National Library of Canada Bibliothèque nationale du Canada Canadian Theses Service Services des thèses canadienhes Ottawa, Canada K1A 0N4 ## CANADIAN THESES # THÈSES CANADIENNES ## NOTICE The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible Some pages may have indistinct print especially if the original, pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy. Previously copyrighted materials (journal articles, published tests, etc.) are not filmed Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Pleas read the authorization-forms which accompany this thesis ## AVIS La qualité de cette microfiche dépend grandement de la qualité de-la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade. La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30 Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS RECUE Canadä NL 339 (r 86/01) # The Logic of Global Conventionalism Michael John Assels A Thesis ,in The Department of Philosophy Presented in Partial Fulfillment of the Requirements of for the Degree of Master of Arts at Concordia University Montréal, Québec, Canada March 1985 Michael John Assels, 1985 # The Logic of Global Conventionalism #### Michael John Assels Global conventionalism is characterized as the doctrine which holds that two scientific theories may explain just the same observational facts without being translations of one another. This characterization is borrowed, in substance, from Shaw, but his criterion of scientificality is rejected as being controversial and unnecessary to the refutation of global conventionalism. A refutation of GC is undertaken which proceeds from a semantic rule implicit in GC itself: The two theories under discussion must share, a common interpretation with respect to their observation language. Six lemmas are proved concerning the sets of interpretations of the theories' languages. The sixth lemma reveals that disagreement in the interpretation of the observation language is a necessary condition of the non-translatability of theories. From this lemma, a theorem is proved to the effect that GC is inconsistent. #### ACKNOWLEDGEMENTS A number of people have been very helpful to me in the writing of this thesis, and I am pleased to acknowledge their contributions. First, I am indebted to Professor R.B. Angel who was kind enough to agree to direct my work during his sabbatical year. His observations—and especially his observation that the conclusion of an earlier draft was false—have been of great value. Secondly, I must thank my friend Steven G. Shaw who has made himself available as a sounding board even when he must have had better things to do. This thesis is in large measure a development from his work, and I will be happy if it is read as such. Finally, I must express my appreciation to my wife, Irene Mazis, who has provided me with moral support, financial support, and technical support in typing this thesis. Most of all, however, I must thank her for listening to my ravings. Anyone who has ever heard the shrieks of a conclusion being drawn will know how Irene suffered in the months of lemma 6. The reader's ordeal will be as nothing next to hers. The errors which remain are, of course, my own. #### TABLE OF CONTENTS | Cha | pter | | , | . 1 | ٠ | _ | | | • | |----------|--------|---------------------------------------|----------|-------|--------|-------|-------|-------------------------|---------| | | I | PRELIMINARIES | , , | • • | • • • | • • | • • • | • • •
• • •
• • • | 1 | | | | 7 | ١ | ٠. | • | | | | ٠., | | • | | Introduction | ,- | , | • • • | • • | • • • | • • • | •• / | | , | | An Elaborat | ion of | Conce | pts | • • | • • • | | / 0 | | | • | Translat | ion . | • • | • • •, | • • | • • • | | : : / (| | | | Genuine | Convent | iona) | l Alte | mat | ives | | . / ! | | | * | • | | | | | | v | | | | ΊΙ | PROOFS | • • • | • • , | | • • | • • • | · • / | ′ s | | • | , | Conventions | <u>.</u> | • | . 4. • | | • • • | · /· . | 9 | | | | Definitions | <u>.</u> | • . • | | . : | | \cdot / \cdot . | 10 | | | n | Lemmas . | | | | • •, | ٠ . | /. · · · | 1 | | | *, , s | • | Lenna | 1 | | | /: | | 11 | | | | | Lemma | 2 . | | | ./ | • • • • • • • | , . 12 | | | • | • | Lemma- | 3. | | • • / | · | · · · }· | 13 | | * | μ, | · · | Lemma | 4 | | • | | . فم | 13 | | | ;
; | , | Lemma | 5 | | √.· | | • • • | 14 | | | , | , , , , , , , , , , , , , , , , , , , | Lenna | 6 . , | • • •/ | • • • | | | 16 | | | | Theorem | • • • | • • | . /. | • • | | | 20 | | | 111 | CONCLUSION . | ,. , . | ••• | / | • • | | | 22 | | | , | BIB TOCHANUV | ` | • | | | v | Y | 24 | #### PRELIMINARIES ## Introduction In what follows, we shall be making certain claims about a doctrine which Steven Shaw calls "global conventionalism" (GC). This is the doctrine which holds that two distinct scientific theories may have the same observational consequences, and that any scientific extension of one theory which increases the observational import of the theory will be matched by a scientific extension of the second theory which has just the same observational consequences. any two scientific theories which explain and systematize the actual observable facts must have the same models. To know--per impossibile--all the observable facts would be to know the non-observable facts which serve to explain and systematize the observable. The situation would never arise in which one had to choose between two scientific theories which had equal claims to acceptance, but which made different assertions about the structure of the world. ¹Steven G. Shaw, "An Examination of Global Conventionalism" (M.A. thesis, Concordia University, 1984) passim. Shaw attributes the words, but not the doctrine to Paul Horwich, "How to Choose between Empirically Indistinguishable Theories", Journal of Philosophy, vol. 79, no. 2 (Feb. 1982), pp. 62-77. If, on the other hand, GC is true, we must swallow hard and become agnostics about the unobservable world, for we can conduct no experiment which might help us decide between the two theories in question. Not surprisingly, then, there has been a good deal of discussion of conventionalism in the literature, although it has not always centered on global conventionalism as we have briefly characterized it; a number of distinct but related doctrines have gone under the name 'conventionalism'. No one, however, has undertaken a reasonably rigorous treatment of the logical relations which hold--or would hold--among conventional alternatives. This is rather surprising, since GC is obviously a logical doctrine. Shaw has made a start, however, by proposing a set of, conditions which must be fulfilled if any two theories are to count as instances of GC. Informally, these conditions are as follows: - (i) The theories must share a common observation language, and must have just the same theorems in that language. - (ii) The theories, when interpreted, must agree in what they assign to the symbols of their shared observation language. - (111) The theories must not be intertranslatable. ²For a bibliography, see Shaw, pp. 122-26, ³For a thorough discussion of the various views which have been called "conventionalism", see Shaw, Ch. I, pp. 1-30. - (iv) Each theory must have as much, and only as much, theoretical structure as is necessary to entail its observational theorems. - and (v) It must be possible, for any theory which adds observational import to one of the theories while continuing to fulfill condition (iv), to find an extension of the other theory such that the two new theories fulfill the first four conditions. Conditions (i), (ii), (iii) and (v) serve to sharpen the notion of 'genuine conventional alternatives', and condition (iv) is a necessary formal condition of scientificality. Theory pairs which violate condition (i) are not observationally equivalent. It will therefore be possible to choose between them on the basis of experimental evidence. Pairs which violate condition (ii) are not concerned with the same observational facts. They are therefore not to be considered as alternatives in the relevant sense. Pairs which violate condition (iii) are synonymous. Their differences are only differences of symbolism; they describe the same objects. Pairs which violate condition (iv) are unscientific, and therefore irrelevant to the doctrine of GC. Finally, pairs which violate condition (v) are conventional alternatives only for the moment. With the development of science, it will eventually become evident that one of the theories admits of successful scientific growth while the other does not. Shaw, pp. 70-71. We do not quote directly for two reasons: First, Shaw's formal conditions are not easy reading. Secondly, we do not wish to provoke any confusion which might arise on account of differences between Shaw's symbolism and our own. Shaw confirms, in private communication, that our rendering of his conditions is correct. These conditions seem generally correct. However, they include, as we have noted, a partial characterization of scientific theories. Consequently, any conclusion about the truth or falsehood of GC, based on these conditions, will be open to attacks on the grounds that scientific theories are not correctly characterized by condition (iv). The formal features of scientific theories have proved notoriously elusive, so that attacks will probably not be long in coming. It will therefore be of some use to recast Shaw's conditions in such a way that they will be as neutral as possible with respect to competing notions of scientificality: - (i) The theories must share a common observation language, and must have just the same theorems in that language. - (ii) The theories, when interpreted, must agree in what they assign to the symbols of their shared observation language. - (iiia) Neither theory may be the product of translation from the other. - (iva) Each theory must be scientific. - (v) It must be possible, for any theory which adds observational. import to one of the theories while continuing to fulfill condition (iva), to find an extension of the other theory such that the two new theories fulfill the first four conditions. ⁵For an extensive review of the history of the search for formal criteria of scientificality, see Frederick Suppe, "The Search for Philosophic Understanding of Scientific Theories", in Frederick Suppe (ed.), The Structure of Scientific Theories, 2nd ed. (Urbana, Ill.: U. of Illinois Press, 1977), pp. 1-241. The reason for (iva) should be obvious. The replacement of (iii) by the stronger (iiia), however, calls for some explanation. We wish, in general, to reject as an instance of GC any pair of theories such that one theory is simply an extension of the other; for in such a case, the extended theory is true whenever its extension is true. The extension is thus not an alternative but an addition to the extended theory. Shaw eliminates this possibility with condition (iv). The extension fails to qualify as a scientific theory. Since we reject condition (iv), however, we must choose a stronger criterion of distinctness: condition (iiia). Our new set of conditions is indeed quite neutral with respect to competing notions of scientificality, but we pay a price for this neutrality. We are now unable to establish that any pair of theories instantiates GC, since we have not specified any way of determining whether or not a theory fulfills condition (iva). It remains possible, however, to show that no pair of theories instantiates GC as we have characterized it. This is what we shall do here. Specifically, we shall prove a theorem to the effect that no pair of theories can fulfill conditions (i), (ii) and (iiia). Moreover, since these conditions involve no reference to any formal requirements on scientific theories, our theorem will stand irrespective of any formal view of science. We shall conclude that GC, as we have characterized it, is logically false, and we shall challenge the conventionalist to reformulate his doctrine in such a way as to escape the import of our theorem. First, however, we shall need some definitions. The reader will want to know what we mean by 'translation', by 'observational equivalence', and by 'genuine conventional alternatives'. ## An Elaboration of Concepts Translation ' We must begin our discussion of translation with a characterization of definitions. A sentence is a definition of a symbol α from symbols β_1, \ldots, β_n if, and only if, it has the form $$(x_1)...(x_k)$$ $(--\infty-\longleftrightarrow \beta_1,...,\beta_n$, where all non-logical symbols occurring in β_1, \ldots, β_n belong to $\{\beta_1, \ldots, \beta_n\}$; all variables occurring free in β_1, \ldots, β_n belong to $\{x_1, \ldots, x_k\}$, and $--\infty$ is the formula $x_1 = \alpha$ if α is a name (in this case k = 1), the sentence wif α is a sentence letter (in this case k=0 and the definition is a biconditional), the formula $x_k = \infty (x_1, ..., x_{k-1})$ if ∞ is a k-place predicate letter, and the formula $x_k = \infty (x_1, ..., x_{k-1})$ if ∞ is a (k-1)-place function sign. A symbol \propto is said to be explicitly definable in a theory T from symbols β_1,\ldots,β_n if, and only if, T entails a definition of \propto from β_1,\ldots,β_n . A symbol ∞ is said to be implicitly definable in a theory T from George Boolos and Richard Jeffrey, Computability and Logic, 2nd ed. (Cambridge: Cambridge U. Press, 1980), p. 246. 7 symbols β_1, \ldots, β_n if, and only if, any two models of T with the same domain which agree in what they assign to β_1, \ldots, β_n also agree in what they assign to ∞ . In Chapter II, we shall have occasion to make use of Beth's definability theorem: A symbol ∞ is implicitly definable in a theory I from symbols β_1, \ldots, β_n if, and only if, ∞ is explicitly definable in I from β_1, \ldots, β_n . Having said what needs to be said about definitions, we are now ready to specify what we shall mean by 'translation product'." A theory T_1 in a language L_1 yields a theory T_2 (in L_2) as a translation product if, and only if, T_1 , together with a set D_1 of definitions of theoretical symbols in L_2 from symbols in L_1 , entails all theorems of T_2 and no other sentences in L_2 . (The distinction between observational and theoretical symbols is, for our purposes, completely arbitrary.) If either of two theories yields the other as a translation product, then the two theories are translatable; otherwise they are non-translatable. Two theories are observationally equivalent if, and only if, they share an observation language and have exactly the same theorems in the observation language. Thus it is observational equivalence that is required by condition (i). Tevert Beth, "On Padoa's Method in the Theory of Definition", Indagationes Mathematicae, vol. 15 (1953), pp. 330-39. We present the theorem as it is presented in Boolos and Jeffrey, p. 246. ## Genuine Conventional Alternatives Two theories are genuine conventional alternatives if, and only if, they are observationally equivalent and non-translatable; that is, two theories which fulfill conditions (i) and (iiia) are genuine conventional alternatives. It should be noted that the existence of genuine conventional alternatives, as we have characterized them, does not entail GC. The alternatives may fail to fulfill any of the other three conditions. In the next chapter, we shall argue that no pair of theories satisfies conditions (i), (ii) and (iiia). We shall be treating a theory as a set of sentences expressed, not in any natural language, but in a highly artificial symbolic language. Thus, when we speak of a theory's language, we shall be speaking of the set whose members are all the non-logical symbols (e.g., predicate letters) occurring in the theory's sentences. Because languages are sets, set theoretic predicates and operations are defined for languages. Thus we may speak of "membership in a language", "the union of two languages", etc. Of course, we shall also make extensive use of the more specific property of languages: their susceptibility of interpretation. With these matters clarified, we may now proceed to the proof our theorem. #### CHAPTER II PROOFS ## Conventions The proofs which we undertake here will be made a great deal shorter if we edopt a few conventions: First, we shall assume that T_1 and T_2 are theories in the first order functional calculus which share an observation language L_0 , but whose languages L_1 and L_2 , respectively, are otherwise distinct (i.e., $L_1 \cap L_2 = L_0$). The language L (= $L_1 \cap L_2$) is the language which contains every symbol of each theory. Secondly, we shall use the symbol 'D₁', ('D₂') for a set of definitions such that, for each symbol \propto in L₂ \sim L₀ (L₁ \sim L₀), D₁ (D₂) contains exactly one definition of \propto from symbols of L₁ (L₂). Thirdly, when we speak of an 'interpretation' we shall mean an 'interpretation of L'. In fact, many different interpretations will share a common assignment to symbols of L, but for our purposes, all are equivalent. We therefore make a convenient and innocuous simplification by treating sets of equivalent interpretations—equivalent, that is, with respect to L—as though they were single interpretations. Finally, we shall consider only some arbitrary set of interpretations which agree in what they assign to symbols of the observation language L_0 . This is a crucial restriction, but it is justified in the context of this inquiry. The reader will recall that condition (ii) requires that theory pairs which instantiate GC agree, when interpreted, in what they assign to symbols of the observation language. Our restriction is thus no more than a stipulation that this condition must be fulfilled. Before proceeding, we should pause to take note of an important consequence which follows from this last convention: that all interpretations must share a common domain. This is due to the fact that what is "assigned" to a predicate letter—we assume that any scientific theory will have at least one predicate letter—is a characteristic function. A characteristic function of an n-place predicate letter is a total function from the set of all n-tuples of objects in the domain to the set of truth values. Thus it is impossible for interpretations which differ in their domains to agree in what they assign to any predicate letter; the characteristic functions will inevitably differ in at least some of their arguments. ### Definitions We shall have need of some concepts having to do with interpretations and sets of interpretations: - Definition 1. Any set whose members are just the interpretations which share some common assignment to symbols of L_n (n=0, 1, 2) is an L_n -constant set. - Definition 2. The L_n -partition (n=1, 2) of an L_0 -constant set \lceil is the set of all L_n -constant sets included in \lceil . - Definition 3. Every member of an L_n -partition (n = 1, 2) is a part of that partition. Justinition 4. A T_n -modeling part (n = 1, 2) of an L_n -partition is a part whose members are all models of T_n . ## Lemmas Now we prove six lemmas which bear on the concepts just defined. The first is a relatively straightforward lemma about membership in L_n -constant sets: Lemma 1. For any L_n -constant set $\lceil (n=1, 2) \rceil$ either all members of $\lceil \rceil$ are models of $\lceil \rceil$ or no members of $\lceil \rceil$ are models of $\lceil \rceil$. Proof Let \lceil be an L_n -constant set (n=1,2). By definition, all members of \lceil agree in what they assign to symbols of L_n . So if some members of \lceil are models of \lceil and others are not, then \rceil is not a theory in L_n . But by definition, \rceil is a theory in L_n . So either all members of \lceil are models of \rceil , or no members of \lceil are models of \rceil . It should be noted that, as a consequence of lemma 1, every part of an L_n -partition (n = 1, 2) which is not a T_n -modeling part contains no model of T_n . It will be recalled that T_2 is a translation of T_1 iff T_1 , together with a set D_1 of definitions of theoretical symbols in L_2 from symbols in L_1 , entails all and only theorems of T_2 in L_2 . It is clear enough that $T_1 \cup D_1$ entails all theorems of T_2 iff every model of $T_1 \cup D_1$ is a model of T_2 . Our second lemma establishes the necessary and sufficient conditions for $T_1 \cup D_1$'s entailing only theorems of T_2 in L_2 : Lemma 2. $T_1 \cup D_1$ entails only theorems of T_2 in L_2 iff, for any L_2 -constant set Γ which contains models of T_2 , Γ contains a model of $T_1 \cup D_1$. Proof First the 'if': Let $T_1 \cup D_1$ entail a sentence S in L_2 which is not a theorem of T_2 . T_2 is consistent with $\sim S$, but $T_1 \cup D_1$ is not. That is, some interpretation $\mathcal G$ is a model of both T_2 and $\sim S$, but no interpretation is a model of both $T_1 \cup D_1$ and $\sim S$. Let Γ be the L_2 -constant set to which $\mathcal G$ belongs. $\sim S$ is a sentence of L_2 , and all members of Γ agree with $\mathcal G$ in what they assign to symbols of L_2 , so all members of Γ are models of $\sim S$. Therefore no member of Γ is a model of $T_1 \cup D_1$, although Γ contains a model ($\mathcal G$) of T_2 . # Now the 'only if': Let Γ be some L_2 -constant set which contains models of T_2 but no models of $T_1 \cup D_1$. Now let A be the set of sentences of L_2 whose models are just the interpretations which do not belong to Γ . Some models of T_2 (i.e., those which belong to Γ) are not models of A, so T_2 does not entail every sentence in A. Let S be a sentence in A which is not entailed by T_2 . $T_1 \cup D_1$ entails every sentence in A, since the only non-models of A are the members of Γ , and $T_1 \cup D_1$ has no models in Γ . A fortiori, $T_1 \cup D_1$ entails S. Since S is a sentence of L_2 , and S is not entailed by T_2 , $T_1 \cup D_1$ entails a non-theorem of T_2 in L_2 . Q.E.D. Lemma 3 establishes that every interpretation corresponds to a unique pair of parts. We shall make use of this fact later, but for now we prove only that it is a fact: Lemma 3. For any L_0 -constant set \lceil , each member of \lceil belongs to exactly one part of \lceil 's L_1 -partition, and to exactly one part of \lceil 's L_2 -partition. ## Proof Let Γ be any L_0 -constant set and let Γ be any member of Γ . Γ interprets Γ , so Γ interprets Γ and Γ . By definition, the parts of Γ is Γ partition are just the Γ constant sets included in Γ . I must be a member of some such set, since Γ interprets Γ . So Γ is a member of some part of Γ is Γ partition. Suppose that Γ belongs to two such parts, Γ and Γ is Γ belongs to two such which share a certain assignment to symbols of Γ and similarly for Γ but with a different assignment. Since Γ belongs to Γ every interpretation of Γ which agrees with Γ in what it assigns to symbols of Γ belongs to Γ . But then every member of Γ is a member of Γ . Similarly, every member of Γ is a member of Γ is a member of Γ belongs to exactly one part of Γ is Γ partition. Exactly similar reasoning establishes that 9 belongs to exactly one part of ['s b -partition. Q.E.D. The concept of observational equivalence was defined in Chapter I in terms of entailment of sentences in L_0 . Our fourth lemma establishes that observational equivalence is also definable in terms of L_0 -constant sets and the models contained in them: Lemma 4. Two theories T_1 and T_2 are observationally equivalent iff, for every L_0 -constant set Γ , Γ contains models of T_1 iff Γ contains models of T_2 . Proof. First the 'only if': Let T_0 be any T_0 -constant set such that T_0 contains models of T_1 but no models of T_2 (or vice versa; the reasoning is the same). Let T_1 be the set of sentences of T_0 such that the models of T_0 are just the interpretations which do not belong to T_0 . Every model of T_0 is a model of T_0 , but, since T_1 has a model in T_0 , some model of T_1 is not a model of T_0 . That is, T_0 entails a set of sentences in T_0 , but T_0 does not entail those sentences. So T_1 and T_2 are not observationally equivalent. Now the 'if': Let T_1 entail a sentence S in L_0 which is not entailed by T_2 (or vice versa; again, the reasoning is the same). Since T_2 does not entail S, S is not valid. So \sim S has a model. Since T_1 entails S but T_2 does not, T_2 is consistent with \sim S but T_1 is not. That is, some model of T_2 is a model of \sim S but no model of T_1 is a model of \sim S. Let S be any interpretation which is a model of both T_2 and \sim S, and let T be the L_0 -constant set to which S belongs. \sim S is a sentence of L_0 , and every member of T agrees with S in what it assigns to symbols of L_0 , so every member of T is a model of \sim S. Therefore no member of T is a model of T_1 . That is, T contains models of T_2 but no models of T_1 . Q.E.D. Lemma 5. A set of sentences in L is logically equivalent to a set of definitions of symbols of $L_2\sim L_0$ from symbols of L_1 if, and only if, it has exactly one model in each L_1 -constant set. Proof Let \mathbb{D}_1 be a set of definitions of symbols in $\mathbb{L}_2 \sim \mathbb{L}_0$ (i.e., in the theoretical language of \mathbb{T}_2) from symbols in \mathbb{L}_1 . By Beth's definability theorem, any two models of \mathbb{D}_1 which agree in what they assign to \mathbb{L}_1 -symbols will agree in what they assign to $(\mathbb{L}_2 \sim \mathbb{L}_0)$ -symbols. Let \mathbb{T} be any \mathbb{L}_1 -constant set. By definition, all members of \mathbb{T} agree in what they assign to \mathbb{L}_1 -symbols. So all members of \mathbb{T} which are models of \mathbb{D}_1 agree in what they assign to $(\mathbb{L}_2 \sim \mathbb{L}_0)$ -symbols. Thus all members of \mathbb{T} which are models of \mathbb{D}_1 agree in what they assign to all symbols of \mathbb{L} . But \mathbb{T} does not contains two distinct members which agree in what they assign to symbols of \mathbb{L} , so \mathbb{D}_1 has at most one model in \mathbb{T} . If, for any L_1 -constant set \lceil , \lceil contains no models of D_1 , then it will not be possible to specify a model of D_1 in \lceil . We now show how to specify such a model. D_1 contains, for each symbol ∞ in $L_2\sim L_0$, exactly one sentence S_2 of definitional form: Let J be any member of Γ . Now let J be the interpretation of L which agrees with J in what it assigns to symbols of L_1 , and which, for each < in $L_2 \sim L_0$, assigns to the k-open place formula $-\infty$ — whatever it assigns to the k-open place formula Thus, for each α ; β_1, \ldots, β_n & $x_1 = x_1$ & ... & $x_k = x_k$. $(x_1) \ldots (x_k) \quad (\qquad \beta_1, \ldots, \beta_n \qquad \text{& } x_1 = x_1 \text{& } \ldots$ $(x_k = x_k \leftarrow \beta_1, \ldots, \beta_n).$ Since every such sentence is valid, all are true in \mathcal{F} . So every S_{ω} is true in \mathcal{F} . That is, \mathcal{F} is a model of D_1 . Moreover, since \mathcal{F} agrees with the member \mathcal{G} of Γ in what it assigns to symbols in Γ_1 , \mathcal{G} is in Γ . Thus, \mathbb{D}_1 has at least one model, and at most one model, in every \mathbb{L}_1 -constant set. The same is true of any set of sentences logically equivalent to \mathbb{D}_1 , since logical equivalents have exactly the same models. Suppose now that a set A of sentences in L has exactly one model in each L_1 -constant set. Any two models of A which agree in what they assign to symbols of L_1 agree in what they assign to symbols of $L_2 \sim L_0$. So, by Beth's theorem, A entails a set D_1 of definitions of $(L_2 \sim L_0)$ -symbols from L_1 -symbols. Because D_1 is such a set of definitions, it has exactly one model in each L_1 -constant set. That is, A and D_1 have—the same number of models. Moreover, since A entails D_1 every model of A is a model of D_1 . So A and D_1 have just the same models; i.e., they are logically equivalent. Therefore, a set of sentences in L is logically equivalent to a set of definitions of symbols of $L_2 \sim L_0$ from symbols of L_1 if, and only if, it has exactly one model in each L_1 -constant set. Q.E.D. Our last lemma is the longest. It sets forth, in terms of the concepts defined in the last section, the necessary and sufficient conditions for two theories' being genuine conventional alternatives. We beg the reader's forgiveness in advance, and we proceed: Lemma 6. If T_1 and T_2 are two observationally equivalent theories, then T_1 and T_2 are non-translatable iff (i) there is an L_0 -constant set Γ_1 such that Γ_1 's L_1 -partition contains more T_1 -modeling parts than there are T_2 -modeling parts in Γ_1 's L_2 -partition, and (ii) there is an L_0 -constant set Γ_2 such that Γ_2 's L_2 -partition contains more T_2 -modeling parts than there are T_1 -modeling parts in Γ_2 's L_1 -partition. Proof First the 'if': Let 1 be an Lo-constant set whose La-partition contains more T_1 -modeling parts than there are T_2 -modeling parts in T_1 's L_2 -partition. Let Γ_2 be an L_0 -constant set whose L_2 -partition contains more T_2 -modeling parts than there are T_1 -modeling parts in T_2 's L_1 -partition. Let T_2 be a translation product of T_1 . Then, for some set D_1 of definitions, $T_1 \cup D_1$ does not entail any sentence S in L_2 unless T_2 entails S. By emma 2, $T_1 \cup D_1$ has at least one model in each L_2 -constant set which contains models of T_2 . So $T_1 \cup D_1$ has at least one model in each T_2 -modeling part of Γ_2 's L_2 -partition. That is, the number of models of $T_1 \cup D_1$ in T_2 is greater than or equal to the number of T_2 -modeling parts in T_2 's L_2 -partition. But, by lemma 5, D_1 has exactly one model in each part of \(\bigcap_2's \, \L_1-\text{partition} \). So \(\bigcap_1 \bigcup \D_1' \) has exactly one model for each T_1 -modeling part in T_2 is L_1 -partition. That is, the number of models of $\mathsf{T}_1 \bigcup \mathsf{D}_1$ is exactly equal to the number of T_1 -modeling parts in T_2 's L_1 -partition. So the number of T_1 -modeling parts in Γ_2 's Γ_1 -partition is at least as great as the number of Γ_2 modeling parts in 7 's L-partition. But this contradicts our hypothesis, so T_2 is not a translation product of T_1 . Exactly similar reasoning, exchanging the '1's and '2's in the subscripts, will prove that T_1 is not a translation product of T_2 . So T_1 and T_2 are non-translatable. Now the 'only if': Let T_1 and T_2 be two observationally equivalent theories such that, for every L_0 -constant set Γ , there are at least as many T_1 -modeling parts in Γ 's L_1 -partition as there are T_2 -modeling parts in Γ 's L_2 -partition. We now show that T_2 is a translation product of T_1 (i.e., that there exists a D_1 such that the L_2 -theorems of T_1 D_1 are just the L_2 -theorems of T_2). Since, for each L_0 -constant set \lceil , there are at least as many \lceil_1 -modeling parts in \lceil 's \lfloor_1 -partition as there are \lceil_2 -modeling parts in \lceil 's \lfloor_2 -partition, it is possible to put the \lceil_2 -modeling parts in \lceil 's \lfloor_2 -partition into one-one correspondence with the members of some subset of \lceil_1 -modeling parts in \lceil 's \lfloor_1 -partition. Let \lceil be any total function (from \lceil_2 -modeling parts into \lceil_1 -modeling parts) which establishes such a correspondence. \lceil By lemma \rceil , for any \lceil , each member of \lceil belongs to exactly one part of \lceil 's \lceil_1 -partition and to exactly one part of \lceil 's \lceil_2 -partition. So we can specify a set of \rceil of sentences in \rceil by specifying the models of \rceil as follows: For each L₀-constant set \(\Gamma\), - (i) for every T₁-modeling part B in \(\Gamma \text{'s L₁-partition}, \) if B is a value of \(\gamma \), then the interpretation which belongs both to B and to the \(\Gamma_2\)-modeling part C in. \(\Gamma \text{'s L₂-partition such that } \gamma (C) = B, is a model of A, \) and no other member of B is a model of A; - (ii) if y has any arguments, then for some arbitrary argument C of y, and for every part B in ['s L₁-partition, if B is not a value of y, then the interpretation which belongs both to B and to C is a model of A, and no other member of B is a model of A; ⁸We invoke the axiom of choice here. and (iii) if y has no arguments, then for some arbitrary part D of ['s L2-partition, and for every part B in ['s L1-partition, the interpretation which belongs both to B and to D is a model of A, and no other member of B is a model of A. Clause (i) of the specification ensures that each T_2 -modeling part in each Γ 's L_2 -partition contains at least one model of $T_1 \cup A$. So, by lemma 2, and by the equivalence of A and D_1 , $T_1 \cup D_1$ does not entail any sentence S in L_2 unless T_2 entails S. By hypothesis, T_1 and T_2 are observationally equivalent, so by lemma 4, for any L_0 -constant set Γ , Γ_1 has no models in Γ iff Γ_2 has no models in Γ . But Γ has no arguments just when Γ_2 has no models in Γ . So clause (iii) is applicable only when $\Gamma_1 \cup A$ can have no models in Γ . Clauses (i) and (ii) make an interpretation a model of Γ only if it is a member of an argument of Γ (i.e., only if it is a model of Γ). So the specification ensures that every model of Γ 1 \cup A (and hence, every model of Γ 2 in Γ 3. That is, T_2 is a translation product of T_1 . Moreover, if the '1' and '2' be exchanged in the subscripts of the hypothesis, exactly similar reasoning proves that T_1 is a translation product of T_2 . Therefore, T_1 and T_2 are non-translatable only if (i) there is an L_0 -constant set Γ_1 such that Γ_1 's L_1 -partition contains more T_1 -modeling parts than there are T_2 -modeling parts in Γ_1 's L_2 -partition, and (ii) there is an L_0 -constant set Γ_2 such that Γ_2 's L_2 -partition contains more T_2 -modeling parts than there are T_1 -modeling parts in Γ_2 's L_1 -partition. Q.E.D. With all our lemmas proved, we may now move on to our theorem. # Theorem The theorem follows from lemma 6: Theorem 1. No theory has a genuine conventional alternative ## Proof . Let T_1 be a theory with a genuine conventional alternative T_2 . By definition, T_1 and T_2 are observationally equivalent and non-translatable. So by lemma 6, there is an L_0 -constant set T_1 such that T_1 's L_1 -partition contains more T_1 -modeling parts than there are T_2 -modeling parts in T_1 's L_2 -partition, and there is an L_0 -constant set T_2 such that T_2 's L_2 -partition contains more T_2 -modeling parts than there are T_1 -modeling parts in T_2 's L_1 -partition. T_1 and T_2 are distinct, for if T_1 = T_2 , then the number of T_1 -modeling parts in T_1 's L_1 -partition is both greater than and less than the number of T_2 -modeling parts in T_1 's L_2 -partition. But by our convention, all interpretations agree in what they assign to symbols of L_0 . So by definition 1, there is only one L_0 -constant set. Therefore Γ_1 and Γ_2 cannot be distinct, but this is absurd. Q.E.D. #### CHAPTER III #### CONCLUSION Theorem 1 asserts that no theory has a genuine conventional alternative, which is to say that no pair of theories satisfies conditions (i) and (iiia). Therefore, if theorem 1 is true, GC is false. But is theorem 1 true? It is not a theorem of pure logic, because it rests upon a substantive convention about allowable interpretations: the convention which admits only such interpretations as agree in what they assign to symbols of the observation language. It is reasonable, therefore, to ask under what conditions theorem 1 holds true. The answer, expressed pedantically, is that the theorem is true in all cases where the convention is legitimately adopted. When is the convention legitimately adopted? Whenever condition (ii) is true. Since condition (ii) is a necessary condition for the truth of GC, we now come to see just what theorem 1 is. It is a theorem of GC! Thus, GC itself entails its own falsehood, and we may assert uncondition—ally that GC is false. Conditions (i), (ii) and (iiia) are inconsistent. The conventionalist cannot attack this conclusion on the grounds that it embodies some questionable assumption about the formal conditions of scientificality. We have been careful not to make any such assumptions, unless they are inherent in the notion of an observation language. But if this is so, it becomes difficult to see how the conventionalist can even state his doctrine. If there is no common ground whatever between theories, how can it mean anything to say that they are conventional alternatives? Conventional alternatives in the explanation of what? If our conclusion is to be attacked, it must be on the grounds that we have misrepresented the conventionalist's position. This is a charge to which we are, admittedly, vulnerable. We have not reproduced the words of any conventionalist who attempted to give a rigorous characterization of the logical nature of his views. We are not aware that any such attempt has been made. We have therefore had to rely upon our own assessment of GC, which in turn relies upon Shaw's. We have tried to offer some justification for each of the conditions which we set forth. Nevertheless, it remains possible that what has just been knocked down is nothing but a straw man. We take the risk, but we ask the reader to take note of two important points. The first is that the "faffacy" of the straw man is not a fallacy. It is a valid argument against a position which no real man has adopted. GC, as we have characterized it, is false whether or not it is the view of any conventionalist. That is worth knowing. The second point is that when the real man is hiding in the tall grass, there is no better way of getting him to stand up and show himself than to knock down a straw man with his name on it. If we have not refuted GC, we shall find out soon enough what GC really is. That will be worth knowing. 20 #### BIBLIOGRAPHY #### Articles - Beth, Evert. "On Padoa's Method in the Theory of Definition", Indagationes Mathematicae 15 (1953), pp. 330-39. - Camap, Rudolf. "The Methodological Character of Theoretical Concepts", in Feigl, Herbert and Scriven, Michael (Eds.), Minnesota Studies in the Philosophy of Science. Minneapolis: University of Minn. Press, 1956. Vol. 1, pp. 38-56. - Craig, William. "Replacement of Auxiliary Expressions". Philosophical Review, 65 (1956), pp. 38-55. - Hempel, Carl G. "The Theoretician's Dilemma", in Feigl, Herbert, Maxwell, (Eds.), Minnesota Studies in the Philosophy of Science. Minneapolis: University of Minn. Press, 1958. Vol. II, pp. 37-98. - Horwich, Paul. 'How to Choose between Empirically Indistinguishable Theories", Journal of Philosophy, Vol. 79, no. 2 (February, 1982), pp. 62-77. - Putnam, H. "The Refutation of Gonventionalism", Nous, 8 (1974), pp. 25-41. - B. Baumrin (Ed.), Philosophy of Science: The Delaware Seminar, Vol. 2 (1962-63). pp. 205-255. - . "Models and Reality", Journal of Symbolic Logic, Vol. 45, no. 3 (September, 1980), pp. 464-482. - Quine, W.V.O. "Two Dogmas of Empiricism", in From a Logical Point of View, Cambridge, Mass.: Harvard University Press, 1980. pp. 20-46. - Journal of Philosophy, (1970), pp. 178-183. #### Books - Angel, R.B. Relativity: The Theory and its Philosophy. Oxford: Pergamon Press, 1980. - Boolos, George and Jeffrey, Richard. Computability and Logic, 2nd ed. Cambridge: Cambridge U. Press, 1980. - Giedymin, J. Science and Conventionalism: Essays in Conventionalism and Twentieth Century Philosophy of Science. Oxford: Pergamon Press, 1981. - Grünbaum, A. Geometry and Chronometry in Philosophical Perspective. Minneapolis: University of Minnesota Press, 1968. - Kuhn, T.S. The Structure of Scientific Revolutions, 2nd ed. Chicago: University of Chicago Press, 1970. - Nagel, E. The Structure of Scientific Theories. New York: Harcourt, Brace, 1961. - Poincaré, Henri. Science and Hypothesis. New York: Dover Publications, 1952. - Reichenbach, H. The Philosophy of Space and Time. New York: Dover, 1958. - Sklar, L. Space, Time and Space-Time. California: University of California Press, 1974. - Sneed, J. The Logical Structure of Mathematical Physics. Dordrecht: Reidel, 1971. - Suppe, Frederick, ed. The Structure of Scientific Theories, 2nd ed. Urbana, Ill.: University of Illinois Press, 1977. ### Thesis Shaw, Steven G. "An Examination of Global Conventionalism". M.A. thesis. Concordia University, 1984.