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ABSTRACT

Enhancement of Crashworthiness in Car-Truck Collisions using Damped Under-
ride Guard and Composite Crush Elements

Mahesh Balike
Concordia University, June 1998

A systematic study is performed to understand the dynamics of collisions involving a
modern light weight passenger car and a heavy freight vehicle and to design an improved
crash energy management system to reduce the severity of collisions. A concept of an
energy dissipating under-ride guard is analytically modeled and the performance
potentials are investigated under direct and oblique impacts to enhance the
crashworthiness of automobiles involved in collisions with heavy freight vehicles. The
under-ride guard is analytically modeled incorporating non-linearities due to asymmetric
damping, stiffness, clearance spring and kinematics of linkages, using the principle of
conservation of momentum and Lagrangian dynamics. Hardware-in-the-loop tests are
performed to evaluate the impact energy dissipated by the damper and to verify the
proposed model. The performance benefits of the proposed guard are investigated using a
performance criterion based upon the magnitude of intrusion of the car mass, peak car
mass acceleration, and dissipated energy. A multi-variable design optimization is
performed to minimize the magnitude of intrusion and peak acceleration, and maximize
the energy dissipated by the damper.

A lumped parameter model of a lightweight vehicle is further formulated to study
the car-to-truck collision and is analyzed under impacts with conventional and damped
undef ride guards. The dynamic response characteristics of different lumped masses

subject to direct impacts at different velocities are analyzed and the guard parameters are



optimized to achieve minimum peak acceleration level. A detailed finite element model
of the car structure is further developed using DYNA3D and an elastic-plastic analysis of
the car-to-under-ride guard is performed. The results obtained using the rigid body,
lumped parameter model and the finite element analysis are discussed to illustrate the
relative merits of the methods. The crashworthiness of the automobile impacting heavy
freight vehicles is further enhanced by incorporating crush elements to absorb the impact
energy. Experimental studies are conducted to enhance an understanding of the crash
behavior, energy absorption capacity and the strain rate effect on the energy absorption
capacity of crush elements made of different composite materials. The advantages of
using crush elements made of composite materials to reduce passenger casualty are
investigated through analysis of lumped parameter and finite element models. The results
of the study show that the severity of a crash involving an automobile and a heavy

vehicle can be significantly reduced by the proposed
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CHAPTER 1

LITERATURE REVIEW AND SCOPE OF THE
DISSERTATION

1.1  INTRODUCTION

Study of crash safety of road vehicles encompasses systematic investigations of
excitations and various component characteristics, such as excitations attributed to
different types of collisions, occupant behavior during crash, vehicle damageability and
energy absorption properties, and vehicle aggressiveness towards other vehicles and
pedestrians. The degree of damage incurred by the vehicle and hence the occupant
casualty depends upon many factors, such as the severity and type of accident, the
relative weights and dimensions of the two vehicles involved in the collisions, the
relative speed, and the energy absorption capacity of the structure. Highway accidents
involving a car-to-heavy vehicle collision, specifically, pose a unique challenge due to
high ground clearance and inertia of the heavy vehicle. Such collisions 'present an
unreasonably high risk of fatalities and injuries among the occupants of the automobile,
which is primarily attributed to: (i) the high kinetic energy, the disproportionate mass,
size and power-to-weight ratio of the heavy vehicle; and (ii) under-running of the
automobile structure under the heavy vehicle structure due to high ground clearance of
the heavy vehicle. While the current trends are directed towards design of lighter
passenger vehicles, to address concerns related to environment and energy conservation,

the freight transportation sector has indicated continued interests for further relaxation in



weights and dimension regulations for enhancing the transportation economy.
‘Furthermore, the population of heavy vehicles on our highways has been increasing
steadily. The crashworthiness of automobiles thus necessitates enhanced efforts to
improve the safety of the highway and the occupants. In collisions involving an
automobile and a heavy vehicle, the energy absorbing capabilities of the car structure are
severely reduced, since the heavy vehicle structure is located well above the energy
absorbing car structure [1]. The car tends to wedge under the heavy vehicle structure in
such cases. The need to develop effective crash energy absorbing systems has thus been
emphasized to enhance the highway safety associated with car-to-heavy vehicle collision
[2].

The development of an effective crash-energy management system involves a
systematic study to establish an understanding of the dynamics of such collisions. This
dissertation research is thus directed towards analysis of dynamics of collisions, the
associated energy flow, stress distribution due to dynamic loads and forces transmitted to
the passenger compartment during an impact with the conventional truck guards using an
elastic-plastic analysis. An energy management system based upon partial dissipation of
eﬁergy is proposed. The crash safety maybe further enhanced by reducing the degree of
under-ride, or the intrusion of the car under the heavy vehicle, which is known to be the
primary cause of fatalities encountered in such accidents. An under-ride guard
comprising pendulum type drop arms, bumper beams, nonlinear springs and asymmetric
dampers, is thus proposed, to reduce the magnitude of intrusion and to dissipate part of
the crash energy. The flow of crash energy during direct and oblique impacts with

conventional and proposed guards is investigated through development and analysis of



lumped-parameter and finite element models. A performance criterion based upon
intrusion, passenger safety and energy dissipation is formulated and analyzed to derive
optimal design parameters of the proposed guard. A hardware-in-the- loop test method is
further developed to achieve limited validation of the proposed energy management
system. The energy absorption properties of different crash elements afe furiher analyzed

to enhance the crash safety of the automobile.

1.2 REVIEW OF RELEVANT LITERATURE

Highway collisions involving automobiles are known to pose high risks to the fatalities
and injuries among the occupants. In view of increasing volume of highway traffic and
efforts in development of lightweight automobiles, the FMVSS (Federal Motor Vehicle
Safety Standards) [3] has formulated a series of design and test codes to enhance the
crash safety. The FMVSS code for different types of barrier impact tests was established
in early 70s, which has been further revised many times with minor modifications [3,4,5].
Some of the safety standards developed to assess normal, and oblique front end barrier
‘impacts, and front, side and rear end collisions are summarized in Table 1.1 [3,4].
Sections 571.203 and 571.204 limit the maximum deflection of the steering column
during a collision test [4]. The occupant injury criteria outlined in section 571.208,
propose limits on the maximum accelerations and forces transmitted to different parts of
a test dummy evaluated using the test procedure described in SAE J944 [4]. The standard
proposed upper limits of accelerations of 36g and 60g transmitted to the driver’s head
and chest levels, respectively, under direct aﬁd oblique front and side impacts. The

standard further proposed a maximum intrusion of 45 c¢m under a 30 ¢cm diameter static



pole penetration test, and 12.7 cm under a specified load applied at the front corner of the
roof. A number of similar test codes have also been proposed and adapted in many other

countries.

Table 1.1: Federal Motor Vehicle Safety Standards (FMVSS) Affecting Structures
(Energy absorption bumpers not included).

FMVSS | Structures Test Specification Performance Limits

Section

571.204 | Front Front Barrier impact at | Maximum rearward dynamic
48 km/h (30 mph) displacement of steering column

of 12.7 cm (5 in).

571.208 | Front, Side, | Front and 30° oblique | Occupant injury criteria

Roof impact at 48 km/h; Side | Maximum acceleration at the

barrier impact at 32 km/h; | - driver head level : 36g
Rollover at 48 km/h - driver chest level : 60g

571.214 | Doors Static 30 cm (12 in) | Maximum intrusion of 45 cm (18
diameter pole penetration | in) under a specified load

history.

571.216 | Roof Static front roof corner | Maximum intrusion of 12.7 cm

load at specified load history.

The design of vehicles satisfying the federal requirements was traditionally
achieved by repetitive barrier impacts performed under controlled conditions [6,7]. The
poor efficiency and high cost associated with development of various prototypes and
repetitive tests prompted the development of different crash analysis models of the
vehicles. The crashworthiness of automobiles has been extensively investigated using
different analytical models of varying complexities [8,9]. Many studies have reported
enhancement of crashworthiness of vehicles through design of structures [10-12] and

development of crash elements [13]. The enhancement of crashworthiness of automobiles



involved in collision with the heavy vehicles necessitates additional consideration of the
heavy vehicle design factors. Such studies involve systematic investigations into collision
dynamics, crashworthiness of the automobile and barrier structures, energy flow analysis,
and design of the under-ride guard. The reported literature is reviewed and grouped under
appropriate topics in subsequent section in order to formulate the scope of the

dissertation research.

1.2.1 Crash Simulation Models

A large number of crash simulation models of varying complexities have been reported in
the literature. Melosh and Kelly [14] described different analytical techniques for the
evaluation of crashworthiness of vehicle structures. Various crash simulation models can
be grouped in three broad classes based upon their modeling approach: lumped

parameters, finite element and hybrid models.

LUMPED PARAMETER MODELS

The lumped parameter models are perhaps the most widely used analytical tools for the
design of crash-energy management system for automobiles. Such models are formulated
upon integrating the distributed inertial and stiffness characteristics of the components
into various lumped masses and springs. These models are relatively simple one-
dimensional models, where the crush energy absorption characteristics of the structural
members are represented by non-linear force-deflection formulations derived from static
crush tests [15-20]. Although the reported lumped parameter models are very similar in
their basic principles, these models may be further classified into two different groups

based upon the objectives of the analysis to provide analysis for evaluation of



crashworthiness. The first group of models is developed to provide an evaluation of
crashworthiness, and it incorporated the structural behavior suited to derive reasonably
accurate results for a specific accident condition [15-17]. The second group of models is
developed with an objective to perform design analyses, and thus need to incorporate
more accurate characteristics of the major structural components. Such models are
frequently used to study the influence of variations in the component characteristics to
seek near optimal designs [18-20].

A number of simple models have been reported for evaluating the
crashworthiness of vehicles through simulation of primary structure behavior [15-17].
These models incorporate non-linear restoring properties of structural elements, in the
form of either a one-sided spring element or hysteretic load-deformation histories. The
body and engine are generally treated as either one lumped mass or two individual
lumped masses, while only a limited number of models include the rate dependent effects
[16], and linear damping elements [15]. Figure 1.1 illustrates a typical model of a 1000
kg vehicle subject to a barrier impact, which falls into the first group of lumped
parameter models [16]. The equations of motion of such models are easily formulated
using D'Alembert's principle and solved as an initial value problem. These models have
been invariably used to infer the crashworthiness of vehicles as a function of lumped
stiffness and mass parameters, and type of collision.

An early model for simulation for crashworthiness design was first proposed by
Kamal [21] in 1970. The model was developed for a front engine and a rear wheel drive

vehicle with a separate frame construction. The vehicle fore-structure was represented by
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Figure 1.1:  Tani and Emori [16] barrier impact model,
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Figure 1.2:  Vehicle Barrier Impact Model by Kamal [21],



eight different significant members and three lumped masses, which may undergo
deformation during impact, as shown in Figure 1.2. The study further assumed that the
different members subject to inertia and reaction do not necessarily collapse in a
progressive manner, from front to the rear of the vehicle. The members subject to inertia
and reaction forces exceeding their ultimate load limit will experience failure first,
irrespective of their geometric location. The dynamic force functions in the study were
attained from the static force functions super imposed by a linear dependence of the rate
of displacement.

The early study by Kamal [21] has been followed by continuous efforts to
develop model applicable for different types of collisions, such as bumper to barrier,
frontal-frontal, rear and side impacts. Kuang-Huei Lin [22] extended the work done by
Kamal [21] to derive a rear-end barrier impact simulation model for a uni-body passenger
car. The proposed model consisted of an idealization of the rear end barrier impact
situation by five lumped masses and seven deformable non-linear spring elements. An
interesting approach to study the side impact was reported by Wingenbach and Schwarz
[23] by incorporating the side door intrusion of an experimental safety vehicle. The
model consisted of a superposition of elastic and plastic door beam action, elastic and
plastic sheet membrane stretching, and crush of the honeycomb core. The load-deflection
characteristics of the honeycomb strv;lcture were determined empirically. The model was
proven to be quite effective in predicting the intrusion within 0.625 c¢m for a 17.8 cm
penetration during a side impact against a 33 cm diameter rigid pole at a speed of

approximately 24 km/h.



The above studies considered the design and crashworthiness analysis under direct
impacts only. Only few studies have attempted to investigate the crash behavior under
oblique impacts using lumped parameter models, due to complexities associated with
modeling of crush behavior under such impacts. A simple crash analysis model to
simulate a two-car oblique side impact has been proposed by Tomassoni [24]. Although a
large number of comprehensive finite element models have been developed to study the
crash behavior of automobiles [25-30], the lumped parameter models are frequently being
utilized to predict the vehicle response. The effectiveness of such models, however, is
limited for the study of new concepts for which neither the crush characteristics nor the

collapse mechanisms are known.

FINITE ELEMENT MODELS

The Finite Element (FE) solution to the crash analysis offer considerable advantage over
the lumped parameter models, since the changing crush resistance of different structural
elements can be analyzed more accurately. The FE models further permit the analyses
based upon the geometry and propertics of the individual structural components. The
variable dynamically inter-dependent stiffness characteristics of the components can be
conveniently formulated to derive the strain, stress, and force response characteristics,
which are then used to study the crash performance of individual components and the
entire system. A FE model of an automobile, when validated can serve as an effective
design tool to determine near optimal material and geometric design parameters for

enhancement of the crash performance.






