INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600






A COMPARATIVE STUDY OF DIFFERENT METHODS
OF PREDICTING TIME SERIES

SUTANUKA BHATTACHARYA

A THESIS
IN
THE DEPARTMENT
OF

MATHEMATICS AND STATISTICS

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF SCIENCE
CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

MARCH 1997

(© SUTANUKA BHATTACHARYA, 1997



 hd

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliotheque nationaie

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre rélérence

Our file Notre réfdrance

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-25985-4

Canadi



CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Sutanuka Bhattacharya
Entitled: A Comparative Study of different methods of predicting

time series

and submitted in partial fulfillment of the requirements for the degree of
Master of Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Examiner

Examiner

Examiner

Supervisor

Approved

Chair of Department or Graduate Program Director

19

Dean of Faculty



Abstract

A Comparative Study of different methods of predicting time series

Sutanuka Bhattacharya

This thesis work presents a comparative study of different methods for predicting fu-
ture values of time series data and implement them to predict the currency exchange
rates. The current thesis focuses mainly on two approaches in predicting a time
series. One of them is the traditional statistical approach which involves building
models based on certain assumptions and then applying them to do the predictions.
The models considered in this thesis are multiple regression, exponential smoothing,
double exponential smoothing, Box-Jenkins method, and Winter’s method. The sec-
ond approach is using the concept of training neural nets and pattern recognition.
This involves in designing a neural network and training it using different learning
methods. The learning algorithms used in the current work involves the backpropa-
gation method, recurrent nets learning method, adaptively trained neural nets, and
fuzzy learning methods. In addition to these, some methods for forecasting a chaotic
time series and fractional differencing are also mentioned in the thesis. In order to
compare the performances of different techniques of forecasting the future values of a
time series, experiments were conducted using the exchange rates of different curren-
cies with respect to the US dollar. These exchange rates exhibit a lot of randomness
in their behaviour and hence it was very challenging to predict their future values.
Different prediction zones were selected to conduct the experiments and analysis of

the results have been presented towards the end of the thesis.
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Chapter 1

Introduction

One of the most important aspects of any organization is decision making. Making
a good decision depends largely on predicting the future events and conditions. This

thesis work presents a

(a) Comparative study of different methods for predicting future values of time

series data.

(b) Application of the methods in predicting currency exchange rates.

The basic assumption made when forecasting is that, there is always an underlying
pattern which describes the event and conditions and it repeats in the future. A time
series is a chronological sequence of observations on a particular variable.

Some variables in real life change with time. Hence we can use time series data,
which are collected based on observations of the variable of interest (the event) over
a period of time, as past data for forecasting. Chapter 2 gives a brief overview of
different concepts of a time series and its applications in the real world.

Chapter 3 focuses on discussion of measuring different types of errors and their
application to time series.

Chapter 4 deals with statistical time series modelling. In case of statistical
methods of prediction, the general idea behind the prediction of the future values of

a time series or, in other words, forecasting a time series, involves the following steps:

1



1. Analysis of past data in order to identify the pattern of behaviour.
2. The pattern is extrapolated or extended in order to prepare a forecast.

3. It is assumed that the pattern that has been identified will remain more or less

unchanged over a given time period.

The last one is one of the vital points to be noted. The entire forecasting theory will
fail if there is an abrupt change in the behaviour of the pattern. This is the situation
where the problem becomes interesting and difficult. Hence the forecaster has to be
aware of this situation and try to anticipate the sudden changes in pattern and make
appropriate changes in the forecasting system. The methods used for forecasting
statistical time series are multiple regression, exponential smoothing, double expo-
nential smoothing, Box-Jenkins methodology and Winter’s method. The derivations
of the mathematical formulae accompanying these methods have been presented in
the appendix.

Chapter 5 deals with forecasting time series by training neural nets by pattern
recognition and fuzzy logic. A neural net is basically an interconnection of compu-
tational units called nodes or neurons. Typically, a neural net consists of a layer of
neurons receiving the input pattern, a hidden layer which has no connection with the
outer world, but is responsible for the performance of the network, and the output
layer which returns the output of the network after each training session. The influ-
ence of each neuron on the performance of the network is measured in terms of the
connection weights between the neurons. The basic concept of using neural nets for

predicting future values of a time series involves the following steps:
1. Design a network and initialize all the components with random values.

2. Train the network with a set of input patterns chosen from a given time series

and update the weights accordingly.



3. Once the weights are stabilized, use the network for predicting the future values

of the time series from which the input pattern has been chosen.

Thus it can be noted that the method of prediction using neural nets is different
from that of statistical methods. Here, the predictions are done based on training
the network and no models are designed as in the case of statistical methods. The
collective of neurons approximates the true model through the process of training.
The performance of this approach depends on the learning algorithm and of course
the structure of the network and its parameters. The configuration of a neural net
depends largely on the learning method used and the complexity of the pattern (which
in this case is the time series) itself. The training methods presented in this thesis
include adaptively trained neural nets, backpropagation, recurrent nets, and fuzzy
learning.

Chapter 6 includes a comparison of traditional statistical techniques and neural
networks in forecasting the future values of a time series. This is done by analyzing
their performance in predicting the exchange rates for different countries with the US
dollar. These exchange rates exhibit complex patterns and hence it was challenging
to predict their future values. Different prediction zones have been chosen to carry
out the experiments.

In addition to these, some techniques for predicting white noises (which appears
when deriving Brownian motions) and chaotic time series has been presented in some
details in Chapter 7.

Chapter 8 contains a summary and conclusions of results from the experiments

which where carried out during the course of the entire thesis work.



Chapter 2

Properties and Applications of

Time Series

In order to understand the effectiveness of forecasting future values of a time series,
it is important to first identify what a time series consists of and what are its main
properties. This chapter gives a brief account of the component and properties of a
time series. It is followed by a detailed description of the application of time series
analysis in prediction of exchange rates. Finally, a discussion on the use of time series

in physiology has been presented.

2.1 Components and Properties of a Time Series

A time series is defined as the a chronological sequence of observations on a particular
variable.

The components of a time series are :
1. Trend
2. Cycle
3. Seasonal Variations

4. Irregular Fluctuations



The definitions of the above four components of a time series are given below:

1. Trend: refers to the upward or downward movement that characterizes a time
series over a period of time. Thus, trend refers a long-run growth or decline in

the time series.

2. Cycle: refers to recurring up and down movements around trend levels. These
fluctuations can have a duration anywhere from 2 to 10 years or even longer

measured from peak to peak or trough to trough.

3. Seasonal Variations: are periodic patterns in time series that complete them-

selves within a calendar year and are then repeated on a yearly basis.

4. Irregular Fluctuations: are erratic movements in a time series that follow no

recognizable or regular pattern. This factor is the source of errors in forecasting.

It should be noted that a time series is a combination of some or all the above
components, hence no single best forecasting technique exists. One of the most im-
portant problems in designing an efficient time series model is trying to match the
appropriate forecasting technique to the pattern of the available time series data.

Once an appropriate technique has been chosen, the methodology involves an-
alyzing the time series data in such a way that different components that are present
can be estimated. The different estimates are then combined in order to produce a

forecast.

2.1.1 Forecasting Methods

Forecasting methods can be divided into two basic types:
1. Qualitative Methods

2. Quantitative Methods



Qualitative Methods generally use the opinions of experts to subjectively predict
future events. Such methods are used when historical data concerning the events to
be predicted either are not available at all or are scarce. For example, consider a
situation when a new product is being introduced in the market. No historical sales
data for the product being available, a company has to rely on expert opinion (which
can be supplied by members of its sales force and the market research team) to
forecast future sales. This method is also used to predict changes in the historical
data patterns.

Quantitative Methods involves the analysis of historical data in an attempt to
predict future values of a variable of interest. Quantitative methods can be grouped
into two types: time series and causal. The most common quantitative methods are
the time series models. In such models, the historical data on the variable to be
forecast is analyzed in an attempt to identify a data pattern.Thus the forecasting is
based solely on extrapolating the historical data. Therefore time series modelling is
quite effective under unchanged conditions. But it loses its effectiveness if there are
sudden changes in the conditions.

The use of causal forecasting models involves the identification of other variables
that are related to the variable to be predicted. Once these related variables has been
identified, a statistical model that describes the relationship between these variables
and the variable to be forecast is developed. The statistical relationship derived
is then used to forecast the variable of interest. Causal methods are of interest in
the business world because they allow the management to evaluate the impact of
various alternative policies. For example, the management might want to predict
how various price structures and levels of advertising expenditures will affect sales.
A causal model relating these variables could be used here. However, causal models
have its own disadvantages. First of all, developing the model is sometimes difficult.

Secondly, the historical data for all the variables are necessary, i.e., for both the



dependent (the variable to be forecasted) and the independent variables. And also,
the ability of the forecaster to predict future values of the dependent variable depends

on the accuracy of the prediction of the future values of the independent variables.

2.2 Applications of Time Series

It is of a matter of great interest to researchers to devise an efficient tool to forecast
the future values of a time series. These tools (or methods) and their effectiveness
in forecasting will be dealt in subsequent chapters. One of the major interests in
forecasting future values of a time series lies in the field of finance. And one of the
interesting areas is forecasting exchange rates of different currencies and study their

changing patterns. This is what the current thesis deals with.

2.2.1 Application of Time Series in Predicting Exchange Rates

As mentioned before, prediction of exchange rates is of vital importance specially in
the world trading market. These exchange rates exhibit a lot of fluctuations depending
on the economy of the country and other factors which are not measurable. These
rates have very complex patterns and are chaotic in nature. Hence, it is a big challenge
to predict the future values.

In this thesis, the currency exchange rates of Australia, Great Britain, Canada,
France, Germany, Japan and Switzerland with respect to the United States dollar
have been used as experimental data. Inferences regarding the performances of the
models discussed in this thesis are based on their prediction of these exchange rates.

The details of experiments have been discussed in the following chapters. To
get a feeling of the complexity of the forecasting problem, the data used for the
experiments are presented in the following graphs. Please note that the time series
data has been normalized to the range of [0.1,0.8] so that the neural network methods

perform well.
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Fi%lure 1: Conversion rate of the Australian dollar with respect to the United States
dollar

Fig.1 describes the changes in exchange rates of Australian dollar with respect
to United States dollar. We see that there is a general upward trend up to the data
point 2300 where the graph reaches its peak and then there is a downward slope. In
between there are some local maxima and minima and there is hardly any smoothness

in the curves.
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Figure 2: Conversion rate of the British Sterling with respect to the United States
dollar

Fig.2 describes the changes in exchange rates of the English Sterling with respect
to the United States dollar. Here the fluctuations are even more random and the
pattern is more chaotic than the Australian exchange pattern as illustrated in Fig.1.
However, we can loosely say that there is a general upward trend in and around
2000, the peak is reached around the data point 2300 and downward trend after. The

minimum point is around 700.
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;fl‘i%lure 3: Conversion rate of the Canadian dollar with respect to the United States
ollar

Fig.3 denotes the exchange rate variation of the Canadian dollar with respect
to the United States doliar. Here the pattern is more complicated. There is a very
gradual upward trend and the maximum is reached around 2000 and then there is
a downward trend. There is no minimal dip as seen in Fig.2 for Sterling-U.S. dollar

conversion.
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Figure 4: Conversion rate of the French Franc with respect to the United States dollar

It is interesting to note that the graphs illustrated in figures Fig. 2 and Fig.
4 have similar appearance. As seen in Fig. 2, this curve has an upward trend from
about 700 to 1700, the maximum is reached around 1700 and the minimum around

600.
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g‘i%ure 5: Conversion rate of the German Mark with respect to the United States
ollar

The appearance can be compared to that in Fig.2. It has an increasing trend
from 700 to 1700 and a steep slope downwards from 1700 to 2000. The minimum

point is around 2000.
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gi%ure 6: Conversion rate of the Japanese Yen with respect to the United States
ollar

The graph illustrated in Fig.6 that describes the exchange rates of the J apanese
Yen with respected to the U.S. dollar is totally different from the previous ones. Here
we notice that the graph is quite flat up to 1700 and suddenly begins a downward
trend after that point and reaches a minimum at 2500. Then it starts to g0 up very

slowly.
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Figure 7: Conversion rate of the Swiss Franc with respect to the United States dollar

The changes in the conversion rates of the Swiss Franc with respect to the U.S.
dollar is illustrated in Fig.7. We see that the pattern of the curve can be compared
with that of the French Franc in Fig.4 and German Mark Fig.5.

So, in short, we may conclude that the behaviour of the European market in
relation to the United States were quite comparable to each other. This is depicted

by the graphs of the exchange rates.

2.2.2 Design of Experiments in Predicting Exchange Rates

Let the time series be defined by the points zg, 1, - - -. Let z; be the current point. Our

aim is to predict from the known values z;_k, Z;—k+1, - - - the value of z;. [T;_k, Zi—k+1,-

is called a window of size k.

The number of days (in advance) on which the prediction is done is called the

prediction horizon.

In order to implement the methods of prediction discussed in the thesis, the
following sequence of experiments were conducted.

The exchange rates of Australia, Britain, Canada, France, Germany, Japan and

14
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Switzerland with the U.S. dollar were used as input time series data. Experiments
were conducted using 3000 data points from each country and predictions were made

in the following sequence:

1. Predicting the exchange rates of each country using window sizes of 3, 4, 5 and

prediction horizon of 1 day, 2 days and 3 days.

2. Predicting the averages of the exchange rates of each country using window size

of 3, 4 and 5 and prediction horizon of 3 and 5 days.

All the experiments were carried out using the C Programming Language on

the computer. The results of each experiments are presented in subsequent chapters.

2.2.3 Application of Time Series in Physiology

Apart from scientific research and financial planning, time series is used in the areas
of physiology and medicine. This section briefly deals with that aspect of time series.
In real life we deal with events that are constantly changing with time. Even the
living organisms are not constant in time, there are sub-cellular, cellular and super-
cellular activities like cell divisions, respiration, blood pressure regulation etc. taking
place at every instant of time. These activities generate complex patterns and exhibit
what is known as chaotic dynamics. These are aperiodic rhythms sensitive to initial
conditions. It has been theoretically derived that some biological systems exhibit
chaos, nevertheless, it is a matter of interest to biologists to recognize the patterns of
time series. There are some standard as well as highly mathematical analysis involved
for studying these time series.

The most basic type of time series is carried out by the human eye (according
to Glass [9]).. it is in fact, an excellent pattern recognition device and is capable of
carrying out the sophisticated analysis needed to classify time series. For example,
the interpretation of complex Electrocardiograms (ECGs) requires nothing more than

some knowledge in cardiology combined with measurement of timing of occurrence
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of beats on comparatively short records. Interpretation of Electroencephalograms
(EEGsS) is carried out in a similar manner by skilled clinicians who have the knowledge
of how to interpret the frequency, amplitude and morphology of recordings of electrical
activity from different scalp positions. This is sufficient for identifying a great number
of clinical disorders.

In research, most of the time series analysis takes place with the analysis of mean
and standard deviation. These simple statistics can provide important physiological
information. For example, the mean heart rate can be used to determine the level
of exertion and a low standard deviation can be associated with pathology. The
respiratory cycles can change with age.

The other methods uses the concept of non-linear dynamical systems. This
has a strong impact on research in time series analysis in physiology and medicine.
However, the discussion of this aspect is beyond the scope of the current thesis work.
Prediction of chaotic time series is discussed briefly in Chapter 7.

Thus we have seen the importance of time series in our lives. The task of a
forecaster is not complete until the forecasting errors are analyzed. The next chapter
deals with errors in forecasting and how they influence the performance of a forecast-

ing system.
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Chapter 3

Measurement of Errors in

Forecasting a Time Series

As stated in the previous chapters, time series play a very important role in our day-
to-day lives. Hence, it is important to predict the future values of a time series with
as much accuracy as possible.The closer the estimation, the better is the technique of
prediction. Various methods of predicting a time series have been presented in details
in the subsequent chapters.

Now, the question arises : “How do we measure the performance of a given
prediction system ?”. Well, the answer is not very simple as there are plenty of
“performance metrics” available which can be used to measure the quality of predic-
tion. Some important performance measures (or metrics) are being presented in this
chapter. For further details, please refer to Armstrong and Callopy [1],Caldwell [5].

Before proceeding to discuss different performance measures, it is better to
get an understanding of the characteristics of performance measures. This is being
presented in the next section. Different performance measures and their significance

are given in the subsequent sections.
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3.1 Characteristics of Performance Measures

Armstrong and Callopy (1], gave some metrics to measure the performances of a time
series prediction. These metrics were based typically in measuring the errors between
the actual and the predicted values. The characteristics of these metrics are listed

below :

1. Reliability: if the metric is consistent over and across different data series. One
method of determining the reliability of a metric is to rank it against others

using different data sets.

2. Validity: if the metric is measuring what it is supposed to measure. The way
to go about it is to check if different metrics are measuring the the same thing

for a given data set.

3. Expense: it is the cost of implementation of the metric (computing power needed
to calculate it). In today’s world of fast machines, the comparison of computing
power of different metrics is insignificant. However, for iterative computations,
like training process of a neural network, if one is interested to constantly mon-

itor the performance, then the cost of the metric becomes worth consideration.

4. Understandability: if the metric is hard to understand, it would be hard to
apply and interpret. Hence, most metrics are straightforward calculations and
easily applicable. However, the interpretation of results of various metrics might
differ depending upon their applications. Hence, studies on prediction systems

should also include how results are interpreted.

5. Sensitivity: it is the response of the performance of the system (measured by

the metric) to the variation of system parameters.
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3.2 Some Performance Metrics

The analysis of prediction performance typically involves calculation of errors between
desired (actual) and calculated results. Some of the traditional statistical forecasting
error measures are listed below. These are used in measuring the performance of
different forecasting techniques in predicting the future values of exchange rates of
Australia, Britain, Canada, France, Germany, Japan and Switzerland with respect
to the U.S. dollar. In addition to the traditional performance metrics, an additional
measure called the directional symmetry DS has been presented at the end of the
section. This metric is useful for measuring the performance of a neural network.

p; be the predicted value.
Let: a; bethe actual value.
n be the total number of data points.

1. MSE : Mean Squared Error
1& 9
MSE = - > (@i — pi)
i=1

MSE averages the total squared error over n points.

2. RMSE : Root Mean Squared Error

RMSE = [~ (a:—p?

=1
RMSE is the square root of MSE.

3. MAE : Mean Absolute Error

1 n
MAE = ;Zlai_pil

=1
MAE is the averaged absolute error value over n points.
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4. MAPE : Mean Absolute Percent Error

n o — -
MAPE = Li0y-la—pd
no= lad

MAPE represents the average error with respect to the true value over n points.

The 4 traditional metrics are not ideal for decision-making, and hence these may
not be a matter of interest to the developers of financial forecasting techniques
(Armstrong and Collopy [1]). RMSE does describe the magnitude of the error
and therefore is more useful to decision making than others. However, certain
tests indicate that RM.SE may not be a reliable measure. The MAPE is not
very useful in terms of decision-making because the expression of error as a

percentage does not give any direct implication of the performance.

In the case of decision-making, interest lies in the accuracy of predicting the
direction of movement rather than the magnitude of error. Thus, in the interest

of decision making, a measure to determine the direction is given below :

5. DS : Directional Symmetry

DS = 100% dod;

i=1

1 if (a; — ai—1)(pi — piy) >0
0 otherwise

where d; = {

Hence a DS = 47% means that the predicted direction was correct in 47% of
the predictions. Or, in other words, the directional errors (DIR) was 100—47 = 53%.
That is, the predicted direction was not correct in 53% of the cases. However, this
does not give the magnitude of the movement. Hence, lower is the DIR value, better

is the prediction of direction of movement of the data.
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Please note that in order to measure the performance of a forecasting method,

the directional errors DIR have been considered.

Due to biases that may occur during relatively long-term trends, it is advisable

to first test the normalcy in the data.

All the above five performance metrics have been calculated and presented in

tables for each prediction method.
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Chapter 4

Forecasting Time Series using
Statistical Methods

Statisticians, from very early times, have been interested and curious about time se-
ries because of their influence on every walks of life. Hence, they sought to develop
models and theories to support their analysis to forecast the future values of a time se-
ries. In this chapter, some popular statistical forecasting models have been presented
along with their effectiveness in forecasting future values of a time series. For experi-
mentation, the exchange rates of Australia, Great Britain, Canada, France, Germany,
Japan and Switzerland with respect to the United States dollar has been chosen as

time series data. The statistical methods experimented include the following:
1. Multiple regression
2. Exponential Smoothing
3. Double Exponential Smoothing
4. Box-Jenkins Methodology

The underlying theory and derivations of the modelling equations have also been
presented. Please refer to Bowerman and O’Connell [3] for further details. In addition

to the above four methods a discussion of Winters’ method which involves forecasting
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seasonal time series has been stated. Since the behaviour of the exchange data does
not follow seasonal variations, it has not been considered suitable for experimentation.

For implementing the above mentioned statistical models, the following strate-
gies were adopted to give best results. The predictions were made using inputs of
window size. i.e., 3, 4, or 5 days. This enabled curve-fitting for a small range of values
and hence better approximation. The prediction horizons were for 1, 2 and 3 days for
the regular(raw) data of exchange rates. A prediction horizon of 3 and 5 days were

used for predicting the averages of exchange rates.

4.1 Multiple Regression Analysis

In this section a quantitative forecasting technique has been presented, which is known
as multiple regression. The forecasting method discussed below is interesting in the
sense that it involves a causal multiple regression model to forecast the future values
of a time series. Multiple regression models are widely used as causal forecasting
models. Hence its application in time series makes the forecasting of future values
very effective.

A general multiple regression model has the following form:

ve=LBo+ Bizu+ -+ Bz + & (4.1.1)

where y; denotes the dependent variable in time ¢; k represents the number
of independent variables in the model; z;;, s, -,z represents the values of the
k independent variables in time ¢; 8, s, -, Ox are unknown parameters relating
the dependent variable y, to the k independent variables z;;, T2, -,z ; and & is a
random error component that describes the influence on y, of all factors other than the
k independent variables. It is assumed that the expected value of &, is 0. According to

Bowerman and O’Connell [3], the general multiple regression model states that time
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series y, can be represented by an average level that changes over the time according
to the function on the right hand side of the above equation 4.1.1. The random
fluctuations are responsible for the time series to deviate from this average level. Let

this average level be represented by u, i.e.,

e = Bo+ b1z + -+ - + Bz (4.1.2)

The value y, represents the average of all the values of the dependent variable y; that
could ever possibly be observed when the values of the independent variables are fixed
at Ty, Te2,* - -, Tek. If b, by, - - -, b are the least squares estimates of By, 81, B2, - - -, Bk,

then the point estimate of y, is given by:

Ue = bo + b1zyy + boTeo + -+ - + b Toxe

Since we assume that the error component &, averages out to 0 in the long run, and
that 0 is therefore a reasonable guess for any future value of ¢, it follows that , is

the point forecast of the actual time-series value

Y = phe + &4
In order to find how far g, is from y; and ., we have to make certain assumptions on
the error component ¢,. These are:

1. For each and every period ¢ the random error follows a normal distribution.

2. The variance of y;, which measures the spread of all the potential values of the
dependent variable y; around the average level y, is the same for each and every

value of ¢.

3. The time series values y;, ¥, - - - in different periods are statistically independent

of or not related to each other.
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The above three assumptions are the so-called inference assumptions.

4.1.1 Building a Multiple Regression Model

In order to construct a multiple regression model to provide accurate forecasts of a
given time series, the specification of the appropriate independent variables and their
functional relationship with the dependent variable is very important. This functional
relationship may be linear or quadratic of two or more variables multiplied together
to form an interaction variable.

Let us consider the following regression model:

Ye = pe + &

where 4, is the average level of the time series at time ¢ and &, is the random error
component. The dependent variable y, is said to be related to a single independent

variable z;; in a linear fashion if
pe = Po + fiza
and in a quadratic fashion if
pe = fo + B1zu + Brzh

This means that the average level is randomly fluctuating around an average
level p, that changes in a linear or quadratic fashion as z;, increases. Thus the average
level p, of the time series is increasing/decreasing at an increasing or decreasing rate
as z;; increases.

For our present purposes, only linear regression models have been considered.
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Hence the forecasted output for a linear regression model is given by:
Y¢e = by + bz (4.1.3)

4.1.2 The Initial Estimates

The initial estimates of §y and f; denoted by by and b; respectively are given by the

least squares methods described by the following equations:
N3t e — (o1 8) (heg Ye)
n Z?:l 2 — (Z?=1 t)2

n_ ﬂ_ t
b = Z=il_p, (Ziml (4.15)

by

(4.1.4)

A detailed description of the measures of contribution of the independent vari-

ables in prediction has been stated in appendix A.l.

4.1.3 The Multiple Regression Algorithm

Step 1: Choose an initial set of input data.

Step 2: Compute the initial estimates by and b, using equations 4.1.4 and 4.1.5.

Step 3: Compute the output using equation 4.1.3.

Step 4: IF stopping condition is met, THEN stop ELSE go to Step 3.

Please note that the stopping condition here is to carry out the regression method

for all 3000 data.
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4.1.4 Experimental Results

The performance of multiple regression method is illustrated in the following graph:

The overall M'SE ranges from 0.00349 to 0.00409. The mean is around 0.0040. The

0.9 T T T T T
original-data —

0.8 regrsn/canada-average/cdn;3-day-win-3.out - - - -

0.7 . i}
0.6 L
0.5
0.4
0.3

0.2

0 500 1000 1500 2000 2500 3000

0.1

Figure 8: Predicting 3 days averages of Canadian-U.S. dollar exchange rates for
window size 3 using multiple regression

range of MSE for the averages is also from 0.00349 to 0.00409, but the mean is
about 0.0037. The range of RMSE is from 0.059 to 0.064 for exchange rates and
from 0.0599 to 0.06334 for the averages of exchange rates. The mean of the former is
around 0.063 and that for the latter is 0.062. MAE ranges from 0.00562 to 0.01051
for exchange rates and from 0.0057 to 0.01136 for the averages of exchange rates. The
mean is about 0.007 for exchange rates and about 0.006 for the averages of exchange
rates. MAPE ranges from 1.61 to 3.2601 for exchange rates and from 1.85 to 3.34
for the averages of exchange rates. The mean of the M APE values is around 2.3 for
the exchange rates and 2.15 for the averages of exchange rates. Finally, for the DIR,
the value ranges from 0.484 to 0.5077 for exchange rates and from 0.4720 to 0.5147.
The overall mean for the exchange rates is about 0.50 whereas that for the averages

of exchange rates is about 0.48. The results are stated in the following tables.
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Country

Prediction Zones

Measures

window | horizon (| MSE

RMSE

MAE MAPE

Ave DIR

0.00350

0.05919

0.00629 | 1.63987

0.4940

0.00355

0.05959

0.00787 | 2.04784

0.4937

0.00359

0.05991

0.00910 | 2.37831

0.4933

Australia

0.00352

0.05934

0.00703 | 1.82297

0.4937

0.00356

0.05969

0.00843 | 2.17705

0.4933

0.00360

0.06004

0.00949 | 2.47147

0.4933

0.00349

0.05907

0.00630 | 1.61768

0.4933

0.00353

0.05944

0.00775 | 2.00245

0.4933

0.00358

0.05984

0.00887 | 2.32526

0.4937

0.00371

0.06088

0.00639 | 1.95005

0.4840

0.00374

0.06119

0.00784 | 2.40467

0.4840

0.00380

0.06162

0.00913 | 2.80789

0.4843

Britain

0.00372

0.06100

0.00695 | 2.12547

0.4840

0.00377

0.06144

0.00836 | 2.56919

0.4843

0.00381

0.06170

0.00956 | 2.93604

0.4843

0.00372

0.06103

0.00630 | 1.93083

0.4843

0.00376

0.06129

0.00780 | 2.39091

0.4843

0.00380

0.06165

0.00910 | 2.79540

0.4843

0.00398

0.06311

0.00757 | 2.32648

0.4927

0.00403

0.06345

0.00924 | 2.78404

0.4927

0.00407

0.06383

0.01060 | 3.15433

0.4927

Canada

0.00400

0.06321

0.00822 | 2.49081

0.4927

0.00404

0.06360

0.00980 | 2.92544

0.4927

0.00409

0.06398

0.01103 | 3.26093

0.4927

0.00398

0.06305

0.00738 | 2.25170

0.4927

0.00403

0.06345

0.00902 | 2.70462

0.4927

0.00407

0.06378

0.01043 | 3.09846

0.4927

0.00385

0.06208

0.00592 | 1.93015

0.5007

0.00387

0.06217

0.00706 | 2.27613

0.5010

0.00389

0.06235

0.00804 | 2.58443

0.5010

France

0.00385

0.06203

0.00626 | 2.02691

0.5010

0.00387

0.06220

0.00736 | 2.36786

0.5010

0.00391

0.06251

0.00833 | 2.68148

0.5007

0.00383

0.06190

0.00562 | 1.81886

0.5010

0.00387

0.06221

0.00689 | 2.22470

0.5007

OV OV O i o] ] COf Qo Cof] | v el ] o] W] Cof Cof coff onf en] en| i | ] o] cof co O Oy Oy ] ] ] QO] QO] o

o D] 4 WOl ) 4 Cof | =) o] BOf =] o] b =] Lof B ]| Co o =] el tof =] ol tof 1 COf D] 4] COf D] =] COf D] =

0.00390

0.06241

0.00801 | 2.57662

0.5007

Table 1: Predicting exchange rates using regression method
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Country

Prediction Zones

Measures

Germany

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

0.00399

0.06316

0.00624

1.95369

0.4897

0.00403

0.06349

0.00759

2.33723

0.4897

0.00408

0.06384

0.00874

2.67718

0.4893

0.00401

0.06334

0.00667

2.09028

0.4897

0.00405

0.06367

0.00791

2.44961

0.4893

0.00409

0.06394

0.00905

2.76658

0.4897

0.00401

0.06332

0.00600

1.91879

0.4893

0.00404

0.06358

0.00742

2.31013

0.4897

0.00409

0.06393

0.00871

2.68442

0.4897

Japan

0.00397

0.06305

0.00668

1.89479

0.5043

0.00401

0.06332

0.00819

2.25459

0.5047

0.00405

0.06362

0.00955

2.60456

0.5047

0.00399

0.06314

0.00726

2.03426

0.5047

0.00402

0.06342

0.00865

2.37822

0.5047

0.00407

0.06380

0.00988

2.70636

0.5047

0.00397

0.06302

0.00650

1.85115

0.5047

0.00402

0.06339

0.00806

2.24530

0.5047

0.00406

0.06370

0.00940

2.59280

0.5047

Switzerland

0.00396

0.06296

0.00707

2.21385

0.5070

0.00402

0.06343

0.00867

2.70071

0.5073

0.00407

0.06376

0.01008

3.11202

0.5073

0.00400

0.06323

0.00765

2.40993

0.5073

0.00404

0.06353

0.00912

2.84087

0.5073

0.00406

0.06375

0.01051

3.22563

0.5077

0.00398

0.06308

0.00687

2.18530

0.5073

Q| N ] 0 ] ) Lo b =] Lo o] ] cof Do =] co) nof 1= COf N 1 0O D] =] Lo D] =

0.00400

0.06328

0.00855

2.65413

0.5077

O O O] | i e | COf COf ol en| enf on| ] ] ] o] cof coll en] en| e ] ] ] cof eol co

0.00405

0.06361

0.01011

3.10161

0.5073

Table 2: Predicting exchange rates using regression method (contd.)

29




Country

Prediction Zones

Measures

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

3

3

0.00359

0.05990

0.00882

2.34411

0.4720

0.00349

0.05907

0.00616

1.60257

0.4883

Australia

0.00360

0.06004

0.00944

2.52852

0.4717

0.00354

0.05946

0.00767

2.02263

0.4883

0.00360

0.05997

0.00933

2.52314

0.4717

0.00352

0.05931

0.00723

1.92855

0.4883

0.00375

0.06128

0.00708

2.18199

0.5067

0.00371

0.06088

0.00626

1.91456

0.4867

Britain

0.00380

0.06168

0.00971

2.98732

0.5067

0.00374

0.06119

0.00782

2.39684

0.4867

0.00380

0.06167

0.00973

2.99691

0.5067

0.00374

0.06112

0.00753

2.30870

0.4867

0.00398

0.06309

0.00825

2.48536

0.4833

0.00396

0.06296

0.00735

2.24189

0.4823

Canada

0.00408

0.06389

0.01136

3.36056

0.4833

0.00401

0.06334

0.00913

2.73634

0.4823

0.00408

0.06386

0.01133

3.35549

0.4833

0.00400

0.06322

0.00870

2.61636

0.4823

0.00387

0.06221

0.00641

2.07348

0.4807

0.00385

0.06204

0.00570

1.84917

0.4860

France

0.00393

0.06267

0.00868

2.78745

0.4807

0.00388

0.06229

0.00705

2.27006

0.4860

3
4
4
S
5
3
3
4
4
5
]
3
3
4
4
5
b
3
3
4
4
5

0.00393

0.06265

0.00868

2.79108

0.4807

w

)
3
5
3
5
3
)
3
5
3
5
3
]
3
5
3
5
3
5
3
5
3
5

0.00387

0.06222

0.00674

2.17746

0.4860

Table 3: Predicting averages of exchange rates using regression method
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Country

Prediction Zones

Measures

Germany

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

0.00401

0.06336

0.00694

2.15152

0.5073

0.00399

0.06315

0.00609

1.90925

0.5033

0.00407

0.06380

0.00954

2.85554

0.5077

0.00402

0.06341

0.00769

2.34901

0.5033

0.00407

0.06379

0.00955

2.86534

0.5077

0.00401

0.06334

0.00739

2.27253

0.5033

Japan

0.00407

0.06379

0.00967

2.62656

0.5003

0.00397

0.06304

0.00655

1.85245

0.4913

0.00409

0.06396

0.01030

2.78903

0.5010

0.00403

0.06347

0.00828

2.29017

0.4900

0.00409

0.06392

0.01035

2.79959

0.4997

0.00402

0.06341

0.00799

2.22659

0.4900

Switzerland

0.00398

0.06306

0.00790

2.43777

0.5147

0.00398

0.06311

0.00755

2.35098

0.4960

0.00407

0.06381

0.01103

3.34480

0.5147

0.00400

0.06327

0.00882

2.71241

0.4963

0.00407

0.06382

0.01111

3.36901

0.5147

] Onf ] ] O] Cofl O anf i) ] cof colf on] en| o] ] o] o
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0.00399

0.06320

0.00855

2.63371

0.4963

Table 4: Predicting averages of exchange rates using regression method (contd.)
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4.2 The Exponential Smoothing Technique

In this section, we consider a time series with no trend. This technique involves
a choice of an appropriate smoothing constant: it determines the influence of past
observations of a time series on forecasting. A large smoothing constant gives a
larger weight to the more recent observations in the time series and results in a more

rapid response to changes in the time series.

4.2.1 The Modelling

Suppose at the end of time period T — 1 we obtained a set of observations for the

time series denoted by:

Yi,» Y2, - Yr-1

. Given these observations we wish to estimate f§, which is the average level of the
time series. Let this estimate be by(T") for the time period T.

Let bo(T — 1) given by:

|
Pt

b(T—-1)=7=)_ v/(T-1)

t

I
NA

be the forecast for future values. The forecasting error for the time period T is given
by:
er =yr —bo(T — 1)

Thus it is the difference between the observed value in the period T and the forecast

made for the period T in period T — 1. The updated estimate is given by:

bo(T) = bo(T — 1) + efyr — bo(T — 1)] (4.2.1)

Thus the new estimate is dependent on the old estimate by some factor a known
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as the smoothing constant. If the old estimate forecasted a value for period T that
was too low, then the new estimate is higher, and vice versa. The magnitude of this
up and down adjustment is taken care by the smoothing constant a. Let us define
St = bp(T'). Then (4.2.1) can be rewritten as:

St = Sr_1 +afyr — Sr(T - D]=ayr—-(1-a)Sr_; (4.2.2)

This equation 4.2.2 defines the updating procedure called the Simple Ezponential
Smoothing. We call St the the smoothed estimate or smoothed statistic.

4.2.2 The Initial Estimates

We can change the time origin so that the initial estimate of f, is assumed to be
generated in time period zero. Let the initial estimate be denoted by Sp. Sp can be
calculated by taking the average of initial set of observations if they are available, or
it is set equal to the first observed value of the time series.

Hence Sy can be calculated as:

_ 2?:1 Ye
So = T (4.2.3)

4.2.3 Updating the Estimates

The equation 4.2.2 can be expressed as follows:
Sg = QY — (1 - Q)St_l (424)

Equation 4.2.4 can be used to update the estimates for each time period ¢
from period 1 to period T , the present time period. The smoothed estimate for the

current period T can be represented as a combination of the past observations by the
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following recursive scheme:

Putting t =T in 4.2.4 we have:
St-1 = ayr-1 — (1 — a)Sr-, (4.2.5)
Substituting Sr_; in 4.2.2 we have:

ST = Qyr — (1 - a)[ayT_1 - (1 - a)ST_g]

= ayr — a(l — a)yr—1 — (1 — a)?Sr_ (4.2.6)

4.2.4 Forecasting the Future Values

Suppose we are in the current period T. The current estimate of 8y is St = by(T).
We wish to forecast the time series for a future period T + 7 in period T. This can
be done as follows:

Since the model is given by
Ye=00+ €
the forecast is given by:
Ur+r = ST (4.2.7)

where St is the current estimate of fq.
The impacts of the smoothing constant « in predicting future values are dis-

cussed in details in appendix A.2.

4.2.5 The Exponential Smoothing Algorithm

Step 1: Choose an initial estimate of 5, defined by equation 4.2.3.
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Step 2: Use the smoothing equation 4.2.2 to simulate all the historical data available

for a particular a.
Step 4: Calculate the output using equation 4.2.7.

Step 5: IF all data has been used THEN stop ELSE go to Step 2.

4.2.6 Experimental Results

An example of the performance of exponential smoothing method is illustrated in the
following graph: The overall M SF errors range from 0.0047 to 0.00552. The mean is

0.8 T T 7

origina.l-]data e
0.7 |- exponen/canada-averagq/cdy! .
0.6 ; | 4
0.5 |
04
0.3 |-

02 F

] 1 1 1 1

0 500 1000 1500 2000 2500 3000

0.1

Figure 9: Predicting 3 days averages of Canadian-U.S. dollar exchange rates for
window size 3 using exponential smoothing

around 0.0054. The range of M'SE errors for the averages is from 0.00467 to 0.00552,
the mean is about 0.005. The range of RM SE is from 0.06856 to 0.0734 for exchange
rates and from 0.0687 to 0.0732 for the averages of exchange rates. The mean of the
former is around 0.073 and that for the latter is 0.070. MAE ranges from 0.02655 to
0.3235 for exchange rates and from 0.02649 to 0.03239 for the averages of exchange
rates. The mean is about 0.028 for exchange rates and about 0.027 for the averages.

MAPE ranges from 7.56 to 9.42 for exchange rates and from 7.48 to 9.38 for the
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averages of exchange rates. The mean of the MAPFE values is around 8.3 for the
exchange rates and 8.96 for the averages of exchange rates. Finally, for the DIR, the
value ranges from 0.484 to 0.5077 for exchange rates and from 0.4720 to 0.5147. The
overall mean for the exchange rates is about 0.50 whereas that for the averages of

exchange rates is about 0.48. The results are summarized in the following tables.
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Country

Prediction Zones

Measures

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

0.00508

0.07127

0.02856

9.57696

0.4940

0.00508

0.07125

0.02856

9.57738

0.4937

0.00507

0.07119

0.02856

9.57462

0.4933

0.00508

0.07125

0.02856

9.57738

0.4937

Australia

0.00507

0.07119

0.02856

9.57462

0.4933

0.00506

0.07116

0.02856

9.57318

0.4933

0.00507

0.07119

0.02856

9.57462

0.4933

0.00506

0.07116

0.02856

9.57318

0.4933

0.00507

0.07121

0.02856

9.57505

0.4937

0.00470

0.06856

0.02656

8.32390

0.4840

0.00470

0.06857

0.02655

8.32361

0.4840

0.00472

0.06869

0.02655

8.32836

0.4843

0.00470

0.06857

0.02655

8.32361

0.4840

0.00472

0.06869

0.02655

8.32836

0.4843

Britain

0.00471

0.06865

0.02655

8.32513

0.4843

0.00472

0.06869

0.02655

8.32836

0.4843

0.00471

0.06865

0.02655

8.32513

0.4843

0.00472

0.06871

0.02655

8.32781

0.4843

Canada

0.00539

0.07344

0.02832

9.42555

0.4927

0.00539

0.07340

0.02832

9.40732

0.4927

0.00539

0.07339

0.02832

9.39131

0.4927

0.00539

0.07340

0.02832

9.40732

0.4927

0.00539

0.07339

0.02832

9.39131

0.4927

0.00539

0.07340

0.02832

9.37172

0.4927

0.00539

0.07339

0.02832

9.39131

0.4927

0.00539

0.07340

0.02832

9.37172

0.4927

0.00538

0.07336

0.02832

9.35014

0.4927

France

0.00491

0.07006

0.02711

9.00454

0.5007

0.00490

0.06997

0.02712

8.99938

0.5010

0.00489

0.06996

0.02712

8.99927

0.5010

0.00490

0.06997

0.02712

8.99938

0.5010

0.00489

0.06996

0.02712

8.99927

0.5010

0.00491

0.07006

0.02713

9.01130

0.5007

0.00489

0.06996

0.02712

8.99927

0.5010

CO| D] =] Lof b =] Cof DI =] Lol 8] =] Lo bo] =] Lol 8ol =] eof po] = Lol dof =] col v = 1 O] 4] O] D] =] ol N =

0.00491

0.07006

0.02713

9.01130

0.5007

OV OY O b | o] [ O Oof Cofl O] anf el ing it ] cof o] coll an| en| en| ] | i | o] wof cofl ond en| en) ] ] ] col col e

0.00491

0.07005

0.02713

9.01336

0.5007

Table 5: Predicting exchange rates using exponential smoothing method
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Country

Prediction Zones

Measures

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

0.00493

0.07019

0.02646

7.56779

0.4897

0.00494

0.07029

0.02647

7.58676

0.4897

0.00495

0.07038

0.02648

7.60720

0.4893

0.00494

0.07029

0.02647

7.58676

0.4897

0.00495

0.07038

0.02648

7.60720

0.4893

Germany

0.00496

0.07040

0.02649

7.61726

0.4897

0.00495

0.07038

0.02648

7.60720

0.4893

0.00496

0.07040

0.02649

7.61726

0.4897

0.00497

0.07050

0.02651

7.64026

0.4897

0.00552

0.07427

0.03238

8.33185

0.5043

0.00551

0.07424

0.03235

8.32723

0.5047

0.00551

0.07422

0.03233

8.32378

0.5047

0.00551

0.07424

0.03235

8.32723

0.5047

0.00551

0.07422

0.03233

8.32378

0.5047

Japan

0.00552

0.07427

0.03230

8.33161

0.5047

0.00551

0.07422

0.03233

8.32378

0.5047

0.00552

0.07427

0.03230

8.33161

0.5047

0.00551

0.07425

0.03228

8.32975

0.5047

0.00518

0.07197

0.02964

8.70733

0.5070

0.00520

0.07210

0.02964

8.72693

0.5073

0.00520

0.07208

0.02964

8.72718

0.5073

0.00520

0.07210

0.02964

8.72693

0.5073

0.00520

0.07208

0.02964

8.72718

0.5073

Switzerland

0.00518

0.07196

0.02963

8.71268

0.5077

0.00520

0.07208

0.02964

8.72718

0.5073

0.00518

0.07196

0.02963

8.71268

0.5077

O O O i ] | Cof eo] coll | en| en| i st ] ol cof co O onp o] ] i) o] ol o
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0.00518

0.07195

0.02964

8.71158

0.5073

Table 6: Predicting exchange rates using exponential smoothing method (contd.)
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Country | Prediction Zones Measures

window | horizon || MSE RMSE | MAE MAPE | Ave DIR
0.00505 | 0.07105 | 0.02839 | 9.53248 | 0.4720
0.00503 | 0.07094 | 0.02827 | 9.50143 | 0.4883
0.00504 | 0.07101 | 0.02839 | 9.53125 | 0.4717
0.00503 | 0.07094 | 0.02827 | 9.50143 | 0.4883
0.00504 | 0.07101 | 0.02839 | 9.53125 | 0.4717
0.00503 | 0.07094 | 0.02827 | 9.50143 | 0.4883

[ 0.00472 | 0.06870 | 0.02649 | 8.31447 | 0.5067
0.00467 | 0.06837 | 0.02636 | 8.25786 | 0.4867
0.00469 | 0.06847 | 0.02645 | 8.29043 | 0.5067
0.00467 | 0.06837 | 0.02636 | 8.25786 | 0.4867
0.00469 | 0.06847 | 0.02645 | 8.29043 | 0.5067
0.00467 | 0.06837 | 0.02636 | 8.25786 | 0.4867

0.00536 | 0.07320 | 0.02809 | 9.38083 | 0.4833
0.00535 | 0.07312 { 0.02792 | 9.31501 | 0.4823
0.00536 | 0.07320 | 0.02809 | 9.38083 | 0.4833
0.00535 | 0.07312 | 0.02792 | 9.31501 | 0.4823
0.00536 | 0.07320 | 0.02809 | 9.38083 | 0.4833
0.00535 | 0.07312 | 0.02792 | 9.31501 | 0.4823

0.00490 | 0.07002 | 0.02696 | 8.96108 | 0.4807
0.00489 | 0.06990 | 0.02690 | 8.93564 | 0.4860
0.00490 | 0.07002 | 0.02696 | 8.96108 | 0.4807
0.00489 | 0.06994 | 0.02689 | 8.93676 | 0.4860
0.00490 | 0.07002 | 0.02696 | 8.96108 | 0.4807
0.00489 | 0.06994 | 0.02689 | 8.93676 | 0.4860

Australia

Britain

Canada

France

nj Ul dxf o] O] COff O] O g ] Co] Cof] Onf o W] ] Qo coll en] enf il ] el e
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Table 7: Predicting averages of exchange rates using exponential smoothing method
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Country Prediction Zones Measures

window | horizon || MSE RMSE | MAE MAPE | Ave DIR
0.00492 | 0.07017 { 0.02631 | 7.53349 | 0.5073
0.00490 | 0.07002 | 0.02620 | 7.48069 | 0.5033
0.00491 | 0.07006 | 0.02627 | 7.49485 | 0.5077
0.00490 | 0.07002 | 0.02620 | 7.48069 | 0.5033
0.00491 | 0.07006 | 0.02627 | 7.49485 | 0.5077
0.00490 | 0.07002 | 0.02620 | 7.48069 | 0.5033

0.00552 | 0.07430 | 0.03239 | 8.32797 | 0.5003
0.00549 | 0.07410 | 0.03222 | 8.28219 | 0.4913
0.00553 | 0.07439 | 0.03249 | 8.34474 | 0.5010
0.00552 | 0.07429 | 0.03238 | 8.31682 | 0.4900
0.00552 | 0.07428 | 0.03239 | 8.32320 | 0.4997
0.00552 | 0.07429 | 0.03238 | 8.31682 | 0.4900

0.00515 | 0.07179 | 0.02950 | 8.64364 | 0.5147
0.00515 | 0.07178 | 0.02935 | 8.61415 | 0.4960
0.00515 | 0.07179 | 0.02950 | 8.64364 | 0.5147
0.00514 | 0.07171 | 0.02935 | 8.59970 | 0.4963
0.00515 | 0.07179 | 0.02950 | 8.64364 | 0.5147
0.00514 | 0.07171 | 0.02935 | 8.59970 | 0.4963

Germany

Japan

Switzerland

Oy o] ] Cof Coff o wnf oix] x| Qo Cofl enf o] x| ] €] o
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’(I‘able 8): Predicting averages of exchange rates using exponential smoothing method
contd.
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4.3 The Double Exponential Smoothing Technique

The Double Exponential Smoothing technique is quite similar to exponential smooth-
ing method. In this case there is a linear trend observed in the time series. The average

level of the time series changes over time in a linear fashion.

4.3.1 The Modelling

The appropriate model for the time series can thus be defined as:
ye = Po+ bt +ee (4.3.1)

This implies that the time series can be described by the trend implied by the
straight line with slope 8, and intercept §, combined with the random fluctuations
which cause the time series to deviate from the trend line. In double exponential
smoothing technique, the updating of the estimates of fp and (; are done using the

following equation:

b(T) = 1fo‘(ST— ol (4.3.2)

b(T) = 2Sr—SE —Tb,(T) (4.3.3)

Here St is the single smoothed statistic which is found by using the smoothing equa-
tion 4.2.4 and 55?1 is the double smoothed statistic. It is found by applying the

smoothing operation to the output of the single smoothing equation. i.e.,
S2 = aSr+(1-a)SP, (4.3.4)
Where 0 < a < 1 is called the smoothing constant. Suppose the data up to and

including period T is available. Then the forecast for a future time period T + 7 is
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given by:
Jrer = b(T) +0(T)(T + 1) (4.3.5)

4.3.2 The Initial Estimates

The initial estimates can be found by using the following equations. These are derived
by substituting T = 0 in equations 4.3.2 and 4.3.3 and solving for Sy and S,p] in

terms of by and b,.

So = bo(0) — (A= )bI(O) (4.3.6)
SP = b(0) — 2(2=2),(0) (4.3.7)

The values of by and b; can be found either by regression method (using the least
squares estimates) given in equations 4.1.4 and 4.1.5, or by using the exponential
smoothing approach. In the latter case, the initial estimates are given by the following

equations:

(T _ 1) Z(T—l) tyt (Z(T-—l) t) (Z(T—l) )

b(T —1) = IES T ks (4.3.8)
(T—I) (T—l)
(T —1) = b 13" ~ b (T - (G )t ) (4.3.9)

In case the initial estimates by or b, are not available, the first observation is used to

assign Sp and 5([)21.

4.3.3 Updating the Estimates

Given the initial estimates, the smoothing equations
Sr=oyr - (1 —a)Sr_; (4.3.10)
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and 4.3.4 are used to update the estimates of Bo and f;.

4.3.4 Forecasting the Future Values

The forecasting equation for time period T is given by:

ire(l) = @+ = )Sr-(1+ o)

)s@ (4.3.11)

4.3.5 The Double Exponential Smoothing Algorithm

Step 1: Choose an initial estimate of G, and g, defined by equations 4.3.8 and 4.3.9
or equations 4.1.4 and 4.1.5, depending on the technique chosen.

Step 2: Use the smoothing equations 4.3.4 and 4.3.8 to simulate all the historical data

available for a particular a.
Step 3: Calculate the output using equation 4.3.11.

Step 4: IF all data has been used THEN stop ELSE go to Step 2.

4.3.6 Experimental Results

An example of the performance of double exponential smoothing method is illustrated
in the following graph: The overall M SE range from 0.00013 to 0.00035. The mean
is around 0.00021. The range of M SE for the averages is from 0.00017 to 0.00031,
the mean is about 0.00014. The range of RMSE is from 0.015 to 0.011 for exchange
rates and from 0.011 to 0.014 for the averages of exchange rates. The mean of the
former is around 0.014 and that for the latter is 0.014. MAE ranges from 0.00562
to 0.01051 for exchange rates and from 0.02 to 0.0111 for the averages of exchange
rates. The mean for the exchange rates is about 0.007 and that of the averages is
about 0.008. M APE ranges from 3.24 to 3.2601 for exchange rates and from 1.85 to
3.34 for the averages of exchange rates. The mean of the MAPE values is around 2.3
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Figure 10: Predicting 3 days averages of Canadian-U.S. dollar exchange rates for
window size 3 using double exponential smoothing

for the exchange rates and 2.15 for the averages of exchange rates. Finally, for the
DIR, the value ranges from 0.4838 to 0.5075 for exchange rates and from 0.4715 to
0.5145. The overall mean for the exchange rates is about 0.49 whereas that for the

averages of exchange rates is about 0.48. The results are summarized in tables.
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Country | Prediction Zones Measures

window | horizon || MSE RMSE | MAE MAPE | Ave DIR
3 1 0.00024 | 0.01535 | 0.00733 | 1.99216 | 0.4938
0.00029 | 0.01697 | 0.00862 | 2.31598 | 0.4938
0.00034 | 0.01841 | 0.00968 | 2.58769 | 0.4935
0.00025 | 0.01578 | 0.00782 | 2.10415 | 0.4938
0.00030 | 0.01741 | 0.00898 | 2.38901 | 0.4935
0.00035 | 0.01878 | 0.00991 | 2.63934 | 0.4932
0.00020 | 0.01406 | 0.00661 | 1.76573 | 0.4935
0.00025 | 0.01578 | 0.00785 | 2.08388 | 0.4932
0.00029 | 0.01711 | 0.00878 | 2.35021 | 0.4935

Australia

0.00015 | 0.01236 | 0.00743 | 2.31263 | 0.4838
0.00019 | 0.01369 | 0.00859 | 2.67282 | 0.4838
0.00022 | 0.01499 | 0.00966 | 3.00333 | 0.4842
0.00016 | 0.01273 | 0.00773 | 2.40316 | 0.4838
0.00020 | 0.01411 | 0.00892 | 2.76604 | 0.4842
0.00024 | 0.01534 | 0.00989 | 3.06423 | 0.4845
0.00013 | 0.01129 | 0.00654 | 2.03006 | 0.4842
0.00016 | 0.01277 | 0.00782 | 2.42448 | 0.4845
0.00020 | 0.01414 | 0.00896 | 2.76796 | 0.4845

Britain

0.00023 | 0.01506 | 0.01035 | 2.93700 | 0.4925
0.00027 | 0.01651 | 0.01150 | 3.24070 | 0.4928
0.00019 | 0.01374 | 0.00931 | 2.64004 | 0.4925
0.00024 | 0.01534 | 0.01059 | 2.98560 | 0.4928
0.00028 | 0.01667 | 0.01162 | 3.25367 | 0.4925
0.00014 | 0.01171 | 0.00780 | 2.20632 | 0.4928
0.00018 | 0.01347 | 0.00915 | 2.57265 | 0.4925
0.00022 | 0.01499 | 0.01034 | 2.90155 | 0.4928

Canada

0.00013 | 0.01120 | 0.00671 | 2.13868 | 0.5005
0.00015 | 0.01217 | 0.00753 | 2.38965 | 0.5008
0.00017 | 0.01310 | 0.00830 | 2.63610 | 0.5012
0.00013 | 0.01118 | 0.00681 | 2.16213 | 0.5008
0.00015 | 0.01219 | 0.00762 | 2.41528 | 0.5012
0.00017 | 0.01313 | 0.00840 | 2.66284 | 0.5008
0.00010 | 0.00975 | 0.00564 | 1.78972 | 0.5012
0.00012 | 0.01092 | 0.00663 | 2.10775 | 0.5008
0.00014 | 0.01194 | 0.00762 | 2.41161 | 0.5005

France

3 2
3 3
4 1
4 2
4 3
] 1
] 2
5 3
3 1
3 2
3 3
4 1
4 2
4 3
5 1
5 2
3 3
3 1 0.00018 | 0.01349 | 0.00909 | 2.59633 | 0.4928
3 2
3 3
4 1
4 2
4 3
5 1
5 2
5 3
3 1
3 2
3 3
4 1
4 2
4 3
3 1
5 2
5 3

Table 9: Predicting exchange rates using double exponential smoothing method
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Country Prediction Zones Measures

window | horizon {| MSE RMSE | MAE MAPE | Ave DIR
0.00013 | 0.01123 | 0.00719 | 2.01502 | 0.4898
0.00015 | 0.01240 | 0.00816 | 2.28606 | 0.4895
0.00018 | 0.01351 | 0.00902 | 2.53169 | 0.4895
0.00013 | 0.01140 | 0.00741 | 2.07949 | 0.4895
0.00016 | 0.01251 | 0.00834 | 2.33967 | 0.4895
0.00019 | 0.01369 | 0.00920 | 2.57564 | 0.4895
0.00009 | 0.00969 | 0.00613 | 1.72730 | 0.4895
0.00012 | 0.01109 | 0.00724 | 2.02966 | 0.4895
0.00015 | 0.01238 | 0.00832 | 2.32319 | 0.4898

0.00013 | 0.01144 | 0.00784 | 1.95591 | 0.5042
0.00016 | 0.01283 | 0.00894 | 2.22553 | 0.5045
0.00020 | 0.01422 | 0.01004 | 2.51158 | 0.5048
0.00014 | 0.01189 | 0.00815 | 2.03484 | 0.5045
0.00018 | 0.01324 | 0.00919 | 2.29996 | 0.5048
0.00021 | 0.01452 | 0.01017 | 2.55615 | 0.5048
0.00010 | 0.01020 | 0.00677 | 1.70812 | 0.5048
0.00014 | 0.01177 | 0.00797 | 2.00394 | 0.5048
0.00017 | 0.01323 | 0.00916 | 2.31359 | 0.5048

0.00015 | 0.01220 | 0.00836 | 2.43323 | 0.5068
0.00019 | 0.01364 | 0.00954 | 2.79113 | 0.5072
0.00023 | 0.01507 | 0.01063 | 3.11297 | 0.5075
0.00016 | 0.01262 | 0.00869 | 2.54258 | 0.5072
0.00020 | 0.01400 | 0.00983 | 2.88496 | 0.5075
0.00024 | 0.01549 | 0.01093 | 3.20486 | 0.5075
0.00012 | 0.01077 | 0.00725 | 2.13305 | 0.5075
0.00016 | 0.01252 | 0.00861 | 2.52892 | 0.5075
0.00020 | 0.01422 | 0.00994 | 2.91257 | 0.5075

Germany

Japan

Switzerland
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'(I‘abled 1)0: Predicting exchange rates using double exponential smoothing method
contd.
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Country | Prediction Zones Measures

window | horizon || MSE RMSE | MAE MAPE | Ave DIR
0.00041 | 0.02026 | 0.01065 | 2.92689 | 0.4718
0.00026 | 0.01615 | 0.00788 | 2.14784 | 0.4882
0.00041 | 0.02031 | 0.01089 | 3.00522 | 0.4715
0.00031 | 0.01763 | 0.00909 | 2.48994 | 0.4882
0.00039 | 0.01964 | 0.01053 | 2.93858 | 0.4715
0.00027 | 0.01652 | 0.00842 | 2.33999 | 0.4882

0.00020 | 0.01430 | 0.00903 | 2.81095 | 0.5065
0.00017 | 0.01314 | 0.00806 | 2.50639 | 0.4865
0.00029 | 0.01717 | 0.01119 | 3.48272 | 0.5065
0.00022 | 0.01470 | 0.00928 | 2.88428 | 0.4865
0.00028 | 0.01685 | 0.01100 | 3.42627 | 0.5065
0.00020 | 0.01399 | 0.00880 | 2.73807 | 0.4865

0.00025 | 0.01578 | 0.01078 | 3.05862 | 0.4832
0.00021 | 0.01432 | 0.00971 | 2.76007 | 0.4822
0.00036 | 0.01900 | 0.01330 | 3.76734 | 0.4832
0.00026 | 0.01599 { 0.01105 | 3.12915 | 0.4822
0.00034 | 0.01846 | 0.01301 | 3.68577 | 0.4832
0.00022 | 0.01494 | 0.01038 | 2.93881 | 0.4822

0.00016 | 0.01261 | 0.00799 | 2.52130 | 0.4808
0.00014 | 0.01163 | 0.00715 | 2.25964 | 0.4858
0.00022 | 0.01484 | 0.00983 | 3.09663 | 0.4808
0.00016 | 0.01268 | 0.00817 | 2.57507 | 0.4862
0.00021 | 0.01446 | 0.00963 | 3.03998 | 0.4808
0.00014 | 0.01194 | 0.00769 | 2.42885 | 0.4862

Australia

Britain

Canada

France
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Tabga él: Predicting averages of exchange rates using double exponential smoothing
metho
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Country

Prediction Zones

Measures

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

0.00017

0.01304

0.00877

2.44051

0.5075

0.00014

0.01187

0.00778

2.16993

0.5035

Germany

0.00025

0.01574

0.01092

3.03679

0.5075

0.00018

0.01325

0.00906

2.52126

0.5035

0.00024

0.01536

0.01072

2.98973

0.5075

0.00016

0.01247

0.00857

2.39283

0.5035

0.00028

0.01678

0.01173

2.89722

0.5005

0.00015

0.01238

0.00849

2.10563

0.4915

Japan

0.00029

0.01696

0.01191

2.95245

0.5012

0.00020

0.01421

0.00988

2.44901

0.4902

0.00028

0.01674

0.01175

2.91964

0.4998

0.00018

0.01354

0.00939

2.33738

0.4902

0.00022

0.01469

0.01024

2.96980

0.5145

0.00020

0.01413

0.00977

2.83512

0.4962

Switzerland

0.00032

0.01801

0.01288

3.73320

0.5145

0.00023

0.01509

0.01065

3.09240

0.4962

0.00031

0.01772

0.01273

3.69051

0.5145
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0.00021

0.01437

0.01017

2.95273

0.4962

Table 12: Predictin

method (contd.)
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4.4 The Box-Jenkins Methodology

All the regression and exponential smoothing models used for forecasting made an
assumption that the random error components and consequently the successive time

series observations of the model

b = f(ﬂo:ﬂl: "'1ﬁp;t)+et

are statistically independent of each other. In most real time series the successive
observations are highly dependent. In these kind of observations, we cannot apply
the smoothing techniques because they do not take the advantage of dependency in
the most effective way. The Box-Jenkins Methodology [4] is used as an efficient tool

for forecasting such data. This method involves mainly four steps:

1. Identification of a model: a tentative model is developed using the past historical

data.

2. Estimation of unknown parameters: unknown parameters of the tentative model

are estimated.

3. Diagnostic checking of the model: diagnostic checks are performed to test and

improve ( if need be) the adequacy of the model.
4. Forecasting: predictions of the future values of the time series.

Before proceeding to describe the Box-Jenkins model, some basic concepts are pre-

sented to get a clear understanding of the model.

Stationary Time Series and Nonstationary Time Series

A time series is called a stationary time series if its values fluctuate around a constant

mean u. And if there is no constant mean then it is called a nonstationary time series.
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A time series may be represented by:

Ye = p+ Y&t + Y1611 + YoEr—2- - -

If a time series is nonstationary it is important to transform into a stationary
time series for the purpose of building a model. This can be achieved sometimes by

using the first differences of the original time series. i.e. using the transformation:

2=V =y —y1 for t=2,...n

However, if the resulting time series is still not stationary then the second difference

is considered.

Autocorrelation and Partial Autocorrelation

Let us assume that the time series z,, 2541, --- 2, is a stationary time series, generated
from differencing the original nonstationary time series. If the original time series
was stationary itself, then a = 1. An important implication for a time series to
be stationary is that the statistical properties of the time series are unaffected by a
shift of the time origin. i.e. the relationships between n observations at origin ¢, say
24, 2441, *, Zt4n—1 are the same as the statistical relationships between n observations
at origin (t+7), say, Ze+j, 2t+j+1,*  *» Zt+j+n—1. One of these important relationships is
measured by pg, which is the autocorrelation between any two time series observations

separated by a “lag” of k time units. p is dimensionless and

—1<p <1 and pr=p_x
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which means that we should consider only positive lags. Also, px — 1 implies that
observations separated by a lag of k£ units have a strong tendency to move together
in a linear fashion with a positive slope and similarly for pr having a value closer to
-1 will indicate the same movement but with a negative slope. The estimate of py,
namely, 7 is given by the sample autocorrelation at lag k, denoted by the symbol 4,

and is given by the formula:

DB z(:z;—(:t)f;'; — ) (4.4.1)

where Z is the average of the observations: z,,2g+1," -, 2 and is given by:

;o= = (4.4.2)

n—a-+1
The theoretical autocorrelation function is defined to be a listing, or graph, of pi for
lags of k = 1,2,--- and sample autocorrelation function is the listing of 7 for lags
of k = 1,2,---. The theoretical autocorrelation function of a stationary time series
tends to either die down with increasing lag k or cut off after a particular lag k = g,
i.e., pr = 0 for k > g. One of the ways to conclude if p, = 0 or not is to calculate the

“t-like statistic”:

Tk
t.r = — where
Srk

s = —————(1+2Y )% for k>
* (n—a+1)( ,g ) ?
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As a rule of thumb it can be concluded that:

Tk

pe=0 ifltn] = || <2

Srk

It can be shown that if a time series is non-stationary then the sample autocor-
relation function will neither cut off nor die down quickly, but rather will die down
extremely slowly.

If the first differences are found to represent a non-stationary time series, then
the second difference should be considered to produce a stationary time series.It is
rarely necessary to consider more than the second differences to achieve stationarity
for a time series not possessing seasonal variations.

The partial autocorrelation between any two time series observations separated
by a lag of k£ time units defined by pix helps us in determining the particular time
series model that can be assumed to have generated the observations z,, Za41, - * Zn.

The estimate of pix is given by:

T lf k=1

k=1
Te—Q iy Thk=1jTk—j .
rkk = 1 Jk—l - lf k= 2,3,---
2 =1 Tk-14T;

where Tkj =Tk-1j — TkkTk-1k—js JOr j=1,2,--- k-1

The most common Box-Jenkins models for stationary time series are:

1. Moving-Average models of order (g):

Zx=pt+e—0160-1 — ba63 — -+ - — 0464,
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2. Autoregressive models of order (p):

=0+ 121 +Paz2+ -+ Ppzep + &

3. Mixed Moving-Average and Autoregressive models of order (p,q):

zz=0+@12-1 + P22e2+ -+ Gpzrp —O1€t—1 — OrEr g — - - - — q€t—q€t + &t

Of these, the third model has been chosen for our experiment. A detailed account of

the first two models has been given in appendix A.3.

4.4.1 Mixed Auto-Regressive-Moving-Average Models

The model:
z=0+ Q121+ Pazea+ -+ Ppze—p — O1E4—1 — b4 g — - — q€t—q + €t

is called a mixed autoregressive-moving-average model of order (p,q).
1. Stationarity condition: same as the autoregressive process of order p.
2. Invertibility condition: same as the moving-average model of order gq.

Both the theoretical autocorrelation function and the theoretical partial auto-

correlation function die down.

4.4.2 The Modelling

For the experiments on exchange rates, the following model has been considered:

Zy = 0+ 1z e — b1Er (4.4.3)
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The model described by 4.4.3 is a mized autoregressive and moving average model of

order (1,1) This model is stationary if

I¢1I <1
and invertible if

6.l <1
The mean of the model is given by

¢

g 1
This means that
0 = pu(l—¢1) (4.4.4)

4.4.3 Estimation of Model Parameters

In order to develop the model described by equation 4.4.3 it is necessary to estimate
the parameters ¢ , 8 and 4.

Estimation of ¢

In case of first order autoregressive models, the estimation of the parameter ¢, is
given by

1—1"2

4.4.
- (4.4.5)

951 = 7’1(

The equation 4.4.5 follows from solving Yule-Walker equations described in appendix

A.3 and assuming that 7 is an estimate of pi.
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Estimation of 6

Referring to the appendix A.3, we see that equation

-6,
= 1+ 0% (4.4.6)
can be used to calculate 8;. Solution of which gives:
1 1 1
6 = —F[——=-1]z 44.7
1 2p1 [(2p1)2 ] ( )

Replacing the theoretical autocorrelation p; with sample autocorrelation r;, a pre-

liminary estimate of p;, we get,

" 1 1 :
o - — c— — — 2 4.
! 7 gy~ 1 (4.4.8)

There are two values of § in the above equation 4.4.8. The value for which § satisfies
the invertibility condition i.e., |§] < 1 is used as the estimate of 6. ( Please refer to

appendix A.3 for further details) .

Estimation of §

From equation 4.4.4 , a preliminary estimate of § is given by:

where Z is the estimate of mean u and is given by equation 4.4.2.
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4.4.4 Forecasting the Future Values

After the estimation of the parameters ¢ , 8 , and § for the first-order mixed moving-
average and autoregression model 4.4.3 considered for experiments, we are in a po-
sition to use the model for forecasting the future values of the time series. Now, we

have,
22 = Vyi=y—y
Hence, we can write:

Zy = 0+ ¢1ze1 +6 — b6y
Vy, = 0+¢1Vy1 + 60— b6
Ye— Y1 = 0+ G1(Yem1 — Ye—2) + & — 01641

Yo = 0+ (¢1 + l)yt_1 — 01Y1—2 + ¢ — = (4.4.10)

The model described by equation 4.4.10 has been used for carrying out experiments

in forecasting future values of the exchange rates.

4.4.5 The Box-Jenkins Algorithm

As mentioned earlier, the first-order mixed autoregressive and moving-average model
of order (1,1) has been considered for forecasting future values of exchange data. The

algorithm is being stated below:

Step 1: Using a set of input time series data, compute the first differences to make the

time series stationary.
Step 2: Calculate the correlation coefficients using equation 4.4.1.

Step 3: Calculate the estimates of ¢ , 8 , and ¢ , using equations 4.4.5, 4.4.8 , and

4.4.9 respectively. Make sure that the stationarity and invertibility conditions
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are satisfied.

Step 4: Calculate the error terms € by subtracting the forecasted value of the time series

from the actual values.

Step 5: Substitute all the estimates in the modelling equation and perform forecasting

for the remaining data.
Step 6: IF stopping condition is satisfied THEN stop ELSE go to Step 2.
Please note that a lag of 1 and first-order differences have been considered for the
experiments.
4.4.6 Experimental Results

An example of the performance of Box-Jenkins method is illustrated in the following

graph: The overall M SE range from 0.0023 to 0.003. The mean is around 0.002. The

08 1 T 1

0.7 boxjen/canada-averag cd A ¥
0.6 v
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Figure 11: Predicting 3 days averages of Canadian-U.S. dollar exchange rates for
window size 3 using Box-Jenkins method

range of M SE for the averages is from 0.0023 to 0.00299, the mean is about 0.0026.
The range of RMSE is from 0.0487 to 0.055 for exchange rates and from 0.048 to
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0.054 for the averages of exchange rates. The mean of the former is around 0.05 and
that for the latter is 0.048. M AE ranges from 0.0047 to 0.0058 for exchange rates
and from 0.0029 to 0.0047 for the averages of exchange rates. The mean is about
0.005 for exchange rates and about 0.003 for the averages of exchange rates. Thus
we see that the M AE values of the average of exchange rates is much lower than the
exact exchange rates. M APE ranges from 1.14 to 2.00 for exchange rates and from
0.68 to 2.0 for the averages of exchange rates. The mean of the M APE values is
around 1.55 for the exchange rates and 1.2 for the averages of exchange rates. But
the overall M APE for averages is less than that of the exact exchange rates. Finally,
for the DIR, the value ranges from 0.4753 to 0.50 for exchange rates and from 0.4766
to 0.50. The overall mean for the exchange rates is about 0.49 whereas that for the
averages of exchange rates is about 0.48. The results are presented in the following

tables.
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Country

Prediction Zones

Measures

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

3

1

0.00238

0.04877

0.00472

1.14679

0.4805

0.00239

0.04890

0.00472

1.14802

0.4805

0.00239

0.04887

0.00472

1.14843

0.4803

Australia

0.00239

0.04890

0.00472

1.14802

0.4805

0.00239

0.04887

0.00472

1.14843

0.4803

0.00237

0.04869

0.00472

1.14600

0.4803

0.00239

0.04887

0.00472

1.14843

0.4803

0.00237

0.04869

0.00472

1.14600

0.4803

0.00238

0.04878

0.00472

1.14650

0.4803

0.00263

0.05125

0.00499

1.50737

0.4753

0.00263

0.05133

0.00499

1.51093

0.4750

0.00262

0.05116

0.00499

1.50480

0.4753

Britain

0.00263

0.05133

0.00499

1.51093

0.4750

0.00262

0.05116

0.00499

1.50480

0.4753

0.00262

0.05118

0.00499

1.50523

0.4753

0.00262

0.05116

0.00499

1.50480

0.4753

0.00262

0.05118

0.00499

1.50523

0.4753

0.00262

0.05123

0.00499

1.50721

0.4753

0.00253

0.05032

0.00579

1.66220

0.4779

0.00257

0.05074

0.00581

1.67176

0.4779

0.00256

0.05058

0.00580

1.66729

0.4782

Canada

0.00257

0.05074

0.00581

1.67176

0.4779

0.00256

0.05058

0.00580

1.66729

0.4782

0.00255

0.05052

0.00581

1.66828

0.4782

0.00256

0.05058

0.00580

1.66729

0.4782

0.00255

0.05052

0.00581

1.66828

0.4782

0.00255

0.05047

0.00581

1.66593

0.4784

0.00287

0.05361

0.00449

1.55045

0.4895

0.00288

0.05369

0.00449

1.55806

0.4895

0.00288

0.05362

0.00449

1.55269

0.4897

France

0.00288

0.05369

0.00449

1.55806

0.4895

0.00288

0.05362

0.00449

1.55269

0.4897

0.00288

0.05365

0.00449

1.55420

0.4895

0.00288

0.05362

0.00449

1.55269

0.4897

0.00288

0.05365

0.00449

1.55420

0.4895

3
3
4
4
4
5
5
)
3
3
3
4
4
4
5
]
5
3
3
3
4
4
4
5
5
5
3
3
3
4
4
4
)
S
]

2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3

0.00288

0.05367

0.00449

1.55696

0.4892

Table 13: Predicting exchange rates using Box-Jenkins method
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Counitry

Prediction Zones

Measures

window

horizon || MSE

RMSE

MAE

MAPE

Ave DIR

0.00301

0.05488

0.00476

1.80827

0.4782

0.00302

0.05494

0.00476

1.82242

0.4782

0.00301

0.05485

0.00476

1.80518

0.4782

Germany

0.00302

0.05494

0.00476

1.82242

0.4782

0.00301

0.05485

0.00476

1.80518

0.4782

0.00301

0.05491

0.00476

1.81376

0.4782

0.00301

0.05485

0.00476

1.80518

0.4782

0.00301

0.05491

0.00476

1.81376

0.4782

[ 0-00301

0.05491

0.00474

1.81267

0.4784

~ [ 0.00308

0.05546

0.00490

1.85489

0.5005

0.00308

0.05550

0.00490

1.86863

0.5005

0.00307

0.05544

0.00489

1.85052

0.5005

Japan

0.00308

0.05550

0.00490

1.86863

0.5005

0.00307

0.05544

0.00489

1.85052

0.5005

0.00307

0.05542

0.00490

1.84250

0.5005

0.00307

0.05544

0.00489

1.85052

0.5005

0.00307

0.05542

0.00490

1.84250

0.5005

0.00307

0.05544

0.00490

1.84835

0.5005

0.00298

0.05461

0.00538

2.00007

0.4950

0.00299

0.05471

0.00538

2.01768

0.4953

0.00298

0.05459

0.00538

1.99976

0.4955

Switzerland

0.00299

0.05471

0.00538

2.01768

0.4953

0.00298

0.05459

0.00538

1.99976

0.4955

0.00298

0.05461

0.00538

2.00271

0.4955

0.00298

0.05459

0.00538

1.99976

0.4955
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0.00298

0.05461

0.00538

2.00271

0.4955

0.00299

0.05471

0.00538

2.01855

0.4955

Table 14: Predicting exchange rates using Box-Jenkins method (contd.)
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Country

Prediction Zones

Measures

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

3

0.00235

0.04843

0.00294

0.68019

0.4766

0.00235

0.04851

0.00339

0.80813

0.4976

Australia

0.00235

0.04843

0.00294

0.68019

0.4766

0.00235

0.04851

0.00339

0.80813

0.4976

0.00235

0.04843

0.00294

0.68019

0.4766

0.00235

0.04851

0.00339

0.80813

0.4976

0.00261

0.05107

0.00320

0.94555

0.5068

0.00262

0.05123

0.00458

1.38292

0.4829

Britain

0.00261

0.05107

0.00320

0.94555

0.5068

0.00262

0.05123

0.00458

1.38292

0.4829

0.00261

0.05107

0.00320

0.94555

0.5068

0.00262

0.05123

0.00458

1.38292

0.4829

0.00253

0.05033

0.00345

0.95906

0.4797

0.00253

0.05035

0.00422

1.18611

0.4861

Canada

0.00253

0.05033

0.00345

0.95906

0.4797

0.00253

0.05035

0.00422

1.18611

0.4861

0.00253

0.05033

0.00345

0.95906

0.4797

0.00253

0.05035

0.00422

1.18611

0.4861

0.00286

0.05351

0.00274

0.98637

0.4900

0.00286

0.05352

0.00323

1.13733

0.4929

France

0.00286

0.05351

0.00274

0.98637

0.4900

0.00286

0.05352

0.00323

1.13733

0.4929
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0.00286

0.05351

0.00274

0.98637

0.4900

0.00286

0.05352

0.00323

1.13733

0.4929

Table 15: Predicting averages of exchange rates using Box-Jenkins method
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Country Prediction Zones Measures

window | horizon || MSE RMSE | MAE MAPE | Ave DIR

3 3 0.00299 | 0.05472 | 0.00289 | 1.20538 | 0.5061

0.00300 | 0.05476 | 0.00356 | 1.42232 | 0.4905

Germany 0.00299 | 0.05472 | 0.00289 | 1.20538 | 0.5061

0.00300 | 0.05476 | 0.00356 | 1.42232 | 0.4905

0.00299 | 0.05472 | 0.00289 | 1.20538 | 0.5061

0.00300 | 0.05476 | 0.00356 | 1.42232 | 0.4905
0.00306 | 0.05529 | 0.00318 | 1.36175 | 0.4955

0.00308 | 0.05548 | 0.00472 | 1.80038 | 0.4926

Japan 0.00306 | 0.05529 | 0.00318 | 1.36175 | 0.4955

0.00308 | 0.05548 | 0.00472 | 1.80038 | 0.4926

0.00306 | 0.05529 | 0.00318 | 1.36175 | 0.4955

0.00308 | 0.05548 | 0.00472 | 1.80038 | 0.4926
0.00296 | 0.05440 | 0.00336 | 1.32163 | 0.5208

0.00298 | 0.05455 | 0.00471 | 1.76606 | 0.4889

Switzerland 0.00296 | 0.05440 | 0.00336 | 1.32163 | 0.5208

0.00298 | 0.05455 | 0.00471 | 1.76606 | 0.4889

0.00296 | 0.05440 | 0.00336 | 1.32163 | 0.5208

D O] | | Qo] Coff O U | it Qo QO | O] | W
U | Ul W] O] WOl O] WO] Ot WO | WO O W Y W n

0.00298 | 0.05455 | 0.00471 | 1.76606 | 0.4889

Table 16: Predicting averages of exchange rates using Box-Jenkins method (contd.)
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4.5 Forecasting Seasonal Time Series

We consider time series that are seasonal in nature, i.e., time series which include

seasonal variations. There are two types of seasonal variations:

1. Additive seasonal variations : the magnitude of the seasonal swing of the time

series is independent of the average level as determined by the trend .

2. Multiplicative seasonal variations : the magnitude of the seasonal swing is pro-
portional to the average level as determined by the trend. Thus if the average

level is increased(decreased) so is the swing increased(decreased).

Very few real-world time series possesses seasonal variation that is precisely additive
or multiplicative in nature.But it is necessary to classify a given time-series model for
analysis. The time series models to be described in this context are special cases of

the model:

ye = f(TR,, SNy) + &,

where y, : observed value of the time series in the time period t. TR, : trend factor
of the time series in time period t. SNV, : seasonal factor of the time series in time
period t. f: a function relating the observed value of the time series to the trend and
seasonal factors.

€s: irregular factor of the time series in time period t. Let ¢r, and sn, be the
estimates of TR, and SN, respectively. Then the estimate of the value of the time

series in period £ is :

Ye = f(tre, sme)

63



When analyzing a time series having additive seasonal variations, it is generally as-

sumed that:

f(TR,,SN,) = TR, + SN,

This means that the magnitude of the seasonal swing of the time series is independent
of the average level as determined by the trend.

The estimate of the value of y, is :
Y = try + sn,

When analyzing a time series having multiplicative seasonal variations, it is generally

assumed that :
f(TR:,,SN,) = TR, x SN,
This implies that SNV, is proportional to TR,. The estimate is given by:
Yo = try X sn,

TR, is generally assumed to be given by any one of the following equations:
1. TR, = 3 i.e. no trend.
2. TR, = By + Byt i.e. linear trend.
3. TR, = [y + Bit + fBot? i.e. quadratic trend.

Most of the time series exhibit linear trend. Therefore we shall assume: TR; =

Bo + But

64



4.5.1 The Seasonal and Cyclical Factors

1. The Seasonal Factor : a correlation factor that accounts for or adjusts for the

seasonality in the time series.

2. The Cyclical Factor : the seasonal variations in a time series, hence seasonal
factor SV, reflects cyclical patterns in a time series that are completed within
one calendar year. If a time series is also influenced by a cyclical pattern that
has a duration of more than one year, then a cyclical pattern is said to exist

and is denoted by CL,.

For a real time series the factors TR,, SN,, CL, are not known. They have to

be estimated by the forecaster.

4.5.2 Forecasting using the Multiplicative Decomposition Methos

We discuss analyzing and forecasting a time series that has multiplicative seasonal

variation.

Y = TRt X SNg + &

The above model can be written as :

Ye = TRt X SNt X CL: X IR;

where IR, is the irregular factor of the time series in period ¢.

The forecast is done using:

"lit = in; X sn,
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The estimation of the seasonal factors can be made by using the “moving average
technique” .This will remove the seasonal variation of a time series since each moving
average is computed using exactly one observation from each season.Secondly, it has
removed the effects of irregular factors hopefully.

Hence the centered moving averages represent a combination of trend and cycli-
cal factors. We consider the centered moving average corresponding to period t as
try X cl; the estimate of TR, x CL,.

Since

Y= TR( X SNg X CLg X IRt and

try X smg X Clt X i‘rt
tr, X Clt

STy X Ty =

We can obtain an estimate of SN, x I R, using the formula :

Ye

sy X irt = -—tT < cl
t t

4.5.3 Winters’ Method

This is an exponential smoothing procedure with a linear trend and multiplicative
seasonal variations. It was developed by P. R. Winters [27] and is known as Winters’

Method. The model can be described as below :

Ye = (Bo + Bit) X SN, + ¢,

4.5.4 Updating the Estimates

Assume that at the end of period (T" — 1) we have the estimates of the model pa-
rameters f; B, and SN, . We have a new observation yr in period T and want to

estimate the parameters.
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Let the updated estimates be bo(T'), b,(T’) and sny(T) where by (T) is the esti-
mate of the intercept of the trend line, where we define the intercept to be the intercept
at the original origin of time. The estimate of the intercept using the current time
period as the origin shall be denoted by ao(T).

Assume that we have several seasonal factors. Let us denote the number of
seasons that must occur before the first season repeats itself as I (for monthly time

series L is 12 and for quarterly time series it is 4.) such that:

L
S SN, =L
t=1
L
ant(O) =L
t=1

Now, given the new observation yr, we wish to obtain the estimates aq (T), b:(T), and
snt(T) by updating ao(T — 1) and b,(T — 1), the estimates obtained in the previous
period, and by updating sny(T — L), the last estimate of the current seasonal factor
obtained L periods ago.

In order to update the estimate of f, , often called the permanent component

we use the following equation:

ao(T) = amgf__m + (1 - a)[ao(T - 1) + bl(T - 1)]

where ao(T') is the new estimate of fy and « is the smoothing constant 0 < a < 1,
ao(T — 1) + b, (T — 1) is simply the estimate of the average level of the time series at
time T'. yr is divided by sny(T — L) to get rid of the seasonal factor from influencing
the estimate of the permanent component. This is called deseasonalization of yr. We

obtain the updated estimate of f,, often called the trend by using the equation
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bl(T) = ﬁ[ao(T) - ao(T - 1)] + (1 o ,B)bl(T - 1)

where [ is the smoothing constant 0 < § < 1. and ao(T) — ao(T — 1) is the differ-
ence between the estimate of the current component and the one made in the last
period.The updated estimate of the seasonal factor is obtained by using the following

equation:

SNT = Y——— (T) +(1—=7)snp(T-L)

where 0 < v <1

The estimate made L periods ago is used because that was the last time this
particular season was observed.The current observed seasonal variation is obtained
by dividing the observed yr by the current estimate of the average level of the time

series, ao(T)

I1++(T) = [2o(T) + bu(T)7]snr4r (T + 7 — L)

4.5.5 The Initial Estimates

To determine aq(0), b:(0) and snr(0) for ¢ = 1,2,...L, where L is the number of
different seasons.

One way to find the initial estimates is to use the multiplicative decomposition
method, then:

ao(0) = by , b1(0) = by, snr(0) = snrfort =1,2,... L. But the more frequently

used method is the one given by Johnson and Montgomery [15] and is similar to the
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Winters’ method.
Suppose that the historical data for the last m years is available. Let §; be the
average of the observation in the i* year, i =1,2,...m.

Then the initial estimate of 8;, the trend component can be determined by:

_ Um -7
"0 = e

where §, is the average level of the time series in the middle of the year m

and #, is the average level of the time series in the middle of year 1

The number of seasons between the middle of the year 1 and middle of year m
is (m—1)L.

Thus b;(0)is the change in average level per season from the middle of year 1 to
the middle of year m. The initial estimate of the permanent component £, is given

by:

2(0) = 71 ~ Z5,(0)

Obtaining the initial estimates of the L seasonal factors is done as follows: The

expression

S, = — Ye '
i — [(L +1)/2 - 4]b,(0)
must be computed for each season ¢ occurring in years 1 through m. Here §; is the
average of the observations for the year in which the season ¢ occurs.
so,iflStSL,theni=1;ifL+15t52L, then i = 2 etc.
Thus ; measures the average level of the time series in the middle of the year

in which ¢ occurs. The letter j denotes the position of the season ¢ within the year.
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Thus the denominator of the above equation determines the average level of the time
series in season t. If the season ¢ occurs before the middle of the year, we subtract the
appropriate trend from the average level at midyear in order to obtain the average
level in season £. S, is the ratio of the observation in season ¢ to the average level of
the time series in season t.It is the factor by which we must multiply the average level
in order to obtain the observation, and hence S, represents factors not accounted for
in the average level of the time series.

Since the average level is determined by the permanent component and the

trend, S, represents the seasonal factors and the error term &,.

SNy =

3|~

m-—1
D Serkr
k=0

t =1,2,...L. This is the average seasonal index for each different season. i.e. for
monthly data there are 12 seasonal factors , 1 for each month.

Finally the seasonal factors are normalized so that they add up to L. Thus:

L
L —
i1 STy

]

sn(0) = s7[

t=1,2,...L. Thus we have obtained the initial estimates of aq(0) , b;(0) and sn,(0)
t =1,2,...L. Winters’s method thus is an intuitive modification of either single or

double exponential smoothing.
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Chapter 5

Predicting Time Series using

Neural Networks

Artificial neural net methods or “neural nets” are dense interconnections of computa-
tional elements called neurons or nodes. In this respect, artificial neural net structure
is based on our present understanding of biological nervous systems. Neural nets are
widely used in areas of speech and image recognition where many hypotheses are
pursued in parallel, high computation rates. Neural net models explore many com-
peting hypotheses simultaneously using massively parallel nets composed of many
computational elements connected by links with variable weights.

The nodes used in a neural net are nonlinear and typically analog, and may
be slower compared to digital circuitry. The simplest node sums N weighted inputs
and passes the result through a non-linearity (we use the sigmoid function). The
node is characterized by an internal threshold or offset § and by the type of non-
linearity. Note: the non-linearities may be hard limiters, threshold logic elements
and sigmoidal.

Neural nodes are specified by the net topology, node characteristics, and training
or learning rules. These rules specify an initial set of weights and indicate how
weights should be adapted during use to improve performance. Most neural net

algorithms also adapt connection weights in time to improve performance based on
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current results. Adaptation or learning is a major focus of neural net research. The
ability to adapt and continue learning is essential in forecasting time series because
the the net is trained with a limited number of data whereas in reality the time series
behaves quite erratically. So, it is a challenge to choose a representative training set
and adapt the weights of the interconnections to get an accurate prediction of the

future values.

5.1 Training of artificial neural net

The training of a neural net depends on the structure of the network and the training
algorithm. But each of these algorithms provide very similar training procedures.
The differences between them lies on how the input patterns are presented to the
net and how the weights adjust with each step of the presentation to give the closest
output.

The training of a neural net takes place in different stages. First, a set of N
inputs are fed in parallel to the first stage via IV input connections. Each connection
carries an analog value which may take on two levels or vary over a large range for a
continuous valued inputs. The first stage computes matching scores and outputs these
scores in parallel to the next stage over M analog output lines. Here the maximum
of these values is selected and enhanced. The second stage has one output for each of
the M classes. After classification is complete, only that output corresponding to the
most likely class will be on strongly or “high”; other outputs will be “low”. Note that
in this design, outputs exist for every class and that this multiplicity of outputs must
be preserved in further processing stages as long as the classes are considered distinct.
If the correct class is provided, then this information and the classifier outputs can be
fed back to the first stage of the classifier to adapt weights using a learning algorithm.
Adaptation will make a correct response more likely for succeeding input patterns that

are similar to the current pattern. Classifiers can perform three different tasks. First,
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they can identify which class best represents an input pattern, where it is assumed
that inputs have been corrupted by noise or some other process. This is a classical
decision theory problem. Second, the classifiers can be used as a content-addressable
or associative memory, where the class exemplar is desired and the input pattern is
used to determine which exemplar to produce. Finally, the third task is to vector
quantize or cluster the NV inputs into M clusters. These number of clusters can be
pre-specified or may be allowed to grow up to a limit determined by the number of
nodes available at the first stage.

As mentioned before, the input pattern for a neural net may be either binary
or continuous-valued. The training for each set of inputs could either be Supervised
or Unsupervised. Nets trained with supervision ( e.g. Hopfield net and perceptrons)
are used as associative memories or as classifiers. These nets are provided with
side information or labels that specify the correct class for new input patterns during
training. Nets trained without supervision such as the Kohonen’s feature-map forming

nets are not provided with any information about the correct class during training.

5.1.1 Single and Multi-layer Perceptrons

A single layer perceptron comprises of just one node. This net can be used for both
binary and continuous valued inputs. The single node computes a weighted sum of
the input elements, subtracts a threshold (6) and passes the result through a hard
limiting nonlinearity such that the output y is either +1 or —1.

Multi-layer perceptrons are feed-forward nets with one or more layers of nodes
between the input and output nodes. These additional layers contain hidden units or
nodes that are not directly connected to both the input and output nodes. Multiple-
layer perceptrons overcome many of the limitations of single layer perceptrons, but

were not popular in the past due to lack of effective training algorithms. This has
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changed after the development of new training algorithms. As noted above, a single-
layer perceptron forms half-plane decision regions. A two-layer perceptron forms any,
possibly unbounded, convex region in the space spanned by the inputs. Such regions
include convex polygons called convex hulls, and unbounded convex regions. The
convex regions are formed from intersections of the half-plane regions formed by each
node in the first layer of the multiple-layer perceptron. Each node in the first layer
behaves like a single-layer perceptron and has a “high” output only for points on one
side of the hyper-plane formed by its weights and offset. If weights to an output node
from N, first-layer nodes are all 1.0 and the threshold in the output node is (N1 —¢)
where 0 < £ < 1 then the output node will be “high” only if the outputs of all
first-layer nodes are “high”. This corresponds to performing a logical AND operation
in the output node and results in a final decision region that is the intersection of
all the half-plane regions formed in the first layer. Intersections of such half planes
form convex regions as described above. These convex regions have at most as many
sides as there are nodes in the first layer. This analysis provides some insight into
the problem of selecting the number of nodes to use in a two-layer perceptron. The
number of nodes must be large enough to form a decision region that is as complex
as required by the given problem. It must not, however, be so large that the many
weights required can not be reliably estimated from the available training data.

All the above discussion is based on multi-layer perceptrons with one output

when hard limiting nonlinearities are used.

5.2 Design of Experiments

All the learning methods discussed in the subsequent sections have been implemented
on the computer using the C programming language. The exchange rates of Australia,
Britain, Canada, France, Germany, Japan and Switzerland with the U.S. dollar were

used as input time series data. Experiments were conducted using 3000 data from
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each country and predictions were made in the following sequence:

1. Predicting the exchange rates of each country using window sizes of 3, 4, 5 and

prediction horizon of 1 day, 2 days and 3 days.

2. Predicting the averages of the exchange rates of each country using window size

of 3, 4 and 5 and prediction horizon of 3 and § days.

The results of predictions of each of the learning methods are presented in tables.

75



3.3 The Method of Backpropagation

The backpropagation training algorithm is an iterative gradient algorithm designed
to minimize the mean square error between the actual output of a multi-layer feed-
forward perceptron and the desired output. It requires continuous differentiable non-
linearities. The following assumes a sigmoid logistic non-linearity function f(a) given

by:

The net is trained by initially selecting small random weights and internal
thresholds and then presenting all the training data repeatedly. Weights are adjusted
after every trial using side information specifying the correct class until weights con-
verge and the cost function is reduced to an accepted value. The iterative steps of
the algorithm as presented below propagates error terms required to adapt weights

back from nodes in the output layer to nodes in the lower layers.

5.3.1 The Backpropagation Algorithm

The backpropagation algorithm can be stated as follows:

Step 1: (Initialize Weights and Offsets) Set all the weights and node offsets to small

random values.

Step 2: (Present Inputs and Desired Outputs) Present a continuous valued input vector
X0, X1, -+ Xn-1 and specify the desired outputs dg, d;, --- dpm-g. Samples

from the training set are presented cyclically until weights stabilize.

Step 3: (Calculate Actual Outputs)
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Step 4:

Step 5:

The actual outputs are calculated based on the sigmoid function and relations

described by the following equations :

n—1
v = f(Q_ wuzk — Or)

k=0

(Adapt Weights)

A recursive algorithm is used starting at the output node working back to the

first hidden layer. The weights are adjusted by using the formula:
w,-j(t + 1) = w,-,-(t) + 1761,‘]'
where w;; is the weight from the hidden node ¢ or from an input to a node j at

time {, z;- is either the output of node ¢ or is an input. 7 is the gain term and

d is an error term for node j. If j is an internal hidden node, then

§; = y;(1.0 — y;)(d; — y;) where d; is the desired output of the node j and
y; is the actual output. If node j is an internal hidden node, then §; =
£;(1.0 — z;) Tk 6xwjx where k is over all nodes in the layers above node j.
Internal node thresholds are adapted in a similar manner by assuming they
are connection weights on links from auxiliary constant-valued inputs. Conver-
gence is sometimes faster if a momentum term is added and weight changes are

smoothed by:
w,-j(t + 1) = w,-j(t) + T](Sjl‘;- + a(w,-j(t) - w,-j(t - 1))

where 0 < a < 1.

(Repeat by going to Step 2)

5.3.2 Experimental Results

Out of the 3000 data, about 1000 were used for training the net and the rest 2000

were used for testing. A learning rate a of 0.8 was used.
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1. For window of size 3, the number of input neurons chosen was 3, the number of

hidden neurons was 6 and 1 output neuron.

2. For window of size 4, the number of input neurons chosen was 4, the number of

hidden neurons was 7 and 1 output neuron.

3. For window of size 5, the number of input neurons chosen was 5, the number of

hidden neurons was 8 and 1 output neuron.

All the weights were initialized randomly. The following graph depicts the perfor-
mance of the backpropagation in predicting the 3-day-average of the Canadian-U.S.
exchange rates. The overall M SE range from 0.0003 to 0.001. The mean is around

0.8 T L T I
original-data —
0.7 backprop/canada-averag /cd ay-win-3.out - - - -

0.6
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0.4
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Figure 12: Predicting 3 days average of Can-U.S. exchange rates using the backprop-
agation method

0.0006. The range of MSE for the averages is from 0.00017 to 0.00055, the mean is
about 0.00017. The range of RMSE is from 0.01 to 0.04 for exchange rates and from
0.009 to 0.02 for the averages of exchange rates. The mean of the former is around
0.02 and that for the latter is 0.01. M AE ranges from 0.01 to 0.03 for exchange rates

and from 0.006 to 0.01 for the averages of exchange rates. The mean is about 0.02
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for exchange rates and about 0.01 for the averages of exchange rates. M APE ranges
from 2.6 to 10.5 for exchange rates and from 1.75 to 6.51 for the averages of exchange
rates. The mean of the M APE values is around 4.1 for the exchange rates and 3.5
for the averages of exchange rates. Finally, for the DIR, the value ranges from 0.49
to 0.518 for exchange rates and from 0.48 to 0.52. The overall mean for the exchange
rates is about 0.49 whereas that for the averages of exchange rates is about 0.50. The

results are tabulated below:
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Country | Prediction Zones Measures
window | horizon | MSE RMSE | MAE MAPE | Ave DIR
3 1 0.00054 | 0.02319 | 0.01448 | 4.85627 | 0.4947
3 2 0.00095 | 0.03083 | 0.02107 | 6.23941 | 0.4950
3 3 0.00111 | 0.03328 | 0.02415 | 7.57341 | 0.4953
Australia 4 1 0.00050 | 0.02225 | 0.01410 | 5.32932 | 0.4950
4 2 0.00104 | 0.03223 | 0.02207 | 6.36570 | 0.4953
4 3 0.00145 | 0.03804 | 0.02692 | 7.67235 | 0.4957
5 1 0.00065 | 0.02551 | 0.01647 | 5.01517 | 0.4953
5 2 0.00110 | 0.03316 | 0.02228 | 6.15904 | 0.4957
5 3 0.00135 | 0.03672 | 0.02593 | 7.40298 | 0.4953
3 1 0.00032 | 0.01798 | 0.01020 | 4.04879 | 0.5027
3 2 0.00069 | 0.02631 | 0.01891 | 7.91936 | 0.5027
3 3 0.00135 | 0.03679 | 0.02931 | 11.67030 | 0.5027
Britain 4 1 0.00037 | 0.01914 | 0.01139 | 4.60607 | 0.5027
4 2 0.00108 | 0.03280 | 0.02487 | 9.74489 | 0.5027
4 3 0.00134 | 0.03662 | 0.02671 | 9.58364 | 0.5027
5 1 0.00037 | 0.01921 | 0.01100 | 4.51840 | 0.5027
5 2 0.00073 | 0.02708 | 0.01907 | 7.28880 | 0.5027
5 3 0.00150 | 0.03877 | 0.02876 | 10.53460 | 0.5023
3 1 0.00041 | 0.02033 | 0.01324 | 3.45460 | 0.4947
3 2 0.00084 | 0.02902 | 0.02434 | 7.46130 | 0.4947
3 3 0.00122 | 0.03497 | 0.02926 | 8.59726 | 0.4947
Canada 4 1 0.00045 | 0.02121 | 0.01739 | 5.39288 | 0.4947
4 2 0.00073 | 0.02710 | 0.01751 | 4.03373 | 0.4947
4 3 0.00175 | 0.04182 | 0.03535 | 10.52540 | 0.4947
5 1 0.00057 | 0.02382 | 0.01712 | 4.85236 | 0.4947
5 2 0.00092 | 0.03025 | 0.01891 | 4.04763 | 0.4947
5 3 0.00134 | 0.03655 | 0.02612 | 6.15847 | 0.4947
3 1 0.00039 | 0.01970 | 0.01190 | 4.59060 | 0.5153
3 2 0.00079 | 0.02809 | 0.01798 | 6.19398 | 0.5157
3 3 0.00117 | 0.03425 | 0.02382 | 8.78002 | 0.5160
France 4 1 0.00054 | 0.02333 | 0.01406 | 4.74266 | 0.5157
4 2 0.00115 | 0.03385 | 0.02245 | 7.14418 | 0.5160
4 3 0.00155 | 0.03932 | 0.02658 | 8.68075 | 0.5157
5 1 0.00079 | 0.02803 | 0.01600 | 4.36051 | 0.5160
5 2 0.00144 | 0.03795 | 0.02453 | 7.12387 | 0.5157
5 3 0.00240 | 0.04898 | 0.03120 | 8.75925 | 0.5157

Table 17: Predicting exchange rates using backpropagation learning
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Country

Prediction Zones

Measures

Germany

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

0.00016

0.01248

0.00873

2.62739

0.5093

0.00025

0.01593

0.01195

3.47193

0.5093

0.00069

0.02633

0.02014

5.17859

0.5093

0.00014

0.01195

0.00877

2.71973

0.5093

0.00026

0.01619

0.01221

3.52174

0.5093

0.00052

0.02288

0.01745

4.58203

0.5090

0.00015

0.01206

0.00880

2.72424

0.5093

0.00033

0.01825

0.01374

3.79916

0.5090

0.00102

0.03199

0.02565

6.54115

0.5087

Japan

0.00028

0.01683

0.01138

2.67773

0.5117

0.00075

0.02741

0.02057

4.28728

0.5117

0.00064

0.02524

0.01994

4.43512

0.5117

0.00062

0.02483

0.01711

3.48249

0.5117

0.00063

0.02514

0.01891

4.07529

0.5117

0.00105

0.03240

0.02543

5.30260

0.5117

0.00043

0.02080

0.01482

3.27662

0.5117

0.00073

0.02696

0.02060

4.31716

0.5117

0.00089

0.02980

0.02363

4.99340

0.5113

Switzerland

0.00028

0.01679

0.01360

4.33588

0.5173

0.00042

0.02057

0.01431

3.96080

0.5173

0.00049

0.02216

0.01834

5.60996

0.5177

0.00022

0.01475

0.01137

3.66554

0.5173

0.00043

0.02071

0.01700

5.26242

0.5177

0.00052

0.02280

0.01895

5.83149

0.5177

0.00021

0.01435

0.01086

3.48037

0.5177

0.00049

0.02212

0.01832

5.60067

0.5177
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0.00055

0.02341

0.01945

5.90427

0.5180

Table 18: Predicting exchange rates using backpropagation learning (contd.)
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Country | Prediction Zones Measures

window | horizon | MSE RMSE | MAE MAPE | Ave DIR
0.00030 | 0.01730 | 0.00945 | 4.56127 | 0.4800
0.00033 | 0.01828 | 0.00952 | 3.72249 | 0.4883
0.00032 | 0.01785 | 0.01065 | 5.19780 | 0.4800
0.00032 | 0.01788 | 0.00937 | 4.19723 | 0.4883
0.00033 | 0.01813 | 0.01111 | 5.50543 | 0.4800
0.00029 | 0.01713 | 0.00927 | 4.42731 | 0.4883

Australia

0.00030 | 0.01731 | 0.01301 | 4.72203 [ 0.5063
0.00020 | 0.01400 | 0.00797 | 3.51844 | 0.5103
0.00037 | 0.01920 | 0.01510 | 5.41047 | 0.5063
0.00023 | 0.01507 | 0.01034 | 3.97212 | 0.5103
0.00032 | 0.01801 | 0.01388 | 4.97657 | 0.5063
0.00028 | 0.01678 | 0.01252 | 4.57775 | 0.5103

Britain

0.00026 | 0.01597 | 0.01397 | 4.28454 | 0.5037
0.00020 | 0.01419 | 0.00962 | 2.44134 | 0.5003
0.00029 | 0.01717 | 0.01473 | 4.62887 | 0.5037
0.00017 | 0.01289 | 0.01062 | 3.10447 | 0.5003
0.00026 | 0.01619 | 0.01402 | 4.34835 | 0.5037
0.00023 | 0.01504 | 0.01299 | 4.01296 | 0.5003

Canada

0.00021 | 0.01438 | 0.01081 | 4.29085 [ 0.5117
0.00022 | 0.01482 | 0.01002 | 4.89227 | 0.5120
0.00023 | 0.01510 | 0.01230 | 5.00503 | 0.5117
0.00020 | 0.01411 | 0.01032 | 4.77671 | 0.5120
0.00029 | 0.01693 | 0.01426 | 5.70611 | 0.5117
0.00021 | 0.01445 | 0.01150 | 4.87873 | 0.5120

France
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Table 19: Predicting averages of exchange rates using backpropagation learning
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Country

Prediction Zones

Measures

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

0.00008

0.00920

0.00575

1.75202

0.5060

0.00034

0.01854

0.01430

5.14011

0.5010

Germany

0.00008

0.00878

0.00603

1.83180

0.5060

0.00009

0.00974

0.00460

1.31736

0.5010

0.00007

0.00846

0.00568

1.75125

0.5060

0.00008

0.00913

0.00647

2.02970

0.5010

0.00051

0.02259

0.01457

2.82833

0.5140

0.00020

0.01429

0.01100

2.68518

0.5197

Japan

0.00042

0.02042

0.01684

3.60866

0.5140

0.00069

0.02620

0.02242

4.63945

0.5197

0.00156

0.03949

0.03374

6.51951

0.5140

0.00050

0.02236

0.01882

3.96439

0.5197

0.00027

0.01643

0.01395

4.11947

0.5227

0.00044

0.02094

0.01884

5.46716

0.5030

Switzerland

0.00020

0.01419

0.01182

3.59338

0.5227

0.00020

0.01420

0.01108

3.72766

0.5030

0.00029

0.01716

0.01410

3.94991

0.5227
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0.00024

0.01556

0.01317

3.92474

0.5030

Table 20: Predictin

(contd.)
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5.4 The Method of Recurrent Nets

Time underlines many interesting human behaviour. Thus, the question of how to
represent time in connectionist models is very important. One approach is to represent
time implicitly by its effects rather than explicitly(spatial representation of time).
This chapter deals with the use of recurrent links (first described by Jordan [16]) in
order to provide networks with a dynamic memory. This means giving the processing
system some dynamic properties that are responsive to temporal sequence.

There are many ways in which this can be accomplished. A number of inter-
esting proposals have appeared in the literature, of which the connectionist model
suggested by William and Zisper [26] has been chosen for this thesis work.

The design of networks having a memory was first suggested by Jordan [16]. It
consisted of recurrent connections that were used to associate a static pattern with
a serially ordered output pattern. The recurrent connections allow the network’s
hidden units to see its own previous output , so that the subsequent behaviour can
be shaped by previous responses. These recurrent connections are responsible for the
network memory.

This approach can be modified in the following way: Suppose a network is
augmented at the input level by additional units ( the state variables) . These units
are hidden in the sense that they interact exclusively with other nodes internal to
the network , and not the outside world. In this thesis, the units are considered to
be scalars. Let the network be trained with the first set of input values at time ¢.
Both the input units ( which we call external input lines here after) and the units
activate the hidden units; the hidden units then feed forward to activate the output
units. The hidden units also feedback to activate the units. This constitutes the
forward activation. Depending upon the task, there may or may not be a teacher
forced learning, which means the output is compared with a desired output and the

error is back-propagated to the network in order to adjust the connection weights
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incrementally. At the next time step i.e. at ¢ + 1 the units contain values which are
exactly the hidden unit values at time ¢. Thus these units provide memory to the
net in this manner. This is called back-propagation-through-time computation. One
of the main advantages of these models is its generality, but on the other hand, its
disadvantage is its growing memory requirement when given an arbitrarily long input
sequence. And this was a matter of concern in the case of predicting future values of
a time series which have very long training patterns which is the main focus of the
current work.
Thus an algorithm was needed which had all the generalities of the backpropagation-

through-time approach, yet did not suffer from growing memory requirement in arbi-
trarily long training sequence. The algorithm suggested by Williams and Zisper met

the above requirements.

5.4.1 The Basic Algorithm

Let the network have n units, with m external input lines. Let y(t) denote the n-
tuple of outputs of the units in time ¢ , and let x(t) denote the m-tuple of external
input signals to the network at time ¢. Let y(t) and x(t) be concatenated to form
the (m + n)-tuple z(t), with U denoting the indices k such that 2z is the output of a
unit in the network and I the set of indices &k for which Zx¢ is an external input. The

indices on y and x are chosen to those of, so that

_ .’L‘k(t) ifkel
Zk(t) = { yk(t) ik cU (541)

Let W be the weight matrix between every pair of the units and also from each
input line to each unit. Hence the weight matrix has dimension n x (m+n). A bias
weight of value 1 is added to each of the m input lines. All the computations of this

network are based on the assumption that all the units are semi-linear in nature.
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Let

se®) = 3= wiez(t) (5.4.2)

vur

be the net input to the kth unit at time ¢, for kK € U. Then the output at the next

time step is given by:
Ye(t +1) = fi(sk(2)) (5.4.3)

where f; is a squashing function.

The equations defined by 5.4.2 and 5.4.3 defines the entire dynamics of the
network. The external input at time ¢ does not influence the output of any unit until
time £+1. The learning method adopted to train the recurrent net is called “temporal
supervised learning”. In this type of learning method, the output values of certain
units should match a given desired(target) value. Let T'(¢) be set of indices k € U for
which there exists a specified target value di(t). Then the error (a time dependent

n-tuple) is given by:

nlt) = { de(t) — ye(t) if k€ T(8) (5.4

0 otherwise

It is to be noted that this formulation allows the possibility that target values
are specified for different units at different times.

Let the overall network error at time ¢ be given by:

IO =5 3 lex(t)P (5.4.5)

keU

The goal is to minimize the error function at any particular time. Let the total
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error be given by:

t

Jeotat(to, t1) = D J(2) (5.4.6)
t=to+1
where tp and ¢; are the initial and final times respectively that the network was
operating.

Hence, our problem reduces to an optimization problem of minimization of the
total error given by equation 5.4.6. This is done by the gradient descent method and
the weights W are adjusted along the negative of Vi Jyotar(to, £ + 1).

Since the error function is a sum of squares of errors at each time step, it makes
sense to calculate the gradient by accumulating the values of Vi J(t) for each time
step along the trajectory. The overall weight change for any particular weight w;; in

the network can be written as:

31
Aw,-j = Z Aw,,(t) (5.4.7)
t=tg+1
where
— aJ(t)
Auy(t) = -t (5.4.8)

Here « is some fixed positive learning rate.
Now,
_0J®) _ Ol Tevles®)l’]
aw,-j 3w,-j

= — %O~y

ke Owij

kel awii
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Also,

Oyr(t+1) _  Ou(t) 0Os(t)
Bw,-,- - 6sk(t) aw,-j
_ 4 O ier whz)
= filaxte) (ARt
_ ’ awk, 62,
= fi(se(t) [‘GZU Fug; + g{:jwu%
= f;(sk(t)) [Oixzi(t) + zwkzaayt(_t_ ] (5.4.10)
€U ij

where &;; is the kronecker delta.

Since, by our assumption, at ¢ = t; , the network has no functional dependence

on the weights, we have:

Oye(to) _
el = 0 (5.4.11)

All the above mentioned equations hold fori € U, j e UUI, k € U.
Let {pfj} define the dynamics of the network system foralli e U, j e UUT ,

k € U. We can write:

Pt +1) = filsk(®) Bz () + Y wapk(t)) (5.4.12)
leU

with initial conditions:

pi(te) = 0 (5.4.13)
It follows that:
Oy (t)
k
pi;(t) = (5.4.14)
d Bw,-j
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Hence, we can finally say that:

Aw;i(t) = aZek(t)pfj(t) (5.4.15)
keU

In the case where each unit uses the logistic squashing function we can use:

Felse®) =y + 1)1 — ye(t + 1)] (5.4.16)

5.4.2 The Recurrent Nets Algorithm

The basic algorithm discussed in the preceding section can now be summarized as

follows:
Step 1: Initialize the number of units and inputs and weights.
Step 2: Calculate pf;(t) using equations 5.4.12 and 5.4.13.

Step 3: Calculate the errors ¢, (t) , i.e., the discrepancies between the desired and actual

outputs.

Step 4: Calculate the weight changes Aw;;(t) using equation 5.4.15. Then calculate

the overall weight change which is the sum of Aw;;(t).
Step 5: IF all data is used THEN stop., ELSE go to Step 2.

The above algorithm is implemented from time step to to ¢;.

9.4.3 Experimental Results

While conducting the experiments, the learning rate a was chosen to be 0.5. A fully

connected recurrent net was taken into consideration for each experiment.

1. For window of size 3, the number of units chosen was 7, the number of inputs

was 4, number of outputs was 1.
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2. For window of size 4, the number of units chosen was 7, the number of inputs

was 5 and the number of outputs was 1.

3. For window of size 5, the number of units chosen was 7, the number of inputs

chosen was 6 and the number of outputs was 1.

In most of the experiments 800 data were used for training and the remaining 2200
data were used for testing. The performance of recurrent nets in predicting 3 days

averages of the Canadian-U.S. exchange rates is shown in the following figure: The

0.8 T T T 1
original-data —
0.7 - recurn/canada-averagq/c ay-win-3.out - - - -

0.6
0.5
0.4
0.3

0.2

0'1 1 ] L I 1
0 500 1000 1500 2000 2500 3000

Figure 13: Predicting 3 days averages using recurrent nets with window size 3 on
Canadian-U.S.exchange rates

overall M SE range from 0.00015 to 0.003. The mean is around 0.0002. The range of
MSE for the averages is from 0.00012 to 0.003, the mean is about 0.002. The range
of RMSE is from 0.013 to 0.018 for exchange rates and from 0.012 to 0.07 for the
averages of exchange rates. The mean of the former is around 0.01 and that for the
latter is 0.01. M AFE ranges from 0.011 to 0.08 for exchange rates and from 0.007 to
0.01 for the averages of exchange rates. The mean is about 0.01 for exchange rates
and about 0.009 for the averages of exchange rates. M APFE ranges from 2.7 to 4.2 for

exchange rates and from 2.45 to 3.88 for the averages of exchange rates. The mean
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of the M APE values is around 3.4 for the exchange rates and 3.1 for the averages
of exchange rates. Finally, for the DIR, the value ranges from 0.4947 to 0.5177 for
exchange rates and from 0.4800 to 0.5120. The overall mean for the exchange rates is
about 0.50 whereas that for the averages of exchange rates is about 0.50. The results

are tabulated below:
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Country | Prediction Zones Measures

window | horizon || MSE RMSE | MAE MAPE | Ave DIR

3 1 0.00033 | 0.01830 | 0.00982 | 3.64260 | 0.4947

0.00034 | 0.01840 | 0.00993 | 3.66497 | 0.4950

0.00034 | 0.01857 | 0.01004 | 3.68592 | 0.4953

Australia 0.00034 [ 0.01840 | 0.00988 | 3.71291 | 0.4950

0.00034 | 0.01832 | 0.00980 | 3.69041 | 0.4953

0.00033 | 0.01828 | 0.00973 | 3.66846 | 0.4957

0.00030 | 0.01745 | 0.00901 | 3.45559 | 0.4953

0.00032 | 0.01777 | 0.00920 | 3.49215 | 0.4957

0.00032 | 0.01797 | 0.00941 | 3.53040 | 0.4953

0.00031 | 0.01761 | 0.01074 | 4.06058 | 0.5027

0.00033 | 0.01810 | 0.01118 | 4.20570 | 0.5027

0.00033 | 0.01818 | 0.01129 | 4.23611 | 0.5027

Britain 0.00034 | 0.01846 | 0.01118 | 4.25047 | 0.5027

0.00034 | 0.01836 | 0.01112 | 4.23468 | 0.5027

0.00033 | 0.01827 | 0.01105 | 4.21559 | 0.5027

0.00029 | 0.01699 | 0.01010 | 3.89456 | 0.5027

0.00030 | 0.01720 | 0.01032 | 3.94784 | 0.5027

0.00030 | 0.01736 | 0.01049 | 3.99381 | 0.5023

0.00026 | 0.01622 | 0.01081 | 3.58105 | 0.4947

0.00027 | 0.01648 | 0.01107 | 3.64201 | 0.4947

Canada 0.00027 | 0.01639 | 0.01083 | 3.62309 | 0.4947

0.00027 | 0.01648 | 0.01093 | 3.64444 | 0.4947

0.00027 | 0.01649 | 0.01099 | 3.65142 | 0.4947

0.00021 | 0.01464 | 0.00950 | 3.18991 | 0.4947

0.00023 | 0.01511 | 0.00996 | 3.29638 | 0.4947

0.00024 | 0.01546 | 0.01029 | 3.37482 | 0.4947

0.00019 | 0.01393 | 0.00922 | 3.58210 | 0.5153

0.00020 | 0.01410 | 0.00933 | 3.60805 | 0.5157

0.00020 j 0.01425 | 0.00941 | 3.62851 | 0.5160

France 0.00020 | 0.01413 | 0.00929 | 3.65532 | 0.5157

0.00020 | 0.01411 | 0.00923 | 3.63751 | 0.5160

0.00020 | 0.01402 | 0.00918 | 3.62201 | 0.5157

0.00018 | 0.01326 | 0.00846 | 3.37482 | 0.5160

3
3
4
4
4
]
5
5
3
3
3
4
4
4
5
5
5
3
3
3
4
4
4
5
5
5
3
3
3
4
4
4
)
5

2
3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1 0.00025 | 0.01591 | 0.01050 | 3.51022 | 0.4947
2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2 0.00018 | 0.01343 | 0.00863 | 3.41565 | 0.5157
3

0.00018 | 0.01351 | 0.00876 | 3.44685 | 0.5157

o

Table 21: Predicting exchange rates using recurrent nets
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Country

Prediction Zones

Measures

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

0.00018

0.01328

0.00937

2.89034

0.5093

0.00018

0.01345

0.00950

2.92458

0.5093

0.00018

0.01352

0.00960

2.95381

0.5093

Germany

0.00018

0.01354

0.00957

2.97581

0.5093

0.00018

0.01339

0.00948

2.95640

0.5093

0.00018

0.01324

0.00938

2.93185

0.5090

0.00015

0.01233

0.00857

2.68529

0.5093

0.00016

0.01253

0.00876

2.73485

0.5090

0.00016

0.01263

0.00890

2.77308

0.5087

0.00020

0.01414

0.00976

2.98604

0.5117

0.00021

0.01444

0.01001

3.04784

0.5117

0.00021

0.01466

0.01020

3.09604

0.5117

Japan

0.00020

0.01422

0.00970

3.04101

0.5117

0.00020

0.01421

0.00970

3.04717

0.5117

0.00020

0.01414

0.00966

3.04532

0.5117

0.00017

0.01302

0.00876

2.78407

0.5117

0.00018

0.01337

0.00908

2.86305

0.5117

0.00018

0.01360

0.00932

2.92334

0.5113

0.00023

0.01532

0.01111

3.55045

0.5173

0.00024

0.01553

0.01132

3.61106

0.5173

0.00025

0.01570

0.01148

3.66041

0.5177

Switzerland

0.00025

0.01567

0.01136

3.66276

0.5173

0.00024

0.01557

0.01132

3.65967

0.5177

0.00024

0.01553

0.01127

3.64629

0.5177

0.00020

0.01419

0.01015

3.29750

0.5177

0.00021

0.01459

0.01047

3.38643

0.5177
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0.00022

0.01491

0.01068

3.44908

0.5180

Table 22: Predicting exchange rates using recurrent nets (contd.)
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Country

Prediction Zones

Measures

Australia

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

0.00031

0.01751

0.00919

3.51430

0.4800

0.00030

0.01720

0.00898

3.46326

0.4883

0.00031

0.01751

0.00911

3.56930

0.4800

0.00030

0.01722

0.00891

3.51834

0.4883

0.00029

0.01701

0.00863

3.37488

0.4800

0.00027

0.01644

0.00812

3.26851

0.4883

Britain

0.00028

0.01685

0.01008

3.88978

0.5063

0.00028

0.01668

0.00991

3.84059

0.5103

0.00029

0.01714

0.01003

3.92180

0.5063

0.00029

0.01699

0.00986

3.87270

0.5103

0.00025

0.01591

0.00909

3.57094

0.5063

0.00022

0.01499

0.00883

3.50595

0.5103

Canada

0.00022

0.01477

0.00937

3.24747

0.5037

0.00021

0.01451

0.00920

3.19451

0.5003

0.00022

0.01486

0.00926

3.26460

0.5037

0.00021

0.01466

0.00913

3.22202

0.5003

0.00018

0.01345

0.00817

2.86724

0.5037

0.00016

0.01282

0.00761

2.72583

0.5003

France

0.00017

0.01320

0.00866

3.43716

0.5117

0.00017

0.01302

0.00851

3.39473

0.5120

0.00018

0.01329

0.00864

3.50031

0.5117

0.00017

0.01312

0.00846

3.44739

0.5120

0.00016

0.01259

0.00799

3.25012

0.5117

O O o] o] Qo Lol v O] ] | o] Lof| an| an| ] ] o] wolf en| en| i ] eo] co

Ot} Cof Of Qoj L] wolf L Cof anj eo| anf coft ey eof an| cof an| ol en| cof anl col end co

0.00015

0.01223

0.00763

3.16142

0.5120

Table 23: Predicting averages of exchange rates using recurrent nets
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Country

Prediction Zones

Measures

Japan

window | horizon

MSE

RMSE

MAE

MAPE

Ave DIR

0.00015

0.01236

0.00874

2.72614

0.5060

0.00015

0.01213

0.00860

2.68972

0.5010

0.00016

0.01253

0.00886

2.79731

0.5060

0.00015

0.01232

0.00867

2.75039

0.5010

0.00014

0.01163

0.00799

2.52047

0.5060

0.00012

0.01116

0.00764

2.44117

0.5010

Switzerland

0.00017

0.01315

0.00896

2.80381

0.5140

0.00017

0.01298

0.00883

2.78017

0.5197

0.00017

0.01296

0.00866

2.79701

0.5140

0.00016

0.01281

0.00852

2.77257

0.5197

0.00015

0.01205

0.00793

2.56100

0.5140

0.00013

0.01159

0.00752

2.48576

0.5197

0.00021

0.01432

0.01028

3.31803

0.5227

0.00020

0.01406

0.01010

3.26866

0.5030

0.00021

0.01455

0.01039

3.38883

0.5227

0.00020

0.01430

0.01023

3.34723

0.5030

0.00018

0.01333

0.00930

3.03518

0.5227

O O x| || OO Qo] | O] i) ] QO] Cofl On| | v | i O] O
QY o] Onj Qoff Ut Qo] O] Wo| Lnj Lo| wtj Lol anf o] an| o] anf o

0.00016

0.01279

0.00888

2.93006

0.5030

Table 24: Predicting averages of exchange rates using recurrent nets (contd.)
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9.5 An Adaptively Trained Neural Network

So far, in the previous chapter, stationary time series have been taken into consid-
eration. In this section, attention has been drawn to predict slowly varying non-
stationary time series data. An adaptively trained neural net is being used to learn
and hence predict these kind of time series data. The theory behind this learn-
ing method has been adopted from the works of Dong C. Park,Mohammed A., El-
Sharkawi,Robert J. Marks II [24]. The following two conditions should be satisfied

for updating the weights of a layered perceptron.

1. the procedure should still respond appropriately to the previous training data

if those data are not in conflict with the new training data.

2. the procedure should adapt to the new training data even when they are in

conflict with portions of the old data.

5.5.1 Formulation of the Problem

Assume a layered perceptron artificial neural network trained with NV sets of data.
(z(1),d(1)), (z(2),d(2)), ---(z(N),d(N)) where x(i) and d(i) represent the input and
desired output for the ** data set and 1 <1 < N. We assume that z(i) is an I-
dimensional vector and d(i) is a scalar. The layered perceptron is assumed to have
one hidden layer with ~ hidden neurons. The matrix W represents the weight matrix
between the input and hidden neurons and v denotes the weight vector which links
the hidden and output neurons. The dimensions of W and v are ] x hand h x 1
respectively.

For a given input data vector, z(), the output of the layered perceptron of y(i)

is given by:
y(i) = flv7y] (5.5.1)
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u = f[WTz(i)] (5.5.2)

where u = [u1,u, ...un]T, uj, 1 < j < h represents the activation of the j** hidden

neuron; f[.] is the sigmoid function:
flel=1/(1 +ezp(-z)), z€R
and f[b] is the k x 1 vector function

F18] = [£1[8]- falB], ---y fulB])T-

The sigmoid function for each hidden neurons is assumed to be identical.

All= fll=---= fil]= f[]

We assume that W(N) and v(IV) are the weights that minimize the error function:
1& 2
B(N) = 3 3-(d0i) - (i)™ (5.5.3)
i=1

5.5.2 Problem Statement

The forecasting problem is effectively an optimization problem. It involves mini-
mization of the error function described by equation 5.5.3. Mathematically, the
problem can be stated as follows: Given W(N), uv(N), the N sets of data, and
(z(N +1),d(N + 1)) ,determine W (N + 1) and (N + 1) such that

N+1

BN +1) =3 3 (d0) ~ y(6)? = EN) + L@V +1) ~y(N+ 1) (5.5.4

i=1

is minimized in such a manner that y(N + 1) ~ d(N + 1).
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5.5.3 Linearization Process

In order to promote tractibility of analysis and implementation , it is recommended

to linearize a given problem. Therefore, 5.5.1 and 5.5.2 gives:
d(N +1) = flvr(N + 1)u] = f{(v(N) + Av)Tu] (5.5.5)

where
u = f[WT(N + 1)x(N +1)] = f[(W(N) + AW)Tx(N +1)]. (5.5.6)

We expand the terms defined by equations 5.5.5 and 5.5.6 in a truncated Taylor’s
Series about {(x(N+1),W(N+1)}, in the neighborhood of {(x(N), W(N)}. Such a
linearization is used in Kalman filtering [14] and in quasi-linearization in [2], [17]
and [25].

After a series of calculations (these are described in details in appendix B.1.1)

we can derive the activations of the hidden neurons as:

ux~u" + (Veu ) AWTx(N +1) (5.5.7)
Inverting 5.5.5 gives

YNV +1)] = vT(N)u + AvTu (5.5.8)
where f~![z] = In(z/(1 — z)). From 5.5.7 and 5.5.8 we see that:

FTHAN +1)] = vI(N)u® =~ vI(N)(Veu ) AWTX(N +1) + AvTu* +
AVIVouAWTx(N +1) (5.5.9)

It is to be noted that the perturbation in AW has to be small in order to use 5.5.7 .
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If Av < Au then the third term of the right hand side of 5.5.9 can be ignored and

we can write:
AN +1)] = vI (V) = vT(V)(Veu" ) AWTX(N + 1) + AvTul5.5.10)
AW can be represented into a vector form as follows:
AW, = [Aw T, AwoT, - - AwtT|T = [AW,ee1 - - - AWpee )

where Aw; is the ¢** row and p = A x I where p is the number of interconnections
between the neurons in the input and the hidden layers.Then equation 5.5.10 can be

rewritten as:

u+
a=[AWT_ : Av7]
u‘
=zla (5.5.11)
where ¢;, a, z are vectors defined by:
a = fd(V +1)] - vT(N)u* (5.5.12)
a = [ut:u]f (5.5.13)
z = [AWTL :AVT|T (5.5.14)
and u* is a solution of
AWT ut =vT(N)QAWTx(N +1) (5.5.15)

Since there are A x (I + 1) unknowns with one equation 5.5.11, there exist many
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solutions. In order to preserve uniqueness of solution we impose the additional con-
straint of our problem statement. Specifically, it is essential to change the weights of
the (N +1)st datum with minimum effect on the previous N data. Hence it is im-
portant to find the sensitivity of y(i) over a weight change. The error term described
by equation 5.5.4 can be rewritten as:

1

N
E(N)=32(d6) —y(3))* = Z_; E;

=1

The sensitivity for the input weights and output weights are respectively as follows:

aazii = -ld6) - ()] (32 (5.5.16)
gz% = —[d(i) — y(7)] ( %lu(? (5.5.17)

where wj; , the weight of interconnection between input neuron j and the hidden

neuron k is the jkth element of W. Now, we can write:
AE; =Zk( 2L ) Awy + ;( 2L ) av, (5.5.18)
3
Equation 5.5.18 can be represented in a matrix form as below :
AE = ASz (5.5.19)
where the ith element AE is AE;: The matrix A is given by:
A = diage;, - - -, en] (5.5.20)

here

& =—(d(?) —y(@)), 1<i< N, and p=1Ixh.
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and

SWip - SWip, SVip oo SV
S=| : . : (5.5.21)
SWny -+ SWhay SVni -+ SVia

where SV;; is the sensitivity caused by small changes in v and SW; Jk is the sensitivity
of y(i) to the w;'s. S is called the sensitivity matrix. and z is a g x 1 vector defined
in55.11and g=p+h=(+1) x h.

The derivations of the sensitivity matrix and its associated terms are shown in
details in the appendix B.1.2.

The weights W(N) and v(N) are optimal for minimizing E(N). With the
addition of the (V + 1)st datum, d(N +1) = y(N + 1), the objective function of 5.5.4

can be changed to:

1 N
J = 3 D (Eiwwy — Eiwwven)?

=1

B 2i=]. ‘

where Ejwv) and Ejwni1) are the errors of the ith datum with {W(N), v(N)}

and {W(N + 1), v(N + 1)}, respectively. Equivalently, from 5.5.19

J = %(AE)T(AE)
- %(ASZ)T(ASz)

= %zTKz (5.5.22)

where K = ST(ATA)S. Note that K = K7. Since there exists only one equation

with ¢ unknowns in 5.5.11 , the solutions of the equations in 5.5.11 are on a (g-1)
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dimensional hyper-plane. Since small perturbations for W and v are assumed in
5.5.7, among the solutions in 5.5.11, only those with small variation in weight space
is allowable.

The problem now boils down to a standard nonlinear programming problem:

minimize J(z) = %zTKz

Ta=c1

subject to z

A equicost line of the cost function J(z) represents a ¢ dimensional hyper-ellipse
centered at the origin of the z plane. The constraint is a (¢ — 1) dimensional hyper-
plane on the z plane. The shape of the cost function is given by the eigen values of
K. We need to introduce a boundary condition on z so that the perturbations are
small enough to meet the linearization assumption and allow z to be large enough so

that there is at least one solution on the zTa = ¢; plane.

5.5.4 Boundary Constraint

We introduce the boundary as a set of points in the z plane:
B={ z:—szSE}

where

and

5= 1= (5.5.23)



Using the boundary condition our problem now becomes:

1

minimize J(z) = EzTKz
subject to z¥a = ¢
and z ¢ B (5.5.24)

We use the Reduced Gradient Algorithm to solve the above optimization problem.

5.5.5 The Reduced Gradient Algorithm

In order to understand the theory behind the performance of an ATNN network, it is
very important to know the underlying mathematical concepts. In particular, one of
the most important stages of learning in an ATNN network is finding the point where
the error function is minimum. There exists a variety of nonlinear programming
methods to solve the problem described by 5.5.24. Of these, the Reduced Gradient
Method (RGM) using a linear constraint has been found to be most effective in this
case. The method has been adopted from [2]. The basic idea behind this method

involves partitioning the variables into 2 classes:

1. Basic Variables: dependent variables and the cardinality of the basic group is

the number of constraints (which is 1 in our case ).

2. Non-basic Variables: independent variables . In our case there are (g — 1)

non-basic variables.

Assume we have a feasible solution z satisfying the constraint equation given by

5.5.24. Partitioning the vector z into basic and non-basic components yield:

(20,28) = [2a zg]T
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where 2, is a one-dimensional basic variable and 2 is a (g — 1) dimensional non-basic

variable. Hence our optimization problem 5.5.24 can be written as:

minimize J(zq,25) = %(za, 73 ) K (2a, 25) (5.5.25)
subject to zp,a, + a}z,g = ¢ (5.5.26)
and (2,,28) € B (5.5.27)
where
a = [z,25]7

The RGM minimizes the objective function iteratively only in terms of the indepen-
dent variables. The movement of the dependent variable is controlled by equation

9.5.26. Let

zg(k +1) = zg(k)+ Azg

zqo(k + 1) z.(k) + Az,

where k is an iteration index. Substituting the above in 5.5.26 we get:

Azaaa-i-aEzB = 0
this gives:
1 r
Az, = ——aglzg (5.5.28)
Qo

The new point about (k+1) , i.e., (zo(k+ 1),2p) is always on the (¢ —1) dimensional
hyper-plane given by 5.5.26, this is ensured by equation 5.5.28.
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The steepest descent method is now used to find the direction of the the in-
dependent variables in RGM. The gradient of each variable decides the direction of

movement at each step. The gradient of J(z) is given by:
VJ(z) = (Vi J(2),V;,J(2)) = Kz = K(24,25)

Since the relationships of movements of z, should satisfy 5.5.28 , the amount of
movement V__ , for z, can be decomposed into the amount of movement for 2g . The

reduced gradient, i.e., the gradient with respect to zg is found to be:
1
T = V. J(Za,28) — a—v,‘,J(za, zg)ag (5.5.29)
Qa

where 7 = [ry,ry,---,7,-1]7. Since the boundary is a box, each variable has a corre-
sponding boundary defined by two sides of the box. In order to allow the possibility to
add and delete elements from the boundary, the concept of working set is introduced.
A constraint is defined as active if the corresponding variable lies on the boundary
and is on the verge of violating the boundary conditions. At each step of the iter-
ation, these active constraints are chosen and these constitute the working set and
is denoted by W(zg). The vector zg moves in the direction of its gradient unless it
violates the boundary conditon, in which case it becomes a part of the working set.

Hence, we can write:

Azﬂ,i — =T, ifs g W(Zﬂ)
0, otherwise

If it happens that at a point r; = 0Vi € W(zg) but there exists j € W(zg)
such that either r; < 0 and j is in the working set because its corresponding variable
violated its lower boundary constraint, or r; > 0 and j has been put into the working

set because its corresponding variable violated its upper boundary constraint. Then
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J is deleted from the working set. Once the amount of movement of zg is found, Az,
is calculated using 5.5.28. The RGM usually converges to a local minimum. For the
solution to reach the global minimum, it is necessary for the boundary constraint B
to be a convex set and the objective function J (z) to be a convex function. We are

now in a position to state the Reduced Gradient Algorithm
Step 1: Set the initial feasible solution z = 3.

Step 2: Set 2, = z; and zg = [25, 23, - -, zg)T. Initialize W(zg) = ¢ ., where ¢ denotes

an empty set.
Step 3: Calculate rT defined by 5.5.29.

Step 4: Find the direction of movement of zg using the concept of working sets as

mentioned above.
Step 5: Reconstruct the working set W(zp) if necessary.

Step 6: IF acceptable solution is reached , i.e., if |Az| < €, where € is the convergence
measure, or V € W(zg) THEN stop ELSE find Az, as described by equation
5.5.28.

Step 7: Find 71, 72, 73 such that
max{71 o=l L 25+ 712, <y : N2 0}

maz{'yg : —l-,; S zg+712Az5 < l-,; Y 2 0}

min{ys : J(z+714z):0< 13 < 1;0< 3 < 7}

Step 8: Calculate z = z + 1;Az

Step 9: IF 43 < 1 , THEN go to Step 3., ELSE declare the dependent variable to be

independent and declare one of the independent variables which is positively
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inside of the non-linearity constraint to be dependent. Update a, and ag. Go

to Step 3.

5.5.6 The ATNN Algorithm

The following ATNN algorithm was used for conducting the experiments on exchange

data.
Step 1: Begin
Step 2: Calculate A and S by using NV data as described 5.5.20 and 5.5.21.
Step 3: Find K such that K = ST(ATA)S.

Step 4: By using 5.5.13 and 5.5.14 find the linear constraint equation

za=c
Step 5: Find the boundary constraint ,
=2z
by using
g = cia
~ aTa

Step 6: Perform the reduced gradient method as stated in the previous section and find

z which minimizes the cost function
1 o
J (Z) = 52 KZ

with the constraints

zTa =
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and

Step 7: Find AW and Av by rearranging z and resulting AW,...

[AWE, : AvT] =27

Step 8: Update W(NN) and v(NN):

W(N+1) = W(N)+AW

v(N +1) v(N) + Av

Step 9: Stop.

5.5.7 Experimental Results

For the experiments conducted using the ATNN algorithm mentioned in the last
section, the number of input neurons I was the same as the size of the window (i.e.,
3, 4, or 5), number of hidden neurons » was 5 and 1 output neuron. The total number
of input data N is 3000. The weights W and v were initialized randomly.

An example of performance of ATNN in predicting 3 days average of Canadian-
U.S. exchange rates is shown by the following graph: The overall MSE range from
0.00007 to 0.0004. The mean is around 0.0001. The range of MSE for the averages
is from 0.00005 to 0.00025, the mean is about 0.0001. The range of RMSE is from
0.01 to 0.03 for exchange rates and from 0.006 to 0.02 for the averages of exchange
rates. The mean of the former is around 0.001 and that for the latter is 0.008. M AE

ranges from 0.004 to 0.014 for exchange rates and from 0.002 to 0.008 for the averages
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Figure 14: Predicting 3 days average of Canadian-U.S. exchange rates with window
size 3

of exchange rates. The mean is about 0.005 for exchange rates and about 0.003 for
the averages of exchange rates. MAPE ranges from 1.2 to 3.08 for exchange rates
and from 0.65 to 1.63 for the averages of exchange rates. The mean of the MAPE
values is around 1.4 for the exchange rates and 0.7 for the averages of exchange rates.
Finally, for the DIR, the value ranges from 0.4712 to 0.5077 for exchange rates and
from 0.4718 to 0.5145. The overall mean for the exchange rates is about 0.47 whereas
that for the averages of exchange rates is about 0.48. The prediction results are

summarized in the following tables:
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Country | Prediction Zones Measures
window | horizon || MSE RMSE | MAE MAPE | Ave DIR
3 1 0.00120 | 0.03463 | 0.00528 | 2.01662 | 0.4732
3 2 0.00020 | 0.01425 } 0.00436 | 1.16808 | 0.4732
3 3 0.00022 | 0.01493 | 0.00507 | 1.41514 | 0.4728
Australia 4 1 0.00115 | 0.03391 | 0.00875 | 2.47993 | 0.4732
4 2 0.00020 | 0.01418 | 0.00438 | 1.16963 | 0.4728
4 3 0.00020 | 0.01421 | 0.00439 | 1.17144 | 0.4725
5 1 0.00020 | 0.01422 | 0.00428 | 1.17986 | 0.4728
5 2 0.00022 | 0.01475 | 0.00483 | 1.35499 | 0.4725
5 3 0.00025 | 0.01590 | 0.00427 | 1.27183 | 0.4725
3 1 0.00083 | 0.02875 | 0.00508 | 1.91489 | 0.4715
3 2 0.00026 | 0.01624 | 0.00469 | 1.50370 | 0.4712
3 3 0.00055 | 0.02343 | 0.00487 | 1.57982 | 0.4715
Britain 4 1 0.00013 | 0.01162 | 0.00448 | 1.36237 | 0.4712
4 2 0.00014 | 0.01177 | 0.00449 | 1.36423 | 0.4715
4 3 0.00014 | 0.01195 | 0.00450 | 1.36417 | 0.4715
5 1 0.00018 | 0.01340 | 0.00452 | 1.45778 | 0.4715
5 2 0.00026 | 0.01610 | 0.00450 | 1.41999 | 0.4715
5 3 0.00016 | 0.01260 | 0.00435 | 1.35445 | 0.4715
3 1 0.00045 | 0.02110 | 0.00758 | 2.04880 | 0.4738
3 2 0.00010 | 0.00985 | 0.00506 | 1.44254 | 0.4732
3 3 0.00577 | 0.07597 | 0.04848 | 13.17730 | 0.4735
Canada 4 1 0.00010 | 0.01014 | 0.00534 | 1.48122 | 0.4735
4 2 0.00010 | 0.01020 | 0.00537 | 1.48714 | 0.4735
4 3 0.00023 | 0.01531 | 0.01013 | 2.71704 | 0.4732
5 1 0.00011 | 0.01053 | 0.00518 | 1.48292 | 0.4735
5 2 0.00010 | 0.00983 | 0.00508 | 1.43503 | 0.4735
5 3 0.00011 | 0.01055 | 0.00518 | 1.47537 | 0.4735
3 1 0.00396 | 0.06292 | 0.01481 | 8.87341 | 0.4855
3 2 0.00015 | 0.01228 | 0.00442 | 1.41839 | 0.5008
3 3 0.00125 } 0.03538 | 0.01474 | 4.07721 | 0.5012
France 4 1 0.00012 | 0.01084 | 0.00402 | 1.23625 | 0.4858
4 2 0.00009 | 0.00938 | 0.00409 | 1.27157 | 0.5012
4 3 0.00009 | 0.00946 { 0.00410 | 1.27295 | 0.5012
5 1 0.00012 | 0.01102 | 0.00388 | 1.24106 | 0.4858
5 2 0.00014 | 0.01172 | 0.00501 | 1.55434 | 0.5012
5 3 0.00016 | 0.01257 | 0.00422 | 1.36830 | 0.5008

Table 25: Predicting exchange rates using ATNN learning
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Country

Prediction Zones

Measures

Germany

window | horizon

MSE

RMSE

MAE

MAPE

Ave DIR

0.00009

0.00963

0.00424

1.20394

0.4885

0.00024

0.01549

0.00448

1.27676

0.4885

0.00010

0.00975

0.00429

1.22306

0.4885

0.00007

0.00844

0.00442

1.23239

0.4885

0.00007

0.00842

0.00439

1.22729

0.4885

0.00007

0.00831

0.00418

1.18827

0.4888

0.00027

0.01649

0.00505

1.44618

0.4885

0.00008

0.00917

0.00422

1.20161

0.4888

0.00029

0.01705

0.00463

1.33308

0.4892

Japan

0.00041

0.02015

0.00541

1.36130

0.5058

0.00016

0.01269

0.00497

1.23171

0.5G55

0.00833

0.09126

0.00691

0.00691

0.5058

0.00010

0.00999

0.00529

1.30368

0.5055

0.00008

0.00888

0.00491

1.21595

0.5055

0.00008

0.00883

0.00489

1.21237

0.5055

0.00025

0.01578

0.00490

1.21036

0.5055

0.00417

0.06457

0.00564

1.16874

0.5055

0.00048

0.02200

0.01324

3.08024

0.5055

Switzerland

0.00021

0.01441

0.00531

1.55766

0.5082

0.00009

0.00939

0.00492

1.44208

0.5075

0.00011

0.01036

0.00513

1.49152

0.5092

0.00009

0.00935

0.00512

1.48290

0.5075

0.00009

0.00930

0.00513

1.48467

0.5078

0.00025

0.01582

0.00519

1.50975

0.5082

0.00010

0.01010

0.00495

1.45123

0.5078

O OV OV ] ] ] Go] Qo] Qo O] Onf O ] | ] COf CO| Lo O Oy O | ] ] o) Co] o
Q| DI | COf D] = Lo 8] | o] ] =l ol B = ol D] =] ol o =] Gl b =] ol b 1=

0.00010

0.01007

0.00494

1.44963

0.5082

0.00012

0.01114

0.00505

1.48060

0.5078

Table 26: Predicting exchange rates using ATNN learning (contd.)
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Country

Prediction Zones

Measures

Australia

window | horizon

MSE

RMSE

MAE

MAPE

Ave DIR

0.00018

0.01353

0.00275

0.78277

0.4718

0.00051

0.02269

0.00882

4.95732

0.4882

0.00019

0.01376

0.00339

0.85054

0.4715

0.00018

0.01335

0.00285

0.71251

0.4882

0.00044

0.02097

0.00357

1.14064

0.4715

0.00075

0.02736

0.00519

1.47522

0.4882

Britain

0.00010

0.00980

0.00268

0.83529

0.5065

0.00078

0.02798

0.00313

1.01436

0.4865

0.00079

0.02799

0.00415

1.00986

0.4865

0.00010

0.00994

0.00279

0.81255

0.4865

0.00009

0.00999

0.00234

0.98109

0.4865

0.00009

0.00970

0.00228

0.71099

0.4865

Canada

0.00019

0.01396

0.00550

1.61218

0.4832

0.00007

0.00806

0.00343

0.91019

0.4822

0.00007

0.00814

0.00371

1.01980

0.4832

0.00006

0.00760

0.00313

0.85459

0.4822

0.00027

0.01634

0.00335

1.03086

0.4832

0.00006

0.00744

0.00248

0.74230

0.4822

France

0.00035

0.01865

0.00387

1.12995

0.4808

0.00007

0.00823

0.00195

0.64035

0.4858

0.00007

0.00821

0.00287

0.85211

0.4808

0.00006

0.00792

0.00242

0.71192

0.4862
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0.00006

0.00783

0.00232

0.74423

0.4808

0.00008

0.00907

0.00287

0.88008

0.4862

Table 27: Predicting averages of exchange rates using ATNN learning

112




Country Prediction Zones Measures

window | horizon || MSE RMSE | MAE MAPE | Ave DIR

0.00005 | 0.00688 | 0.00288 | 0.80511 | 0.5075

0.00005 | 0.00725 | 0.00230 | 0.65639 | 0.5035

Germany 0.00005 | 0.00735 | 0.00321 | 0.87681 | 0.5075

0.00005 | 0.00692 | 0.00278 | 0.75115 | 0.5035

0.00007 | 0.00845 | 0.00265 | 0.76005 | 0.5075

0.00010 | 0.00991 | 0.00288 | 0.78218 | 0.5035

0.00007 | 0.00807 | 0.00296 | 0.74551 | 0.5008

0.00007 | 0.00829 | 0.00238 | 0.60069 | 0.4915

Japan 0.00010 | 0.01015 | 0.00579 | 1.63235 | 0.5012

0.00005 | 0.00719 | 0.00322 | 0.76505 | 0.4902

0.00008 | 0.00910 | 0.00339 | 0.82240 | 0.4998

0.00018 | 0.01332 | 0.00251 | 0.62206 | 0.4902

0.00010 | 0.01024 | 0.00320 | 0.93327 | 0.5145

0.00010 | 0.00981 | 0.00253 | 0.74976 | 0.4962

Switzerland 0.00008 | 0.00875 | 0.00453 | 1.31255 | 0.5145

0.00011 | 0.01034 | 0.00261 | 0.76391 | 0.4962

0.00007 | 0.00849 | 0.00302 | 0.89105 | 0.5145

G Uil | | o] o et] | ] ] o] Cof] e en] i ] cof Co
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0.00025 | 0.01572 | 0.00285 | 0.82335 | 0.4962

Table 28: Predicting averages of exchange rates using ATNN learning (contd.)
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5.6 The Fuzzy Learning Method

Fuzzy set theory has been used as a basis for pattern recognition by many scientists.
It is highly mathematical in nature, hence it is not too popular with the non-experts
who find the mathematical theories too mystifying. Nevertheless, fuzzy set theory
can provide a robust and consistent foundation for information processing, including
pattern recognition. In this chapter a fuzzy learning algorithm given by Tao et.al.,[19]
has been presented. Before proceeding to present this algorithm, some relevant con-

cepts in connection to fuzzy theory is being presented.

5.6.1 Basic Concepts in Fuzzy Set Theory

Most of the concepts used in this section are adopted from [23]

1. Fuzzy set: If X is a collection of objects = then a fuzzy set A in X is a set of

ordered pairs:

A={(z, pa(z))l z £ X}

The entity p4 is called the “Membership function”. The value of which is the
grade of membership of z in A. It is also the degree to which the deterministic
measurement z is compatible with (the vague concept) of A. u4(X) is a mapping
from X to a membership space M. If M contains only 2 values 0 and 1, then A is not
fuzzy. The range of the values of the membership function is a subset of non-negative
real numbers with a finite least upper bound. If this bound is unity,i.e.,

sup{pa(z) = 1} then the fuzzy set A is called normal. Note that fuzzy sets

can be defined in terms of continuous as well as discrete membership functions.

5.6.2 A Fuzzy Reasoning Expert System

Fuzzy systems contain knowledge bases that contain many rules. These rules are typ-

ically knowledge-based which incorporate imprecise knowledge. Most fuzzy reasoning
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systems use the inference schema of the following form, as in the seminal work of
Zadeh [28].
The inference schema adopted for the fuzzy learning algorithm of Tao et.al.,[19]

is the one given by Cao and Kandel [6]. The inference schema can be described as

follows:

IF X is Uy thenY is wy/Vi+wip/Va+ -+ +wi/Vi
IF X is Uz then Y is wi/Vi +wa/Vo+---+wi/Vi
IF X is U, thenY is wy/Vi+wip/Vo+---+wp/Vi
(5.6.1)

where w1, /Vi + wia/Va+ - -+ wik/Vi can be interpreted as V; with degree of
confidence wy; , V, with degree of confidence wy,, - - - and Vj with degree of confidence
Wik-

Let an input value a be first mapped into a vector < p;(a), u2(a), -+ pa(a) >,
where p; is the fuzzy membership function of U;. This vector is then multiplied to

the weight matrix W, where

W = wy, i =1,2,--on, j=1,2,---,k

(5.6.2)
The resulting vector < yi(a),y2(a), --- wk(a) >, is defuzzified by the moment
method to produce:

_h1+h2+"'+hk
N+yt+-c+y%

(5.6.3)
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where 0 < h; < 1 are the central values of the fuzzy subsets Vi, V5, ---, Vi. The
above method makes sense for symmetric output fuzzy label subsets. The relational
mapping from the input fuzzy concepts to the output fuzzy concepts is accomplished
through the matrix vector product u(a) - W

This system is applicable to both discrete as well as continuous universe of

discourse.

5.6.3 The Fuzzy Learning Algorithm

In the present context of predicting future values for exchange rates experiments have
been carried out using the membership function stated below for the training of the
neural net using fuzzy logic.

‘The membership function is the positive half of the sine function given by

sin(z —6;), f0<z-6,<nmw
fi(z) = )
0, otherwise

The shape of the above function looks like

e — e

S e - -

Y

Figure 15: A fuzzy membership function

The widths of the membership functions are fixed and same throughout the

experiment. It is to be noted that the columns of the weight matrix W must satisfy
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the condition:

n
Slwijl=1, for 1<j<k; (5.6.4)

i=1

Let < hy, ha,---, hy > be the central values of the output fuzzy label subsets.
The initial weight matrix W is generated randomly.
The fuzzy learning algorithm can be described in the following steps:

Step 1: (Forward propagation) Select an input z; £ =< p(a), p2(a), -+  pn(a) >
where the membership function y; is the same as defined at the beginning of

the section. The function looks as shown in (15).

<mf(a),r(a), --- T(a) >—Ex W
Here the h; s are typically the central values of the k fuzzy sets generated by

<m(a),r2(a), --- 7(a).

Step 2: (Backward error propagation) e « d — y;
< E€1,E2, -+, Ep >< F(hl,e),F(hg, e), RN F(hk, e >;
The functions €; = F'(h;, e) chosen for the experiment is h;e. This treats all the

output fuzzy sets equally.

Step 3: Adjust weight matrix wi( + 1) «— wij(t) + api(z)e;, for 1<j<k, 1 <
1< n;
m; < 5o lwij(¢+1)l, for 1<i<n wij(t+1) « w;j(t+1)/my; for 1<
i<n; 1<j5<k;

Here m; is computed so that the constraint condition (5.6.4) is satisfied.
Step 4: IF stopping condition is satisied THEN halt ELSE go to Step 1.

Note that the above mentioned algorithm holds true for multiple inputs too.
The vector £ is then the product of input and their corresponding membership func-

tions.
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5.6.4 Experimental Results

The above algorithm was implemented on the computer using the C programming
language. The number of input neurons per run is the same as the window size. In
constructing the fuzzy learning system for the experiments on exchange data, 5 input
fuzzy labels (sets), i.e., the U;s and 6 output fuzzy labels(sets) are chosen i.e., the Vs.
The performance of fuzzy learning in predicting the 3 days averages for Canadian-

U.S. exchange rates is shown in the figure 16 The overall MSE range from 0.0004

0.8 T T T

original-data —

0.7 fuzzy/canada-averagd/cd
06 |
0.5
04

03

0.2

B D - L YO S S

0.1 +

0 ! 1 1 ] 1
0 500 1000 1500 2000 2500 3000

Figure 16: Predicting 3 days average of Can-U.S. exchange rates over window size 3
using fuzzy learning

to 0.002. The mean is around 0.0005. The range of M SE for the averages is from
0.0004 to 0.002, the mean is about 0.0004. The range of RMSE is from 0.02 to 0.04
for exchange rates and from 0.02 to 0.04 for the averages of exchange rates. The
mean of the former is around 0.025 and that for the latter is 0.25. M AE ranges from
0.01 to 0.03 for exchange rates and from 0.009 to 0.01 for the averages of exchange
rates. The mean is about 0.01 for exchange rates and about 0.01 for the averages of
exchange rates. MAPE ranges from 2.87 to 7.2 for exchange rates and from 1.73 to
6.95 for the averages of exchange rates. The mean of the M APE values is around

118



3.5 for the exchange rates and 3.5 for the averages of exchange rates. Finally, for
the DIR, the value ranges from 0.48 to 0.50 for exchange rates and from 0.4720 to
0.5147. The overall mean for the exchange rates is about 0.49 whereas that for the
averages of exchange rates is about 0.49. The results are described in the following

tables:

119



Country

Prediction Zones

Measures

Australia

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

0.00084

0.02897

0.01342

3.67570

0.4940

0.00084

0.02898

0.01355

3.68765

0.4937

0.00084

0.02900

0.01364

3.70435

0.4933

0.00085

0.02917

0.01443

4.51882

0.4937

0.00085

0.02920

0.01451

4.51498

0.4933

0.00085

0.02923

0.01459

4.52035

0.4933

0.00092

0.03038

0.01591

5.58995

0.4933

0.00092

0.03041

0.01598

5.58640

0.4933

0.00092

0.03041

0.01605

5.58677

0.4937

Britain

0.00044

0.02088

0.00983

3.48328

0.4840

0.00044

0.02098

0.00999

3.52415

0.4840

0.00044

0.02107

0.01006

3.52559

0.4843

0.00049

0.02223

0.01073

4.07156

0.4840

0.00050

0.02228

0.01086

4.08542

0.4843

0.00050

0.02237

0.01094

4.09194

0.4843

0.00059

0.02424

0.01186

4.77154

0.4843

0.00059

0.02429

0.01199

4.79054

0.4843

0.00059

0.02438

0.01207

4.80033

0.4843

Canada

0.00133

0.03646

0.01917

4.58846

0.4927

0.00134

0.03655

0.01931

4.63336

0.4927

0.00134

0.03660

0.01938

4.65808

0.4927

0.00123

0.03511

0.01851

4.54201

0.4927

0.00124

0.03519

0.01862

4.57732

0.4927

0.00124

0.03523

0.01869

4.59349

0.4927

0.00119

0.03449

0.01819

4.59261

0.4927

0.00119

0.03455

0.01830

4.61916

0.4927

0.00120

0.03461

0.01836

4.63233

0.4927

France

0.00058

0.02407

0.01235

4.24068

0.5007

0.00058

0.02410

0.01251

4.29335

0.5010

0.00059

0.02419

0.01258

4.30218

0.5010

0.00060

0.02445

0.01296

4.96287

0.5010

0.00060

0.02451

0.01308

4.98641

0.5010

0.00060

0.02453

0.01314

4.99064

0.5007

0.00071

0.02665

0.01414

5.88701

0.5010

0.00071

0.02665

0.01425

5.90722

0.5007

O T O i i Cof Cof Qo] anf enf anf i) | s o] cof coll enf en| en] i ] ] cof ol o QY O O | Wi v COf QO]
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0.00071

0.02665

0.01432

5.91800

0.5007

Table 29: Predicting exchange rates using fuzzy learning
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Country Prediction Zones Measures

window | horizon || MSE RMSE | MAE [ MAPE | Ave DIR

1 0.00079 | 0.02639 | 0.01306 | 3.65136 | 0.4897

0.00071 | 0.02659 | 0.01327 | 3.72639 | 0.4897

0.00072 | 0.02685 | 0.01346 | 3.79853 | 0.4893

Germany 0.00056 | 0.02366 | 0.01196 | 3.19714 | 0.4897

0.00056 | 0.02377 | 0.01208 | 3.23899 | 0.4893

0.00057 | 0.02397 | 0.01219 | 3.27653 | 0.4897

0.00048 | 0.02199 | 0.01120 | 2.87121 | 0.4893

0.00049 | 0.02209 | 0.01135 | 2.91661 | 0.4897

0.00050 | 0.02228 | 0.01147 | 2.95912 | 0.4897

0.00242 | 0.04920 | 0.03245 | 7.62744 | 0.5043

0.00244 | 0.04937 | 0.03265 | 7.71978 | 0.5047

0.00247 | 0.04965 | 0.03288 | 7.84541 | 0.5047

Japan 0.00220 | 0.04688 | 0.03095 | 7.07335 | 0.5047

0.00222 | 0.04713 [ 0.03120 | 7.20701 | 0.5047

0.00209 | 0.04567 | 0.03019 | 6.80225 | 0.5047

0.00213 | 0.04614 | 0.03005 | 6.75668 | 0.5047

0.00216 | 0.04652 | 0.03015 | 6.80946 | 0.5047

0.00069 | 0.02620 | 0.01285 [ 3.76506 | 0.5070

0.00069 | 0.02632 | 0.01302 | 3.81488 | 0.5073

0.00070 | 0.02652 | 0.01317 | 3.87023 | 0.5073

Switzerland 0.00053 | 0.02293 | 0.01172 | 3.24518 | 0.5073

0.00053 | 0.02305 | 0.01192 | 3.30817 | 0.5073

0.00054 | 0.02326 | 0.01210 | 3.36954 | 0.5077

0.00043 | 0.02078 | 0.01095 | 2.86387 | 0.5073

0.00044 | 0.02097 | 0.01112 | 2.90930 | 0.5077

O Oy onf | ] ] cof cof o Gy arf | x| s i ool wof o Gy ot o] ] i) o] oo] o

2
3
1
2
3
1
2
3
1
2
3
1
2 0.00221 | 0.04697 | 0.03108 | 7.13383 | 0.5047
3
1
2
3
1
2
3
1
2
3
1
2
3

0.00045 | 0.02120 | 0.01128 | 2.96116 | 0.5073

Table 30: Predicting exchange rates using fuzzy learning (contd.)
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Country

Prediction Zones

Measures

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

3

0.00082

0.02872

0.01291

3.54097

0.4720

0.00080

0.02835

0.01255

3.47241

0.4883

Australia

0.00084

0.02890

0.01387

4.38877

0.4717

0.00082

0.02861

0.01356

4.31511

0.4883

0.00091

0.03016

0.01538

9.43881

0.4717

0.00089

0.02985

0.01504

5.37472

0.4883

0.00041

0.02022

0.00826

3.08358

0.5067

0.00041

0.02017

0.00822

3.04082

0.4867

Britain

0.00047

0.02174

0.00946

3.70942

0.5067

0.00046

0.02155

0.00905

3.58511

0.4867

0.00057

0.02378

0.01077

4.43784

0.5067

0.00056

0.02359

0.01023

4.29299

0.4867

0.00131

0.03618

0.01732

3.95936

0.4833

0.00130

0.03601

0.01728

3.95269

0.4823

Canada

0.00121

0.03479

0.01693

3.98323

0.4833

0.00119

0.03456

0.01650

3.85659

0.4823

0.00116

0.03406

0.01665

4.03053

0.4833

0.00114

0.03382

0.01601

3.83645

0.4823

0.00055

0.02349

0.01092

3.85204

0.4807

0.00054

0.02322

0.01084

3.79356

0.4860

France

0.00058

0.02411

0.01179

4.61674

0.4807

0.00057

0.02393

0.01149

4.52965

0.4860

0.00069

0.02627

0.01309

5.52632

0.4807
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3
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5
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3
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3
9
3
]

0.00068

0.02613

0.01265

5.42259

0.4860

Table 31: Predicting averages of exchange rates using fuzzy learning
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Country

Prediction Zones

Measures

Germany

window

horizon

MSE

RMSE

MAE

MAPE

Ave DIR

0.00065

0.02554

0.01066

2.75275

0.5073

0.00064

0.02536

0.01038

2.63431

0.5033

0.00054

0.02315

0.01007

2.49979

0.5077

0.00052

0.02287

0.00947

2.29753

0.5033

0.00044

0.02109

0.00935

2.17171

0.5077

0.00043

0.02065

0.00877

1.98431

0.5033

Japan

0.00240

0.04895

0.03092

6.95412

0.5003

0.00238

0.04883

0.03057

6.84215

0.4913

0.00218

0.04667

0.02946

6.39976

0.5010

0.00216

0.04647

0.02904

6.25286

0.4900

0.00204

0.04517

0.02863

6.06158

0.4997

0.00203

0.04503

0.02832

5.94812

0.4900

Switzerland

0.00064

0.02532

0.01007

2.82046

0.5147

0.00063

0.02502

0.01003

2.77308

0.4960

0.00048

0.02187

0.00925

2.38776

0.5147

0.00047

0.02158

0.00866

2.19000

0.4963

0.00038

0.01946

0.00878

2.10187

0.5147
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0.00035

0.01882

0.00770

1.73010

0.4963

Table 32: Predicting averages of exchange rates using fuzzy learning (contd.)
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Chapter 6

Comparison of Statistical and
Neural Network Methods in

Forecasting

In chapters 4 and 5, some statistical and neural network methods of predicting the
future values of a time series have been presented. (Please see Chapters 4 and 5).

These include (in alphabetical order):
1. The Adaptively Trained Neural Network (atnn) method.
2. The method of Backpropagation (backprop).
3. The Box-Jenkins Methodology (bozjen).
4. The method of Double-exponential smoothing (dblezpn).
5. The method of Exponential smoothing (ezponen).
6. The Fuzzy learning method (fuzzy).
7. The method of Recurrent nets (recurn).

8. The method of Regression ( regrsn).
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The acronyms for the different methods are mentioned in the corresponding brackets.

In this chapter a comparison of prediction accuracy of the above methods is
being discussed. Most of the analysis has been carried out based on the performance
metrics of each method over a given prediction horizon.

As mentioned in Chapter 3, the interest of the forecasters in the field of finance
is to predict the directions of the data, i.e., the ups and downs of the curve instead of
predicting the actual values. Since the time series data we are dealing in this thesis
is related to finance, it is expected to focus our attention to the performance metric
DS(directional symmetry) mainly, in order to compare the efficiency of the models
in predicting future values. Nevertheless, the other measures also are important in
determining the correctness of prediction, so they are also taken into consideration

when comparing the performances of forecasting methods.

6.1 Prediction of Exchange Rates

In Chapter 2, we have seen that the patterns of the exchange rates of Britain (Fig.2),
France (Fig.4), Germany (Fig.5) and Switzerland (Fig.7) are quite similar. In order
to avoid repetition of analysis, the exchange rate of Britain versus United States has
been chosen for comparative study. The behaviour pattern of Australian (Fig.1),
Canadian (Fig.3), Japanese (Fig.6) exchange rates graphs are quite distinct from
each other. Hence,the comparative study of the performances of different methods
of prediction are made based on the time series data for exchange rates of Australia,
Britain, Canada and Japan.

In this section we seek and compare the efficiencies of each of the forecasting
techniques discussed so far in predicting the future values of exchange rates of Aus-
tralia, Britain, Canada, France, Germany, Japan and Switzerland with respect to
the U.S. $. As mentioned before these exchange rates are vastly varying and exhibit

complex patterns, almost chaotic in nature. Hence, it is really difficult to forecast the
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exchange rates over a given length of time.

Let us consider the following tables which describe the performance of the above
mentioned methods in forecasting the future values of the exchange rates of Australia,
Britain, Canada and Japan with respect to United States. All these tables represent
a summary of the experimental findings. The remaining tables for exchange rates
prediction of France, Germany and Switzerland is given in the appendix C.

For the purpose of organization of results, the performance of each of the
methods are measured .against each of the metrics MSE, RMSE, MAE, MAPE, and
Ave.DIR. The last one denotes directional errors. All the analysis of the results have

been made by studying tables 33- 41.
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Country | Method Performance Measures
MSE RMSE | MAE | MAPE | Ave DIR
atnn 0.00120 | 0.03463 | 0.00528 | 2.01662 | 0.4732
backprop |f 0.00054 | 0.02319 | 0.01448 | 4.85627 | 0.4947
boxjen || 0.00238 | 0.04877 | 0.00472 | 1.14679 | 0.4805
Australia | dblexpn |[ 0.00024 | 0.01535 | 0.00733 | 1.99216 | 0.4938
exponen || 0.00508 | 0.07127 | 0.02856 | 9.57696 | 0.4940
fuzzy 0.00084 | 0.02897 | 0.01342 | 3.67570 | 0.4940
recurn |{ 0.00033 | 0.01830 | 0.00982 | 3.64269 | 0.4947
regrsn || 0.00350 | 0.05919 | 0.00629 | 1.63987 { 0.4940
atnn 0.00083 | 0.02875 | 0.00508 | 1.91489 | 0.4715
backprop || 0.00032 | 0.01798 | 0.01020 | 4.04879 | 0.5027
boxjen || 0.00263 | 0.05125 | 0.00499 | 1.50737 | 0.4753
Britain | dblexpn || 0.00015 | 0.01236 | 0.00743 | 2.31263 | 0.4838
exponen || 0.00470 | 0.06856 | 0.02656 | 8.32390 | 0.4840
fuzzy 0.00044 | 0.02088 | 0.00983 | 3.48328 | 0.4840
recurn || 0.00031 | 0.01761 | 0.01074 | 4.06058 | 0.5027
regrsn | 0.00371 | 0.06088 | 0.00639 | 1.95005 | 0.4840
atnn 0.00045 | 0.02110 | 0.00758 | 2.04880 | 0.4738
backprop || 0.00041 [ 0.02033 | 0.01324 | 3.45460 | 0.4947
boxjen |l 0.00253 | 0.05032 | 0.00579 | 1.66220 | 0.4779
Canada | dblexpn || 0.00018 | 0.01349 | 0.00909 | 2.59633 | 0.4928
exponen | 0.00539 | 0.07344 | 0.02832 | 9.42555 | 0.4927
fuzzy 0.00133 | 0.03646 | 0.01917 | 4.58846 | 0.4927
recurn || 0.00025 | 0.01591 | 0.01050 | 3.51022 | 0.4947
regrsn || 0.00398 | 0.06311 | 0.00757 | 2.32648 | 0.4927
atnn 0.00041 | 0.02015 | 0.00541 | 1.36130 | 0.5058
backprop || 0.00028 | 0.01683 | 0.01138 | 2.67773 | 0.5117
boxjen || 0.00308 | 0.05546 | 0.00490 | 1.85489 | 0.5005
Japan dblexpn |{ 0.00013 | 0.01144 | 0.00784 | 1.95591 | 0.5042
exponen | 0.00552 | 0.07427 | 0.03238 | 8.33185 | 0.5043
fuzzy 0.00242 | 0.04920 | 0.03245 | 7.62744 | 0.5043
recurn (| 0.00020 | 0.01414 | 0.00976 | 2.98604 | 0.5117
regrsn || 0.00397 | 0.06305 | 0.00668 | 1.89479 | 0.5043

Table 33: 1 day ahead forecasts of exchange rates over window size 3
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Country | Method Performance Measures
MSE RMSE | MAE MAPE | Ave DIR
atnn 0.00020 | 0.01425 | 0.00436 | 1.16808 | 0.4732
backprop || 0.00095 | 0.03083 | 0.02107 | 6.23941 | 0.4950
boxjen |l 0.00239 | 0.04890 | 0.00472 | 1.14802 | 0.4805
Australia | dblexpn || 0.00029 | 0.01697 | 0.00862 | 2.31598 | 0.4938
exponen || 0.00508 | 0.07125 | 0.02856 | 9.57738 | 0.4937
fuzzy 0.00084 [ 0.02898 | 0.01355 | 3.68765 | 0.4937
recurn | 0.00034 | 0.01840 | 0.00993 | 3.66497 | 0.4950
regrsn || 0.00355 | 0.05959 | 0.00787 | 2.04784 | 0.4937
atnn || 0.00026 | 0.01624 | 0.00469 | 1.50370 | 0.4712
backprop || 0.00069 | 0.02631 | 0.01891 | 7.91936 | 0.5027
boxjen | 0.00263 | 0.05133 | 0.00499 | 1.51093 | 0.4750
Britain | dblexpn }| 0.00019 | 0.01369 | 0.00859 | 2.67282 | 0.4838
exponen || 0.00470 | 0.06857 | 0.02655 | 8.32361 | 0.4840
fuzzy 0.00044 | 0.02098 | 0.00999 | 3.52415 | 0.4840
recurn | 0.00033 | 0.01810 | 0.01118 | 4.20570 | 0.5027
regrsn || 0.00374 | 0.06119 | 0.00784 | 2.40467 | 0.4840
atnn 0.00010 | 0.00985 | 0.00506 | 1.44254 | 0.4732
backprop || 0.00084 | 0.02902 | 0.02434 | 7.46130 | 0.4947
boxjen | 0.00257 { 0.05074 | 0.00581 | 1.67176 | 0.4779
Canada | dblexpn || 0.00023 | 0.01506 | 0.01035 | 2.93700 | 0.4925
exponen [ 0.00539 | 0.07340 | 0.02832 | 9.40732 | 0.4927
fuzzy 0.00134 | 0.03655 | 0.01931 | 4.63336 | 0.4927
recurn || 0.00026 | 0.01622 | 0.01081 | 3.58105 | 0.4947
regrsn || 0.00403 | 0.06345 | 0.00924 | 2.78404 | 0.4927
atnn 0.00016 | 0.01269 | 0.00497 | 1.23171 | 0.5055
backprop || 0.00075 | 0.02741 | 0.02057 | 4.28728 | 0.5117
boxjen [l 0.00308 | 0.05550 | 0.00490 | 1.86863 | 0.5005
Japan dblexpn || 0.00016 | 0.01283 | 0.00894 | 2.22553 | 0.5045
exponen || 0.00551 | 0.07424 | 0.03235 | 8.32723 | 0.5047
fuzzy 0.00244 | 0.04937 | 0.03265 | 7.71978 | 0.5047
recurn | 0.00021 | 0.01444 | 0.01001 | 3.04784 | 0.5117
regrsn || 0.00401 | 0.06332 | 0.00819 | 2.25459 | 0.5047

Table 34: 2 days ahead forecasts of exchange rates over window size 3
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Country | Method Performance Measures
|| MSE RMSE | MAE MAPE | Ave DIR
atnn || 0.00022 | 0.01493 [ 0.00507 | 1.41514 | 0.4728
backprop || 0.00111 | 0.03328 | 0.02415 [ 7.57341 | 0.4953
boxjen || 0.00239 | 0.04887 | 0.00472 | 1.14843 | 0.4803
Australia | dblexpn || 0.00034 | 0.01841 | 0.00968 | 2.58769 | 0.4935
exponen || 0.00507 | 0.07119 | 0.02856 | 9.57462 | 0.4933
fuzzy 0.00084 | 0.02900 | 0.01364 | 3.70435 | 0.4933
recurn | 0.00034 | 0.01857 | 0.01004 | 3.68592 | 0.4953
regrsn 0.00359 | 0.05991 | 0.00910 | 2.37831 | 0.4933
atnn 0.00055 | 0.02343 | 0.00487 | 1.57982 | 0.4715
backprop || 0.00135 | 0.03679 | 0.02931 | 11.67030 | 0.5027
boxjen | 0.00262 | 0.05116 | 0.00499 [ 1.50480 | 0.4753
Britain | dblexpn || 0.00022 | 0.01499 [ 0.00966 | 3.00333 | 0.4842
exponen | 0.00472 | 0.06869 | 0.02655 | 8.32836 | 0.4843
fuzzy 0.00044 | 0.02107 | 0.01006 | 3.52559 | 0.4843
recurn | 0.00033 | 0.01818 | 0.01129 | 4.23611 | 0.5027
regrsn 0.00380 | 0.06162 | 0.00913 | 2.80789 | 0.4843
atnn 0.00577 | 0.07597 | 0.04848 | 13.17730 | 0.4735
backprop || 0.00122 | 0.03497 | 0.02926 | 8.59726 | 0.4947
boxjen || 0.00256 | 0.05058 | 0.00580 | 1.66729 | 0.4782
Canada | dblexpn || 0.00027 | 0.01651 | 0.01150 | 3.24070 | 0.4928
exponen | 0.00539 | 0.07339 | 0.02832 | 9.39131 | 0.4927
fuzzy 0.00134 | 0.03660 | 0.01938 | 4.65808 | 0.4927
recurn 0.00027 | 0.01648 | 0.01107 | 3.64201 | 0.4947
regrsn 0.00407 | 0.06383 | 0.01060 | 3.15433 | 0.4927
atnn 0.00833 | 0.09126 | 0.00691 | 0.00691 | 0.5058
backprop || 0.00064 | 0.02524 | 0.01994 | 4.43512 | 0.5117
boxjen | 0.00307 | 0.05544 | 0.00489 | 1.85052 | 0.5005
Japan dblexpn || 0.00020 | 0.01422 | 0.01004 | 2.51158 | 0.5048
exponen | 0.00551 | 0.07422 | 0.03233 | 8.32378 | 0.5047
fuzzy 0.00247 | 0.04965 | 0.03288 | 7.84541 | 0.5047
recurn 0.00021 | 0.01466 | 0.01020 | 3.09604 | 0.5117
regrsn 0.00405 | 0.06362 | 0.00955 | 2.60456 | 0.5047

Table 35: 3 days ahead forecasts of exchange rates over window size 3
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Country | Method Performance Measures
| MSE RMSE | MAE MAPE | Ave DIR
atnn 0.00115 | 0.03391 | 0.00875 | 2.47993 | 0.4732
backprop || 0.00050 | 0.02225 | 0.01410 | 5.32932 | 0.4950
boxjen || 0.00239 | 0.04890 | 0.00472 | 1.14802 | 0.4805
Australia | dblexpn || 0.00025 | 0.01578 | 0.00782 | 2.10415 | 0.4938
exponen || 0.00508 | 0.07125 | 0.02856 | 9.57738 | 0.4937
fuzzy 0.00085 | 0.02917 | 0.01443 | 4.51882 | 0.4937
recurn 0.00034 | 0.01840 | 0.00988 | 3.71291 | 0.4950
regrsn 0.00352 | 0.05934 | 0.00703 | 1.82297 | 0.4937
atnn 0.00013 | 0.01162 | 0.00448 | 1.36237 | 0.4712
backprop || 0.00037 | 0.01914 | 0.01139 | 4.60607 | 0.5027
boxjen || 0.00263 | 0.05133 | 0.00499 | 1.51093 | 0.4750
Britain | dblexpn | 0.00016 | 0.01273 | 0.00773 | 2.40316 | 0.4838
exponen |l 0.00470 | 0.06857 | 0.02655 | 8.32361 | 0.4840
fuzzy 0.00049 | 0.02223 | 0.01073 | 4.07156 | 0.4840
recurn 0.00034 | 0.01846 | 0.01118 | 4.25047 | 0.5027
regrsn 0.00372 | 0.06100 | 0.00695 | 2.12547 | 0.4840
atnn 0.00010 | 0.01014 | 0.00534 | 1.48122 | 0.4735
backprop || 0.00045 | 0.02121 | 0.01739 | 5.39288 | 0.4947
boxjen || 0.00257 | 0.05074 | 0.00581 | 1.67176 | 0.4779
Canada | dblexpn || 0.00019 | 0.01374 | 0.00931 | 2.64004 | 0.4925
exponen | 0.00539 | 0.07340 | 0.02832 | 9.40732 | 0.4927
fuzzy 0.00123 | 0.03511 | 0.01851 | 4.54201 | 0.4927
recurn 0.00027 | 0.01639 | 0.01083 | 3.62309 | 0.4947
regrsn 0.00400 | 0.06321 | 0.00822 | 2.49081 | 0.4927
atnn 0.00010 | 0.00999 | 0.00529 | 1.30368 | 0.5055
backprop || 0.00062 | 0.02483 | 0.01711 | 3.48249 | 0.5117
boxjen || 0.00308 | 0.05550 | 0.00490 | 1.86863 | 0.5005
Japan dblexpn | 0.00014 | 0.01189 | 0.00815 | 2.03484 | 0.5045
exponen | 0.00551 | 0.07424 | 0.03235 | 8.32723 | 0.5047
fuzzy 0.00220 | 0.04688 | 0.03095 | 7.07335 | 0.5047
recurn 0.00020 | 0.01422 | 0.00970 | 3.04101 | 0.5117
regrsn 0.00399 | 0.06314 | 0.00726 | 2.03426 | 0.5047

Table 36: 1 day ahead forecasts of exchange rates over window size 4
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Country | Method Performance Measures
MSE RMSE | MAE MAPE | Ave DIR
atnn 0.00020 | 0.01418 [ 0.00438 | 1.16963 | 0.4728
backprop || 0.00104 | 0.03223 | 0.02207 | 6.36570 | 0.4953
boxjen || 0.00239 | 0.04887 | 0.00472 | 1.14843 | 0.4803
Australia | dblexpn [ 0.00030 | 0.01741 | 0.00898 | 2.38901 | 0.4935
exponen || 0.00507 | 0.07119 | 0.02856 | 9.57462 | 0.4933
fuzzy 0.00085 | 0.02920 | 0.01451 | 4.51498 | 0.4933
recurn  }| 0.00034 | 0.01832 [ 0.00980 | 3.69041 | 0.4953
regrsn || 0.00356 | 0.05969 | 0.00843 | 2.17705 | 0.4933
atnn [ 0.00014 | 0.01177 | 0.00449 | 1.36423 | 0.4715
backprop || 0.00108 | 0.03280 | 0.02487 | 9.74489 | 0.5027
boxjen || 0.00262 | 0.05116 | 0.00499 | 1.50480 | 0.4753
Briatin | dblexpn || 0.00020 | 0.01411 | 0.00892 | 2.76604 | 0.4842
exponen || 0.00472 | 0.06869 | 0.02655 | 8.32836 | 0.4843
fuzzy 0.00050 | 0.02228 | 0.01086 | 4.08542 | 0.4843
recurn | 0.00034 | 0.01836 | 0.01112 | 4.23468 | 0.5027
regrsn 0.00377 | 0.06144 | 0.00836 | 2.56919 | 0.4843
atnn 0.00010 | 0.01020 | 0.00537 | 1.48714 | 0.4735
backprop || 0.00073 | 0.02710 | 0.01751 | 4.03373 | 0.4947
boxjen [l 0.00256 | 0.05058 | 0.00580 | 1.66729 | 0.4782
Canada | dblexpn || 0.00024 | 0.01534 | 0.01059 | 2.98560 | 0.4928
exponen || 0.00539 | 0.07339 | 0.02832 | 9.39131 | 0.4927
fuzzy 0.00124 ] 0.03519 | 0.01862 | 4.57732 | 0.4927
recurn 0.00027 | 0.01648 | 0.01093 | 3.64444 | 0.4947
regrsn || 0.00404 | 0.06360 | 0.00980 | 2.92544 | 0.4927
atnn 0.00008 | 0.00888 | 0.00491 | 1.21595 | 0.5055
backprop || 0.00063 | 0.02514 | 0.01891 | 4.07529 | 0.5117
boxjen || 0.00307 | 0.05544 | 0.00489 | 1.85052 | 0.5005
Japan dblexpn [ 0.00018 | 0.01324 | 0.00919 | 2.29996 | 0.5048
exponen | 0.00551 | 0.07422 | 0.03233 | 8.32378 | 0.5047
fuzzy 0.00221 | 0.04697 | 0.03108 | 7.13383 | 0.5047
recurn 0.00020 | 0.01421 | 0.00970 | 3.04717 | 0.5117
regrsn | 0.00402 | 0.06342 | 0.00865 | 2.37822 | 0.5047

Table 37: 2 days ahead forecasts of exchange rates over window size 4
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Country | Method | Performance Measures
[LMSE RMSE | MAE MAPE Ave DIR
atnn || 0.00020 | 0.01421 0.00439 | 1.17144 | 0.4725
backprop || 0.00145 | 0.03804 | 0.02692 | 7.67235 0.4957
boxjen 0.00237 | 0.04869 | 0.00472 | 1.14600 | 0.4803
Australia | dblexpn || 0.00035 | 0.01878 | 0.00991 2.63934 | 0.4932
exponen || 0.00506 | 0.07116 | 0.02856 | 9.57318 | 0.4933
fuzzy 0.00085 | 0.02923 | 0.01459 | 4.52035 | 0.4933
recurn 0.00033 | 0.01828 | 0.00973 | 3.66846 | 0.4957
regrsn || 0.00360 | 0.06004 | 0.00949 | 2.47147 | 0.4933
atnn || 0.00014 0.01195 | 0.00450 | 1.36417 | 0.4715
backprop || 0.00134 | 0.03662 | 0.02671 | 9.58364 0.5027
boxjen 0.00262 [ 0.05118 | 0.00499 | 1.50523 | 0.4753
Britain dblexpn | 0.00024 | 0.01534 | 0.00989 | 3.06423 0.4845
exponen || 0.00471 | 0.06865 | 0.02655 | 8.32513 | 0.4843
fuzzy 0.00050 | 0.02237 | 0.01094 | 4.09194 | 0.4843
recurn 0.00033 | 0.01827 | 0.01105 | 4.21559 | 0.5027
regrsn 0.00381 | 0.06170 | 0.00956 | 2.93604 | 0.4843
atnn 0.00023 | 0.01531 | 0.01013 | 2.71704 | 0.4732
backprop || 0.00175 | 0.04182 7] 0.03535 | 10.52540 0.4947
boxjen 0.00255 | 0.05052 | 0.00581 | 1.66828 | 0.4782
Canada | dblexpn || 0.00028 | 0.01667 | 0.01162 3.25367 | 0.4925
exponen | 0.00539 | 0.07340 | 0.02832 | 9.37172 | 0.4927
fuzzy 0.00124 | 0.03523 | 0.01869 | 4.59349 | 0.4927
recurn 0.00027 | 0.01649 | 0.01099 | 3.65142 | 0.4947
regrsn 0.00409 | 0.06398 | 0.01103 | 3.26093 | 0.4927
atnn 0.00008 | 0.00883 | 0.00489 | 1.21237 [ 0.5055
backprop |f 0.00105 | 0.03240 | 0.02543 | 5.30260 0.5117
boxjen 0.00307 | 0.05542 | 0.00490 | 1.84250 | 0.5005
Japan dblexpn | 0.00021 | 0.01452 | 0.01017 | 2.55615 0.5048
exponen | 0.00552 | 0.07427 | 0.03230 | 8.33161 | 0.5047
fuzzy 0.00222 | 0.04713 | 0.03120 | 7.20701 | 0.5047
recurn 0.00020 | 0.01414 | 0.00966 | 3.04532 | 0.5117
regrsn 0.00407 | 0.06380 | 0.00988 | 2.70636 | 0.5047

Table 38: 3 days ahead forecasts of exchange rates over window size 4
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Country | Method Performance Measures
MSE RMSE | MAE MAPE | Ave DIR
atnn 0.00020 | 0.01422 | 0.00428 | 1.17986 | 0.4728
backprop [| 0.00065 | 0.02551 | 0.01647 | 5.01517 | 0.4953
boxjen || 0.00239 | 0.04887 | 0.00472 | 1.14843 | 0.4803
Australia | dblexpn || 0.00020 | 0.01406 | 0.00661 | 1.76573 | 0.4935
exponen [ 0.00507 | 0.07119 | 0.02856 | 9.57462 | 0.4933
fuzzy 0.00092 | 0.03038 | 0.01591 | 5.58995 | 0.4933
recurn |{ 0.00030 | 0.01745 | 0.00901 | 3.45559 | 0.4953
regrsn || 0.00349 | 0.05907 | 0.00630 | 1.61768 | 0.4933
atnn 0.00018 | 0.01340 | 0.00452 | 1.45778 | 0.4715
backprop || 0.00037 | 0.01921 | 0.01100 | 4.51840 | 0.5027
boxjen || 0.00262 | 0.05116 | 0.00499 | 1.50480 | 0.4753
Britain | dblexpn || 0.00013 | 0.01129 | 0.00654 | 2.03006 | 0.4842
exponen (| 0.00472 | 0.06869 | 0.02655 | 8.32836 | 0.4843
fuzzy 0.00059 | 0.02424 | 0.01186 | 4.77154 | 0.4843
recurn || 0.00029 | 0.01699 | 0.01010 | 3.89456 | 0.5027
regrsn || 0.00372 | 0.06103 | 0.00630 | 1.93083 | 0.4843
atnn 0.00011 | 0.01053 | 0.00518 | 1.48292 | 0.4735
backprop || 0.00057 | 0.02382 | 0.01712 | 4.85236 | 0.4947
boxjen || 0.00256 | 0.05058 | 0.00580 | 1.66729 | 0.4782
Canada | dblexpn || 0.00014 | 0.01171 | 0.00780 | 2.20632 | 0.4928
exponen || 0.00539 | 0.07339 | 0.02832 | 9.39131 | 0.4927
fuzzy 0.00119 | 0.03449 | 0.01819 | 4.59261 | 0.4927
recurn 0.00021 | 0.01464 | 0.00950 | 3.18991 | 0.4947
regrsn || 0.00398 | 0.06305 | 0.00738 | 2.25170 | G.4927
atnn 0.00025 | 0.01578 | 0.00490 | 1.21036 | 0.5055
backprop || 0.00043 | 0.02080 | 0.01482 | 3.27662 | 0.5117
boxjen || 0.00307 | 0.05544 | 0.00489 | 1.85052 | 0.5005
Japan dblexpn || 0.00010 | 0.01020 | 0.00677 | 1.70812 | 0.5048
exponen [ 0.00551 | 0.07422 | 0.03233 | 8.32378 | 0.5047
fuzzy 0.00209 | 0.04567 | 0.03019 | 6.80225 | 0.5047
recurn | 0.00017 | 0.01302 | 0.00876 | 2.78407 | 0.5117
regrsn || 0.00397 | 0.06302 | 0.00650 | 1.85115 | 0.5047

Table 39: 1 day ahead forecasts of exchange rates over window size 5
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Country | Method Performance Measures
MSE RMSE | MAE MAPE | Ave DIR
atnn 0.00022 | 0.01475 | 0.00483 | 1.35499 | 0.4725
backprop || 0.00110 | 0.03316 | 0.02228 | 6.15904 | 0.4957
boxjen [ 0.00237 | 0.04869 | 0.00472 | 1.14600 | 0.4803
Australia | dblexpn | 0.00025 | 0.01578 | 0.00785 | 2.08388 | 0.4932
exponen | 0.00506 | 0.07116 | 0.02856 | 9.57318 | 0.4933
fuzzy 0.00092 | 0.03041 | 0.01598 | 5.58640 | 0.4933
recurn (| 0.00032 { 0.01777 | 0.00920 | 3.49215 | 0.4957
regrsn || 0.00353 | 0.05944 | 0.00775 | 2.00245 | 0.4933
atnn 0.00026 | 0.01610 | 0.00450 | 1.41999 | 0.4715
backprop || 0.00073 | 0.02708 | 0.01907 | 7.28880 | 0.5027
boxjen || 0.00262 | 0.05118 | 0.00499 | 1.50523 | 0.4753
Britain | dblexpn || 0.00016 | 0.01277 | 0.00782 | 2.42448 | 0.4845
exponen [ 0.00471 | 0.06865 | 0.02655 | 8.32513 | 0.4843
fuzzy 0.00059 | 0.02429 | 0.01199 | 4.79054 | 0.4843
recurn || 0.00030 | 0.01720 | 0.01032 | 3.94784 | 0.5027
regrsn 0.00376 | 0.06129 | 0.00780 | 2.39091 | 0.4843
atnn 0.00010 | 0.00983 | 0.00508 | 1.43503 | 0.4735
backprop [{ 0.00092 | 0.03025 | 0.01891 | 4.04763 | 0.4947
boxjen | 0.00255 | 0.05052 | 0.00581 | 1.66828 | 0.4782
Canada | dblexpn || 0.00018 | 0.01347 | 0.00915 | 2.57265 | 0.4925
exponen || 0.00539 | 0.07340 | 0.02832 | 9.37172 | 0.4927
fuzzy 0.00119 | 0.03455 | 0.01830 | 4.61916 | 0.4927
recurn || 0.00023 | 0.01511 | 0.00996 | 3.29638 | 0.4947
regrsn || 0.00403 | 0.06345 | 0.00902 | 2.70462 | 0.4927
atnn 0.00417 | 0.06457 | 0.00564 | 1.16874 | 0.5055
backprop || 0.00073 | 0.02696 | 0.02060 | 4.31716 | 0.5117
boxjen || 0.00307 | 0.05542 | 0.00490 | 1.84250 | 0.5005
Japan dblexpn | 0.00014 | 0.01177 | 0.00797 | 2.00394 | 0.5048
exponen || 0.00552 | 0.07427 | 0.03230 | 8.33161 | 0.5047
fuzzy 0.00213 | 0.04614 | 0.03005 | 6.75668 | 0.5047
recurn [ 0.00018 | 0.01337 | 0.00908 | 2.86305 | 0.5117
regrsn 0.00402 | 0.06339 | 0.00806 | 2.24530 | 0.5047

Table 40: 2 days ahead forecasts of exchange rates over window size 5

134




Country | Method Performance Measures
MSE RMSE | MAE MAPE | Ave DIR
atnn 0.00025 | 0.01590 | 0.00427 { 1.27183 | 0.4725
backprop || 0.00135 | 0.03672 | 0.02593 | 7.40298 | 0.4953
boxjen [l 0.00238 | 0.04878 | 0.00472 | 1.14650 | 0.4803
Australia | dblexpn [ 0.00029 | 0.01711 | 0.00878 | 2.35021 | 0.4935
exponen || 0.00507 | 0.07121 | 0.02856 | 9.57505 | 0.4937
fuzzy 0.00092 | 0.03041 | 0.01605 | 5.58677 | 0.4937
recurn || 0.00032 | 0.01797 | 0.00941 | 3.53040 | 0.4953
regrsn | 0.00358 | 0.05984 | 0.00887 | 2.32526 | 0.4937
atnn 0.00016 | 0.01260 | 0.00435 | 1.35445 | 0.4715
backprop || 0.00150 | 0.03877 | 0.02876 | 10.53460 | 0.5023
boxjen | 0.00262 | 0.05123 | 0.00499 | 1.50721 | 0.4753
Britain | dblexpn | 0.00020 | 0.01414 | 0.00896 | 2.76796 | 0.4845
exponen || 0.00472 | 0.06871 | 0.02655 | 8.32781 | 0.4843
fuzzy 0.00059 | 0.02438 | 0.01207 | 4.80033 | 0.4843
recurn || 0.00030 | 0.01736 | 0.01049 | 3.99381 | 0.5023
regrsn || 0.00380 | 0.06165 | 0.00910 | 2.79540 | 0.4843
atnn 0.00011 | 0.01055 | 0.00518 | 1.47537 | 0.4735
backprop (| 0.00134 | 0.03655 | 0.02612 | 6.15847 | 0.4947
boxjen || 0.00255 | 0.05047 | 0.00581 | 1.66593 | 0.4784
Canada | dblexpn [ 0.00022 | 0.01499 | 0.01034 | 2.90155 | 0.4928
exponen | 0.00538 | 0.07336 | 0.02832 | 9.35014 | 0.4927
fuzzy 0.00120 | 0.03461 | 0.01836 | 4.63233 | 0.4927
recurn [l 0.00024 | 0.01546 | 0.01029 | 3.37482 | 0.4947
regrsn || 0.00407 | 0.06378 | 0.01043 | 3.09846 | 0.4927
atnn 0.00048 | 0.02200 | 0.01324 | 3.08024 | 0.5055
backprop || 0.00089 | 0.02980 | 0.02363 | 4.99340 | 0.5113
boxjen | 0.00307 | 0.05544 | 0.00490 | 1.84835 | 0.5005
Japan dblexpn || 0.00017 | 0.01323 | 0.00916 | 2.31359 | 0.5048
exponen | 0.00551 | 0.07425 | 0.03228 | 8.32975 | 0.5047
fuzzy 0.00216 | 0.04652 | 0.03015 | 6.80946 | 0.5047
recurn fl 0.00018 | 0.01360 | 0.00932 | 2.92334 | 0.5113
regrsn [ 0.00406 | 0.06370 | 0.00940 | 2.59280 | 0.5047

Table 41: 3 days ahead forecasts of exchange rates over window size 5
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6.1.1 Analysis of the Results

Before drawing any conclusions about the efficiencies of the models, it is better to
understand what the numbers in each of the tables represent. Closely studying the

magnitude of the errors, the following deductions have been made:

1. In terms of the metric MSE, the atnn method performs the best, in the sense
that it gives minimum MSE error. It is closely followed by backprop, dblezpn,
and recurn. The methods regrsn, bozjen, fuzzy produced relatively high MSE
values. And ezponen by far exceeds the magnitude of MSE values from all
others. Even then, the overall MSE values rarely exceed 0.5%. This means that
most of the times the differences between the forecasted values and the actual
values is very less. It is to be noted that RMSE varies according as MSE. i.e.,

RMSE increases/decreases when MSE increases/decreases and vice versa.

2. For the metric MAE, we notice that both atnn and bozjen perform well, the
former having lower values in most of the cases. Apart from these, regrsn,
dblezpn, fuzzy have relatively lower values. backprop and recurn have close
values to each other, but the magnitudes are on the higher side. The highest
MAE is exhibited by ezponen. The average MAE is around 2%.

3. MAPE has similar outcome as MAE. atnn and bozjen gives smaller values than
the rest. But unlike the former metrics, here the range of values is quite high,
from 1.14 to 9.57 in the same prediction zone. This metric also determines how

well the predicted curve fits the actual one to a certain extent.

4. Finally, let us consider the DS metric. The tables 42 - 47 shows very different
results from the previous set of tables (33 - 41). Unlike previous case, here the
DIR errors have very close values to each other. In fact, it may be concluded that
both atnn, fuzzy, dblezpn and bozjen give quite similar values 47% to roundabout

50% errors. i.e., 53% to 50% correctness in predicting direction of movement.
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The methods backprop and recurn give higher errors than the rest and these too

have very close values. However, the overall error is not more than 51%.

Also, the performance is slightly better for short range forecasts than long range
for the forecasting methods discussed in this thesis. The prediction errors for Canada

and Japan are higher than Australia and Britain in a general sense.

6.2 Prediction of Averages of Exchange Rates

In this section, the performances of the methods in forecasting future values of the
averages of 3 and 5 days (window sizes 3,4,5) have been presented. The exchange rates
of Australia, Britain, Canada and Japan with respect to the United States dollar have
been used as time series data inputs to the experiments. The results are summarized

in tables 42 - 47.
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Country | Method Performance Measures
MSE RMSE | MAE MAPE | Ave DIR
atnn 0.00018 | 0.01353 | 0.00275 | 0.78277 | 0.4718
backprop || 0.00030 | 0.01730 | 0.00945 | 4.56127 | 0.4800
boxjen || 0.00235 | 0.04843 | 0.00294 | 0.68019 | 0.4766
Australia | dblexpn || 0.00041 | 0.02026 | 0.01065 | 2.92689 | 0.4718
exponen | 0.00505 | 0.07105 | 0.02839 | 9.53248 | 0.4720
fuzzy 0.00082 | 0.02872 | 0.01291 | 3.54097 | 0.4720
recurn [ 0.00031 | 0.01751 | 0.00919 | 3.51430 | 0.4800
regrsn || 0.00359 | 0.05990 | 0.00882 | 2.34411 | 0.4720
atnn 0.00010 | 0.00980 | 0.00268 | 0.83529 | 0.5065
backprop || 0.00030 | 0.01731 | 0.01301 | 4.72203 | 0.5063
boxjen || 0.00261 | 0.05107 | 0.00320 | 0.94555 | 0.5068
Britain | dblexpn || 0.00020 | 0.01430 | 0.00903 | 2.81095 | 0.5065
exponen | 0.00472 | 0.06870 | 0.02649 | 8.31447 | 0.5067
fuzzy 0.00041 | 0.02022 | 0.00826 | 3.08358 | 0.5067
recurn |f 0.00028 | 0.01685 | 0.01008 | 3.88978 | 0.5063
regrsn f 0.00375 | 0.06128 | 0.00708 | 2.18199 | 0.5067
atnn 0.00019 | 0.01396 | 0.00550 | 1.61218 | 0.4832
backprop || 0.00026 | 0.01597 | 0.01397 | 4.28454 | 0.5037
boxjen | 0.00253 | 0.05033 [ 0.00345 | 0.95906 | 0.4797
Canada | dblexpn [[ 0.00025 | 0.01578 | 0.01078 | 3.05862 | 0.4832
exponen [ 0.00536 | 0.07320 | 0.02809 | 9.38083 | 0.4833
fuzzy 0.00131 | 0.03618 | 0.01732 | 3.95936 | 0.4833
recurn || 0.00022 | 0.01477 | 0.00937 | 3.24747 | 0.5037
regrsn (| 0.00398 | 0.06309 | 0.00825 | 2.48536 | 0.4833
atnn 0.00007 | 0.00807 | 0.00296 | 0.74551 | 0.5008
backprop || 0.00051 | 0.02259 | 0.01457 | 2.82833 | 0.5140
boxjen | 0.00306 [ 0.05529 | 0.00318 | 1.36175 | 0.4955
Japan dblexpn || 0.00028 | 0.01678 | 0.01173 | 2.89722 | 0.5005
exponen f{ 0.00552 | 0.07430 | 0.03239 | 8.32797 | 0.5003
fuzzy 0.00240 | 0.04895 | 0.03092 | 6.95412 | 0.5003
recurn | 0.00017 | 0.01315 | 0.00896 | 2.80381 | 0.5140
regrsn [ 0.00407 | 0.06379 | 0.00967 | 2.62656 | 0.5003

Table 42: 3 days ahead forecasts of averages of exchange rates over window size 3
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Country | Method Performance Measures
MSE RMSE | MAE MAPE | Ave DIR
atnn 0.00051 | 0.02269 | 0.00882 | 4.95732 | 0.4882
backprop || 0.00033 | 0.01828 | 0.00952 | 3.72249 | 0.4383
boxjen || 0.00235 | 0.04851 | 0.00339 | 0.80813 | 0.4976
Australia | dblexpn || 0.00026 | 0.01615 | 0.00788 | 2.14784 | 0.4882
exponen || 0.00503 | 0.07094 | 0.02827 | 9.50143 | 0.4883
fuzzy 0.00080 | 0.02835 | 0.01255 | 3.47241 | 0.4883
recurn { 0.00030 | 0.01720 | 0.00898 | 3.46326 | 0.4883
regrsn || 0.00349 | 0.05907 | 0.00616 | 1.60257 | 0.4883
atnn 0.00078 | 0.02798 | 0.00313 | 1.01436 | 0.4865
backprop |f 0.00020 | 0.01400 | 0.00797 | 3.51844 | 0.5103
boxjen 0.00262 | 0.05123 | 0.00458 | 1.38292 | 0.4829
Britain | dblexpn || 0.00017 | 0.01314 | 0.00806 | 2.50639 | 0.4865
exponen || 0.00467 | 0.06837 | 0.02636 | 8.25786 | 0.4867
fuzzy 0.00041 | 0.02017 | 0.00822 [ 3.04082 | 0.4867
recurn [ 0.00028 [ 0.01668 | 0.00991 | 3.84059 | 0.5103
regrsn || 0.00371 | 0.06088 | 0.00626 | 1.91456 | 0.4867
atnn 0.00007 | 0.00806 | 0.00343 | 0.91019 | 0.4822
backprop || 0.00020 | 0.01419 | 0.00962 | 2.44134 | 0.5003
boxjen | 0.00253 | 0.05035 | 0.00422 | 1.18611 | 0.4861
Canada | dblexpn [[ 0.00021 | 0.01432 | 0.00971 | 2.76007 | 0.4822
exponen |l 0.00535 | 0.07312 [ 0.02792 | 9.31501 | 0.4823
fuzzy 0.00130 | 0.03601 | 0.01728 | 3.95269 | 0.4823
recurn 0.00021 | 0.01451 [ 0.00920 | 3.19451 | 0.5003
regrsn 0.00396 | 0.06296 | 0.00735 | 2.24189 | 0.4823
atnn 0.00007 | 0.00829 | 0.00238 | 0.60069 [ 0.4915
backprop || 0.00020 | 0.01429 | 0.01100 | 2.68518 | 0.5197
boxjen [l 0.00308 | 0.05548 | 0.00472 | 1.80038 | 0.4926
Japan dblexpn || 0.00015 | 0.01238 | 0.00849 | 2.10563 | 0.4915
exponen |f 0.00549 | 0.07410 | 0.03222 | 8.28219 | 0.4913
fuzzy 0.00238 | 0.04883 | 0.03057 | 6.84215 | 0.4913
recurn || 0.00017 | 0.01298 | 0.00883 | 2.78017 | 0.5197
regrsn 0.00397 | 0.06304 | 0.00655 | 1.85245 | 0.4913

Table 43: 5 days ahead forecasts of averages of exchange rates over window size 3
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Country | Method Performance Measures
MSE RMSE | MAE | MAPE | Ave DIR
atnn 0.00019 | 0.01376 | 0.00339 | 0.85054 | 0.4715
backprop || 0.00032 | 0.01785 | 0.01065 | 5.19780 | 0.4800
boxjen | 0.00235 | 0.04843 | 0.00294 | 0.68019 | 0.4766
Australia | dblexpn [ 0.00041 | 0.02031 | 0.01089 | 3.00522 | 0.4715
exponen | 0.00504 | 0.07101 | 0.02839 | 9.53125 | 0.4717
fuzzy 0.00084 | 0.02890 | 0.01387 | 4.38877 | 0.4717
recurn [ 0.00031 | 0.01751 | 0.00911 | 3.56930 | 0.4800
regrsn | 0.00360 | 0.06004 | 0.00944 | 2.52852 | 0.4717
atnn 0.00007 | 0.02799 | 0.00415 | 1.00986 | 0.4865
backprop | 0.00037 | 0.01920 | 0.01510 | 5.41047 | 0.5063
boxjen || 0.00261 | 0.05107 | 0.00320 | 0.94555 | 0.5068
Britain | dblexpn || 0.00029 | 0.01717 | 0.01119 | 3.48272 [ 0.5065
exponen || 0.00469 | 0.06847 | 0.02645 | 8.29043 | 0.5067
fuzzy 0.00047 | 0.02174 | 0.00946 | 3.70942 | 0.5067
recurn | 0.00029 | 0.01714 | 0.01003 | 3.92180 | 0.5063
regrsn || 0.00380 | 0.06168 | 0.00971 | 2.98732 | 0.5067
atnn 0.00007 | 0.00814 | 0.00371 | 1.01980 | 0.4832
backprop || 0.00029 | 0.01717 | 0.01473 | 4.62887 | 0.5037
boxjen || 0.00253 | 0.05033 | 0.00345 | 0.95906 | 0.4797
Canada | dblexpn [ 0.00036 | 0.01900 | 0.01330 | 3.76734 | 0.4832
exponen | 0.00536 | 0.07320 | 0.02809 | 9.38083 | 0.4833
fuzzy 0.00121 | 0.03479 | 0.01693 | 3.98323 | 0.4833
recurn 0.00022 | 0.01486 | 0.00926 | 3.26460 | 0.5037
regrsn | 0.00408 | 0.06389 | 0.01136 | 3.36056 | 0.4833
atnn 0.00010 | 0.01015 | 0.00579 | 1.63235 | 0.5012
backprop | 0.00042 | 0.02042 | 0.01684 | 3.60866 | 0.5140
boxjen 0.00306 | 0.05529 | 0.00318 | 1.36175 | 0.4955
Japan dblexpn || 0.00029 | 0.01696 | 0.01191 | 2.95245 | 0.5012
exponen | 0.00553 | 0.07439 | 0.03249 | 8.34474 | 0.5010
fuzzy 0.00218 | 0.04667 | 0.02946 | 6.39976 | 0.5010
recurn |l 0.00017 | 0.01296 | 0.00866 | 2.79701 | 0.5140
regrsn || 0.00409 | 0.06396 | 0.01030 | 2.78903 | 0.5010

Table 44: 3 days ahead forecasts of averages of exchange rates over window size 4
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Country | Method Performance Measures
MSE RMSE | MAE MAPE | Ave DIR
atnn 0.00018 | 0.01335 | 0.00285 | 0.71251 | 0.4882
backprop || 0.00032 | 0.01788 | 0.00937 | 4.19723 | 0.4883
boxjen | 0.00235 | 0.04851 | 0.00339 | 0.80813 | 0.4976
Australia { dblexpn || 0.00031 |{ 0.01763 | 0.00909 | 2.48994 | 0.4882
exponen | 0.00503 | 0.07094 | 0.02827 | 9.50143 | 0.4883
fuzzy 0.00082 | 0.02861 | 0.01356 | 4.31511 | 0.4883
recurn | 0.00030 | 0.01722 | 0.00891 | 3.51834 | 0.4883
regrsn || 0.00354 | 0.05946 | 0.00767 | 2.02263 | 0.4883
atnn 0.00010 | 0.00994 | 0.00279 | 0.81255 | 0.4865
backprop || 0.00023 | 0.01507 | 0.01034 | 3.97212 | 0.5103
boxjen 0.00262 | 0.05123 | 0.00458 | 1.38292 | 0.4829
Britain | dblexpn || 0.00022 | 0.01470 | 0.00928 | 2.88428 | 0.4865
exponen | 0.00467 | 0.06837 | 0.02636 | 8.25786 | 0.4867
fuzzy 0.00046 | 0.02155 | 0.00905 | 3.58511 | 0.4867
recurn |l 0.00029 { 0.01699 | 0.00986 | 3.87270 | 0.5103
regrsn || 0.00374 | 0.06119 | 0.00782 | 2.39684 | 0.4867
atnn 0.00006 | 0.00760 | 0.00313 | 0.85459 | 0.4822
backprop || 0.00017 | 0.01289 | 0.01062 | 3.10447 | 0.5003
boxjen | 0.00253 | 0.05035 | 0.00422 | 1.18611 | 0.4861
Canada | dblexpn || 0.00026 | 0.01599 | 0.01105 | 3.12915 | 0.4822
exponen | 0.00535 | 0.07312 [ 0.02792 | 9.31501 | 0.4823
fuzzy 0.00119 | 0.03456 | 0.01650 | 3.85659 | 0.4823
recurn 0.00021 | 0.01466 | 0.00913 | 3.22202 | 0.5003
regrsn 0.00401 | 0.06334 | 0.00913 | 2.73634 | 0.4823
atnn 0.00005 | 0.00719 | 0.00322 | 0.76505 | 0.4902
backprop || 0.00069 | 0.02620 | 0.02242 | 4.63945 | 0.5197
boxjen | 0.00308 | 0.05548 | 0.00472 | 1.80038 | 0.4926
Japan dblexpn || 0.00020 | 0.01421 | 0.00988 | 2.44901 | 0.4902
exponen || 0.00552 | 0.07429 | 0.03238 | 8.31682 | 0.4900
fuzzy 0.00216 | 0.04647 | 0.02904 | 6.25286 | 0.4900
recurn || 0.00016 | 0.01281 | 0.00852 | 2.77257 | 0.5197
regrsn || 0.00403 | 0.06347 | 0.00828 | 2.29017 | 0.4900

Table 45: 5 days ahead forecasts of averages of exchange rates over window size 4
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Country | Method || Performance Measures

| MSE RMSE | MAE | MAPE | Ave DIR

atnn || 0.00044 | 0.02097 | 0.00357 | 1.14064 | 0.4715

backprop | 0.00033 | 0.01813 | 0.01111 | 5.50543 | 0.4800

boxjen 0.00235 | 0.04843 | 0.00294 | 0.68019 | 0.4766

Australia | dblexpn || 0.00039 | 0.01964 | 0.01053 | 2.93858 | 0.4715

exponen (I 0.00504 | 0.07101 | 0.02839 | 9.53125 | 0.4717

fuzzy 0.00091 | 0.03016 | 0.01538 | 5.43881 | 0.4717

recurn 0.00029 | 0.01701 | 0.00863 | 3.37488 | 0.4800

regrsn 0.00360 | 0.05997 | 0.00933 | 2.52314 | 0.4717

atnn 0.00027 | 0.01634 | 0.00335 | 1.03086 | 0.4832

backprop || 0.00032 | 0.01801 | 0.01388 | 4.97657 | 0.5063

boxjen 0.00261 | 0.05107 | 0.00320 | 0.94555 | 0.5068

Britain | dblexpn [ 0.00028 | 0.01685 | 0.01100 | 3.42627 | 0.5065

exponen | 0.00469 { 0.06847 | 0.02645 | 8.29043 | 0.5067

fuzzy 0.00057 | 0.02378 | 0.01077 | 4.43784 | 0.5067

recurn 0.00025 | 0.01591 | 0.00909 | 3.57094 { 0.5063

regrsn 0.00380 | 0.06167 | 0.00973 | 2.99691 | 0.5067

atnn 0.00027 | 0.01634 | 0.00335 | 1.03086 | 0.4832

backprop || 0.00026 | 0.01619 | 0.01402 | 4.34835 | 0.5037

boxjen 0.00253 | 0.05033 | 0.00345 | 0.95906 | 0.4797

Canada | dblexpn || 0.00034 | 0.01846 [ 0.01301 | 3.68577 | 0.4832

exponen || 0.00536 | 0.07320 | 0.02809 | 9.38083 | 0.4833

fuzzy 0.00116 | 0.03406 | 0.01665 | 4.03053 | 0.4833

recurn 0.00018 | 0.01345 | 0.00817 | 2.86724 | 0.5037

regrsn 0.00408 | 0.06386 | 0.01133 | 3.35549 | 0.4833

atnn 0.00008 | 0.00910 | 0.00339 | 0.82240 | 0.4998

backprop || 0.00156 | 0.03949 | 0.03374 | 6.51951 | 0.5140

boxjen 0.00306 | 0.05529 | 0.00318 | 1.36175 | 0.4955

Japan dblexpn || 0.00028 | 0.01674 | 0.01175 | 2.91964 | 0.4998

exponen [ 0.00552 | 0.07428 | 0.03239 | 8.32320 | 0.4997

fuzzy 0.00204 | 0.04517 | 0.02863 | 6.06158 | 0.4997

recurn 0.00015 | 0.01205 | 0.00793 | 2.56100 | 0.5140

regrsn 0.00409 | 0.06392 | 0.01035 | 2.79959 | 0.4997

Table 46: 3 days ahead forecasts of averages of exchange rates over window size 5
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Country | Method Performance Measures
MSE RMSE | MAE MAPE | Ave DIR
atnn 0.00075 | 0.02736 | 0.00519 | 1.47522 | 0.4882
backprop || 0.00029 | 0.01713 | 0.00927 | 4.42731 | 0.4883
boxjen | 0.00235 | 0.04851 | 0.00339 | 0.80813 | 0.4976
Australia | dblexpn [ 0.00027 | 0.01652 | 0.00842 | 2.33999 | 0.4882
exponen ji 0.00503 | 0.07094 | 0.02827 | 9.50143 | 0.4883
fuzzy 0.00089 | 0.02985 | 0.01504 | 5.37472 | 0.4883
recurn || 0.00027 | 0.01644 | 0.00812 | 3.26851 | 0.4883
regrsn 0.00352 | 0.05931 | 0.00723 | 1.92855 | 0.4883
atnn 0.00009 | 0.00970 | 0.00228 | 0.71099 | 0.4865
backprop || 0.00028 | 0.01678 | 0.01252 | 4.57775 | 0.5103
boxjen | 0.00262 | 0.05123 | 0.00458 | 1.38292 | 0.4829
Britain | dblexpn || 0.00020 | 0.01399 | 0.00880 | 2.73807 | 0.4865
exponen | 0.00467 | 0.06837 | 0.02636 | 8.25786 | 0.4867
fuzzy 0.00056 | 0.02359 | 0.01023 | 4.29299 | 0.4867
recurn | 0.00022 [ 0.01499 | 0.00883 | 3.50595 | 0.5103
regrsn 0.00374 | 0.06112 | 0.00753 | 2.30870 | 0.4867
atnn 0.00006 | 0.00744 | 0.00248 | 0.74230 | 0.4822
backprop [| 0.00023 | 0.01504 | 0.01299 | 4.01296 | 0.5003
boxjen 0.00253 | 0.05035 | 0.00422 | 1.18611 | 0.4861
Canada | dblexpn | 0.00022 | 0.01494 | 0.01038 | 2.03881 | 0.4822
exponen | 0.00535 | 0.07312 | 0.02792 | 9.31501 | 0.4823
fuzzy 0.00114 | 0.03382 | 0.01601 | 3.83645 | 0.4823
recurn § 0.00016 | 0.01282 | 0.00761 | 2.725383 | 0.5003
regrsn 0.00400 | 0.06322 | 0.00870 | 2.61636 | 0.4823
atnn 0.00018 | 0.01332 | 0.00251 | 0.62206 | 0.4902
backprop || 0.00050 | 0.02236 | 0.01882 | 3.96439 | 0.5197
boxjen | 0.00308 | 0.05548 | 0.00472 | 1.80038 | 0.4926
Japan dblexpn || 0.00018 | 0.01354 | 0.00939 | 2.33738 | 0.4902
exponen | 0.00552 | 0.07429 | 0.03238 | 8.31682 | 0.4900
fuzzy 0.00203 | 0.04503 | 0.02832 | 5.94812 | 0.4900
recurn )| 0.00013 | 0.01159 | 0.00752 | 2.48576 | 0.5197
regrsn 0.00402 | 0.06341 | 0.00799 | 2.22659 | 0.4900

Table 47: 5 days ahead forecasts of averages of exchange rates over window size 5
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6.2.1 Analysis of the Results

In this section analysis of the tables for predicting averages of exchange rates (tables
42 - 47) have been made followed by conclusions from the analysis.
As done in previous section, let us consider the performances of the forecasting

methods in terms of the performance metrics.

1. In terms of the metric MSE, atnn performs marginally better than recurn, back-
prop and regrsn. This outcome is different than the one obtained for regular
exchange rates. And as before, ezponen gives the highest MSE errors. The over-
all magnitude of MSE errors is less than regular exchange data. The average is
roundabout 0.02%. Like before, it is to be noted that RMSE varies according as
MSE. i.e., RMSE increases/decreases when MSE increases/decreases and vice

versa.

2. For the metric MAE, we notice that both afnn and bozjen perform well, the
former having lower values in most of the cases. Apart from these, regrsn and
dblezpn have relatively lower values. backprop and recurn have close values
to each other, but the magnitudes are on the higher side. The highest MAE
is exhibited by ezponen. The MAE values for fuzzy is very close to those of
ezponen. The average MAE is around 0.2%.

3. MAPE has similar outcome as MAE. atnn and bozjen gives smaller values than
the rest. But unlike the former metrics, here the range of values is quite high,
from 0.70 to 9.57 in the same prediction zone. This metric also determines how

well the predicted curve fits the actual one to a certain extent.

4. Finally, let us consider the DS metric. The tables 42-47 show that atnn has
the minimum directional errors, i.e., the prediction of movements of the data
is most accurate compared to other methods. The values lie between 0.4725

(for Australia - U.S. conversion rates) to 0.5035 ( for Japanese - U.S. conversion
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rates) for atnn. This means that the prediction of direction is correct 53% to
atleast 50% times. fuzzy, bozjen, ezponen, regrsn, dblezpn gives about 51% accu-
racy on an average. Whereas, backprop and recurn gives about 49% accuracy in
predicting directions. One point interesting to note is that the performance of

backprop and recurn are quite close to each other where this metric is concerned.

Investigating the above 4 points, we can say that atnn performs marginally
better than bozjen, dblezpn or even regrsn. Also, fuzzy gives good prediction for
averages compared to regular exchange data. The methods backprop and recurn have
similar performance results. And ezponen, as before, is not very suitable for predicting
averages of exchange rates. But, the crucial point to be noted is that, there is not a
vast difference between the magnitudes of the performance metrics in a general sense
for each of the methods.

Finally, as a follow-up of the above analysis, it is found that the performance

of neural nets is better than statistical models.
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Chapter 7

Prediction of White Noise and

Chaotic Time Series

The first part of this chapter contains a discussion on prediction of continuous-time-
white noise which is a derivative of a Brownian motion. The predictions can be
made by using the method of fractional differencing, which is an extension of the
Box-Jenkins methodology described in Chapter 4. Here, the first level of differences
takes any real values rather than integral differences as considered by the Box-Jenkins

method. This is followed by a discussion on predicting chaotic time series.

7.1 The Fractional Differencing Technique

It is a standard technique among statisticians to use the method of differencing in
order to achieve stationarity in a given time series. Once a time series is adapted to
become stationary, it becomes easier to apply standard methods of prediction, like
the Box-Jenkins method. (Please refer Chapter 4). Box-Jenkins method is typically
known as the ARIMA modelling and the statisticians have interpreted the technique
in many ways to suit the time series data. The method of fractional differencing
proposed by Hosking [13], Granger et. al.,[10] and Mandelbrot et.al., [22] has been

presented in this section.
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Most of the recent work in time series assumed that observations separated by
a long time span are nearly independent. Yet in many empirical time series, this is not
the case,there does exist a dependency between the distant observations. Such series
appear to exhibit cycles and changes of levels of all orders of magnitude,and their
spectral densities increases indefinitely as the frequency tends to zero. The present
section focuses on the following aspects and introduce a family of models which meet

the same requirement:
1. Explicitly modelling long term persistence;

2. Being flexible enough to explain both the short term and the long term corre-

lation structure of the series.
3. Enabling synthetic series to be easily generated from the model.

Generalizing the Box-Jenkins ARIMA(p, d, g) by permitting the difference operator d
to take any real value, rather than integers, it turns out that for 0 < d <= 3 these

fractionally differenced processes are capable of modelling long-term persistence.

7.1.1 Derivation of Fractionally Differenced White Noise

Brownian motion is a continuous time stochastic process B(t) with independent Gaus-
sian increments and spectral density w=2.Its derivative is the continuous time white
noise process, which has constant spectral density. Fractional Brownian motion,
Bpy(t) ,defined by Mandelbrot and Van Ness [22] is a generalization of these pro-

cesses. The basic properties of Fractional Brownian motion (f.b.m) are:

1. Fractional Brownian motion with parameter H, usually 0 < H < 1 is the (%
-H)th fractional derivative of Brownian motion,the derivative is in Weyll or

Reimann-Liouville senses.

2. The spectral density of f.b.m. is proportional to w=2H-1,
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3. The covariance function is proportional to |K|?#—2

The continuous time fractional noise is then defined by B} (t),the derivative of By (t).
It is also thought of as the (3 — H)® fractional derivative of the continuous time white
noise, to which it reduces when H =;. Derivative exists only in the sense of a random
Schwarz distribution. Def: ABg(t) = By(t) — Bg(t—1)

The discrete time analogue of Brownian Motion is the random walk orARIMA(0, 1, 0)
process {z:}, defined by: Az, = (1 — B)z; = a; where Bz; = z,_, and a, s are i.i.d.
random variables. The first difference of {z;} is the white noise process {a;}. We de-
fine fractional differenced white noise with parameter H to be the (3 -H)th fractional

difference of discrete time white noise.

oo
Al=(1-B)'=3 ( Z ) (-B)f=1-dB - él—'d(l — d) B2 hdli-02-0)B -
k=0 .

d = (H — 3), so continuous-time fractional noise with parameter H has as its
discrete time analogue the process: z; = A~%a,A%, = a, where {a,} is a white noise

process. {z.;}:ARIMA(0, d,0)process with non integral d.

7.1.2 TheARiMA(0,d,0) Process

Defn:
A’r, = a,. where a, are i.i.d with mean 0 and variance o2

Basic properties of the process with 2 = 1

Theorem 1 Let {z:} be an ARIMA(p,d,q) process. (a) When d < %,{z,} is a sta-

tionary process and has infinite moving average representation:

00
Iy = \II(B)at = Z \I/kat_k
k=0

d(1+d)---(k—1+d)

- (7.1.1)

where ¥ =
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kd— 1

as k— oo \I’ka

(b) When d > ; ,{z.} is invertible and has the infinite autoregressive representation

[+ ]
H(B).'L't = Z szt-k =a;

k=0
—d(-1—d)---(k=1~d) _(k—d-1)!
where Il = Kl ~ E(d- 1)
(k-d-1
T\ —d-1
k—-d—l
as k— o0, Hk ~ (—_—(-1-:-—1?

When 3t <d <

(c) The spectral density of {z,} is

s(w) = (2sin %w)'” for 0<w<7m and sw)~w™ as w—0
(d) The covariance function of {z,} is
_ _ _(=1)*(-2d)!
’Yk"E(xt rt—k) - (k—d)!(—k—d)!
(7.1.2)

the correlation function of {z,} is:

7% _ (=d)!(k +d—1)!

=T @-DiE—ar o oE)
_d(l+d)---(k—=1+d) _
= T-ge—d) (h-d E=b2 )
In particular v = %j))z' and

149



PA=1"4a d—1)!
(7.1.3)
(e) The inverse autocorrelations of {z.} are:
di(k —d—1)! d
R k
Pk = Cd- Dkl ~ Ca=DrF as k—oo
(f) The partial correlations of {z,} are:
d
Gk =7— (k=1,2,--) (7.1.4)

k—-d

7.1.3 Conclusions from the Theorem

For 3 < d < 5 {z:} is both stationary and invertible. Y« and 7 decay

hyperbolically. since

d—1 1

. Y - o pd-1
Hm ¥ = lim d-1)) ~ @-1) Jm &

(d-1)<0 for d<%

stmilarly for m:

and not exponential decay as in ARIMA(p, 0, q)

The behaviour of the spectrum at low frequencies indicate that for d > 0,{z:}
is a long term persistant. process. This is also characterised by the hyperbolic decay
of pi in (7.1.3).

(7.1.3) also implies that {z:} is asymptotically self similar. The partial and
inverse correlations of {z,} decay hyperbolically and at different rates. The partial

linear coefficients ®k; for 1 < j <k we have, as Bk =00 with j/k— 0.
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_j~d=1
Prj ~ (~d-1)t

McLeod & Hipel(1978) defined a stationary process having a long or short memory
depending whether the correlations have finite or infinite sums. Theorem 1 implies
that for 0 < d < % the ARIMA(O, d, 0) process is a long-memory stationary process.

An ARIMA(O,d,0) process where d is any real number, may be summed or
differnced so that d € [}, 1] and will then be both invertible and stationary. And
when d = :t% then the process is either stationary or invertible.

When d = % the spectral density of the process is:
.1 -1
s(w) = 1/{251n(§w)} ~wT as w—0

Thus the ARIMA(0, £,0) is the discrete-time 1/f noise.

ARIMA(0,0,0) is white noise with zero correlations and constant spectral den-
sity.

When 3! < d < 0 the ARIMA(0, d,0) has a short memory and is antipersistent
in the terminology of Mandelbrot(1977). The correlations and the partial correlations
are all negative, except py = 1 and decay monotonically and hyperbolically to zero.
$(w) is and increasing function of w, and vanishes at w = 0 but has co gradient there.

The ARIMA(0, 3!, 0) is stationary but not invertible.Hence the forecasts cannot
be expressed as a convergent sum of past values of the process. ¥ for infinite moving
average is the same as m; for an ARIMA(0, 3,0) and decays as k=32 for large k.

s(w) = 2sin{jw} ~ 0 asw — 0. The gradient is 1 at w = 0. pr = —1/(4k? —
1)y vw=4/m Yu=-1/2k+1)
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7.2 Predicting Chaotic Time Series using Fractal
Theory

This section deals with an approach of modelling chaotic time series. One of the cen-
tral problems in science is forecasting: to predict the future from the past knowledge.
One of the ways is to build a model from the first principles and initial data. This is
a classical approach for forecasting and the predictions are not very accurate because

of the following reasons:

1. The first principles are not always available. This is particularly true for eco-

nomic time series.
2. Sometimes the initial data are difficult to obtain. e.g. in fluid flow problems.

Hence the classical approach of modelling is not applicable to many physical
systems. Therefore it is necessary to find alternative means of prediction. One of these
alternative approaches is building an ad hoc linear model directly from the data. The
modern theory views a time series z(t;) as a realization of a random process. (A
process is a procedure which generates time series. Each application of the procedure
yields a time series, called a realization of the process.) This is applicable when
randomness is generated due to complicated motions involving many independent,
irreducible degrees of freedom. Another cause is chaos which may occur in very

simple deterministic system.

7.2.1 Properties of a Chaotic Process

The properties of a chaotic process are characterized by the following:

1. Disorder or apparent disorder: A chaotic process is ordered in the sense that it
follows deterministic dynamics in the state phase. But when viewed in terms

of time series, the process masquerades as disordered.
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2. Determinism: If the initial conditions are precisely repeated, the system evolu-

tion over time is identical.

3. Sensitivity to initial conditions: Little changes in the initial conditions will

render radical differences in the solution of the system.
4. Random initial conditions: The initial conditions are randomly chosen.

5. Vanishing Correlation Function: The solutions are truly disordered and diverge
from each other...never to return. If the correlation function is zero for all
nonzero lags, the process is uncorrelated or “white” chaos in analogy to “white

noise”.

6. Aperiodicity: Even though a system when placed in its chaotic regime by a
parametric value might have a periodic solution for the dynamical equation.

Such a system is not regarded as a chaotic system.

7. Stationarity: The statistical properties remain unchanged with time. Hence
it is not possible to generate randomness due to initial conditions because the
probability distribution remains invariant. Past determines future: they are

manifestations of the same phenomena linked together by stationarity.

7.2.2 Forecasting a Chaotic Time Series

If the data are a single time series, the first step is to embed it in a state space. We

introduce a state vector z(t) by assigning co-ordinates:

1(t) =z(t) z20t)=z(t—7), -+ za(t)=z(t—(d—1)7)
(7.2.1)
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where 7 is the delay time. If the attractor is of dimension D, a minimal requirement

is that d > D Let the functional relationship between z(t) and z(t + 7) be:
z(t + 1) = fr(z(t)) (7.2.2)

We have to find a predictor Fr which approximates fr. For a chaotic data fr is
nonlinear. fr may be expressed as a m®* order polynomial in d dimension. The
coefficients are fitted to the data set using the least squares technique. Forecasts for
longer times 27, 3T, etc. can be done by either composing Fr or by introducing
new Fr s for every T. The first has its disadvantage that the error of approximation
grows exponentially with each composition. The second technique works well for
smooth functions. But the higher iterates of chaotic mappings are not smooth. So,
both approaches have their disadvantages. Another approach is to recast (7.2.2) as
a differential equation and write z(t + 7) as its integral. However, the one drawback
common to all these approaches is the fact that the number of free parameters for a
general polynomial is
]

which is intractable for large d. One of the ways to overcome this problem is to
use “local approximation”: using only nearby states to make predictions. To predict
z(t+7), we introduce a metric |[.|| in the state space, and find the k nearest neighbors
of z(t) i.e., k states z(¢') with # < ¢ which minimizes [lz(t) —z(t')||. We can either use
the zeroth order approximation(i.e. £ = 1 and Zpred(t, T) = z(t' + T')) or use linear
approximation(i.e. £ > d and fitting the linear polynomials to the pairs (z(),z(t' +
T))). The range is taken to be scalar for computational convenience. So the mapping
is from a d — dimensional state to 1 — dimensional value. When k = d + 1 linear
interpolation may be used. But to ensure stability of the solution it is advantageous

to take £k > d+1. The computation involves N steps for N data. This can be reduced
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to logN by partitioning the data in a decision tree. Furthermore, once the neighbors
are found, predictors for the multiples of T can be computed in parallel.

There are many other models used for predicting chaotic time series in addition
to the ones presented in this chapter. The discussion of those models are beyond the

scope of the current thesis work.
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Chapter 8

Conclusions

As noted in Chapter 6, the method of Adaptively Trained Neural Nets (ATNN) per-
forms the best with regards to prediction of exchange rates conversion of Australia,
Britain, Canada and Japan versus the United States. This may be due to the reason
that the ATNN algorithm has the flexibility of adapting itself with changing data and
the training takes place on the fly. This method of training differs from backpropaga-
tion and recurrent nets methods. Here, the network is first trained with some training
data possessing the exemplar pattern as the original data and then the trained net
is used for prediction. The performance of the backpropagation and recurrent nets
methods are dependent on how well the weights were trained and also on the learning
rates. It has been found that backpropagation performs better with higher learning
rates (close to 1.0) whereas recurrent nets require comparatively lower learning rates
(close to 0.5). Fuzzy method also needs higher learning rates. For the experiments
in this thesis, a learning rate of 0.8 has been chosen for training using fuzzy learning.
Fuzzy method gave good prediction results when the data values did not vary to a
great extent, in other words, it did not give a good prediction of higher and lower
values. The training of fuzzy learning is also on the fly as the ATNN, but it is not as
fast as the latter.

The performance of the statistical methods of prediction of exchange rates have
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been found to be surprisingly good. In fact, the error values of Box-Jenkins is as close
at the ATNN for certain cases. And this method sometimes performed better than
either backpropagation or recurrent or fuzzy training methods. The performance of
double exponential smoothing is comparatively worse than the neural nets, yet on
the whole the predicted values using this method were not too far off the actual ones.
The regression method, as used in this thesis, gave good results also. The figures
of performance metrics closely followed those of fuzzy learning. The exponential
smoothing technique had the worst performance. This may be due to the reason
that the time series data used for the experiments did not exhibit smoothness, in
fact, there were a lot of fluctuations in the pattern. Exponential smoothing performs
better if the current pattern follows the historical one. This was not the case in
our experimental data. Even changing the smoothing constant did not affect the
performance of prediction significantly. A smoothing constant of 0.02 gave the least
sum of squares errors ( a measure to select an appropriate smoothing constant) and
hence was used for the experiments.

The forecasting methods discussed in this thesis gave reasonably good predic-
tions for the exchange rates. But, as it has been observed that these methods are not
very dependable in terms of predicting the direction of the time series data. This is
due to the fact that the time series data chosen for experimentation was chaotic in
nature within close intervals. But the range of values of the data points is not high,
hence, it was possible to get lower values for the other performance metrics. As a
general observation: the errors in predicting the averages of exchange rates have lower
values than those in predicting the exact exchange rates. Also, prediction results for
Australia, Britain, France are better than Canada, Germany, Japan and Switzerland.

The methods of predicting white noise using fractional differencing and chaotic
time series has been presented in some details, though the implementation of the

method on the computer is beyond the scope of the current work.
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A total of 105 experiments were conducted for each method of prediction which
made the total number of experiments to be 840. All these experiments were con-

ducted using the C Programming language.
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Appendix A

Some Notes on Chapter 4

A.1 Contribution of an Independent Variable in

Linear Regression

There are a number of statistical tools available to determine the contribution of an
independent variable in a regression model. One of the popular ones is the ¢, ;-statistic.
It measures the importance of a particular independent variable z;; in describing the

dependent variable y, in the multiple regression model

Y=t tee =0+ 5za+ -+ Bjm1Tii1 + BiZei + -+ BpTep + €2

The ty;-statistic is defined by the equation

b'

J

ty; = —=
Sbj

where b; is the least squares estimate of §; and sp; is the standard error of the
estimate b;. More precisely, the #,;-statistic measures the additional importance of
the independent variable z;; over and above the combined importance of the other

independent variables. As a rule of thumb, the independent variable z.; is said have
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a significant importance if

ltsil > tas(n — (p— 1))

where £ 5(n—(p—1) is the point on the scale of ¢-distribution having (n-(p-1)) degrees
of freedom such that an area of 0.025 exists under the curve of this ¢-distribution
between t;5 and co. Here, n is the number of observations made and p is the number
of independent variables in the regression model. But one thing is to be noted at
this point. The t,;-statistic is not always a very reliable tool always, hence it is to
be used with caution. It might be possible that an independent variable is found
to be significantly important according to the #,;-statistic where in reality it is not.
This might lead to misleading results. This is particularly valid when there exists
multicollinearity among the independent variables, i.e., they are related to dependent
upon each other. As a result, even though each independent variable is contributing
some information for the prediction of the dependent variable, some of the information
is overlapping. Hence, in addition to the t,;-statistic we need to measure the combined
importance of all the independent variables taken together in describing the dependent
variable. One of the simple measures of correlation is the simple correlation coefficient

which is defined by:

_ Y1 (T — i) (x5 — Z5) l
[Z?=1($ti - ‘fi)z Z?:l(ztj - fj)z]i

&ciﬂ:j

where
n
- Yi=1 Tti _
n

Z?:l ztj

The value of R, lies between -1 and 1. The value of R;,, ;,; nearer to 1(-1)

tirZej

implies that the independent variables z;; and z,; move together in a straight line

fashion with a positive(negative) slope and are strongly correlated. Whereas when
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R;,; z,; has a value near 0, it imples that the independent variables involved do not

have a linear correlation.

A.2 Impacts of the Smoothing Constant in Pre-
diction
We can see that:
St—2 = ayr-2 — (1 — a)St-3
which when used in 4.2.5 gives :
Sr = ayr —a(l —o)yr-1 +a(l —a)?yr-2+ (1 — a)*Sr_3

Hence by puttingt =T -3, T —4 --- 0 and substituting recursively for each S;

in 4.2.4 for each t we obtain :

St = ayr—ca(l—-o)yr-1+a(l— a)’yr_s + (A.2.1)

ot a(l=a)T tyra + (1 - a)TS,

Thus we see that S, the estimate of f; in time period T, can be expressed in terms of
the observations y;, ¥2, ¥3, ---yr and the initial estimate Sp. The coefficients of the
observations namely @, a(l-ca), a{l—a)?, --- a(l—a)T measure the contribution
of the observations for the respective time periods to the most recent estimate St. We
see that these coefficients decrease geometrically with the age of the observations.The
updating procedure described above is called simple ezponential smoothing because
these coefficients decrease exponentially.

Since the coefficients are decreasing, the most recent observation yr makes the

most significant contribution to Sy, the current estimate of f5. The older observations
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make smaller and smaller contribution to the current estimate of Bo at each successive
time point. The rate at which the remote observations are dampened out depends
on the smoothing constant a. For values of o near zero, remote observations are
dampened out more slowly, and the rate becomes faster as o approaches 1.

So the choice of @ has a great influence on the estimate St. In general when the
time series is quite volatile, i.e., when the random component ¢; has a large variance,
then we choose a to be small so that the smoothed estimate St in 4.2.2 will weight
the estimate of the previous time period T~ 1, namely, St_;, to a greater extent than

the current observation yr. For a more stable time series, we can choose larger a.

A.2.1 Determination of an Appropriate Smoothing Constant

The choice of an appropriate smoothing constant is very important for forecasting fu-
ture values. A smoothing constant determines the extent to which a past observation
influence the forecast. A smaller value of o dampens out remote observations in the
time series slowly. Hence the response to the changes in the parameters describing
the average level of the time series is slow. On the other hand, if the value of o is
large, it will dampen out the remote observations quickly. Since a large o gives larger
weight to the more recent observations in the time series, it results in a more rapid
response to changes in the time series. Unfortunately, this rapid response can cause
the forecasting procedure to respond to the irregular movements in the time series
that do not reflect changes in the parameters that do not describe the time series.
This is not a favourable situation and might lead to misleading results. In practice,
it has been found that the values of o ranging from 0.01 to 0.03 works quite well.
Another approach is simulation. This procedure involves simulating a set of histor-
ical data using different values of @. That is, for each value of & a set of forecast is
generated using the appropriate exponential smoothing procedure. These forecasts

are then compared with the actual observations in the time series. The value of
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which gives the best forecast is chosen as the smoothing constant for forecasting the
future values of the time series.

It has to be noted that in an effort to determine the appropriate smoothing
constant using simulation of historical data, there might be a possibility of using an
incorrect exponential smoothing model for the time series being analyzed. This is
probably the case if the smoothing constant is greater than 0.3. In that case, either
the observations are dependent on one another, i.e., autocorrelated, or, there is a
cyclical or seasonal behaviour in the time series. In both cases we have to resort to

alternative forecasting techniques which handles such cases appropriately.

A.3 Some Models in Box-Jenkins Methodology

The Box-Jenkins methodology focusses in choosing a particular time series model
from a clas of stationary time series models which is then used for forecasting the
future values. In this section moving-average models and autoregressive models will
be discussed.

A.3.1 Moving-Average Models

The model:

z=pte—0he — 00— —0i&
is called a moving-average model of order gq. The two most widely used moving-average

model is the first-order moving average model

Zr=put+e — 91&':_1 (A31)
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and the second-order moving-average model
Zr=p—+& — 015';-1 - 025}-2 (A.32)

In the case of first-order moving-average models described by equation A.3.1, no
conditions are necessary to be imposed on 6; to make the model stationary. The
invertibility condition is |§;] < 1. The conditions of stationarity and invertibility
are important in estimation of parameters of a model. Because these conditions
ensure uniqueness of the estimates. For the first-order moving-average model, the

relationship between p; and 6, is given by :

~-8 —_
1—_*_0’? fork—l
Prk=4¢ 0 fork>1

(A.3.3)

This gives :

_01

e (A.3.4)

P L=

The equation A.3.4 can be used to calculate 61. The estimate of the mean y is given
by the average Z as follows :

= Z?:a 2t
E== (A.3.5)

If Z is small relative to the time series values Za, ", 2, then it is reasonable to assume
# = 0. If the original time series y;, %2, -+, yn has a mean p equal to 0 it means that
the time series is fluctuating around a mean 0. However, if the first differences have a

mean 0, it implies that there is no deterministic trend in the original time series values.
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Likewise, there is a deterministic trend in the original time series for a non-zero value
of u.

A second-order moving-average model characterized by equation A.3.2, and
other higher order moving-average models, the invertibility conditions are even more

complicated.

1. Stationarity Conditions : No conditions are necessary to be imposed on the

parameters ¢;, 62, --- 6, to make the model stationary.

2. Invertibility Conditions ( for a second-order moving-average model) :

bh+62<1 6,—-0,<1 [0 <1 (A.3.6)

It can be shown that the mean of the above time series models is 1 and the theo-
retical partial autocorrelation function dies down according to a mixture of damped
exponentials and/or damped sine waves, and the theoretical autocorrelation function

cuts off after lag 2. In particular it can be shown that

_ —t(1-6)
S Ry
P2ETr e+ 68

Let r, and r; be the estimates of p; and p; and 6, and 6, be the estimates of 6, and

62 respectively, then the invertibility conditions are given by :

él+ég<1 ég—él<1 Iég|<1
A reasonable preliminary estimate of u will be given by the sample mean defined in
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equation A.3.5.

A.3.2 Autoregressive Models

The model:
2 = é+ ¢1Zg_.1 + ¢2Zt..2 +---+ ¢pzt-—p + & (A3.7)

is called an autoregressive process of order p. The term “autoregressive” is used
because 2, the current value of the time series is “regressed” or expressed as a function
of z,_1,2¢—2, -, 2—p which are the previous values of the same time series.Certain
conditions are necessary to be imposed on ¢, @2, - - - ¢, to make this model stationary
and no conditions are needed for invertibility.

It can be shown that the theoretical partial autocorrelation function of this
model dies down after lag p, and that the theoretical autocorrelation function dies
down, which is just the opposite case for a moving-average model.

The first order autoregressive model is given by:
21 =0+ 121 + &

1. Stationarity Conditions :

61| <1

The mean is given by:

0
1-¢:

“:

The theoretical partial autocorrelation function of this model cuts off after lag

1.
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A reasonable estimate of ¢ is given by:
§=2z(1-4)

where Z is given by equation A.3.5.

The second-order autoregressive model can be described by:
Z=0+¢1ze1 + P2z2 + &

. Stationarity conditions:

dr1+d2<1 d2—1 <1 |¢o <1

The mean of the model is given by:

. )
S P

The theoretical partial autocorrelation function cuts off after lag 2 and the

theoretical autocorrelation function dies down according to a mixture of damped

exponentials and/or damped sine waves. The Yule-Walker equations namely:

pPr=0¢1+d201 and py=¢@ip1+ ¢

are used fo solve ¢; and ¢, in terms of p; and p,, which are estimated by r;

and r,.Thus we get:
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where 4;1 and 52 are the estimates of ¢, and ¢, respectively.

. Stationarity conditions :

Gr+d2<1 Ga—d1 <1l |go| <1

The mean is given by:

which gives,
0=p(l—¢1—¢2)

and thus a reasonable estimate of ¢ is given by:

Oon
It
]

where,

Z?:a, 2
n—a-+1

N
[
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Appendix B

Some Notes on Chapter 5

B.1 The ATNN network

B.1.1 Linearization Process

Let
b=WTx(N +1)
and
Ab = AWTx(N +1)
Applying first order Taylor’s expansion to 5.5.6 gives:
u = f[b + Ab] = f[b] + (Vpf[b])Ab

where Vyf[b] is the gradient of f[b] with respect to b with elements 9 fi[b]/8b;. This
approximation is valid when the Hessian H < 1 and Ab < f[b]/H.

where the inequality applies to each component of the vector. Now,

9fi[b]/8b; = of[bi]/0b; = £[bi](1 — £[bi])Gij = uj (1 — uf)é;_;
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then

where 0, the kronecker delta is 1 for £ = 0 and is zero otherwise and

Vbu' = dzag[u{(l - UI), u;(l - u;): ul‘x(l - uI‘z)]

u} = flb

is the activation of the #** hidden neuron for the new input data with the old weight

such as

B.1.2

where

Thus

and

u” = [uf,u3, -, up]T = fIWT(N)x(N +1)].

Oy;
ka

Derivation of the Sensitivity Matrix

y(¢) = flsumy] ux = flsum,]

SUMy =) UgUk SUMy = Y WjkT;
k J

= ( Ty ) ( o ) = agi-’l?] ==y us

dsum,, dve
= y(@)(1 - y(@))u

= SV

170

(B.1.1)



Sy ) dsum,, ) Suy ) Ssum, )

dsumy, Sug dsum, Swjp
oflz of [z
= %lnya) Uk ai ] lz=u, Z;
= y(@)(1 - y() v (1—w)z;
= SWik (B.1.2)

where SV, is the sensitivity caused by small changes in v and SW, ji is the sensitivity

of y(i) to the wj,’s.
— BE; . 8E;
AE; = ,-Zk( 25 ) Awp + ; (Z)av (B.1.3)
By combining B.1.1, B.1.2, and B.1.3 with 5.5.16 and 5.5.17, we obtain

AE; = (ei)[A"Vuec,l tct AI’Vvec,p :Avyp - Avh]' (B'1’4)
[SWig---SWip--+:SViy-+-SV;ia]T

where

& =—(d(@) —y(E)), 1<i<N, and p=Ixh.
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Appendix C

Some notes on Chapter 6

A list of tables stating (in details) the performance of all the methods described in
this thesis in predicting exchange rates of France, Germany, and Switzerland with

respect to the United States has been given below.
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Country Method Performance Measures
MSE RMSE | MAE | MAPE | Ave DIR

atnn 0.00396 | 0.06292 | 0.01481 | 8.87341 | 0.4855
backprop || 0.00039 | 0.01970 | 0.01190 | 4.59060 | 0.5153
boxjen | 0.00287 | 0.05361 | 0.00449 | 1.55045 | 0.4895
France dblexpn || 0.00013 | 0.01120 | 0.00671 | 2.13868 | 0.5005
exponen j 0.00491 | 0.07006 | 0.02711 | 9.00454 | 0.5007
fuzzy 0.00058 | 0.02407 | 0.01235 | 4.24068 | 0.5007
recurn | 0.00019 | 0.01393 | 0.00922 | 3.58210 | 0.5153
regrsn | 0.00385 | 0.06208 | 0.00592 | 1.93015 | 0.5007

atnn 0.00009 | 0.00963 | 0.00424 | 1.20394 | 0.4885
backprop (| 0.00016 | 0.01248 | 0.00873 | 2.62739 | 0.5093
boxjen [ 0.00301 | 0.05488 | 0.00476 | 1.80827 | 0.4782
Germany | dblexpn || 0.00013 | 0.01123 | 0.00719 | 2.01502 | 0.4898
exponen || 0.00493 | 0.07019 | 0.02646 | 7.56779 | 0.4897
fuzzy 0.00070 | 0.02639 | 0.01306 | 3.65136 | 0.4897
recurn | 0.00018 | 0.01328 | 0.00937 | 2.89034 | 0.5093
regrsn || 0.00399 | 0.06316 | 0.00624 | 1.95369 | 0.4897

atnn 0.00021 | 0.01441 | 0.00531 | 1.55766 | 0.5082
backprop || 0.00028 | 0.01679 | 0.01360 | 4.33588 | 0.5173
boxjen | 0.00298 | 0.05461 | 0.00538 | 2.00007 | 0.4950
Switzerland | dblexpn | 0.00015 | 0.01220 | 0.00836 | 2.43323 | 0.5068
exponen || 0.00518 | 0.07197 | 0.02964 | 8.70733 | 0.5070
fuzzy 0.00069 | 0.02620 | 0.01285 | 3.76506 | 0.5070
recurn | 0.00023 | 0.01532 | 0.01111 | 3.55045 | 0.5173
regrsn | 0.00396 | 0.06296 | 0.00707 | 2.21385 | 0.5070

Table 48: 1 day ahead forecasts of exchange rates over window size 3
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Country | Method || Performance Measures

| MSE RMSE [ MAE | MAPE | Ave DIR

atnn || 0.00015 | 0.01228 | 0.00442 | 1.41839 | 0.5008

backprop || 0.00079 | 0.02809 | 0.01798 | 6.19398 | 0.5157

boxjen | 0.00288 | 0.05369 | 0.00449 | 1.55806 | 0.4895

France dblexpn | 0.00015 | 0.01217 | 0.00753 | 2.38965 | 0.5008

exponen | 0.00490 | 0.06997 | 0.02712 | 8.99938 | 0.5010

fuzzy 0.00058 | 0.02410 | 0.01251 | 4.29335 | 0.5010

recurn || 0.00020 | 0.01410 | 0.00933 | 3.60805 | 0.5157

regrsn [ 0.00387 | 0.06217 | 0.00706 | 2.27613 | 0.5010

atnn || 0.00024 | 0.01549 | 0.00448 | 1.27676 | 0.4885

backprop || 0.00025 | 0.01593 | 0.01195 | 3.47193 | 0.5093

boxjen || 0.00302 | 0.05494 | 0.00476 | 1.82242 | 0.4782

Germany | dblexpn [ 0.00015 | 0.01240 | 0.00816 | 2.28606 | 0.4895

exponen | 0.00494 | 0.07029 | 0.02647 | 7.58676 | 0.4897

fuzzy 0.00071 | 0.02659 | 0.01327 | 3.72639 | 0.4897

recurn | 0.00018 | 0.01345 | 0.00950 | 2.92458 | 0.5093

regrsn || 0.00403 | 0.06349 | 0.00759 | 2.33723 | 0.4897

atnn 0.00009 | 0.00939 | 0.00492 | 1.44208 | 0.5075

backprop || 0.00042 | 0.02057 | 0.01431 | 3.96080 | 0.5173

boxjen | 0.00299 | 0.05471 | 0.00538 | 2.01768 | 0.4953

Switzerland | dblexpn || 0.00019 | 0.01364 | 0.00954 | 2.79113 | 0.5072

exponen | 0.00520 | 0.07210 | 0.02964 | 8.72693 | 0.5073

fuzzy 0.00069 | 0.02632 | 0.01302 | 3.81488 | 0.5073

recurn || 0.00024 | 0.01553 | 0.01132 | 3.61106 | 0.5173

regrsn || 0.00402 | 0.06343 | 0.00867 | 2.70071 | 0.5073

Table 49: 2 days ahead forecasts of exchange rates over window size 3
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Country Method Performance Measures

MSE RMSE | MAE MAPE | Ave DIR

atnn || 0.00125 [ 0.03538 | 0.01474 | 4.07721 | 0.5012

backprop || 0.00117 | 0.03425 | 0.02382 | 8.78002 | 0.5160

boxjen || 0.00288 | 0.05362 | 0.00449 | 1.55269 | 0.4897

France dblexpn || 0.00017 | 0.01310 | 0.00830 | 2.63610 | 0.5012

exponen | 0.00489 | 0.06996 | 0.02712 | 8.99927 | 0.5010

fuzzy 0.00059 | 0.02419 | 0.01258 | 4.30218 | 0.5010

recurn || 0.00020 | 0.01425 | 0.00941 | 3.62851 | 0.5160

regrsn 0.00389 { 0.06235 | 0.00804 | 2.58443 | 0.5010

atnn 0.00010 | 0.00975 | 0.00429 | 1.22306 | 0.4885

backprop || 0.00069 | 0.02633 | 0.02014 | 5.17859 | 0.5093

boxjen || 0.00301 | 0.05485 | 0.00476 | 1.80518 | 0.4782

Germany | dblexpn | 0.00018 | 0.01351 | 0.00902 | 2.53169 | 0.4895

exponen | 0.00495 | 0.07038 | 0.02648 | 7.60720 | 0.4893

fuzzy 0.00072 | 0.02685 | 0.01346 | 3.79853 | 0.4893

recurn || 0.00018 | 0.01352 | 0.00960 | 2.95381 | 0.5093

regrsn 0.00408 | 0.06384 | 0.00874 | 2.67718 | 0.4893

atnn 0.00011 | 0.01036 | 0.00513 | 1.49152 | 0.5092

backprop || 0.00049 | 0.02216 | 0.01834 | 5.60996 | 0.5177

boxjen | 0.00298 | 0.05459 | 0.00538 | 1.99976 | 0.4955

Switzerland { dblexpn || 0.00023 | 0.01507 | 0.01063 | 3.11297 | 0.5075

exponen | 0.00520 | 0.07208 | 0.02964 | 8.72718 | 0.5073

fuzzy 0.00070 | 0.02652 | 0.01317 | 3.87023 | 0.5073

recurn 0.00025 | 0.01570 | 0.01148 | 3.66041 | 0.5177

regrsn 0.00407 | 0.06376 | 0.01008 | 3.11202 | 0.5073

Table 50: 3 days ahead forecasts of exchange rates over window size 3
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Country Method Performance Measures
MSE RMSE | MAE MAPE | Ave DIR

atnn 0.00012 | 0.01084 | 0.00402 | 1.23625 | 0.4858
backprop || 0.00054 | 0.02333 | 0.01406 | 4.74266 | 0.5157
boxjen [ 0.00288 | 0.05369 | 0.00449 | 1.55806 | 0.4895
France dblexpn || 0.00013 | 0.01118 | 0.00681 | 2.16213 | 0.5008
exponen | 0.00490 | 0.06997 | 0.02712 | 8.99938 | 0.5010
fuzzy 0.00060 | 0.02445 | 0.01296 | 4.96287 | 0.5010
recurn (| 0.00020 | 0.01413 | 0.00929 | 3.65532 | 0.5157
regrsn || 0.00385 | 0.06203 | 0.00626 | 2.02691 | 0.5010

atnn 0.00007 | 0.00844 [ 0.00442 | 1.23239 | 0.4885
backprop || 0.00014 | 0.01195 | 0.00877 | 2.71973 | 0.5093
boxjen [ 0.00302 | 0.05494 | 0.00476 | 1.82242 | 0.4782
Germany | dblexpn | 0.00013 | 0.01140 | 0.00741 | 2.07949 | 0.4895
exponen |i 0.00494 | 0.07029 | 0.02647 | 7.58676 | 0.4897
fuzzy 0.00056 | 0.02366 | 0.01196 | 3.19714 | 0.4897
recurn |{ 0.00018 | 0.01354 | 0.00957 | 2.97581 | 0.5093
regrsn 0.00401 | 0.06334 | 0.00667 | 2.09028 | 0.4897

atnn 0.00009 | 0.00935 | 0.00512 | 1.48290 | 0.5075
backprop || 0.00022 | 0.01475 | 0.01137 | 3.66554 | 0.5173
boxjen || 0.00299 | 0.05471 | 0.00538 [ 2.01768 | 0.4953
Switzerland | dblexpn || 0.00016 | 0.01262 | 0.00869 | 2.54258 | 0.5072
exponen | 0.00520 | 0.07210 | 0.02964 | 8.72693 | 0.5073
fuzzy 0.00053 | 0.02293 | 0.01172 | 3.24518 | 0.5073
recurn || 0.00025 | 0.01567 | 0.01136 | 3.66276 | 0.5173
regrsn 0.00400 | 0.06323 | 0.00765 | 2.40993 | 0.5073

Table 51: 1 day ahead forecasts of exchange rates over window size 4
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Country Method Performance Measures
| MSE RMSE | MAE MAPE | Ave DIR

atnn__ [ 0.00009 | 0.00938 | 0.00409 | 1.27157 0.5012
backprop || 0.00115 | 0.03385 | 0.02245 | 7.14418 | 0.5160
boxjen || 0.00288 | 0.05362 | 0.00449 | 1.55260 | 0.4807
France dblexpn || 0.00015 | 0.01219 | 0.00762 | 2.41528 | 0.5012
exponen || 0.00489 | 0.06996 | 0.02712 | 8.99927 | 0.5010
fuzzy 0.00060 | 0.02451 | 0.01308 | 4.98641 | 0.5010
recurn }i 0.00020 | 0.01411 | 0.00923 | 3.63751 | 0.5160
regrsn 0.00387 | 0.06220 | 0.00736 | 2.36786 | 0.5010

atnn 0.00007 | 0.00842 | 0.00439 [ 1.22729 [ 0.4885
backprop || 0.00026 | 0.01619 | 0.01221 | 3.52174 | 0.5093
boxjen | 0.00301 | 0.05485 | 0.00476 | 1.80518 | 0.4782
Germany | dblexpn | 0.00016 | 0.01251 | 0.00834 | 2.33967 0.4895
exponen | 0.00495 | 0.07038 | 0.02648 | 7.60720 | 0.4893
fuzzy 0.00056 | 0.02377 | 0.01208 | 3.23899 | 0.4893
recurn | 0.00018 | 0.01339 | 0.00948 | 2.95640 | 0.5093
regrsn 0.00405 [ 0.06367 | 0.00791 | 2.44961 | 0.4893

atnn 0.00009 | 0.00930 | 0.00513 | 1.48467 | 0.5078
backprop | 0.00043 | 0.02071 | 0.01700 | 5.26242 | 0.5177
boxjen j 0.00298 | 0.05459 | 0.00538 | 1.99976 | 0.4955
Switzerland | dblexpn || 0.00020 | 0.01400 | 0.00983 | 2.88496 0.5075
exponen || 0.00520 | 0.07208 | 0.02964 | 8.72718 | 0.5073
fuzzy 0.00053 | 0.02305 | 0.01192 | 3.30817 | 0.5073
recurn || 0.00024 | 0.01557 | 0.01132 | 3.65967 | 0.5177
regrsn 0.00404 | 0.06353 | 0.00912 | 2.84087 | 0.5073

Table 52: 2 days ahead forecasts of exchange rates over window size 4
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Country Method Performance Measures
MSE RMSE | MAE MAPE | Ave DIR

atnn 0.00009 | 0.00946 | 0.00410 | 1.27295 | 0.5012
backprop || 0.00155 | 0.03932 | 0.02658 | 8.68075 | 0.5157
boxjen |l 0.00288 | 0.05365 | 0.00449 | 1.55420 | 0.4895
France dblexpn || 0.00017 | 0.01313 | 0.00840 | 2.66284 | 0.5008
exponen || 0.00491 | 0.07006 | 0.02713 | 9.01130 | 0.5007
fuzzy 0.00060 | 0.02453 | 0.01314 | 4.99064 | 0.5007
recurn || 0.00020 | 0.01402 | 0.00918 | 3.62201 | 0.5157
regrsn |f 0.00391 | 0.06251 | 0.00833 | 2.68148 | 0.5007

atnn 0.00007 | 0.00831 | 0.00418 | 1.18827 | 0.4888
backprop || 0.00052 | 0.02288 | 0.01745 | 4.58203 | 0.5090
boxjen || 0.00301 | 0.05491 | 0.00476 | 1.81376 | 0.4782
Germany | dblexpn || 0.00019 | 0.01369 | 0.00920 | 2.57564 | 0.4895
exponen || 0.00496 | 0.07040 | 0.02649 | 7.61726 | 0.4897
fuzzy 0.00057 | 0.02397 | 0.01219 | 3.27653 | 0.4897
recurn || 0.00018 | 0.01324 | 0.00938 | 2.93185 | 0.5090
regrsn {| 0.00409 | 0.06394 | 0.00905 | 2.76658 | 0.4897

atnn 0.00025 | 0.01582 | 0.00519 | 1.50975 | 0.5082
backprop || 0.00052 | 0.02280 | 0.01895 | 5.83149 | 0.5177
boxjen |f 0.00298 [ 0.05461 | 0.00538 | 2.00271 | 0.4955
Switzerland | dblexpn || 0.00024 | 0.01549 | 0.01093 | 3.20486 | 0.5075
exponen || 0.00518 | 0.07196 | 0.02963 | 8.71268 | 0.5077
fuzzy 0.00054 | 0.02326 | 0.01210 | 3.36954 | 0.5077
recurn | 0.00024 | 0.01553 | 0.01127 | 3.64629 | 0.5177
regrsn || 0.00406 | 0.06375 | 0.01051 | 3.22563 | 0.5077

Table 53: 3 days ahead forecasts of exchange rates over window size 4
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Country Method Performance Measures

MSE RMSE | MAE MAPE | Ave DIR

atnn 0.00012 | 0.01102 | 0.00388 | 1.24106 | 0.4858

backprop || 0.00079 | 0.02803 | 0.01600 | 4.36051 | 0.5160

boxjen || 0.00288 | 0.05362 | 0.00449 | 1.55269 | 0.4897

France dblexpn | 0.00010 | 0.00975 | 0.00564 | 1.78972 | 0.5012

exponen | 0.00489 | 0.06996 | 0.02712 | 8.99927 | 0.5010

fuzzy 0.00071 | 0.02665 | 0.01414 | 5.88701 | 0.5010

recurn | 0.00018 | 0.01326 | 0.00846 | 3.37482 | 0.5160

regrsn || 0.00383 | 0.06190 | 0.00562 | 1.81886 | 0.5010

aton || 0.00027 [ 0.01649 | 0.00505 | 1.44618 | 0.4885

backprop || 0.00015 | 0.01206 | 0.00880 | 2.72424 | 0.5093

boxjen || 0.00301 | 0.05485 | 0.00476 | 1.80518 [ 0.4782

Germany | dblexpn | 0.00009 | 0.00969 | 0.00613 | 1.72730 | 0.4895

exponen | 0.00495 | 0.07038 | 0.02648 | 7.60720 | 0.4893

fuzzy 0.00048 | 0.02199 | 0.01120 | 2.87121 | 0.4893

recurn |l 0.00015 | 0.01233 | 0.00857 | 2.68529 | 0.5093

regrsn || 0.00401 | 0.06332 | 0.00600 | 1.91879 | 0.4893

atnn 0.00010 | 0.01010 | 0.00495 | 1.45123 | 0.5078

backprop || 0.00021 | 0.01435 | 0.01086 | 3.48037 | 0.5177

boxjen | 0.00298 | 0.05459 | 0.00538 | 1.99976 | 0.4955

Switzerland | dblexpn || 0.00012 | 0.01077 | 0.00725 | 2.13305 | 0.5075

exponen | 0.00520 | 0.07208 | 0.02964 | 8.72718 | 0.5073

fuzzy 0.00043 | 0.02078 | 0.01095 | 2.86387 | 0.5073

recurn 0.00020 | 0.01419 | 0.01015 | 3.29750 | 0.5177

regrsn || 0.00398 | 0.06308 | 0.00687 | 2.18530 | 0.5073

Table 54: 1 day ahead forecasts of exchange rates over window size 5
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Couniry Method | Performance Measures
" MSE RMSE | MAE MAPE | Ave DIR

atnn ][ 0.00014 [ 0.01172 | 0.00501 | 1.55434 | 0.5012
backprop || 0.00144 | 0.03795 | 0.02453 | 7.12387 | 0.5157
boxjen || 0.00288 | 0.05365 | 0.00449 | 1.55420 | 0.4895
France dblexpn || 0.00012 [ 0.01092 | 0.00663 | 2.10775 | 0.5008
exponen | 0.00491 | 0.07006 | 0.02713 | 9.01130 [ 0.5007
fuzzy 0.00071 | 0.02665 | 0.01425 | 5.90722 | 0.5007
recurn || 0.00018 | 0.01343 | 0.00863 | 3.41565 | 0.5157
regrsn || 0.00387 | 0.06221 | 0.00689 | 2.22470 | 0.5007

atnn 0.00008 | 0.00917 | 0.00422 | 1.20161 [ 0.4888
backprop || 0.00033 | 0.01825 | 0.01374 | 3.79916 | 0.5090
boxjen || 0.00301 | 0.05491 | 0.00476 | 1.81376 | 0.4782
Germany dblexpn || 0.00012 | 0.01109 | 0.00724 | 2.02966 | 0.4895
exponen |[f 0.00496 | 0.07040 | 0.02649 | 7.61726 | 0.4897
fuzzy 0.00049 | 0.02209 | 0.01135 | 2.91661 | 0.4897
recurn 0.00016 | 0.01253 | 0.00876 | 2.73485 | 0.5090
regrsn 0.00404 | 0.06358 | 0.00742 | 2.31013 | 0.4897

atnn 0.00010 | 0.01007 | 0.00494 | 1.44963 | 0.5082
backprop || 0.00049 | 0.02212 | 0.01832 | 5.60067 | 0.5177
boxjen || 0.00298 | 0.05461 | 0.00538 | 2.00271 | 0.4955
Switzerland | dblexpn || 0.00016 | 0.01252 | 0.00861 | 2.52892 | 0.5075
exponen | 0.00518 | 0.07196 | 0.02963 | 8.71268 | 0.5077
fuzzy 0.00044 | 0.02097 | 0.01112 | 2.90930 | 0.5077
recurn 0.00021 | 0.01459 | 0.01047 | 3.38643 | 0.5177
regrsn 0.00400 | 0.06328 | 0.00855 | 2.65413 | 0.5077

Table 55: 2 days ahead forecasts of exchange rates over window size 5
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Country Method Performance Measures
MSE RMSE | MAE MAPE | Ave DIR

atnn 0.00016 | 0.01257 | 0.00422 | 1.36830 | 0.5008
backprop || 0.00240 | 0.04898 | 0.03120 | 8.75925 | 0.5157
boxjen || 0.00288 | 0.05367 | 0.00449 | 1.55696 | 0.4892
France dblexpn || 0.00014 | 0.01194 | 0.00762 | 2.41161 | 0.5005
exponen || 0.00491 | 0.07005 | 0.02713 | 9.01336 | 0.5007
fuzzy 0.00071 | 0.02665 | 0.01432 | 5.91800 | 0.5007
recurn | 0.00018 | 0.01351 | 0.00876 | 3.44685 | 0.5157
regrsn || 0.00390 | 0.06241 | 0.00801 | 2.57662 | 0.5007

atnn 0.00029 | 0.01705 | 0.00463 | 1.33308 | 0.4892
backprop || 0.00102 | 0.03199 | 0.02565 | 6.54115 | 0.5087
boxjen | 0.00301 | 0.05491 | 0.00474 | 1.81267 | 0.4784
Germany | dblexpn || 0.00015 | 0.01238 | 0.00832 | 2.32319 | 0.4898
exponen | 0.00497 | 0.07050 | 0.02651 | 7.64026 | 0.4897
fuzzy 0.00050 | 0.02228 | 0.01147 | 2.95912 | 0.4897
recurn || 0.00016 | 0.01263 | 0.00890 | 2.77308 | 0.5087
regrsn || 0.00409 | 0.06393 | 0.00871 | 2.68442 | 0.4897

atnn 0.00012 | 0.01114 | 0.00505 | 1.48060 | 0.5078
backprop || 0.00055 | 0.02341 | 0.01945 | 5.90427 | 0.5180
boxjen | 0.00299 | 0.05471 | 0.00538 | 2.01855 | 0.4955
Switzerland | dblexpn || 0.00020 | 0.01422 | 0.00994 | 2.91257 | 0.5075
exponen || 0.00518 | 0.07195 | 0.02964 | 8.71158 | 0.5073
fuzzy 0.00045 | 0.02120 | 0.01128 | 2.96116 | 0.5073
recurn | 0.00022 | 0.01491 | 0.01068 | 3.44908 | 0.5180
regrsn || 0.00405 | 0.06361 | 0.01011 | 3.10161 | 0.5073

Table 56: 3 days ahead forecasts of exchange rates over window size 5
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Country Method Performance Measures
MSE RMSE | MAE MAPE | Ave DIR

atnn 0.00035 | 0.01865 | 0.00387 | 1.12995 | 0.4808
backprop || 0.00021 | 0.01438 | 0.01081 | 4.29085 | 0.5117
boxjen || 0.00286 | 0.05351 | 0.00274 | 0.98637 | 0.4900
France dblexpn || 0.00016 | 0.01261 | 0.00799 | 2.52130 | 0.4308
exponen | 0.00490 | 0.07002 | 0.02696 | 8.96108 | 0.4807
fuzzy 0.00055 | 0.02349 [ 0.01092 | 3.85204 | 0.4807
recurn | 0.00017 | 0.01320 | 0.00866 | 3.43716 | 0.5117
regrsn || 0.00387 | 0.06221 | 0.00641 | 2.07348 | 0.4807

atnn 0.00005 | 0.00688 | 0.00288 | 0.80511 | 0.5075
backprop || 0.00008 | 0.00920 | 0.00575 | 1.75202 | 0.5060
boxjen || 0.00299 | 0.05472 | 0.00289 | 1.20538 | 0.5061
Germany | dblexpn | 0.00017 | 0.01304 | 0.00877 | 2.44051 0.5075
exponen | 0.00492 | 0.07017 | 0.02631 | 7.53349 | 0.5073
fuzzy 0.00065 | 0.02554 | 0.01066 | 2.75275 | 0.5073
recurn || 0.00015 | 0.01236 | 0.00874 | 2.72614 | 0.5060
regrsn 0.00401 | 0.06336 | 0.00694 | 2.15152 | 0.5073

atnn 0.00010 | 0.01024 | 0.00320 | 0.93327 [ 0.5145
backprop [ 0.00027 [ 0.01643 | 0.01395 | 4.11947 | 0.5227
boxjen | 0.00296 | 0.05440 | 0.00336 | 1.32163 | 0.5208
Switzerland | dblexpn || 0.00022 | 0.01469 | 0.01024 | 2.96980 0.5145
exponen | 0.00515 | 0.07179 | 0.02950 | 8.64364 | 0.5147
fuzzy 0.00064 [ 0.02532 | 0.01007 | 2.82046 | 0.5147
recurn || 0.00021 | 0.01432 | 0.01028 | 3.31803 | 0.5227
regrsn || 0.00398 | 0.06306 | 0.00790 | 2.43777 | 0.5147

Table 57: 3 days average forecasts of exchange rates over window size 3
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Country Method Performance Measures
MSE RMSE [ MAE | MAPE | Ave DIR

atnn 0.00007 | 0.00823 | 8.00195 | 0.64035 | 0.4858
backprop || 0.00022 | 0.01482 | 0.01002 | 4.89227 | 0.5120
boxjen || 0.00286 | 0.05352 | 0.00323 | 1.13733 | 0.4929
France dblexpn | 0.00014 | 0.01163 | 0.00715 | 2.25964 | 0.4858
exponen | 0.00489 | 0.06990 | 0.02690 | 8.93564 | 0.4860
fuzzy 0.00054 | 0.02322 | 0.01084 | 3.79356 | 0.4860
recurn | 0.00017 | 0.01302 | 0.00851 | 3.39473 | 0.5120
regrsn || 0.00385 | 0.06204 | 0.00570 | 1.84917 | 0.4860

atnn 0.00005 | 0.00725 | 0.00230 | 0.65639 | 0.5035
backprop || 0.00034 | 0.01854 | 0.01430 | 5.14011 | 0.5010
boxjen || 0.00300 | 0.05476 | 0.00356 | 1.42232 | 0.4905
Germany | dblexpn || 0.00014 | 0.01187 | 0.00778 | 2.16993 | 0.5035
exponen || 0.00490 | 0.07002 | 0.02620 | 7.48069 | 0.5033
fuzzy 0.00064 | 0.02536 | 0.01038 | 2.63431 | 0.5033
recurn | 0.00015 | 0.01213 | 0.00860 | 2.68972 | 0.5010
regrsn || 0.00399 | 0.06315 | 0.00609 | 1.90925 | 0.5033

atnn 0.00010 | 0.00981 | 0.00253 | 0.74976 | 0.4962
backprop || 0.00044 | 0.02094 | 0.01884 | 5.46716 | 0.5030
boxjen | 0.00298 | 0.05455 | 0.00471 | 1.76606 | 0.4889
Switzerland | dblexpn || 0.00020 | 0.01413 | 0.00977 | 2.83512 | 0.4962
exponen | 0.00515 | 0.07178 | 0.02935 | 8.61415 | 0.4960
fuzzy 0.00063 | 0.02502 | 0.01003 | 2.77308 | 0.4960
recurn | 0.00020 | 0.01406 | 0.01010 | 3.26866 | 0.5030
regrsn || 0.00398 | 0.06311 | 0.00755 | 2.35098 | 0.4960

Table 58: 5 days average forecasts of exchange rates over window size 3
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Country | Method || Performance Measures
| MSE RMSE | MAE MAPE | Ave DIR

atnn || 0.00007 [ 0.00821 | 0.00287 | 0.85211 | 0.4808
backprop || 0.00023 | 0.01510 | 0.01230 | 5.00503 | 0.5117
boxjen || 0.00286 | 0.05351 | 0.00274 | 0.98637 | 0.4900
France dblexpn || 0.00022 | 0.01484 | 0.00983 | 3.09663 | 0.4808
exponen || 0.00490 | 0.07002 | 0.02696 | 8.96108 | 0.4807
fuzzy 0.00058 | 0.02411 | 0.01179 | 4.61674 | 0.4807
recurn | 0.00018 | 0.01329 | 0.00864 | 3.50031 | 0.5117
regrsn || 0.00393 | 0.06267 | 0.00868 | 2.78745 | 0.4807

atnn 0.00005 | 0.00735 | 0.00321 | 0.87681 | 0.5075
backprop || 0.00008 | 0.00878 | 0.00603 | 1.83180 | 0.5060
boxjen || 0.00299 | 0.05472 | 0.00289 | 1.20538 | 0.5061
Germany | dblexpn | 0.00025 | 0.01574 | 0.01092 | 3.03679 | 0.5075
exponen |l 0.00491 | 0.07006 | 0.02627 | 7.49485 | 0.5077
fuzzy 0.00054 | 0.02315 | 0.01007 | 2.49979 | 0.5077
recurn | 0.00016 | 0.01253 | 0.00886 | 2.79731 | 0.5060
regrsn 0.00407 | 0.06380 | 0.00954 | 2.85554 | 0.5077

atnn 0.00008 | 0.00875 | 0.00453 | 1.31255 | 0.5145
backprop || 0.00020 | 0.01419 | 0.01182 | 3.59338 | 0.5227
boxjen || 0.00296 | 0.05440 | 0.00336 | 1.32163 | 0.5208
Switzerland | dblexpn || 0.00032 | 0.01801 | 0.01288 | 3.73320 | 0.5145
exponen ([ 0.00515 | 0.07179 | 0.02950 | 8.64364 | 0.5147
fuzzy 0.00048 | 0.02187 | 0.00925 | 2.38776 | 0.5147
recurn | 0.00021 | 0.01455 | 0.01039 | 3.38883 | 0.5227
regrsn 0.00407 | 0.06381 | 0.01103 | 3.34480 | 0.5147

Table 59: 3 days average forecasts of exchange rates over window size 4
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Country Method Performance Measures
MSE RMSE | MAE MAPE | Ave DIR

atnn 0.00006 | 0.00792 | 0.00242 | 0.71192 | 0.4862
backprop || 0.00020 | 0.01411 | 0.01032 | 4.77671 | 0.5120
boxjen | 0.00286 | 0.05352 | 0.00323 | 1.13733 | 0.4929
France dblexpn || 0.00016 | 0.01268 | 0.00817 | 2.57507 | 0.4862
exponen [ 0.00489 | 0.06994 | 0.02689 | 8.93676 | 0.4860
fuzzy 0.00057 | 0.02393 | 0.01149 | 4.52965 | 0.4860
recurn || 0.00017 | 0.01312 | 0.00846 | 3.44739 | 0.5120
regrsn || 0.00388 | 0.06229 | 0.00705 | 2.27006 | 0.4860

atnn 0.00005 | 0.00692 | 0.00278 | 0.75115 | 0.5035
backprop | 0.00009 | 0.00974 | 0.00460 | 1.31736 | 0.5010
boxjen | 0.00300 | 0.05476 | 0.00356 | 1.42232 | 0.4905
Germany dblexpn | 0.00018 | 0.01325 | 0.00906 | 2.52126 | 0.5035
exponen (| 0.00490 | 0.07002 | 0.02620 | 7.48069 | 0.5033
fuzzy 0.00052 | 0.02287 | 0.00947 | 2.29753 | 0.5033
recurn || 0.00015 | 0.01232 | 0.00867 | 2.75039 | 0.5010
regrsn || 0.00402 | 0.06341 | 0.00769 | 2.34901 | 0.5033

atnn 0.00011 | 0.01034 | 0.00261 | 0.76391 | 0.4962
backprop || 0.00020 | 0.01420 | 0.01108 | 3.72766 | 0.5030
boxjen | 0.00298 | 0.05455 | 0.00471 | 1.76606 | 0.4889
Switzerland | dblexpn | 0.00023 | 0.01509 | 0.01065 | 3.09240 | 0.4962
exponen | 0.00514 | 0.07171 | 0.02935 | 8.59970 | 0.4963
fuzzy 0.00047 | 0.02158 | 0.00866 | 2.19000 | 0.4963
recurn || 0.00020 | 0.01430 | 0.01023 | 3.34723 | 0.5030
regrsn || 0.00400 | 0.06327 | 0.00882 | 2.71241 | 0.4963

Table 60: 5 days average forecasts of exchange rates over window size 4



Country Method Performance Measures

| MSE RMSE | MAE MAPE | Ave DIR

atnn [ 0.00006 | 0.00783 | 0.00232 | 0.74423 | 0.4808

backprop || 0.00029 | 0.01693 | 0.01426 | 5.70611 | 0.5117

boxjen || 0.00286 | 0.05351 | 0.00274 | 0.98637 | 0.4900

France dblexpn | 0.00021 | 0.01446 | 0.00963 | 3.03998 | 0.4808

exponen || 0.00490 | 0.07002 | 0.02696 | 8.96108 | 0.4807

fuzzy 0.00069 | 0.02627 | 0.01309 | 5.52632 | 0.4807

recurn fi 0.00016 | 0.01259 | 0.00799 | 3.25012 | 0.5117

regrsn || 0.00393 | 0.06265 | 0.00868 | 2.79108 | 0.4807

atnn__ [ 0.00007 | 0.00845 | 0.00265 | 0.76005 | 0.5075

backprop [l 0.00007 | 0.00846 | 0.00568 | 1.75125 | 0.5060

boxjen | 0.00299 | 0.05472 | 0.00289 | 1.20538 | 0.5061

Germany | dblexpn || 0.00024 | 0.01536 | 0.01072 | 2.98973 | 0.5075

exponen | 0.00491 | 0.07006 | 0.02627 | 7.49485 | 0.5077

fuzzy 0.00044 | 0.02109 | 0.00935 | 2.17171 | 0.5077

recurn | 0.00014 | 0.01163 | 0.00799 | 2.52047 | 0.5060

regrsn | 0.00407 | 0.06379 | 0.00955 | 2.86534 | 0.5077

atnn 0.00007 | 0.00849 | 0.00302 | 0.89105 | 0.5145

backprop || 0.00029 | 0.01716 | 0.01410 | 3.94991 | 0.5227

boxjen || 0.00296 | 0.05440 | 0.00336 | 1.32163 | 0.5208

Switzerland | dblexpn || 0.00031 | 0.01772 | 0.01273 | 3.69051 | 0.5145

exponen || 0.00515 | 0.07179 | 0.02950 | 8.64364 | 0.5147

fuzzy 0.00038 | 0.01946 | 0.00878 | 2.10187 | 0.5147

recurn i 0.00018 | 0.01333 | 0.00930 | 3.03518 | 0.5227

regrsn 0.00407 | 0.06382 | 0.01111 | 3.36901 | 0.5147

Table 61: 3 days average forecasts of exchange rates over window size 5
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Performance Measures

Country | Method ||
MSE RMSE | MAE MAPE | Ave DIR

atnn 0.00008 | 0.00907 | 0.00287 | 0.88008 | 0.4862
backprop || 0.00021 | 0.01445 | 0.01150 | 4.87873 | 0.5120
boxjen |L0.00286 0.05352 | 0.00323 | 1.13733 | 0.4929

France dblexpn || 0.00014 | 0.01194 | 0.00769 | 2.42885 | 0.4862
exponen [| 0.00489 | 0.06994 | 0.02689 | 8.93676 | 0.4860
fuzzy 0.00068 | 0.02613 | 0.01265 | 5.42259 | 0.4860
recurn || 0.00015 | 0.01223 | 0.00763 | 3.16142 | 0.5120
regrsn || 0.00387 | 0.06222 | 0.00674 | 2.17746 | 0.4860

atnn 0.00010 | 0.00991 | 0.00288 | 0.78218 | 0.5035
backprop || 0.00008 | 0.00913 | 0.00647 | 2.02970 | 0.5010
boxjen | 0.00300 | 0.05476 | 0.00356 | 1.42232 | 0.4905
Germany | dblexpn [ 0.00016 | 0.01247 | 0.00857 | 2.39283 | 0.5035
exponen | 0.00490 | 0.07002 | 0.02620 | 7.48069 | 0.5033
fuzzy 0.00043 | 0.02065 | 0.00877 | 1.98431 | 0.5033
recurn || 0.00012 | 0.01116 | 0.00764 | 2.44117 | 0.5010
regrsn 0.00401 | 0.06334 | 0.00739 | 2.27253 | 0.5033

atnn 0.00025 | 0.01572 | 0.00285 | 0.82335 | 0.4962
backprop || 0.00024 | 0.01556 | 0.01317 | 3.92474 | 0.5030
boxjen || 0.00298 | 0.05455 | 0.00471 | 1.76606 | 0.4889
Switzerland | dblexpn [} 0.00021 | 0.01437 | 0.01017 | 2.95273 | 0.4962
exponen || 0.00514 | 0.07171 | 0.02935 | 8.59970 | 0.4963
fuzzy 0.00035 | 0.01882 | 0.00770 | 1.73010 | 0.4963
recurn || 0.00016 | 0.01279 | 0.00888 | 2.93006 | 0.5030
regrsn 0.00399 | 0.06320 | 0.00855 | 2.63371 | 0.4963

Table 62: 5 days average forecasts of exchange rates over window size 5
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