Parallel computers are divided into three configurations:
Pipeline computers
ATrray processors

Multiprocessor systems.

There are four major steps involved in normal processing within a Pipelined proces-

sor. They are:

Instruction Fetch (IF): From main memory
Instruction Decoding (ID): Identify the operation
Operand Fetch (OF): If required for execution

Execution (EX): Execute the operation

In a non-pipelined processor, once an instruction fetch is complete, the next one
cannot proceed until the current instruction has run to completion, i.e. instruction
decode, operand fetch, and execution. In a pipelined processor, at any given time, there
can be as many as four (or as many stages as there are in the pipe) instructions running
at different stages of compietion. The rate at which instructions are clocked through the
pipe is equal to the slowest stage in the pipe. In theory, a pipelined processors with n

stages can be at most n times faster than a non-pipelined processor.

Array processors are synchronous parallel computers comprising of processing ele-
ments (PE). A processing element ccntains an ALU with registers and local memory. The
processing elements are connected by a data-routing netwcrk. The processing elements
are synchronized to perform the same function at the same time, and of course the
data-routing mechanism must be established among them. There is also a control unit
which fetches and decodes instructions from local and control memory and executes the
scalar and control-type instructions. The data routing is accomplished by the control

unit. Vector instructions are received by the processing elements from the control unit

for distributed execution for use with different operands fetched directly from the PR«

local memory

A multiprocessor contains two or more processors that have comparable capabili-
ties. Memory modules, 1/0O channels, and peripheral devices are shared between all of the
processors. Each processor also has its own local memory and peripheral devices. A mul-
tiprocessor is controlled by a single integrated operating system that provides interaction
between processors and their programs at various levels. The processors, memories, and
peripheral devices are organized by the interconnection structure. Some of these inter-
connection structures are a time-shared common bus, a crossbar switch network, and
multiport memories.{10]

1.4 Existing Multiprocessors

Currently, there are many multiprocessors that have been designed and built.
Some of them are research projects while others are commercially available. In the fol-
lowing sections, descriptions of some of the multiprocessors that have been conceived
through University research are given. These multiprocessors are. The Butterfly; the
Cm=*; the C.mmp; the NYU Ultracomputer; and the Homogeneous Multiprocessor.

1.4.1 The Butterfly

The Butterfly Multiprocessor consists of nodes each of which contains a processor
aud local memory and is connected to a high performance switch. Each node comprises
of a Motorola NC68000 with up to 4 Megabytes of local memory, an Advanced Micro
Devices AMD2901 processor which implements the Processor Node Controller (PNC)
function, and a Memory Management Unit (MMU). Shown in figure 1.1 is the block

diagram of the node.[3]

___| switch é__}
Interface
MC68000 to Butterty
Processor Switch
| __| EPROM
Mamory
Memory Multibus | _ | RAM
AMD 28901 Managemeant Meamory
Node Controller unit
1/0
1 Devices

Figure 1.1: The Block Diagram of the Node. 3]

The Butterfly can contain up to 256 nodes. Through a virtual memory interface
access to the Butterfly switch is accomplished. This is done by the PNC, it interprets the
virtual address to determine if the request is local or on a remote node. If the request is
local, the virtual address is passed to the Memory Management Unit for translation into
a physical memory location. If the request is destined for a remote node, the PNC sends
a message to through the Butterfly switch to the remote node, where the reference is
satisfied and if necessary, a reply is returned. The message contains a physical memory

address and a node address for the remote node.

The backbone of the processor is the Butterfly Switch. Shown in figure 1.2 is the

building block of the Butterfly Switch, a 4 x 4 switch.

Route
—_— — oo
Input 1 | S
Data . L 01
and - | R,
Address 10
——— > 41

Figure 1.2: A 4 x 4 Butterfly Switch.[3]

When accessing the Butterfily Switch, a remote address and data arrive on an input
path, and depending on the address, exit the appropriate path. Refer to figure 1.3, for a

16-node Butterfly processor.

P1 — > P1
P2 —> f——s p2
P3 — > P3
P4 ——N F—> P4
PS5 —— —> PS
P —— ——> P56
P7 —s ——> pP7
P8 —— f—> P8
P — ———> PA
P10 ——a > P10
P11 ——— - —> P11
P12 —> > Pa2
P13 ——N ——> P13
P14 —— b——a P14
P15 ——> pb—> P15
P16 ——> |—> P16

Figure 1.3: A 16-Node Butterfly Processor. (3]

1.4.2 The Cm»*

The Cm#* is an MIMD distributed multiprocessor. It was developed at Carnegie
Mellon University in the mid 1970’s. All of the processors in the Cm#* share a single vir-
tual address space, i.e. each processor has associated with it, a portion of the total
memory. Processors are grouped into clusters and processors in different clusters com-
municate via packet-switches. The hierarchy of the Cm=* consists of three levels: modules

(processors); clusters (groups of modules); and system.

A Module comprises of a processor, a local memory, and peripheral devices. The
contents of the Module communicate with each other via the Modules’ processor bus.
The processor within the Modules is a DEC LSI-11. The LSI-11 is a 16-bit computer
with an address range of 64 Kilobytes. Shown in figure 1.4 is the block diagram of a
Modu!. in the Cmx*. Each of the modules is connected to the other Modules in the Clus-

ter via the local switch.[3]

LSI-11 Local Peripheral
Processor Memory Devices
1
Local LSI-11 Bus
Switch

:I:To Map Bus

Figure 1.4: The Block Diagram of a Module in the Cm*.[3]

A Cluster is a group of 14 Modules or Cms. The Clusters are connected via the

Intercluster buses. Referring to figure 1.5, a cluster o’ computer modules.

P M 1/0 P M 1/0
l l l |
S]
Map Bus
Kmap
l Intercluster Bus

Intercluster Bus

Figure 1.5: A Cluster of Computer Modules.[10]

The Local Switch in the Module allows the processor to communicate with its
memory and peripheral devices. The Local Switch maps local addresses by using an
internal relocation table that segments local memory on 4 Kilobyte boundaries. If a
reference on non-local, it is determined by the Local Switch and {t is routed automati-
cally onto the Map bus. The Kmap unit arbitrates access to the Map bus. The Pmap
unit, located within the Kmap unit is a microprogrammed processor that determines if a

reference is local or to the cluster.[3] Finally, in figure 1.6, a network of clusters.

[01]'s1998M10 JO yIomidu Vv g1 2INn31 4

§36NE JB3ISNTIJUAJUY

—

_ dewdi s ﬁlllllllHIIJ dewy — — dew) | ﬁ dew)
| wa —nuu@ wo .

J48368NT0 <a238NTD J33}ENIYH <4338NTID

-10-

1.4.3 The C.mmp

The C.mmp was designed and built at Carnegie-Mellon University in the early
1970’'s. It was bullt from slightly modified Digital Equipment Corp. PDP-11/40F com-
puters. The modification was to remove scine of the instruction set.[10] Shown in figure

1.7 is the basic architecture.

6

Crossbar Switch
(16 x 16)

i T
Il

(]

CMi{...| CMys

AT T,

Kinterbus Kclock

(N 2

Kclock: commom master clock

Kinterbus: interprocessor bus control

Figure 1.7: The architecture of the C.mmp.[10]

-11-

The C.mmp comprises of 16 computer modules connected to 168 shared memory

modules via a 18 x 16 crossbar switch. Refer to figure 1.8 for the structure of a proces-

sor

To crossbar
awitch

PDP~-11 Unibus

CPU

>

Local
Memcry

I/0

Kibi: 4interprocessor bus interface

Dmap: address translation unit

.
I

To interprocessor

bus

Figure 1.8: The structure of a processor in the C.mmp. [10]

Each processor in the C.mmp contains the following: 8 Kilobytes of local memory

for operating system functions, four 40 Megabyte disk controllers and three 30 Megabyte

disk controllers. The operatiag system that the C.mmyp uses is called the Hydra.

-12-

1.4.4 The Cosmic Cube

The Cosmic Cube, designed and built at Caltech consists of 64 small computers
that are connected by a network of point-to-point communication channels arranged as
a six-dimensional hypercube. The hardware used in each of the nodes consists of an Intel
8086 processor along with an Intel 8087 floating point coprocessor. The memory consists

of 128 Kilobytes of dynamic RAM with with parity check.[18]

An n dimensional hypercube contains 2" processing elements, each of which is con-
nected to n of its neighbours. In the case of the Cosmic Cube, n==6.[3] Therefore, there
are 2° processing elements or 64, each connected to six of its neighbours as shown in

figure 1.9.

Figure 1.9: The Cosmic Cube Interconnection Network.

- 13-

1.4.6 The NYU Ultracomputer

The NYU Ultracomputer is a project at New York University which proposes the
design of a shared-memory MIMD parallel machine composed of thousands of auto-
nomous processing elements. An Omega network is used for enhanced message switching
between the processors. It is proposed that each of the processing elements be custom
made and will be attached to the network via a processor network interface. Each of the
memory modules will be attached to the network via a memory network interface. The

Jetch-and-add primitive is used to achieve interprocessor synchronization.

Shown in figure 1.10, the block diagram of the NYU Ultracomputer. Each of the
processing elements (PE) is connected to the network using a processor network interface
{PNI). Each of the memory modules {MM) is connected using a memory network inter-

face (MNI).[7]

PNI

l

l |

MNI MNT
T -]
MMo MMn-1

Figure 1.10: The Block Diagram of the NYU Ultracomputer.[7]

The communication network incorporated in the NYU Ultracomputer is of the
Omega type. An Omega network is similar in design and operation to a Butterfly net-
work. An address is placed on the bus and it is then decoded to route the data through

the appropriate swilches to connect to the destination memory module. Refer to figure

<14 -

1.11 for the block diagram of an Omega network,

OOO——>‘OO o 0 00—————-—}000
001——>‘ 1 1 1 1 1 1 001

010 1 0 O o 0 o o 0410

011——>‘ 1 1 1 1 1 1 011

100 | 0 © 0 0 o 0 100

101-—)11 1 3 i1 ‘—>101

110—->‘ 0o 0 o 0 o o 110
111—-) 1 1 1 1 1 1 113

Figure 1.11: The Block Diagram of an Omega Network for N — 8.{7]

1.5 The Homogeneous Multiprocessor Proper

In the design of multiprocessors, the availability of information pathways between
processors is a major architectural concern. Many of the established MIMD multiproces-
sors are either very expensive or slow due to their designs which have opted for a com-
plete graph network which incorporates either crossbar switches or microprogrammed

controllers.

Problems can be formulated in a way such that each of the computational processes
would require information from only its nearest neighbour process to obtain the final
result. By reducing the scope of the interprocessor communication, and at the same time
making these communication pathways very fast, these problems would beneflt greatly.

This has been the realization of the homogeneous multiprocessor.[4]

The Homogeneous Multiprocessor Proper is a microprocessor based, tightly coupled,
multiple instruction, multiple data (MIMD) machine that incorporates shared memory

and networking. Some of the applications that are intended for the Homogeneous

-15-

multiple instruction, multiple data (MIMD) machine that incorporates shared memory
and networking. Some of the applications that are intended for the Homogeneous Mul-
tiprocessor are: distributed simulation; relaxation processing; image processing; and
speech processing.

As shown in figure 1.12, a block diagram of a node in the Homogeneous Multipro-
cessor. Each node consists of an 8 MHz Motorola MC68000 processor, a MC68451
Memory Management Unit (MMU), 16 Kilobytes of EPROM, 32 Kilobytes of static
RAM, and a main memory. The main memories that have been designed and built are a
1 Megabyte dynamic memory with error detection and correction, and a 0.5 Megabyte

static memory.

The memory management unit performs virtual to physical address mapping by
information stored in the 32 MMU descriptors. If the processor attempts to access a pro-
tected or out-of-range segment the MMU will generate an interrupt. The MC68000 has
two modes of operation both of which can be used, a supervisor state or a user state. A
low level protection scheme can be implemented by using both the MMU protection

mechanism and the two modes of operation of the processor.

Currently, a Motorola Tutor monitor [14], is placed in the 16 Kilobytes of EPROM.

This allows for testing and debugging the hardware and software.

The Homogeneous Multiprocessor has a tightly coupled architecture. The block
diagram of the IHomcgencous Multiprocessor is displayed in figure 1.13. The standard
system comprises k (k > 3) processing elements, k memory modules, k-1 interbus
switches that control the Interprocessor Bus, and the H-Network which is a fast local
area network used for point to point communication between nonadjacent processor and

for broadcast mode communication.

-186 -

-10ss3201d13[N} SnoauaSowloH 3Y) Ul apoN ® Jo weiSeld Yoolg V :ZI°1 ainSig

JRTTOJ3UD]

£ ITUD3ITMS
viov
N7 05899W
Wyl 1 N
o13e3s Nk NdW N U
a34kg W0 i/ N 1 N
HO TSY890K 000892W
agweuAqd 1% N 1/ Vs S \\
8348 WP
VIOV
0S89IW
yd
WYY JOWYT
W
oraa IF3ILIS arTqeuwwedboud
8348 9%
a3Ahg Md2E ovr89on

-17 -

[s] ‘13do1g 10ssa001d13njN SNOBUISOWOY AL, €1°T a1n3sy

0CﬂLU\HﬂUJUUL eng /4 UGULOUW SERBW SKW
UOTIRIS MJOMIBN :SH sng Tes’0 :q IRUTWJIaL 31
JaTTOJ3UD] YI3TIMS :SEI pu3 >oeg :38 pu3 3uodd :34
yo3ltmMs seng :Msgl JOSE3I0Jd °d AJOWBW W
a/4y a9/4 a/4Y
T+E T-%
d d Tln
+T T+¥ FHY Y vT-T 3L | gee| 3t 3L
s8I s€l s81
k] 1
-= - - _I.I-
-) T+T : =% —
\ q \ \.
2+% T+¥ygar T+¥ Tusex ¥t -Yusar t-¥ C-Yuser
SW
T+% T+1 T _) 1 4 T~V
W SH SH i N SH 349 34
/ /£ _
/S /
AJOMIDBN H

-18 -

Each of the Processor Elements consists of the following: a processor P, 2 memory
module M;; a local bus to facilitate communication between the processor and memory
M, The Interbus Switch is physically connected to the local buses of two adjacent Pro-
cessing Elements. The Processing Elements communicate over the local area network via
their network stations HS; which are also connected to the local buses. The network
interface, the H-Station is currently in the design stages. The submodule that is respon-
sible for network acquisition within the H-Station has been designed using CMOS-VLSI

technology has been sent for fabrication.

As stated previously, the Interbus Switches are used for nearest neighbour com-
munication. When a processor accesses a neighbour's memory, an Extended bus Is
created. The switch physically extends a requesting processor’s bus to include the
memory module of the neighbour. At the same time it excludes the neighbouring proces-

sor from accessing its memory module.

An Extended Bus is defined as the dynamic fusion of two neighbouring local buses
effected through the closing of the intervening switch after a request from either or both
processors adjacent to the Interbus Switch. Once this Extended Bus is created, it will
exist for one memory access cycle, which is also the duration of the request. The creation
of the extended bus comprises of two parts commonly known as Phase I and Phase 1I.
Phase I, which is processor independent, ensures that deadlock scenarios will never exist
and the operation of the switches are mutually exclusive. During Phase 1I, which is pro-
cessor dependent, the switch physically closes. Once the first phase has completed with

success, the second phase begins.

After the cycle, the Extended Bus deteriorates to its original separate local buses.
Once this happens, the Interbus Switch is ready to comply with any pending or next
request for an Extended Bus. More details on the operation of the Interbus Switch can

be found in chapter 2.

-19 -

The second method of communication is the H-Network. The H-Network is a high
speed (approximately 7 Megabhytes/second) Local Area Network similar in structure to
the Ethernet. It differs in that it contains distinct pathways for data transmission, net-
work acquisition, and collision detection. The signal propagation delay is extremely
short because the H-Network has been designed with a span of the order of 10 meters.
This, coupled with the parallelism of the distinct pathways has the effect of increasing

the performance of the network.

The Homogeneous Multiprocessor is built on Versabus boards and utilizes the Ver-
sabus card cage. The Versabus sysfem is used because at the time of adoption (circa
1082), it was the only 32 bit bus supported by Motorola. A note of interest is that the
VME bus was adopted oy Motorola in subsequent years. The Versabus has been
modified for our purposes. The main connector has been left unmodifled. This provides
the processor memory interface, and it contains all the bus control signals coming out of
the MCG68000. The alternate or second connector, is used for access to neirhbouring pro-
cessors (using the Interbus Switch). The original purpose of the alternate connector of

the bus was to extend it to 32 bit, as well as to provide I/O lines.

Architectural Innovation is present in the design of the Homogeneous Multiproces-
sor in that it is capable of behaving as a distributed system coupled through a fast local
area network and as a tightly coupled pipeline of processors. Applications such as distri-
buted file systems, distributed databases, distributed simulation, etc, exist in an ideal
environment provided by the H-Network. Finally, algorithms such as the ones found in
vision and digital signal processing, and relaxation processing can be implemented

efficiently due to the Extended Bus mechanism.

At the time of this writing there are three Processing Elements that are fully opera-
tional (processor and memory subsystems). One of the Processing Elements contains 1
Megabyte of Dynamic RAM while the other two contain 0.5 Megabyte of Static RAM. In

the memory design incorporating static memory it is possible to expand this to one

-20-

Megabyte. Included in the dynamic design, there is also error detection and correction
which facilitates the most reliable and cost effective method for reducing corruption of
data when using dynamic memories. The static men.ry design does not require error
detection and correction due to the nature of the memory chips. As far as expandability
is concerned, the only limiting factor is space and the addressing capabilities of the
MC68000.

1.5.1 Performance Analysis of the Homogeneous Multiprocessor

The structure of the Homogeneous Multiprocessor has been simulated to obtain a
performance evaluation. The simulator that was written is based on an 8 M{lz MCG88000
that implements the second phase of the interbus switch controller which is processor
dependent. The first phase which is processor independent uses Algorithm 1.2 (described

in chapter 2).

The behaviour of the Homogeneous Multiprocessor was obtained for two scenarios.
The first scenario simulates the performance of the system bascd on the demand to the
Interbus switching network and the second scenario simulates a distributed algorithm.

The distributed algorithm determines the autocorrelation functions of a given signal.

The first simulation determined that the idle time of a processor never exceeded
30% of the total processing time. The idle time of a processor is attributed to walting
while a neighbouring processor accesses its memory module. Even in the most demanding

cases, the idle time remained within acceptable bounds.

The results of the second simulation were as follows. The simulation comprised of
19 processors processing 1024 samples. This obtained a speed up factor of 11.85 which s

approximately 62% of the theoretical value.[5]

-21-

1.5.2 Software Design for the Homogeneous Multiprocessor

To provide users with a programming environment as well as controllable access to
the hardware, an important feature to any computing system is the operating system.
While constructing and testing the hardware, the operating system was being designed.
Using the first prototype board, the lower layers of a preliminary single node operating
system was tested and debugged. It should be noted that some hardware defects were

uncovered through the operating system design.

One of the major concerns to the designers of the operating system for the Homo-
geneous Multiprocessor was to give to the users the raw architectural features in a usable
fashion. The main objective in the design of the operating system was to enable the
addition or subtraction of processing elements without having to do major redesigning in
either the hardware or the software. The operating system is designed in a modular
fashion thus enabling additional routines or software packages to be added to the system

with grace and ease.

The operating system is based on a nucleus structure - the HM-Nucleus. It pro-
vides the basic mechanisms for utilising the the bare hardware. This enables resource
management and application software to be conveniently built on top of it. Primitives
for interprocess communication, capability checking, memory management, process
management, an I/O handling are provided. Each processor has a copy of the nucleus
residing in it. Therefore there is no globally shared memory in the Homogeneous Mul-
tiprocessor. When the HM-Nucleus is complete, an objective is to have the operating sys-
tem utilities residing only in some nodes and applications will be assigned to them on
demand. There will be no swapping of memory, an application will remain resident until

execution is complete.[11]

-9292 .

1.6 Objectives of This Research

Summarizing, the objectives of the research presented in this thesis are the follow-
ing. In chapter 2, the design and implementation of the Interbus Switch, as per the
specifications, are presented. In appendix A and appendix B, the designs of the dynamic
and static memory are presented, respectively. In appendix C, the numerical analysis and
schematics for the interbus switch are provided. And finally in appendix D, the

schematics for the Homogeneous Multiprocessor are presented.

In this thesis, the entire process of design and implementation for the memory sys-
tems is presented. For the Interbus Switch, the design, prototyping in discrete com-
ponents and testing are presented, however, final implementation by using high density

technology (eg. PLA / gate array) is yet to be accomplished.

-93 -

2. The Interbus Switch

The interbus switch is used to connect a processor’s local bus to the bus of one of
its neighbours. The primary objective of this scheme, is to enable a processor to access
memory belonging to a neighbour, and thus establish interprocessor communication.
This process of communication is accomplished by an extended bus. (An extended bus is
formed by physically connecting the local buses of two neighbouring processors. This is
accomplished by opening/closing appropriate intervening switches). In doing this, the
processor has potential access to three memory modules. It can access its own memory
{normally), the memory of its neighbour on the left, or its neighbour on the right

(through the creation of an extended bus).

In order for the processor to access a memory module, it presents an address on the
Interbus Switch Controller. The two most significant bits of the address are used to
determine which memory module the processor wants to access. Shown in table 2.1 is the
memory map that is used to determine which module the processor is requesting. From
this point onward, it is up to the interbus switches to give access to the memory module
in question.

Table 2.1: The Interbus Memory Map.

é_:es Agy Mapping
0) I/0
0 1 Memory on the Left
1 (4] Memory on the Right
1 1 Own Memory

Once the interbus switch intercepts the address, it will determine where the proces-
sor wants to access and then, depending on the surrounding environment, eventually
allow access to the memory module in question. The processes that occur in the interbus
switch are divided. The first process that occurs is identifled as Phase I, followed by

Phase I1. Once these processes are completed, the memory access is granted.

Phase I determines whether it is safe to close the switch it controls. The determina-

- 024 -

tion of safe closure is based on the state of the two neighboring switches. If either one or
both are physically closed, or is about to close, the present switch must stay open so as

not to cause collisions on the ertended bus.

Phase I, more commonly known as Logical Closure of the switch is used to deter-
mine the state(s) of the neighbouring switches. The state of the neighbouring switches is
very important. If a neighbouring switch is Physically or Logically Closed, then Phase |
must interpret this information and take an appropriate action in order not to cause col-
lisions on the extendea bus. A collision could cause disastrous effects on the Homogeneous

Multiprocessor.

Collisions can occur if for example, two processors are connected to the same
memory module. If this were to happen, both processors would attempt to access the
memory module, and their address lines would short with each other. Hence, a collision.
Another example of a collision is if a processor is connected to two memory modules, and
it attempts a read access. The data lines carrying the information from the memory
modules would be shorted and a collision would occur. These types of occurrences must

be prevented at all costs to ensure the proper operation of the software and hardware.

Phase II, also known as Physical Closure of the switch consists of two parts. The
first part is a bus arbiter that adheres to the operation of the 68000 CPU. It uses the
method of arbitration required by the 68000 CPU for a bus request that is identical in
every respect to one that a coprocessor would adhere to. Once arbitration is completed
(if necessary), various combinational circuits will Physically Open and/or Close the bus
switches. Depicted in figure 2.1 is the block diagram of the Interbus Switch Controller

(IBS“).

- 25-

“13]{011U0D) YIIIMS SNQIalU] 3y} Jo weldeid YOOI YL :1'Z aIndiy

t°% qg

€% yg <

«.«mmuu.d._. AHH mmmﬂn_v

‘-

¥ sa19,

2tTH07

n.nmmHQ.u .(ND <

[euoT3IeUTqWOo]

¥ 2°v

Sd 1

4

[« ¢tV ggd
j6——— € °%
-3 | »avedd . |
Moveg] “””n“n!..“- < ¢ % yoviaa 3aveg) (IT eseyd)
. < J3uo) . h . JetioJu3zuo)
« «.Im suseyspue P Sq1d ﬂ.lm | 8
TIsyspuey < €'Y cang U NBYSPURH . 3¢
e LY sva
JapoleQ
S8aJUDDY
80SIr¢ [
¥ toay fe——————
ﬁ f Yooy <Jeposdeag |
88 JPPY
808y v [
1|Il
(r sseyd)
£ % am 2°% wuyyvJyoBtry |
H .ﬂ.—.m\[

- 26 -

2.1 Phase 1

As stated in the previous section, Phase I is used to determine the Logical C.osure
of & switch. The Logical Closure of the switch is based on an algorithm known as Algo-
rithm 1.2.[5] Algorithm 1.2 describes a procedure required for the safe (i.c. no two adja-
cent switches will close at the same time) and live (l.e. a switch requested to close will

eventually do so).

The switches exist in one of three states. They are Open, Grey, and Closed. Their
deflnitions are as follows:
OPEN: This state signifies that no request exist or if a request exists it will not be
honoured immediately, because a neighbouring switch is currently servicing a request,
GREY: This state signifles that a request is acknowledged and that service (i.e. switch
closure) will be granted in the immediate future.
CLOSED: This state signifies that it is safe for a switch to close. The act,uAal closure of
the switch will take place during Phase II which commences imnmediately after a switch
enters the Closed state.
For a switch IBS,;
If no other request exists, it becomes Open;
Otherwise, if a reguest exists then:
If Open, it becomes Grey provided that the switch to its left, IBS, 4, is Open.
Otherwise, it remains Open.
If Grey, it becomes Closed provided that tiis switch to its right, 1BS;,,, Is
open.
Otherwise, it remains Grey.
If Closed, it remains Closed.

The leftmost switch IBS,, and rightmost switch IBS, ,,, are always Open.

When a processor requests access to its neighbours’ memory, the request remains

asserted during the request period which terminates with an acknowledgement (from the

-927 -

requested Memory Module to the requesting Processor). This request is intercepted by
the appropriate Interbus Switch Controller and is forv.arded to the requested Memory
Module after the switch closes, then the Memory Module acknowledges the transfer of
data to the reauesting Processor, and the cycle terminates. Algorithm 1.2 guarantees the
safe (i.e. no two adjacent switches will close at the same time) and live (i.e. a switch

requested to close will eventually do so) oreration of the network of Interbus Switches.

In order for a switch to actually close, the Processor of the requested Memory
Module must take itself off the Local Bus, in order for the memory access to proceed
without interference. We have tried to mak the Interbus Switch Controller compatible
with the Motorola MCA8000 CPU operating at a frequency of 8 MHz. Algorithm 1.2
requires three clock cycles to reach a stable state reflected by the number of transitions
(Open-Grey-Closed). It is therefore expected that the state of the Phase I will stabilize
within one CPU clock cycle (i.e. Phase I operating at least at 24 MHz).

2.1.1 Design and Implementation of Phase I

Shown in figure 2.2 below is the state diagram for Algorithm 1.2. R is the exXistence
of a request which is determined by the logical OR of a request from the processor on
the left, denoted as R;, and a request from the processor on the right, denoted as R;.
ST,,, is the status of the Interbus Switch on the left and ST),,, is the status of the
Interbus Switch on the right. The status indicators ST,, denote whether the switch is

OPEN (ST,;) or non-OPEN (5T,)).

The hardware was designed and implemented to execute Algorithm 1.2. The design
was carried out extensively to determine the minimum amount of integrated circuits
required. The design was carried out using various state assignments and then determin-
ing the circuits using both J-K flip flops and D-type flip flops. Only the most efficient
design procedure will be derived in the following text. The hardware consists of 2 J-K
flip flops arranged as a three state machine. The fourth possible state that is not used is

setup such that if it is ever entered, then the circuit will be forced into the initial state.

- 98-

Shown in table 2.2 below is the state assignment for the machine which is derived from

the state diagram.

Ei.j#:‘Fq

CLOSED || R

RA=REQ 1,3 +REQ

3.

Sy g = Interbus Switch
’ OPEN
51_:, = Interbus Switch
Not OPEN

Figure 2.2: State Diagram For Phase I.

Table 2.2: State Assignment For Phase 1.

State Q U

Open oo

Grey 01
not used 10
Closed 11

Upon power up or reset, the machine enters the OPEN state. If there Is no request,
the switch remains in the OPEN state. If the switch on the left, IBS, ,, is non-OPEN and
a request exists, then the machine also remains in the OPEN state. Once the switch on
the left, IBS,,, opens, the machine changes to the GREY state. Once in the GREY state,
if the request ceases to exist, then the machine returns to the OPEN state. Otherwise, if
the request continues to exist and the switch on the right, IBS;,,, is non-OPEN, then

the machine remains in the GREY state. If the switch on the right, IBS ., is open and

-929-

the request still continues to exist, then the machine changes to the CLOSED state.
Once in the CLOSED state, as long as the request exists, the machine will remain in the
CLOSED state. When the request ceases to exist, then the machine returns to the initial
OPEN state. The existence of a request is only dependent on the logical OR of the
request line from the adjacent processing elements. As far as Phase I is concerned, it

does not matter which processor exerts the request.

In the design of Phase I, only three of the four states are required. The operation of
the sequential machine is quite simple. At first, the flip-lops are cleared, denoting the
OPEN state. The flrst operation that will occur is changing Q, from a logical O to a 1.
This is equivalent to changing from the OPEN state to the GREY state. To allow the
machine to enter into the GREY state, it must verify that the neighbouring switch on
the le't, IBS,,;, is open. The following equations, 2.1 and 2.2 denoted the equations for J,
and K,, respectively.

Jo=Q, R ‘ST, (2.1)
Ko=R (2.2)

The first equation (2.1), J, is used to change the sequential machine from the
OPEN state to the GREY state. This is achieved by checking for the existence of the
request R, the switch on the left, IBS,,,, is OPEN, and that the machine is in the OPEN
state (Q, = 0). If at any time, the request (R) ceases to exist, K; equation 2.2, will
return the flip flop to the initial state (Q, = 0). The next two equations, 2.3 and 2.4
represent J,, and K, respectively.

Jy=Qo"R STy, (2.3)
K,=Q, R (2.4)

The second flip-flop only comes into action once the first flip-flop is set, (GREY
state). This is accomplished by J, checking the existence of the request (R), the switch
on the right (IBS;,,,) is OPEN, and that the sequential machine is in the GREY state

(Qo = 1). If all of the above conditions are true, then the flip flop changes state putting

- 30-

the sequential machine into the CLOSED state. Once in the CLOSED state, the machine
will remain there until the request ceases to exist, as shown by equation 2.4. The other
term in equation 2.4 (Q,) is used to reset the machine if it enters the unused state

(Q:Qo = 10). The derivation of these equations can be found in Appendix C.

The schematic shown below in figure 2.3 is the hardware implementation of Algo-
rithm 1.2. It is composed of five standard 74LSXX series chips. The inputs to the circuit
are the address strobe and two most significant address bits of the processors on the left
and right. Also, the status of the Interbus switchs on the left and right. There are also a
clock and a clear. The clock is active all the time while the clear is only activated during

power up or reset. Based upon the data sheets supplied by TI, the circuit should operate

at least at 24 MHz s0 that the algorithm can run from Open to Closed in one CPU clock
cycle (8 MHz) given that the neighbouring Interbus Switches are open. If one or both of
the Interbus switches are not Open, then there will be a time delay before the Algorithm
runs to completion. This is due to the waiting period until the neighbouring switch that
is not Open returns to the Open state. At that point, the Algorithm will continue to run
until it reaches the Closed state. Upon “‘power up’’ of the Multiprocessor, it is possible
for Phase 1 to exist in the state 10 (not used), however, the reset signal that is supplied
by the system at power up time, will force the switch to the open state. The Logical Clo-
sure signal is fully decoded and the unused state will not affect the operation. If by
chance the sequential machine enters the unused state, the circuit is designed to force

the machine into the reset state which will open the Interbus Switch.

-31-

BOSV L

[9seYd Jod uonejuawdjdw] dIempiey '3 oIndi g

oSy L

\

B 1A

A

= 2
H10P—<

80STIv L

80STIv L

] r
S

ELSWL

:

(%5

00STav L

:

X(LJD——H

TY¥SVL

l

5

ELSTWL

CESTIVL

5072
TT-T, g
leav
yosTivL
TISTvL teav
v0SIvL
axMMHH fsv
rOSIPL
oAMHHH ¥ eav
TISIrL
Y eav
vOSTvL
OAMMer ‘sv
e
T+ { nbm
135340 W3LSAS

-32 -

In the design of the hardware for Phase I, the following inputs were required: clear
the flip-flops (denoted as CLR); a 24 MHz clock (denoted as CLK); the status of the
neighbouring switches (denoted as ST, and ST, ,,,); and the request inputs (denoted as
R, and Ry). There are two outputs from Phase I, they are: Logical Closure (denoted as
LC) which will be used as an input to Phase II; and the Status (denoted as ST) which is

the status bit used for the neighbouring Switch Controllers.

The CLR input is used to reset any flip-flops in Phase I during a power up or reset
of the system. The CLK input is used to clock data into the J-K flip-flops that are used
in Phase 1. Requests are generated for an Interbus Switch to physically close via the R,
and R; inputs. These inputs are obtained by using gates to check the upper two address
bits and the address strobe (A,;, A, and E) of a processor. If the appropriate address
and strobe are produced then the existence of a request is concrete. The status bits are
used by Phase I to determine if a neighbouring switch is closed or about to close. This is
important because two neighbouring switches should never be closed at the same time.
These inputs are obtained from the neighbouring Phase I circuits. They are the Status
outputs (ST).

The Logical Closure (LC) is used to inform Phase II that it may start its own pro-
cedure which is described below. The status output is used as an input to the neighbour-
ing Phase Is. Each Phase I has two status bits, one from the neighbour on the left, and
the other from the neighbour on the right. Therefore the neighbouring Phase Is will use
the ST output to determine the status of this switch. As long as this switch is not Gray

or Closed, the ST signal will be active.

2.2 Phase I

Once Phase 1 has run to completion (i.e. in the Closed state), Phase 1l begins. Dur-
ing Phase 1I, the Physical Closure of the switch is accomplished. Phase II consists of two
parts, one of them is a handshaking controller which conforms to the protocol of Master-

ing the Bus of a MC68000 Processor (i.e. equivalent to that of a DMA for example), and

-33-

the second is an arbiter. The purpose of the arbiter is to resolve potential deadlocks in
the system.

In the simplest case, the requesting processor in Phase 1I will output a Bus Request
(BR) to a neighbouring processor for its memory. It will then wait until it receives a Bus

Grant (EE). Finally the requesting processor will issue its own Bus Grant Acknowledge

(BGACK) at the end of the previous cycle (i.e. when all AS, DTACK, UDS and LDS at the
bus of the requested processor are negated) for the duration of the memory access. Once
the memory access is completed, the BGACK is removed and normal processing contin-
ues. Refer to figure 2.4 for the proper timing for Mastering the Bus. However, as stated
previously, this is not always the case. The deadlock situations (discussed below) occa-
sionally interfere with this protocol. Therefore some extra hardware is required to rectify

this p: “blem.

AS: _Qg |
REQ 1. 3 > -
CC.., _% |
BRs. 5 S 4D
BGs. « R [
AS; \H)
BGACK . s b

Figure 2.4: Timing Diagram For Mastering the Bus.

As previously stated, Phase II must first check for pote;ltial deadlocks in the sys-
tem before it allows the arbiter to start (i.e. activate the BR). There are three cases of
potential deadlock. Each one of them will be discussed in the following sections. A
deadlock can occur when two adjacent processors request the same switch to close. Upon
the completion of Phase I, the processors are waiting for a Bus Grant (1_35). However, if

the processor that is supposed to assert this Bus Grant is itself waiting for a Bus Grant

-34-

then, both processors will wait indefinitely and hence never complete the pending
Extended Memory access cycles. Phase II has been designed to recognize these potential

deadlock cases and resolve them by giving priority to one of the requesting processors.

In the first case of potential deadlock, two adjacent processors request the Interbus
Switch located in between them to close as shown in figure 2.5. According to the asyn-
chronous bus protocol of the processors, each processor will wait for the Data Transfer
Acknowledge (M} from the Memory Module they have requested, respectively. The
DTACK will never arrive due to the deadlock and hence the memory access cycle can
never run to completion. Ideally, Phase II would request the bus from one of the two
processors and wait for the Bus Grant (ﬁ_G') which would be asserted from the requested
processor at the end of its current bus access cycle. Since both processors are in the mid-
dle of a bus access cycle waiting for the Interbus Switch to close, they will not assert the
Bus Grant until they finis:. their bus access cycle and at the same time they cannot com-
plete the access cycle because the Interbus Switch is wailting for their Bus Grant in order

to close the Interbus Switch to allow them to complete their access cycles.

Logically
Closed
Switch

h41 h4j

s z
Wait Wait

> Direction of
Memory Access

M: Memory Module

P. processor

Figure 2.5: Case I of Potential Deadlock.

- 35-

Phase II will resolve this case of potential deadlock by first granting access to the
processor located on the :ight side of the Interbus Switch. This is accomplished by fore-
ing the processor located on the left of the Interbus Switch off the bus. Then the proces-
sor on the right will complete its Extended Memory access by receiving the DTACK.
Finally the processor on the left, which has been waiting for this to occur will be granted

the bus allowing it to complete its Extended Memory access cycle.

The second case of potential deadlock is depicted in figure 2.8. In this scenario two
adjacent processors, P, and P;, request their neighbours memory modules on the left, M,
and M, respectively. Both of the processors initiate a bus access cycle and issue Bus
Requests to Interbus Switches, IBS,; and IBS;;, respectively. Now, if processor P,
requests switch IBS,; to close at the same time or earlier than processor P; requests
switch IBS,,, to close, then according to Algorithm 1.2, switch IBS,; will eventually Logi-

cally Close while switch IBS,_;, will remain either Logically Open or Logically Gray.

At this point, processor Py is in the middle of Phase II, having asserted its Bus
Request and awaiting a Bus Grant. Processor P, has asserted the appropriate address on
the bus and is in the middle of Phase I, but not yet Logically Closed. Now, even though
processor P, has not yet reached Phase II, it still cannot assert a Bus Grant to processor
P, because it is waiting to complete its memory cycle in order to do so. It is waiting for
Interbus Switch IBS,, to become Logically Open in order to finish its cycle. Interbus
Switch IBS;; cannot become Logically Open until processor P; completes its own
Extended Memory access cycle, which at the moment is waiting for processor P, to assert

the Bus Grant. Hence, the deadlock situation.

The potential deadlock situation is corrected in Phase II by granting mastership of
the bus to the processor on the right, P,. During this time processor P, waits for proces-
sor Py to complete its Extended Memory access cycle. Once completed, processor Py will
eventually become Logically Closed and then assert the Bus Request for the bus and

wait for the Bus Grant to complete its own Extended Memory access cycle.

- 36 -

Finally, the third case of potential deadlock. As shown in figure 2.7, it is very simi-
lar to the previous situation. In this case, processors P, and P, request the memory

modules of the neighbours on their right, M; and M,,,, respectively.

In this situation, processor P, has completed Phase I and now has the Logical Clo-
sure required to start Phase II. At the same time, processor P, has requested its neigh-
bouring memory by outputting the appropriate address but it is in the Logical Open
state due to Algorithm 1.2 (i.e. the neighbour on the left is Logically Closed, therefore
wait). Now, processor P, is waiting for the Bus Grant from processor Py, but it will never
appear because processor P, is itself in the middle of a memory access cycle which can

only be completed once it becomes Logically Closed and runs through Phase II and even-

tually receives its DTACK.

Lopically Logically
Open or Grey Closed
Switch Switch

M M, M,

sU

R R

Wait Wait
- N Direction ot
/s Memory Access

=z

Memory Module
processor

Figure 2.6: Case II of Potential Deadlock.

-37-

Logically Logically
Closed Open
Switch Switch

M,
_
R

= R |

- -]
Wait Wait
AN Direction of
/ Memory Access

M: Memory Module
P: Proceasor

Figure 2.7: Case III of Potential Deadlock.

Phase II will resolve this case of potential deadlock by forcing processor P, off the
bus. Then processor P; completes its Extended Memory access cycle and finally processor
P, receives the bus to complete its own Extended Memory access cycle.

2.2.1 Design and Implementation

In this section we present the design of Phase II. Phase II, consists of two parts, the
first part is a simple three state sequential machine that is used for mastering the bus
(i.e. for a processor to obtain the neighbours bus). The second part of Phase II is the
switch controlling circuitry which consists of two parts. The switch controller must
operate the switches during normal access which consists of regular processor - memory
interactions and processor - neighbouring memory interactions. The second part must

also resolve the three cases of potential deadlock so that processing can continue.

In order for a processor to obtain the neighbours bus, the handshaking described in
the previous section must be implemented. The processor that makes the request puts
the appropriate address on the bus. This then generates the request R. Eventually, the

Logical Closure appears from Phase I. These two signals logically ANDed create an

-38-

enable line for the handshaking signal. This enable is required because there will be two
of these circuits in each of the Interbus Switch Controllers. One of them is for the pro-
cessor on its left to obtain the bus of the processor on its right, and the other for the
processor on its right to obtain the bus of the processor on its left. Since the Logical Clo-
sure does not in any way describe which processor wants to access the bus of the other,
two separate enables are required. Figure 2.8 depicts the state diagram for the handshak-

ing required during Phase II.

LC % BG % SAND = L

LC % BG # SAND = H

LC = H

SAND = PAS % PLDS »# PUDS & PDTACK ¥ PBGACK

Figure 2.8: State Diagram for Handshaking During Phase II.

As stated earlier, the handshaking can only begin once both the Logical Closure
and the Request are asserted. The first state, A, represents the sequential machine when
neither the BR nor the BGACK are asserted. Once the Logical Closure and Request sig-
nals are active, the machine enters siate B. During state B, the BR is asserted and the
machine waits for the requested processor to assert its BG and at the same time walit for

the current cycle of the requested processor to reach completion by negating its BGACK,

AS, LDS, UDS, and DTACK. Once this occurs, the sequential machine enters state C.

-39 -

While in state C, the BGACK gets asserted and the requested processor will inactivate its
BG. During the time that the BGACK is active, the requesting processor has control of
the requested processors bus (unless there is a potential deadlock). When the requesting
processor finishes its cycle, i. removes the address and address strobe from the bus,
thereby deactivating the request R, causing the handshaking controller to return to the
initial state. Shown in table 2.3 below is the state assignment for the revised state

diagram.

Table 2.3: State Assignment for the Handshaking in Phase Il

State Q, Qo
NO REQ 0 0
BR 4] 1
BGACK 1 1
N.U. 1 0

The Following are the equations that describe the handshaking controller.

J,=@Q, - LC (2.5)

K,= LC (2.6)

J,= Q, LC - BG - PAS - PDTACK * PUDS - PLDS - PBGACK (2.7)
K, =Q +1LC (2.8)

BR =Q ' Q (2.9)

BGACK = Q,; ' Q, (2.10)

Shown in figure 2.9, the hardware implementation for the handshaking during

Phase 11

- 40 -

‘Il ’seqd Suund SuiyeyspueH 10j uollejuswdul] alempleH :6'g 24n31 4

SO0
v0STIPL 80SIvL
_ —
&
5 w o] NoVodd
%12 § 0ESIWL AIV.Lad
o el voSIvL f s0nd
€L8PZ a sS0d
voSIvL 80svres
Svd
Move
—_ rosSIve
L8
POSIWL 80sSIvL
He _ r0SIPL
L2 31
31—
o r 80STvL
€LS WL _

13S3H WILSAS

- 41 -

The switches that are used in the Interbus Switch and Processor Switch are
manufactured by Intel. They are the 8288 Bidirectional Bus Buffers. The buffers contain
an output enable (OE), a direction control (T), and 8 sets of bidirectional buffers. The
Processor Switch is used to tri-state the Interbus at the point of the processor, so that
when a neighbour obtains the bus, there are no collisions. The 8286 buffers have desig-
nated inputs/outputs on each side, they are labeled A and B. Shown in table 2.4 is the
truth table for the 8286.

Table 2.4;: Truth Table for the 8286 Buffer.
OE T INPUT OUTPUT

1 X Tri-state Tri-state
0 0 B A
4] 1 A B

2.2.1.1 Normal Access - No Potential Deadlock

Shown in Agure 2.10 is a detailed block diagram of the Homogeneous Multiproces-

sor to aid the reader with the following discussion.

As part of the Interbus Switch, there must be buffers on the local bus of a Process-
ing Element so that the Processor can eliminate itself from the bus in the case of poten-
tial deadlock. The 8286 Bidirectional Bus Buffers are connected to the processor on the
B side while the Memory Module and Interbus are connected to the A side. Given this
notation we can design the controller taking into consideration the direction of informa-
tion depending on whether it is a read or write cycle. Note that when the buffer is tri-
stated, direction (T) is of no consequence. The buffers are divided into two groups, one
used for ad-iress and control lines and the other for the data lines. The address and con-
trol lines need never change direction depending on the type of transaction, they only
have to be tri-stated while the neighbour uses the memory. From this we can deduce
that the direction control for address and contrc' lines (T.c) can be pulled high (+5
volts), and signals coming out of the processor will be connected to the A side while sig-

nals coming into the processor will be connected to the B side. The control line for the

-42-

-10ss9001d1NJA snoauadowoH 3Ys Jo weldeld Yooid pafle1ad V :01°g aansiyg

—N [I"A 3 » h sau 2Ut Sau) _..II
—V «,..nQ d g T-T4 N
: 2 2 3 3 e
o B 2B 3B
VAN BB ZAN S ZAR 5L B ar
S 1 . s Y 1
IIu.~B|uuMM ;L) 30 vt “Um SN3e m: ITJ3 ¢ «Um _ém) E¥e) k nl«Um Llu.nqu.ﬂlm.ud.ﬂdq
5 tu3s usaims | G T332 U233 ¥ms | o TU3D UDITMS a
<Y <Y <> ! <Y
—4 fsd ‘sd 'Sd ISd —
A AN Z N AN AN
llmﬂdwvlgﬁllbn+n.nmmH\ﬁ||mwﬂwﬂ|l7 “.«mmH _..|||m~|..dv%17 ﬂ.«lﬂmmH\riﬂFﬂ|
] 1% N %4 N 1% N]

S 7 S Z S Z S Z
T+{ W ¢ | LN L |

- 43 -

data bus (Tp), has to be able to change directions depending on whether it is a read
cycle, (A — B), or a write cycle (B — A). This can be easily implemented by connecting
Tp to the inverted R/W of the processor. Finally, both the address and control buffers
and the data buffers will all be enabled or disabled together. One enable signal can be
used to control all of the buffers (OE,cp)- If the output enable is high, then the buffers
are tri-stated and the neighbour can obtain the bus, if it is low, then the processor can
access its own memory module. If a neighbouring processor is using the memory then the
BGACK is low. By inverting the BGACK, we obtain the control signal for OE. Shown

below are the equations.

TA,CPSI == 1 (2.11)
OE, cpPS, = BGACK (2.13)

For the Interbus Switch, for two adjacent processors, the 8286 buffers are
conflgured with the A bus connected to the processor on the right, P, and the B bus
connected to the processor on the left, P;,. Now, when the processor on the left requests
the memory module on the right, the Bus Grant Acknowledge signal that enters the pro-
cessor on the right is denoted as BGACK,; In the reverse situation when the processor on
the right requests the memory on its left, the m,,l signal enters the processor on the
left. Based on these two signals, we can determine which direciion the buffers should
point. Referring to table 2.5 below, we can determine when the switch should be closed.

Table 2.5: Truth Table for Closing the Interbus Switch (OE, c,p)-

BGACK,, BGACK), Interbus Switch
0 (0] X (Impossible)
0 1 0 (Closed)
1 o 0 (Closed)
1 1 1 (Open)

If we set the impossible state (0,0) to output 1 (Open) which will be safe, then it is
obvious that an XOR gate can be used. The next signal that is developed is the direction

for the address and control (T, c). Again it is possible to derive this signal from the two

-44 -

Bus Grant Acknowledge signals. The truth table for the operation of T, is shown in

table 2.6.

Table 2.6: Truth Table for the Directional Signal T, c.

BGACK, " BGACK,, | Direction
0 4] X (Impossible)
0 1 0(1—J)
1 0 1(J—=1)
1 1 X (Switch Open)

By setting the impossible state (0,0) to output 0, and the Switch Open state (1,1) to
output 1, again it is obvious that the direction control for address and control is simply
BGACK,, Finally, the last signal to derive for normal memory requests without
deadlocks is the direction control for the data buffers in the Interbus Switch. In this
derivation, the R/W of the processors is required to determine the direction. If the pro-
cessor on the left of the Interbus Switch requests a read cycle with the memory module
of the processor on the right, then the data in the buffers will flow from bus A to bus B,
or Tp==1. For a similar write cycle the data must flow from bus B to bus A, o1 Tp==0.
This is equivalent to the R/W signal generated by the processor on the left. In the
reverse situation when the processor on the right requests a write cycle with the memory
module of the processor on the left, the data will flow from the A bus to the B bus
(Tp==0) and for a write cycle, Tp=1. This is ¢juivalent to the inverted R/W signal
obtained from the processor on the right. Shown in table 2.7, the truth table for the
direction control of the buffers in the Interbus Switch.

Table 2.7: Truth Table for Tp in the Interbus Switch.

BGACK,, BGACK,, Direction

X (Impossible)
R/W,
R/W,
X (Switch Open)

— - O QO
- Qo = O

Now, all of the equations for the Interbus Switch are given below.

TA‘Cmle = BGACKU (2.]4)

- 45 -

TpIBS,; = BGACK,, - R/W, + BGACK |, - R/W, (2.15)
OE, cpIBS,; = BGACK, - BGACK|, (2.16)

2.2.1.2 Potential Deadlock

In this section, the control signals for the Processor Switch and the Interbus Switch
are redesigned for use only in the three cases of potential deadlock. This design will be
accomplished so that there are three sub-outputs one for each case of potential deadlock
that will be used to control the switches. It should be noted that in these designs we
cannot use the BG or BGACK signals, because during potential deadlock, these signals
are always inactive (high). We are therefore limited to using the Logical Closure signal

LC, and the BR signals.

In the first case of Potential Deadlock, we flnd two neighbouring processors
attempting to access each others memory modules. We sce that the processor on the left
P, requesting the memory module on the right M, asserts its Request;;. Note that this
request consists of placing a specific address on the address bus. The processor on the
right P;, asserts its Request;;. Eventually, the Logical Closure appears for the switch in
between these two adjacent processors. In this case, we want to force the Processor
Switch on the left (PS,) processor to open, and the Processor Switch on the right proces-
sor (PS;) and the Interbus Switch (IBS;;) to close. Shown in table 2.8, the truth table for
determining the first case of potential deadlock.

Table 2.8: Case 1 of Potential Deadlock

Request;, Request,, LC Case
0 0 0 No request, No LC
0 (0] 1 Impossible
0 1 0 J—I1, No LC
0 1 1 J—I1 with LC
1 0 0 I—-J, No LC
1 4] 1 I-J with LC
1 1 0 I—J, J—I, No LC
1 1 1 Case I, I-J, J-I with LC

From the table above, we see the potential deadlock at the last entry. Both proces-

- 46 -

sors have asserted their Requests and the switch is logically closed. This leads to the fol-

lowing equation for Case 1 of Potential Deadlock.

I = Request,, - Request,, - LC (2.17)

In the next case of potential deadlock, we find two adjacent processors attempting
access the memory modules of their neighbours on the left. Of the two processors assert-
ing the requests, we find the processor on the right requesting the memory module of the
processor on the left, and the processor on the left requesting the memory module of the
processor on its left. We will label the request of the processor on the right as Request),
and the request of the processor on the left as Request,,,. In the end, Logical Closure will
appear on the switch between processors P; and Py, while Logical Closure will not appear
on the switch between processors P, and P,,. The Interbus Switch located between pro-
cessors P, and P; (IBS,,) will be forced to close granting priority to the processor on the
right, P;. This can be clearly shown by referring to table 2.9.

Table 2.9: Case II of Potential Deadlock

Request, ;_; Request,, LC,, LG, Case
0 0 0 0 No Request
o 0 0 1 I—J, No Significance
0 o 1 0 I-1—I, No Significance
0 0 1 1 Impossible
0 1 0 0 J—I wait for LC
0 1 0 1 J—1
0 1 1 0 I-1—1, No Significance
0 1 1 1 Impossible
1 0 0 0 I—I-1 wait for L.C
1 0 0 1 Impossible
1 0 1 0 1—-I1-1
1 0 1 1 Impossible
1 1 0 0 I—I-1, J—I, wait for LC
1 1 0 1 Case 11, I—I-1 No LC, J—I with LC
1 1 1 0 I—I-1
1 1 1 1 Impossible

Referring to entry number fourteen in the above table, we find the second case of

potential deadlock. The deadlock can be summarized by the following equation.

-47 -

Il = Request,,_, * Request,; - LC,.,, - LCy (2.18)
In the third and final case of potential deadlock, we encounter the following. A
processor P, requests the memory module of the neighbour on its right M, It eventually
obtains the Logical Closure between the processors P, and P;. But before the Bus Request
ﬁﬁu becomes active, the processor on the right P, performs a request the neighbour on
its right, M,,,. The processor on the left, P, never receives the BG from the processor P,
(because it is in the middle of a cycle) who will never obtain the Logical Closure because
the switch on its left is already Logically Closed. The situation is resolved by forcing the
processor Py off the bus and granting priority to P. Refer to table 2.10 for claridcation.

Table 2.10: Case III of Potential Deadlock

Request, Request; LGy LCyy41 Case
0 o} 0 0 No Request
0 0 0 1 J+1—J, No Significance
(1] 0 1 0 J—I, No Significance
0 1] 1 1 Impossible
0 1 0 0 J—J+1 walt for LC
0 1 0 1 J—J+1
1] 1 1 0 Impossible
0 1 1 1 Impossible
1 0 0) I—J wait for LC
1 1)) 0 1 J+1-—J, No Significance
1 0 1 0 I—J
1 0 1 1 Impossikle
1 1 0 0 I—J, J=J+1 wait for LC
1 1 0 1 J=J+1
1 1 1 0 Case l1II, I—J with LC, J—J+1 no LC
1 1 1 1 Impossible

-~ 48 ~

Referring to the fifteenth entry in the table above, we find the third case of Poten-

tial Deadlock. The following equation describes the scenario.

Il = Request,, * Request;,,; ' LC,; * l—:é,_,“ (2.19)

Now there exist three equations to describe the three cases of Potential Deadlock.
These three equations are then used to determine which switches are to be opened or
closed, and the direction of flow of information in these switches. By logically ORing the
three equations we obtain a signal that will tell us if there is a case of Potential

Deadlock. If the signal is high, then a case exists.

PD=1I+ 1+l (2.20)

There are regularities in the three cases of Potential Deadlock. In case I and case II,
the processor on the right, P, is given priority for a request. In the third case, it is the
processor on the left, P, that is given priority. Shown in table 2.11 below, the state of
the switches is given depending on the case of Potential Deadlock.

Table 2.11: State of the Switches During Potential Deadlock

Case PS, IBS,, PS,
I Open Closed Closed
11 Open Closed Closed
III Closed Closed Open

From the three equations that describe the three cases of Potential Deadlock, we
need to determine appropriate control signals for the three switches affected by the
Interbus Switch Controller. Referring to equation 2.20, a truth table can be set up to
help decode the information to control the switches as shown in table 2.12. Keep in mind
that a logical 1 for the cases (I, II, III) reflects the existence of the potential deadiock and

a logical O for a switch implies the switct is closed.

For the Interbus Switch IBS;;,, we must also determine the directional control for
the address, control, and data lines. By examining table 2.13 we can find the solution.
Please keep in mind that a logical 0 for the directional control T refers to information

flowing from the processor on the left to the processor on the right.

--

- 49 -

Table 2.12: Switch Control Information

Inputs Qutputs

I 1l I PS, IBS;, PS Comment

0 0 0 o 1 0 Normal, No Request
0 0 1 I-J, No Deadlock
1 0 0 J—1, No Deadlock

0 0 1 0 0 1 Case III

0 1 4] 1 o 0 Case 11

0 1 1 X X X Impossible

1 0 0 1 0 4] Case 1

1 0 1 X X X Impossible

1 1 0 X X X Impossible

1 1 1 X X X Impossible

From the table above, the following equations can be clearly obtained.

OE, cpIBS;; = I 11 - III

SE_:A,C,DPSI == III

—OEA,C.DPSI = I * II
Table 2.13: Directional Control for the Interbus Switch

Inputs Outputs
PS, R/W, Ps; | R/W, Tac Tp Comment |
0 0 0 0 X X Impossible
0 0 0 1 X X Impossible
0 0] 1 0 o 0 I~J, Write
0 0 1 1 0 0 I1—J, Write
0 1 0 0 X X Impossible
0 1 0 1 X X Impossible
0 1 1 0 0 1 I-J, Read
0 1 1 1 0 1 I-J, Read
1 0 0 1] 0 1 J—I, Write
1 0 0 1 1 1 J—I1, Read
1 0 1 o X X No request
1 0 1 1 X X No request
1 1 0 0 1 1 J—I, Write
1 1 0 1 1 0 J—1, Read
1 1 1 0 X X No request
1 1 1 1 X X No Request

(2.21)
(2.22)
(2.23)

By taking into consideration the don’t care terms, we obtain the following equa-

tions for the Interbus Switch.

-50-

TA,C = PS| (2.2‘])
Tp = PS, - R/W, + PS; - R/W, (2.25)

It is imperative that one keeps in mind that a Processor Switch that is referred to
as PS; for one Interbus Switch Controller, is referred to as PS, by the Interbus Switch
Controller on the immediate left. The same holds true for a Processor Switch that is
referred to as PS;. The Interbus Switch Controller on the immediate right will refer to
this Processor Switch as PS;. This must be taken into consideration during the design of

the hardware requ.red to control the Processor Switches.

The main signal that states whether or not there exists a case of Potential
Deadlock is used to control the state of the Intsrbus Switch, IBS,,. If this signal is high,
there is no Potential Deadlock, and the Interbus Switch is open. If the signal is low, then
Potential Deadlock exists, and the switch is closed. By logically ANDing terms I and 11, a
control for the state of the Processor Switch on the right, PS,, is obtained. The last term,

111, is used to control the Processor Switch on the left, PS,.

The neighbouring Interbus Switch Controller on the left, will also want to control
the Processor Switch on its right, denoted as PS), which is denoted as PS, by the Interbus
Switch Controller on the right. More specifically, on either side of a processor and its
Processor Switch, there is an Interbus Switch Controller. These two adjacent Interbus
Switch Controllers must work together to control the Processor Switch that is between
them. The Interbus Switch Controller on the right of the Processor Switch will refer to
the Processor Switch as PS; while the Interbus Switch Controller on the left of the Pro-

cessor Switch will refer to the Processor Switch as PS;.

The solution to this problem is very simple, the Interbus Switch Controller on the
left (IBS,_,,) of the processor in question (P,) will output a signal PS,IBS,,,, denoted as the
Processor Switch control line for the processor on the right generated by the Interbus

Switch Controller located between processors P, and P,. In other words, the processor

- 51 -

on the right denoted as P; will be partially controlled by the Interbus Switch Controller
on its immediate left denoted as IBS,.,, which generated the control signal PS|IBS,, ;. The
Interbus Switch Controller on the immediate right, IBS,;; will output a control signal to
the processor on its left, denoted as PS|IBS,; (but the same one as described above).
These two control signals will simply be logically ANDed to produce the Processor

Switch control line.

OE; = PS,IBS,,, - PSIBSy, (2.27)

The Processor Switch address, control and data lines direction control signal will be
those described in the previous section. There need not be any control of direction of
this information because these signals are derived directly from the processor irrespective
of actusal requests or pending requests. Finally, these are the equations that describe the

operation of the switches during a Potential Deadlock situation.

For the Processor Switch we have obtained the following:

TacPS =1 (2.28)

In reference to the Interbus Switch controller on the right of this switch.

OE, cpPS, = PSIBS,, , - PS,IBS, (2.30
'AC, . J

For the Interbus Switch:

TA'cIBSIJ == PS| (231)
TpIBS,, = PS, : R/W, + PS, R/W, (2.32)
OE,cpIBS;) =1 + Il + 1II (2.33)

2.2.1.3 Amalgamation - Normal Access Including Potential Deadlock

In this final section of chapter 2, we will amalgamate the equations obtained in the
previous two sections. The switches must operate properly during all types of neighbour-
Ing accesses. We will start off by completing the Processor Switch. In the previous sec-
tion we have determined that the directional control lines for the Processor Switch are

the following.

-52-

TacPSi=1 (2.34)
TpPS; = R/W (2.35)

The last signal for the Processor Switch is the OE, cp. This control signal will be a
combination of the two individual signals derived in the two previous sections. One of
them handles normal requests while the other handles Potential Deadlock scenarios.
Shown in table 2.14 below, the truth table for the Processor Switch.

Table 2.14: T'ruth Table for the Processor Switch

% _I_I]_Dllt:S______ t———-_%

Potential Deadlock Normal _—
OExcp

PSIIBSF]'I ‘ PSllBSM

e ———

0 X (Impossible)

1 0 (Potential Deadlock)
0 0 (Normal Access)

1 1 (No Request)

- = Q O

iv is obvious from the table above that the two signals can be logically ANDed to

produce the final output.

OE, ¢ pPS; = PS|IBS,,, * PS|IBS,; - BGACK (2.36)
The next three equations will describe the control for the Interbus Switch. Using

equations 2.14 and 2.24 we can produce the following table 2.15 to ferm Ty .

Table 2.15: Truth Table for Address and Control Signals of the Interbus Switch

O T Qutputs
Poiential Deadlock Normal
— Tac

PS, BGACK,

0 0 X (Impossible)

0 1 0 (Potential Deadlock)

1 0 0 (Normal I—J)

1 1 1 (No Request or Normal J—I)

This is simply the logical AND of the two signals. Equation 2.36 will control the

direction of address and control signals through the Interbus Switch.

TA.CIBSI,] = PS. * BGACK]J (237)

-53-

The next signal to be produced is Tp, the directional control signal for the data bus.

Table 2.16 is produced from equations 2.15 and 2.25.

Table 2.16: Truth Table for Data Bus Direction Thrnugh the Interbus Switch

Inputs . outputs

PS, | BGACK;y | PS, | BGACK, | Tp]
0 0 0 o X (Impossible)

0 0 0 1 X (Impossible)

0 0 1 0 X (Impossible)

0 0 1 1 X (Impossible)

0 1 0 0 X (Impossible)

0 1 0 1 X (Impossible)

0 1 1 0 X (Impossible)

0 1 1 1 R/W, (Case I1I)

1 0 0 0 X (Impossible)

1 0 0 1 X (Impossible)

1 0 1 0 X (Impossible)

1 0 1 1 R/W, (I—J)

1 1 0 0 X (Impossible)

1 1 0 1 57_\7, (Caselorll)
1 1 1 0 R/W, (J—1)

1 1 1 1 X (No request) i

From the above table, we can deduce the following formula for the directional con-

trol for the data bus in the Interbus Swit.ch.

TpIBS,, = (BGACK,, - PS)) * R/W, + (BGACK], * PS)) - R/W, (2.38)

The final control signal to be determined for the Interbus Switch is the O_EA.C'DIBS,',.

By combining equations 2.16 and 2.22 we can produce a control signal for the state of
Interbus Switch that will handle both normal requests and potential deadlock situations.

Referring to table 2.17 this can be done.

-54-

Table 2.17;: Truth Table for the State of the Interbus Switch

Inputs Outputs
Potential Deadlock Normal .
— . OE, cplBS),
OE, c,pIBS), OEscp
— g
0 0 X (Impossible)
0 1 0 (Potential Deadlock)
1 0 0 (Normal Request)
1 1 1 (No Request)

In the above table, by setting the don’t care state to 0, we can clearly see that the
two control lines should be logically ANDed to produce the final control signal for the

state of the Interbus Switch.

OE, cpIBS); = BGACK,, - BGACK, - (I + II + 1II) (2.39)
Finally, the hardware implementation for Phase II, including Phase I, the
handshaking controllers, and the combinational logic required to control the 828¢ buffers

that are used as switches is shown in figure 2.11.

-

‘11 aseyd Jo uonyejudwdjdu] arempiv :11°g aansi g

“——v+f "buoveg F ‘T+froveg ‘¥ yovag ¥ Fyow 2 T ‘t—Tyovea *-F 'Fyovesq | >
<t +Ffug . FFrfug o F'Yug . ¥ hyg L ¥ P-Tug F-F ‘Tug
57 LY 3 LZCa N 3T 1
80STIvL
{ zesavs cEseL
£ ¥sar 2 V. 1 L\\\\llexlle
(I"l 4 “\
¢ "ty -4
s 00SIPL
- —+
gosTve
2esre
. pOSTIPL
. ¢ Tear Jy rllg
wn
uy
1]
TISWL 2ESIWL 4
TESIPL
f*¥sa1d D Vao \
30 . T:IIJ .
¥sd©
80SW L
00SWL
80SIwe 2ESIPL
2ESIPL
_ o
£ Tyge TESTL »0STIPL
P+{ ‘(g

ﬁmﬁ (s ige] .(IW-D

t .ﬂl«Cm

- 56 -

2.3 Experimental Results

The Interbus Switch Controller has not been built on the Versabus board as of yet.
However, some testing has been done on the subsystem. Phase I and Phase 11 have been
tested on a bread board and they operate according to specification. Neither of the cir-
cuits have been tested for maximum speed of operation. Based upon the information
obtained from the T'TL Data Book, we estimate that Phase I can operate at the desired
24MHz to produce a Logical Closure in one CPU cycle (running at 8MHz). For Phase II,

it should operate at no less than 8MHz, so that it can change state as fast as the CPU

will.

-57-

3. Conclusion and Future Work

In this thesis, we have presented three different subsystem designs for the Homo-
geneous Multiprocessor Proper. The first being a 1 Megabyte dynamic RAM memory
system, the second, a 1 Megabyte static RAM memory system, and finally, a design for
the Interbus Switch Controller which facilitates communication between adjacent Pro-

cessing Eiements.

The dynamic memory system was the first of the memory modules that have been
designed. It contains an Error Detection and Correction Unit that is used to boost the
reliability of the ovcrall system. The bulk of the integrated circuits used in the design
part of a chip set manufactured by Advanced Micro Devices. This allows straight for-
ward implementation of the system except for a few 74LSXX series chips. Dynamic
memory was implemented as opposed to static due to the bigh price of static memory

circuits. The average memory access cycle time is 700 nS.

The second memory module that was designed used static memory integrated cir-
cuits. Error detection and correction is not required in a static memory design because
the integrated circuits are not susceptible to alpha particles. At the time of this design,
the price of the static memory chips was considerably reduced since the dynamic
memory design. The cycle time for memory access is considerably less than the dynamic
design due to the lack of an error detection and correction unit. The average memory

access cycle time is 300 nS.

Finally, the last design was the Interbus Switch Controller. This design is fairly
complex due to large number of control signals required by neighbouring processors.
Currently, the design is imp’.mented with standard 74LSXX series integrated circuits.
This facilitates a slower design than can be achieved through other methods. In addition,

there are several areas in the designs that can be carried out in the future:

-58-

I. Implementation in VLSI

Various parts of the Homogeneous Multiprocessor Proper can be implemented in
VLSI. Much of the decoding circuitry in the processor can be fabricated in silicon. The
Interbus Switch Controller and its switches can also be manufactured. Finally the decod-
ing circuitry in the static memory design can be implemented in VLSI. This would con-
siderably reduce the area required by the various systems incorporated in the Homogene-
ous Multiprocessor thereby reducing the cost of implementation, debugging time, and
layout. This would allow more circuitry per board thereby reducing the number of
boards required. Currently, we have estimated that two boards will be required for each

Processing Element. It is not unforseeabie to reduce this number to one by using VLSI.

II. Upgrading with Technology

As time passes, the cost of new products such as larger dynamic memory integrated
circuits will decrease, such as the 1 Megabit memory. Once a controller becomes avail-
able, the dynamic memory system can be upgraded using less chips to obtain a similar
design. The same applies for the static memory design. Curcrently, there are larger statlc
memories that are contained in a Single In-line Package (SIP) that are 256 Kilobytes.
These memories contain 8 surface mount 32 Kilobyte memories and some additional
hardware. Unfortunately they are extremely expensive. Once they become reasonable
priced, it is feasible to have a 1 Megabyte static memory system that only requires 20 to
30 square centimeters of area. This would greatly reduce the current requirements of a

much larger area.

III. Printed Circuit Boards

Currently, the Processing Elements and associated hardware are implemented on
wire wrap boards. These boards have various restrictions, the two most prominent one
being speed of operation of the circuits and the other is the inability to put certain types

of chip packages on the boards. One example in the Motorola MC68020 which comes in

-50-

a square leadless package. Other circuits which cannot be used are surface mount. If

printed circuit boards are implemented, then there will be no restrictions as to package

types,

10

11

12

13

14

15

16

17

- 60 -

References

Advanced Micro Devices, Bipolar Microprocessor Logic and Interface Data Book,
pp. 4.1 - 4.120, 1985.

Crowther, W., et. al., The Butterfly Parallel Processor, Computer Architecture
Technical Committee Newsletter, Sept./Dec. 1985.

Desrochers, G.R., Principles of Parallel and Multiprocessing pp. 266 - 269, 276 -
280, 294 - 205, Intertext Publications, Inc., McGraw-Hill Book Co., 1087.

Dimopoulos, N.J., On the Structure of the Homogenous Multiprocessor, IEFEE
Transactions on Computers, Vol. C-34, No. 2, pp. 141 - 150, February 1985,

Dimopoulos, N.J. and K.F. Li, The Performance Analysis of the Homogenous
Multiprocessor Proper.. Canadian Journal of Electrical Engineering, pp. 3 - 10,
January 1987.

Evans, D.J. (Editor), Parallel Processing Systems An Advanced Course, p. 89,
Cambridge University Press, 1982.

Gottlieb, A., et. al., TheNYU Ultracomputer-Designing an MIMD Shared
Memory Parallel Computer., IEEE Transactions on Computers, Vol. C-32, No. 2,
pp 175 - 189, February 1983.

Hamming, R.W. Coding and Information Theory, pp. 30 - 42, Prentice-Hali,
1980.

Hitachi, The Memory Data Book, 1988.

Hwang, K. and F.A. Briggs, Computer Architecture and Parallel Processing pp.
20 - 27, 40 - 49, 463, 645 - 659, McGraw Hill Inc. 1984.

Li, K.F., The Homogeneous Multiprocessor: A Simulation Study and an
Operating System Design, Ph. D. Dissertion, Concordia University, 1087.

Miklosko, J. and V.E. Kotov (Editors), Algorithms, Software and Hardware of
Parallel Computers, pp. 300 - 302, Veda Publishing House, 1984.

Mitsubishi, The Memory Data Book, 1985.

Motorola Inc., The MC68000 Educational Computer Board User's Manual, Aus-
tin, Texas, 1082.

Motorola Inc., The Motorola Microprocessor Data Manual, Austin, Texas, 1981,

Peterson, W.W. and E.J. Weldon Jr., Error-Correcting Codes, pp. 2 - 3, The
MIT Press, 1972.

Segal, T.L., The TLS-2 Switch Controller, Technical Report, Concordia Univer-
sity, Montreal, Canada, 1986.

18

19

20

21

-61-

Seitz, C.L., The Cosmic Cube, Communications of the ACM, Vol. 28, No. 1, pp.
22 - 33, January 1985.

Swan, R.J., et. al, Cm+ - A Modular Multimicroprocessor, Proceedings AFIPS

Conference 1977, Vol. 46, pp. 645-655, 1977.

Texas Instruments, The TTL Data Book for Design Engineers, 1981.

Wulf, W.A,, et. al., C.mmp — An Experimental Computer Svstem, McGraw-Hill,

New York, 1981.

- 62 -

Appendix A

A. The Dynamic Memory Subsystem

In this section, the dynamic memory that has been designed and built for the
Homogeneous Multiprocessor will be discussed. The dynamic memory sub-system is com-
posed of various integrated circuits from Advanced Micro Devices which are special con-
trollers for the sole purpose of controlling dynamic memories. The dynamic memory
integrated circuits are manufactured b¥ Mitsubishi and their size is 256 Kilobits. The
dynamic memory system is 1 Megabyte and incorporates error detection and correction.
Also made by AMD is an asynchronous bus interface circuit which has been configured
and used with the Motorola MC68000.

A.1 General Principles of Dynamic RAMs

Until very recently, the cost of producing a dynamic memory system was much
lower compared to a static memory system. It has always been a fact that dynamlic
RAMs have been manufactured with higher densities than static RAMs due to the
smaller size of the individual memory cells. Higher densities imply savings in space which
can be a critical factor during the design prccess. Currently, the 1 Megabit dynamic
RAM is the largest integrated memory circuit that is currently (1987) manufactured in a
DIP package. As far as the static RAMs are concerned, the largest circuit that can be
manufactured in a DIP package is 32 Kilobytes (which is 256 Kilobits). Thus, with a 400
percent more capacity, the DRAM seems to be the best candidate for making large
memory arrays. The block diagram of the Mitsubishi M5M4256S-15 dynamic RAM s

shown in figure A.1 below.

The only undesirable features of dynamic RAMs are that they need to be refreshed
and the possibility of errors caused by alpha particles. Refreshing requires external circu-
itry, and to reduce the possibilities of errors, error detection and correction or parity

checking can be used.

- 63 -

INnd3ang

[31]'INVYH d1weukq ST-S9STHINSIN IUSIANSIIAL YL, (1'V 2InS1q

S/

e3ReQ

o6&

[LY T

(o308 2

8
v
J 3 Y&
Avuuy Ld Aeauy Keday I AeJduy v
w Adowan e Adowan Adowaw 4 AJuowan)
MeSE =3 M2E M2E 2 MeE J v
2 8 @) [~]
d a 2 v
13 3
3 u m 14 = s3Nndul
T JoP O [=}e] w 8 v E89JPPY
€
g 0 g v
3 P 3 2
u ARuuy M Avauay Aeudy ™ Aeauy u g v
o AJOuanw 5] AJOowan AJowWan o AJowan v p T
o Ne2E - MNZE M2E o HeE m — ~ v
(o}
o/ <\
ndul agoud
4yo3eT ITNDOJLD sSvY umnomuu« Iwm
Induy <JO3IRJIDUIY MI0TI
Svd sndul aqouis

]

S$83JppY UWNTOD

Indux

RN

“ 10u3u0)
= 23TUM

3Induyg

a e3eg

-64-

In the case of refreshing, which must be done otherwise cells start loosing their
information after 4 mS., a row of memory cells in the DRAM must be refreshed every

15.625 uS, and the entire chip must be refreshed every 4.0 mS.{12

The dynamic memory cells in an integrated memory circuit are organized in the
form of a matrix. In the case of larger memory circuits, the actual array is composed of
many smaller matrices, usually more than are required, the reason being that if one of
the matrices is flawed, the integrated circuit does not have to be discarded. Even
though the dynamic RAM consists of more than one matrix, as far as the user Is con-
cerned, it is organized as a single matrix with rows and columns. When accessing a
memory cell in a dynamic RAM, a row address and a column address are generated and
presented to the dynamic RAM in a multiplexed fashion. In a 256 Kilobit memory array,
18 address lines are required, however, in order to save space, these are multiplexed over
the same pins as row and column addresses. The row address and column address
strobes are used to latch the row and column addresses internally. These are then used
to select the corresponding row and column from the matrix of RAM cells; their intersec-
tion defining the currently active (read/written) cell. The row and column address

strobes are commonly denoted by RAS and CAS respectively.

In the process of a read or write operation, the following must occur. For a read
operation, the output enable is activated, then the row address and the row address
strobe (RAS) are presented to the dynamic RAM, on the rising edge of RAS, the address
is latched. Then the column address is presented with the column address strobe (CAS);
on the rising edge of CAS, the address is latched, and the data appears on the Data Out-

put line (DO) (after a CAS — DO delay).

For a write operation, the data is first presented to the Data Input latch, (DI) while
keeping the Output Enable (OE) inactive for the entire cycle. Then, the address i3
presented to the dynamic RAM in the same manner as described above; on the rising

edge of CAS the data is latched and stored in the dynamic RAM.

-85 -

A.2 Error Detection and Correction Requirements

Reliable DRAM memory systems are very important for the proper operation of
any computer system. With every advance in computer technology, the number of bytes
of memory is increasing with the same rate as the density of the MOS DRAMSs is
increasing. Because of the reduced size of the memory cells and the smaller stored charge
of the cell in the 256 Kilobit DRAM, the chips are more sensitive to alpha particles
which can destroy the information in the cells. By usirg an error detection and correc-

tion unit, dramatic increases in memory reliability are achieved.

Referring to figure A.2, a simple storage system is shown. In this system, there is a
source of information, an encoder which transforms the source information into informa-
tion acceptable to the storage medium, a decoder which is used to transform the infor-
mation into a form acceptable to the sink, and the sink which is the entity requiring the
stored information. In such a system, erroneous data may occur while the information

resides in the storage medium.[16]

_S_QL’_BQE_> ENCODER STORAGE MEDIUM DECODER _iIﬂK_}

Figure A.2: A Simple Storage System.[16]

If we modify the storaye system in the above system to include error detection and
correction, it becomes more complicated as depicted in figure A.3. Again we hav. the
source and sink, and there are various encoders and decoders along the data path. There
are two encoders along the data path entering the storage medium, the first one is “sed
to transform the source information into binary, the second encoder is used to incor-
porate the additional information required for error detection and correction (the check
bits). The last encoder is the same as in the previous diagram, it is used to transform

the information into a form acceptable to the storage medium.

- 66 -
BINARY TO BINARY TO
SOURCE BINARY CHANNEL
ENCODER ; ENCODER
(MODULATOR)
STORAGE
MEDIUM
BINARY
ERROR- CHANNEL TO
SINK CORRECTOR BINARY
| OR DECODER
DETECTOR (DETECTOR)

Figure A.3: A Typical Data Storage System Employing
Error Detection ~nd Correction.[16]

Along the output stream of the storage medium, the data first encounters a decoder
that transforms the data to binary. Then the data is passed through the error detection
and correction unit which verifies the information and finally, the decoder that prepares

the data for the sink.

Hamming codes are widely used for error detection and correction in memory sys-
tems. The following is a simple example of how Hamming codes can be used for error
detection and correction.[8] This example will use a 4 bit data word. To begin with, we
will require m parity checks for the n bits in the message. It should be noted that n is
the total comprising of the original number of data bits (4) and the number of parity
check bits (m). Inequality A.) below, provides a relation of the number of check bits in

terms of total number of bits in the message for a single bit error correction code.

2™ >n+1 (A.1)

It can be determined that the number of parity checks required Is, m=3. Including

the 4 data bits, a total of 7 bits are required for a single bit error detection and correc-

- 67 -

tion. By examining the binary representa’’ s of the message bits, it can be determined
which rdata bits will be included in which parity bits. The messaze bits can be
represented as N, N,, and N,. For example, the first check bit, denoted as C, will be
produced by the combination of all the message bits that contain a *'1”’ as their N,. C;
is produced from the message bits that contain a ‘1" as their N,, and finally, C; is pro-
duced from the bits that contain a ““1’" as their N, bit,

Table A.1: Check Positions.

Position Number Binary Representation Included in
N, N, N, Parity Check Bit
1 (0] 0 1 1
2 0 1 0 2
3 0 1 1 1,2
4 1 (0] 0 3
5 1 0 1 1,3
6 1 1 (4] 2,3
7 1 1 1 1,2,3

‘Thus we see that the first parity check covers positions 1,3,5,7. The second ccvers
2,3,6,7. And the third covers 4,5,6,7. By examining the binary representation of the mes-
s.»ge bits, it is observed that positions 1,2, and 4 contain only one *‘1’’. These locations
will be used to store the parity check bits. The othe: locations, 3,0,6, and 7 will be used
to store the four data bits. Note that since the message bits in locations 1,2, and 4 are
used to store the check bits, they are not taken into consideration during the creation of
the parity check bits. They are only used during the detection process to determine if an

error occurred.

Note that a parity check will do * .c following: if there are an even number of 1's in
the specified locations, then the parity check will be a ““0"; If there is an odd number of
1's in the specified locations, then the parity check will be a ““1”. Table A.2 will show

the flow of events that occurs through the system.

When an error occurs in the message, it is located by performing a new set of par-

ity checks. During this second set of parity checks, if the results are all *'0”, then there is

- 68 -

no error. However, if there is at least one ‘“1' as a result, then an error exists and it
must be corrected. The results obtained from the parity checks, when combined will pro-
duce a binary number called the syndrome which is the position number of the bit ‘a

error. To correct a bit in error, it is simply complemented.

Table A.2: Encoding a 4-Bit Message and Locating the Error.[18]
ENCODE DATA

Positions 1 2 3 4 5 6 7
Message - - 1 - (0] 1 1
Encode 0 1 1 0 0 1 1
Error X
‘:\ %&sﬂ:&n
LOCATE THE E.”ROR
Check 1: 1357
0001 fails — 1
Check 2: 2367
1011 fails — 1
Check 3: 4567
0011 correct — 0
sypdrome = 011 = 3 — position of error |
CORRECT
m
Correct error 1

Corrected message 0 1 1 0 o 1 1

- 89 -

A.3 Error Detection and Correction

In a word oriented memory system such as the one incorporated in the Homogene-

ous Multiprocessor Proper, the 16 bit format consists of 16 data bits and 6 check bits.

There are two basic modes of operation of the Am2960 Error Detection and Correc-
tion Unit. The first is the Generate Mode, which is used during a write cycle and the

second is the Detect and Correct Mode, which is used during a read cycle.

During a write cycle, the generate mode will check the contents of the Data Input
Latch (which contains the data to be written to memory), and generate 6 check bits
according to a modified Hamming code. In general, each check bit is generated as either
an exclusive OR or an exclusive NOR function consisting of 8 of the 16 data bits. The
XOR and XNOR functions result in even or odd parity checks, respectively. Shown in
table A 1 is the check bit encoding chart. Once the check bits are generated, they are
stored in the check bit memory at the same time as the dat bits are stored in the data

memory.

During a read cycle, the data bits are verified correct, and if an error is found, the
system will attempt to correct it. This is accomplished by reading the data and check
bits from memory, from the data bits, a new set of check bits 1> created by the same
method as during a write cycle. Then the newly created check bits and the check bits
retrieved from the check-bit memory are compared. If the two sets are identical, then
the retrieved dota are correct. If they differ, one of four types of errors may occur. (1)
the first and most obvious type is a single bit error in the 16 bit data. If this occurs,
then the incorrect bit can be corrected by complementing it; At the same time, the

corrected data is rewritten to the meniory.

The second type of error which has no effect on the data is a check bit error; this

can be corrected by complementing and rewriting the check bits to the memory.

The last tw typec of errors concern multiple errors. Such errors cannot be

-70-

corrected. All double bit errors can be detected, while only some of triple bit errors are
detected. For such multiple errors there is not enough information in the check bits to
discern which bits are in error, therefore the system is unable to make the appropriate
corrections. An interrupt is generated (the MULT ERROR) which invokes the appropri-

ate handler.

During check bit generation, in our case, 6 check bits are produced, each
corresponding to 8 data bits, of which each data bit contributes in three check bits. For
example, data bit D, contributes in check bits C,, C,, and C;. At the same time that the
data bits are written to the memory, the check bits are also written to the check bit
memory. During retrieval of the data, a new set of check bits are produced. If by chance,
D, gets corrupted, then the newly generated set of check bits will have different values
for check bits C,, C,, and C,. The newly created chrck dits will be compared to the origi-
nal set by exclusive ORing the two sets, the resiults of tiis comparison is called the syn-
drome bits. In this example, the syndrome birs S,, S,, and S, will have the value 1, while
the other syndrome bits will all be O, the syndrome decoder will then determine that
data bit D, is in error and it will complement it. The complete set of syndrome bits and
their meaning is shown in table A.3 below. If the corresponding definition for a syndrome
number is either C, or D;, then this implies that either the check bit C, or the data bit D,
is in error and should be complemented for correctness. If the definition is double, then
there exists a double error, and two bits are in error and no correction can be made. As
well, the definition > triple refcrs to three or more bits in error and again no correction

can be made.

If only one of the syndrome bits has a value of one, then this implies that the
corresponding check bit is in error and should be corrected by complementing it and

rewriting it to memory.

If any other combination of syndrome bits are set, this implies that a multiple error

has been detected and cannot be corrected.

-71-

Table A.3: Check Bit Definition.

SxS65:525¢5s Deflnition Sx565,5,5,5 Deflnition S5%S505,525,Ss Definition
000000 No Error 010110 D, 101011 Double
000001 Cs 010111 Double 101100 > Triple
000016 C, 011000 Double 101101 Double
000011 Double 011001 D0 101110 Double
000100 C, 011010 D, 101111 > Triple
000101 Double 011011 Double 110000 Double
000110 Double 011100 D, 110001 D,
000111 > Triple 011101 Double 110010 D,
001000 C, 0111160 Double 110011 Double
001001 Double 011111 > Triple 110100 D,
001010 Double 100000 Cy 110101 Double
001011 Dy 100001 Double 110110 Double
001100 Double 100010 Double 110111 > Triple
001101 D,, 100011 D,, 111000 > Triple
001110 D, 100100 Double 111001 Double
001111 Double 100101 D,1 111010 Double
010000 Co 100110 D, 111011 2> Triple
010001 Double 100111 Double 111100 Double
010010 Double 101000 Double 111101 > Triple
010011 > Triple 101001 D, 111110 > Triple
010100 Double 101010 D, 111111 Double
010101 D,,

A.4 Incorporation of the Error Detection and Correction Unit

In the design of the dynamic memory system, the requirements were as follows. We
desired a system that could handle at least 1 Megabyte of dynamic memory incorporat-
ing 256 Kilobit dynamic RAM chips. We also required integrated circuits that are
manufactured in DIP packages since our prototypes are wire wrapped boards and they
do not support surface mount or pin grid arrays. It was imperative that our dynamic
memory system have error detection and correction. We also preferred having a family
of memory support products whereby system integration could be done with hardware
kept to «. minimum. Our final requirement was that these memory support products
should be easily integrated into an existing MC68000 based processor and that they

operate asynchronously.

As it turned out, only the family of DRAM support devices produced by Advanced

Micro Devices (AMD) met our specifications.[1]

-72-

The Am2968 Dynamic Memory Controller is capable of handling 1 Megabyte of
memory composed of 256 Kilobit memory chips. It is capable of driving 88 DRAMs
without any external drivers, and, like all of the AMD integrated circuits, is available in
DIP packaging.

The Am2960 Error Detection and Correction Unit provides us with error detection

and correction. It is also capable of handling both byte and word oriented read and write

operations

The Am8167 is an interface chip that is used for timing all the events that occur in
the system, it also provides the refresh timers required by the DRAMs. It is the inter-
face for the Error Detection and Correction Unit, the Dynamic Memory Controller and

the Motorola MC68000.

The AMD memory support line also contains one other spacial function integrated
circuit that provides the data path to and from the EDC, DRAMSs, and system bus, the

Am2962.

Finally, the implementation of this system would require a minimal amount of
decoding and support logic. The integrated circuits that are supplied by AMD are from a
“chip set'’. All of the chips that are used are compatible (with the exception of the
Ame167 System and Timing Controller).

A.5 Selection of Components for the Dynamic Memory Subsystem
The AMD chips are from the Am2960-70 Memory Support Family. The chips that

are incorporated in this design consist of the: Am2960 Error Detection and Correction

Unit; Am2962 EDC Bus Buffers; Am2968 Dynamic Memory Controller.

The data interface between the dynamic memories, the Am2960 EDC chip, and the
system data bus is accomplished with the Am2962 bus buffers. Shown in figure A4 is the

block diagram of the memory system.

The Am2962 contains two internal latches, a multiplexer, and a RAM driver output

-73 -

buffer (note that the Am2062 has noninverting bufTers). Each of these devices has a 4-bit
wide data bus to and from the dynamic memories, the EDC and the system data bus.
For a 16 bit data bus, four of the Am2062 Bus Buffers are required. The Bus Input
latch is used to latch data during byte write operations. An incoming byte from the sys-
tem bus is stored in the Bus Input Latch while the memory is being read, and any neces-
sary corrections are being made in the byte not being changed. The Bus Output latch is
used when reading from the memory, it latches the data from the memory until the pro-

cessor reads it, and, at the same time, the memory can be refreshed.

The Am2960 Error Detection and Correction Unit contains all the logic necessary
to generate check bits on a 16-bit data bus using the modifled Hamming code and to
correct the data word by using the check bits. The Am2960 can correct all single bit
errors, detect all douk:e bit errors, and detect some triple bit errors. According to the
modified Hamming code, for a 16 bit data bus, an additional six bits are required pro-

ducing a total of 22 bits,

The Am2968 Dynamic Memory Controer is capable of supplying the Row address
Strobe, RAS and the Column Address Strobe, CAS for up to four banks of 256 Kilobit
memories making a total memory size of 1 Megabyte. The Am2968 can drive up to 88

DRAM chips without external drivers.

The AmS8167 System and Timing Controller is an integral part of the dynamic
memory system. The Am8167 is used in an Am2964 Dynamic Memory Controller based
design to interface this controller to an MC68000 processor. Nevertheless, we were able
to adapt this particular device to our design that uses the Am2968 controller (since no
comparable device for the Am296R existed). Our design can be found at the end of the

appendix.

‘UIIISASqNS AIOUIBIN JlWRUA(YL, F'V aInd g

30IM SLI8 aF

SN8 V1iVvA W3LSAS

N S A AR S I e ST S L AT L LM SR BT o 2 COI—)

ZANS Z XV
1 H
v SN8 _0”INOD J03
N
< Z H371I04.LNOD A M
ONIWIL 203 v
L9T8WY (a]
1 N sH3d44nNa l
1INN 203 sng 2d3a
. og6swy THI!iIIA\ 2962uv
4
I~
' mv Wv
1 <
v T0H1NOD
a IWO
3M
00089
N Ndd
SWYHO N SV T0B1NOD
a2 9NISN - AHOW3NW
AVHHY %l JINVYNAC =L
AHOW3W JIWVYNACG 8962wy
N SVH
S53Y
N]

-75-

A.6 The Memory Subsystem Design

The Am2960 Error Detection and Correction Unit (EDC) contains all the logic
necessary to generate check bits £ r a 16-bit data bus using a modified Hamming Code,
and to correct a data word when check bits are present. The Am2060 will correct any
single-bit error on a data read cycle and it is capable of detecting all double and some
triple-bit errors The Am2960 is expandable to operate cn a 64-bit data bus but in our
case the data field in only 16 bits wide therefore only requiring 6 check bits. Data error
logging is possible using the error syndrome which is available to the user on a separate

output bus.

A block diagram of the Am2960 Unit is shown in figure A.5. Referring to the block
diagram, the identifiable parts include the data input latch, check bit input latch, check
bit generation logic, syndrome generation logic, error detection logic, error correction

logic, data output latch, diagnostic latch, and the control logic.

A.6.1 The Am2960 EDC Architecture

The Data Input Latch is used to store 16-bits of data from the bidirectional
DATA lines under the control of the Latch Enable input, LE IN. The input data can be
used for either check bit generation or error detection/ generation depending on the con-

trol mode.

The Check Bit Input Latch is used to store up to seven bits from the Check Bit
memory under contro! of the Latch Enable input, LE IN. The Check Bits are used in the
Error Detection and Error Correction modes to deterr’ -~ if there are any errors in the
16 bit data.

The Check Bit Generation Logic as its name implies, is used to generate the
appropriate check bits for the 16-bits of data stored in the Data Input Latch. The Check
Bits are generated according to a modified Hamming code which hus been described in a

previous section.

-76 -

HosY3 LNH

Houdd

1

{1]"1unuol1s3i100 pue wondda(J011F 096ZWY YL ¢V aIn3ig _.|

NOILD3130
Hodu3

2SS 30 m _

9-0 5g A-V‘h

83¥q A03ud
/®WOpUAis

SH3AIUAQ

T

AN

QI907

T0WINQD

N

N/

XNH

™ T

NOIL
d-ELED)
3HOBANAS

d N

HO1VT
JILSONSVIQ

N

HILVT

NOTIL
=VH3N39

AHI3HD

XN

300030
H0HY3-NI-118

JI90M

NOILJ33-5H00

LNdNT
1I8 XO3HO

T 3LA9
HJLVA
LNo NI
vivdad

0 31A8
H3LvY7

LNdNT
viva

N

T 31A8
HOAVT

1Ndino
viva

0 31A8
HOLVT

iNdino
viva

N4

N4

y4

T

1036902
31VvH3IN39
NYHL SSvd
300n 9VvIO

a1 3402

avIa 31

NT 3T

¥ 3148 30

8t-94,va

4-0 yiva

% 3,48 30
N0 37

9-0 a0
{SL18 >03HI)

-77-

The Syndrome Generation Logic is used in the Error Detection and Error
Correction modes. This hardware compares the check bits read from memory with a
newly generated set which is produced from the 16-bit data read from memory, if both
sets are identical then there are no errors. If the two sets are nc+ identical, then one or
more of the data or check bits is incorrect. The syndrome bits are produced by
exclusive-ORing the two sets of check bits. The syndrome bits will be all zeros if the
two sets are identical and thus, are no errors. If one or more of the syndrome bits are
not zero, then they can be decoded to determine the number of errors and the bit(s) that
are incorrect.

The Error Detection Logic decodes the syndrome bits generated by the Syn-
drome Generation Logic. The outputs ERROR and MULT ERROR will remain inactive if
there are no errors. ERROR will become active if there are one or more errors,

MULT ERROR will become active if there are two or more errors.
The Error Correction Logic can correct all single bit errors by complementing

the bit that is incorrect. Once the error is corrected, the new data is presented to the

Data Output Latch, and from there put on the system data bus.

The Data Output Latch is used to store a new result when an error correction is
required. The LE OUT signal is used to load the latch the data so that from there, the
data is rr.sented to the system data bus. The Data Outpnt Latch is split into two 8-bit
latches which can be enabled independently, one for the upper byte and the other for
the lowet byte.

There are four basic modes of operation for the EDC Unit: Generate, Detect,

Correct, and Pass Thru. Each of these modes of operation of the Error Detection and

Correction Unit will be discussed in greater detail below.

The generate mode is activated when a write cycle to memory is required. Once the

16-bit data is loaded into the Data Input Latch, check bits are generated based on the

-78 -

data, then the check bits are placed on the Check Bit bus for placement in the Check

Bit memory (only 6 of the 7 check bits are used, the 7™ bit is used for wider data

words).

A modified Hamming Code is used to generate these Check Bits, was discussed in

section A.2. €. own in table A.4 is the check bit encoding used by the system.

Table A.4: Check Bit Encoding.[1]

Participating Data Bits

Generated

Check Bits Parity 0 1 2 3 4 5 6 7 8 0 10 11 12 13 14 16
1©5.¢ Even (XOR) VARVARY v vv
co Even(XOR) | v vV v oV v v
C1 Odd (XNOR) | v vV v VARV
C2 Odd (XNOR) | v V vvVvv v
C4 Even (XOR) VvV I ivvVvvyy VARY)
Cs Even (XOR) VARVARVAR VARVARVARY/

Note: The check bit generated as either an XOR or XNOR of the eight data bits noted

by an *4/” in the table.

The detect mode is active during a read cycle to determine if there are any errors in

the data that is being read. The data and check bits are temporarily stored in the Data

Input Latch and Check Bit Input Latch respectively. As stated previously, a newly gen-

erated set of check bits are generated from the data and compared to the check bits read

in from the check bit memory. All single bit and double bit errors are detected while

only some of the triple bit errors are detected.

During this process, syndrome bits are generated and placed on the syndrome out-

put bus. They may be decoded to determine if there was a bit error detected. If the error

is only a single bit, it is corrected, and then the data is cutput to the system data bus

for the MC68000 to latch.

-c

A.8.2 The Am2962 4-Bit Erroir Correction Multiple Bus Buffer

The Am2962 bus buffers are high performg-.ce, low power Schottky multiple bus
buffers that provide a complete data path interface between the Am2060 EDC, the
dynamic RAM, and the system data bus. In our systemn the data bus is 16 bits wide,
therefore requiring 4 of these units. Each unit can handle 4 bits of data. By providing
separate enables for groups of buffers, one may achieve memory access on nibbles, bytes
or 16-bit words. In our design, we provide separate enables in groups of twe, providing
us with byte and word access. Shown in figure A.8 is the block diagram of the Am2962
Bus Buffer.

A.6.3 The Am2968 Dynamic Memory Controller

The Am2968 DMC is capable of supporting 256Kbit x 1 as well as smaller dynamic
memories. The Am™968 uses two 9-bit address latches to hold the row and column
addresses required for the DRAMs. There are also two refresh counters (row and
column). The two upper address lines will inform the DMC which of the four banks of

DRAM will be accessed during a cycle.

The Am2968 DMC has two modes of operation: refresh and read/write. In the
refresh mode, the two 9-bit counters cycle through the refresh addresses in order to
refresh the DRAMS. During the read/write mode, the address presented to the DMC
from the CPU is passed to the address MUX and then split up according to the require-
ments of the DRAMSs for a memory access. Refer to figure A.7 for the block diagram of

the Am2068 DMC.

[1]-10png sng g963WY 4L 9V 10314

d SnNg VIR WBIEAS

4
g30 arqeu3 3nd3ing sng
, yazen yozen ,
937 8ng ejeg 03 arqeus ys3ieT ardano e3jeg 3ndur ejeg
Itg-v Ive-v
L]
[=]
a0
]
A snhg eijeg v/
UOTIIBJIJ0] JOJJT 7/ XN
S
g30 #1qeuld 3jnd3inp e3jeg v\\
/)
11%a 3nd3no A30 A OL s NIg sndur
R3RJ AJOowaw atqeus 3ndino 308Tras R3O AJOWwawW

A3T
ayqeul
yos3zen

Ngvo

N gy

-81-

;<

A\

!

[1}-191101380D Aiowiay dlweudq 8962WY YL, :2'Y Indi g

<, yo3en
7 sueg
aposag
SV ‘Svd
=
N o
Jajunog
. s'sed
¥ "Oying
touJzuos
XN - 4
Jazunog \
uwunTon ;
Ly _ 6y
A
yoaiye
uwnt oo
NS N EE8JPPY
J43a3uno) uwnTod
6, moH
\\4 XMW =
SE8JPPV oA 8y -0y
/2 yazen \—
4 Moy N
S88JUPPY
Moy
30

IsSvd
Isvy

¥a3s
O 43g

37
SJ
A3SKH

oW
% ow

-89 -

A.6.4 The Am8167 Dynamic Memory Timing, Refresh and EDC Controller

The Am8187 is a high speed interface controller that can be used with a variety of
microprocessors, one of which is the Motorola MC68000. The Am8167 provides all of the
control interface functions including RAS/Address-MUX/CAS timing (the specific timing
required for the sequence of the Row Address Strobe, the Row Address, the Column
Address, and the Column Address Strobe, respectively), memory request/refresh arbitra-
tion and all EDC (Am2960) enables and controls. It should be noted that the Am8167 is
not directly compatible with the Am2068 Dynamic Memory Controller. In our design

some special circuitry was added to enable proper operation of the system.

The Am8167 has several input control signals such as BYTE/WORD,
READ/WRITE, Address Strobe, Data Strobe and a refresh clock. From these input, the
AmB167 gencrates control signals for the Am2968 R_X§/ CAS and Refresh multiplexer.
Table A.5 below shows the corresponding signals used from the MC68000 to the
AmS8167.

Table A.5: MC68000 to AmS8167 Interface.

MC68000 Signal AmS8167 Signal
UDS + LDS BYTE/WORD
UDS - LDS DS (Data Strobe)

uUDSs Ag

A.6.4.1 Dynamic Memory Refresh

Refresh operations can be performed either by the CPU, known as transparent
refresh, or by the memory controller known as stand-alone refresh. Our system uses
stand-alone refresh which puts the responsibility of refresh address generation and tim-
ing on the memory controller. The Am8167 will perform tie necessary timing and access
arbitration. A refresh request is generated using the refresh timer on the Am8167. The
refresh timer is known as RCLK and it is connected to a 16 MHz crystal. Every 16 clock
pulses, a refresh request is generated for the Am2968 Dynamic Memory Controller to

perform a refresh cycle.

- 83 -

Potential conflicts between refresh request and memory requests are resolved by the
arbiter inside the Am8167. If a refresh request occurs during a memory operation or after
a memory request, it will be honored after the completion of the memory transaction
and the necessary precharge time has elapsed. If on the other hand, a memory request
occurs during a refresh operation or after a refresh request, it will be acknowledged only
after the refresh operation has been completed and the necessary precharge time has
elapsed. Finally, if both a memory request and a refresh request occur at the same time,
the arbiter will honor the memory request first.

A.8.4.2 Error Detection and Correction

Another function of the Am8167 is the timing and control required for the Error
Detection and Correction. There are two methods of error correction that can be imple-

mented, they are Correct On Error Only and Correct Always.

Correct On Error Only relies on the fact that error detection is faster than correc-
tion. At reasonably low rates of errors, this method achieves the highest possible
throughput, however, it is incompatible with all present microprocessors because they
sample their WAIT input too early in the cycle. This method will insert a wait state on
a read cycle, in order for the error to be corrected and to be rewritten to the memory.
The alternate method known as (orrect Always allows time after each memory read to
write the corrected data back to tlie memory. This is done only in the case of an error. If
there is no error, then the time is wasted. Our system uses the Correct Always method

due to the incompatibility of the Correct On Error Only method with the MC68000.

There are two error signals available, they are: ERROR and MULTIPLE ERROR. As
their names imply, if a single bit error occurs, the EDC will correct the error and pro-
cessing will continue, however, if a multiple bit error occurs, then the error cannot be
corrected therefore if processing were to continue, invalid information would be passed
on to the processor. Processing must be stopped in order to invoke the appropriate

action to be taken by the processor.

-84 -

A.7 Flow Of Data Through The Memory Subsystem

In this section, the flow of data is discussed. In conjunction with the block diagram
of the memory subsystem, shown in figure A.1, a detailed explanation can be given to
show the operation and sequence of events that occur during a read or a write operation.
In the following sections, a description of a read cycle and a write cycle are given. For
the purpose of simplicity, we will skip over the operations involved in the interbus
switch and assume that the CPU is directly connected to the memory subsystem. There
are byte and word operations, there is no difference between a byte read and a word
read. Eowever, a word write Is known as a write cycle and a byte write is known as a
read-modify-write cycle which will also be described.

A.7.1 A Write Cycle

The first thing that happens during a write cycle is that the CPU outputs an
address, an address strobe, a write signal, and the data to be written to that address
(not necessarily in this order). The first chip to obtain some information is the Am8167
Interface Controller. This chip receives the address, address strobe, and write signal, it
then sends out to the Am29062 Bus buffers a signal for them to latch the 16 bit data.
The Bus Buffers will hold the data so that the Am29060 Error and Detection Unit can
compute the Check Bits. After a predetermined amount of time, based on the memory
subsystem clock, the Am8167 Interface Controller sends out the RT\S/(—:E, address and
strobe and associated signals to the Bus Buffers and Error Detection and Correction unit
so that they should each send their data to the respective memories (Bus Buffers to 16
bit RAM, and EDC to 6 bit check RAM). Again after a predetermined amount of time,
the data is latched into the memories and the DTACK is sent to the CPU to inform it

that the memory cycle is finished.

A.7.2 A Read Cycle

A read cycle is very similar to a write cycle. The basic difference is the direction of

information flow. As with a write cycle, the CPU outputs an address, an address strobe

- 85 -

and a read signal. This information is passed to the Am8167 Interface Controller. The
Interface Controller then sends this information to the Am2968 Dynamic Memory Con-
troller and some signals to the Am2960 Error and Detection Unit and to the Am2062
Bus Buffers. The Dynamic Memory Controller sends out the RAS/CAS and a, propriate
address to the memory. The memory then outputs the 16 bit data which is then latched
into the Am2062 Bus Buflers, and the 6 Check Bits are latched into the Error Detection
and Correction Unit. The EDC then reads the data from the Bus Buffers, recreates the
Check Bits, and finally compares the newly generated check bits with those obtained
from memory. If they are the same, everything is correct and the EDC instructs the Bus
Buffers to pass the data on to the CPU. Then it is up to the CPU ,if it wants to acquire
a byte or the full 16-bit word. If there is a discrepancy between the check bits, the EDC
has to do some work that will extend the memory cycle time. If there is only one check
bit that is different then the EDC can correct the error and pass the corrected data on
to the CPU. At the same time, it writes the corrected data back to the memory. How-
ever, if there are two or more check bits that are not the same, a multiple error has
occurred and the EDC cannot correct the data. This causes the Memory Subsystem to
generate an interrupt to inform the system of the error.

A.7.3 A Read-Modify-Write Cycle

A Read-Modify-Write cycle is used when the CPU want to write only one byte to
the memory. Basically the sequence of steps needed is as follows: The memory system
reads the 16 bit word that is stored in the memory location in question, verifles the
check bits for a correct word, substitutes in the new byte, generates new check bits, and

finally stores the new 16 bit word and Check Bits.

The flow of data is as follows. When the CPU generates the write cycle, along with
the standard signals, it also generates a byte write signal. This is sent to the Am8167
with the other signals and then the Interface Controller coordinates the system to take

»
the appropriate actions. First, the Interface concroller instructs the Dynamic Memory

- 86 -

Cecntroller to read the memory location and then it tells the Bus Buffers to latch the
word. At the same time it instructs the Error Detection and Correction Unit to latch the
check bits. The Interface Controller then instructs the EDC to verify the 18 word stored
in Bus Buffers by regenerating check bits and comparing them with the ones it obtained
from the Check Bit Memory. If the check bits are identical it then tells the appropriate
Bus Buffers to substitute in the new byte. Then the EDC reads the new 16 bit word and
again generates a new set of Check Bits. Finally it instructs the Dynamic Memory Con-
troller to save this new word and its Check Bits. If there is a sigle bit error, it is
corrected and the process continues. If there is a multiple error, an interrupt is gen-
erated to inform the system.
A.8 Implementation and Experimental Results

The dynamic memory subsystem is built on a Motorola VME wire wrap board.
During the design procedure there were various initial r:strictions made that had to be
strictly followed. The processor section had already been implemented on the board and
it utilized approximately 67%. This left a restriction on the amount of area that could
be used for the memory since iv had to exist on the same board as the processor. Many
of the dynamic memory chip sets were available only in leadless chip carriers that cannot
be placed on the wire wrap board used. Some of the chip sets were still in the preproduc-
tion phases and only their data sheets were available at the time. Our memory systems
must be asynchronous which adds other restrictions. We finally were left with AMD to
supply us with a chip set that was usable and meet our needs. It should be noted that
even the AMD chip set had not yet been completed. The Am8167 Dynamic Memory
Timing Controller which is incorporated in our system is not really appropriate. Addi-
tional hardware had to be incorporated in the design to ensure the proper operation of
the dynamic memory. The appropriate controller was not available at the time, the
Am2969 Dynamic Memory Timing Controller which is said to be 10095 compatible with

the Am2068 Dynamic MNemory Controller was still in the preproduction phases and

- 87 -

would not be available for an undetermined amount of time. We were forced to use the

non-100% compatible chip, the Am8167.

The design of the dynamic memory system, according to the data book, is quite
simple. Many design application notes are incorporated in the data book. During the
summer of 1985 the dynamic memory subsystem was built. There were varlous prob-
lems that were discovered when the system did not work. The most prominent problem
to this day is decoupling of the memory chips. At the time of writing, the memory will
operate correctly for a Block Fill operation but, when inputting assembly code (via the
Memory Modify command), it operates erratically. Sometimes the instruction is stored,
other times it is not. Initially 0.1uF capacitors were placed on the 256 Kilobit dynamic
memory chips. When it was determined that the capacitance may not have been high
enough, an additional 0.1uF was added for a total of 0.2uF. After the addition, the
board still did not operate correctly 100%% of the time. Finally one last test was done. An
additional 0.33uF capacitance was added, the the board now operates as described
above. We suspect that the UDS and LDS signals may be crosscoupled. This can explain
the failure of the Memory Modify command which operates on bytes rather than on

words.

Currently, the dynamic memory system comprises of 32 256 Kilobit dynamic
memory chips to store the data and 12 256 Kilobit chips to store the error correction
code. The other major chips are from the AMD chip set: the Am8167 Dynamic Memory
Timing Controller; the Am2968 Dynamic Memory Controller; the Am2960 Error Detec-
tion and Correction Unit; and four of the Am2862 Multiple Bus Buffers. Finally there are
a few TTL chips for interface purposes. The average memory access cycle time Is 700 uS
Refer to figure A.8 for the layout of the board. And finally in figure A.9, the complete
schematic for the dynamic memory subsystem incorporating error detection and correc-

tion.

KIlowaN dtweu A 9yl 3ur1elodiodu] apoN JOSS3d0ld & JO INOART] ayJ, :8'V aINn31y

- 88 -

% i 3 [T8 3 8B]] s - - S [3 []] [8 s -
1 1 e
35 15|% td ed TREESE:S
* e e
........................... MﬂE- L] - . L] L] - [] L] - L] L] » L . . L] .
N1 Riag cE (=) (75 D
. e~ v e — - “..m L - -y nNH_h. - e -t o L 2] - Rt
-l .]
81 8¢y (et 38 LaJdeLnU L3 i e g1 | LEY ee (¥
» < o Liz3-
) e weas o = = = _
91| |ast| |eet]| [9E1 N) L J = 70T | e
LU B pi-wese - -t " —— wan o ns(?h. mlluElWh.
2| fsarf leet - 2E s - - o
ensrd D -ema by L/ L/ L —_ IMMLU t a . 1 82 [44 bl Im\ i - wn -
st} |tst] [evt] lset val — — —— [| 12 i 32
pm— — ey 10 - o» FI\ ﬁ.I\ L L/
va1| |s1t 8t 2 -
s L) = 801 - 1”@. L—_/ um 2! 3
8st) {@st] [awt| {eEl — 7 |cay| LI gp — — .
L. i - oy oy
aur| [£2 [ov) £ Wls) | e || e || e |
Pl -G ~—
¢est| leer] fivt] leer] L' = o —
L/ _J v _J __J -~ B o Sh .
= eal = —— |e1 |t
| (221) le11 == J | ue .) Sae
e rGMk .h(dnmh. 8- "urmam “wa— [
ast| [sv1] |avt] |2€1 - — o e _
S L/ ./ Sit vett &4 — — " N ‘)
1 T | wn o1 - t - Ev wo | LG 5] @ 6t ve
el jr 181 6F| —————— not— 7
— YY) T 4 2
o . »—
sst) fevt] lset] 1€l |oma) _ | l=|csl
— vt | | = 2v | |“=| | se pet nnH.M o Mov. S —
. — — — o s
ett] j2i1) lett - e LeeJo o -~ ~-
@at i_ e as _n..q o eSS 15
»S1| |9vi| [eEl] |e@El | - H - I._ -z:!.._ net——J 85
— 66 [%¢) 4 1= G5y —
e ed) ED badd [931 4% LAl !d.ﬂll.-l - e ” - 'WMIIW -t @'ﬂ -
181 [ax= o oo e o (=
] j€SE] |svy| jeet] [s2t] |ett 8.; %l Sy €€ 2€ — | &€ ¥E o 25 " = e 1521 | o -
l _ (L ____/ o— d .
-t S N S S - S - B O R N o 0 N O s TP 2 dpa

IIIIIIIIIIIIIIIII

0- .Jw..@.@@@/_ﬁ ...Q‘.ﬁ/@m..lm

. o
Mw A2l- AZl+ AS+ PuD r_w E h Y, TS0

- 80-

e

mmmw 35 — L \~ _ EEE! WM
EEiE= = o i ansznnn
— Bggee goIn
= ~rrenarned dis
— : _ o FHHFF
R TFPR A R e R R v e R e
o didd deaddp |~ Faidd daad ..__ v iidl 200 1| P AR ddd 3
5} RIE | . 5 , =1 |
#ror5iS dnnnci preebESodnnnald | -nnummm-:-:@l__ srre555-8nunnl
= BERL, “FERS =ial SISy RCEEE ST TR
mas o o > - *Mmm.\‘ :
3wy) -
L L memm— g
3 [ANARSSNY A
F] cuucunununwwwwwww ~ae9ez 1N -m-m-.uwum_Wm i 0SO0U00 ABKBAR

LJ S—_ T

n:mm:.mm i

PR, LA

eeenaevenedidBitdad € U 0 waidm @

SE=aae %%% FES I

]
el

3
lf\!‘lf\o M\vL' 1
v L/":Jm-

+
LI]

}-H-ELH
! {-yAzae 601N
vm_.-,-.:..:.: uumwn_

U™

1 1 i 4
5ok ST 5 [I e

" - . 113113 PR w vy bt i o @i oy —_
BENREARA Y assszoun SxmazvEl ody wswramee o veevreee ~
s2a 181N seza 26in 9828 EoIn i¥ ggea taIN % gpea cein
veeaeen 38 . swevawen ¥ 35° - vavernsey ¥ 35° _ Casensnss 3 Tt - asenzenn i %
. ras _
o

- _E_Eiﬁ IS et L

u
35
IE

=

). nmm_w 4 (24

A
0]

Figure A.9: The Schematic Design of the Dynamic Memory

XKl T
@) <
B . B ™ ME |
5 mW > B (s 1
g 8 3 W W Wlg
= E) S O -
3 g 2 3 E : wlk (Ol
> > > AT o B
TE m#”'. 5 g D r - Q
W 5 3 E ° T; mm, Ol
Z: g 2 @ 2 i A !
ai ﬁ 5 e 5 i L w% [1] .mm
m i - m b—
< B A & = : 0 it C
5 3 3) m b= .\//
¢ a 3 8 g e O HyIe
3 5 E] 8 r@ @® Dl TKJ
T Sl-saczy RE—— 2 ci1-s3cze R R (ilh _/__ (N
) pevnaeereilal 2} veencrnneddil 7) vereaeneeddil G m e B
I FFH o o HHHET- O |5 [HHD
1= e . 28l =2
. ~u- ‘.«.l.. % x ’ i T 9. -
E 5 : : Bl
m B m ¥ m i
% 8 T B g1
5 5 : 5
H_U 3 mM s P, z]
W =] : o
L] m = -
C 2 s 5 . 5 .
m g | U
z N] . g 5 cissser ol
> > u-jny-u‘u.lﬁ-‘:w‘wwm‘a
2 g% 2 an. oI TEFHTHR
4
% oci-ssec2r 8] = 6l-s3c2p R
2§ eavezenneddil 21 revereveeddil
TR W I FFRFETRRG .
o E——— g ,.||‘_~.» A)Awlw
; o f BsaBZEER
1 ! k9828 AN
1 - — .:a-.:-w O
r s udﬂh«ﬂ_jﬂ: o FPH T
IR e KNI R R
of dil iR P hidd dedd 3| [hidd Redd 1 || dsdd dad s
5] NIE I 5] 51
seozbiTotnunnd || reee9.0nannd | cee5ESetaanad | rercSiS.dnunnd |
| TRLEETFRER . SRR R s e L e i

-90 -

Appendix B

B. The Static Memory Subsystem

The static memory system design is presented in this chapter. The static memory
system incorporates the latest static memory integrated circuits, the 32 Kilobyte chip. In
order to achieve our 1 Megahyte of memory, 32 of these integrated circuits are required.
Apart from these 32 memory chips, only a handful of support chips from the 74L.SXX
series are required This leads to minimal amount of time required for the design, assem-

bly, and debugging of the system.

When designing a memory system, all aspects of the procedure are simpler and less
time consuming for a static memory system versus a dynamic memory system. Unlike
the dynamic memory design, incorporation of special controllers and/or timers are not
required, this facilitates a simple design procedure that will require a minimal amount of
debugging. Due to the nature of static memory integrated circuits, their operation i
asynchronous.

B.1 Selection of Components for the Static Memory Subsystem

The most prominent part of this design are the memory chips. At the time of
design, the largest available static memory chips were 32 Kilobytes on a single DIP pack-
age. Originally, a 1 Megabyte static memory system was desired, however, due to lack of
funding only a 0.5 Megabyte of memory was implemented. This was due to the high cost
of the memory chips. The brand that was purchased for no other reason than that of
availability was the Hitachi HNI62256P. This chip contains 256 Kilobits of RAM which is
organized into 32 Kilobytes. In order to achieve our 0.5 Megabyte, 16 of these chips were
required. Aside from the memory chips, 3 standard decoders were used for individual
chip selection, a buffer for amplifying signals that must be used by many chips and

finally a flip-flop for the DTACK.

B.2 The Hitachi HM62256P Architecture

Shown in figure B.1 is a block diagram of the Hitachi memory chip. As specified
earlier, it is organized as 32 K x 8 bits. For 32 hilobytes there are 15 address lines and 8

data lines. Tne data lines are bidirectional and can be tri-stated. Also Included In the

RAM chip there are WRITE ENABLE, OUTPUT ENABLE, and CHIP SELECT.

The operation of the memory chip is very simple. An address is presented along
with the CS (chip select), and either an active WE (write enable) or an active OE (output
enable). The memory chips are rated at 150 5S, therefore during a read cycle after the
address, CS, and OE are presented, it may take up to i50 S for the data to appear on
the output latch of the memory chip. For a write cycie, the data must be present with
the address, CS, and WE for latching purposes and must be stable for at least 150 5S.

B.3 Static Memory System Architecture

As stated pseviously, the static memcry design is very simple. A 3-to-8 decoder is
used to determine if the requested rnemory locaiion is within the memory subsystem. If
the address is within, then an output hecomes active. This nutpui then selects .wo 4-
to-16 decoders vhich are used to determine which one of the 8 banks (each bank is 32
Kilowords) is to be selected. Two of these de:oders are required, one ior the high Dyte,
and one for the low byte (required for byte read and byte write). This is achieved via the

UDS and LDS from the MC68000. Our design can be found at the end of the appendix.

The Upper four address lines, Ay, through A,; along witn the address strobe, AS, are
used by the 74LS138 3-to-8 decoder to determine if the static memory is to be accessed.
The address strobe and A,, are used as chip selects for the decoder, waile Ay - A, are
used to partition the memory at the 1 Megabyte boundaries. Shown in table B.1 is the
truth table for th: decoder. By vsing A,; as one of the chip selects, the decoder Is
enabled only when an address in the upper half of possible 16 Megabytes is produced.

The address strobhe is used to only eaubic the Jdecoder during a memory access.

(6] INVY 211818 d9SGTINH 14oBIH 341 Jo welSeid Yooid YL, :1'g 24n3ig

»

- 02 -

OtV vV EV 2V TV OV
1 4/_N M MMMM 5
) 3
5
AYUYA Jaystibasy al
g gv §5aJppy UWNTOJ 5k}
1 | e 80/1
~ I Japooasg 5 mm“m
[| SSaJppPY UWNTOD un * S0/1
MN e vO/1
! ‘ -duv ssuas 2a - mm“m
” - T0/1
~J il {ll-—-=-=-=- CE- >~ ————- |
. _
7/
ﬁ] 14WM_.|I.. vEY
<}

|
(
'
1
'
i
1 d -
J 2
i E] 3
i -4 g re |- TV
1| 8 & S
v 3 2
=Y 2t a d ST
Vg | & 13
¢ (rriz92) 113 3 - e 8v
) J
STH2EXSTS “ e 3
<
| g g KA |—e LV
Aguuvy 1 " M
I o [o] mullll. av
TI30 AJOwanw i d d
1
1 WM_'I..IO SV

17

- 93-

Table B.1: Memory Partition at the First Level.

INPUTS L0101 N id 0l - N

A B C G, Gy - _
— Y. Y, . % Y, . Y, T,

Ay Agy Ay Ay AS
X X X L X H H H H HH H H
X X X X H H H HHHH H H
L L L H L L H H H H H H H
L L H H L H L H H H H H H
L H L H L H H L H H H H H
L H4 H H L H H H L H H H H
H L L H L H HH H L H H H
H L H H L H H HH H L H H
H H L H L H H H H HH L H
H H H H L H H H HH HH L

Note that input G,, is pulled low.

Referring to the memory map in table 2.1, the local memory appears at Agy, Ay =
1,1. This limits the valid outputs from the 4-to-16 decoder to the lower four (Le. Y, -
Y,s). These four outputs will enable the last fourth of the memory range, (i.e. 12 Mega-
byte - 16 Megabyte). Therefore, the 1 Megabyte of static memory should be enabled
from \T, The result of this gives us 1 Megabyte of memory range from the 12 Megabyte

to the 13 Megabyte boundaries.

The next step in decoding the address is done using 74ALS154 4-t0-16 decoders. By
using this decoder, the 1 Megabyte range can be expanded into 16 - 32 Kilobyte parti-
tions. Two of these decoders are used, one for the upper hyte and the other for the lower
byte. This is achieved by using the next lower address lines, A,, through A, as the
inputs to the decoder. The other chip select is used for the byte address strohe. On one
of the decoders, the upper address strobe (UDS) is a chip select, and on the other, the
lower address strobe (ITIE) is used. Obviously, the static memory chips that will be
enabled by this decoder using the upper data strobe will produce the upper byte, while
the lower byte is produced by the memory chips connected to the other decoder that

utilizes the lower data strobe. Table B.2 depicts the truth table for the 4-to-16 decoders.

-94 -

Table B.2: Truth table for the 4-to-16 decoders.

INPUTS OUTPUTS

A B C D G, G

RIAA AR AR AR A A A e b
Aje Az Aig Ay Y, LDS -
X X X X H X HHHHHHHMHHHMHHBHHEBMHH
X X X X X H H HHHMHUHHHMHHHEHMHBMHUBHH
L L L L L L L HHHUHHHHHHHBMHHHH
L L L HL L HL HH HHHHHHHH A H H H
L L H L L L HHLHHHHMHHHMHHHHH H
L L H H L L H B HL HHHHMHHHHHMHMH H
L HL LL L |PHHHLHHHHEHHHEHUHUHHH H
L H L H L L HHHHMHLMHMHHHMHMHH H H H
L. H H L L L HBHE HHHHLMHMHHMHHHHH H
L H H HL L |HHHHHHHLHHHHHHH H
H L L L L L HHHBHUBHBHHMHTLHHHHHH H
H L L HL L HHHHHHMHHHLHHNO H H H
H L H L L L HHHHHHHMHHHIL HH H H H
M L H L L HHHHHHMHMHHHUHL H H H H
H H L LL L|fHHHHHHHHHHHH L HHH
H H L H L L HHHHUHHHMHMHHHHH L H H
H H H L L L HHHHHHHMHHHHMHHH L H
H H H HL L JHHHHHHHHHHUMHEHHUHHHL

From the two 4-to-16 decoders, 32 distinct chip selects are produced. Each of the
outputs is connected to the chip select on each of the static memory chips. Two decoders
are necessary to accommodate the MC68000 CPU so that byte writes can be fulfilled.
The balance of the address lines, A, through A,; are connected to the static memory
chip address inputs, Ay through A,,, respectively. Also, each of the static memory chips
required a write enable and an output enable, these signals are derived from the R/W

signal.

The propagation delays associated with each component of the static memory sys-
tem can be found in table B.3 below. The following information does not include the
buffers that drive the system (8286 switches). It is not necessary to include the 8286

buffers because they are common to all of the signals entering the system, and all of the

- 905 -

signals exiting the system. Therefore all of the signe.. exhibit an equivalent propagation
delay that enter the system which is 50 S and another 50 S when exiting the system.
This informs us to add an extra 100 5S to the amount of time required to perform a
read or write cycle. From the table below, the total amount ot time is 105 9S, add the
100 1S delay for the switch, and the total amount of time required for a cycle is 205 9S.

Table B.3: Propagation Delays in the Static Memory System.

Component Average Propagation Delay
74LS138 22 1S
74154 23 S
SRM20256C 150 7S
32Kx 8
Total 195 1S

Finally, the data bus of all of the memory chips that are connected to the 4-t0-16
decoder that uses the upper data strobe as a chip select are tied together to produce the
upper portion of the data bus, Dy through D,;. And of course, all of the memory chips
that are connecied to the decoder that uses the lower data strobe as a chip select are
tied together to produce the lower data bus, D, through D,. There will never be a colli-
sion on the data bus between any two or more memory chips due to the nature of the
4-to-16 decoders, it is impossible for more than one output to be active at any given

time,

It has been determined that the memory system requires 195 S to perform a read
or write operation. From this we can conclude that the DTACK should become active
(low) some time (no less than 90 7S) before the 195 7S mark. Then it should become
inactive (high) for latching into the CPU some time after the 195 »S mark. By using our
8 MHz clock, the DTACK will become active after 125 7S and then inactive again after
250 5S. Including the propagation delays of the switch, the actual time that jt takes for

a cycle to complete is 350 7S.

The DTACK is the final signal that must be generated. In our system, the DTACK

is generated by using a 74LS74 D-type flip-flop. The output of the 74LS138 (-Y-:) is

- 96 -

inverted and connected to the CLR of the flip-flop. The Preset (PR) and input D are
pulled to 5 volts through 4.7 Kilo £ resistors. The output 6 is used as the DTACK for

the memory and the clock (CLK) is connected to an 8 MHz source.

Before a memory request begins, the output of the 74LS138 decoder, (\74) is inactive
(high). This signal is then passed through an inverter which is then connected to the
CLR. This causes the output Q (M) to be inactive (high). Once the memory
request begins, the output \T, from the 74LS138 decoder changes state to low causing the
CLR to be inactive (high). This allows the flip-flop to operate, and upon the first rising
edge of the clock, the DTACK (Q) becomes active (low), due to latching the 5 volts on
the D input and passing in to the Q output. After a predetermined amount of time the
data will enter/exit the memory and the AS will become inactive (high) and the CLR
will become active (low). This clears the flip-flop, causing the Q (DTACK) to become
inactive (high) and the memory request has completed. This can be clearly understood

by referring to the timing diagram shown in figure B.2.

K pJLIT_YLFLJTJT_FIITJ_LAV,ITJT_rlflJ_LrLIWJW_r
CLR 1]

&

Row X N D

AS] A .|

STy T A I
| Ci.; S N L
BR., J N N

BG., S

FRGATK., I A J]

BGACK, y

PSL RS [ﬁ%f]

TBSW., I A~ |

GTACK 1 NS]

Figure B.2: Timing Diagram for the D TACK.

-97-

B.4 Implementation and Experimental Results

The design and implementation of the static memory subsystem was less compli-
cated than the dynamic memory subsystem. Static memory was chosen for the second
Processing Element due to the fall in prices at the time. Therefore we were able to pur-
chase all of the required parts for approximately the same cost as those required for a
dynamic memory system. The other reason for choosing a static system is its simpler
design and debugging phases. This static memory system is built on a daughter board
that resides above the Versabus board that contains the processor. There is a connector
for the two subsystems. A daughter board was chosen so that it might be possible to
incorporate the other subsystems that have yet to be implemented on the board with the
processor. Another reason is the possibility of testing other processors with this memory

board.

Due to lack of funds, the static memory systems is only 0.5 Megabytes. The system
is implemented so that as funding becomes available, the additional memory chips can

be added; the control circuitry already exists.

During the testing and debugging stages, only one error existed in the system. One
of the control signals should have been complemented and it was not. The inverter was
added and the static memory subsystem operated perfectly. Since then, the board has
been shipped to Victoria, B. C., and a new bug has appeared. Again, crosstalk Is
suspected and most of them were alleviated by shortening the ribbon cable that connects
the daughter board which contains the static memory to the processor. The average
memory access cycle time is 300 4S., less than half of that of the dynamic memory sub-
system. Shown in figure B.3 is the layout for the static memory subsystem. And flnally

in figure B.4. the schematic design for the static memory subsystem.

- 08 -

TN

HMB2256P-15

e

HMBE2256P~-15

TN

HME62256P-15

/

HME2256P~15

J

HME2256P~-15

™

HME2256P~15

o] KX)

N

HME2256P—-15

“\|

HME225€6P~-15

LX) LN J
[X NN N BN NN

L]
745381 F
k. .

=N

HME2256P-15

™\

HMB2256P~-415

[L X 4
74LS74 e e
LN

A I XA EE RN
—

N

HME2256P-15

-

HMBE2256P~15

74151 | 4

\

HMB2256P—-15

N\

HME2256P~15

74151

N\

HME2256FP—-185

\

HME2256P-15

9 000 C0 00000000 NCCO00000000000060000000000600O0CESCS

00O O0OOGEOPIQOSEIDS

e i

0000000006000 0608 0000000000000 000 00000000000 000C0C00O0C0COO0CC0O0C00CCB0CCCE00RSTS

Figure B.3: The Layout of the Static Memory Subsystem.

A

- 09 -

s R
.m R sﬂ 1

e :-:-u-m i -_

H snamas
5
-

s _

g

’ My

1

sevecedidil 002

caveracenedi?dl 133 i

Ul ~

S
cm %ﬁmﬁ »nﬂ

i3 THEE ﬂ

cenesoeseeleddl 333

%«wmwm.m".ﬂ

]
-.:--:-: W

i

-----.-uu- L L] .

ﬁ ; |

—,

yﬁ% HE
1 M

.. . .EEUH x

e ey Mﬁmmuui__ _uﬁmm

q_ -,_.

I8I—

3 B)

%a % m_

sews exwe?ITIF AN

il % %g%

......mv..' m_.. .."m".._ u_.."...:.. L Wil:". .w.......,"...
Ssesrvee 3T oy an HH -mrnu ey w- - .-.-.-- w- .- Ssioe T FR T T (1]

S

|

"'-'1—
¢
¢
i
el o
&

f
LE
;:"'...
[—
—
—_'l:
Lt
s
—_—
E
=

-atic Memory

s

- e — S T

Figure B.4: The Schematic Design of the

ST A S Ly e eee

.
-u..l oy —u [
]

-..:..-.;.-2 M)

-

o LLLLL

L
J

...-...-..-:: "

, _; b

q I
1g Yseesenr g7
5° F
[}

-

R

tl-l

..ﬁ.
§

S18)

v ban I—

-..-.:-:..:_ tIx)

b

w ?h.

::-.:-Z- : .

T
H Lﬂ

e

ts%%.

-

Ui e

. .:::.-:: TR

i
- W

—-o’u ssansenn u —
3 i
e i

r

.m.%f

..:......-.:- [1K]

S

H tasssume -wm
3 1
12001_.:_ X

'

ﬁﬁ v

-.:--.-..u (IX]

R Eaﬁm-

EE% HIH

e

MJLTIPROC

T, e e S | FPOGG | BY/PPR

ZSSOR

-
I d

-

-
-
(=

HOMOG

o= o9 ARIL 198~

CONCORDIR

[l oo R P
= r
-— - -—

UNIV

.mem d

V3:88«

- 100 -

Appendix C

The following Is the derivation of the equations that describe Phase I, Equations

2.1 through 2.4 represent Phase 1.

From the state diagram shown in figure 2.2 and Algorithm 1.2, the following next

state table is produced.

QY Qv+l == f(R,STl",ST]"+l)
0XX 100 101 110 111
OPEN OPEN OPEN OPEN GREY GREY
GREY OPEN GREY CLOSED GREY CLOSED
CLOSED OPEN CLCSED CLOSED CLOSED CLOSED

There are three possible combinations for the state assignment which are shown

below. All other possibilities will lead to one of the following outcomes.

State Ass. 1 Ass. 2 Ass. 3
OPEN 00 00 00
GREY 01 11 10
CLOSED 11 01 01
N.U. 10 10 11

From the three state assignments above, we can produce the next state tables for
each assignment substituting the logical values for the states that will then be used for

the karnaugh maps

Assignment 1
R, STy, STy,
STATE Q,:.Qo oxx 100 101 111 110
OPEN 00 00 00 00 01 01
GREY 01 00 0] 11 11 01
CLOSED 11 00 11 11 11 11
N.U. 10 00 00 00 00 00

- 101

Assighment 2
R, STy, STy
STATE Q1. oxx 100 101 111 110
OPEN 00 00 00 00 11 11
GREY 11 00 11 01 01 11
CLOSED 01 00 01 01 01 01
N.U. 10 00 00 00 00 00
Assignment 3
R, ST, . 8T)y41
STATE Q.. Qo OXX 100 101 111 110
OPEN 00 00 00 00 10 10
GREY 10 00 10 01 0Ol 10
CLOSED 01 00 01 9]} 01) |
N.U. 11 00 00 00 00 00

It is possible to use many different type of flip flops to design the circuit.
design we consider the use of D type and J-K type. Each assignment will he designed

using both D and J-K type flip flops. This is done to determine the most efficicnt design.

This is the design for assignment 1 using D type flip flops.

Q1o R, STy, STyy4s

OXX | 100 101 Ll 1
O 00 0 0 0 1 1
G 01 0 1 1 1 1
C i1 0 1 1 1 1
N 10 0 0 0 0 0

Dy=Q, R+ Q, R:-ST,,

- 102-

Q.Qo R, ST,_,, STJ.J-H

(1),9,4 100 101 111 110
O 00 0 0 0 0 0
G 01 0 0 1 1 0
C 11 0 1 1 1 1
N 10 0 0 0 0 0

DI =Q0'R'ST”.H +Q|'Q0'R

Thisis the design for assignment 1 using J-K type flip flops.

Q,.Q R, ST,,, STyjs,
|0 oxx [100 | 100 | 2111 | 130]
O 00 0 0 0 1 1
G 0 X X X X X
C 11 X X X X X
N 10 0 0 0 0 0
Jo=Q 'R - STy
QI'Q() R, STI.]* STJJ*]
oXX 100 101 111 110
O 00 X X X X X
G 01 1 0 0 0 0
C 11 1 0 0 0 0
N 10 X X X X X
K,=R
Q]-Qo Ry ST]_]y ST],]+]
oxx 100 101 111 | 110

O 00 0 0 0 0 0
G 01 0 0 1 1 0
C 11 X X X X X
N 10 X X X X X

Jl = QO ‘R - ST“+l

- 103 -

Ql'QO R’I STuv ST]J+]

0O 00 X X X X X

G 01 X X X X X

Cl1i 1 0 o 0 0

N 10 1 1 1 1 1
K, = 6; R

The procedure for assignment 2 and assignment 3 are similar, they will not be

presented, only the resulting equations.
Assignment 2, using D type flip flops.

Do=Q, R+ Q, ‘R STy,

D, =Q, - Q' R"STyy; + Q' Q R - ST,
Assignment 2, using J-K type flip flop.

J0= Ql ‘R STL]

J,=Q ' R STy,
K, = Qg + R+ R * ST} 4,

Assignment 3, using D type flip flops.
Do=Q; Qo R+Q Qo R"STy,

D)=Q1'_Q-;'R'ST’J+1+-Q—;'6(;'R'ST”

- 104 -
Assignment 3, using J-K type flip flops.
Jo=Q; R ST,
Ko=Q, +R
J,=Q 'R ST,
K, = Qo+ R +R" STy,

By examining the six different sets of equations produced by the three assignments
using t ~o different types of flip flops, it is obvious that assignment 1 using J-K fiip flops

is the most efTicient.
Jo=Q, 'R ST,
Ko=R

Ji=Q'R" ST““

And finally, for Logical Closure and the Status, we obtain.
LCI.J = Q" Qo
STy, = Q, ' Qo

The following design procedure is shown for Phase II. This design requires tnree
states, therefore two flip flops are required. The design is attempted using both D type

flip flops and J-K type flip flops. First, from the state diagram we obtain the following

nex‘ state table.

- 105 -

Note that the term 5AND is the following:

5AND = PAS - PUDS - PLDS - PDTACK - PBGACK

Q' Q"+ = (LC,,,BG,56AND)
0XX 100 101 110 111
NO REQ || NO REQ BR BR BR BR
BR NO REQ BR BGACK BR BR
BGACK || NO REQ | BGACK | BGACK | BGACK | BGACK

There are three possible combinations for the state assignment which are shown

below. All other possibilities will lead to one of the following outcomes.

State Ass. 1 AsSs, 2 Ass. 3
NO REQ 00 00 00

BR 01 01 11
BGACK 10 11 10

N.U. 11 10 01

From the three state assignments, we can produce the next state tables for each

assignment substituting the logical values for the states that will then be used for the

karnaugh maps.

P

Assignment 1
LC,;,BG,5AND
STATE Q.Q, || oxXx 100 | 101 111 110
NO REQ 00 00 01 01 0l 01 |
BR 01 00 01 10 0) 01
BGACK 10 00 10 10 10 10
N.U. 11 00 00 00 00 00

- 108 -

Assignment 2
LC,,,BG,5AND
STATE Q1. Qo 11).0.¢ 100 101 111 110
NO REQ 00 00 01 01 01 01
BR 01 00 01 11 01 01
BGACK 11 00 11 11 11 11
N.U. 10 00 00 00 00 00
Assignment 3
LC,;,BG,5AND
STATE Q:.Qo 0xx 100 101 111 110
NO REQ 00 00 11 11 11 11
BR 11 00 11 10 11 11
BGACK 10 00 10 10 10 10
N.U. 01 00 00 00 00 00

It is possible to use many different types of flip flops to design this circuit. In this
design we consider the use of D type and J-K type. Each assignment will be designed

using both D and J-K type flip flops. This is done to determine the most efficient design.

This is the design for assignment 2 using D type flip flops.

Q1. Qo LC,,,BG,5AND

0XX | 100 101 111 110
NR 00 0 1 1 1 1
BR 01 0 1 1 1 1
BG 11 0 1 1 1 1
NU 10 0 0 0 0 0

Dy = Q,-LCy; + Qo - LGy

- 107 -

Q.Qo N LC“.B—G-,5A.ND

oxXX 100 101 111 110]
NR 00 0 0 4] 0 0
BR 01 0 0 1 0 0
BG 11 0 1 1 1 1
NU 10 0 0 0 0 0

D,=Q, Q" LC, + Q, - LC - BG * 5AND

This is the design for assignment 2 using J-K flip flops.

Q1.Qo Lclll.E—G-ﬁAND

0XX 100 101 111 110
NR 00 0 1 1 1 1
BR 01 X X X X X
BG 11 X X X X X
NU 10 0 0 0 0 0

Jo=Q, ' LC,

Q1. Qo LC,;.BG,5AND

0XX 100 101 111 110
NR 00 X X X X X
BR 01 1 0 0 0 0
BG 11 1 0 0 0 0
NU 10 X X PN X X

K, = LC,,

Q1 Qo LC,;BG,5AND

0XX 100 101 111 110
NR 00 0 0 0 0 0
BR 01 0 0 1 0 0
BG 11 X X X X X
NU 10 X X X X X

===
Jl = Qo * LC]J -BG - SAND

- 108 -

Q,:.Qo LCU.ﬁE,SAND

0XX 100 101 111 110
NR 00 X X X X X
BR 01 X X X X X
BG 11 1 0 0 0 0
NU 10 1 1 1 1 1

Kl = LCU + 6(;

And finally,

Eﬁ:QX'QO

BGACK = Ql * Qo

The procedure for assignment 1 and assignment 3 are similar, they will not be

presented, only the resulting equations.
Assignment 1, using D type flip flops.

Do=Q, Q' LC, + Q, -LC,, BG + Q, - LC,;* 5AND

D,=Q, QLG + Q, - Q- LGy, - BG - SAND
Assignment 1, using J-K type fiip flops.

Jo= QLG

Ko= Q, + LCy; + BG + 5AND

J, = Q,*LC,, - BG - 5AND

Kl == Qo + LCI,]

- 109 -

And for assignment 1:

Assignment 3, using D type flip flops.

Do=—Q-—l'60'LC!J+Q1'QO'LCL]‘B.—6+Q1'QO'LC|"'m

Dl = 6; . LC]J -+ Ql ‘ LC”

Assignment 3, using J-K type flip lops.

Ko = Q, + LCy, + BG - 5AND
J1=Q—°'LC“

K, = LC;

And for assignment 3:

st

é§-=Q1'Qo

BGACK = Q, " Q,

- 110 -

By examining the six different sets of equations produced by the three assignments

using two different types of flip flops, it is obvious that assignment 2 using J-K flip flops

is the most efficient.

J, = Q, - LG, ' BG - 5AND
K, = LG + Q,

———a EEERer—

BR =Q, ' Qg

BGACK = Q, - Q,

h

b (S T
m Woe T ascatand W
amw -nm ﬁ $i. unw uaamzsan -nrun.l m N

i

R -

S hhh

- 111 -

Appendix D

Figure D.1: Processor Schematics (Sheet 1 of 3)

eERERRREDN

=

J!- L

1 4 ie 355 5F N
i~ =178 Hﬁ., itd
) IR
i
aErnie A gepo ¥ eediiiid fusilive
= Alo 1.1

URIEH

i

ee

OUS MULTIPROCESSOR

B2 Ao e amniow APPRD, BY/PAR

UNIVERSITE CONCORDIA
Bkpcpu d; =™ #l

~
o}

NE

[

-

—
-

[N

| HOMOG
= FEVRIER 13886
MICHEL :

- 112-

—\!- asmaamun’ gy m-u E

-::-:nm;n 38 '

£ e
) =ssmzssn uﬂ’ﬂ
vreeserveeisidl 3 @ .

SR

20 SEEEREE o
W@mmwww] .mwwm.“..._.m....

. u..:.:....mnwmlumL

tsevaerrewsis 3 3

Wiii55)is5r K El

TITIIITRT] B—uw J asumanse Iy W—um
-l-nnl-lnnunww A3 erewxennw2iFidd 0 3
Riiiniisa L ES:55i0)5555 k!

333570 mw J
IAv - =

1ot
Y

Wﬁwe&.

e 2 .1_
...J.‘.....au:..,mwwwﬁa.
j:__ =X

444

Figure D.2: Processor Schematics (Sheet 2 of 3)

i)

..:......m.l_

i

TUNIWN3L 1S0OH
[s T3 ¢ aa\f =+ s ' sas)
13 £ e _:K) ¢t el
(= R I
Tl SFIEE

& A

NE2.|

TE

¥, sensann -_gww

_ TE
"3l

@%m- w

)]

e 1

12 Z:.
8]
humz RE ARAEAN ;awwg

A

Y

- -Iluunoni uﬂ ®
teereeneneiiidd 3 @ .

ng

11
27
---:- ¥ o

:-::-:u.;w a8

OOUERERE

i

;
M

L

HOMOGENECUS MULTIPROCESSOR |

JEE
=)
|y
£ Sl
z
”O
| |C
Hiw
W._l;
Wl
|
ol |
ot 1L
1=
e
R

- 113 -

i 1 4]
e = -
U3t U-32 e -
4 | 0 55 R
ERE = R
: =iy :E".‘ - 4% JI
] [T T

we

E(‘
Buwy

Figure D.3: Processor Schematics (Sheet 3 of 3)

n
-
£
&

HOMOGENEOUS MULTIPROCESSOR

sn FEVRIER 1966 |EBR", ~“oawew amise
Vet

APPRO. BY/PAR

B
UNIVERSITE CONCORDIAR

MICHEL:68ksys

0. 473

