1

Acquisihions and

Bibliothéque nationale
du Canada

Direction des acquisitions el

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1AON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made io
ensure the highest -uality of
reproduction possible.

If pages are missing, contact the
university winich granted the
degrea.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

395, rue Wellngton
Ottawa (Ontano)

Youw D Ve MY

At Arp cotdrens o

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtoui si les pages
originales ont eté
dactylographiées a l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Valerie Large

The I'1-DFD Graphic Interface

A Major Report
in

The Department
of

Computer Science

Presented in partial fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montréal, Québec, Canada

April 1996

© Valerie Large, 1996

y
L0 R

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibllographic Services Branch des services bibhographiques

395 Wellington Street
Ottawa, Ontaro
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395 rue Wellington
Ottawa (Ontano)

Yo e RO et e e

Our e Noteevioms e

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protéege sa
thése. Ni la these ni des extraits
substantiels de celle-ci ne
doivent = étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-10869-4

Canada

ABSTRACT

The IN-DFD Graphic Interface

Valerie Large

Dataflow diagrams have been a useful tool in legacy systems for describing certain
functionality of software systems and are still in use today. With current programming
methodologies and improved hardware there is great motivation to re-engineer legacy
systems: to do this effectively the systems must be well understood.

The T1-DFD project at Concordia University was set up to harness the power of the
Edinburgh Concurrency Workbench (CWB) in analyzing these dataflow diagrams. A tuple
representation was derived for representing the diagrams textually and a translator written
to convert the tuple format to one suitable for input to CWB. The textual interface was
not very user friendly so the work of this project was to develop a graphic interface for the
[1-DFD system. The ET++ application framework for C++ was used to develop this
interface which enables the user to analyze dataflow diagrams and to run simulations on
them. The user communicates with the system by menus and by using the mouse directly
on the diagram to control simulations. The graphic simulation is displayed dynamically as
it changes the status of the diagram agents.

This report describes some of the theoretical background behind the diagrams and CWB
as well as the detailed design of the interface with the user and CWB. Finally it analyzes
the success of the interface in general terms and specifically as an improved means of
access to CWB.

i

ACKNOWLEDGEMENTS

I would like to thank the staff members of the IT-DFD project (Professot Butler, Professor
Giogono, Professor Shinghal and I. Tjandra) for inviting me to participare on it to develop
thz graphic interface Professor Butler spent much time introducing us to the inteinal
workings of the application framework ET and assisting with some of the development
problems. He was readily available for any discussion on the pioject and I am most
grateful for the time he made available to me Ono Tjandra spent tune to introduce us to
much of the background theory behind the Edinburgh Concurrency Woikbench and
focused us on particular areas of interest. I would also like to thank both Professors Butler

and Grogono and the Department of Computer Science for examining this report

Finally I would like to acknowledge my husband Andy and daughters Amanda and Kirsty
for all the times I was missing on evenings and weekends working in the computer

laboratory and who have always supported me in my academic endeavors

v

Table of Contents

Section Page
I Introduction]
I I Dataflow diagrams and their context in structured design 1
I 1.1 The syntax and semantics of dataflow diagrams 1
1 1 2 The inadequacy of dataflow diagrams in isolation 2
1.1 3 Dataflow diagrams in large applications 3
1.2 The Edinburgh Concurrency Workbench 3
1.3 The I1-DFD Project 8
1.4 The I1-DFD Graphic Interface 10
1.4.1 The ueed for an improved interface 10
1.4.2 The breakdown of roles 10
1.4 3 My individual role 11
2. Specification for the I'-DFD Graphic Interface 14
2.1 Purpose 14
2.2 Development Environment: ET++3.0 15
2.3 Facilities provided by ET++ for its user applications 15
2.4 The IN-DFD Graphic Interface 16
2.4.1 Menus provided 16
2.4.2 Functionality provided 16

2 5 File facilities 17

v

2 5 1 File naming convention 17

25 2 File/New 19
25 3 File/Open 19
25 4 File/Load 19
2.5 5 File/Close 20
2 5.6 File/Save 20
2.5 7 File/Save_as 20
2.5.8 File/Print 21
2.5.9 File/Quit 21
2.6 State checking facilities 21
2.6.1 States/Size 21
2.6.2 States/Deadlock 22
2.7 Equivalence checking 24
2.7.1 Equivalence/Check DFD processes equivalence 24
2.8 Simulation 25
2.8.1 Simulation control 25
2.8.2 CWB command interpretation for simulation 26
2.8.3 Interpretation of CWB output 30
2.8.4 Simulation/ Nb steps for random transition 31
2.8.5 Simulation/select previous 33

2.8 6 Simulation/Quit simulation 34

vi

2 9 Graphic display conventions
2 9 1 Process display status
2 92 Action display status
2 9 3 Graphic display conventions
2 10 Future enhancements

2 10.1 Multiple levels of decomposition
2 10 2 Simulate a subset of DFD
2.10.3 Derivation commands
2 10.4 Comparisons between two or more dataflow diagrams
2 10 5 On-screen diagram editing
2.10 6 Different DFD standards

2 11 The look of the interface

3 Design

3.1 Overview
3.1 1 Global Event Diagrams
3.1.2 General Architecture
3.1.3 Class Diagrams: User Interface
3.1.4 Class Diagrams CWB Interface

3.2 Design: User interface
3.2.1 DFDDocument class

3.2.2 DFDView class

v

34

35

35

36

37

37

39

39

40

40

41

41

44

44

44

48

52

56

66

66

69

3 2 3 Classes for storage and presentation of shapes in the view
3 2 4 Diagram command classes
3 3 Design Interface with Cwb
3.3.1 Cwb Process
3 3 2 Cwb Commands
3.3 3 SimCommands
3.3.4 Dfd Status Classes
3.3 5 Map between Application and CWB
4. Conclusion
4.1 Success of the graphic interface
4.1.1 Success in terms of general interface design
4.1.2 Success as an improved means of communicating with CWB
4.2 Evaluation of the development environment
4.2.1 Advantages
4.2 .2 Disadvantages
4.3 Future improvements and enhancements
4.3.1 Multiple levels of diagram decomposition
4.3 2 Multiple Windows
4.3.3 More precise mouse selection of objects
4.3 4 More CWB facilities

4 3.5 Diagram editing

vin

71

717

80

80

20

96

103

109

109

109

110

112

112

112

13

113

113

113

4 3 6 File mechanisms

4 4 What was learned from the project

References
Appendix A
Appendix B

Glossary

Example data files

Requirements for translation of CWB simulation output

ix

113

114

116

118

119

120

Table of figures

121

122

2.11.1

2112

3111

31,12

3.1.2.1

31.22

3131

3.1.3.2

3133

31421

3.143.1

31441

3.1451

31452

31453

Simple dataflow diagram

A process with alternative outputs

The I'1-DFD Graphic Interface with an idle diagram
The T1-DFD Graphic Interface during a simulation
Global Event Diagram (1)

Global Event Diagram (2)

Top Level Architecture

Architecture -- Subsystems

Overview class diagram

Classes for generation and display of diagram shapes
Classes for the diagram commands

Dataflow Diagram Status Classes Generalization
DFD Map Class Aggregation

CWB Command Classes Generalization

DFD Events: User Input

CWBCommand Events

SimCommand Events

43

45

47

49

51

53

54

55

57

50

ol

63

64

65

1. INTRODUCTION.

1.1 Dataflow diagrams and their context in structured
design.

1.1.1 The syntax and semantics of dataflow diagrams

Dataflow Diagrams (DFDs) are a widely used notation in Softiware Engineering as a tool
for specifying the functionai aspect of a system. They describe systems as collections of
data that are manipulated by functions or processes. Data in the diagrams requires several
means of representation. it may be stored in data repositories, it may flow in data flows

and be transferred to and from an external environment.

The DFD as a software tool has the benefit of simplicity: it can be learned easily and be
understood easily It provides an easy, graphic means of modeling the flow of data

through a system. Four fundamental elements of a DFD are:
1. Symbols which represent functions or processes

2. Symbols (usually arrows) which represent dataflows. Normally arrows entering
processes represent input values that belong to the domain of that function:

outgoing arrows represent the results of that function.
3. Symbols to represent datastores which are permanent data repositories.

4. Symbols for sources and sinks which represent data acquisition and production

during computer-human interaction.

Several notations have been devised for representing these fundamental syntactical

concepts. (For example, Yourdon [WOOD90], DeMarco [DEMA79] and Rumbaugh

[RUMB91]) Further rules are requited to specify overall system stiucture, to represent

decomposed diagrams, the balance of flows and the uniqueness of labeling of clements

Some of the semantics of a DFD are expressed in the choice of label names for processes
and for dataflows : these normally are chosen to be meaningful but aiec of necessity
somewhat cryptic so that data dictionaries are required to explain the semantics Because
the semantics of a system are not fully expressed in the DFD it is said to be an wmformal

notation.

1.1.2 The inadequacy of dataflow diagrams in isolation.
There is an innate inadequacy in using a dataflow diagram in isolation.
in its simplicity there is a lack of power of expression [WO0D90,p 129]

Just as the semantics of DFD: 2re not fully expressed by the notation, the representation

of an entire scfiware system cannot be expressed by a DFD alone

Several means have been used to try to overcome this. Yourdon developed an extended
notation for augmenting the DFDs by the addition of control flow arrows
Rumbaugh{RUMB91} and Yourdon & Constantine[YOCO79] suggested using the DFD
as a representation of the functional model of a system with other charts such as
statecharts to represent the dynamic aspects of a system, the overall concept being
regarded a structured design in which several modeling views are taken in order to fully
represent the system. The Statemate Computer Aided Software Engineering (CASE) tool
[ILOG91 and ILOG92] provides three views of a system' the functional view represented

by DFDs, a dynamic view represented by statecharts and an organizational view

[N}

represented by module-charts and in addition supplies a simulation facility to demonstrate

the behavioral v ew

Another approach to combiring the syntax and semantics is to ni.ake the notation fully
formal such as Temporal CCS, the input language for the Edinburgh Concurrency

Workbench (CWB) [MOLL92]. This is discussed in further detail in section 1.2.

1.1.2 Dataflow diagrams in large applications

The expression of a large system as a dataflow diagram could make the diagram so large
as to make it unmanageable. to make it readable a concept of levels of decomposition can
be introduced. A hierarchical system of successively refined DFDs can make a large DFD
more manageable [WQOOD90 and BUTL95a]. For this, the sources and sinks are always
at level zero and each process may be shown in a decomposed form at a lower level: a

variety of different decompositions can be shown.

1.2 The Edinburgh Concurrency Workbench

The Edinburgh Concurrency Workbench (CWB) is an automated iool used for the
manipulation and analysis of concurrent systems. It can be used for equivalence and model
checking using different process semantics. It is abie to define behavior using a formal
syntax called the Temporal Calculus of Communicating Systems (Temporal CCS) and can
analyze the state space of a process or check semantic equivalencies. The system is used
interactively with textual input and output. Once the user has created a text file in the CCS
format to describe a DFD, the file can be loaded, the state spaces examined, equivalence
and congruence between processes checked and simulations run on them. The simulation
facility is quite sophisticated allowing the ucer to step through *he DFD or one of the

individual processes within it. The simulation steps can be individually controlled by the

3

user or randomly chosen by the system, breakpoints can be set and unset, a return made to
any point in the simulation process and a complete simulation history given. [MOLL92],

[BUTL95a]

The simple dataflow diagram ,

figure 1.2.1

simple dataflow diagram

can be represented by the SCCS notation:

Buff3=(C0|C1{C2)\{c,d,}
C0= a.’c.CO
Cl=c¢’d.C]
C2=d’b.C2

which shows three processes C0, C1 and C2 with a as input and ¢ as output of CO, ¢ as
input of C1 and d as output and d as input of C2 und b as output. The simple processes

CO0, C1 and C2 are the processes which constitute the complex process Buff3 and ¢ and d

dataflows are considered to be internal to the process Buff3 In CWB there is dynamic
binding whenever a process description is loaded so that when comparing processes care

must be taken to ensure unique process names
For a DFD where there is a process with alternative outputs, for example:
a figure 1.2.2
@ a process with alternative outputs
r

El

i~
AN

the CCS input format for this partial process is
EO0O=a.’r.E0

El=r"sEl +r’v.El

E2= s’uE2

E3 =u.v.’bE3 + v.u.'bE3
P1=(EO|El|E2|E3)\ {r,;su,v}

where at E1, s and v are alternatives for the output from E1. At E3 both u and v are

required for the process E3 to procced to output b.

It can be seen that the formal CCS notation is a powertul means of expressing both the

static and dynamic aspect of a process

For simulation the command sequence looks as follows.
Command: sim
Agent: Pl
Simulated agent: Pl
Transitions:
I:-—-a > (‘r.E0| E1 | E2| E3)\ {r,5,u,v}
Sim> |
c—— >
Simulated agent: (‘r.EO|E1 | E2|E3)\ {r,5,u,v}
Transitions:
l; -=- t<r>--- > (EO | ‘s.E1 | E2 | E3) \{r,s,u,v}
2: --=t<r> --- > (E0 | “v.E1 | E2 | E3) \{r,s,u,v}

which means for the given input a to process EO the only possible output is r. EQ is the
potentially active process and the others El, E2 and E3 and presently idle. If the user
selects this input by typing choice 1 the next available steps in the transitions are shown.
Here there is a choice of alternative steps numbered 1 and 2. The notation t<r> indicates

that the transition is an internal 1- transition [BUTLI5b].

The following example output shows the power of the tool in running a simulation which
finally gives a deadlock situation and its ablity then to reproduce the history of the

conditions leading to the deadlock
Simulated agent: (EO | 'v.E1 | E2 | u.'b.E3)\{r,s,u,v}
Transitions:

I —--a--->(r.EO|'v.E1 | E2 | u'b.E3)\{r,s,u,v}

Sim> 1

“—— G >

Simulated agent: ('r.E0 |'v.El | E2 | u.'b.E3)\{r,s,u,v}
Transitions:

** Deadlocked. **

Sim> history
0: Eq43 -—-a--->
1: (r.EO | E1 | E2 | E3)\{r,5,u,v} === t<r>--->
2: (EO|'v.E1| E2 | E3\{r,5,u,v} --- a --->
3: ('r.E0 | 'v.E1 | E2 | E3)\\{r,5,u,V} --- t<v> --->
4: (r.E0| E1|E2 | u.'b.E3)\{r,5,u,v} --- t<r> --->
5: (E0O|'v.E1|E2 |u.'b.E3)\{r,s,u,v} ~~- 2 --->

6: (‘rE0|'v.El1 | E2 | u'b.E3)\{r,s,u,v}

Other analyses can be performed such as exploring the size of a process and testing its
equivalence to another process. For equality of processes the output can be obtained in

modal calculus form:

Command: dfobs Buff3
Agent: Eq4l
Identifier: 1d2

false

Command: ppi Id2

proposition 1d2 = <<a>> [[a]] [{a]] [[a}] F

This requires interpretation by the experienced user.

1.3 The II-DFD Project

Data flow diagrams have been in use for many years as a tool in software development and
a need was identified to be able to re-engineer them when legacy systems would be
required to be updated. The structured analysts approach including the use of DFDs as a
part of it has been found to be very useful because it is modular, graphic, top-down and
implementation independent. It is for this reason it was considered that DFDs were worthy
of further study and should be included in methods for re-engineering legacy systems The

I1-DFD project was initiated at Concordia University [BUTL95a] and [BUTL95b] to

tackle this problem CWB would be a useful tool for analysis of these DFDs but as could
been seen in the previous section, the user interface and CCS notation is not very user
friendly. A tuple notation was devised to describe the DFD processes and dataflows and
their relationships and there was the possibility that some of the information could be

obtained by electronic scanning of paper documents.

An example of the tuple format is:

0. (SOURCE_TERMINATOR T1 ((P1,a)))
(SOURCE_TERMINATOR T2 ((P1,b)))
(PROCESS P1 0 ((T3,c), (T4,D)))
(SINK_TERMINATOR T3)
(SINK_TERMINATOR T4)

(Also see Appendix A)

This describes a top level process with four external processes T1, T2, T3 and T4, one
internal P1 with inputs a and b to P1 from the sources T1 and T2 respectively and outputs
¢ and d from P1 to the sinks T3 and T4. Further levels of process refinement could be
defined During the course of the project a translator was written which would transform
the tuple format into CWB notation. Before the graphic interface was implemented, the
tuple representation lacked positioning information required to represent the diagram

graphically but it was felt that this could be supplied by a scanner at some future date.

1.4 The II-DFD Graphic Interface
1.4.1 The need for an improved interface.

The purpose of this Master of Computer Science project was to provide a graphic
interface to the I1-DFD system so that diagrams in tuple format could be displayed in
graphic form and simulations could be performed via CWB and displayed dynamically

The existing interface was not user friendly and had room for improvement

The CWB process was currently installed on the UNIX system and communication
routines had already been set up between the translator and CWB It was decided
therefore to implement a graphic interface on Sun workstations under UNIX and X-
windows using the ET-++ Development Environment for C++ [WEIN89]. The ET system
provided a standard window for the interface and some built-in features such as casy
specification of menu options and capture of mouse input Applications developed under
ET would have built-in flow of control and event behavior: any pre-defined behavior could
however be redefined through specialization by the user. The application developed would

be in the Model-View-Controller model of object-oriented design.

1.4.2 The breakdown of roles

It was decided that as this was a joint project with Alison Greig there would be a broad

split in the interface roles into two aspects:

1. Interpretation of the tuple representation into the display of the diagram
graphics, an improved means of input of instructions to CWB and more easily

comprehensible output with dynamic display of the simulation process

10

2 The communication between the interface and CWB and the internal

maintenance of the status of the processes and actions

1.4.3 My Individual Role

More precisely my role in the: project was as follows:

The tuple representation was to be changed to allow £t positioning
information from the layout of the diagram. The notation would change from,

for example.

(SOURCE_TERMINATOR T1 ((P1,a)))

to

(SOURCE_TERMINATOR T1 ((P1,a)) (100,120))

where (100,120) was the coordinate position of the source process T1.

I made the appropriate amendments to the existing translator to allow for this.

I also changed the translator to produce an intermediate file which could be
more easily interpreted into the graphic diagram representation. This meant
that the translator could be run once to produce a file in suitable format for the
interface to interpret as output and simultaneously produce a file in CWB

format which represented the diagram. (See Appendix A).

The existing translator only dealt with one particular tuple file so it had to be

generalized to allow input from any tuple file.

1

For the graphic interface, 1 interpreted the intermediate file from the translatos
into the diagram graphic format, providing different graphic representation for
terminator and internal processes and for the actions between processes |
provided a variety of graphic highlight modes for different statuses of the
processes and for the action lines as they would change during running of the

simulation process.

Because this was a windows application, I had to decide what information was
required to be stored in order to be able to redraw the current status of the

diagram so that it was consistent and up-to-date

As the positions of the action lines are not specified in the tuple format these
had to calculated based on the process positions Appropriate arrow positions

for the leading endpoint also had to be calculated.

I specified how the simulation output was to be interpreted (Appendix B) and
which functions would be required by the graphic part of the interface to be

able to redraw the diagram’s current status after a simulation step.

I intercepted and interpreted the mouse input for pursuing the simulation to its
next step, communicating this to the ET system using its command system
Both user control of the path step by step through the simulation as well as

random selection of the path by the system was implemented.

9

The specification in section 2 was produced jointly. | wiote the initial
specification and Alison Greig enlarged it with a lot of the details on the CWB
commands | made further amendments to unify the style and to include the
graphic notation for displayed diagrams. For section 3, I drew the global event
diagrams, the architectural diagrams and the class diagrams for the user
interface. I also wrote the detailed class definitions for the user interface
classes Sections 1 and 4 and the appendices, glossary etc. were produced by

myself

13

2 Specification for the [FDFD Graphic Interface

2.1 Purpose

The primary aim of the I1-DFD project is to develop software tools for re-engineering
dataflow diagrams of legacy systems. A dataflow (DFD) diagram can be expressed in a
tuple representation which represents the diagramin a textual format During the course
of the project a translator program was developed which would translate the tuple format
into the CCS form recognizable by the Edinburgh Concurrency Workbench (CWB). Using

the workbench the diagram can then be analyzed.

Using CWB, it is possible to explore DFDs from legacy systems before re-engineering the
CWB tool can be used to examine various aspects of internal states of the dataflow
diagram, compare and contrast diagrams, and it can be used to run simulations on the
diagram interactively. Initially, there was a textual interface to CWB: it exposed the user
to the CCS form of diagram representation, CWB's own notation for state representation
and modal calculus, none of which are user friendly. A graphic interface would make the
CWB facilities more accessible by shielding the user from CWB notation and by providing
a visual interpretation of the results. It was decided to display the diagrams in the

Yourdon standard notation.

14

2.2 Development Environment: ET++3.0

ET++3 O(Editor Tool kit) is a framework for building interactive applications which edit
and display documents which may contain text, diagrams and graphic entities. The
resulting application has a look and feel consistent with other ET applications and contains
some standard features. Support for collection classes, iterators, text classes and graphic
interface objects is provided. Development and debugging aids in the form of class

browsers and inspectors are also provided.

The graphic interface will be developed in C++ in the ET environment running under X-
windows on SUN workstations connected to the UNIX system of the Department of

Computer Science, Concordia University.

2.3 Facilities provided by ET++ for its user

applications

The ET framework provides as default a window to the application with a menu bar
containing print, load, save, quit, cut/copy/paste and undo/redo commands. These menus
and additional menus can be added as required by the application. ET provides the
window environment required for the T-DFD system with a lot of default control

behavior defined.

15

2.4 The I'-D~D graphic interface

2.4.1 Menus provided

File New / Open / Load / SaveAs/ Close / Print / Quit

Edit none

States Size / Deadlock State

Equivalence Check DFD Processes Equivalence

Simulation Start / Select Next Step / Nb Steps for Random Transition /

Select Previous / Quit Simulation

2.4.2 Functionality provided

A graphical representation of the DFD file is to be displayed in the main window when a
file is loaded. In the first stage, an additional simulation menu would be provided to allow
the user to interactively control a simulation while the diagram would be updated
continuously to represent the current state. This will be achieved by interpreting the uscr
mouse input, communicating with CWB and reinterpreting the resulting textual output
into the appropriate graphical form. It was decided for this project to represent only flat

DFDs i.e. those not decomposed into two or more levels.

16

2.5 File facilities

All the file facilities are to be accessed through the File menu selection. There are several
File options available in the ET system namely, New, Open, Load, Saveds, Close, Print
and Quit. The options Open, Saveds, Close and Print have been left with the default
behavior of ET. For the purposes of this project the file option Load is used to load the
diagram and Quif to close the application. Initially the system opens with a blank window

and the user is free to choose available menu options.

2.5.1 File naming convention

There are two files required tc use the diagram display and simulation facility. They are as

follows for a translated .TPL file:

0: ((SOURCE_TERMINATOR TI ((EO,a)) 150 50)
(PROCESS EO0 1 ((E1,r)) 150 130)
(PROCESS El 2 ((E2,s),(E3,v)) 150 210)
(PROCESS E2 3 ((E3,u)) 80 250)
(PROCESS E3 4 ((T2,b)) 150 290)

(SINK_TERMINATOR T2 170 370))

17

The corresponding translator output gives <filename> TAB
T11015050E0a

EOOOISOI130ElTr

E100150210E2sE3 v

E20080250E3 u

E300150290T2b

T210170370

This coded format represents the DFD process names, whether the nodes are terminal or
internal, their activity, and the node position on the diagram. It also has pairs consisting of
a successive process name and the connecting action name e.g. in line 1 of the above,
process T1 is a terminal node, initially inactive, and positioned at point (150,50). It has a

successor node EO which is connected to T1 by action a.

The translator also outputs <filename>.CWB which contains the diagram representation in
CCS form which is suitable for the CWB analytical engine. For the previous examples the

equivalent .CWB file would contain:
bi DFD (T1|EO|E1|E2|E3|T2)\{r,s, v, u}
bi Tl input.'a.TI
bi EO a.'r. EO
bi El r.'s.El1 +r.'v.El
bi E2 s.'u.E2

13

bt E3 v 'b E3 +u b E3
bi T2 b . 'output T2

For each DFD to be displayed, analyzed and simulated there should be one of each of the
.TAB and CWB files with corresponding filenames. Any errors in the .7PL file will be

intercepted by the translator. It is assumed therefore that the .CWB and .TAB file formats

are generated correctly by the translator.

2.5.2 File/New

Opens a new application window with a unique title.

2.5.3 File/Open

This option opens a file which has been saved in the ET output format. It is not used for

our purposes.

2.5.4 File/Load

This option is used to load and display the diagram to be generated from the two files
<filename>.TAB and <filename>.CWB. When Load is selected a popup window gives the
user a chance to enter a filename which should be a .CWB file. The system will
automatically find the corresponding . TAB file, interpret it and display the diagram. At the

same time the .CWB file name is passed to the CWB engine.

19

2.5.4.1 DFD File already loaded

If there is already a DFD file diagram displayed when File Load is chosen then the current
diagram will be overwritten by the user’s new choice of file and the new file loaded into
CWB.

2.5.4.2 CWB Command Interpretation

The CWB command that defines the DFD to be drawn is:
clear

if CWB_File

2.5.5 File/Close

This has the ET default behavior. All files asscciated with DFD that were previously open

are closed and the application terminates.

2.5.6 File/Save
This option is dimmed for the first version of I'-DFD system.

If the future enhancement of on-screen diagram editing is incorporated, the facility would

become available.

2.5.7 File/SaveAs

This option saves the current contents of the window as defined by the default behavior.

20

2.5.8 File/Print

This option is not used in the first version of [I-DFD system.

2.5.9 File/Quit

This facility allows the user to exit from the IT-DFD System. The process and the CWB

process which was opened in association to it is closed.

2.5.9.1 CWB Command Input

CWB command: clear

2.6 State checking facilities

The state checking facilities are only available when a diagram is loaded, otherwise they

are dimmed.

2.6.1 States/Size

Size information for the DFD is shown in a popup window.

2,6.1.1 CWB Command Interpretation

CWB Command. size agent

2.6.1.2 CWB output format

CWB Output is of format

agent has N states.

and is displayed in a popup window

2.6.2 States/Deadlock State

For the currently loaded DFD possible deadlock states are obtained from CWB and the
results shown in a popup window. Deadlock condition is reached when no more
observable actions can be performed.

2.6.2.1 Deadlock Input

There is no input since the whole DFD, or the main process of the DFD, is considered for
its deadlock state.

2.6.2.2 Deadlock Output

A DFD may have no deadlock states, or it may have one or more deadlock states These

two cases are displayed to the user in a popup window.
2.6.2.2.1 No deadlock
A popup window indicates that the DFD has no deadlock state.

2.6.2.2.2 A number of Deadlock states exist

A scrollable list is displayed listing the sequence of observable transition steps that took

place resulting in deadlock state.

2.6.2.3 CWB Command Interpretation
CWB Command fdobs Buff_ and

CWB Output will be displayed in popup window:

(‘r.E0 | 's.E1 | "w.E2 | v.'b.E3)\{r,s,u,v}

('‘*x.E0O | 'v.E1 | E2 | u.'b.E3)\{r,s,u,v}
- there are two deadlock states,
- there are two sequences of observable fransition steps made to get to the two
deadlock states and are represented by:

=== g a a ===
- there are two Statelnformations, they are given in the data delimited by () :

(‘'r.EO | 's.E1 | '"u.E2 | v.'b.E3)

(‘'r.E0 | 'v.E1 | E2 | u.'b.E3)

The DFD is updated using the conventions of State/nformation in Section 2.8.2 5.

2.7 Equivalence checking

The state checking facilities are only available when a diagram is loaded, otherwise they

are dimmed.

2.71 Equivalence/Check DFD Processes Equivalence

For any process currently loaded their equivalence can be checked via a menu command
and the results shown in a popup window. This will check if two processes are
semantically or observationally equivalent. This command prompts the user for another
process name. Its equivalence is checked against the main process of the loaded diagram

to determine if they are semantically equivalent.

Note that there is currently only one *.CWB file loaded into IT-DFD system at a time and

Section 2.10.4 describes a useful enhancement for this option.

2711 Input

The mechanism for selecting the process name for equivalence is by popup window where
the user can type the process name in a dialogue box.

2.71.2 Output

A popup window indicates whether the two processes are equivalent or not If the
processes are not equivalent, it also displays the weak modality HML formula

distinguishing between the two processes [MOLL 92, p. 19].

2713 CWB command Interpretation
The CWB command that checks for observational equivalence is.
CWB command is dfobs Processl Process2 NotEquivalentId

If the two processes are not equivalent, then the weak modality HML formula

distinguishing between the two processes is determined with:

CWB command: ppi NotEquivalentId

2.8 Simulation

2.8.1 Simulation control

In simulation mode the user is to control the simulation through mouse input and to
observe the results of any simulation step through dynamic alterations in the graphical
output. Additional simulation facilities for multiple random steps and for displaying the
simulation history are provided. The simulation process is taken to be the principal

process of the currently loaded DFD.

For mouse driven input of simulation commands, mouse input is to be directly on the
action lines immediately preceding and succeeding a potential process to select the next
step. If random selection of the next step is desired the user is to input directly onto the
potential process. Potential processes and actions as well as active processes will be

highlighted as shown in Section 2.9.

Before a simulation session is activated by menu selection, only the Starr option is shown
on the menu. Once the simulation has commenced, the Starr option is dimmed and the
remaining simulation menu options bolded. For this implementation, all options not

related to simulation are also dimmed.

2.8.2 CWB Command Interpretation for simulation

2.8.2.1 CWB input

Once a DFD has been selected, the CWB simulation process in CWB needs to be started.

The following example explains how this is to be done:

EO = a.'r.EO
El = r.'s.E1l + r.'v.E1
E2 = s.'u.E2

E3 = u.v.'b.E3 + v.u.'b.E3

BuffAnd = (E0O { E1 | E2 | E3)\{r,s,u,v}
CWB command: sim BuffAnd isused.

BuffAnd is defined as the main process in the CWB file and simulation will only be

allowable on the main process.

2.8.2.2 CWB Output

The format of the CWB output from sim command is:

Simulated agent: BuffAnd

26

Transitions:

1: --- a ---> ('r.E0 | E1 | E2 | E3)\{r,s,u,v}

There may be several transitions lines output from the sim command.

2.8.2.3 Interpreting Potential Action
The potential actions are extracted with the following interpretation of the CWB output:

“Simulated agent:” is the current state of the DFD, in this case the DFD is

initially and Buf fAnd is equivalentto (EO | E1 | E2 | E3)\{r,s,u,v}.

“rransitions:” indicates that all the remaining lines of the output are possible

transitions. They are interpreted as potential actions with definitions as follows:
- each transition line has an ActionNumber, the first item on the line before : ,

- each transition line has an InputActionl.abel which is contained between -[space] and
[space]- for observable actions or between brackets <> for unobservable actions,

- QutputActionLabel can be found within the state information in brackets() following
the >. For process EO, the state is represented as *‘r.E0. Since the state of process
EO would change from the current idle status of EO, the action 'r is the
OutputActionLabel. Note that if the state of a process has not changed, then the
process is simply activated and some more input is pending before the output actions
become potential actions,

- PotentialProcessLabel is defined as the process associated with QuiputActionLabel.

This is the process that will be affected if the InputActionLabel is selected,

- a single PotentialAction consists of these elements (ActionNumber,
InputdctionLabel, PotentialProcessLabel, Quiputdctionl.abel). 1n this example, the

set of PotentialActionsis { (1, a, EO, r)},

- each data flow diagram object in the potential action has a porential status there is a

pair of potential input/output actions and a potential process.

2.8.2.4 Displaying Potential Actions

Each potential process, potential input and output action is displayed on the DFD using

the conventions for potentia! processes and actions described in Section 2.9.3.

2.8.2.5 Interpreting Process Status
Each idle or activate Process is displayed on the DFD using the conventions described in
Section 2.9.3.

- each transition line has State/nformation for the process which is contained between

(and) ; in this example, the StateInformation is;
(‘r.EO | E1 | E2 | E3)

- the Statelnformation contains the ProcessState for each process in the DFD and
which are separated by | ; in this example, the process states are: 'r.E0 , E1 ,

E2 , E3

- from the ProcessState it is possible to determine the status of the process’

- any process in a ProcessState that has only the process name has an id/e status

in this example, the idle processes are E1, E2 and E3;

- any ProcessState that has more than the process name has an active status: in

this example, the active process is EO

2.8.2.6 Single Step through a DFD

A Single Step through a DFD means a single transition on an action: it is sent from one
process and received by the connected receiving process. The next potential steps are all
the possibilities for a single transition on the DFD, given the current state of the DFD. The
DFD wiil use conventions described in Section 2.9. Notably, the next potential steps are
identified on the DFD by highlighting of the potential input and output actions from a
similarly highlighted potential process. The next potential step can be input using the
mouse by first clicking on the potential input action then clicking on the potential output
action. Where the next step is to be randomly chosen by the system the user clicks directly

on the potential process. The user can also choose the next step via the menu if desired.

2.8.2.6.1 Interpretation for a single step

Once the potential action has been selected, the DFD goes through the transition by

activating the potential action. Here is the description of CWB command that does this.
CWB command: ActionNumber

Each potential action has an ActionNumber as described in Section 2.8.2.3.

2.8.2.6.2 Interpretation for a Random Single Step

For a random choice of a single step, the user will mouse click on the transmitting process

and an action number will be randomly selected from those available.

CWB command: ActionNumber

Note: CWB random command cannot be used in this case because it randoemly selects any
potential action within the data flow diagram and does not necessarily select a potential

action that affects the process that the user has selected.

28.3 Interpretation of CWB Output

After selecting the action, the DFD is updated according to the new status of the
processes This new state will result in a new set of potential actions, only the potential
actions will be displayed as such. For a user selected next step and a randomly selected

next step, these have the same CWB Command Qutput,

2.8.3.1 CWB command output interpretation

CWB command output is;

-—=a -~=>
Simulated sgent:
('r.E0 | E1 | E2 | E3)\(r,8,u,Vv}
Transitions:
1: == t<r> ---> (EO | 's.E1 | E2 | E3)\{r,s8,u,Vv]}

2: --— t<r> ---> (EO0 | 'Vv.El1 | E2 | E3)\{r,s,u,Vv)

30

Where

- the TransiionStep made to get 1o state Simulated agent is represented by —--
a ~--->

- the Statelnformation is given in the data after Simulated agent: and delimited
by ()is('r.EO | E1 | E2 | E3)

- the set of next PotentialActions is defined in Section 2.8.23 andis { (1, r, E1,

s), (2, r, E1, v)}

The DFD is updated using the conventions in Section 2.8 2 4 and Section 2.8.2.5, using

the StateInformation and the set of PotentialActions.

CWB uniquely identifies each potential action by the ActionNumber. In the simulation,

each potential action is uniquely identified by the pair of input and output actions.

2.8.4 Simulation/Nb Steps for Random Transition

On user choice of the menu option Simulation/Nb Steps for Random Transition followed
by input of the number of steps required, the T1-DFD system will automatically make a
number (Nb) of transition steps through the DFD. Each transition step, however, will be
randomly selected. The resulting state of the DFD after these Nb transitions, and the
potential actions from the resulting state is displayed in a popup window showing the
CWB text output. The random mode of activation from the menu is the only means of

making more than one transition step.

31

2.8.4.1 CWB command interpretation

Once the potential action has been selected, the DFD goes through the Nb transitions by

use of the command:
CWB command: random Nb

where Nb is the number of transitions.

2.84.2 CWB Command Output

As an example, using random 2, the CWB command output is:

--- a --=>
——— tLr> —=>

Simulation complete.

Simulated agent:

(EO | 's.E1 | E2 | E3)\{(r,s,u,v}

Transitions:
1: --- t<s> ---> (EO | E1 | 'u.E2 | E3)\{(r,s,u,v}
2: --— a ---> ('r.EO | 's.E1 |E2 | E3)\{r,s,u,v}

Where:

- the 2 TransitionSteps made to get to state Simulated agent are represented by:
--—- a --->

——— t<r> —-->

- the current State/nformation is given in the data after Simulated agent: and
delimited by () is (EO | 's.E1 | E2 | E3)
- the set of next potential actions is defined by Section 2.8.2.3 and is.

{(1, s, E2, u), (2, a, EO, r)}

2.8.5 Simulation/Select Previous

This menu input allows the user to determine what transition steps have previously taken
place in the current simulation session and for these steps to be displayed in text form in a

scrollable popup window.

The user can select one of these DFD status and the DFD will return to, and be displayed

in, the selected status.

2.8.5.1 CWB command input

There are two commands used for this option. The first command displays the possible

DFD status. The second command returns to the selected DFD status.
CWB command: history

CWB command: return ItemNb

28.5.2 CWB Command Output

The output from CWB is a list of transition steps that have taken place in the simulation

session.

Continuing with the example, the CWB command output is:

33

0: Buff and --- a --->
1: ('r.E0 JE1 |E2 |E3)\{r,s,u,v} -—= t<r> -=->

2: (EO |'s.E1 |E2 |E3)\{(r,s,u,v}

This information is displayed in a scrollable window.

return ItemNb is performed for selected ItemNbs 0, 1 or 2

2.8.6 Simulation/Quit Simulation

Quits the simulation session and the data flow diagram returns to an idle state with all

processes and action lines displayed as inactive.
CWB Command: quit

2.9 Graphic Display Conventions

These are the conventions used to display the status of the different types of processes and
actions in the DFD diagram. The graphical display uses the Yourdon Standard Method of

displaying the objects in the DFD.

34

2.9.1 Process display status
There are three different conventions for graphic display of the status of processes which
may be internal processes or source/sink term: .ators’

- potential a process with a potential status has a pair of potential input/output

actions associated with it (see Section 2.8.2.3).

- active: a process with an active status has at least one active input or output

action associated with it, but no potential actions.

- idle: a process with an idle status has no active, or potential, input or output

action associated with it as described in Section 2.8.2.5.

2.9.2 Action display status

Conventions for graphic display of actions:

- potential: a potential action is an action that is a member of a pair of potential

input/output actions within the data flow diagram (see Section 2.8.2.3).

- idle: an idle action is an action that is not potential.

35

2.9.3 Graphic display conventions

2.9.3.1 Processes

Conventions for processes:

idle active

terminal

potential

ole

2.9.3.2 Actions

Conventions for action lines:

idle potential

s —

36

2.10 Future Enhancements

There are many features that could be added and should be considered as possible

extensions to the product in the future.

2.10.1 Multiple levels of decomposition

Diagrams with multiple levels of hierarchical decomposition could be handled.

2.10.1.1 Input

2.10.1.1.1 Menu Input

An input mechanism would be provided to identify the level of refinement for either an

individual process or for the entire data flow diagram.

Providing the option of defining the level of refinement for an individual process makes it
possible to display the process at a different level of refinement from the rest of the data
flow diagram. For example, if Process] has up to three levels of refinement while

Process2 has none, the user could display the lowust level of refinement for all processes.

2.10.1.1.2 Mouse Input

Mouse click on the process that requires display of refinement one level lower than current

level of refinement.

37

2.10.1.2 Output

A new window is opened displaying the DFD of the specitied process at the required

refinement level

All the facilities (menu options) need to be available since normally level O is not very

interesting and we need to do queries on lower level processes

2.10.1.23 Error

If the user clicks on a process that does not have a refinement, an error window could

appear indicating that there is no more refinements for this process

2.10.1.4 Closing a refinement

A refinement is closed by closing the DFD window.

2.10.1.5 Further considerations

Here are some other considerations that have to be taken into account for this option.
- how feasible is it to do a simulation on a parent DFD,

- should changing the refinement level be provided while in simulation mode, and if so,

determine how to inform the CWB of the additional information,

- the coordinates for a process within a window is currently defined in the tuple
representation of the data flow diagram, in order to display a process in different

refinement levels, the mechanism for determining the coordinates has to be modified

38

2.10.1.6 Display of hierarchical levels using multiple windows

There could be display of different levels of DFD using multiple windows with CWB
interpreting each process at the lowest level. In order to display a window with a higher

level DFD (level 0, for example), it is necessary to give CWB only the processes in level 0.

There is an example in [BUTL.95A, Figure 3] this shows two different decompositions
of a system where in the second, Dis at level 1 with no refinement. It would be possible to
display only level I in a window and allow simulation only of Q11 and Q12 at level 1 by
not giving CWB information about the decomposition of Q11 and Q12. Similarly, if we
wanted to display level 2, we could display level 2 in a separate windows by giving CWB
information level 2 data defining Q11. However, this mechanism does not link all the
processes together. If wanted to display level 2, the current mechanism for defining

process using CCS would make CWB "think" that process1_11is at level 2.

2.10.2 Simulate a subset of DFD

A facility could be added to simulate only part of a DFD by allowing textual input of the

subprocess to be simulated.

2.10.3 Derivation Commands

A separate menu for derivation commands such as to display observable actions/processes

reachable, transitions from that process etc.

39

2.10.4 Comparison between two or more data flow diagrams

Equality comparisons and ditferentiation between the main processes of different DFDs
This facility requires that the system have separate labels for the display and for CWB
commands. This is because CWB redefines a process, if it is defined, cvery time there is a

statement with the same process label.

2.70.5 On-screen diagram editing
It would be possible to allow the user to reposition the processes of the DFD.

There are many implications to the [I-DFD system. With this extension, it is necessary to

add the following functionality-

add the editing facilities: add all types of items needed in DFD, move, copy;,

- read the tuple representation data from the diagram; this information can be used by
the translator to generate CWB code and CCS equations;

- (File/Save) facility would have to save the new precess data and its position, as well
as the state of the processes;

- (File/Close) would have to verify if the position of any objects in the DFD has

changed. If there are any changes to the data flow diagram, need to add DFD has

changed dialogue and allow the user to save the changes as in (File/Save) before

closing the file.

40

2.10.6 Different DFD standards

It would be possible to give the user the flexibility of using different data flow diagram
standard notations such as.

- DeMarco's

- Yourdon Structured Method

- Sommerville's

- Rumbaugh

- Ghezzi

2.11 The look of the interface

The typical window interface would has a decorated window and pull-down menus.

Figure2.11.1 shows the States pull down menu activated with a display of the DFD in an

idle status (all processes are idle).

Figure 2.11.2 shows the DFD after potential actions have been selected. The processes
and actions are displayed with the conventions in Section 2.9.3. An example of an active
process is £0. There are two potential actions associated with the potential process £/

they both have potential input action » with either potential output s or v. The potential

numbers are not needed nor displayed on the data flow diagram.

41

Figure 2.11.1 The IN-DFD Graphic Interface with an idle diagram

5 o | 0
’ Equivalence Simuation Potential Actions Help
Size m
Deadlock State
1L

Ol

et et s St -

42

Figure 2.11.2 The [1-DFD Graphic Interface during a simulation

ISy it fere 0 @
Fle Edit States Equivaience JEEEBME Potential Actions Help
Start m
Select Next Step '
i) Nb Steps for Random Transition

Select Previous
Stop Simulation

&= B

43

3. Design

3.7 Overview

The DFD Application has been divided into two major components: the User lnterface
and the CWB Interface. Each of these are described at a high level in sections 3.1.3
[Class Diagrams:User Interface] and in section 3.1 4 [Class Diagrams:Cwb Interface].
All the classes are described in detail in sections 3.2 [Design: User Interface] and 3.3

[Design: Cwb Interface].

3.1.1 Global Event Diagrams

Figure 3.1.1.1 shows the interactions between the user and the principal agents of the

system, specifically between the user, the ET window, the translator, the DFD

application, the CWB process and the file systerm. A top level of interaction is shown.

44

Figure 3.1.1.1 GLOBAL EVENT DIAGRAM (1)

shows the top

level of data
communications USER
decorated mouse .cwb filename
window input
ET WINDGCW
menu fext mopse input .cwh filename Ayl filename
diagram
DFD APPLICATION
i
.cwb file narLle ¢wb
.tab fllename commandy
cwb
tab file text output
N wb filename N\
FILE CWB UNIX DFD
SYSTEM |.cwb file teX{ PROCESS TRANSLATOR
ab text file
.cwb text file
.tpl file name

Apl tile text

45

The following diagram shows more detailed events between the user, the ET window and
the two parts of the DFD Application (the DFD User interface and the DFD CWB

interface):

46

S

shows more detailed

. events

USER

_Figure 3.1.1.2 GLOBAL EVENT DIAGRAM(2)

DEDI

SER INTERFACE SUBSYSTEM

ET WINDOW mousé, input mouse|input
TITLE MENU VIEW
BAR BAR AREA
moyse input graphic
heuu menj dipgram
jelection oxSlT(J)ns
DFD APPLIGATION SUBSYSTEM
DFD DFD VIEW DIAGRAM
DOCUMENT COMM.
7~ PROCESS LINE N
SHAPE SHAPE
T . activates
eeteteas eeteeuetetauen eseosotnoasaaneneaianttasa st s noant s oaneasneenen ST

gets diagfam | updates
statys .
N
DFD | creates
MAP

DFD CWB INTERFACE SUBSYSTEM

................................ DO
Ny

. CWB SIMULATION

COMMANDS COMMANDS

47

3.1.2 General Architecture

The following diagram shows the system topology i.c. the interdependence of the main

subsystems and their hierarchical relationship:

48

Figure 3.1.2.1 TOP LEVEL ARCHITECTURE
shows the topology
of the system

.........

USER

X WINDOW SYSTEM

ET APPLICATION
SYSTEM

DFD APPLICATION K pipe | CWB UNIX
SYSTEM SYSTEM

49

The following diagram shows a further breakdown of the major subsystems and the tlow

of data between them:

50

User

Figure 3.1.2.2 ARCHITECTURE -- SUBSYSTEMS

X ET User Interface CWB Interface
stjtus
Dialog .cwhb Dialog DFD redpe DFD
window} | filename[| handler Document map
ot | statis -
ﬁions DFDView cre;alcs ‘
Title Menu \Y/ cfom}nandF
Bar mgnu | | Handler LnShapd | i CWB | ; Unix
sflection b phid Chbmmand§ | CWB
outpgt : :
10Use Positic PrShape exccute W
N / N |output
Menu Event Simulation
Arca Handlcr<_giagmm cpmmand conflrol Commands
diagram AV4
evdnt Diagram start
Commands
stop
Graphic display | Window DFDCommard
Arca Handler next
RANCommand random
previou%
I i<
Aab filena .tab file text
........................... File
i More subsystems which System

i make up the application |

.............

51

3.1.3 Class diagrams: User Interface

An overall class diagram is shown in the following diagram. It gives an overview of the

relationship between the document, the view and the application.

52

————< Application

VAN

DFDApplication

¢ 0

Document l .
View
DFDDocument DFDView

holds information for

The customized application inherits standard
default behaviour from the ET application
framework

Figure 3.1.3.1 Overview class diagram

53

The following class diagram shows how objects representing the processes and actions
(dprocess and aline) have Vobjects (which can appear in the view) associated to them.
The Lnshape and Prshape classes are based on a generic Shape object so are collected
into one sequence collection. This sequence collection is associated with the View and

the information contained in it is used to redraw the DFDView window.

Figure 3.1.3.2 Classes for generation and display of diagram shapes

] —
l DFDMap P——Q;DFDDocument < I DEDView l

l Sequllectionl | Sequllection] l Containor]
2+ 1+ L
C

~r dprocess I l aline v] | Sequllectloﬂ

represents represents

The document stores the information
r LnShape j required to display tho view

E—

Object |

PrShape] 2+
{

p—t—

l Shape J
The customized shapes derive from a

generic shape class. Shape derives from
a VObject which can be contained in the
View

| VObject J

54

The diagram command classes RANCommand and DFDCommand are based on the
generic ET Command class. If DoLeftButtonDownCommand is not defined in the View
class and is redefined in the view objects LnShape and PrShape, then the general
command mechanism is inherited for those shape classes. In this way, in order to make
the system respond to clicking on a shape, there has to be an associated user defined

command (RAN or DFD) which will be activated when there is a left mouse click on it.

Figure 3.1.3.3 Classes for the diagram commands

‘l DFDCommand I

rasults in

I i | RANCommand I
Command 1

rasults in

| on process shape |

1
I DolLeftButtonDownCommand | on potential input and output |-

r PrShape J l LnShape I

When the user mouse clicks on the diagram, the program responds differently depending

on where the interaction occurs.

In simulation mode, one click on a potential process gives random simulation: a click on

a potential input followed by one on a potential output gives the next simulation step.

55

3.1.4 Class Diagrams: Cws Interface

The CWB interface is divided into 5 different groups.

1) Communication with CWB process: CwbComm is a class that represents the CWB

process within the application and does the low level input/output to the CWB process.

2) Status of the DFD: ProcessStatus and DfdStatus are classes that represent the statuses
of the elements in the dataflow diagram. PotentialAction represents the actions that can
be made on the dataflow diagram while in simulation mode. This information is

displayed on the dataflow diagram and can be displayed in textual format to the user.

3) Interface: DFDMap is the class that provides the interface between the Cwb Objects

and the rest of the application.

4) Analysis Commands: CwbCommands are commands that arc used to analyze the DFD

without modifying the status of the DFD.

5) Modifying Commands: SimCommands are commands that are used to modify the

status of the DFD.

3.1.41 Communication with Cwb Process

This class is simple and provides input and output to the CWB process. It is held by
DFDMap (see section 3.1.4.2.1 DFDMap Class Aggregation). It’s functionality is

described in detail in section 3.3.1 Cwb Process.

3.1.4.2 Status of the Dfd

The status of the dataflow diagram is represented with these objects. The current or most

recent status includes the status of the processes and actions in the dataflow diagram.

36

UOREZI[eISUSD) SISSRID) SMEIS UreiSeiq MOLfeIRQ :['7'p°] '€ 9mSL]

uonIVRNU0G

smeisada

SNBSS0

aurjqa)

Y

wRNIXa g,

57

This is ProcessStatus. The status of all the elements in the dataflow diagram is stored in
DFDStatus. When a dataflow diagram is in simulation mode, it has potential actions,
represented with PotentialActions. These statuses are held by the DFDMap. The
relationship between the 3 status classes can be seen in figure 3.1.4.3.1: DFDMap Class

Aggregation.

To conform with the ET++ format, there are classes that inherit the Textltem class that is
used to display text. This can be seen in the figure 3.1.4.2.1: DataFlow Diagram Status

Classes Generalization.

3.1.4.3 Interface between Application and Cws

The DFDMap is the class that separates the Cwblnterface from the rest of the application
{figure 3.1.4.3.1: DFD Map Class Aggregation]. It starts the CwbProcess, it creates all
CwbCommands and SimCommands, it updates and holds the status information for the
DFD, and it tells the DFDDiagram that a change in status has occurred. (This can be seen

in figure 3.1.4.5.3: SimCommand Events).

The DFD Map holds the status information for the DFD diagram. It contains one current
DFDStatus which describes the status of each process in the DFD. It is generated cach
time there is a change made through a SimCommand. It also contains 0 or more Potential
Actions. A Potential Action has an inputAction, and outputAction and a processName.
Each Potential Action has the resulting DFDStatus. This is the next status if the potential
action is selected. These are also generated each time there is a change made through a

SimCommand.

58

o

uonoayindino, duing
sweNssasoxd, Suing
uonayindui, Suigg

Iaquiny

SUOIIV [BIIU)0

uone3a138y sse|) de qdd 11 2m3L]

ponsvandinc, uonseqopbeg
uonayndul, uonx[jonbag
. sweNssao0id Suing

SMIBISSSII0AY

|

&

STieISada

wwo)qa’)

9

SIUEISLEISL1S [00q

smmsusdpaly jooq
ssasoijurews Juing

depada

&

LTEL TR LT (4 (1

59

3.1.4.4 Commands that interact with Cwb Process

The CwbCommands a.e used by the following menu iteras: File/Load, States/Size,
States/Deadlock State, Equivalence/Check DFD Processes Equivalence. The
SimCommands are used by the following menu items: Simulation/Start, /Select Next
Step, /Nb Steps for Random Transition, /Select Previous, /Quit Simulation. The menu
items Select Next Step and Nb Steps for Random Transition can also be done by selecting

an item directly on the DFD diagram.

All of these commands have cimilar type of functionality: they are responsible for
sending the command to the CWB process and for receiving and interpreting the output
from the CWB process. The CwbCommand Class is the base class for the SimCommand.
The diagram [CwbCommand Classes Generalization] show all the commands that are
implemented. For each menu item described above, there is a corresponding class that is

instantiated to execute the ccommand. Only the leaves of th= class tree are instantiated.

CwbCommands is a group of classes that interact with the CWB process outside of the
simulation mode. These are the leaves subclasses of CwbCommand class: FileOpen,
Size, Equivalence and Deadlock. Each CwbCommand sends its command to the Cwb
Process and does minimal interpretation of the Cwb process output (some parsing and

translation) and displays a response to the user.

SimCommands is a group of classes that interact with the CWB process when in
simulation mode. These are the leaf subclasses of SimCommand class: Start, Stop, Next,

Previous, Random. Each SimCommand sends its command to the Cwb Process.

60

wopuey

uoneEzjEIINIG $IS5Y) pusunno) QM IPPIE g_m_l.—

suojANg

waN

Aojpesq

djmandy

Aquado

purmmo)qa)

I

puswwo)

I

33{q0

617

The interpretation for SimCommands is more complex and the Cwb process output is

used to generate the DFDStatus and PotentialActions of the DFD.

3.1.4.5 Command Events

In ET4+, the commands are first created when the uscr makes a request to the application
through either a menu item, or through the mouse by selecting on the display of the DFD
diagram. There are two types of low level commands: CwbCommands and
SimCommands. The figure 3.1.4.5.1: DFD Events: User Input shows how these two

types of commands are created.

Figure 3.1.4.5.2: CwbCommand Events describes the time (left to right) relationship and
the relationship between the objects used for a CwbCommand. The CwbCommand is
first created through the DFDMap [figure 3.1.4.5.1]. The CommandProcessor then sends
the message Dolt to the command. This CwbCommand is actually onc of the following
commands: Size, FileOpen, Deadlock or Equivalence. The CwbCommand uses the
instantiation of CwbComm to Send and Receive the command. The command places the

result in a CwbLine and displays this to the user in a dialog.

Figure 3.1.4.5.3 SimCommand Events describes a similar event pattern to CwbCommand
Events except that SimCommand has to update the status information. It docs this by

telling the DFDMap to Update the status.

62

induj sos) :s1URAY

puemmo)ung

pueuItIod puewruiod
mou Aew

depgaq

pURUILIO) puewwod
mau ayews

M3AAQAa

indur
asnow

'St 1°g am3iy

puBWIWO)UNS

puewuwo)qm)

pUBWIIO) ,_‘ \T.aEEou pueurod ,— \—vEEES

Mt Aewr Mu aDewr
depada
[}
puewwod pueurmos
Bo__,— oew
wLwnAGAd

pueunuo? indu

MAU nuaws

63

SIUQAY PUBUIIONAMD) :Z'S'H'['¢ amSLy

wuwo)qa;)

SAIIY ﬁ ﬂ puas

puewmo)qm)

1— Leydsig

Sofeig

A

110

10SS3201J pUuBWIUI0))

ﬁ

64

SIUOAY PURWIWODWIS :¢°6'p'] ¢ 2mBL]

wwo)qa)

..Euuou\— é puag

SUONIVIBNUI0Y smeISadq pusmuio)wig
A
dea1r) Aean) orepdny
depdaa
masmEu._wm_QoL, b&u_noxmso%a oqg
weideigadq 105533014 puemiuIo))

ﬁ

65

3.2 Design: User interface

The Document, the View, the Diagram Objects and Simulation Commands

This section describes the classes which relate to the display of the dataflow diagram
which is currently under consideration by the user. The classes enable the user to control

the analysis and simulation of the diagram using the CWB tool.

3.2.1 DFDDocument Class

The DFDDocument class holds and manipulates the data concerning the dataflow
diagram which will be displayed in the view. It also defines how the view window is to
be redrawn after a change in the status of the window contents. A further function of the
document is to define the menu options to be displayed, their status (whether bolded or
grayed available/not available for selection) and the appropriate actions to be taken when

an option is selected.

Superclass

Document

Attributes

char labl holds the label of the input action sclected by the user in a
simulation

char lab2 holds the label of the output action sclected by user in a
simulation

66

Private Methods

void EnableSimItems(Menu *m, bool b)

Enable/disable menu items m which are required in simulation mode depending on

boolean value b.

void EnableNoSimlItems(Menu *m, bool b)

Enable/disable menu items required in non simulation mode depending on boolean value

b.

void EnableNoSimEgltem(Menu *m, bool b)

Enable/disable equivalence menu item depending on boolean value.

Public methods

DFDDocument(void): Document(cDocTypeDFD)

DFDDocument constructor.

~DFDDocument(void) DFDDocument destructor.
DFDMap *Map(void) Returns the map.

VObject * DoMakeContent(void) Establishes the view position.
Menubar *DoMakeMenuBar(void) Setsup the main menu entries.

Menu *MakeMenu(int menuld)

Links submenu entries to main entries of menu menuld.

67

void DoSetupMenu(Menu* m)

Establishes which menu items will be bolded and which will appear as gray initially in
menu 2.

Command *DoMenuCommand(int)

Command defines the actions to be taken if a menu item is sclected when the option is
bolded.

bool DoWrite(OStream&s, Data *data)

Defines how information is written to the output stream if the file is saved to stream s.

bool DoRead(1Stream&s, Data *data)

Defines how data is read from an input stream s when a saved file is recalled.

void DoMakeDiagr(void)

From the initial information in the intermediate file with extension .tab, a collection of
process objects and a collection of action line objects is assembled and temporarily held
in the document. These are then used to collect together the process and line viewable

objects and to pass them to the view for storage and redrawing.

void DoRemakeDiagr(void)

This obtains the current statuses of the processes and actions from the map. The statuses
are saved and the information passed to the view so it can be redrawn to represent the

most recent state of the diagram..

A8

void DoSetStatus(OrdCollection* c, int j)

Matches each of the items in the OrdCollection ¢ to the Collection of shapes representing
the diagram: if they correspond it sets the status j which will be 0 if inactive, 1 if potential

or 2 if active for processes and 0 for inactive, | for potential for action lines.

void DoSetallStatus(bool)

Sets all process and action statuses to inactive.

int SetLab(Shape *sh)

Store a label name which the user indicates by clicking on an action line with the mouse
during simulation. When the user indicates the input action line the label name is stored

in labl : when the output action line is indicated the iabel name is stored in lab2.

void ResetLabs(void)

Nullifies the label names saved from last simulation input.

3.2.2 DFDView Class

The class DFDView provides a drawing surface to display the data structures of the
application. The view is empty initially and redrawn when a dataflow diagram is loaded
or changed. It also contains the methods for dispatch of events such as selection of an
object with the mouse which take place within the view window. Views are usually put

into either a clipper or a scroller in order to display only a reasonable area of the view.

Superclass

View

69

Attributes

int simflag a flag which indicates whether in simulation mode
int numproc the number of process shapes in the diagram
Public Methods

DFDView(Document* d, Point ext)

View constructor: setup a view related to document d at point exr.
~DFDView(void) View destructor.

Command *DispatchEvents(Point p, Token& t, Clipper* cl)

This method examines the input token t and dispatches an event which has taken place
within the view to the appropriate event handler. In this case selection of a shape at point
p with the left mouse button (defined for each of PrShape and LnShape classes) triggers
an event. For mouse events such as left and middle button depression the clipper ¢l

executes a mouse tracking command.

void SetShapes(SeqCollection *list)

Sets the shapes from the view’slist of shapes into the view’s container.

OStream &PrintOn(OStream & s)

Returns data to be saved on an output stream s.

IStream &ReadFrom(IStream& s)

Reads from input stream s and redisplays view.

70

void CollectParts(Collection *c)

Incorporates the view's list of shapes into a collectionc.

3.2.3 Classes for storage and presentation of shapes in the view

3.2.3.1 Shape Class

Defines a basic shape object which can appear in a view.

Superclass

VObject

71

Public Methods

Shape(Rectangle r)

Shape constructor: for a shape defined as drawn within a bounding box defined by the

Rectangle r.
Metric GetMinSize(void) Get minimum size.
void Draw(Rectangle) Not defined.
OStream &PrintOn(OStream& s) Sets output stream for save.
IStream &ReadFrom(IStream & s) Sets input stream for retrieve.

3.2.3.2 Aline Class

Stores an action line characteristics as known initially from its start and end process
information. Once this has been established the actual end points and arrow and label

positions can be calculated.

Superclass
Object
Public attributes

Point sp initially holds the centre point of the process at the start of the

action line, later the actual start point

Point ep holds the centre point of the process at the end of the action

line

72

Point nsp
Point al
Point a2
byte pn1[80]
byte pn2[80]

byte lab[80]

Shape

Public methods

void recalc(void)

relation to them.

Superclass

start point for line with allowance for process circle shape
end point of one part of arrow

end point of other part of arrow

name of process at start of line

name of process at end of line

action line label name

aline(byte pnl[], byte pn2[], byte lab[] . Point sp, Point ep)

Aline constructor: initialize pnl, pn2, lab, sp and ep.

Points nsp and ep are initially the centre points of the processes which are at the extreme
of the line. The method calculates nsp which is the actual line start point and recalculates
ep to be the actual end point. Using the line gradient, the end points of the arrow al and

a2 are calculated so the arrow will be positioned at the end point of the action line.

3.2.3.3 LnShape Class

This class defines the properties of an action line shape and how it should be drawn in

73

Privcte attributes

Point sp start of line

Point ep end of line

Foint al end of arrow line

Point a2 end of arrow line

byte lab[80] action line name

int st dra'v status (zero normally: set to one when line is potential

simulation action)

Methods

LnShape(Rectangle r, Point s, Point f, Point aal, Point aa2, byte Ib{], DFDView * v)

LnShape constructor: set up line characteristics within a bounding rectangle r within
view v; the start point sp is set to s, the end point ep to f, arrow endpoints to aal and aa2

and the name lab to 1b.

Command *DoLeftButtonDownCommand(Point p, Token t,int cl)

Defines what action is to be taken when there is a left mouse click on an action line in the
view window. If there is no DoL.eftButtonDownCommand defined already on the View or
DFDView class then this method will take effect if an LnShape object is selected. If the
location p is contained in the LnShape object then the event is passed to method
DispatchEvents in the DFDView and a user defined command (here DFDCommand)

returned for later execution by the document.

74

void SetStatus(int)

Sets the line status as defined above under attributes.

void Draw(Rectanglc r)

Defines how the line shape is to be drawn within its bounding rectangle r and according

to its current status,

3.2.3.4 DProcess Class

Holds temporary information about the processes in a diagram.

Superclass

Object

Attributes

int ttype process type: O for terminator, ! for non-terminal process
int tstatus status: 0 is inactive, 1 is potential, 2 is active

int tlevel process level in the diagram

Point cp centre point of process

byte tname[80] process name

byte tstate[80] process state information (for fuiwure use)

75

Method

Process(byte tn{], int I, int t, int st, int cx, int cy)

Process constructor: save the characteristics of the process with 1 as tlevel, t as ttype, s: as

tstatus and cx, cy as the Point ¢p.

3.2.3.5 PrShape Class

This class defines the characteristics of the process shape object and how it is to be

drawn in the view.

Superclass

VObject

Attributes

int ttype process type as in (dprocess class)
int tstatus status (as in dprocess)

byte tname[80] name

Public methods

PrShape(Rectangle r, byte tn[], int tt, int ts, DFDView * v)

PrShape constructor: establishe the initial characteristics of the process shape within
bounding rectangle r within view v; the attribute tname is set to tn, tstatus set to ts and

ttype set (o tt.

76

Command *DoLeftButtonDownCommand(Point p, Token t, int cl)

Defines the commard to be used if left mouse button is clicked on a process shape. If
there is no DoLeftButtonDownCommand defined already on the View or DFDView class
then this method will take effcct if a PrShape object is selected. If the location Point p is
contained in the PrShape object then the event is passed to method DispatchEvents in
DFDView and a user defined command (here RANCommand) returned for later

cxecution by the document.

void Draw(Rectangle r)

Defines how a process shape is to be drawn within its bounding rectangle r. The
appearance of the process shape is dependent on whether it is a terminal or internal

process and its current simulation status, inactive, active or potential.

3.2.4 Diagram Command Classes

There are two command classes associated with active simulation mode. If the user does a
mouse click on a potential input line followed by a mouse click on a potential output
action line then the user has made a specific choice for the next simulation step:
DFDCommand command is prompted to determine what is to be the next state of the
diagram. If the user clicks on a potential process during active simulation then the user
wants the system to make a random choice for the next simulation step: in this case the

RANCommand is prompted.

77

3.2.4.1 DFDCcmmand Class

This command is to be enacted when both a potential input and a potential output action
line has been selected by left clicking the mouse when in simulation mode. It means that

the user has made a specific choice for the next simulation step.

Superclass

Command

Attributes

DFDDocument* doc the current document

Shape *sh the selected shape

Methods

DFDCommand(int cno, const char* cn, DFDDocument* d, Shape* s):Command(cno, cn)
DFDCommand constructor: save the document and the selected shape; the user defined
command is given unique number (>= 1000) and a name using the parameters cno and con.
void Dolt(void)

Defines what is to occur when the user has made a specific selection for the next
simulation step by clicking on an input and an output potential action line in succession.
The names of the chosen action lines are transmitted to the map so that it can convey the

information to CWB and readjust its current state to the next step.

78

3.2.4.2 RANCommand Class

This command is to be enacted when the user has made a random selection for the choice

of the next simulation step. The user does this by depressing the left mouse button on a

potential (bolded) process.

Superclass

Command

Attributes

DFDDocument* doc the current document

Shape *sh the selected shape

Methods

RANCommand(int cno, char* cna, DFDDocument* d, Shape* s) : Command(cno, vn)
RANCommand constructor: save the document and the selected shape; the user defined
command is given unique number (>= 1000) and a name using the parameters cno and cn.
void Dolt(void)

Defincs what is to occur when the left mouse is clicked on a potential process shape
during simulation mode. The map is instructed to convey a random action to CWB and to

adjust its current state accordingly.

79

3.3 Design: Cws interface

Cws Commands, Potential Actions and Drp Status

This section describes all the objects that provide an interface to CWB process. They
have some knowledge about the CWB process. The CWB commands arc responsible fro
individual commands and know about the syntax of the commands for both the input and
output for their specific command. The DFD Status knows about the statues information
returned by CWB process and, understands the syntax of the CwB output for the status
lines. The Potential Actions know the syntax of the potential lines and can extract the
information from it. The DFD map provides the high level interface between all the

objects that interface with the CWB process.

3.3.1 Cws Process

There is one CWB process associated with each DFp Document.
The CWB process keeps track of
- what the DFD can do next in the simulation (all potential actions)
- past transitions (actions) that have occurred
The CWB process can change the simulation status of the D¥D by:
- going to a next DFD status through the sclection of a potential action
- going back to a previous DFD status

The objects in the DFD project present another view or representation of the information

contained in CWB process in the form of a DFD in action.

80

3.3.1.1 CwbComm Class

CwB communication is responsible for providing the interface between the CWB process

and the commands of the application.

It is responsible for starting the CWB process and for communicating with CWB process

by opening a bidirectional pipe. It has the handles to the input and output pipes of the

CwB pracess.

It sends the commands to CWB process and directly receives the output from CWB

process. It does not, however, have any knowledge about the semantics or contents of the

input or output, nor when the CWB process has finished one command and is ready to

receive another. For this reason, it does not control the receipt of the output and only

receives one character at a time.

It is instantiated for eacir DFD Document.

Superclass

None

Attributes

FILE *toCwb
FILE *fromCwb
int cwblIn([2]

int cwbOut[2]

bool needFlush

file handle for input ro CWB process

file handle for output from CWB process
Input pipe for bidirectional communication
Output pipe for bidirectional communication

indicates if need to flush the input pipe to CWB process when

receiving

Methods

CwbComm(void)

CwbComm constructor starts a CWB process and make it ready to send commands:
create the bidirectional communication, fork the CWB process, open the input and output
pipe, and fiush the output pipe.

~CwbComm(void)

CwbComm destructor stops the CWB process by sending the quit command.

void Send(const char *command)

Sends command to CWB process on input pipe; it does not know anything about the
syntax of the command.

char Receive(void)

Receives the CWB output (from CWB process), 1 char at a time on output pipe; it does not

know anything about the syntax of the output.

3.3.2 Cws Commands

This groups all the commands that affect the CwB process in the normal mode of

operation. These commands do not affect the status of the D¥Dn.

CwbCommand is the generic class and all the other CwB Commands inherit this class.
The subclass command classes has the method Dolt which always include 2 steps: send
message to CWB process and receive the output from CWB process. Most commands also

display some output to the user.

82

These commands are created by DFDMap and executed later by the CommandProcessor

with the method Dolt.

3.3.2.1 CwBCommand Class

This is the generic CWB command interface and it is never instantiated directly. It is the
only class that accesses CWB communication object directly. So, it provides an interface
between all the commands and the CwbComm object. All CWB commands inherit this

class.

It is responsible to receive the CWB output and put it into a format that can be used by the
DFD application. It knows about the general format of the CWB commands and does
some basic formatting in order to send the commands to the CWB process. It is
responsible for the low level formatting of the commands: it knows the delimiters of the

CwB output and parses the output by discarding end of command data.

Superclass

Command

Attributes

_cwb: handle to CWB process (communication object) for this
command

cwbLineList a list of all output lines from CWB process without the

discarded information

83

Methods

CwbCommand(CwbComm *cwb, const char *cmdName): Command(cmdName)
CwbCommand constructor saves the handle to the CwbComm object and initializes
CwbLineList. The cmdName is passed to Command.

~CwbCommand(void)

CwbCommand destructor deletes CwbLineList.

void Send(const char *command)

void Send(const char *command, const char *name)

void Send(int command)

void Send(const char *command, int nb)

Send the command to CWB process using CwbComm. Since it knows about the gencral
syntax of the commands, it is able to accept the 4 different formats of the commands with
4 different signatures.

void ReceiveAll(void)

Receive all of the CwB output for the command sent and parse it, discarding any data that
is not useful for DFD application. The result is stored in cwbLincList.

const char *GetDisplay(void)

Return the display format of the CWB output that can be used with the MessageDialogs

for display to the user.

84

ScqCollection *GetList(void)

Return the cwbLineList format of the CWB output. Each item in the SeqCollection
represents a separate line from the CWB output and is used by the CWB commands to
create the status of different objects.

void DeleteList(SeqCollection *1)

Deletes the contents of SeqCollection *1.

3.3.22 OpenfFile Class

Command that sends open file or load file command to CWB process. It interprets the
output from the open file command. It checks that the file exists. CWB proccss also

validates the CWB file. It displays any of these errors to the user.

After successfully opening the CWB file, it determines the main process name of the DFD.

It assumes that there is one main process and one DFD in a file.

Superclass

CwbCommand

Attributes

mainProcess main process name of current DFD

cwbFile File name that needs to be opened
doc handle to DFD document

85

Methods
OpenFile(DFDDocument *doc, CwbComm *cwb, String fileName)
CwbCommand(cwb, "OpenFile™)

OpenFile constructor: save fileName in cwbFile and save doc handle in _doc; give the

cwb handle and the cmdName "OpenFile" to CwbCommand.

~OpenFile(void)

OpenFile destructor: delete cwbFile name.

const char - GetMainProcess(void)

Return the main process name in cwbFile.

void CloseFile(void)

Send the close file command to CWB process.

void Dolt(void)

Check validity of cwbFile; if it is not valid, warn user and return.
Get the main process from cwbFile.

Tell DFDMap the main process name (through GetMainProcess).
Display the DFD diagram.

Send the close file command so that there is no conflict of data in CWB process (with

CloseFile).

Send the open file command to CWB process.

86

3.3.2.3 Deadlock Class

Command that sends the deadlock command to the CWB process. It interprets the output
from deadlock command and, depending on the output, displays the results to the uscr.
"No deadlock” is displayed if there are none. If there are some deadlock states, then they

are displayed to user in the CWB output format.

Superclass
CwbCommand

Attributes

deadlockProcess deadlock condition is tested for the deadlockProcess

Methods

eadlock(CwbComm *cwb, const char *processName).CwbCommand(cwb, "Deadlock”)

Deadlock constructor saves the deadlock processName; it gives the cwb handle and the

cmdName "Deadlock"” to CwbCommand.

~Deadlock(void)

Deadlock destructor.

void Dolt(void)

Send deadlock command to CWB process and receive the CWB response by using

CwbCommand. Interpret the output and display the result to the user.

87

3.3.2.4 Size Class

Command that sends the size command to CWB process. It interprets the output from the

size command and displays the result to the user: the CWB output from the command.

Superclass
CwbCommand

Attributes

sizcProcess size is determined for the sizeProcess
Methods

Size(CwbComm *cwb, const char *processName) : CwbCommand(cwb, "Size")

Size constructor saves the size processName; it gives the cwb handle and the cmdName

"Size" to CwbCommand.
~Size(void)
Size destructor.

void Dolt(void)

Send size command to CWB process and receive CWB response by using CwbCommand.

Interpret the output and display the result to the user.

3.3.25 Equivalence Class

Command that sends the equivalence command. It interprets the output from the

equivalence command and displays the result to the user. If the two processes are not

88

equivalent, it also displays the weak modality HML formula distinguishing between the

two processesfMOLL92]

Superclass

CwbCommand

Attributes
process 1 Ist process name needed for equivalence test

process2 2nd process name necded for equivalence test

Methods
Equivalence(CwbComm *cwb, const char *process |Name, const char *process2Name) :

CwbCommand(cwb, "Equivalence")

Equivalence constructor saves the 2 process names for equivalence test: process! and

process2; it gives the cwb handle and the cmdName "Equivalence” to CwhCommand.

~Equivalence(void)
Equivalence destructor.

void Dolt(void)

Send equivalence command to CwWB process and receive CWB response by using

CwbCommand. Interpret the output and display the result to the user.

89

3.3.3 SimCommands

This groups all the commands that affect the simulation or dynamic action of the DFD.
These commands can cither modify or make queries about the current status of the DFD.
These commands are only valid after the simulation has started (with exception of Start

simulation).

3.3.3.1 SimCommand Class

This is the generic Simulation command interface and it is never instantiated.

It is responsible with determining all the dynamic information about the DFD and
provides UpdateDFD for this purpose. This method is called by all the simulation

commands to update the current DFD status and potential action data.

All the simulation commands are subclasses of SimCommand which, in turn, is a
subclass of CwbCommand. SimCommand uses CwbCommand to interface with CWB

process. SimCommands are created by the DFD Map.

Superclass

CwbCommand

Attributes

_doc handle to the DFD document that wants to do SimCommand

90

Methods

SimCommand(DFDDocument *doc, CwbComm *cwb, const char *cmdName)

CwbCommand(cwb, cmdName)

SimCommand constructor: save doc handle in _doc; give the cwb handle and cmdName

to CwbCommand.

~SimCommand(void)

SimCommand destructor.

void Update DFD(void)
Update the current DFD status and potential actions in the map.

Redisplay the DFD diagram.

3.3.3.2 Start Class

This starts the simulation by sending start simulation command to CWB process.

Superclass

SimCommand

Attributes

simProcess Start simulation on simProcess from the DFp

9/

Methods

Start(DFDDocument *doc, CwbComm *cwb, const char *processName)

SimCommand(doc, cwb, "Start")

Start constructor: save start processName in simProcess; give doc and cwb handle, and

cmdName "Start" to SimCommand.

~Start(void)

Start destructor.

void Delt(void)

Send start simulation command to CWB process and receive CWB response by using

CwbCommand. Update the DFD map status and DFD diagram.

3.3.3.3 Stop Class

This stops the simulation by sending stop simulation command to CWB process.

Superclass

SimCommand

Attributes

None

Methods

Stop(DFDDocument *doc, CwbComm *cwb) : SimCommand(doc, cwb, "Stop")

Stop constructor: give doc and cwb handle, and cmdName stop to SimCommand.

92

~Stop(void)

Stop destructor.

void Dolt(void)

Send stop simulation command to CWB process and receive CWB response by using

CwbCommand. Update the DFD map status (back to default vaiues) and Drp diagram.
3.3.3.4 Next Class

This does the next simulation transition by sending next command to CWB process.
Superclass

SimCommand

Attributes

nextStep next transition step that want to take

Methods

Next(DFDDocument *doc, CwbComm *cwb, int nbSteps) : SimCommand(doc, cwb,

"Next")

Next constructor: save nbSteps in nextStep; give doc and cwb handle, and cmdName

"Next" to SimCommand.

~Next(void)

Next destructor.

93

void Daolt(void)

Send next action command to CWB process and receive CWB response by using

CwbCommand. Update the DFD map status and DFD diagram.

3.3.35 Random Class

This makes a number of simulation transition steps in the DFD by randomly selecting the

number of transition steps.

Superclass

SimCommand

Attributes

nbSteps number of random transition steps to make
Methods

Random(DFDDocument *doc, CwbComm *cwb, int numberSteps) : SimCommand(doc,

cwb, "Random")

Random constructor: save numberSteps in nbSteps; give doc and cwb handle, and

cmdName "Random" to SimCommand.

~Random(void)

Random destructor.

94

void Dol:(void)

Send randym command for aumber steps to CWB process and 1eceive CWB response by

using CwbCommand. Update the DFD map status and D¥p diagram.

3.3.3.6 Previous Class

Returns to a previous DFD status which occurred within the simulation session. This

command is triggered through the menu item.

Superclass

SimCommand

Attributes

None

Methods

Previous(DFDDocument *doc, CwbComm *cwb) : SimCommand(doc, cwb, "Previous™)

Previous constructor: give doc and cwb handle, and cmdName "Previous” to

SimCommand.

~Previous(void)

Previous destructor.

95

void Doli(void)

Send history command to CWB process and receive CWB response by using
CwbCommand. This gets all transitions made in the simulation session. Display the

transitions to allow the user to selcct a previous DFD status.

If the user selects a previous DFD status, send return command to return to a previous

DFp status. Update the DFD map status and DFD diagram. Otherwise, don’t do anything.

3.3.4 DFp Status Classes

These classes are used to represent the status of the DFD. This includes the status of each

process in the DFD and the potential actions associated with a DFD in a particular status.

3.3.4.1 CwbLine Class

It holds the ET format of the CWB output that can be displayed and makes it possible to

sclect any items in select lists.

Superclass

Textltem

Attributes

String line string format of CWB output line

int index index number of line (needed when select the item)

96

Methods

CwbLine(String *I, int ind)

CwbLine constructor: save | in line and ind in index; give line to Textltem.

~CwbLine(void)

CwbLine destructor.

void SetString(const char *str)

Save strin line; and gives str to Textltem.

const char *GerString(void)

Return const char * of line.

int GetIndex(void)

Return index of CwbLine.

3.3.4.2 ProcessStatus Class

The DFD Process status represents the status of a single process in the DFD.
It can be either a current or potential DFD Process status.

It is responsible for parsing the CWB process item, which is the part of the Cw3 process
status between the vertical bars. It knows how to parse the process information from: (...

| ["inputl.][’input2.]{outputl.]{output2.]process namel ...).

A process status always has a process name but not necessarily any activated inputs or
activated outputs. If there is no input or output, it means that the process is idle (not

activated). If there is at least one activated input, then the process is activated.

97

Superclass
CwbLine

Attributes

SeqCollection *inputActions list of activated input actions

SeqCollection *outputActions list of activated output actions

String processName name of the process
String processltem string format of cwbProcessitem
Methods

ProcessStatus(String cwbProcessltem)

ProcessStatus constructor: create the ProcessStatus by parsing cwbProcessltem and
creating the list of activated input actions and activated output actions; save
cwbProcessltem in processltem, extract the process name from it and save it in
processName.

~ProcessStatus(void)

ProcessStatus destructor: destroy the list of activated input and output actions.

const char *GetProcessName(void)

Return the name of the process.

SeqCollection *GetInput(void)

Return list of activated inputs.

98

SeqCollection *GetrOutput(void)
Return list of activated outputs.

bool IsActivated(void)

Return TRUE if the process is activated. Else return FALSE (process is idle).

bool == (ProcessStatus &s)
Return TRUE if s is equal to this process status using processitem. Else return FALSE,
3.3.4.3 DrpStatus Class

This is a collection of process status. It is responsible for doing the high level par.ing of
the CwB output line and for creating the process status by delimiting the CwnB process

items.

It can be either a current or potential DFD status.

Superclass

CwbLine

Attributes

SeqCollection *processStatusList list of all the process status

String dfdStatus string format of the DFD Status

99

Methods

DEDStatus(String line)

DFDStatus constructor: parse the cwb line output by determining where the cwh process

items are and create processStatus for each item.

~DFDStatus(void)

DFDStatus destructor: destroy each processStatus.

String GetDFDSta.us(void)

Return String format of DFDStatus for display.

ProcessStatus GetProcessStatus(const char *processName)

Return ProcessStatus for processName in the DFDStatus; if processName is not valid,

then return NULL.

SeqCollection *GetAllProcessStatus(void)

Return list of all the ProcessStatus in DFDStatus.

bool IsActiveStatus(void)
Return TRUE if any of the processes in DFDStatus is activated. Else return FALSE.
3.3.4.4 PotentialAction Class

It represents a single potential action with all the information required to represent it on
the DFD diagram (the input action, the process, and the output action) and to use as a

command with CWB process (potential action number).

100

There are 2 different mechanisms used to get this information.

1. It uses the potential action line to determine the input action and number (determined

by n:----i---->(...); where n is potential action number and i is the input action)

2. It uses both the current and the potential DFD status to determine the output action
and potential action process name. This is set by the DFD map since it has

knowledge about the current DFD status,

Superclass

CwbLine

Attributes

int number potential action number

String *inputAction input action that makes the potential action transition

String *outputAction output action that is triggered if the potential action is selected
String *processName process that will be affected if the potential action is selected

DFDStatus *dfdStatus ~ potential (or resulting) DFD status if potential action is

selected

Methods

PotentialAction(String cwbLine)

PotentialAction constructor: parse the cwbLine and save the number and inputAction;

create the potential dfdStatus.

101

~PotentialAction(void)

PotentialAction destructor: destroy processName, inputAction, outputAction and

dfdStatus.

int GetNumber(void)

Return the potential action number.

String *GetInputAction(void)

Return the input action that will would make the potential action transition if selected.

String *GetOutputAction(void)

Return the output action affected by the potential action.

const char *GetProcessName(void)

Return the process name affected by the potential action.

DFDStatus *GetDFDStatus(void)

Return the potential dfdStatus. This is the resulting status of the DFD if the potential

action is selected in the simulation.

void SetQOutputAction(String *outAct)

Save outAct in outputAction.

void SetProcessName(const char *name)

Save name in processName.

102

33.5 Map between Application ariu CwB

The DFDMap is the only class in this section [3.1 Design: Interface with CwsB] that is
accessed directly by the rest of the application. It provides the link, or the map, between

the DFDDocument, the DFD diagram, the CwB commands and the DFD status.

There is one DFDMap for each DFDDocument. It is responsible for starting the Cwn

process associated with the DFDDocument.

The DFDMap is driven by both menu input and from mouse input to the DFD diagram.

3.3.5.1 DFD Map Class

It keeps track of the status of the DFD diagram and the CWB process. It starts the CwB
process for the current DFDDocument. It knows the status of each process in the D¥FD
diagram, and of e¢ach potential action. It knows whether the CWB process has loaded a

DFD diagram and whether it is in normal or simulation mode.

It creates all the CwB commands (DoMake methods), for query and modify, in both

normal and simulation mode.

It is also responsible for updating the DFD status and for creating the potential actions. It

does this when told by a simulation command that the status has been modified.

It also provides the interface to query about the status of DFD (current process and DFD
status) and the potential actions. It provides the interface to modify status of the DFD by

setting any simulation input/output pair.

It stores all the information required by the application for DFD concerning the CWB

process or the status of the DFD.

103

Superclass

None

Attributes
DFDDocument *_doc handle to DFDDocument (needed to update the DFDDiagram)
SeqCollection *potActListlist of all the potential actions

DFDStatus *dfdStatus current DFD status

CwbComm *cwb handle to active CWB process

String display CwB output with no formatting.

String mainProcess main process in the DFD

bool simStartStatus boolean indicating whether simulation is s.arted/not started
bool fileOpenStatus boolean indicating whether a CWB file is open/not opened
Methods

DFDMap(DFDDocument *doc)

DFDMap constructor: start the CWB process and save it’s CwbComm handle in cwb;

save doc handle in _doc.

~DFDMap(void)

DFDMap destructor: stop CWB process by destroying cwb; destroy potActList and

dfdStatus.

104

void SetMainProcess(const char *processName)

Save processName in mainProcess; this is set by FileOpen.

const char *GetMainProcess(void)

Return mainProcess name.

const char *GetDisplay(void)

Return display; set by the last CwB command that did Dol().

void SetFileOpen(bool openFile)

Set openFileStatus to openFile; set by OpenFile.

bool IsFileOpen(void)
Return openFileStatus.

Do Make CwB commands: All of these commands are made in the DFDMap and

executed by CommandProcessor.

OpenFile *DoMakeOpenFile(String *filename)

Make and return OpenFile command for filename.

Size *DoMakeSize(void)

Make and return Size command for mainProcess.

Deadlock *DoMakeDeadlock(void)

Make and return Deadlock command for mainProcess.

105

Equivalence *DoMakeEquivalence(String *eqprocess)
Make and return Equivalence command for mainProcess and eqprocess.

Do Make Cws simulation commands: All of these commands are made in the

DFDMap and executed by CommandProcessor.

Start *DoMakeStart(void)

Make and return Start command for mainProcess.

Next *DoMakeNext(int stepNb)

Make and return Next command for mainProcess.

Next *DoMakeNext(void)

Make and return Next command for mainProcess.

Random *DoMakeRandom(int nbSteps)

Make and return Random command for mainProcess.

void DoMakeRandom(void)

Make and return Random command for mainProcess.

Previous *DoMakePrevious(void)

Make and return Previous command for mainProcess.

Stop *DoMakeStop(void)

Make and return Stop command for mainProcess.

106

DFD status methods: All of these methods either create or return the status of the D¥D.

The status is only modified while in simulation mode of operation.

void Update(const char *cmdDisplay)

Update the DFD status and create the new potential actions. Each CwB command that
modifies the DFD status calls Update(). Save the cmdDisplay in display.

SeqCollection *GetPotentialActions(void)

Return the potActL.ist.

DFDStatus *GetCurrentDFDStatus(void)

Return the currentDfdStatus; the methods for the process or dfd status are used to get
details of the DFD.

PotentialAction *GetSimInOutPair(const char *inputAction, const char *outputAction)
Returns the PotentialAction that has the inputAction/outputAction pair. Returns NULL if
none exist.

void GetActiveProcess(SeqCollection *seqColl)

Create the list seqColl of processes that are activated for the current DFD status.

void GetPotProcess(SeqCollection *seqColl)

Create the list seqColl of processes that are part of a potential action for the current DFD

status.

107

void GetPotOut(SeqCollection *seqColl)

Create the list seqColl of output actions that are part of a potential action for the current
DFp status.

void GetPotin(SeqCollection *seqColl)

Create the list seqColl of output actions that are part of a potential action for the current

DFD status.

Simulation methods: these methods are used by DFD diagram while in simulation mode
to query about the mode of operation or to select a potential action.
bool IsSimStart(void)

Return simStartedStatus.

void SetSimStart(bool simStart)

Set simStartedStatus to simStart.

bool IsSimInOutPair(const char *inputAction, const char *outputAction)

Return TRUE if inputAction/outputAction is a valid input/output simulation pair for the
current DFD status.

bool SetSimInOutPair(const char *inputAction, const char *outputAction)

Set the inputAction/outputAction simulation pair by determining which potential action

the pair belongs to and by sending the next command for that potential action.

108

4. Conclusion

4.1 Success of the graphic interface
4.1.1 Success in terms of general interface design
4.1.1.1 Compatibility

The functionality provided in the system with the graphic interface replaces directly many
of the existing ones in the textual interface of CWB. Not all of the functionality has been

incorporated on this project but it has the further capability to be easily extended to do so
4.1.1.2 Familiarity

The user who is familiar with current windows operating systems on PCs or Unix will

immediately feel at home with the menu input and mouse as a control medium.

4.1.1.3 Simplicity

Mouse and menu-driven capability is a well-recognized means of simple system access
4.1.1.4 Direct Manipulation and control

Direct manipulation via the mouse and menus and control of the simulation via on-screen
input gives users a sense of control which will make them feel comfortable with the

interface.
4.1.1.5 Visual Presentation

The WY SIWIG (What You See Is What You Get) approach to the diagram presentation
and the visual representation of the simulation as it happens should give the user a better

feel for the process being analyzed.

109

4.1.1.6 Flexibility and ease of use

The interface makes the access to CWB available to a wider range of users because there

is less notation to be learned before using it.

4.1.1.7 Consistency

A good user interface should be consistent with other common applications. The use of
the ET Application framework gives the interface a consistency with other ET applications
developed with ET the pulldown menus of the ET system, window presentation and use
of the mouse are common communication tools for users of applications in PC Windows

and X-windows systems and so are familiar to many users.

4.1.2 Success as an improved means of communicating with CWB

I felt that the graphic interface was a successful additional component for the T1-DFD
project. The user is shielded from those parts of the system which are not user friendly: the
tuple representation conforms more to the visual model of the diagram than does the CCS,
while the translator performs the work of conversion to the CCS notation for CWB
Access is given to the powerful analytical capabilities of CWB without requiring that the
user learn the CCS notation or commands. The translation process need only be

performed once to create the intermediate files for any one diagram.

The menu capability is a far more intuitive means of communicating the CCS commands
for diagram loading, comparison, analysis and simulation than the textual means. The DFD
itself is displayed similar to its original paper format and the simulation output is visually
and dynamically displayed so that the user can observe the activity as it happens. Being

able to control the simulation either step by step or by random selection of next step !

110

choice and to have the result presented immediately in diagrammatic form gives the user a

far better sense of the process capabilities than when textual output must be inter preted

4.2 Evaluation of the development environment
4.21 Advantages

Many built-in facilities in ET simplify the development of a uscful tool with a user
interface consistent with other applications. The display of the window, provision of
scrollbars and menus and automatic event loop control are all provided under ET and save
the user a lot of work in application development. There is much default behaviour of the
in-built operations and events that the user is spared from providing The Model View
Controller (MVC) model of program design gives a good framework for a strong desian

in the object-oriented application. Application frameworks ..

promote an application architecture that embodies the software engineering

principles of lovse coupling and strong cohesion
[OBRISS, p. 84]
and this structure (loose coupling/ strong cohesion) should

allow us to see modules as black boxes when the overall structure of the system is

described

[GHEZO1, p. 51]

The SNIFF development environment provides editors, project and object management

tools. In fact I found the application project setup far from intuitive and did not use this in

111

e -

the development but the ability in the editor to branch between classes and the object

browsing capabilities made finding out about the ET class mechanisms much easier.

4.2.2 Disadvantages

Developing an application successfully under the ET Application framework seemed to
require a lot of knowledge of the hierarchy of the classes and the event and command
handling. For example using the class hierarchy, the default behaviour for the
DoLeftButtonDownCommand on the View could be overridden by redefinition on any of
the view objects. In this way behaviour for selecting different view objects could be
customized. This was a very powerful facility provided by ET but one which required
detailed knowledge of the internal organization to make best use " it. The same was true
for the understanding of the command and event dispatching control and for the precise

bounds for selecting view objects with the mouse.

4.3 Future improvements and enhancements
4.3.1 Multiple levels of diagram decomposition

It would be a useful enhancement for the comparison of diagrams and equivalencing their
decompositions for re-engineering purposes to be able to display multiple levels of the
diagram. There is already a notation for this in the tuple representation: a tree structure
would be suitable to provide the mechanism for moving around in the diagram level

hierarchy.

4.3.2 Multiple Windows

The ability to open multiple child windows from one parent application could be used to
compare and contrast two diagrams , each in a separate window, or to display different

levels of the same diagram in different windows.

4.3.3 More precise mouse selection of objects

The default method in ET for defining the region within which mouse selection is valid is
to define a rectangle around an object. In a large diagram with lines and processes in close
proximity, this could be refined more precisely to a more limited area. Particularly for the
action lines, depending on the angle, the bounding rectangle which is the default, might be

refined to a boundary closer to the line.

4.3.4 More CWB facilities

Some CWB facilities were not included such as derivation commands to display

observable actions, reachable agents etc. Further menu options could provide these.

4.3.5 Diagram editing

ET was designed for easy development of graphic editing facilities so this could be

capitalized on to make a graphic editor for dataflow diagrams.

4.3.6 File mechanisms

The file dialogue mechanism we implemented was via a general popup window. With

further knowledge now of the ET mechanisms there is a built in file dialogue input facility

113

which would have been more consistent This was a problem caused by lack of

documentation for ET

4.4 What was learned from the project

The project was a very useful experience, exposing me to a new application framework. It
demonstrated to me the power of a framework to provide a lot of standard functionality

and management of the interaction between the subsystems of the application.

We explored the CWB analytical engine and discovered its powerful mechanisms for
diagram analysis and simulation. The translator had to be understood before I could alter
the code to incorporate the process coordinate positions: it showed me an example of the
tokenization of input as a means of parsing and how one Unix process could communicate

via pipes to another Unix process.

For the graphics methods for the visual object shapes I had to decipher the ET graphics
routines and learned the mechanism for mouse selection of objects and how the area of
selection close to an object was defined. For selection of the shapes on-screen I created
aser defined commands to define the behaviour when shapes were selected during

simulation.

The lack of documentation for ET and uncommented code brought home very strongly to
me the need for good user manuals and documentation. Initially we examined the Borland

graphic library with a view to possibly using this for the project: I had used this previously

114

learning only from the manual which explained very clearly the graphics functions. the
only documentation I had for the corresponding ET elements was the program code which

in addition was entirely uncommented.

Despite this these potential obstacles, it was very satisfying to achieve what I felt was a
considerable improvement of the existing interface and to work on a dynamic windows

interface.

115

References

[BENN9S] Bennett K Legacy Systems. coping with success. JEEE Software. Los
Alamitos, CA. IEEE Computer Society, January 1995, pp. 19-23.

[BUTL95a] Butler G,Grogono P, Shinghal R & Tjandra I. Analyzing the logical
structure of data flow diagrams in software documents. Proceedings of the Third
International Conference on Document Analysis and Understanding, Montreal. IEEE

Press, August 14--16, 1995, pp. 575--578.

[BUTLIS5b] Butler G,Grogono P, Shinghal & Tjandra 1. Retrieving information from
data flow diagrams. In Wills L, Newcomb P & Chikofsky (eds). Proceedings of
Second Working Conference on Reverse Engineering,(Toronto, July 14--16, 1995).
Los Alamitos, CA: IEEE Computer Society Press, 1995, pp. 22--29.

[BUTL9Sc] Butler G, Grogono P, Shinghal R & Tjandra L. Knowledge and the
Recognition and Understanding of Software Documents. Department of Computer

Science, Concordia University, Montreal, Quebec, Canada. February 1995, pp. 1-47.

[CHEN92| Chen M-J & Chung C-G. Preventative Structural Analysis of Dataflow
Diagrams. Information and Software Technology, Vol. 34 No 2. London,UK:
Butterworths,February 1992, j»p. 117-130.

IDEMAT79] DeMarco T . Structured Analysis and System Specification, New York:
Yourdon, 1979.

IGHEZ91] Ghezzi C, Jazayeri M & Mandrioli D. Software Engineeering. Englewood
Cliffs, NJ: Prentice Hall, 1991.

[ILOG91] i-Logix Inc. The Languages of Statemate. Burlington, MA: January 1991.
(ILOG92] i-Logix Inc. Statemate 4.5 User Reference Manual. Burlington, MA: August

1992.

116

[MOLLI2) Moller F. The Lidinburgh Concurrency Workbench (Version 6. 1).

Department of Computer Science, University of Edinburgh, October 1992,

[OBRI9S5] O'Brien L. C++ Application Frameworks . Software Development. October
1995, pp. 84-89.

[RUMB91} Rumbaugh J, Blaha M, Premerlani W, Eddy F & Lorensen W. Object-
oriented Modeling and Design. Englewood Cliffs, NJ: Prentice Hall, 1991.

[WEIN89] Weinand A,Gamma E & Marty R. Design and implementation of ET++, a
seamless object-oriented application framework. Structured Programming, 2, 1989,

pp. 63-87.

[WOOD90] Woodman M Yourdon Dataflow Diagrams. In Ince D. & Andrews D,
The Software Life Cycle. Boston: Butterworth, 1990, pp. 129-167.

[YOCO79] Yourdon E, & Constantine L. Structured Design: Fundamentals of a
Discipline of Computer program and Systems Design Vol.1. Englewood Cliffs, NJ:
Prentice-Hall, 1979.

[YOUR79] Yourdon E. Managing the Structured Techniques. Englewood Cliffs, NJ:
Prentice-Hall, 1979.

117

Appendix A

Example data files

An example .tpl file

0: ((SOURCE_TERMINATOR T1 ((E0,a)) 150 50)
(PROCESS EO 1 ((E1,r)) 150 180)
(PROCESS E1 2 ((E2,5),(E3,v)) 150 210)
(PROCESS E2 3 ((E3,u)) 80 250)
(PROCESS E3 4 ((T2,b)) 150 290)
(SINK_TERMINATOR T2 150 370))

The transtator produces an intermediate .tab file:

TI1015050E0a
E0O0O0 150180 Elr
E100150210 E2sE3 v
E20080250E3 u
E300150290T2b
T210150370

and a .cwb file;

bi DFD (T!1|EO|EI|E2|E3|T2\r,s, v, u}

bi T1 input.'a. Tl

bi EO a.'r. EO

bi El r.'s.El +r.'v.El
bi E2 s.'u. E2

bi E3v.D.E3+u.'b.E3
bi T2 b. 'output T2

118

Appendix B

Requirements for translation of CWB Simulation output

This appendix describes the .pecification requirements for the interpretation of the CWB
output in simulation mode. An example of which is given here:

l:—--a --->(‘r.EO | E1 | E2 | E3)\ {r,5,u,v}

GetPotActIn(OrdCollection * a)

Finds the potential inputs from the simulation output from CWB.

Algorithm;

The potential inputs are given by the action label contained between the dashes e..g --- a --
- shows a to be the potential input. For all numbered output lines save the potential inputs
in the Collection a. If the character string is of the form t<a> for a t-transition, strip off
the t<> characters before adding to the Collection.

GetPotActOut(OrdCollection *b)

Finds potential input actions

Algorithm:

For each numbered CWB simulation output line, find the actions x which appear as ‘x.P to
the right of the arrow where x is not the action contained in the --- (action) --- > string,.
Add the found action name x to b.

GetPotActAgent(OrdCollection * ¢)

Finds potential processes from the CWB simulation output.

Algorithm:

For each line of simulation output, an active process P is one which appears as u.’x.P on
the right hand of the arrow --- > or else as ‘x.P where x is not the action label contained in

-- - = >_ Add the found process name P to c.

GetActiveAgent(OrdCollection *d)

Determine active states from map process statuses.

119

Glossary

agent a process which handles data

CASE tool Computer Aided Software Engineering tool

CWB Concurrency Workbench

dataflow the passage of data between processes

datastore a permanent repository for data

DFD Dataflow Diagram

ET An application framework for developing C++ programs
SNIFF A project development environment

statechart a chart which shows dynamic behavior

(T)CCS (Temporal) Calculus of Communicating Systems
translator a program which translates from the .tpl file format to the .cwb

and.tab format

X windows a windowing system used on UNIX

120

