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7 ABSTRACT

The Representation and Use of Instructional Strétegies
in Intelligent .CAI Systems

A\
Jiming Liu

This thesis addres&ed one of the key issues in the design of
intelligent computer-aided instructional (ICAI) systems; namely,
how to automate the generation as well as ihe_selection of
appropriate instructional sequences and/or operations. It
investigated the .feasibility of planning instruction based on'
vague iﬁstructional strategies. The model for the underlying
representation and reasoning was built on Zadéh’s fuzzy sets
theory and fuzzy logic. B -

To demonstrate and test the proposed planning techniqug, a .

prototype instructional planning compdnent for ICAI systems,

using part of Collins and Stevens’ inquiry teaching strategies,

" was implemented in this study to generate inquiry teaching

op%rationsrguThis component waé run~by~using—severalfsets~of-~i~
‘
simulated student data énd the resultant decisions in these
situations were assessed by comparing then with the known -
acceptable decisions provided by human iqstructors. The result -
of comparisons showed that the decisions generated by the
planning component accurately matched those specified by human
experts. As indicated in a sensitivity analysis, the
representation and reasoning technique could also provide some

flexibility and,reliability for the design.

iii -
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CHAPTER 1

t INTRODUCTION

CAI and the Current Development

The developments in computer technology have‘enabled the
fac%lities of the computer’s fast opérating speed and storage
capacity to be-used, through multi-access instructional systems,
to individualize instructiop (Hartley and Sleeman, 1973; Woolf
and McDonald, -1984; Howe; 1973). Computer-aided ins;ruction
‘(CAI) makes an explicit attempt to prompt and control }earnigé..
The goal of CAI résearch is to design instructional programslthat
incorpdrate well-prepared coufse material in iessons'that will be
optimal for eaéh student and/of-a group of students. Although

. .
the instructional principles and strategies underlying CAI have
. .

" not, been developed as quickly as computer technoldgy has, the

overall quality of CAI has been. significantly improved by
- ] \ .
applying a systems approach to the development of courseware

~

(Park, Perei, and Seidel, 1987). 'This approach’ provides

4
Y

oRportunities to incorporate various instructional strategies and.
computer softﬁare techniques in the CAI system design.
C?nventional CAI systems are usually classified into one of
threezcategories (Carboﬁell, 1970a); which are, 1) framg-oriented
drilliPnd—practice and tutoriaf systems, 2) games and
simulations, and‘3).exﬁloratér;‘systems. Generally speaﬁing; the
drill-and-practice a?d tutorial systems are on-line versions of
programmed instruction iﬁ which the interaction with-computer is
strictly detefmiqed, according to a pre-specified branching

logic. Games and simulations typically provide practice ‘on the
v . a
N : ‘ 1

L]



‘activities agsociated with some procedural tasks, such as

~

‘¢

ﬁode1~building and monitoring. Explorqtory systems permit a -

student to experiment with a simulation of the domain and to
léarn-by doiné. Nevertheless, none og these methods approaches
thg instructional task in certain ways possible by skilled hum;n'
‘instructor working with a student and/or a group of students..
This is because, in ponventional computer-aidad instruction,
lessons and interventions are unalterably and detgrministically
coded‘in the bbdy of the prograﬁ. The progrém itself c;ntaiaﬁ

. complete and detailed information about which topics to workt\
with, how to go through them, and which questions or problems to
present: The program designer and/or courseware author attempts
to anticipate seriously wrong responses, and pre-specifies |
branches to appropriate remedial méterial, based upon his or her
ideas about what the underlying misconc;ptions might be th&t
/would cause those wrong resp?nses:~'Thus,'the respongibility for
the choices belongs exclusively to the program designer{ the
computer can fai;hfhlly execute only the élgorithm coded in the
program. This has made'such a style of instru?tion unsuitable
for mahy learning situat;ons, where thg’complexity of
’instructional interventions, material presentation, and
?nstructional decision-making require flexibility aﬂd the
capability for dealing with uhcerfain-or incomplete situations,
an&'non-deterministié search of instructional sequences and/or
operations. - :

Effegtive informal and hﬁman—based approaches to -

fqdividualized instruction rely on the knowledge of subjéct



d?main and of the student’s progress, and on certain

sophisticated instthtional strategies. On the other hand,
conventional computerized approaches rely upon the computer’s
gbilitj to execute a specified algorithm rapidly and reliably,
and upon its abiiities‘to°search a large database quickly for
data elements matching a:speéified pattern and to'present
beautiful muY{i—media animated diséI;;s. The desire to combine+
" some of thé advantages of both éf these approaches has motivated
the/égvelopment of inéeiligent instructional systems.

To overcome-the limitations of conventional CAI’ attempts
have been made sincé Carbonell (1970a; 1970b) introduced . 4
artificial ing;lligence (AI) princibles and techniques to
computef—aided insfruction in his*pioneering papers, and named
the'result:llntelligent Computer-Assisted (or Aided) Instruction
(ICALi. ICAI ;esearch is actually an effort to develop more
powerful:and .accurate adaptive instructional systemé as well as
an effective means for invéstigatiné cognitive learning
principles and instructional'strategies.

Over the bast ten yé;rs, several studies in. the area of ICAI.
have been focused on the coﬁstruction of‘an automated, agaptive
"ihqtructor" that can generate a good uﬁdérstanding of the.
student’s progress toward mastery and use it to tailor the
instructional sequences and/or operaeions to the individual needs
of the stgdent. Typical examples of use of ICAI to perform these
tasks are Brown and Burﬁon’s WEST (1979) and Goldstein,
_Stansfield, and Carr’s WUMPUS (1979). Othe}s‘havé tended to

concentrate.on the development Af domain expertise, such as

~



Stevens and Collins’ WHY (1977) and SCHOLAR (1982), and Brown and

" Burton’s SOPHIE (1982).

-

\ .
Park, Perez, and Seidel (1987) analyzed the weaknesses of
the current development of ICAI sysﬁems and pointed out that:

Most ICAI systems were apparently developed by CAI -
researchers alone without much involvement of

instructional designers (or psychologists) and )

subject matter experts. Because instructional v
issues wdre not the primary concerh~of ICATI

researchers, it was obvious why instructional

psychologists were not included in the development .
teams....- The next generation of ICAI systems ,
should be concerned, in our view, with ’

instructional issues more than computer science or

ATl issues such as specific programming techniques,

software architecture, and so forth. Thus the

firgt task for the development of ICAI systems

should be to construct a comprehensive model of

adaptive instruction in which the contributions of

computer science and instructional psychology-can

be merged (Park, Perez,!and Seidel, 1987).

In general, an ICAI system, being a fully usable.
instructional syst?m, is required to possess the following
features (Carbonell, 1970a; Stevens and Colliné, i9f7, 1982;
Pa?k, Perez, and Seidel, 1987):

1) to have a sufficient model of the subject beihg taught

for the system to follow the main line of the student’s

]
reasoning; . —

2) to determine the underlying knowledge or skill

deficiencies- which lead to the observed responses if the

~

student’'s answers are incorrect or unanticipated; and

3) to select and apply appropriate instructional sequences

-

and/or operations in such ways that they can be adapted to -~

individual needs and lead to effective and/or efficiept

insﬁEuction\by providing tasks and feedback which are

L4



performance-sensitive. - o

These also imply that an-ICAI systeﬁ'should héve at least
three built-in main components; namely, 1) a model of the
difficulty of various problems and the inter-relationships of
instructional maéer%al in the subject domain, 2) a model of the
student’s knowledge with ﬁespect to an expert’s model, and 3) a

strategic and tactical structure for planning instructional

séqdénces and/or operations in the system. As Park, Perez, and
Seidel conclude:

ICAI systems have taken on many forms, but
essentially they have separated the major
components of an instructional system in a way that
allows both the student and the system a
flexibility in the learning environment that
‘closely resembles what actually occurs when student
and teacher sit down one-on-one and attempt to
teach and learn together (Park, Perez, and Seidel,
1987).

]

The model of the subject domain being taught should include
~ not only specific instructional objectives, but also the task %
analyses which indicate the structure of material and the basic|
elements of operations. 1Ideally they should be specified with
such precision that the cémputer program cgn generate task
material and the corresponding solutions (Carbonell, and Collins,
1973). Meanwhile, this component should also“be able to
recogni;e the student’s incorrect responses and to provide
po%sible rationales and explanations for the student’s responses.
The student model component is actually & representation of the
“student’s performance.— This model is used to preaict the

student’s level of understanding and/or to recognize his/her

particular learning style and to enable the system to make

5
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s .

decisions about instructional operations adapted to-learninx.l It
- ghould be updated frequently during the student's interaction
with the system. Finally, the instructional planning component

t~

is a guilt=in representation of instructional strategies and
tactigg hhich will enable ;hg,syefem to carrf on its
instructional planning activities. The outcomes from'ths
process are the instructional decisions which state the

conditions under which the instructional sequences and/or

\ operations should be used with the student during learning.

.



>

S

The Instructional Planning Component for ICAI Systems

As has been mentioned, an ICAI system, to be a powerful and
adaptive instructional system, must have an instructional
planning component. One.wdy to build an effective instructional
"planning component would be to embed instructional strategies in
the system.

N

Any instructional strategy is the translation of a

Al

theoretical position regarding instruction into a statement of
the way in which instruction should be carried out in specific
circumstances. It is a schema of inter-related general
principles, whereas a tactic is a fixgd sequence of steps that
should be performed to achieve a given aim (Romiszowski, 1984).
All instruction must involwe gtrategies. Sometimes a\étrategy
. extends over a number of smail units; sometimes it becomes
gpecific to a particular unit. Regardless of the tiqe span, an
ingtructional strategy.always provides a grand design likely to
attain some broaa instructional objective; Compared with
instructional strategies, instructional sequences are much more
detailed. As Davies (1981) puts it, they are always specified to
fit within a strategic plan. In other words, the instructional

sequences are generated to describe how strategies are

implemented.

The need for embedding instructional strategies in an ICAI
system arises from the following concerns:

1) To achieve instructional objectives, the optimum in &ny
particular case will depend upon a variety of/factors, such as

past learning, stage of development, nature gf the material, and-



{2

'individual differences. Therefore, further-fefinement-of thé
objectives for a tertain instructional sequence must take into
account many other factors, including the content the instruction’
will cover, the time .available for instruction, and the aptifude
of the student for whom the instruction is intended, etc.

2) The domain expert component, as mentioned in Section
l.i, can generate instructional objectives that speéify only
features of the ideal state which the s%udent will approximate
but do not include how far the stﬁdent,will move along the
continuum from the beginning to the end as the result of a
particular course of sequence of instruction.

3) In instruction, there are usually various instructional
sequences that are equivalent 4in their ease,and/or difficulty for
students; there is no unique optimal sequence for all students.

4) Therq\are many different kinds of instructional
strategies that can be structured and represented independently
of the domain kgowledge; the independent structure of
iinstructional strategies in a separate module will facilitate the
pg&cess of ICAI systems development, 'implementation, and
modification (Park, Perez, and Seidel, 1987).

5) Due to the inherent complexity of an instructional
process, an ICAI designer is always prevented from specifying a-
wholly dcceptable a priori solution K (De Jong, 1980); thus it

~would be necessary to adopt an adaptive approach to instruction.

Pask’s exper}ments (1971) have shown in detail some examples

'of adaptive teaching systems, in which the control strategy will

increase the difficulty of the input as a learner learns and

<




becomes increasingly proficient.
7/

6) ‘A cybernetic model of instrudtion can be used to
descripé the process of optimising a sequence of instructional
evenpé in a controlled situation; it is its nature that suggests.
the/neqessity for embedding instructional strategies.

/ Iﬁ a general sense, Mallen {1969) states:
// The appiication of cybernetics to the study of
learning-teaching system begins from the notion
/ ‘that teaching is basically concerned with
/ controlling a learning process.... Contrcl, in the
/ educational context, has a much more general
/ meaning and indicates that mixture of precept, B
/ persuasiop, reason, unreason and understanding....
/ Control of a process demands that the controller
/ ) has a model of the process either implicitly or
/ explicitly (Mallen, 1969).

The above analysis of the need for puilding an instructional
strategic knowledge base in an ICAI system also provides criteria
for the design of ICAI systems+ that is the criteria concerned
with the ability of the systems to manage the learning
effectively and efficiently. However, the problem remained is
how to embed and use such knowledge or how appropriate
instructional tactics can be generated and selected. o

Figure 1 shows a global block diagram of the ICAI system
model. The inter-relationships of the proposed instructional

planning component with other components of ICAI are illustrated

in the diagram.
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Research Objectives

Due to the limitations of currently available knowledge
represgntation techniques, especially the lack of effective megha
for.representing instructional strategic knowledge such as -
heuristics in a ﬁsable form so that particular phenomena can be
taken into acco&ﬁf}>ggg design of an inétructional planning
component becomes a difficult problem confronting ICAIlsystems
designers: This problem may have already hindered the
development of ICAIl systems in a large class of potential
application domains, which may seem highly promising from an
eduéational technologﬁst’s point of view.

In this study, attention was paid to the representatién and
use of instructional strategies, intended as knowledge about the
properties and use of instructional seqhences and/or operations,
in fCAI systems. More particularly, the problem dealt with was
actually how to represent.instructional strategies in such a
manﬁer that appropriate instructional sequences and/or operations
can adaptively and automatically be generated and selected. The
main issue was naturally one of knowledge representation.‘ The -
aim of this study was to develop an effective way of planning
instructional operations based upon vague strategic knowle?ge.
The model for the underlying method draws on_Zadeh’s theories of
fuzzy sets and fuzzy reasoning.

The primary research objective of the séudy was to examine
the feasibility of automating the process of generating
instructional operations and sequences in I%KT systems. This

study considered only instructional situations where the

-

11
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following assumptions can be made:
/
ﬂ) A set of explicit instructional objectives can be given.

2) The progress of individual students towards meeting these

!

objectives can be measured accurately and recorded in the

student-model component.
]

3) The set of possible instructional operations can be

implemented and made explicit. |

In order to achieve the primari objective stated above, the
following secondary objectives were adopted:

1) .to examine the nature of the instructional strategic

~

knowledge;

/ 2) to examine the fundamentals of the repregentation and

!

reasoning technique;
s 3) +to formalize a procedure for representing knowledge;
4) to develop a special-purpose, domain-independent program

fwhich‘will facilitate the representation in which some specific

instructional operations and sequences can be automatically

generated;

J

5) to implement an instructional planning component of ICAI
based upon the technique developed; and
6) to experiment with the designed component and to

. evaluate its execution results.

- ‘

12
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. ' CHAPTER 2

REVIEW OF THE LITERATURE

The Sources of Instructional Strategic Knowledge -

A thebry, according to Hoover (1984), is:
a set of related propositions that suggest why .
events occur in the manner that they dok The

propositions that maké up theories... consist of

concepts’dand linkages or relationships between
them. T )

-k °

This definition im%%?%s a theory with a formal, rather than
narrative, style. There is much in the literatuge cElled
“theory" that is not written in proposition form, and there is
some debate regarding the typeé ana levels of theory. |
Nevertheless, in this study the_digcussion will be,ﬁased upon the
conception of a theory as a statement of propositions which
describe the relationships between various relevant constructs.

A theory can be either very simple‘or extremely complicated.
In its simplest form, a.theory may mean a speculation, a hunch or
an idea, while a-mofe complicated theory may be a synthesis of -
facts, an analysis of a set of variables to demonstrate their
felationships with oné another, or a plabsibie general principle,
using the theory’s antecedent-consequent (cauge and Fffect)
knowledge for prediction bases to explain and predict certain
phenvmena (Verma, i981; Hopkins, 1976). 1In other words, a good
theory of instruction can arise from either research findings, or
‘theoretical factors, or state-of-art considerations, or rational
analysesbof the #sinstructional development process or a blend of

all four (Davis, 1981; Gropperg29974). Accordingly,

instructional theories, by their nature of development, can be

13



classified ihto three main categories. As indicated by some
theorists (Bhattacharya, 1973), they are: )

1) Hypothetical-deductive theories. These theo?ies consist
of gsets of axiomatic statements which aré true by definitioﬁ, and
‘then by logical argument other Qtatements are derived. Many
well-developed instructional theories have this ﬁorm of
logical-deductive character. ”

*2)".Fﬁnctional theories. Such theories‘piace more explicit
emphasis upon observation and data-oriented explanations than
elegant conceétualizations and logical-deductive procedures.

3) Empirical theories. Unlike the deductive theories,

. empirical theor@eé emphasize after-the-fact explanation. Fécts
are egtablished and recognized firét, and theories emerge from a
careful consideration of these facts. These theo;ies may be no
more than summarizing statements aboup concrete observations.
Instructors’ heuristics are usually of this form.

In spite of the fact that much material has been published
on the subject of instructional heurigtics, the concept of
heuristics is interpreted differently by different authors.. Some
authors (Feigenb;hm and Feldman, 1863) understand it as heuristic
activity, and others (Newell, Shaw, and Simon, 1957) as a
specific type of processes. Still others (Miller, Gaianter, and
Pribram, 1960) utilize this term in both senses, depending on‘Ehe
éontext. According to Landa (1976), instructional heuristics are
specific rules of instructions governing actions but not the

actions themselves.

A theory of instruction is usually aimed to solve one or \
\ N

\
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geverai kiﬁds of prdblems. Royer (1986) identifies four
particular typ?g\of instructional problems for which theories.may
‘provide solutions?\these are: 1) problems involving observasle
behaviours: 2) probleﬁs involving the acqﬁisition of basic ‘
information; 3) problems involving the understandihg of complexl
material; and 4) problems involving problem solving. As she
further suggests, cognitiyg:instructional theory is ﬁot-;ell
suited to guide approaches Eo the first two types of problems.
Instead, operant instrudtional?iheory may be well suited as the '
basis. for the development of approaches to- problems involving
many units of elementary observable behaviours; and assoéiative
instructioﬁal theory may bé well suited for developing approaches
to problems involving the acéuisition of basic information. 1In
developing apﬁfoaches fo problems involving understanding and
those invofvihg problem solving and thinking, cogn%Sive -
instructional theory may be very valuable.

It is pointed out by Bruner (1966) that the role of an
instructional t@eory in the dévelopment of instructional
sequences consisits of se?ting forth rules coﬁgerning the most
effective way t?/bchieve knowledge or skills. And it provides.a
yardstick for criticizing or evaluating some particular ways gf

teaching or learning.

As a matter of~fact, many so-called instructional theories
or their combinations do indicate routes that lead to learning -
different routes that, in turn, lead to different types of _\
learning (Lamm, 1976). It is because those instructional

theories explain what must be done, and how, during instruction

_—

15



;( @ ‘ -

that they explicate or imply useful instructional et;ategies -

and/or tactics. In other words, the potential for effectiveness
r

- of alternatlve instructional strategies for the attalnment of

certain 1nstruct10nal objectives can be evaluated in terms of

-

those theories (Davies, 1981). .

In“order'fpr an ICAI system to be capable of having

’ ’ r

alternative instructional étrategies and'tactics, it would be

+

necessary to embed a bbdy of .knowledge e%101ted from

v~ instructional theorles and/or teachers rules of thumb" in that‘

4 . )
system. . .- " , -
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The Characteristics of Instrucfional\Stgategiq Knowledge

A theory of instruction is a unified system of principles
postuléted, definitions postulated, or observations organized in
such a ‘way as to'Q;;t simply explain the inter-relationships
between variables (gpx, 1968). But'in order to achieve plausible
generaiity, the variabled are usually stated ﬁ% very zenefal;
often vague, and even ambiguous terms.

Stating instructional theories with generality is
particularly advocated by.some instructional theorists such as
Bruner (1966) and Hartel, Walberg, and Weinstein (1983).

- According to them, theories should set up criteria and state the

conditions for meeting them, and the griteria and conditions

2

-

should have a high degree of generality. Thus the explanations
are offered as applicable to any instructional setting, '
regardless of age level, of subject mgtter, or of learging
climate, etc. As a conseqﬁenPe, the st;ategic knowledge derived

. from those theories and/or teachers' heuristics will ultimately
be -very éeneral and.vague.' ,

In instructional planning, once a basic strategy has been
determined, deéigning instruction consists, to a great extent, of
conbining specific ways of presenting questions and éontent.
These presentation decisions can be grouped under "tacticﬁ" and
"form". The difference between strategies and tactics, as
_Romiszowski (1984) points"out, lies not only in size but also in

'specificity. 5

But, because of the generality of instructional strategies,

one will inevitably be confronted with a very difficult problem

17



when representing the strapegiesAin an ICAI system. This:is the
proble@ associated with the evaluation of criteria and
conditions. As Boyd (1971) points out, many instructional
situations are too specific to be deduced from'kéneral
experimental results or theories, bec;use df the lack of well .
formulated compilations of research results from lgarning
péychology. The problem of non;identical assessmeﬂt an@
treatment of a great number ‘of phenomena 1ies not only in the

absence of some spe01flc prescrlptlon for the spe01f103t10n of

criteria and condltlons, but also in the fact that often . these

criteria and conditions, if they are indicated, are difficult or

perhaps even impossible to make absolu?ely unambiguous or

accurate. The problem of vagueness encompasses as follows:
1) The vagueness of antecedents and consequents in the

strafegies prevents one from directly suggesting detailed .

tactical instructional procedures and/or operations. A vague

- term is usually one referring to a quality or property that

things méy have in varying de§rees. It lacks precise limits
(i.e., to a poorly bounded set). - _

2) Because of their vague'nature,,the propositions in the
strategies may also become ambiguous when inference is performed

on them., A proposition is defined to be ambiguous if it receives

more than one meaning. The ambiguity in a chain of reasoning is

a subtle form of ambiguity (Green, 1971). Such a chain of
reasoning or argument frequently requires one to interpret ébterm
first in one sense and later in another, and therefdre, it

b} , “.
succeeds in leading one to its conclusion only if he or she is,

18
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seduced into overlookiﬁg the ambiguity.
3) The vagueness‘of the prbpositions and/or implications

also prevents oqe)from using iﬁ?érence; for obtaining an answer

to a particular qﬁestion. More specifically, if an observed

' state of condition does not match exactl§ the anteceden@ of aﬂy

rﬁle, but matches\partially the antecedents of two or more rules

whicg may be partially inconsistent, then one will have no

correctllogical way to determine how the partially matched rules

should bé\executedn .

As has been clarified earlier, ICAI éystems are

. distinéuiﬂied from coqventiongquAI systems by the separation of
o

insttuctiohal strategies from detailed instructional-sequences

ana/og/ope;aéidns: The insgructional strategic knowledge tofbé
fhsed-to g;iae a basic non*&e@erministic sequenée selection, as
has been,exémined‘here, qaﬁ be very general or vague. Such
kgowledge does not contain the specification about instructional
sequences 6rkgperat}oﬁs in such a way as to make it
deterministic¢c. However it may arrange a set of possible choices-
and encode information about selection, ofganization. and
scheduling of the operations to be performed. 1In order to
understand them,,it would require some effective ways of
representation and reasoning.

inference is fuﬁdameﬁtally concerned with the zéneration of
theories and hypotheéeé that go beyond éhose originally given Ar
assumed. In the processes of planning and decision-making, the

. }

'information_that is usually available initially is less than that

required for satisfactory judgement. Hence, inference is an .
' k ) ; ¢
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essential activity for the systems intended to assist in the - //

-judgement process, ° A definitive conclusion must be produced by’

1}

.means of a chain of inferences using a sequence of connections
, and it mus

t be weighed with a reliability coefficient. 1In fact, °
reasoning about how to devise '‘suitable problem-solving‘3trategies
qnd tactics, and about how to dynamicgiiy evaluate and 'improve

system performance are among the basic capabilities of any

intelligent system.

w2
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The Nature of Vagueness

Some people such as Zadeh (1977) have used the word

"vagueness" to designate the kind ofLuncertainty which is both

A Y

due to fuzziness and ambiguity, but here we will use it to refer

to only "fuzziness". Black (1937) gives a clarification of the
meaning ' of "vagueness" as he distinguishes it, from "ambiguity".
Ambiguity refers to the association of a finite number of
alternative meanings having the same phonetic form. Vagueness or
fuzziness, on the other hand, lies in the lack of well-defined
boundaries of the set of objests to which the symbol applies.

It is a feature of our use of a vague concept such as "good
understanding" that there exists'a difficulty in finding a
déterminate point at which a transition from clear céses to a
borderline case occurg. The occurrence of vague expressions
testifies to the existence of a continuum of qualities and
dispositions and.also to the absence of fixed habits of
discrimination between segments of such continuum (Negoita,
1985).

A vagae term is non-exhaustive or open-textured since one
can never fill all the possible gaps through which a doubt may
seep in. Thus the definitions of vague terms are always
correctable or amendable. Open texture, according to Negoita
(1985), is a fundamental characteristic of most empirical
concepts, and this texture prevents us from Qerifying most
empirical statements conclusively'since we cannot foreseg

completely all possible conditions under which they could be

used. There will always remain a margin of uncertainty. Due to

21
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gge open texture of the .term "better understanding", the
statement "He haska better understanding"” qannot be reduced to a
conjunction or digjunction of statements that specify the ways
one would behave in certain circumstances.

The Yagdeness'characterizing instructional strategic
knowledge may result from imprecise measures concerning
quantified criteria, from subjective factors in human knowledge
or empirical theories, or from the impossibility of obtaining al]
the information about some aspect of the studied phenomena. So,
i£ is inevitable that many of the f;cts and implications to be
represented in ICAI systems do actually contain fuzzy predicateé
and ‘thus are fuzzy propositions.

In the existing intelligent systems, the fuzziness of the
knowledge base is usually ignored because neither predicate logic
nor probability-based representation techniques can provide a
systematié.basis fo? dealing with it (Zadeh, 1973). As a
consequence, fuzzy faqts and rules are manipulated as if they
were nonfuzzy, leading to conclusions whose validity is open to
question. In the existing ICAI systems, for example, the
eyaluation of a student’s performance is usualiy dependent on the
analysis of his or her resgponse to a given question or to a.
gseries of similar questions. This response-specific evaluation
will not be appropriate for measuring the student’s overall
performance on the tagk because tbe response evaluation is
limited to a specific (and frequently very small) aspect of the
task. These systems, as Park, Perez, and Seidel (1987) indicate,

<

have ignored many potentially important student variables in the
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diagnostic and prescriptive process by relying solely on the
student’s response (or resp&hse pattern) to a given question
type. A powerful ICAI system should include important learner
variables in the student-model. ‘

Fuzziness is not a matter of aesthetics; it is an
unavoid;ble feature of most human~-involved systems and it must be
dealt with aé such (Dubois and Prade, 1980). There are several
reasons for making use of fuzziness, which are:

1) Much of the time, measures or indices of students’
levels of knowledge or understanding can be obtained only in a
~rather vaéué way because of the nature (convenience and cost) of

-
the measurement undertaken. °

L e

2) By uging vague information, if hascbecome possible to -
consider simultaneously information from more than one
observation (an ability shared with production rule syséems)
(Whalen and gcﬁott, 1581). '

'3) Vague information baséa systems will not insist on
making a definite deéision at each point. They can put uﬁ with
partial information, at least temporarily, and wait until more
confirmatory iqformation is obtained (Goguen, 1975; Whalen and
Schott, 1981).

4) If the size of a database is limited, phgn criteria for
inclpding a data item maybe both arbitrary and fuzzy. In
general, decision algorithms based on completeness and working to,
. satisfy crisp criteria are often too long and too slow in

executions to be practical.

5) Finally the inexactness of description is not a

23
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liability; on the contrary, it is sufficient (Goguen, 1975). The
sufficient information can be conveyed with'less ffort. 8o,
approximately treated inexactness makes far greater efficiency.

"It is an attempt to lay foundations for 'applying uzziness in

9

highly practical problems of control and communicdtion. The

'

content1on is thg;/fuzziness, rather than being a rpblem, can be
ol %

vegz/psefﬁ/nln practical situations. It is not just that

fuzziness. is easier for humans beln;ﬁ

T
! ‘

0 use {(the w jpy they

usually descr1be processes),,but it is actually morne efflcient

for the'computer too. h
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Theory of Fuzzy Sets

In order to cope with vagueness in human language, Zadeh
proposed, in his now classic papers (1965; 1973), a theory of

fuzzy sets. More importantly, he formulated a theory of fuzzy or

apprdximate reasoning which can provide a basis for reasoning and

-~
deduction under vagueness.

The basic idea behin& tga theory of fuzzy sets is that one
has to model difectly the intuition of a dispersive priﬁe
proposition or of the existence of borderline cases. According
to Zadeh, the notion of "meaning" is formalized by equating it
with a fuzéy set on a universe of discourse generated by a kergel
space. A kernel space K can be any prescribed set of objects or
constructs. ~If we let E be a set that contains K and which is
generatedlfrom K by a finite application of the operations§of
union, Cartesian product, and collection of fuzzy sets, thgnwa
universe of discourse U is a designated, not necessarily prbper,
_subset of E. -

+ It would be very important to understand the concept of
possibility, for there is a close relation between fuzziness and
possibility. To illustrate‘this concept, let us first consider
initially a simple non-fuzzy proposition p such as

P = the student’s understanding is at level X regarding
the sgbject, where X is an integer within the interval
[o, 10].

Clearly, what this proposition asserts is that 1) it is

possibletfnr any level (an integer) in the intelval {0, 10] to be

a value of gpe variable X, and 2) it is not possible for any

25



number outside of this interval to be a value of X. Now, let us

~a—
-

reword this assertionm in a form that admits of extension to fuzzy
propositiohs. More specifically, in the absence of any
information regarding X other than that conveyed by p, we shall
assert that: p induces a possibility distribution IIx which
associates with eaéh integer u in [0, 10]. Thus,

Poss {X = u) =,1; for 0 { u £ 10

and.

Poss {X u} = 0, for uﬁ( 0, oru > 10

. /
where' Pogss {X = u} is an abbreviation for "The possibility that X
may assume the value u." For the proposition in question, the
possibility distribution IIx is uniform in the sense that the

possibility-values are equal to unity for u in [0, 10] and zero

elsewhere.

4

We now consider a propogition q, which is a fuzzified

version of p, namely, ‘
. q = [ the student has a good understanding of the subject ]
oF q=1[ X is high ]
where "high" or "good understan@ing“ is the label of a fu;zy set
defined by, say, ‘

high = 0.01/1 + 0.5/2 + 0.7/3 + 0.85/4 + 1/5 + 1/6
in which + denotes the union rather than the arithmetic sum and a
fuzzy singleton of the form 0.7/3 signifies that the grade of
membership of the level 3 in the fuzzy set high - or,
equivalently, the compatibility of 3 with high - is 0.7.

At this point, we are able to formulate what has been called

the possibility postulate, which is used as a basis for
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interpretation of fuzzy propositions.

~

The postulate is stated as

follows;

If X is a variable which takes values in U, and F is a fuzzy
\

set of U, then the propositi n
q=1[Xis F ]
induces a possibility distribution IIx which is equal to F,. i.e.,

IIx = F

u} = q}(u),. u is in U

< ' 1
U ~~> [0, 1] is the membership function of F, and

imp%ying that

Poss {X =
where uf :
uf(u) is tﬂe grade of membership of u in F, -In essence, theﬁ;
the possibility distribution of X is a fuzzy set which servés to’
define the boasibility that X could assume any specified value u

in U. Since it depends on the definition of F, the possibility

distribution will be quely subjecti#e'in nature. )

‘Here the variable X is defined as a fuzzy variable whose .
vélue is a fuzzy set of a univefse of discourse. A fuzzy set is
commonly represented as a vector in which the valﬁe of each .
element gives thé degree to which'the corresponding member of
universe of discoprse belongs to the fuzzy set which is the value .
of the fuzzy variable. X is called a linguistic fuzzy variable
if each possible fuzzy set in the domain of the variable has a
name generated by the syntax of a quasi-natural language.

The value of a fuzzy variable can also be defined
appropriately as a table, a numﬁer array, or a vector that

specifies the elements both in the domain, or as a function that

generates the tables, number arrays, or vectors, or as a function

-
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* with some pafameters that creates number arrays, vectors, or
tables. What we may be interested in is how to define an
operapional proceddre leading to a number that, over a
poﬁulatidn, is isotonically related to the gr;de of mémbership.
For if this can be &one. we will then have a clear interpretation
or measure that corresponds to the concept and which m;y itself
have further properties that make the measuring scale more
tractable.

Precise membership values do not exist by
themselves, they are tendency indices that are
subjectively assigned by an individual or a

group. Moreover, they are context-dependent
(Dubois and Prade, 1980).

It is worth noticing that although fuzzy sets fﬁeory is
capable of Aealing with grades or degrees of set membership; the
memﬁership\function is not a primiti;e concept from a
psychological point of view. A membership value is generaliy not
absolutely defined; take fof example the concept of "good
understanding", how one perceives the student’s degree of
understanding will depend upon what one's own degree of
understanding is. Therefore, the membership function itself is
fuzzy; as soon as it has an appropriate "shape", it can be
considered a satisfactory approximation to the actua} meaning.
The problem of préctical estimation gf membership functions
has not.been systematically studied in the literature.
Nevertheless, some idéqé and methods have been suggested by I
several ;utgors, such as the method of exemplification‘

According to Zadeh (i972), the definition of a fuzzy set by

exemplification is ,an extension of the familiar linguistic notion

s
1
v
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of extensive definition. If U is a universe of objects and A is

the name of a fuzzy set on U, then ua can be estimated from
partial informétion about it, such as tﬁe values that ua takes as
a finite number of samples in U. .

The appropriateness of applying the concept of- fuzzy sets to
the modeling of natural linguistic propositions and reasoning is
partly proved by Kochen’s study (1975). 1In his.study, the’
general population was divided into a number of disjbint classes,
three of which were "estimators", "thresholders", and
"reliables"., When confronted with a task like stating how e
strongly they believe that "X is a lafge number" (for various
xalues of Xf, "estimators" gauge their strength of belief . -
according to how large they think X is, "thresholdera".o;ly
according to whether or not X is above an internal threshold; and
"reliables"” reply either in the e#tremes (agree strongly or
disagree strongly) or not at all. Kochen'’s work leads him £o the

conclusion that

"Fuzzy set theory applied to psychology might be .
interpreted to suggest the general hypotheses that -
most people are "estimators" rather than -

"thresholders" or “reliables."... On the whole,

fuzzy set theory does seem appropriate for

conceptualizing certain aspects of the behaviour of

perhaps half the population (the "estimators")

(Kochen, 1975). _ '

Moreover, a fuzzy set representation of vague concepts is& )
not only in accordance'with the psychological studies of the way
people use natural language expressions (Hersh and Caramazza,
1976), but also entirely compatible with the cur}e;tly accepted

_ psychological theories for .the inner workipfs of-sgmantic memory

({Collins and Loftus, 1975).
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Dummett's (1978) remark is clarifying:

B . v -~
We feel tﬁ:it certain concepts. are ineradicably
vague....to take vagueness seriously is to
suppose that a vague expression may have a
completely specified, albeit vague, sense.
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Fuzzy Propositions and/or Implications

Informally, by approximate or, equivalently, fuzzy
reasoning we mean the process or processes by which
a possibly imprecise conclusion is deduced from a
ollection of imprecise premises. Such reasoning
1s, for the most part, qualitative rather than
quantitative in nature and almost all of it falls
outside of the domain of applicability of classical
logic (Zadeh, 1979).

In Zadeh’s theory of fuzzy reasoning, there are two
principal cbmponenté; namely, a2 translation system for ) K\
representing ;he "meaning” of fuzzy values in a proposition, and |
an inferential system for obtaining an answer to a queétign that
relates to the information accumulated in fhe fuzzy knowledge
base,_and which contains as special cases the traditional
two-valued as well as multi-valued logics. The former has been
partiaily discuséed in' the previous section. The ongoing
’ pafagraphs will be focused on the latter.
‘Before we address the issue of %uzzy reasoning, we will
first discuss '-the kinds of fuzzy propositions and/or implications
to which Zadeh’s fuzzy logic can be applied and the kinds Qe.are
going to consider. ‘
Primarily, there are four types of propgsitions and/or
imﬁlications that can be used in fuzzy reasoning (Zadeh, 1975;
1981). 1In what follows we will consider them one by one and
represent them in canonical form. Exambles are included:
:\*\(1) An unconditional, unqualified p;c;poeition. ~\
éénonical form: X is F, where X is a fuzzy linguistic

\,

variable ‘and F is a fuzzy predicate or linguistic value (i.e., a

fuzzy set of the domain of X).

c'fxample: The tutoring tactics (X) should be implicit (F).
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(2) An unconditional, qualified proposition;

Caponical form 1: [ X'is F ] is a, where X is a linguistic

variable, F is a fuzzy'predicgte and a is a fuzzy probaoility

(1]

such as "sort of true", and possible".

a

Canonical form 2: Qxfs are F's, where'Q is a fuzzy.‘ .
quantifier and F‘ié a fuzzy setnof the ﬁniverse of discourse.
‘ Example 1: It is very likely (A) that the student (X) will
have good outcomes (F).
Example 2: Moot of the .time (Q), the student (X) is doing

very well (F).

*

(3) A conditional, unqualified ﬁrdposition.
Canonical form: If X is F then Y is G, where X, and Y are
linguistic variables and F and G are fozzy predicates.

" Example: If the student’s understanding (X) is at elementary

]

ievel (F), then the material presentation (Y) should be made very

explicit (G).

(4) A conditional, qualified proposition.

\

Canonical form: If X is F then [ Y is G ] is a where X and Y
are linguistic variables, F and G;are'fuzzy predicates and a is a
fuzzy probability. ‘ '

Example: If toe material (X) is too difficulé (F), then it

is very likely (a) that the*?aterial presented (X) will ‘not be

very helpful (G).
In the present study, only the fuzzy propositions or

implications of type (3) and (4) were considered. This is simply

1

because:

1) Most of instructional strategieé to be represented in

S0
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intelligent CAI systems are of these two types; and

¢

. 2) In particular, many of the rules of tépe (4) are

dispositipns, that is, propositions with implicit fuzzy

quantifiers. Dispositions play an especially impoftaq} role in

the representation of - and inference from - common-sense

knowledge. - ' , ‘

<
- [
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Fuzzy Production Rule Systems

D

Fuzzy implications, ﬁf/9ent10ned in the previous section,
are actually a particular type of productlon rules in production

systems (Whalen and Schott, 1981). Such production rules are

)

stated in some natural form as the rules of a‘classical

production system. The production system uses a database of

v

fuzzy or linguistic variables, each of which takes as its values

/

fuzzy sets of some particular universe of discourse. A
production system is primarily an executable formalism for the
representation of knowledge; it hgs been considered as a powérfﬁl
tool for representing human ﬁnowledge in computers because of its
highly modular nature (Waterman, 1977; Zadeh, 19@5; Davisg, 1982).
f"’I‘he-advantages of production system representation over other
complex \representations or extensive deciéion tables have been
concisely summarized by Michie (1982) in his'concept of the
"human window". As he states, in any highly complex problem
afea, a system writteﬁAin conventional computer programming
structures will grow to be too complicated for any single human
being (even the program developer) to comprehend in’its totality.
* The execution trace of the system will be too involved and
détailed to follow except through a very difficult and tedious
e effort. Since the production rgles within a productioh system
are cast in a common, versatile IF-THEN format and interact only
through a database, they gre~easier to comprehend and to add new
rules or to modify old ones, compared- to other computer

programming structures.

The inference mechanism in a production system is a rule
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/(M”::z;:;;gz;;\that applies the rules in the data base to particular

cases, This apbroach to generating new information is deductive.

At any point in the-deductive process, the rule interpreter

.
“

selects which rule to evaluate. There gre two ﬁajor modes of
’operation possible for é rulg interpreter: 1) the
aptegedent—driven or data-driven and 2) the conseqdént-driven 6r
goal-driven. In antécedent-driven mode, all availablé data are
presented t6 the system initially and the system draws all thé
apprdpriate conclusions it can from fhose data. The occurrence
of one or more anpeceéents triggers the application of a rule to
infer its consequents. - In consequent—ariven mode, the rule
interpreter, in aftemptinﬁ to establish a certain fact, examines
ﬁhe IF clauses of"the rules in the knowledge base in order to
.determiné what data are needed to achieve the system objective,

" then tries to verify them by confirming that the antecedents are
in the database, in the THEN clauses of other rules or

interactively from the system user. _

The two common control strategies for rule inﬁerpretérs must
be used appropriately in different situations. The strengtﬁ and
weakness of them have beén noted by many practitioners. 'Davis

\and King (1977) ;ndicate that the gptecedent-driven mode is
conéeptually simpler and easier to implement; therefore, it, is
abpropriaté fer applications‘in which all the‘relevant data are
available at once. The goal-directed méde"haa advantages of
speed. 1ts operation is particularly necessary when data which

are potentially, but not necessarily, imporfant are difficult or

costly to specify, such as the medical diagnos tdiygst data used
« : X
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The Advantages of Using Fugzy Production Ru{e Systems

The advantages of employing fuzzy production systems, i.e.,
production systems built on fuzzy logic, can be summarized as
follows:

1) Most of the rules represented for duaiitative knowledge
are of the fuzzy produc%ion type. 1In particular, many of thé 1
rules are dispositions, that is, implications with implicit fuziy
quantifiers. A fuzz§ production system is suitable for
representing conditions for aqfions.

’2{ "Fuzzy production rules are comprehensive "chunks" of
kgowledée. The rules are composed of elements that are
conceptual primitives and require no further d?composiqion to be
understo;d; they provide a simple and transparent structure. )

‘ 3) The fuzzy pro&uction rules are amenable to automatic
manipulation (O’Shea, 1979).

4) The gene;al taék of deduction is one that fits quite

well into the condition-action charactér of fuzzy production

-

rules.



linguistic truth-value. The truth-value, t, plays an important

Translation Rules - T

In order to perform ieasoning under vagueness, with the
propositions similar to "X is A" or "If X is A, thén [ Y is B ]
is a", we need transiation rules, so as to quel the propoéi%ﬁons
as their associated possibility distributions. Thus éhe rules of
inference can be applied to deduce new possibility distributions.

In Zadeh's theory of fuzzy reasoning, there are four sets of’\-
translation rules proposed to deal with the four types of fuzzy
prqpositions or implications (Zadeh, 1973). By translation rules
is meant a set of ruleg that can yiéld the translation of a
modified composite proposition from the translations of its
constituents. For each ﬂype of qualified fuzzy propositions,
there are three different kinds of fugzy "qualifiers™ that have
been considered to be particularly useful ip approximate
&eaéoning; they are 1) linguistic truth-values, as in "p is very
ﬁrue", 2) iinguistic‘possibility-values, as in "p is possibleY, -
and 3) linguistic probability-values, as in "p is quite likely",
where p is a fuzz% proposition.

Here we describe only the translatién rule related to tru#h
qualification, since this rule was used in the later ”
implementation study. ]

A truth-qualified version of a proposition such as "X is A"

is a proposition expressed as "[ X is A ] is t" where t is a

role*in modifying the "meaning" of the proposition. According to
fuzzy logic, the truth-value of a proposition, p, is defined as

the compatibility of a reference proposition r with p. More T —

\

38




specifically
- p=1[ X is F ]
~where F is A subset of U Ehd r is.a reference pn%féi}tion of tpe
form:
r=[X1is G ].

To use the definition as a basis for the translation of
truth-qualified propositions,(Zadeh suggests that‘the following
postulate should be adopted, that is,4a truth-qualified
proposition of the form "p is t" is semantically equ;valent to'
the r;ference propbsition.r.

If \

q.= [ pis't ]

where t is a linguistic truth—#alue, such as "true" and "maybe

trﬁe". Since q is semantically equivalent to the reference

proposition r we will have - ‘
[XisF ] it <==5 X is @

where F, G and t can be proven to be related by ‘ -

— | t = uf(G) '

wﬁere uf is the membership function of F.

Consequgntly‘(Zadeh, 1565; 1981), the expression for the
membership funciion of G in terms of those of t and F is given b&

ug(u) = ut(uf(u)).

Bylusiﬁg this result, we can state the translation rule for
truth qualification as foilows:

If

. Nis F == IIx=PF

phen



o [ Nis F ) is t =) IIx = F?
i . - ‘
where -

i o o uf’(u) = ’ﬁt(uf(uf}.
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The Infere?ces from Fuzzy Propositions and[of Impliégtiggg
Inference can generate judgement and hypotheses that go
beyond originpl facts and rules. Since in instructigonal planning
and decision-making, the information that is usually available

initﬁally may be less than that requiréd for satisfactory
performance, it would be necessary to emp}oy a chain of
inferences to facilitate the planning process. '

Zadeh (1975; '1985) describes three general inference
principIes that a?e particularly useful for peiforqing deductions
with fuzzy prpduction rule systems. Although the principles are-
often used in sequeﬁ;é, a combination that involves an
application of the particularization/conjunction principle
followed py that of the projection principle is particularly
effective. Thi; combination has been referred to as the
compositional rule of inference (Zadeh, 1973). It includes as a
special case a generalization of the modus ponens.  The
compositional rulé& of inference can be stated in the following

~y

schematic form: .

—~—

p ==> II(X) = F
q ==> II(X,Y) = G
o _ R d== 1II(Y) = F*Q

where X and Y take values in U and V, respective}y; P is a fuzzy
set of U, G is'a fuzzy set of the Cartesian product of U and V,
and F ¥ G is the composition of F and G.

The compositional rule of inference, as proposed by Zadeh,
provides us with ; basis for conducting fuzzy or approiimate

reasoning for the purpose of inferences from fuzzy propositions

o
f
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and/or implications. It is particularly useful when the
variables involved in the premises range over finite sets or can
be approximated By fuzzy variables ranging/ over such set;.

Sl
. The main ?ﬁ"ﬁures'of fuzzy reasoning, which are relevant to

1

, \
. the management and use of vagueness, are as fo\l‘lows:

|
1) Truth-values are allowed to range over the fuzzy subsets

{

|
of T. For example, if T is the unit interval, (then a truth-value
in

' * .
fuzzy logic, e.g., "very true", may be }interpreted as a fuzzy
’ i

i ’»
subset of the unit interval which defines §the possibility .
t

distribution assoc’iated' with the truth—val‘\_ue in question.

2). The predicates used can be crisp br,- more generally,

!
v

fuzzy. : ' .
: E) . {
3) In fuzzy reasoning, the use of fuzzy quantifiers in

propositions is allowed. The quantifiers may be interpreted as
\

.fuzzy numbers which provide an imprecise characterization of the

¥

cardina’lity of ohe or more fuzzy or'noﬁfuzzy‘}sets. In this
perspective, the fuzzy quantifiers can be used' to modify the
"meaning" of fuzzy propositions. Therefore they are very useful
in modeling wvague instructional strategic knowledge.

4) The logic underlying fuzzy reasoning provides a method
for representing the meaning of both nonfuzzy and fuzzy

predicate-modifiers. |

/




CHAPTER 3 ; o

RESEARCH METHOD ' ’ i

The Procedure for Generatiqg and Selecting -

Instructional Decisions

The preceding discussion has actually suggested a model for

.

vague strategic-knowledge based instructional planning, which is

3

built on the concepts of fuzzy set and fdzzy reasoning. This
model is intended to deal with the vagueness or uncertainty of
the propositions so that the fuzzy propositions the inferences

from them can be specified and understood in terms of E

(23 N
A

corresponding instructional sequences and/or operations. The

procedure for representing vague strategic knowledge and
> .
generating specific instructional decisions can be stated as

’

follows: ‘ .
1) \Translate each proposition and/or implication elicited

from the instructional stratj?ip kno;ledze into one of the’

following two types of fuzay production rules, which.are:

Q

a) A conditional, unqualified proposition whose,cgnonical

>

]

form is: if X is F, then Y is G, where X and Y are fuzzy

variables and F and G are fuzzy prediéhtes; or

b) A conditional, qualified propgsition which has the
éanonical form of if X is F, then [. Y i8 G ] 15'&, where X and Y
are fuzzy linguistics variables, F and G are fuzzy predicates,

and k is a fuzzy probability. . -

o

2) Represent the predicapes of the propoéflions or

implications as non-crisp denotations and the exﬁlicit’and -

implicit modifiers as fuzzy or linguistic modifiers. / ' C

4

°
b
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3) Specify the "universes of discourse" and the base values

of linguistic variables defined on them, such as the alternative

. instructional operations for certain‘instruct{onal interventions

and thg important variables involved in a student model. Model

the linguistic values by fuzzy sets.

4) Perform fuzzy reasoning, for the purposeé of inference

and deduction, by applying a combination of the fuzzy inference

principles.

f 5) Set a threshold and select

©

the base values froﬁ the

fuzzy set outcomes, whose grades of Mmemberships are greater than

the threshold. - Make instructional decisions.

6) ’Activate’corresponding instructional operations.

Thus, , by postulating the "meanings" of fuzzy or linguistic

terms and by applying the pr1n01ples of fuzzy loglc, we are able

to represent and perform inferences

and/or implications.

ftom vague propositions

It was hypothesized in this study that the proposed
!

representation and reasoning technique would not only enable .the -

instructional planning component of
instructional decisions in relation
teaching situations, but would also

the conditions of antecedents which

ICAI to suggest particular
to particular learning or
make inference possible .under

are only partially matched.

The situation of the instructional planning component in an ICAL

¢
system has been shown in Figure 1.

In order to perform the above operations, a special-purpose

program which enables the representation of vague instructional

strategies and reasoning under vagueness would be required.:  The

44
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_following sections present in detail the implementation of this
3 . : . . s
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The Implementation of a Special-Purpose Program for

Building Instructional Planning Components
The objéctive of this implementation was to develop a
special-purpgse, domain-independent computer program based on the
mechanigm revealed from the representafﬁon and reasoning
technique formulated before. Itlwas expected that from this

design, the feasibility of the technique could be appraised. To

insure that the objective can be achieved, the following

.sub-objectives were sget up:

1) to create an accessible database whiph will facilitate

s

the establishment of the "meanings" of linguistic values;
2) to create an accessible database which will facilitate

the estabiishment of fuzzy production rule systems;

——

3) to develop a module that can accept the initialization

of linguistic variables in fuzzy production rule systems and will

put them equal to'appropriate fuzzy sets;

o

4) to develop a module which is capable of interpretiné the

input fuzzy pgroduction rules, by separating their antecedents and

consequents /and associating the involved linguistic values with

a

appropriate fuzzy sets; -

5) to develop a gechanism which will realize approxima£e
geasoning based upon fuzzy inference principles; and

6) to develop a module which can label a fuzzy set with a
corresponéing linguistic'valde, i.e., reverse translation for
explanatory purposes.

The above sub-objectives indicate the most essential modules

in the program. The realization of expected function of the

46
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ﬁrogpam would heavily rely on the operation of eéch individual
"module.
. It ;hould‘be clearly noted that.the'mhiﬂ purpose for
implementing such a program was to demonstrate and test the
proposed model of stratqgiq'knowiédze bagea‘instructional
‘planning. Therefore, the choice; of computer'prozraﬁming
language and programming stylﬁp were not the major concerns of
the design aﬁh those used may ﬂot be applicable to the

implementation of a program for end-user.

. - - - ————



An Overview of the Program

The sub-objectives, as stated earlier, have act%al;y
indicated the most essential modules of the program and their
expected operations. Therefore, if'based on the procedure for
the representaﬁion of instructional strategies as well as the
gene?ation and selection of instructional sequeﬂces and/or
operations, the organizétion of the program and its execuﬁién
process should be quite obvious (see Figure 2.).

Each module in the program was coded as a turbo-PASCAL
procedure or function. Detaiis on those modules are included in
Appendix A, In what'folgows the main functions of the modules
are briefly described.

The rule interpreting function in th;\brpgrdm is performed
by the module hamed SEPARATE, “which accepts and recognizes each
input fuzzy production rule,'and prepares it for further fu;zy
.sets assignment based upon the linguistic values used.‘ The
assignment function is carried out by modules REVERSE and
REVERSET. The main functions of REVERSE and REVERSET are quite
gimilar. They both take linguistic values as inputs and assign,
or set them equal to, appropriate fuzzy sets. The only
difference between them i; that the former is concerned with only
linguistic predicateg rather than with fuzzy truth-values (such
as "very true", "maybe trde", “"rather true", and "not true",
etc.). ’ ‘

When building an instructionai planning component, one can

directly define in module SUB2 all the fuzzy sets except those

for the truth-values. This module provides certain flexibility
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specification:

Current state
of ICAI and
student

-

E

’

Instructional strategic
knowledge-base building: Input
of fuzzy production rules

Definition
of the
linguistic
values to
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!

SEPARATE

v
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REVERSE REVERSE% .

v y
Y

EQUIVAL

Linguistic
value output
to provide

explanations
-

’

Figure 2.

REPRESENTATION

.

Fuzzy subset output
. to control instructional
.operations

Modules of a program designed for
building the instructional
planning component of ICAI systems



for assigning the grades of memberships. ‘But, as indicated
earlier, each value of those membershi; functions is subjective
in nature. The function of module SUB2 can be illustrated as
follows:

PLEASE ENTER THE NAME OF LINGUISTIC VALUE... 1
/ knowing a general rule .

ENTER THE NAME OF MEMBER NO.1 IN THE FUZZY SET...

/ has not identified one or many factors that are relevant
to a particular value on the dependent variable in the rule
ENTER THE POSSIBILITY OF THE MEMBER...

/ 0

ENTER THE NAME OF MEMBER NO.2 IN THE FUZZY SET...

/has not identified a factor that sufficient for a
particular value of dependent variable in the rule

ENTER THE POSSIBILITY OF THE MEMBER...

/ 0.01 ’

ENTER THE NAME OF MEMBER NO.3 IN THE FUZZY SET... :
/proposed a rule and made prediction based on one or more
irrelevant factors

ENTER THE POSSIBILITY OF THE MEMBER...

/ 0.2

ENTER THE NAME OF MEMBER NO.4 IN THE FUZZY SET...
/explained the value of dependent variable with one
incorrect value of the factors

ENTER THE POSSIBILITY OF THE MEMBER

/ 0.6 :

Prior to fuzzy reasoning, the program will generate the
semantic équivalent statements for those qualified fuzzy
propositions and/or implications. This is best done by the
module named EQUIVAL, which is based upon the translation rule,
as has been examined in Chapter 2. The main function of EQUIVAL
ig illustrated by the following printout:

THE INPUT FUZZY PROPOSITION IS:

IT IS true THAT the student’s understanding IS poor

WHERE true IS DEFINED BY THE MEMBERSHIP S-SHAPED FUNCTION,

AND poor IS DEFINED BY THE INPUT MEMBERSHIP FUNCTION

poss {u=ml) = 1, poss {u=m2) = 0.7, poss (u=m3) = 0.5,

poss {u=m4} = 0.
THE BASE VALUES ARE:

ml = has not identified one or many factors,

m2 = has not identified one sufficient factor,

m3 = proposed the rule but made incorrect prediction,
m4 =

explained the rule based on incorrect val?es of

i
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factors.

In the present program, the truth-values were directly
defined in the REVERSET module, but they can also be altered by
the designer. The membérship function selected here for the
possibility distribution is a S-shaped function with three
changeable parameters. This function has been proven to be a
good approximation for the fuzzy sets of truth-values (Zadeh
1981). ' The specified parameters are somewhat similar to those
that are commonly accepted as revealed in the literature (Zadeh
1975; 1981). But of course this function may not be the best
representation for the grades of membership since the definition
of 4 membership function is quite subjective in ndéhgs;\ The
S-shaped function is depicted in Figure 3.

The most essential module of the program to perform the
inference from fuzzy propositions and/or implications is module
MAXMIN. This module realizes the approximate linguistic )
reasoning as discussed in the previous sections. For example,
the following conclusion is produced from imprecise premise by
MAXMIN:

PREMISE:
(A) IF LEARNER’S KNOWLEDGE OF THE PRINCIPLE
IS fair THEN DEMONSTRATION IS sort of useful,
(B) LEARNER'S KNOWLEDGE OF THE PRINCIPLE 18 very poor.
CONCLUSION:
(C) DEMONSTRATION IS not very useful BUT more or less
useful. .
WHERE fair, sort of useful, very poor, not very useful,
and more or less useful ARE DEFINED.
Thé‘cenfral control mechanism in the program is the module

named‘REPRESENTATION, as it controls, selects, and evaluates ?

rules to be manipulated during the process of approximate
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‘ Membership

function
1.0 ‘
r
S(u:a,b;c)
0.5 ' )
N ~
0.0 >
a b c
’\ )

Figure 3. A plot of the S-shaped function that
was used in this study as an
approximation of the fuzzy truth-values
(i.e., fuzzy subsets). In this function,
u is in a Universe of Discourse. Changing
a and ¢ will affect the shape of the
curve. b=0. 5(a+c)
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reasoning. The outcomes from this m;dule are fuzzy set outputs.
Thus by weiéhing all possible operat&ons and selecting soﬁe of
them, an instructional planning component of ICAI.buiit upon this
module will output sﬁecific instructional decisions and will
activatg corresponding operatigns. At present, this job can be
done only manually, because the desigﬁ?d program is
domain—independept in nature and no détailed instructional
operations have been implemented within it

It is also worth noticing that the module LABELS is used for
the purposeiéf re-assigning linguistic values to tﬁe fﬁzzy set
outputs-so that a prototype instructional decision support system
may further be developed upon Epe present program. To illustrate
what LABELS will do, consider the following examples: .

The fuzzy set output is:

ml = 0.9936; m2 = 0.92; m3 = 0.8;
m4 = 0.5; mb = 0.2; m6 = 0.1;
m7 = 0.05; m8 = 0; m9 = 0; -
ml0= 0; mlil= 0. ’ '
The least squares are: o .
when 1 = 21, j = 21, ls = 5.329
i=22, j =21, 1s = 2.593;
i= 22, jJ = 22, 18 = 3.074;
i= 26, j = 22, ls = 0.0034%;
i= 26,3 = 24, 1s = 0.00004.
" 8o, the linguistid& label is:
more or less low or very low.
The fuzzy set output is: ¢
ml = 0.05; m2 = 0.3; m3 = 0.6;
mi = 0.6; -md = 0.6; m6 = 0.6;
- m7 = 0.2; m8 = 0.02; " m9 = 0;"
ml0= O; mll= O,
The least squares are:
when i = 21, § = 21, ls = 3.933;
= 1.48§:

i=22, j = 21, ls

-53 ,



‘1230, j =28, 1s = 0.245; ;
i=42, j = 30, 1s = 0.188;
- i =44, j =30, 1s = 0.1766.-

- - So, the linguistic label is:
) ' not very poor but rather poor.

Where i, j are the indices of the preassigned linguistic label
ArTay. rThe evaluation of appropriate linguistic values,

'inbluding composite terms, is conducted by @Qdules'SUBMIN'and(‘
SUBMAX. The'operatioﬁs of these two modules are base@tupon the

"least square" technique.




Representing Collins and Stevens’ Theory

of Inquiry Teaching: An Example

Collins and Stevens (1982) propose a theory of inquiry
teaching, based upon the analysis of instructional dialogue
strategies used by some of very best teachers. This theory deals
with the aspects of effective inquiry teaching that aré not
domain-specific. In other words, the theory is considering only
those instructional dialogue strategies that are applicable tdj
certain instructional domains. ‘

In their theory, Cpll@ns and Stevens firét identify two
major gogis underlying thase instructional dialogues; namely, 1)
teaching a particular rule or pheory {n a given domain, and 2)
develépiné a new rule or theory. Thén, they—describe several
strategies for selecting goals in various situations. Althsugh
the variables they use in the description have some intuitive
meanings and the values'can be subjectively observed and stated
in linguistic terms, the variables are not operational since
there is no objective way of measuring them. And also the
strategies are not deductive since no systematic way of deriving
consequents is given. )

‘Instead of inferring specific teaching decisions from the
strategies, Collins and Stevens (Collins and Stevens, 1982;
Collins, 1977) explicitly detail some rules fromcthe available
empirical daté and expect that their rules will offer uséful
generalizations that can probablx“be used to guide the

implementation of inquiry teaching prbcess in ICAI systems.

But, in order to apply the theory of inquiry teaching to
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ICAI, listing all the possible instructional tactics and/or

operations by the systems designer is indeed not economical,

particularlf when most of the condition parts contain complex

descriptions (Resnick, 1977). As a matter of fact, in most

instructional‘systems development this seems quite impossible to

do; therefore computational assistance is mandatory. ’ s
However, as we have hypothesfzed,\the previously &eveioped

representation and reasoning technique may help to design

instructionai plahning activities, based 6n vague instruqtiongl

strategic knowledge, and to automatically generate and select

specific instructional sequences and/or operations. When taken

as an applicati;n or a test of the planning modél, the theory of

inquiry teaghing should be representable in a manner such that -

the appropriate instructional decisions can be inferred. n
Having‘developed a special-purpose program for assisting iﬂ

the representation and reasoning, a prototype instructional

planning component, following from part of Collins and Stevens'’

theory, was implemented in this study. This compo?gnt consfgts

of sets of fuzzy production rules. The implementation was run by

using several sets of initial data, and its performance was £hen

assessed by using the known acceptable diagnoses for those c

situations as specified by Collins and Stevers. The aims of this

were 1) to show the construction procedure based on the proposed

planning model, and 2) to test the féaaibility of the model by

comparing the inferred conclusions with those of the human

experts.



Developing Fuzzy Production Rule Systems

To represent the strategic kpowlq@xe as revealed in Collins

and Stevens’ tHeory, thée theory was first reworded in terms of

»

condition-action production rules. This representation was based
on the analysis of the original description of the theory,

paitidulhrly, the goal statements. . ) . . o
. e N 12

From the empirical analysis of some instructional dialogues,
the authors generalize that:

There are two goals that, to different degrees, -~
underlie an instructional dialogue: (a) Teaching a -
specific rule or theory in a given domain, and (b) . "
developing a new rule or theory (Collins and -

Stevens, 1982).

These statements indicate the major strategies underlying
inquiry, teaching, and thus imply the content of cér;ain : g
production rules to be implemented. In addition, the authors
distinguish theltwo goals frém each other by considering yhe
factor of the inétructors’ knowledge about the subject to be

taught. As it is stated:
[The second goal differs from the first goal) in
that the teacher has no a priori expectation of
what the to-be-derived theory is; rather the
teacher has an idea about what constraints the
theory must satisfy.... When a teacher has a
gspecific theory in mind, much of the teacher’s
strategy is concerned with choosing cases in an
optimal order for the student to formulate the
correct theory, and with debugging the student’s
theory.... When the teacher does not have a
specific theory in mind, the teacher’s strategy is
concerned with eliciting the relevant factors &nd
evaluating them by dealing with different .
cases (Collins, and Stevens, 1982). r

To a certain'dekree these statements specify the constraints
of the inquiry teaching strategies to be applied. As a

consequence, some constraint production rules could be derived
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from them.

At this level of representation, due to the vaguehess
involved in the original version of the theory, the production
rules to be employed wogld inev&tabl} be fuzzy; that is to say
that some linguistic variables and their corresponding values
must be used in the condition-action production pairs. The
impossibil%ty of clearly éeparating those two major teaching
goals in any dialogues further confirms the usefulness of the
fuzzy production repre;;;tation. As revealed ih the theory:

No dialogue is'ever purely one or the other; rather

the teacher'’'s theory is always partially specified

to a greater or lesser degree. (Collins and Stevens,

1982). ’ *

Furthermore,:the propositions and/or iqplications to be
represented might also be modeled differently by assigning
different fuzzy linguistic values to the same set of variables,
depending on the ways that people interpret the original
statements. Due to the sehs}tivity of represéntation, the
resultant fuzzg production systems might infer different
conclusions and yield different instructional decisions.

Therefore, in this study not only is the feasibility of the
proposed representation and reasoning technique examiﬁed, but
also the sensitivity of representation to the variations on- the
fuzzy production system is analyzed.

Tables_1 to 3 show three sets of fuzzy productioﬁ ;ules that
couid be used to represent Collins and Stevens’ theory as an

independent instructional planning compoﬂent in a certain ICAI

system. The definitions and evaluations of the linguistic values

in the fuzzy production rules, such as "good" and "high" will be
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Table 1
%) Lo .
The fuzzy production rule system used for
N representing Collinﬁ and Stevens’ theory of

inquiry teaching in an ICAI system

(The set actually used in the validation test run) -

RULE 1: If the student’s knowledge about a partﬁcui&r rule
or fheory is poor, then the degree of teaching'neéaéd about that
particﬁlar rﬁle or theory sJould be high;

RULE 2: 1If the student’s skill at deriving a novel rule or
theory is poor, then the degree of teaching needed about how to
deriv; a novel rule or theory should be high; )

RULE 3: If the "instructop’s" knowledge about the
to-be-derived theory is poor, then the degree of teaching about
how to derive a rule or theory should be high;

RULE 4: If the "instructor’'s" knowledge about the

to-be-derived theory is good, then the degree of teaching about
>

the ‘rule or theory should be high.
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Table 2. N

The second fuzzy production rule system

as a representation of Collins and Stevens'’

theory of inquiry teaching

RULE 1: If the student's knowledgé about a particular'rule
o£ theory is medium, then the degree of teaching needed about
that particular rule or theory should be more or less low;

RULE 2¢ If the student’s skill at deriving a novel rﬁle or
’Fheory is very poor, then the d;gree of teaching how to derive =a
novel rule or theory should be more or less high;

RULE 3: If the "instructor’s" -knowledge about the to-be-
‘derived theory is medium, theﬁ the degree of teaching how to
derive a rule br theory should be more or less low;

RULE 4: 1If the "instructor’&f knowledge about the to-be-

" derived theory is very poor, then’thé degree of teaching about

\
the rule or theory should be more or less high.
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, ' Table 3
The third fuzz& production rule sy;tem
as' a repfeséntation of Collins and Stevens'’
theory of ;nquiry teaching
1

- L

Py 3

~RULE 1: 1If the student’s knowledge ab;ué a particular rule

.or theory is rather good, then the'degreé of teaching needed
about that rule:or theory shogid be sort of low; ‘

RULE 2:\'If the student’s skill at deriving a novel rule or
theory is rather good, then the degree of teaching neede§ about
how to derivé a novel rule or theory should be sort of low;

RULE 3: If the "instructor’s" knowledge about'th@
to-be-derived theory is rather good, then the degree of teaching

about how to derive the rule of theory /should be sort of low.

;
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discussed in the following section. It might become obviousrthat

each set of rules is not enough to provide an adequate )

representation of the theory. But, they should be appropriate as
' /

a medium for testing and evaluating the approximate linguistic

reasoning and the deductions built‘upon the fuzzy sets theory and

. fuzzy logic. This is because each fuzzy production rule system

is large enough to allow chains of inferences and to expose the
fuzzy implications to a wide variety of situations, but meanwhile
small enough so that it is feasible to compare the results from

multiple computer runs with those from the human experts.

. A '



The Linguistic Variables and Their Values

Wenstop (1976) constructs a‘semantic system which is based
on the adjectives: "low", "medium", and "high"; more complicated
expressions are built up from‘tha@ by means of a number of
adverbs such as "very“, "more or less", and "sort of" etec. 1In
the present implementﬁtion, more linguistic terms such as "“good",
"poor", and hedged "good" or "poor" were added as new primitives
so 'that the propositions and/or implications of the strategic
knowledge éould be represented as naturally as possible. These
new linguistic primitives were defined in terms of Wenstop’s
primitives, for example, "poor" was defined in Wenstop’s
vocabulary as "low", but with some modifications on the grades,
or membership functions.

In the implementation, the so-called "base values" anchor

the various fuzzy variables in the production systems. Each
fuzzy variable has a "universe of discourse"”, which gives the
scale’ on which the underlying base values are defined. 8Since the

value of a fuzzy variable i¥ represented by a vector of eleven
eleﬁents,‘each of the eleven dimensions will correspond to one
base value - a point on a discretized psychological continuum.
Thus the eleven real numbers which make up the valuefof the
vector give the compatibility of each of the eleven base values
on the scale appropriate to the particular context with the value
of the fuzzy variable or constant. The elements of the "universe
"of discourse” proposed in this study are actually the indices of-
certain ianstructional tactics and/or operations, which are
theoretically expected to be able to activate corresponding

S

=t -
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instructional seduences and/or operations as soon as they are
selected. The eleven dimension forﬁat provides the association
with deciles, the points ranginé form 0 to 100 percent in
increments of 10 percentiles.

In particular, the determination of base values in the
implementation depended heavily upon the analyses of the
sub-goals prévided in the theory:; and the assignment of grades
for the linguistic values was based on Wenstop’'s definitions, but
with minor changes. The definitions included in Wenstép’s
vocabulary have béen proven to be a good approximationfas far as

the modeling of human linguistic descriptions is concerned
(Wenstop, 1976).

Collins and Stevens indicate in their theory of inquiry
teaching that each of the two major goals can be broken down into

three sub-goals. In the case of teaching a particular rule or

!

theory: -

The first major sub-goal is for the student to
analyze cases in order to derive the rule or

theory that the teacher has in mind.... A second
sub-goal of teachers in trying to teach a
particular rule or theory is to elicit and "debug"
incorrect rules or theories.... A third sub-goal
that frequently pairs with teaching a given rule or
theory is teaching how to make novel predictions
based on the rule or theory (Collins, and Stevens,
1982, pp.76).

Also, it is explicated in Collins and Stevens' theory of
inquiry teaching that the sub-goals in the case of teaching
students how to derive a novel theory or rule are:

- The most important sub-goal is to teach students

what questions to ask in order to derive a new rule

or theory on their own.... A second sub-goal that

probably underlies many of the dialogues is to

teach students the form that a rule or theory
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should take.... Occasionally in the dialogues, the

teachers pursue a third sub-goal of teaching

students how to evaluate a rule or theory that has

been constructed (Collins and Stevens, 1982).

Accordingly, several sets of instructional dialogue °
operations and their implied "grades" of membership are given in
relation tpﬂthose sub-goals. For example, when explicating the
second sub-goal of teaching a particular rule or theory, the
authors -state: "The enérapment, the counter-example. and the
hypofhetical case construétion stfgtegies are particularly
important for‘debugging incorrect hypotheses:"

As a consequence of such analyses, the base values for each
linguistic variable were derivéd, these have been shown in Tables

—

4 tO 8.'
NPLESN
The mqmbership functions for the fuzzy linguistic values, as
used in the present study, are given in a series of graphs in

Appendix B.
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‘ _ Table 4
The base values for the linguistic variable of
"the student’s knowledge about a rule or theory"

(as used)

1) has not identified many factors;

25 has not identified dependent variablex;

3) has not identified necessary, or sufficient, or relevant
factors; . - .‘Ql;j
4) proposes a rule and makes a prediction based on one or

* many irrelevant factors;

5) makes a prediction based on one or many incorrect values
of relevant factors;

6) a particular value of the dependenf variable is being o
considered for a case and th;re are values of unnecessary factors
that are inconsistent with that value of> the dependent variable;

7) a case is selected where the value of the dependent ’
variable is inconsistent with a value of one or more factors that
are not sufficient; -

8) knowslthe correct value of the dependent variable only
if the correct values of the'related factors are given;

9) knows the correct value of the dependent variable only
if the necessary factors are given;. ..

10) knows the correct value‘of the dependent variable only

if the sufficient factors are given; and

11) knows the correct value.




Table 5
The base values for the linguistic variable of
L3 -~
"the student’s skill at deriving a rule or theory"

(as used)

¥ v

1) does not know wHat are the correct values of the related

factors;

2) does not know what aré necessary and sufficient factors;

3) does not. know Qll the coprect values of the factors;

4) kyows most felated factérs and thei; correct values;

5) does not know if the value of the dependent variable is
correct or not; ‘

6) does got know the structure of a rule;

7) does not know how to apply thé rule;

8) does not know if a rule is correct or’not;

9) does not know if the values of ‘the factors are correct or:

not;

10) does not know if the relatea factors are correct or not;
and ) ) ) |

11) does_not knoq if tﬁe'necessary factor; are correct—ér
not. ‘ i ‘
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Table 6
The base values for the linguiétic variable of "degree
of teaching about how to derive a rule or theory"

(as used)

a) Teach how to evaluate a rule or a theory:

<
1) ask if a -rule is correct or incorrect;

2) ask if a value of dependeht variable is correct or.
incorrect;
§) ask if factors\are necessary Or unnecessary;
4) ask if factors are relevant or irrelevant;
‘o 5) ask if the Yaiues of factors are correct or incorrect;
b) ieach the form that a rule or a theory should take:
6) give th; gstructure of a rule or a theory;
7) 'ask the student to éonstruct different rules or
theories of the idealized type; | .
c) Teach what questions to ask: . | ’
8) ask the general question of Lhat the value of dependent
variable is;
Y
9) ask what necessary factors are;

10) ask what relevant factors are; and

*'f1) ask what correct values of factors are.




Table 7
The base values for the linguistic variable of
"degree of teaching about a rule or theory"

(as uééd)

a) Teach how to make novel predictions:
1) aék for the value of dependent variable, given

insufficient factors; 3 y -

2) ask for the vgluehof dependent variable, given

unnecessary factors;

3) ask for the value of the debendent vériable, given -

L3

irrelevant factors;

4) ask for the value of the dependent variable, given '
A}

"incorrect values of the factors;

b) Eljcit and debug incorrect rules:
7' 5) entrapment on: rules;
- 6) entraﬁment on predicti;ns;
7) entrapment on factors; ) % '
6) Analyze different cases related to the rule:
8) provide hypothetical cases;
99) 'provide counter-examples;

10) provide comparison cases; and

11) provide positive and negative examples.
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Table 8 ’
The base values for the linguistic variable of
"instructor's knowledge about the theory to be taught"
i bl .

(as used)

L4

1) some gactors are identified; L | -

2) similar cases are known to be the different on given

factors; -

3) similar cases are known to-be the same on giuén

factors; ,
4) values of factors are known; .
5) relevant factors are known; ~

6) a case with a given value on éome factor istknown;

7) a‘éase with a given value on the dependent variable is
known;

8) necessary factors are known;

9) sufficient factors are known;

10) value of. the dependént variable is known; and

11)‘v;lues of the factors are related to the value éf the

dependent variable.
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CHAPTER 4 ,

{ RESULTS

Eiecution of the Fuzzy Production Rulesg o

Collins and Stevena’féheofy of inquiry teaching was
represénted as sets of fuzzy production rule!{t?d the "meaning"
of each propésitibn and/or implication was specified. The
prototype planning component built on this representation was
then executed to generate sets of ;ﬁecific instructional
decisions. -

In 'the first stage of execution, sets of scenai}os were
created, in which the data wéuld‘giye the si&ulated inquiry
teachiﬁg and learning situations. Accordingly, the conditions in
each scenario were sdmmarized and grouped in ierms of the base -
values of different linguistic variables with theii.corresponding
compatibility numbers. Thus, each scenario was represented as a '
set*of initial values of certain lingdiétic variables, which were

fuzzy sets. These fuzzy sets can also be labeled with

FL

; . N ‘ '
appropriate linguistic values through the module LABELS. The

labeled initial values from'%hosg scenarios have been shown in

<

Table 9.
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Table 9

',The'iabeled initial values for the linguistic

(as used)

I's F
. variables in the fuzzy production rule system

good;

[ L4
L

SKR is very 18. SKD is sort of poor is true;
SKD is sort of good; 19. SKR is not very poor;
SKR is very poor;. 20. TKR is Vvery poor; .
SKD is very poor; 21, TKR is not more or less poor;
SKR is sort of. good; 22. SKR is.- not rather poor;
SKD is ‘poor; 23. SKR is sort of poor;
SKD is medium; 24, TKR is rather good;
SKR .is' sort of poor; 25. SKR is sort of poor; d
SKR is not good; 26, SKR is rather poor; . ~
8KD 1s poor is true, 27. TKR is very good;
TKR is rather:good; 28. SKR is not very poor;
SKD is rather poor; 29, TKR is very poor.
SKD is more or less poor; ’
. TKR._ 1s more or less poor;
TKR 14 not more or less poor;

*‘i‘lb

the student’s knowled
the student’s skill at
the "instructor’s" knowledge about a specific rule.

SKR. is not rpther poor; . . .

‘about a rule or a theory;

eriving a rule;.
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As -the second stage of execution, fﬁzzy reasoning was.
performed based upon each a;t of the initial data. 1In this
stage, several fuzzy production rules might be fired and the
consequences of this would provide suggestions for the -
instructional decision variables. For example, one rule might
suggest that in certain circumstances, "the degree of teaching
héw to derive a‘rule or theory" should be "sort of high", as is
lab&led with a corresponding linguistic value,

Next, the obtained fuzzy set outputs were evaluated and some
base values were then appropriately seleéted. Thus, specific
instructional decisions would be formulatedf The mode of |
gelection is given as followg:

)

. 1) A threshold is set; S ¥
®

2) Any operation or the index of operation whose grade of
membership is greater than the specific threshold is permissible;
and | g

3) 1If there'age several selected operations whos

memjyerships have the same grade, then only the'first one in order
Yo AN '

will be chosen so %‘at the decision can become most reliable.
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. specific rules ysed by human experts. Therefore, it was

Results

Table 10 presents in detail the resultant‘instructional
decisions, which were inferred by the first fuzzy production
éystem and selected according to the above stated criteria with a ’A
threshold-of 0.5]1. ) '

In order to demonstrate the usefulness of the proposed
representation and reasoning technique, the accuracy of results
was tested by making comparisons between the generated-decisions
and those specified by Collins and Stevens (1982). The specific
rules of inquiry teaching developed by Collins and Stevens are
included in Appendix C; and the results of the comparisons are
shown in Table 11.

As detailed by Table 11, thirty-one of the thirty-five
group; of decisions are  identical to those of Collins and
Stevens, while each group may contain two or three decisions.
Although the given initial values of linguistic variables,- or the
pre—speci&ied learning and/or teaching situations, might not be
sufficient enough to pave the fuzzy production sysgeﬁ infer all
the decision rules prescribed by Collins and S;evens, the
comparison results did indicate that the conclusions obtained

+

from the system seemed to be accurate enough to model the

concluded that the previously proposed model of instructional
planning could allow the generation and selection of appropriate

specific instructional tactics and/or operations.

, b
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Table 10

The specific instructional decisions generated

by the first fuzzy production -rule system

1AB5,1AB6, 1AB7
1AB3,1AB4, 1AB5
1AB3 --> 1CB9;
1AB3 --> 1CBS;
1AB6,1ABT7, 1AB8
1AB1,1AB2, 1AB3

2AB5,2AB6,2AB7

. 2AB3,2AB4,2AB5

2AB3 --> 2CB9;
2AB3 =7 2CB8;
2AB6,2AB7,2AB8
2AB1,2AB2,2AB3

3AB5,3AB6, 3AB7.
3AB3,3AB4, 3ABS
3AB3 --> 3CB9;
3AB3 --> 3CBS8;
3AB6,3AB7, 3ABS

3AB1,3AB2, 3AB3"

4AB1,4AB2,4AB3

4AB7,4AB8 4AB6

A
B
C
nABm

nABm --> iCBJ

--> 1CBT; [2] 1AB7
--> 1CB9; [4] 1AB4,
[6] 1AB1
[8] 1ABT,
--> 1CB7;
--> 1CB9,1CB10,1CB11;
N\
--> 2CBT7; {121 2AB7
--> 2CB9; [14]. 2AB4,
[16] 2AB1
[18] 2AB7,
--> 2CBT7;
--> 2CB9,2CB10,2CB11;
-->"3CB17; [22] 3AB7
--> 3CBY; [24] 3AB4,
' [26] 3AB1
[28) 3AB7,
-~-> 3CB7;
--> 3CB9,3CB10,3CB11;
- §CB7; [32] 4AB7
--> 4CBh9;

Antecedent;
Base value;
Consequent;

--> 1CB9Y; :
1AB5,1AB6 --> 1CB9;
--> 1CB9,1CB10,1CB11;
1AB8,1AB9 --> 1CB7;

--> 2CB9;
2AB5,2AB6 --> 2CB9;
-->2CB9,2CB10,2CB11;

2AB8,2AB6 --> 2CB7;

--> 3CB9; )
3AB5,3AB6 --> 3CB9;-
--> 3CB9,3CB10,3CB11;
3AB8,3AB6 --> 3CB7;

-~-> 4CB9,4CB10,4CB11;

[34]) . 4AB6,4AB5,4AB6 --> 4CB9;
4AB10,4AB11 ~--> 4CB9,4QB10,4CB11.

!

Base value number m in the Pqtecédent

of the rule number n;

If nABm then iCBj.
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.’ . - Table 11

The comparison of decisions inferred by the prototype

—_— component with those specified by Collinsg and Stevens
{1) = ENS1, ENS2, ENS3; [2] = CSS89;
(3] = Css9, Cssi0, Cssl1, Css12; [4] = CSS10, C8S11, CSS12;
[5] = €SS9, CSs10, CSS1i; [6] = Cssi, CSsS2, CSs3, Css4,
Ccss5, CSs6, €Ss9, -
: CsSs10, CSS11, CSs12;
{7] = CsS13, CsSs14, CsSsSi15; [8] = ENS4, ENS7, ENS8, ENS9,
: ENS10, ENS12;

[9] = ENS5, ENS6, ENS9; [10} = Ccss1, Css2, Css3, (CSss4,

C c8s5, CSsS6, €SS9,

’, css10,Css11, €8S12; .
f11] = 182, 1S3; ‘ [12] = 1IS5;
[13]  ---- AR £ V'S B j
[15] = ENS12; . ' ) [16] = IS5, IS6, IS7; /
{17] = ENS8; ] [18] = 182, IS3; |
[19] = Is2, 1IS3; [20] = IS4,.IS5, IS6, ISTYy
. IS12, ISt4;
[21} = 1Is2, 1S3, IS4, IS5, 1S6; [22] = 185, ENSZ2;
[23] = ES5, IS5; [24] = ES5, IS5, CSS1, CSS4;
[25] = IS11; - [26] = IS5, IS6; ;
(27] -———- [28] = ISs2, IS3; .
[28] = ENS6, ENS7, ENS8, ENSI10, [30] = IS5, 1IS6; ’
ENS11, ENS12, 181, 182; C
[31}) = 1IS2, 1IS3; [32] = ENS7, ENS8, ENS10,
, . ENS11, ENs12?

[33] = ENS6, ENS10; [34) = ENS6, ENS10;
[35] L m——
Notes:

a) Each ordered number represents the group number
presented in Table 10. Thus, "[3]" means "group number [3]."

b) The codes following each number are the labels for
Collins and Stevens’ rules, which are matched by the generated

“decisions. For example, "[25] = IS11" means that the generated

decision group number 25 has matched Collins and Stevens'’
identification rule number 11.

c) "----" means no match obtained.

=
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Sensitivity Analysis

Table 12 gives another representation of the theory built on
the first fuzzy production rule system but with some minor
variations on the linguistic values. 1In order to examine the
sensitivity of the planning model, this set of production rules
was executed with a subset -of the initial linguistic values that
were previously used. The results of its experimental run were,
then, contrasted with those of the original production system, as
presentea in the first part of Table 10.

Since all the linéuistic values except those in rule 1 \
remain unchanéed, only the results inferred by rule 1 wou%gﬁpe of
particula; interest. The instructional deci&ions generated in
correspondence to the previous criteria are given as folloés:

] 1AB4, 1AB5, 1AB6 --> 1CB10;

] 1AB3, 1AB4, 1AB5 --> 1CB9;

] 1AB1, 1AB2, 1AB3 --> 1CBY9, 1CB10, 1CB11;
] 1AB§ --> 1CB6, 1CB7;

] 1AB3 --> 1CB9, 1CB10, 1CB11.

It becomes quite obvious that the above list is actually a
subset of the results obtained by executing the original fuyzzy
production system. . Although the antecedents and/or consequents
in some of the rules may have shifted to their neighbours, they
will by no means cause any significant differences, since any two
of adjacent members are practically quite close to each other.
Thus, it can be concluded that the proposed representation and
reasoning technique is not significantly sensitive to certain
reasonable variations on the-‘linguistic values used, and building

- \ .
an instructional planning component based upon this technique

does provide some flexibility and reliability for the design.

A e
- i |

-
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Table 12
The first fuzzy productién rule system
with some variations on linéuistic values

(as used)

)

RULE 1: If the student’'s knowledge about a par%icular rule
or theory is very poor, then the degree of teachiﬂg needed about
that rule or theory should be more or less high;

RULE 2: If the student’s skill at deriving a novel rule or
theory is poor, then the degree of teaching about how to derive a
novel rule or theory should be more or less high;'

-RULE 3: If the "instructor’s" knowledge about the
to-be-derived Eheory is poor, fhen the deéree of teaéhing about
how to derive a rule or theory should be high;

RULE' 4: If thg "instructor’s" knowledge about~the
to-be-deriveﬂ'iheory is good, then the degree of teaching about

the rule or theory shotld Be high.




CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The theories of fuzzy sets and the‘;pproximdte linguisticwmg
reasoning based upon fuzzy logic have increasingly received .
attention froﬁ rese:;chers in a wide ranée of areas, such as
linguiétics, automata theory, logic, céntrol theory, cybernetics,
psychology and artificial intelligence, to name is only a few.
But so far it has been ascertained that this study is the very
first application of the theories in the design of automated
instructional systems. Thg)study described ﬁere illustrates how
the representation and reasoning technique derived from fuzzy
logic and the uéeful instructional strategic knowledge can be
merged in the construction of the instructional planning
coﬁponent in the ICAI model. °

It was hypothesized at the beginning of the study that the
proposed representation and reasonfﬁg technique which combines
the features of production systems and fuzzy logic would enable
the use of instructional strategic knowledge and the management
of its vagueness, To demonstrate and validate the power of-this
technique, a prot;type ;nstructional planning component was
implemented withiq‘a speéial—purpose, domain-independent program
which was designed especially for facilitating the representatioQ
and réééoning. The proﬁotype instructional strategic know}edge
wasg mainly derivéh%%xom Collins and Stevens’ theory of inquiry

teaching.

Since each module of.the component operated well, the
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designed program did perform the task of approximate reasoﬂing as
expected prior to the implementation. More importantly, it was
shown ;n the compgrison that the teaching decisions that were
inferred and selected by the program seemed to be nearly
identical to as well aé fully compatible with the ones used by
human expertQ. Meanwhile, the representation used in the '
implemen;ation was also tested and found not very sensitive to
lﬁnguistic value variations within a reasonable range\of
interpretation. Therefore i; was concluded that the experiments
conducted in this study did demonstrate the feasibility of

A

representing and using vague instructional strategic knowledge
based on the éechnique developed. With respect to the important
features of the technique and its advantages over other
techniques, there are several points worth mentioning:

1) Quasi-natural languggé representation: The mechanism
proposed and implemented for the instructional planning.allows
the use ;f fuzzy predicates and quantifiers in the
representation, thereéfore it provides a natural as well as an
effective way of representing and using instructional strategies.

2) Transparent structure: Since fuzzy production rules.are
comprehensive "chunks" of knowledge and are composed of elements
that are conceptual primitives and require no fufther |
decomposition to be understood, they provide a clear, simple, and
transparent structure.

3). Inferences from vaéue strategies: Many conventional CAI

systems are typicdlly implemented with procedural instructional

. @
sequences; and thus the details about a system’s operations are

I
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carefully specified in the program. In these systems, there is
usually no clear-cut separation between the instructional
operations and the inqﬁrucfional str;tegies. The current
approach allows the detailed instructional operations to be
inferred from strategic knowledge. The inference mechanism in a
fuzzy production system is deductive; it applies the fuzzy rulés
in the database to particular cases.

4) Parallel processiﬁg:' Aé it was revealed in the
experiments, theXuse of linguistic values rather than cr%sp ones
assists as the relative merits of all these possibilities can be
described and calculated. Since more than one possibility is
kept in mind at once, this feveals that the program implements a
simple form of simulated parallel\processing to handle these (in
effect) s?multaneously. 2/

5) Possibility vs. probability: As possibility usually
refers to the human perbeption of the degree of feasibility or
ease of attainment, the representation and planning activities
built on the possibility-based technique would be more relevant
in modeling human decision-making processes compared to those
based on probabilistic models of rep;esentation.

Moreover, systems built upon the ﬁossibility-bgsed
representation technique are more efficient than those built upon
the probability-based techniques. That is because the concept of
possibility in no way involves the notion of repeated
experimentation. Thus, the céncept of possibility need not be

statistical in nature and, as such, is an appropriate concépt to
A\

use when the imprecision or uncertainty in the phenomena under
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study is not susceptible of statistical analysis or

-

characterization. On the other hand, statistica} information may
;lso be used to improve the shape of possibility distribution. ‘
But generally épeaking, probabilistic information is not as
readily available aé possibilistic information and is more
difficult to manipulate. w“

In addition to the above features the technique seems also
to have certain flexibilities for”applications. Since a
'possibility distribution or membership function is subjective in
nature, in this study the prototype program was implemented in
such a way that the "meanings" of‘linguistic values could easily
be changed by an ICA]l designer. 1t provides a flexibility fo%
ICAI system designers to define their own memberships, such as
different instructional operations, as well as the
compatibilities 'associated with then. N

Meanwhile the fuzzy rule base can also be updated from time
to time. A rule input module named EﬁTER-RULE asks the designer

)

a series of questions about fuzzy propositions or implications

which can be made available as inputs‘to the later

decision-making process.
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Further Extensions and Researches

The primary purpose of this study was to demonstrate and
validatecthe feasibiliéy of constructing an-ingtructional
planning component for ICAI systems, based upon the fuzzy
representation framework. ‘Nevertheless, further extensions and
studies that might usefully be conducted with the pregent program
or ideas seem quite possible. The f&llowing are just some of
them:

1) Linguistic Qalue input: According to Zadeh {1973), one
of the most important facets of human thinking ig the ability to
summarize information "into lapels of fuzzy sets which bear an
approximate relation to the primary data." In other words,
linguistic descriptions, which are usually-summary descriptions
of complex situations, are fuzzy in essence. Therefore, it would
be ﬁseful to extend the present instructiogal planning component
to accept and recognize the initializations on the conditions of
fuzzy implications not only in fuzzy set format as provided by
the other components of iCAI system but also in linguistic terms.
If so, the componéht will provide an option for the system
designer to initialize or alter the values of the student model

and instructional operations. Also, it could be designed to

‘allow the learners to contribute to the initialization processes.

2) ICAI advisory systems: The employment of linguistic
value definitions can make the fuzzy set output much more
understandable, since the technique of linguistic approximation,
will convert the fuzzy set output into any of the predefined

4
linguistic terms, and therefore, produce fuzzy value output or
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even quasi-natural language explanations (1i. A very important

module called LABELS was implemented in this study to convert thé
internal machine representation of any fuzzy set into a
corresponding linguistic label). The linguistic descriptions can
be considered as vague pieces of advice regarding instructional
decisions. The instructional planning component can also be
designed to output fuzzy set expressed as a set of possible

’
alternative instructional decisions for the human decision
maker’s consideration. Such a program will report more than one
possible cbnclusion each with its fuzzy measure of plausibility
and legve the decision to human instructors or learners who are
ultimately responsible for accepting or rgjecting the advice.
Thus, an intelligent CAI system would be gxtended'to function as
an _instructional advisory system for instructors or as a
self-instructional aid for learners.

3) Worst-case analysis: It would be also very useful to
examine the worst case of the fuzzy instructional planning model.
That is to say, the range‘of toierance for the variations on the
fuzzy production rules might be studied.

4) Linguistic approximation techﬂiques: Linguistic
approximation is a function from the set of fuzzy sets to the set
of linguistic values. The problem of linguistic approximation is
associating a label with a membership distribution on the basis
of semant;c similarity. -This can be seen as a mapping from the
crisp set of all fuzzy sets onto thg language accepted by the

vocabulary and syntax of the semantic system. It is rather

inefficient to perform/bairwise comparisons of all the
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. propositions allowed by the syntax of a gemantic system to arrive

at a linguistic approximation. One solution to thia/ﬁ;gglem
would be to exploit pattern-recognition techniques. That is, the
sﬁace of membership distributions is mapped onto a feature space e
by evaluating some correlated features of each vector. This step

is crucial because the qorreét‘selection of feapures determines

the success or failure of pattern-recognition pfocess. A search

in the iow—order pattern.space is performed based upon a measure

[

of semantic similaritx.
Above all, the present study of instructional planhiqg
mechanism would be easily extended: 1) tO“deyelop ‘
self-instructionhal aids with a quasi-natural language interface,
2) to improve the efficiency of the technique,‘apd 3) .to conduct
further studies to examine the practicai usefulness of the
présept approach by actﬁally building a usable ICAI,?ystem and to

-3

examine the cost-and-effectiveness of design. © N
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£ 1 -

?

. ™.
¥, . —. . e - e e e e - . . \~\‘\-‘.~ -
. *  REFERENCES
Bhattacharya, S.P. (1973). Review of Researcheé on.Theory of .
/ . - NN T -

Teaéhing, M'S‘\IEfSiS’ Univesit& of Baikaa[”;pdia. .

{ o

Black, M. (1937}). Vagueﬁeés: An exercisé in logical analysis. ;

Philosophical Science 4.

-~

~

“Boyd, G.M. (1971). The appropriate level of sophisticﬁtion of"

computer languages for the wriiihg of turorial modules ‘and

*

. courses. In Asﬁects.of Educational Techiwlogy, Kogan_ Page,

—

London. T .

\ .
Brown, J.S., and Burton, R.R. (1979). An investigation of

compﬁter coaching fér/informal learning activities.
Interna€§§nal'Journal of Man-Machine Studies 11. Also (1982)

. % .
in D. Sleeman, and J.S. Brown (Eds.), Intelligent Tutoring-_

Systems, Academic Press, Cambridge, Mass. .
Bruner, J.S. (1966). Theorems for a theory of instruction. In J.

25

Bruner (Ed.), Learning ABout Learning: A Conference Report,

<

U.S. Government Printing Office, Washington, D.C..
Carbopell, J.R. (1971a). AT and CAI: An artificia] intelligence
approach to computer-aided instruation. IEEE Transactions

/
on Man-Machine Systems, MMS-11, ‘4. v ,

Carbonell, J.R. (1970b). Mixed-initiative man-computer
' 4
~instructional dialogues. In BBN Rep. No. 1971, Bolt Beranek

.

and Newman, Inc., Cambridde, Mass.

Carbonell, J.R., and Collins, A. (19733. Natural semantics in

artificial intelligence. IJCAI, 3.

doliins, A.M., and Loftus, E.F. (1975). A spreading-activation

theory of semantic processing. ’Pszchological‘Reviewl 82, 6.

N
-

"
.

86



/

i

Collins, A, (1977). Protesses in acquriqg.kﬁgwledge. In R.C.

.Anderson, R.J. Spiro, and W.E. Mpntague (Eds.), Schooling

and thé Acguisition of Knowledge, Lawrepce Erlbaum

. Asspbiates, Hillsdale,_NJ.

Coilins{ A., and Stevens, A;L. (19821} Goals and strategies of
inquify teachers. In R. Glaser (ﬁd.), Advances in

Instructiohal'Psycholggx, 2, Lawrence Erlbaum Associates,

= Hillsdale, NJ.

Coﬁllns, A., and Stevens, A.L. (1982) Dlagn031ng student s

mlsconceptlons in causal models., In D. Sleeman, and J.S.

»

Brown (Eds.), Infelligent Tutoring Systems, Academic Pfess}

Cambridge, Mass. (

]
-

Dévies, I.K. (1981). Imstructional Techniques, M;Gnaw-ﬂill Book

Company, NJ. ‘ . r

o

Davis, R.D., and Lenat, D.B. (1982). Knowledge-Based Systems in

{

AI, McGraw-Hill, New York.

-3 - -

Davis, ﬁ.D., and King, J. (1977). An overview of production

systems. Artificial Intelligence, 8.

Dubois, D., and Prade,'H. (1980). Fuzzy Sets énd Systems: Theory

and Applications. Academic Press, New York.

i -—

Dummett, M. (1978). Truth and Other Enigmas, Harvard University

]

Press, agmbridge, Mass.

\

Férley, A.M. (1980). Issues in knowleage-based problem-solving.

IEEE Transactions on Systems, Man and Cybernetics, SMC-10.

Feigenbau;?\E.A., and Feldmah, J. (1963). Computers and Thought,

McGraw-Hill, New York.




- o <~ - - - . : .
ll ‘ . -

oguen, J.A:\(1975).'0n fuzzy robof-planning. In L.A. Zadeh et

, al. (Eds.) Fuzzy Sets and Their Applications to Cognitive

Tand Decision Processes. Academic Press, New York. °

o

Goldstein, 1. (1979). The genetic epistemology of rule systems.

"

International Journal of Man-Machine Studies, 11.

Green, T.F. (1971). The Activities of Teaching, McGrawlﬂill Book

Campany, NJ.

- Gropper, G.L. (1974). Instructional Straiegies, Educational

Technology .Publishing,- Englewood Cliffs, NJ.
)

Gupta, G.N. Saridis, and B.R. Gaines (1979). (Eds.)‘Fuzzx

Autbmata and Decision Processes. Elsevier, New York.

7

\ Hartel, G.D., Walberg, H.J., and Weinstein, T. (1983).

- Psychological models of educational performance: A .
' i

theoretical synthesis of constructs. Review bf Educational

b

Research, 53.

r [N

Hartley, J.R., and Sleeman, D.H. (1973). Towards more intelligént

teaching systems. International Journal of Man-Machine

Studies, 5.

, 2
Hersh, H.M., and Caramazza, A. (1876). A fuzzy set approach to

1]

modifiers and vagueness in natural Tanguage. Journal of

Experimental Psychology: General, 105, 3.

Hoover, K.R. {(1984). The Elements of Social Scientific Thinking,

« St. Martins Press, New York.

Hopkins, C.D. (19#6). Educational Research: A Structure for

Inquiry, Charles E.Merrill Publishing, Columbus, Ohio.
Howe, J.A.M. (1973). Individualizing computer-assisted

instruction., In A. Elithorn and D. Jones (Eds.), Artificial

and Human Thinking, Blsevier: Amsterdam.

88




0

Kochen, M., and Ba&re, A.N. (1975). Applic;tions of fuzay sets in

psychology. In L.A. Zadéh,‘K.S. Fu, K. Tanaka and M. éhimura

* (Eds.), Fuzzy Sets and Their Applications to Cognitive and

.. Decision Processes, Academic Press New York.

Lamm, 2Z. (19762.‘bonflictigg Theories of Instruction, McCutchan

t

Publishing, Berkeley, California.

Landa, L.N. (1976), Instructional Regulation and Control:

N

Cybernetics Algorithmization and Heuristics in Education,

N\ ' | /‘“

Mallen, G. (1969). Recent aevelopments in the theory and practice

.Educaﬁional Technology Publications.

of q@aptiée teaching systems. -In Aspects of Educational

Technology. \

Mamdani, E.H, Pnd Gaines, B.R. (1981). Fuzzy Reasoning and its

} -
Application, Academic Press, London.
, )

) ~ {
Michie, D. (1982). Game-playing programs and the conceptual

interface. ~ ACM Sigart, 80, April.

Miller, G.A., Galanter, E., and Pribram, K. (1960). Plans and the

Structure of Behavior, Holt, New_yérk. - \
- ~

Negoita C.V. (1985). Expert Systems and Fuzzy System,

- \ -
The:
\

Benjamin/Cummings Publishing Company,lﬁenlo Park,

California.

Newgll, A., Shéw% J.C., and Simon, H.A, (1957). Empirical

explorations of the logic theory machine. In Proceedings,

Western Joint Computer Conference.

~

\O’Shea,'T; (1979). Self—Improvigg &eachin S stgm, Birkhauser
Verlag, Basei.




-

Park, O-K, Perez, R.S., and Seidel, R.J. 3&987). Intelligent CAI:

Oid wine in new bottles, or a new vintage? In Greg P.

- . Kearsley (Ed.), Artificial Intelligence and Instruction:

.Applications and Methodé, Addison-Wesley, Mass..\ ' -

\

Pask, G. (1971). A cybernetic experimentaleﬁethod and its

querlying philosophyl. International Journal of Man-

Machine Studies, 3. ~ )

Resnick, L.B. (1977). Holding an instructional conversation:
= '

Comments on chapter 10 by Collins. In R.C. Anderson, R.J. .

- Sper (Eds ) s Schoollng and the Acquisition of Knowledge,

Lawrence ErIbaum Associate, Hillsdale, NJ.

\\

ﬁbberts, F.C., and Park, O. (1983). Intelligent -computer-assisted
[

instruction: An explanation and overview. Educaetional

Technology, 23, 12.
{

Romiszowski, A.J. (1984). Producing Instructional Systéms, Kogan
Page, London. - :
Royer, J.M. (1986).’Dqsighing instruction to produce

)
' understanding: An approach based on cognitive theory. In

! G.D. Phye, and T. Andre (Eds.), gnitlve Cladsroom
1 -~

Learnlng, Academic Press, London.

Sax, G. (1968). Empirical Foundations of Educational Research,

Prentice-Hall, Eng}ewood Cliffs, NJ.

. ’

’Schmidt, C.F., and Sridharan, N.S8.N. (1977). Plan recognition
using a hypothesize and revise paradigm: An example; IJCAI,
5. !

Shortliffe, E.H. (1976). Computer-base& Medical Consultation:'

_MYCIN, Elsevier, New York.



o : : ‘ ' : - o .
i . . . R 4
. * . ‘ -

' . SN
o e S »
Stevens, A.L., and Collins, A. (1977). Thq\goal structure of a:

socratic tutor. In BBN Rep. No. 3518.\Bolt_Beranck and

. . - ’ 4 %
' *  Newman, Inc.,dpambridgé, Mass.. \,
Tanaka, K. gnd Mizumoto,'M. (1975). Fuzzy p qgramg and theif
-- execution,, In L.A. Zadeh et al. (Eds.), Fuzzy Sets and "’
{ s

Their Applications to Cognitive and Decision Processes.

Aqédemic Press, New York.
Verma, G.K.,.and Béardr Ri (lé@)). What Is Educati;nal Research,"
. ' Grower Publishing, Hants. '
- Waterman, D.A. (1977). An introduction to production systéms .
QISB European Newsletter, 25. — R
'Wenst;p, F. (1976); Deductive verbal models of organizations.
* ‘ * International Journal of Man-Machine Studles. 8.

Whalen, T., and Schott, B. (1981) Euzzy productlon systems for

‘decision support. IEEE Transactions on Systems, Man and

}w " Cybernetics. ‘ ' .

\'Whalen, T., and Schott, B. (1985). Goal-directed approximate,

reasoniné in a fuzzy production system. In M.M. Gupta, et

al. (Eds.), A pprthmate Reasonlng in Expert Systems,

e —————

North-Holland, Amsterdam.

Woolf, B. and McDonald, D.D. (1984). Building a computer tutor:

-®

Design issues.. IEEE Transactions on Computers.

Zadeh, L.A. (1965) Fuzzy sets. International Journal of

i

Contrdl, 8.

Zadeh, L.A. (1972) Fuzzy languages and their relation to humagc

S - . /xgghd machine 1nte1118enee~ Ié‘ oceedings of International’

Conference on Man and Computer, Bordeaux, France.

91

St LTt
feo< T
t

ok
o




i

%adeh L. A. (1973). Outline of a new approach to the analysis of”

™~ complex systems and de01slon processes.‘ IEEE Transactions.

on Systems, Man, and Cybernetics, sMC-3, 1. ./
WV

Zadeh,: L.A. (1975). The concept of a linguistic vag&able‘and iﬁ%

A}

applicéfion to approximate reasoning.’ Inforgétion Science,
ot § . ~ . ’
. /
Zadeh, L.A. (1981). PRUF - A meaning representation+language for
natural 4anguage.-1n E.H. Mamdani, and B.R. Gaines (E?s.),

Fuzzy Reasoning and its Applications, AcAdemic Press,

<

London.
Zadeh, L A. (1979) A theory ‘of approximate reasonlnﬁ In J.E.

Hayes, D., Michie, and L I. Mikulich/(Eds. )y Maéhlne

\
i

Intelligence, 9. Elsevier, New York
Zadeh, L.A. (19&5) Fuzzy reasoning. In M.M. Gupta, et al. (Eds. ),

Approximate Reasoning in Expert Systéms, North&Holland,

Amsterdam.




- . APPENDIX A

THE SPECIAL-PURPOSE PROGRAM DESIGNED FOR IMPLEMENTING
INSTRUCTIONAL PLANNING COMPONENTS OF ICAI . ‘
. . \ ' -

\)

module REPRESENTATION

N 4

{This module controls and selects rules to be manjipulated during

~ /
¢ the approximate reasoning.) ‘ .
const 8 . . C )
maxrule = 30; . , : -
maxnumber = 60; {changeable] * |

tyﬁe "

element = asray[l..11] of.real;
values = string{100]; ’ -
. transfer = arrayl[l..2 1..3] of values;

rules = record ,
number:.integer; ' - ) 4
- contents: wvalues; = . ‘ e
first: transfer; '

end;

var -

. . some forsome forsomel: element;
. \ 888 lingvalue: values; ‘ ‘ ) ‘
& . d2 dl: element; ~ . _

' \/bagegory.categoryl int: integer; )
rulefile: file og rules; B ' -
inter: transfer; )
compo: rules; )

i j ij ii iii point: integer; e
initial: array[0..20] of values;

\ term: array[l..20] of. element; .

14

R T
1

(A
———
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) ‘begin

assign(rulefile 'rule’);
.reset(rulefile); -
i 1= 1; - ' -
while (i <> 0) and (i < maxrule) do
begin ;o

?

seek(rulefile i-1); ‘
read(rulefile compo); . ’ .
with compo do ?
begin ' .

write(lst 'RULE’,i,’: ’);

* T +writeln(lst contents);
if contents ='' then i := 0 .
else i = i + 1; '

end;
end; -

. close(rulefile); =
- wrlteln(lst), . c -
i = 0; - .
while 1n1t1a1[1] (> 'finished’ dq -
begin ‘

i =1 4+ 1;
write(lst ’Condltlon Y i, i
.- readln(initialli]); '
' . writeln(lst ' ’,initiall[i]);

‘ - end; . _

\writéln(lst); :
for j := 1 to i -1 do-~, L
begin

w Y

‘ SEPARATE(initial[j)/ inter);
assign(rulefile 'RULE'); '
' reset(rulefile);
- ii = 1;
point := O; Lo
while (p01nt O 1) and (ii ¢ maxrule) do

_ begln
. : l
_ éeek(ruleflle‘li -1); ..
/ read(rulefile compo), ' - ,
| with gompo do '
/ beglnﬁ.




" '
i

, -begin ) -

? . - -

if 1nter[1, 1] = f1rst[1, 1], then a . .
bezln w .
e L
p01nt = 1; ' 4

CATALOG(category f1rsu[1 2
CATALOG(categoryl flrst[Z
if inter[l1l, 3]°¢> . ’
then EQUIVAL(some, inter[l 2],1nter[1 3],catezory)
else REVERSE(some 1nter[1 2] catezory),
if first[l, 3] ¢ -
. then EQUIVAL(forsome first[1, 2] .
first([1,3]),category)
else REVERSE(forsome first{l 2] category);
if first[2, 3] ¢ ' ° S -
then EQUIVAL(forsomel, first[2,2],first[2, 31,
cdtegoryl)’
| else REVERSE (forsomel first[2 2] categoryl),
' MAXMIN(d2 some forsomel forsome categoryl),
LABELS(11ngvalue d2 categoryl), -
wrlteln(lst), .
- writeln(lst f1rst[2,\1] ' is ’,lingvalue ’.’);
writeln(lst); [ - ‘ -
writeln(1lst); ' ' .
sss := first[2 1];

1) - , -
21);

——

end;

'ené;\: o : . N oo

iios= id o+ 1
end;.

close(rulefile);
if point =1 then

(1]

331gn(rulef11e 'RULE’),
reset(rulefile); ' - .
repeat . . -
~ iii := 1; . o ’ i '
ij 1= 1; ] ' -
while iii < maxrule do e
begin : e

# e -

seek(rulefile iii - 1); =
, read(rulefile compo);
with compo do
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begin. L
if'sss’zlfirst[l, 1] tpen— 2 ' i
begin : .
1.) o-J 00 -

v CATALOG(category first{l 2]);

' if first[l, 3] <> *?

then EQUIVAL(forsome,first[l 21, first[l 3],
. category)

else REVERSE(forsome first{1l 2] category),

CATALOG(categoryl first[2 2]); )

if first{2, 3] <& *? ‘

then EQUIVAL(forsomel, f1rst[2 2], f1rst[2 31,

categoryi) )

else REVERSE(forsomel f1rst[2, 2] categoryl);

MAXMIN(dl d2 forsomel forsome categoryl);

d2 := di;

LABELS(lingvalue dl ‘categoryl);

writeln(lst); , _ _ ,

writelr(lst first[2, 1], ' is -
'ylingvalue,’.’); ) \

writeln(lst); ' ' j

'writeln(lst); )

sss := first[2, 1];

end;
end;
o iiioi= 1o+ iiig ‘
i . : ’ ) ‘[1)
ij =1 + ij;
until ij = 2;
., close(rulefile);
- writeln(lst);
end;
term[j] 1= d2; S
(4

end;

- end. ) -



. .. . | .
.module SEPARATKKone‘ values; var xandi' trahsfef);
“{This module accepts and recognizes each 1nput fuzzy productlon

rule, and prepares it for further fuzzy subset asslgnment 1

type - \
values = string([110];

. )
var

valal valu2 sublll sub222 sub333: values;
subl sub2 subll sub2l subl2-sub22: values;
n nl 'n2 n3 n4: integer;

begin
writeln(1lst);
" repeat .
delete(one pos(’ ’ one) 1);
. until pos(’ ' one) = 0}
if pos(’then’ one) <> 0 then g
begin -’

*'n := pos(’then’ one);

valul := copy(one 3 (n - 3));
vamu2 ;= copy(on2LT3\+ 4) 200);

nl := pos(’'is’ valul);

n2 := pos(’is’ valu2); ¢

,subl := copy(valul 1 (nl - 1)), {x}

xandy[1, 1] := subl; subll := copy(valul (nl + 2) 100),

{Analyzing truth-qualified propositions} L .

n3 := pos(’is’ subll); o -
"sub2 :z= copy(valu2 1 ‘(n2 - 1)),
xandy[2, 1] := sub2; Ay}
sub21 := copy(valu2 (n2 + 2) 100); {Q is87T’}
nd4d := pos(’'is’ sub2l); -
" begin '
if n3 <> 0 then : : co, 0
begin L ‘ y

subl2 := copy(subll 1 (n3 - 1));”'
xandy[1l, 2] := subl2;
xandyl[1, ;3] := copy(subll (n3 + ’2) J00);

- .
end . L

97 .‘ b ”

Py | | ~ |



s ) »

N .

else - .- _ & : |

begin ’

xandy(1, 2] := subll; : o ‘ J

kandy[1, 3] := '7'; ' L

- s ' ‘ -~

.‘end;' e AR - - I \ ’ . )

»if n4 < 0 then - L i 3

" begin , . ‘ N o . ;
' sub22 ::= copY(subZB 1 (nd - 1)); . ((_\\ L ' '

* 8ub222 := copy(sub2l (n4 +2) 100), ) !

xandy[2, 2] := sub22; . . . ot S
xandy[2, 3] := sub222; A . ) .- '

‘ end o , ' I . ) o
,e'lse- C ' . -‘ o . - 4} > "
begin  ( ' l , e . . " ot . :

" " xandy[2, 2] := sub2i; : oo 0"

‘ xaody{2, 3] :=+''; . )

" end; . ‘ , C .y
‘ s ® ‘ . ) .
.end; ‘ ’ o L o ’ .
ena | ) . ‘. ! L ! oo
else ¢+ - o ) : 7 R
begin o ‘ . T . e
. nl := poj(’is’ one); ) .
s, . subl iz copy(one 1 (nl - 1)); - \ o ‘ , )
xandy[l 1] := subl; . v Cos '
..s 8UD1T := copy(one (n1 + 2) 100);
. nd = pos( is’ subll), ’
begin ' . , .o
if n3 <> 0 then : S
begin’ . /
'subl2 := copy(subll 1 (n3 - 1)); ) '
xandy[l 2] := subl2; T R
xandy[1 3] := copy(subll (n3 + 2) 100); o 2
“end L - . . o
» . N - : >
. . @ .
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Y

’ ¢ else -
. o A Y ~ -3
begin: -
F t ' ' . Lo 5 .
« xandy[l, 2] := subll; :
. xandy([1l, 3] := ?’; .
! - _end; N » -
xandy[2, 1] ‘:= 7" . b ‘
xandy[2, 2] (= '’; 40
xandy[2, 3] := '’; - B
epd; ‘
. end: -] ’ 7;._\
. . L4 ! '
. end;
module CATALOG (var category: integer; v: values);
. . . ‘ |
- . - {This module provides. a quick accesg to the linguistic value
array.)’ N . .
/ b 2 ’ - . *
begin , a 4,
if pos('poor’ v} <> 0 then categqu':z 1; [changeable]f
if pos(’'good’ v) <>.0 then category := 1;
. if pos(’'high', v) <> O then cdtegory. := 2;
. if pos(’low’ v) <> 0 then category := 2;°
end;‘ i oo - .
J A ) * A 4
[ ,
. \ . - ’ | v
o . w9
i q
! ' ) ' y
' B } RK) ,
. ’t ' ) [ ’ ’ T
, 3\ v oo . NS 99
'y .. - N ‘ "=
. . l‘ /
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module EQUIVAL(var ug:element; f t: values ;category:

integer);
'; {EQUIVAL assigns membership functions'to the linguistic values.}
4 ’ 3 . ' "
var , . L ¥
- . ’ i
uf Nelement; *
a,b,c¢,d: real;
+ i: integer;
.1qk? values: ,
begLn ‘ ‘ ) \ :
~ ' ) ‘/
REVERSET (b c d 1nd t); .
. ‘REVERSE(uf f category); . ‘ . o
for i (= 1 to 11 do~ . ) . -
ugl(i] := s(uffi],b,c,d);. : ] \ : . i
vif.ind = "not’ then ' . ~
begi}.‘{\ ' - ' ’
’ for'i iz 1 to 11do . . .
ug{i] := 1 - uglil;. . oo toe T
LY ' .
end;. - . ( T _ K
: writeln(lst);. |
for i (=1 to 3 do
wr1te1n(lst,ug[1+(3*(1 ~1))17, ug[2+(3*(1 1))],ugl3+(3%(i-
’ 1))1); ‘.
» ? : .
writeln(lst ug[10] ugl11]); . \.
for i := 1 to 11 do ° - T
write(ufil): V! e . -
writeln; C -
" writeln(lst); '
\ )
. end; -
module REVERSE(var st:eleﬁént}éal}values;catﬁgory: . &
= . integer); , : "
. ] - ‘
type -+ | ~ ; L) c
values = string(100]; ‘
element2 = array[1..11] of values; ] . s

. . ‘ \ ~ . ’a 'b
. 100 I_ i f P



‘é%embers = record

no: integer:

xx: values;
iuems: element2;
‘possib: element;.

end;

var —

indi:. string{6]; -

L] il 0
vall: values; _ -
i, j: integer;
membfile: file of members,

memb: members; v
begin )
indi =’ ?;

.. if copy(val 1 3) = 'not' then

begin

vall = waly——
delete(vall 1 3);
indi := 'not';

end= ' \

7. '
else vall := val;
begin

assign(membfile 'POSSIBDATA’);

reset (membfile);

for i := (1 + %0 ¥ (category - 1)) to 20 X category do

bezin

seek(membflle i-1);
read (membfile memb);
with memb do

if vall = xx then st

.

-end;
clése(membfile);
end;

if indi = ’'not’ then
begin
_ for i i= 1 to 11 do |
: st{i] := 1 - st[il; -

-
;.



\-.

end ;'
end;

: , ‘ .
modulé hEVERSET(vér b,c,d: real; var ind:.values; t:
: - values) \

var

tl: values; |,
bégin
. . “
ind := ’.’; T . ¢ X
if copy(t, 1, 3) = "not’' then )
begin ' o o
t1 := t; '
delete(tl 1; 3); , \
ind:= ’not’; ‘
en@

< else tl = t3°
- %uif t1 ="true’_ then - -
= begin o
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if t1 ='moreorlesstrue’ then
begin C

a0 o
nnn
m'ﬂym ¢
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» .
Il 4 t
and; i -
.

if t1 ='quitetrue’ then .
: begin‘ ‘
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. end;

if t1 ='verytrue’ then
begin i .

N
» \
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"end ; -
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end; ) -
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\\ " function 8 (a,b,c,d: real): real;
{Defining S;shaped fupéﬁion}

o

type

. o

element2 = arfay[l..ll] of values}\

‘. members = record .
no: integer;
xx: values; .
items: element2;
possib: element;

. end;
var u: redl; -

begin ,
if a <= b then 8 := 0;

if (a >z b) and (; <= c)-then

begin | o /
u := (a=b)/(d-b);
s 1= 2 ¥ 8qr (u);

end;

. if (a >= ¢) andr(a <=z d) then
4/ begin N )

a-d)/(d-b);\
- 2 x gqr(u);
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if a >=zi/then s := 1; -

end; - -

module MAXMIN(var d:element;v,a2,b2:
) element;category:integer);

{THis module realizes the deductive inference from fuzzy

propositions.}
: . 1 )
var

relat : array[l.,11 1..11] of real;
a,b,c!: element; ) .

il,j1: integer;

max:ireal;

LY

begin . ¢ .
b .

writeln(lst ’Its pqssibility distfibution is :?');

writeln(lst);

for ‘il := 1 to 11 do
writeln(lst v([il]);
for i1 := 1 to 11 do
begin ’

for jl1 := 1 to 11 do .
begin

if b2{j1] <= a2[il]
then relat[il,jl] := b2[j1]
else relat{il,jl] := a2[ill];
end;
‘end;

for il := 1 to 11 do

begin ‘
for jl := 1 to 11 do
if v{j] <= relatlil,jl]
then relat[il, j1] := v[j1];

- end;
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k.\ ) . . g - ‘ " .
\ o N , ,
I :
' for il := 1 to 11 do
begln

mq iz relat[il -1];
.'> for j1 := 2 to 11 do
if relat{iil,jl] >= max
. theén max := relat[il,j1]}
d[Xl] $= max; ,

end;

writeln(lst); /
writeln(lst,’'The fuzzy set'output will be ')
writeln(’The fuzzy set output will be: < );
wrlteln(lst), "

-for 1 ':= 1 to 3 do

wrlteln(lst d[1+(3*(1 1))], d[2+(3*(1 1))1, d[3+(3*(1- ,
write)lst d4[10) d[11)); .

for 1 :=1 to 11 do . N

writé(d{i]); ' '

writeln(lst,’,’); .
writeln(’,’); -
'writeln(lst),

end; _’_' {end of the maxmin]}

module LABELS(Var u:values;vl:element;category:integer);
(liﬁguistic approximation)
type - | . v

i

poslab ='array[1..200] of element;:- {changeable}

element? = array[l..ll] of yalues;‘

-

members = record
' no: integer; -

xx: values; ' /o
items: element2; //
possib: element; S S
, . ‘ /
end; : ' /o
. - ! ) :/
/
v ’/
/ 4
/
o/
/
V),,
. . /
Vo S
. )




var

possibl: element;
n,i,j; integer;
/ leasq,s81: real;

. x,z: integer;
y: values;
c st: element;,

. al,bl: poslab' !
// ) memb members; ‘ .
membfile: file of members;

Begin
assign(membfile ’'POSSIBDATA’);

reset (membfile); \

for i := (1 + 20 *x (category - 1)) to 20 ¥ category do
begin e '

seek(membfile i - 1);
read (membfile memb);
with memb do

begin
Y T 4
, al[i] := possib;
L “for jJ =1 to 11 do ‘
' ' . possibl[j]) := 1 - possib[j]; .
- al[i<+ 20] := possibl; . {changeable]
end ; .
o end; .
S

: close(membflle), )
] ’ for i: -(1+20*(category-1)) to 20x(category+l) do
bi[i] := allil; .
. leasq := 100; '
Y for 1.-(1+20*(category—1)) to 20*(category+1) do
K for j := (1 + 20_ % (category - 1)) to i do-
/s begin
’ SUBMAX(c gl1f{i] b1[J]),
N 51 o= 0 0, .
for n := 1 to 11 do
8] := sqr(cin] - vli[n]) + =81;
"if 81 < leasq then
begin

X = 1} :
leasq := s1;

: : 106




) ' while i = ’,1, and j =

-

writeln(1lst,’ least square = ' sl, L

! While i = ”i,’ 8nd j - ’ ‘i-,,");
y i='or';" ~
] writeln(’ ' least square ='',sl, .
‘-s’While i= ’,i,,andj = "j,’,’); a

end;
sl := 0.0;
- SUBMIN(c al[i] bl[jl);
faoar n := 1 to 11 do
sl := sqr(c[n] - vl[n]) +-81;
if 81 < leasq then

begin .
writeln(1lst,’ " least square = ! g1,
~ ' while i = ’,i ' and j = ',d,"»");
’ writeln('’ least square = ' sl.
L . ,)
?

> SRE I = J;
leasq-:= s81;-
]

y := ' and ’;
end;.

end;

writeln(lst,’the final [i,j] will be: [’,x,’,’,2,’1,'); .

writeln(’the final [i,j] will be: [’,x,’,’,z,’],’);

if x <> z ' -
then u := LLAB(al(x], category)+y+LLAB(b1[z] category)
else u := LLAB(al{x] category), \

end; - .

-

function LLAB(h: element; category: ‘integer): values;

{Evaluating and reassiéning,linguistic values)

-

type
element2 = array[l..11] of values;
members = reﬁord , ‘ L
. no: integer; : h\\J//
xx: values; .
‘items: element2;
possib: element;

end;

107 :



var X \
r: integer; ’ : o

med: values; :

st: element; A a ‘

i,j: integer; '

membfile: file of mégbers;' ;

memb: members; \\\\‘\

begin

assign(membfile ’POSSIBDATA ),
reset (membfile);

for i := (1. + 20 ¥ (category - 1)) to 20 X category do

begin
seek(membfileri - 1); .
read (membfile memb);
r := 0; l
‘ with memb do' .
- begin ' , . Ve B
° !
med = XX, ’ ‘

end; t
for j := 1 to 11 do ’ \
if m[j] = st[j] then r i=r + I,' ’
if r = 11 then 1llab := med; ‘
r := 03 ) :
for j (= 1 to 11 do \
if m[j] =1 - st[j] thenr =T + 1;
if r = 11 then 1llab := ’'not ’+ med;
end;
close(mémbfile);
end;

Ca module SUBMAX(Var c: element; aa,bb: element);

var .
N U - -
¢ } ii: integer; , ,
begin
for ii:= 1 to 11 do
if aa[ill > bb[ii] then c[11] = aalii]
else c{ii] := bbl[iil; O
end;
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odule SUBMIN(Var c: element; aa: eiement; bb: eleﬁént); ‘

Vvar ’ , . ’ Ie

ST - B —
1]
~
i

) 4

ii: integer; . L -
begin

for ii:= 1 to 11 do - .

if aa[ii] <= bb[ii} ¢

then cl[ii] := aal(iil - ‘
else c[ii] := bb[iil];
end; ) i B
’ . ‘ , .
module SUB2(input, ouuput); :
g . . ‘ ’ . Y ]
‘ {This module accepts the de{initions of membership functions.}

1
/ "const ) ’ \
C maxndhber = 60; {changeable}
© type '
/ element = array[1..11] of real;:

values = string{100};

members = record ' " -,
- no: integer; :
’ xx: values;
- " items: array[l..11] of values; L
possib: array[1..11] of real;

i end;
. var

membfile: file of members;
memb: members;

begin '
assign(membfile *'POSSIBDATA'); " {update the file}e

reset(membfile); - " ' '

clrscr; '

writeln(’Enter{ the category number... ');

‘readln(j); . .

while j in {[1..maxnumber] do - .

'  begin
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. LAt
AR

seek (membfile j - 1); . _
read (membfile memb); = —r
with memb do ' ‘ .-
begin - t

writeln(’Enter the name of 11n¢uistic value...})
. readln(xx);

writeln(xx); )

for-n := l'tg‘ll do ‘ C .

begin R

_,.,-1(’::

-\\,. R . N
write( Enfer/the name of the membﬁr... : N
v . readln(iuemsin});
wrlteln(ltems[n]),
write(’Enter the possibility of the' member...');
readln(possib[n]);

end; ‘ —
end;

seek(membfile j - 1);
write(membfile memb);

wrlteln,
write(’Enter thé category number...');
readln(j); .
end; ' -
close(membflle), '
, end. ’

module ENTER_RULE(input output);

, {This module accepts the iﬁputs of fuzzy production rules.}

" /const

maxrule = 30; ’ {changeable}

type ) _ oo

values = string{100];
transfer = arrhy[l..z 1..3) of values,

rules = record’

: number: integer;
. contents: values;
first: tran&fer,

end;
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var

rulefile: file of rules; compo: rules;

i j: integer;

procedure SEPARATE (one:
™~

tybe : :
-values = string[100];

var

values; var xandy: transfer);

valul valu2 subl11l sub222 sub333:- values;

subl sub2 subll sub2l s
n nl n2 n3 né: 1nteger,

begin .

repeat

delete(one pos{’ one)
until pos(’ * one) = 0;
n := pos(’then’ one)}"

valul := copy(one 3 (n
valu2 := copy(one (n +

nl := pos('is' valul);

n2 := pos(’is’ valu2);

ubl3 sub22 values;

1);

= 3));
4) 200);

-

subl := copy(valul 1 (nl - 1))y

xandy[1l, 1] := subl;
subll := copy(valul (nl

n3 := pos(’is’ subll);
sub2 := copy(valu2 1 (n2 - 1)),

Xxandy([2, 1] != subl;
sub21 := copy(valu2 (n2
n4 := pos(’is’ sub2l);
if n3 <> 0 then -
beiin

" 8ubl2 := copy(subll 1

sublll := copy(subll
xandy[1l, 2] := sublZ;

xandy[1l, 3] := sublll;

end
else
begin .

xandy({l, 2] :
xandy[1l, 3] :

“end;

PR E'N

+ 2) 100); {(F is T} .
{y}
.+ 2)i 100); . (@ is T’}

(n3 - 1));
(n3 + 2) 100);
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if n4 <> 0 then
begin

sub22 := copy(sub2l, 1, (n4, - 1)); -
sub222 := copy(sub2l, (n4 + 2), 100);

xandy[2, 2] :=" sub22; | ' Ty -
xandy[2, 3] := Bub222; - ' : \\__/"1

7 ' . ’ .

end LY

else ’ _ ' . ©

_begin - . ‘) - e

xandy[2, 2] :

-xandy[2, 3] :

nou

/

end;

4

end; ’ : o : ‘ -

5

begin - R L

-agssign(rulefile 'RULE’); ) : N _
rewrite(rulefile); ‘ ‘

.Wwith compo do oo ‘ '
bégin S - ®

r contents :
for i

: : ) .
to maxrule do

- nunper := i; ° - o . Ce e
\ wr‘;f(rulefile compo); ' ' '

end; * .

'
L . . Al

end; : . ‘ ) o -
close(rulefile);
assign(rulefile ’'RULE’);
reset(rulefile); - «
write('Enter rule number ...');

writeln(’Enter rule number...’); P \ A - .
read(i); ‘ ' I |
-writeln(i); ' - T , T >
while + i in [1l..maxrule] do L= : ’

i - ‘ - -

. b 112



begin

seek(rulefile i-1);
read(ruleflle compo), '
with compo do ’
begln

' { wr1teln(”Enter’rule ’,1, e
writeln('Enter rule ’,i,’...
readln{contents);

" writeln(contents);
writeln(contents);
number := i; ‘
separate(contents first);
i

end; .

, seek(rulefile .i-1);
write(rulefile compo),
writeln;
writeln;

writeln(’Enter rule number...’
readln(i);
writeln(i);

end;

close(rulefile); -

\ ’

egd- e -

writeln(’Enter rule number...”



: APPENDIX B

- THE COMPATIBILITY FUNCTIONS OF SOME
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APPENDIH C -

) .. THE TERCHING DECISTON RULES STATED IN COLLINS '
' ‘ AND STEVENS' MODEL OF INQUIRY TEACHING

CASE .'rEl.ECT‘ION STRATEGIES (CSS)

-

CSS1, Positive peradigm exemplar for fectors

I {3} 0 sudent has ot Wdentified many of the facton that we relevant 0 8
particular value on the dependent vanable. e
then 12) prck 3 case where a8 many as possibie of the valwes on the facion we
with the p L muuwm

Exomple. Nlmuhnguwzﬁ{mm«mnm
has heavy runfall of not, prck a case hike the Amazow or Oregon where all the
factors have values that lead W0 hesvy rusfall.

CSS2. Negstive paradigm exempler for factors

{4 (l)-Muhumnd:mﬁdmyohhefmdmnukv-nol
parncular vajue on the dependent vanable,
(l)nklcmm-mny.pmbkdhvﬂmah!mn

with the p lar value o thé dependent vanable

Example. 11 8 srodent is being tsugin the (sc10rs affecung whether a place
a3 heavy runfall or not, prck 2 case Ivtem:SahmorSo\mCdxformm
all the factors have values that lead 10 hirtie runfall

CSS1 Positive exemplar for @ sufficient fector (Neer hi]

-If (1) s sudent has ot idenufied a factor that 13 suflicrent for a perhcular
valug on the dependent vasiabie.

thea (2) pick & case where the facwor 18 predominant, the value of the factor it
* comssent with the pven value of the dependent vanabie, the values of te
other yulTicient [actors are inconaament with the given valee of the depen-
dewm bie, and the depend bie has the pves valwe,

Exsmple  Suppose 1 #acher wants & wudent 1 'sac that you do mot need
rainfajl for growing nce. Mu:mmwdmtw which has e
raafall, bt does grow nce by wmng impganon from the Nile.

vy factor (Nesr miss)

CSSA.  Negstive plar for »

“If "(1) & sodent has mot identified 8 factor that is mecessary for & particular

- value on the dependent vanable
then (2) pick 8 case where the factor is predominant, the value of the factor is
N inconsisent with the gives value of the dependent vanable, the vales of
the other [sciors are commsiest with the pives value of the dependent
) m.uuwmmmmm.

Example, (ﬁm&nh lm o popilanon densry )

T. (Ind ,.wmnhdm“nucum--
lm)OK No-doyonhnkh:myduuuuun'(csu Pick o
mnuanplufwamym)(m Ask for value of dependent
mnblc)

Why? (1S6: Ask for seievant factors.)
1 would imagine because of the cold?

Ladel ol

120

€35 Generaiization exempier for factors (Miximael peir)

1t (1} a.student hes not identifiod ome OF more faciors that are relevant 10 &
pasticular value on the dependest vanable, and
(2) there 13 a case identsfied that is & potstive or negative exemplar for those
acrors.

them (3) peck & case that has the same or simalar values 58 the previous case on
the given (actors, that has as different @ valoe as possihle om other (aciors,
ond that has the same or 5 nmular value on the dependent vanasble.

.
Ezomple  (From Stevens & Collins, 1977, o causes )

T The current 15 calied the Japanese current dnd it comes from the Equator
slong the coest o Jspan and across 1 Canada end Oregon. (1SSb: Pownt owt
prior sieps) (s there another current you know sbout with the same petiern?
(CSSS Pick a generalizanon exemplar (or & set of factors.) (ES14- Ask for s .

' case with given values om & st of faciors.)

S. [dom't know what you mems—dae equatorial cemem?

T. 1mcant the Gulf stresm (£S16d: Pount out 3 case with given values on & set
of factors) | wanted you to see the general patter of currents ia the world
(15110, Pont owt imulanty w factors between umilar cases. )

K
CSS6. Differentistion exemplar for factors (Minimal pair)

it (1) » student has not sdenufiext one or more factors that are relevant © 2
particular value on the dependent vansble, and
(2) there 13 a case identified that 18 & positive of negative exemplar for those
factors,

then (3) prck 8 case that has a different value from the previous case oa the given
factors, that hat the same o wvular values on other factors, and that hae a
different value on Lhe dependess vanasble

Erample  (From Collins. 1977, on popuistion density.) .
T. OK. Why do you suppose’Java bhat 3 high populanon density and some of
mwmlmmi-ummb-mmmmm (IS14: Ask for
differences in factors between different cases.) .
S. There's so many of them,
Sumatrs. (CSS6 Pick 8 differenuation exempler for fxm)(Swnm ]
chosen betause u's like Java m mont resp e.g.. cli ]
has v'different value on the dependent vanabie. This forces the student 10
pey atention 10 the factors. swch a8 terrun, that differennate Java and
Sumatra ) .




[ 3
.CSS9. Countsrexample for insufficient factors

C5S7. Exemplar to show variability of a factor

If (1) o student has sdentfled a factor that 15 relevant %0 8 paruculer valus of
the dependemt vanable. md
(2) there 15 & case rdentified that has & parmcular value oa ther factor,
then (3) pick a case that has the 1ame value on the dependent vanabie, that hes as
dafTerent s value ss possible on the parucular factor, aed that hes as memaler
+ values &3 posssbls on the other (ac1003.

Exampie. Suppose Java has been Wdentified as o place that is wame encwgh
0 grow nce, then pick & case like Japan which 13 much cooler but sall grows
nee. ’

- CSS8. Exempiar to show variability of the dependent

variable

If (1) a'srudent has identified ome or mode factors thet are relevant w0 a
pamcular value of the dependent vanabie, and
(2) there is a case sdewafied that has & perticulsr value ou the dependent
vansble,
M(J)nlncnth-hmvﬂmo-mt!m-duhn
different a value as possible on the d

AExwnple. Suppos the Congo jungle has boen Wentflod as o place nsar the
oquator where the sverage terpermrare 13 85° 10 90° Thes peck a case like the wp
of Mt Kilimapjaro, which 15 also near the equator, but the Tverage tempersrure is
much colder (<327,

If (1) s sudent proposes & rule or makes & predicoon based ca one or more
factors that are imsufficrent, or
(Z)nmuwpedbylnh(ENSlaENS?)b‘sdo-mum(m
that are insullicient,

then (S)ptckucmm:h-thnluuwlﬂtdumnmrm but
not the value specified on the depend e,

Example. (From Collins, 1977, on gran growing )
T. Why? (ie. why do they gow nce 1a Louiuana) (IS5 Ask'for relevam
factors.)
S. Places where there is a lot of weter | think nce'requares the abilicy ©
. selectively flood ficids.
T. OK Do you think there's & Jot of nce 1 1ay Washuegon sad Oregon?
(CSS9 Pick a counterexunple for, sn insufficrent facsor } (IS). Ask for the
valve of the dependent vanable ) (T selects 4 case where there s 3 lot of
water but no nce, ‘this coumereaample then led the stadem 10 consider
climate and terrain )

€SS10. Counterexampie for unnecessary factors

If (1) s uudent proposes s rule or makes a prediction based on one of more
factors that are unnecessary, or
(2113 entrapped by 8 rule (ENS 2 or ENS [0) based on ome or more (xcton
that are wnanecessary,

then (1) prck 2 case that does not have the values specified os the unnecessary
factors, but does have the value specified On the dependemt ranable

Exomple  (From Colling, 1977, on graun growing.)
S {(In responsc to why they can not grow nce in Oregon) [ dos 't dunk the land
13 Mt enough You 've got 1o have flat land 30 you cam fMood s ot of #
T. What about Japan? (CSS10- Pick a wic for =
factor ) (IS1° A wdnvﬂmohhedcpendmvmabh.)(lwmm
but does not have)rvch Nat land )}

CSS1%.  Countsrexampie for en irralevant fector

It (1) a student proposes & rule or makes s predichon based oa One Or more
factors that are irrelevant, of
(2) 18 enirapped by a rule (ENS ) or ENS 11) besed om ome or more facton
that are irrelevant,

then (3) pck 3 case that has the values specified on the irrelevant factors, bw
does not have the value specified on the dependent vanabie, or
(4) prck s case that does not have the values lp-nﬁd on the wrelevant
faciors but does have the value specificd on the dependest vanable

Esomple.  Suppose s sradent prop d thet having lugh bumdity was neces-
llyprnvmlmwpnd:umhummmumdﬁhﬁm
ity, then the tescher can ask sbows Egypt where the hamedety u low bwt nos 18
grown, or the Congo whers humsdery 15 hugh but mo POt 8 oen.

CSS12. Countarsxampie for an inchrrect vaive on &
factor

|4 (INMM.NkuMnlmu.mum
vﬁmd(:mu-imnau
lMﬂu:Mhluh(Eﬂ!‘dD‘!lnunnu
velues of facwon that are sacourect,
then (3) peck 8 cane that has the values specified on the factors, bt doss not bave
the valae wpecified on the depend ble, or
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(l)ptzhnnmudonmuumvdmmdﬁduhfxm.u
dors have the vealue specifind on the depend

Ezample. Supposw a student propossd that having 2 ool lemperature is
fecessary (0r growing nce or predicts that Jepen grows rics becawse ¥ is oool.
me:nukwoulm-.muwhmmmnl
around and they grow ncs, of sbowt Oregon, which is cool bt whers ne rice is

grown,

CSS13. Construct & hypotheticet case for insufficient
factors

U (1) s sudent proposes o rule or makes & prediction besed on ons er men
factors that are issufficient, or
(2) is encrapped by a reie (ENS1 or ENS9) bassd on ons or mors factors thet
are insfTicient,

then (3) construct a cass that has the valees specified oa the iseufficient factors,
but not the values specified on the dependent vanable,

Example. Suppose a snadern yuggests thay do act grow rice is Bridsh Col-
wmbia by 113 00 ask the stadenr I Bodish Columbeg were
flat could they grow nce then?"" The answet 19 that they could aot, becsuss of the

cold wempersture

CSS14. Construct a hypothetics! case for unnecesssry
fectors v

' It (1) s student proposes a rule or makes & predicoon besed on ome or More

factors that are urnecessary, or
(2) is entrapped by a rule (ENS2 or ENS10) based on one or mors factors
that are unnecessary,

then (S)consxm:culhndounuh-wmmmmfhduhm
sary {actors, byt does have the value specified om the depend

Erample  Suppose s student suggests they grow nce in Lowssians becauss it
rans a bot there, then the teacher might ask "I n dida’t rmea & lot in Lowisana,
could they still grow nce there?’* The answer 18 they could by wngating the nce
paddies from the Midnissippy River v

CSS15.  Construct s hypotheticsi case for irrelevent
factors

{4 (l)-w«mm-uhamdunwﬂkmbmdumwm
faciors thal are irrelevant, of

12) 18 'en by s rule (ENS) or ENS11) based on one or more (actors
thet are 1 1‘

then )) construct that has the veives spscilied on the irmelevamt faciors,
but doct not have the valve specified on ihe dependent vanable, of
(4) construct a case that does not have the v-hm specified on the ireievast
factors, but does have the value specified om the dependent vanable

Ewample  Suppose s child ssserts that John 3 tnpping of Sam was bed be-
cause Sam broke his leg. then Ihe teacher might a1k whether Joha was bed even if
Sam uUnd not hurt himself ¢ all, of evenif Sam had accidemally tnpped over John
and broke his kg .

CSS18. Construct 8 hypothaticsl case for incorrect
values of fectors

It (1) a strudemt proposes s rule or makes o prediction based oh one or more
valves of factors that are incorrect, ot
(2) a student 13 entrapped by a rule (ENS4 and ENSI2) based on ome o¢
more values of faciors that are lacorrect,

then ())mnmncmmuh-mvdmwm-dumfm bt does not
have. the veiue specified on the depend or
(4) construct umm-ammhcntmvﬁm:p«mduhfm
bul does have the value 1fied on the dependent mnﬂt

Exemple  (From Warmen on who can play with bocke.§

S How sbowt not pris play anytung snd boys play with fverything,
(This 13 one boy ‘s proposal for a fair ruie.)

T Ok Let's take & vote. Boys, how sbowt if you doat play with any ey
hers 1n school” (CSS16 Comatruct 8 kypothetical case for an lmcerrect
_ walue on 8 facior.) (ES2: Ask if"rele 1 corvect or imcarrect’)

.

!erﬂ STRATEGKS (ENS)

ENSI1, Aule based on facrors

I (1) & sredent expiasns the valus of e dependent varishie besed on ons o
more {actors Dt we not wifficsent, or
12) makes  prevaction baasd on one ef mory [actors that are ket sulTicient,
chen () msk if 213 3 general rele that the dependerat vanable mest have thy valus
specified grven the valurs of the lnsslTicient facrers.

Laawmple  (from Andarvon, ja Collins, 1977, en wmperssum)




o

— .
{1a response 10 5 question abowt why he predectd New fow: was coldet
i winter than Montans) Newfoundland 13 fenher north.

Yes. Newfoundiand is fecther north than Montana. (ESSb- ow conrect

valve of & factor ) Are you argwng then. that if you take asy two places m
the Northern Hermsphere, the one winch 19 further north will have the jower

average winier lemperarore’ (ENSI Entrapment ruie besell on an meuffl-
chutny\

e

ENS2.  Rule besed on Unnecesssry factors

(1) » srwdent explans the value of the depeadent variabis besed on ene or
more fackors that are ROt RecEISary. o
(2) makes s predicnon based 0m ont or more (sC10r that are ROt AecEMery,

then (3)ask 1f it is'a gemeral rule thet the wnnectssary {acton west have the

.m-qwumum-gumw.

Exampie. Seppose & sredent 323 10ts of rsafall is « ressom for growing rice,

or predicts that ¢ place wadh heavy rusfall grows nee, then a3k “Do you duak i
is necessary 10 have heavy raafall © grow nee?””

ENS3.  Rule based on irreievem fectors

i

(1) & student expinng the videe of the dependent vansbie besed o one or
more (acrors that are imrelevant. or
(2) makes a predicton based on oae or more factors that are urelevant,

h{!)ﬂllulmﬂukﬂuh@u&lm“mm&

oriental nsrure, or predcts they grow nce 1 M

value specified pven h\n‘ﬂd& revelevant factors.

Exomple  Suppose a studest 1ays they grow rice in China becawse of thewr
golis b of their )

ascure, ask if o 18 general rule that peopie with s onental asrsre grow nce.

ENS4. Rule based on incorrect values of factors

(1) o sredent explains the value of the dependent vanable based on one or
more incorrect vatues of factors, or
(2)munnmdmb‘ndwomwmmvdmdfm

X then (3) ask of 12 13 8 general rwle that the dependest ranable must have the

value specified rvea the incorrect valwes of the (acwors.

Example &w'nm;wﬁ-ﬂnwﬂmwnhhu

dry chimate, ask if generally a place must have s dry chmae w grow noe
ENSS, Pradiction oased on insufficient factors

i

(l);cmunhﬂeﬂvﬁer‘tmvm&o’m&‘, o anable 15
tent with the value of one or more factors that are not sufTicrent, and
{2) the value of the dependent vansble has not been specified,

then (3) ask +f the dependent vanabie has the value tha is comsisient with the

of the insufficrent {actors, or
( the sudent 10 make 3 prediction based oa the insufficient factors.

T

“w

Ewample  (From Colline. 1977, on average femperature ) . \
hnveryhntaloqunmuhm’(pmmnhmn-twmnm
equator, where (he effect of lantude 13 overndden by ocesn curments.)
(ENSS Entrapmemt ini0 predichon based on inselTicrent facton. )

1 dom 't remember.

No [t rums owt there's & very cold current coming wp the coast, and it
bumps sganst Perw, artd tends to make the coastal area cooler, althowgh it"s
near the equator (ISTH' Poum owt values of facron ) (ISIb Point out value
of the dependert vanabie )

ENSS. Prediction based on unnecessary facton

i

(1) s cane 18 selected where the value of the dependent vanable is inconsis-
tent with 3 value of one or more (actors that are not necessary, and
(2) the value of the dependemt vanable has not been specafied,

then (3) ask if the dependent vanadle has the value that 1s consisteng with the

values of the uanecessary {acrors, of
- (ﬂullhtmdunomﬂcnpudmhududnm?mylm.

ELxample  Seppowe Epypt has bren selected 1o discuss rice growing. then the

teacher cam ask of the wudent thinks they can not grow noe there givea thers is
fretle raun, or whether the sudent tinks they could grow nce or not.

ENS?. Pradiction besed on irelevant factors

u

(1) 8 case 13 selecwnd where the value of the dependent vanable is inconus
ferv with what the student wosld predict given the valwes of one or more
lrelevamt factors, and

12) the value of the dependemt vanable has not buen specafied.

then (1) ask of the dependemt vansble hes the value that the stwdent thinky is

conusiemt with the valves of the urcicvamt facwn, or
{4) sk the stedet % make a pred based on the urelevant factors.

Esamples. mlm&nmuwmkmh

growing nee, then ask “Do they pow nce is Mosgoks, since they have s
Onestal narare® or 'mmmuywﬁuuuuﬂmp&"'
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ENSA. Prediction based on Incorrect veluge of factors

I (1) ncase 15 seiected whers the valug of e dependens vanabie 13 incomsss-
temt with what the stedest would pradict given the valves of ome or mors
factons for winch the swedent’s rele is incorvect, and
(2) the value of the dependent vartable has not been specified,

FM(J)&J&WWM&WM&WM&
contistent with the values o the facwors, of
mnmm»m;mn—unmmmdu
{acnr.

Ecample. Seppose s stedest thinks a dry climem is ascesary for growing
rice, then ask if they prow rice ia Anzone since it hes a dry climes, or ask
whether they can grow rice in Arizona.

ENSS. Entrapment beedd on insufficient factors

Ir (Hayp value of the depend isbis is besng dered for &
cas, and -
(2) there sre ome or more insefTicrent factory that have valuet i
with that valug of the depsadent varishle,

then (3) ask 1f the values of the iasufTicrent factons sfe consistent with ti vadue
of the dependent varieble,

3

Example. Swppose a stedent is comudenng whether they grow rice in
Flonda, sk if the warm climae wouid account for the inatalsty 10 grow rice
there.

ENS10. Entrspment based on unnecessary factors

It (1) s pernculae value of the dependent ransble 15 being considersd for &
case, md
(2) there are one or more snoecessary facton that have values inconsumnt
with that value of the dependent vanable.

then (J)nhlmevdmolthpm'yfmnmmmum
of the dependent vanabie,

Ezample  Suppose s student is & hether they grow nce 1s Egypr,
ukllunlxiolrunhﬂ-wllmakcmmmntmqpvwmm

ENS1Y, Emnpmom based on irrelevant factors

I (1) a pamncular value of the dependent vanable 13 being considersd for »
case, and

(2) there are one or more urelevant faciors that & stwdent might consider
relevant,

then (J) ask «f the values of the irrelevam factors are consissent with that value ol
the d¢pendent vanable

Esample  (From Swers & Feurzesg, 1963, on medical diagnosis)
T _Pleural pun. dyspnes, fever. and the physical exam nighs are cenaialy
wrth pul Y (ESTb. Point owt valwes of factors are

correct } Do Pou think ther shaking chills snd the presence of rusty spurem
further supponts this disgnosis? (ENSI1 Enuwmtm based on irelevant
factors.)

§ No.

T fupw.

S
ENS12. Entrspment based on incorrect vnlﬁn of
factors .

If (1) o panxcular value of the depend ble is being dered for a
cme, and
(2) twre are values of one or mors factors that are inconsisent with that
value of the dependent vanable,

then (3) ask 1f the values of the faciors are consisemt with the value of the
dependent varisble.

Ezampile, vy » stedest iy dering & d: of pal y infarc.
uou!wlcue-nh Io-'hmbbodmu.dhmhnmmukillhbv
white blood count is with pul Y h(:uh-.n-h-
blood count 13 with pul y inf

IDENTIFICATION STRATEGIES (18)

I1S1: Ask for value of the dependent verisbie -

I (1) 2 case has bees selocwed, and
(2) the value of the dependem variable has aot bees specifled,
ther (3) ask the srudent 10 idenufly the vakue of e dependent variable.

1S1s: Suggest a vailue of the dependem varisbie

1T (1) 8 case has been selected. and ¢

= (2) the sradent does not know the vakee of the dependent varisble,

thew (3) sggent & p value of the depend ble for the stadent v
conmder. -

h



ta
IS1b: Pont out the vaiue of the dependent vanabie

If (1) s cose has been miected. and
(2) the student 13 misiaken sbout of does not know the value of the depen-
dent vanable,
. then (J) tell the student the correct valwe of the dependent vanasble.

Ezemple, (from Swvens & Collms, 1977, on couses of rusfall)

Do you think t rans much 1s Orégon” (1S! Ask for vahue of the dependent

varisble.)

No.

Why do you think it doesa | res much i Oregon? (IS6 Ask for relevant

factors )

1'm not exactly sere—jus Sypothrunng—it seems 0 me that the ssrround-

R ing states have a rcher dry clamase, bt | really dom Y kmow sythung sbowt
the geography of Oregon.

T. It does in fact ran & Jot m Oregon. (ISI Pourt owe valve of dependemt
_xgnable ) Can you gucss what canses the rmn there® (156. Ask for relevamt

facton.) .

Mo o

1S2: Ask for the formulation of a rule .

It (1) ome or more lactors have boew dennfied.
then (2) ask how the values of the facton are relmed to the value of the depen-

dent vangble

Example  (from Anderson. s Collins, 1977, os temperature)

T. Please try 10 be more precise (e g . with respect to cee effect of lantude on
tempersiure) Would you, for tnstance, 18y that if you take any two places i
the Northern Hemusphere, the one furthest south has the colder wimer tem-
perstures” (S22 Suggest the formulsuon of a ruie.)

1S3: Ask for the formulation of sn sftemative rule

If (11 an incorrect rule has been specified relanng the values of one or more
' {actors with a purticular vahue of the dependent vanable.
then (2) ask for the formulation of am alremave rule

Ezample  (from Anderson. ia Collias. 1977, on temperatwre)
S. (In response 10 questron under 152 above) No | wouidn 1 say that
T. What would you say? (1S} Ask for the formulstion of an skiernative rule )

1S4-  Ask for sufficient factors

I (1) there are one or more wfTicrent (actons that have not been wdenufied,
then (2) ask the student to wenufy those factons

Example  Suppose a student has not rdennfied -mp;m or 8 means of
obtaining gnough water lo grow nce, the reachey might ask. *Is there any way 1o
obtain enqugh water 10 grow n<e other than (rom runafal)®**

1SS  Ask for necessary factors

If (1) there are one or more necessary factors that have not been sdentified,
then (2) ask the student to rdeniily thowe facton

E;anplc Suppose 8 student has noi idenofied amy facion that affect
whether a place has beavy runfall, a teacher mught ask. ““What 13 necessary 10
have heavy rainfail :n a place”™

IS6: Ask for reievant fectors

< I (1) there‘are either necessary of sufficient (actors thst have aot been iden-
tified,
then {2) ask the student for any relevant factors

Evample  (from Anderom, in Collins, 1977, on temperature)

T Which it Likely 1o have the colde st winter davs, New{oundland or Momtana®
{ENSS Entrapment into predaction based on insefTicwent factors } (In this
case 3 wecondary factor overndes a pnmary factor )

S Newloundland

T Please give your reasons for answenng Newfoundlamd (156 Ask for rele-
vam factors,)

I1S?: Ask for values of factors

I (1) there are relevam (acior that have been wentifaedd for o parucwisr case,
bwt
(2) the valwes of the facrors have not brea sdenaified for that case.

then () ask [he student for the valmes of the (actons.

Exomple
S. [ suppose there are places. ke Nigens u pretry darn formle.
T  OK. It's fertle. but what other qualmies 1156 Ask for relevant factors ) Is
G iemperaiure warm or cold™ (1S3 Suppew o necersary facvor | (8S7 Ask
foe the value of 2 ft‘uu )

{from Collws. 1977, en prasa prowmyg)

.
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.

3

1S8: Ask for prior steps

I (1) upericular siep 1 & cousal chasn or prcedure has heen idenisfied, and
(2) there are prioe steps that have ot been Westified,

then (3) sk the studewt 10 identily the pnor meps.

Eromple  (from Swevens & Collins, 1977, un couses of ram(sll)
Where does the morsture ia the sr come from? (ISR Ask lor pnor weps )
Help.
The motsrure avaporases from the ocean. (1550 Pount out pror swps ) Why
do you thuak a lot of mossture evaporases? (IS8, Ask for pror seps.)

HunA

\
159. Ask for intermediste steps

1t (}) two meps 1 & consal chasa or procedurs that are nof adjacent have been
idenufied, A
then (2) sk the stwdest 0 identaly the 1vermedion weps. ;

Example. (from Sievens & Collins, 1977, on causes of rainfall)
S When the mossture laden air reaches Lthe mountains if 13 forced 10 nse and
consequendy the mr cools® causing ranfsll. so?
T. Why does cooling cause minlall™ (159 Ask for imermedise meps )

1IS10: Ask for subsequent steps :

It (1) a particular saep in 8 causal chan orjymafhm has been identified, and
(2) there are subsequent steps that have not been wdenulied,

ther (1) ask the studem 10 denafly the subsequemt sarpe \
Example  (from Anderson, in Collins, 1977, on morality of drsfy ressiors)

S.  You just can't have individuals deciding which laws they are going 1o obey

T. So. yow would say the Amencan revolutionanes should have followed the

law (CSS9 Pk & counterexample for sa imsulficwnt (actor,)

Yes. | guess o

If they had obediently followed all the laws we might not have had the

Amencan revolution (1S10a Suggest s subsequent swep.)

IS11: Ask for similarities in factors between similer
cases '

36 (1) two of more cases have been 1dentiflied that have umilae values on the
dependent vanable,

then (2) ask the <tudent 10 1dentify sny factors on which the cases have similar
values

Ezample  (from Warman on morality of characiers 1n Peter Pas)
T What makes thowe charactsrs good? (refemng to Peter Pan, Tinkerbell, and
Wendy) (1IS11 Ask for umilanties in factors between umilar cases )

1IS12:  Ack for ditferences v factars between umilar
coses

8 (1) two of more cases have been idemuified that have ssmilar values on the
dependent vanable. .7
then (1) ask the srudent to 1dentily any factors on whuch the crses have difTerem

values
4
Example  Supponing that both Japan and Jave have been sdentifled as pro-
ducing nce, the teacher could ask the wudent for any differences in factors
between the two cases 1n (act Japan 1 colder and much more mounimnous. Ths
ndicates that flac land and- s aopweal cli e st y (scvors.

1S13  Ask for sumilartties in fectors between different
caven

H (1) two or more cases have been rdentified tht have different values on the
dependent varable.

then 12) 2k the wudent to idepfy any factors on which the cases have umiler
valuey B

Esampie  Suppowe that Oregon has bren idennfied ss having s lot of rae,
and Baga. Califorma as having linle rin, then the teacher might auk what factors
they have v common Since they pre both on the mwamm.
that means that that acsor does Aot deiermving the amovnd of renfall,

IS14: Ask for differences in factors between different
cases

H (1) 1wo o more cases have been idennified that have differemt values on the
dependent vanable,

then (7} mk the srudens te idenuly any facton on which the casrs have dilferent
vahars

Ezampie  (from Andsrson. ia Coltine, I9T7, ea wempersren)



»

Some other (actor beswdes north-south distance mast also affect roperature.
Yes. Right What could tus factor be? (IS5 Ask (or secessary fscrors.)
{ dow't have wmy wes
WymlmmnmmdMAmmDoywmuya!
and Newloundland? (1S14- Ask for difTerences

‘-

in factors betwees different cases.)

IS18: Ask for 8 cass with a given velue on the B

dependent veneble ‘ .
If (1) there 13 no case currently being comsxdered, and
(2) there 13 8 p lar value of the dependent vanabie w be commdersd,

then (3) ask the srudemt 10 pock & case that has that valee om twe dependent
vanable.

Example. (from Collins, 1977, ou grua growng) ¢

T. Where in North Amenca do yow thuak noe mught be growa® (IS15: Ask fora
case with a piven value ow the dependent vanabie)

S. Lowusss '

1S18: Ask for 8 case with given values on some factors

I (1) there is 20 case currently being consadernd, snd
(2) there are particular vahues of some set of (acions 1 be comsadered,
hen (3) ask the student for 8 case thas has the given values ow the set of factors.

Ezample  Given a discussion of nce growing, the teacher mught sk a siv-
dent 1f he knows & place whers there 13 & Jot of ranfall but it s racher cold (¢ §.,
Oregon).

1S17:  Asit for » cass wrth given values on soms
factors snd the dependent vanable

If (1) there 15 no case currently being conssdered, and
(2) there 13 some panng of values on particular factors and om the depen-
demt vanabie to be conudered.

then () ask the student for a case that has the piven values on the {actors and on
the dependent vansbie.

Ezample. Given 3 discusseon of nce growing, the teacher mught ask o s
dent if he knows & place where there 15 8 lot of runfall, but a0 nce 18 growm (e g ,
Oregon)

EVALUATION STRATEGIES (ES)

€S1° Ask if the vaiue of the dependsnt vanabie 13
correct of incorrect

If (1) a value has been suggested for the dependent vanable in a pancular
. case.
then (2) ask the student «f that value 13 comrect or incorrect

Example  (from Coliins, 1977, on grun growing}

T What do you think they hive on in West Afnca” (IS, Ask for value of the
dependent vansble )

S | guess they grow some kind of grun in West Afnca.

T. What kind 119 most likely? (1S]. Ask for value of the dependent vanable )

S Whem

T. You think wheat is the mow likely gran” (ES! Ask if the value of the

dependent vanable is correct or Aot ) \

|
€S2: Ask if 8 rule is cormect or incorrect

If (1) 2 rule has been suggested relasung s set of factors to the dependent
varisble,
then {2) ssk the student if the rule is comrect of incorrect.

Example  (from Warman on who can play with blocks)

T. How about if we had boys could plsy with everything Tt blocks? (CSS1)
Construct & hvporhetical case for insufficrent factors ) (ES2. Ask of ruie is
comrect or incorrect ) (Warman treats fasmeis as the dependent vanable, and
hm suggests & rule denved dy mumﬂu\‘ a hypothetical case for insulli-
cient factors.) N

ES3: Ask if a rule is the same as or different from
snother rule

1f (1) o rvie has been suggesod which appears similar 1 snother rule,
then (2) ask if the rulg is the saene as or dilTerent from the other rule
A

" Example  (from Warman on who can pisy wih blocks) .

Si. 1've got & pood Wen Everybody play with blocks.

T. Wnudommut-!{uulm’(iszAnzhmknmmorm)

s2.

T.  lsa'tihat the rule we have now?® (ES3 Ask if a rule rs the same or differemt
from another rele )

1

s

€54:  Ask if factors are sufficiant or insufficrent

I (1) one or more factors have been identified with respect 10 8 partcular
value of the dependent vansble.

then (2) ask the sradent if the factors are sufTicient or insufTicient to determme
the value of the dependent vanable.

Eremple. (from Swets & Feurzerg, 1963, on dentifymg letters)

T. Slm-hundynhmmmnmnhmfmm(cnm)

S. Curves?

T. Om.

S. Ino-u‘s‘!

T. Two.

S. Oblgues?

T. Zero. -

s. C

T. You don't have enough mformatson yet to get the right asxwer (ES4b: Pout
owt that factors are insufficent.) How do you know «t is 't ], for example?
(Sia: Suggest s value for the dependent vanable )

ESS: Askif fectars are Y ar Y

It (1) one or more factors have been identified with respect 10 a particular
“value of the dependent vanabie,

« then (2) ask the student if the factors are y or Yy to d
the value of the dependent vanablee:

Example Suppoung s student suggests that places with a bot of rua can
pow e, the ieacher might ask **Do you have 1o have s lot of run in order 10

pow nce?”

ES8: Ask if factors are relevant or irrelevent “

If (1) one or more factors have been 1dentified with respect 1o 3 pamicular
value of the dependent vanable,

then {2) ask the student if the factons e relevant or iTele vant 10 the value of the
dependent vanable.

Example  (from Wmnm on who can pisy with blocks)
S. How sbows all tfic boys take ail the blocks aad put ietm,putside and the
blocks stay outside the building.
T  So we have the blocks outnde the building. {Restate rale ) Then do we will
have the problem? (ES6  Ask if & factoe 13 relevant of urelevant ) (Warman

ES7. Askilthe values of factors are correct of incorrect

U (1) the values of one or more factors have been identified s espect 1o &
particular value of the dependent vanable.

then (2) ask the student if the values of the factors ace cortect or incorect with,
respect 10 the value of the dependent vansbie ‘

Exumple  (from Swets & Fr 3. 1963, on medical d )
In thai case ['d hike to talk sbout virsl pneumonia (1S1a. Su"eu a value of
the dependent vanabie ) The tachveardia, high WBC, cleyated respiratory
rate, shaking chills, bloody sputum, and severe picural pah alf lend weigit
to that diagnosis—nght? (ES7 Ask if the values of facton are correct or
tncorrect.)

ESB: Ask if s step is 8 prior step

It (1) there are two steps wdenufied in a‘causal chain or procedure,
then (2) ask the student if one siep 13 pror 10 the other step or not

Esample.  In discussing what causes ranfall, the student might mention the
2ir cooling and ({xin.. The scacher might then ask the student if the ar cools
belore w nses. .

ESY: Ask if a step is an intermediste step

If (1) o given step 10 & cousal chun or procedure bw-dumﬂed wrth
respect 10 two other steps,
then (2) ask the srudent if the siep is intermediate between the odwer two eps

Ezample  Suppose 8 studemt is leaming abowt cvaporsbon processes the
teacher might ask whether clouds form after vaponization takes place, but before
condemation occurs. Cloud formanon is 1a fact cavsed by condeffianon

€S10: Ask if s step is & subsequent step

14 (l)lpmmpmntuulchunorpm«d\mhahuumrﬁm
respect 10 another Mep,
then (2) ask the stwdent il the mep is sbsequent 10 the other sy . *

Example,  Suppose s student s g the distnbutive law w anthmetic (a8
in the Anderson dislogues), then with respect s0 the problem 7 X 124 I x {2 »
7, the teacher might ask 1f you mulnply by the 12 after sdding the the 7 and J.




ES11: Ask if similar cases sre the same on given factors

If (1) two or mare cases have beewidentified that have the same value
dependent vanshis, and
(2) there are one of more factors for which dve cases have the same valuss,
then (3) ask Uhe wrudent i the cases have the same of different values on the
. given facwery. .

* Ezample. Seppose the wedent in leaming sbowt the chuses of runfall, snd
the student notices that Bajs California snd Northern Chile have litie rainfall,
the teacher might ask 1f tey have thi same (atude (which they do).

€S12:  Ask if sieviiar cases are different on given factors -

It (1) two or move cases have been identifled that have the same value on the
dependent vanable, and
(2) there are one or more facsors for which the cases have different valves,
then (3) pak the studems if the cases have the same or different valves on the
pven factors. . .
Exomple  Seppose 5 wadent has idennfied the Amazon and Oregon w hav.
ing 8 lot of ram{al), then the teacher could 2k 1f they have the séme or differemt
vajues on latirede and slotude (they differ on both), T

zsn:° Ask if dizsimiler cases are the same on given
factors

It (1) two or more cased have been entfled that have different values on the
dependent vanabie, mnd
(2) there are one or more factors for which the cases have the same values,
then (J) ask the srudent 1f the cases have the sane or different values o the
pven [actors.
Ezample. (from Andersom, s Collins, 1977, on moralnty of draft ressiors)
T. You are saving thet what the dralt resistors did was wrong becowst they
broke the law The Amencan revolutionanes broke the [sws, 100, (CSS9-
Pick s counacrezampie {or an iasuficient (acsor } (ESTId Pount out that two
dusimular casey are the same on a given (acior ) Therelore 1o be conusient,
you would bave to say that what they thd was wrong (1518 Suggest s valwe
of the dependent vanabie)

ESt4: Ask f dissimilar cases sre ditferent on given
factors

B o
If (1) two or more casss have been identified that have dilfgrem Values on the
dependent vanasbie, nd
2) there are one or more factors for which the cases have different values,
then (3) ask the student if the cases have the same or different values on the
pven (actons

Example  Swppow a student has Wentified Sumsira and Javs a3 having
different populatron densinies, the teacher mighvt ask if they have the \ame terTmn.

-
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APPENDIX D

GLOSSARY )
Frame-oriented CAI system: an author»specified computer-aided
- s
instruc}ional program. . ) N

Domain-independent kpowledge: facts, rules and reasoning
procedures brought to bear in decision-making and
problem-solving thag are not domain-dependent.

Fuzzy.reasoning: the‘pfocess by which a possibly imprecise
conclusion is deduced.from'a collection of imprecise
premises. |

Heuristic rulés: common-sense based decision rules for
controlling the process of decision-making and problem-

solving.

v

Instructioggl objective: an objective associated with some

‘ pa}ticu}ar unié of instruction.

Instructional operation: simple instructional action@ or events,
such as presenting qJestipns and asking fo:m;ésponses, etc.,
which may be grouped and orgapized'ig}o sequences.

Instructional planning component: é component embedded in an .
ICAI system to generate and select instructional decisions
that ‘specify the conditions under which particular P

instrucfional séluences and/or operdtions should be used.

Instructional sequence: sequence of instructional events.

Instructionai strategy: a schema of inter-related general
pfinciples‘that provide a grand deéihn for attaining some

broad instructional objective.
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'Intelligent CAI system: a CAI s&stem which incorporates the

artific%ql intelligence (AI) techniques and principles.

. Knowledge representation: the art of building knowledge or fule

base in intelligent systems.

Production rule: an association of the form "if A then B," whose

“interpretation is such that when A is considered believed
4
accomplished by a problem solver, it is valid to consider

-believe or achieve B. - ;
Propositioﬁhl vagueFess: the kind of uncertainty which is due
"the lack of weil—defined boundaries of sets of objects 65
phenomena, tq which the'symbols of proposition apply.
que interpreter: ‘the progra; that determines which rules tﬂ
to bé evaluated and‘to bé applied in the database to a
particular case.
] <
Student model: a component for intelligent computer-aided

instructional systems, which can be used to predict the

current s8tate of a student’s knowledge and understanding.
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APPENDIX E

LIST OF SYMBOLS *

- ¢

Fu;Ly probability

Linguistic value.

The composition of F and G
Kernal. space ~

Propoaition or implicapion B

v

Fuzz& quantifier

Reference propositio; \

Fuzzy truth-value

The membership function of a fuzzy
set F

Universe o{ discourse

The Cartesian product of U and 'V -

Fuzzy variable . ‘

The distribution of the possibility that

X may assume the value u



