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. THE USE (F NON-LINEARITY (F ECCENTRICALLY LOAGED DIAGONALS
IN ORTHOGONAL GRID 3PACE TRUSS

CoT Mostafa Raissi Fard °

This thesis demonstrates.the pr1nc1ples of behaviour of the ortho-

gonal grid space truss with T-shape di agonals. ’ h

]

_The 10ad sbortening rel ationsh‘l ps for eccentrically loaded T-shape
(S

struts were studied. Tests- were carried out on struts <and the results

\

were compared with theorettical relations. The loading range was “found
to be non-linear and was approximated with two straight lines. - The
 stiffness of the eccentrically loaded struts is considerably less than. =~

. that of axjally loaded struts, and decreases 'w*ith°1'ncreasing load.

An existing: computér /program . for trusses with axially loaded.

0

diagonals was mjdified for tkusses with eccentrically loaded diagonals; ' v
grid space trusses, both corner and boundary supported,

artd orthogonal

were analysed. :

¢
>

'MomentS' and shear forces are more uniformly distributed, and the
graduai bowi’ng of -the T-shape diagona],lrather than the sudden buckling ‘ ’
of axially loaded diagona]s,' gives t;'usses a "quasi ductile® behaviour ’
in the elastic range whiéh makes them safer and more predictablé to.

.

anal&s,e.
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.+~ To:demonstrate the influence of T-shape diagonals on the behaviour
of | space trusses, a small truss with three "compression chords mis ‘ )
tested. According to elastic theory, when the diagonals are axially . ’
loaded the middle chord carries almost tuice the load of the side |
chords. In the same trusses *ith T-shape diagonals, the side and middle -
chords carrietl almost equal 1oads. ‘
‘ .
Bo‘v_lin‘g of diagonals'was' clearly visible while the truss was
sti11 in its elastic range. . X
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N NOTATIONS

Cartesian coordinates °

LG
.

length of stem

distance tb extreme fibre in compression’

distance to extreme fibre in tension

~radius of gyration ' r

-

cross-section area of a strut

elastic modulus .

moment of inertia
: +
numerical factor
length D A .

. &
load in struts :

capacities of struts in tension and compression respectively

] L

.Euler load

shortening of struts

central deflection of struts in loading range
céntra] deflection of struts, at first yqeld of ;xtremefibre :

central deflection of struts, assumption of fulliérlast1c stem

strain . .
mean axial stress °

Euler stress '

~ yjeld stress

tensile stress

compressive stress

" - vii ; (:>"
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P L . INTRODUCTION : -, .
; . . . . 1 ‘
R . . e j , ?:’ .

N\’ Through 25 centuries of written history, engineers have* shared a -

\ ‘problem: safely Covering of‘longer ‘spans with less weight.

The speee\trUSS is” one of the so]utions. There are numerous kgnds
of Space truss, varying in both their behaviour under applied load and~ \-
the method of analysis required. The doub1e\-1a_yer orthogonal .grid Iis ,f ' .

\ the most accepte’d\form and 1s used widely for coyering storage areas, .
. e , )

‘exh'lbitiol; halls, large span industrial buildings', and sport halls. #
a 5 '
I AN ‘ \ ' ‘ ’

/

LI

The characteristics of double-layer three-dimensio.nal Tatticed

” ¢ \ . °
' structures used in roofs are as follows: / ‘ , ; /
. < )

¢ -, o

A ] n . L . 1
' S 1) Trusses are highly indeterminate, meaning that buckling

" N . of\ a 'com"pression member will ‘not usually lead to

Sompoa ¢
a

-

co'llapse ‘of the ‘whole truss.

e e
A .

S 2) The three dimensiona¥ berfaviour of the truss: diﬁ/\b- .
utes the interpal fy“ces in ‘all cur?c.tions.

-

; 3) The "trusses possaess high"flexural rig131ty ‘with low

+
]

weight. : . B . L«

4) The small-size of the components simplifies handling, . ~
% . ‘transportation and erection. o ; o -
!
: 5) The space between upper and. lower gr‘ids can be used for ’ s

services. - - N e

. . - - -~
‘ .
’ -
.
/ N
. [3 N -
.

: + - M . .
[ ——————————t . Dhetod 1d B B T AR AT - ‘- - L e Ty e f b



. - N, .
nchords form square plane grids. \

-2 -

-

oy

. » .
6) There, is flexibility in the Jocation of the loading .
f/ M - L
supports.

7). The -cost s reasonable and the appearance is’'pleasing.
40 *

», .

Double-layer space‘trusses are composed of two para]]é]’ plane_
griés, formed‘by the top and bottom chords, connecteq’ by vertical or
inclined diagonal members. (;ne of the particular forms <;f double-1ayer
grids is the ortbo‘gonﬂ-grid space truss, which can be be vieweci‘as an

assembly of square base pyramids, (Fig. 1.1). The upper and lower *

-

METHODS OF ANALYSIS:

.

v

1) ‘E1astic analysis and plate‘ana]ogy, by employing‘qiscrjete
or continuum approaches, have been usled for many ﬁars,
and roptine computer programs with. useful and simplified
.manugﬂs areH available. These ana'lryses“;"are in general
confined to linear elastic t;e\haviour. .

2). The ultimate load analyses, which’ t;ke into account the
post-buckling behaviour of struts fall into the follow-

" ing groups: _ L !

a) Elastic 7plast1c (Fig. 1.2 a) in whip‘ members are -
. elastically loaded until yielding or buckling occurs, .
then change length without any change “in the force

-~

sustained. -
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ORTHOGONAL GRID

SPACE TRUSS
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b) An abrupt °drop'/1n Toad capacities ‘after buckling

1

~occurs, (Fig. 1.2 b). ’

c) Eléétic—un]éad1ng, i which the 1oaaing range ‘is
linearly rising ti11 unloading occurs. The unloading
phase has been asgqmed to be gitper iinea?, (Fig. '1.2 _
c) or piece-wise linear (Fig. 1.2 d) as explained in

v

the next chapter.

3

- In orthogonal grid space trusses, compression members in practical

o a

!

and economical range of slenderness are essentially brittie fin behav~'
ioyr. The load-shortening beRaviour- is more or less'line;r efore the'
un]o&ding stage occurs. . . Y . |
o i, .
Eccentrjg}t& at .the nodes has little influence on the stiffness of
the continuous chords. ‘The deflected shape of the chords w;tﬁxregar& fo
the maments at the nodes is shown in fig. (1.3a). Inf]ectibn points

occur at the mid span and lie on the line which passes through the

supports.” This compares with a single strut fig. (1.3b) which has ‘a

maximum deflection point at the mid span. Chords thus behave as con-

centric siruts; and are brittle in the range'of slenderness required fer
' \
economy. Chord behaviour has been studied by a number of researchers,

in particular by Marsh [21] who developed load-shortening relationships

for chords (fig. 1.4) in which the compresive capacity‘of‘tne chords is
limited by the first yield.

-

1

4

[
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Nicholas Iliadis, in his thesis [20] gi s. experimental results for
BV

tubular and channel struts which are close to the théory [21]. -~

The diagonals, which resist the shear force, can be de%igned to
control the forces tfansferred to’ the chords and consequently the load
capaciﬁy of the t}uss. For concentrica]}y 1oadéd‘d1agonals, again, the
failure is brittle, but diagonals a;e|discontinuous and can be eccentri-’
cally loaded, which gives them a non-linear Ioad-shorténing pehaviour.
When the for increases, . this non-linearity makes them less stiff,
theréby transferring force to the adjacené diagonals and hence to
adjacent chords. Furthermore the behaviour of ' the truss is Jquasi
ductile".

-

- The influence of eccentrically loaded d%agonals on the‘b;haviour of

~ orthogonal grid space trusses, and the resﬁlting benefits in the weight

"
and safety are the subject of the Present thesis. ' :

Tohe e 5 @ e ek S s £ € A L e S e St S bl AR PR e b
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CHAPTER II

A REVIEW OF THE LITERATURE
’
There have been two international conferences on space structures,
both at the university of Surrey in England, the proceedings of which
;re c‘omprehensﬂe re'férences on space trusses. In the first, 1966,
mainly the elastic behaviour of space trusses was presented. In the/
second conference [1], 1975, some stud'ies were reported on the ultimate
strength of space trusses. Another collection of information on space
structures is é,'state-of-tqhe-art report' [2] which is useful as a

/

summary and general review of latticed structures.

\

Renton [3] compared methods of discrete and continuum analysis.

The discrete models, using finite differences, were transformed to

_differential. equatidns by using Taylor series expansions. §uzuk1’ [4]

used the same method as Renton, but instead of Taylor expansion he
applied double Fourier Series.
1&

Flower and Schmidt [5] employed differential equations of plates
with zero torsjonal rigidity for space .trus’ses. But they did no‘t
investigate the boundary condition or the error caljsed by diffefent mesh
sizes. ‘They indicated that the forces in chorjds are relatively indepen-
dent of the rigidity of the diagonals. The equivalent plate analysis

can be of lower cost in computer time than thé discrete methods.

Y T e R BBt s Ee e o L —— ¢ e bipe e ey e o
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In anot}er\paper [5]‘ Flower and Schmidt discussed a method which
converts a truss into an eqdivalent truss with reduced degrees of
-freedom, and roughly corresponds to the behaviour of the initial truss.

)
Dickie and Dunn [7] assumed post buckling behaviour for compression
members,--such tha{t the buckled mgmbers carry 10% of their failure load
\\&faﬁacities. For tensile m:ambe_rs they assumed a constant lgad équal to
the ylelding load.  They also considered redistrjbution of forces in
othe'r" m'embers. The result of this method was compéred with yield line -
.method of analysis. Théy reported that the initial yield occured at a
~ load factor of 1 and final collapse did not occur untill the load factor
reached 3.38. This large difference be?we‘en elastic and ultimate load

is excessive and questionable. .

\
~

‘Mezzina, Prete and Rosto [8] reported their experimental and
elasto-plastic analysié on a double layer grid spacé truss made of
uniform steel tubes welded to node connectors. fheir truss failed‘ under
a single point load at the centre of the truss, when local punching
occured near the load application point. ~This untypical loading case

for space trysses restricts the usefulness of their test.

Sctmidt [9] also proposed a plastic design method where tension
chords y1eld‘b’efore the compression chords buckle, This was compared

with the strip method which is used in reinforced concrete design. The



11 - .

safe and rational applicatfon of the strip method requires th'at the
limit ‘moment be maintained at any point in the truss, but bucang may
occur befdre sufficient redistribution of moments. Therefore maximum
capa‘cit’y r:nay not be reached. Also‘they showed that due to yield in
.t'en.s1on a pattern of membrane forces is developed in the truss; these
for;:es make the strip method unsafe to. use. However, because of the

. simpHcityﬁof the strip method they have developed a modified method,

“which is the superposition of bending and membrane effects.

Morgan, Schmidt and'Clarkson [(11] reported on the behaviour of"

orthogonal trusses with brittle type strut buckling. The experiment on
three identical trqsse§ showed that no reserve of strength exists for
the trusse§ beyond the initial collapse of the compression members.
They mentioned that ,there could be some reserve if the ductile range
existed in behaviour of the compression members. They also showed that
the post-buckling behaviour of struts is less sensitive to imperfection

¢

and eccentricities than the pre-buckling behaviour. .

Wolf [12], considering non-linear post-buckling behaviour of struts
and using the initial stress method, which was first presented by
Zienkiewicz [13], analysed a large space truss in non-linear fashion up

to collapse.

Rosen-and Schmit [14] in 1979, used a non-linear method to analyse

a truss with imperfections. They assumed sinusoidally deflected members
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Ny
whose stiffness increases in tension and“ decreases! in compression. ‘The

stiffness matrix method was.used to find the initial buckling load, .
after which 2 new axial stiffness was found. A new Buck]iqg load was'.

" determined and so on, until convergence .was reached.

>y

" In this method they did not cdﬁsider;)qost-buckling behaviour of the

struts, so the ultimate load capacity of the truss was not predicted."

Schmidt and Grege [15]  presented a dual load method that allows

highly non-linear member behaviour to be followed. A brittle type of

strut and the piecewise linearization of post-buckling behaviour were

assumed (Fig. 1.2 d). This method needs repeated assembly and inversion

of the stiffness matrix as the stiffness changes.

1

Morgan, Schmidt and Coulthard [10], investigated space trusse§ with

eccentrically connected members.  The influence of continuity and

eccentricity in members was considered. They showed that the continuity

of members played a significant role in the ultimate load capacity of

space trusses., They showed the effect of a gradual build-up of axial

forces in the chords from diagonals balances the hazardous effects of
eccentricity. They also considered linear pre-buckling behaviour for
eccenfricaﬂy loaded struts, .which }1s questionable. Their model has
Joint eccentricities whose effects on behav{our of the space truss are

/

too complex to be analysed. '
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. 5.
Marsh [16] presented an approximate upper bound analysis method fér
bending in the orthogonal grid space Fruss. In this method the energy

dissipated in the yielded lines of the truss is equated to the loss of

potential energy. He also assumed linear load-unloading load-shortening J

relationships for struts (the dotted line in Fig. (1.4) whose slope is a .

function of slenderness ratio). The sequence .of the buckling of struts

in which the slender chords buckle first optimizes the ultimate capac-

ity.

In this papér [16], Marsh mentioned ‘that unTike concrete slabs and
sfeel plates which have certain shear Stremgths, the shear strength of
sbace trusses can be varied at will and can control the forces that are
transfered to the chords. Thi's concept provides the. basis for ;ne ideas
developed in this thesis. Advantage is taken of the non-linearity of
ppcentrica]]y 1daded diagonals which, as the load increases, tr;;sfer

less-load to the associated chords than an axially loaded diagonal. The

result is a more evenly distributed force system in the chords and an

increase in the load carrjing capacity of the truss. ﬁ--?\\

+

, \/ . e

A
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CHAPTER II1 ' )
. ( . ) N .
EFFECT OF ECCENTRICITY ON THE BEHAVIOUR OF STRUTS .-
v . s /"—_L‘
3.1 INTRODUCTION ,
In this chapter the effect of eccentric load on 1oa&-shorten1ng 4
behaviour of the T-s'hape struts_is explained.. In the elastic range the
~theory for shortening is based on thé secant formula [18]. In the post-

i yielding (unloading) range, because of the large deformation, it fs q
difficult to determine the exact behaviour ‘of the strut [17]. In the ] .
present study lower and upper bounds are established based on first '

v yield and fully plgstic stem conditions.
3.2 Theoretical Model for The Logding Range
N . ‘ , s
3.2.1 Load-shortening Relationship x
The shorq:ening\*of a strut under eccentrically abpli_ed load for the
elastic behaviour has three components. »
&0 1. Shortening due to the axial force, 51 (Fig. 3.2.A). ’
=i B & _ (3.1) -
¢ | ; ) )
P = is the applied load . )
L = length of the strut ° . ( o
. ’ . . I \)& . , . . ———
A = are . : : '
area ' | 1 ~a . ‘ T\ R A
E = modulus of elasticity - - ‘ \ ‘)
’ ) ‘o, v ¢ . ( ' -
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II. Shortening due to the tilting of the ends of the strut (Fig..

o 34

. :
. . >
. * -
\ o “

¢

\

a

2y A Bm ng k<) ! "
Z o o ]ett\ K = —
a2 R LUt 3

»~ <

The deflection-moment re1atjonship‘ along the strut is given by: *

d2 ) ? *l~
+ykZ = Q
N i y . ' ( 2
4
’ , L]
N\ ’ .‘y {
P 5 r’_
. '-x
i C.G.
—*'-T“"'"rr"““‘r"
X —— —
lb ’

.

\ w .

E16. 3.1 ECCENTRICALLY'LOADED T - SHAPE STR'U]'S

¢ . 4

- C1 = distance of .the C.G. from extremefibre in compres'sion'.

)

(fz = distance of the C.G. from egtrennfibre'in&e"nsion.

. r = radius. of gyration, . o
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* The general solution for this equatfon is:
y = A sin Kx + 8 Cos Kx
' Fad
The boundary conditions dre y(0) = e

. Y = 0.

-

Appl}in'g these conditions the solu_tions becomes :

.7 -y =e (tan -l% sin Kx + cos Kx)

At the centre of the strut, y is given by:

y =& sec ék
and deflection Ais:

A esec () - 1]

‘and stresses at the emtreme fibres are ) ¥

~

il Pl PPy B Sy
Oc fA+ 17 (A+Trlrl') SR

)
[
.

. --.P.. E.Z--f_ P \-.P_ - + ‘ o
Ot rt/A* I 'A*Kﬁa x 1 %) "

4

%

L " T st e
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 The slope at x = 0 is given by:’

The "s1olpe .of the neutral axis along the strut f{s:

y's eK."(tan -'é-'-'- Cos Kx = sin Kx) B : ‘ !

-

&=y () * e tan =

g + . . ° : -
The shortening due to the tilting of the ends (Fig. 3.!8) is; I
L . , '

4'52 =2e G ‘
‘KL ° EI
= 2 ezK tan-y= and knowing K -/ , Po =2 >
b2 g ¢ X

~» ! _2 " LAY
R YR AE,ﬂ_(r) /{ tan /

[II. Shortening due to the bow:
Assuming a sinecur:;;"fqr the neutral axis of the strut after_ben’ding'
(Fig. 3.1 ¢) and by letting A be the. deflection in the mid fspan,-'~

¥

.AS"HT | ) . v

[ . .
) . ' , n

from the geometry the shortening §3 is given by:
33 -%- (y')2%x and y' -’TT“-ACosTf_-"-_ L , .

' L
Saa—J _Z.AZCQs?.LdX .

TN et - .. . . LT, e e
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By using the max defiection A from relation (3.2) we haved,, |

- ‘f ‘
2 ,_ . .
U §aTret sk () 411

The total shortening is

§ =81 +82'+63

. e N

gofbef 2 (&% JPe g/ ,?; + -0.25%2- e2sec() - 12

Letting O -%

2 4
O'e - -P-g where Pe = EA
A " ®)
r

K = §/L

&L gl (552/%‘5: tan § /2 + 0.25 g;(-g)z(sggg/g-l)z (2.5) B

a
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FIG. 3.2 . SHORTENING OF A STRUT UNDER ECCENTRIC LOAD
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A) SHORTENING DUE TO AXIAL STRESS A

B) TILTANG OF THE ENDS B 1
C) SHORTENING DUE TO THE BOW |
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3.2.2 Limiting Compressive Capacity 0

"In practical T-sections which are eccentrically loaded at the
flange, the extreme fibre in the stem yields first in tension. In order

_, to_show this, a general Tl-section is analysed. The ratio of the f'Iaﬁge

3

to the stem "area. is varfable (f). , '
* »

, -~ T . . .
The properties of section, when the C.G. is lpcated in thenstem
(Fig. 3.3) are as follows: . . ' s

o

° . '

A = bt (1+f)

o . |
Cy=7 . 17

g o

B S
b2 (1+4f) '
2317 (1+7)

s
f [N

\s.tre:sses (CLO;), assuming e = Cj are: 7

The tensile and compressive

LY

O, = P+ ¢ L
t =g 1= ] | ;
O - B vt o,

n

[4

E



IR S Sl Y A~
’

21-&

-

4

> ’ ,

Tensile stress greater than compressive requires that:
: P (AtC1)Co1 \ P.rq,(D2C1)C1y
e DAt )
A C4C5.C12 | : -
(= (1) + -le—-l-"
‘R (C2 Cl) r »_> 2_ S < '

RS applying the values of C; and C; we get: - .
6 2f(l+ .2t . o N
o-g-HEHes Hy o '
. '5.% F1+0 + 38 D144
BT 5%% N - . (3.8).
> . ) .o )
For/\,the value which is obtained only from bending of a member in pure
bending is: = .
. 9 -
A g1 E S
-‘ 1]
. 2 - ¥
knowing e = C] and Pe ',%I' g‘ives:’ o ‘
P m .-
= e, . C
A/ g4
« . , .
. if P=oPy thenA==C) and (3.6) gives: ’

PO

i~
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“meaning if the web 15 greater than half the ‘length-of the’ stem, tensite *

c2

pp— “A -
1
“ -

ik it e L LR U

]

'

N
[, 3
° [l

f>05

yieldihg occurs first. In practical sections the flange is at least as

great as the stem il. f O 1. ) . ' \

The maximum compressive capacity of the _strut is assumed to be that

.

to which causes ‘the exireme tension fibre to yield, i.e:
Oy = 0'.(-~1 + 4LC§. )

where - 'y-esec(-/ ) ) ’ \

which gives

. | O%

[
n ~ fb!

-
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‘ I,/3*;.3/Vﬁ;|—load1 ng Range

[. Lower bo{md: Ass‘uné that orqy the extreme fibre reaches the yield
o in, tension and other -fibres remain elastic (Fig. 3.4a). As deflection

- 1ncreases_ the load decreases to maintain eq&ﬂibriun expressed by: —

Oy = 2_[_1 (Qre)Co

or
. , :
é'\%/'f + 1)(r/Cy)- & | NEY
The compressive stress in the extreme fibre along t,he strut is given by:
P » y =esXsin B | ' |
Cc iy 1+ -»lel] where Y f+Asin L x
the shorteni'ng due to this stress fis:
r L k t
§i-| Fo .
Q o . /
' L P / n (¢ eC
61.-.2_ 7 —[1+(Asin x)o + =L]dx
E A . r r
g 0 ‘ .
C o0 e 2 AL L1
] §1 -E[L+r L+ 2 “rz]

S @2 @

.\ s found from (3.7),

e o e s s
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v

The shortening due to the bow 1s'\ xain: - .
\ .
"v. 2 SR o
gz =l | S ‘
~ | ‘ ‘ o

- The total shortening 1s: |

~ '

£ Pl . (8 (C ‘ZA' C. n2"2
¢ =mll+ @ £ .Ch] + 0.5 A
By dividing both sidéby L and mu]"tip‘l_y'lng byo§ and knowing

Ce ™ 2 we get: .
: (';)z o

>

v
] M [

V). ‘ , %
[ o ¢ )
EE.Zu+ @+ 21 E 0.5 (D2 . e

g "

where €= *5[_-

s
-

ljsi A'from (3.7), the rel atﬁ:nship between EE and o] for (3.8) is |
sing 71y Ko Sy | . |

plotted in Fig. 4.4 to 4.6.

1/

. A ‘
II.  Upper bound! Assume. the stem of the T-section is completely
yielded (Fig. 3.4 b),. Force equilibrium gives:

,

p = Of fot -y bt ‘ L >
The. ares equals bt(i+f);, ¢ = ;51._- +g¥ - Gﬁ-}ﬂ.w,g_z._‘ |




a )

where f 15 the ratio of thg flange to the stem (Fig. 3.4c) and Of is -

the compressive stress at the centre of the strut.

Moment equilibrium gives:

2(Hf) O
By assuming a parabolic stress varifation along the strut
(fige 3.4d),the compressive {tressintheflange can be expressed

as.:

re |
and the shortening due to this stress,&], is: . ‘ g

f Oc dx

S
] 2 Oy “ co
S5 (§h 5 Le-gdl , |

The other component of shortening is due to the bow , ' l

{reTation 3.4): 3
' J" 2 AZ
The total shortemng for strut ‘with fully plastic stem J ’.\
therefore is: .
: Y v e ’ - (
§= 51*52 |
7 OL } di_e C] 2 o D
=13t 2 oo
J [ ( ( ) (]ﬁ" fo, )J %E_[W) -—l] . : ,*‘::"
ntEr? . ' . v [
by using Ge FLz T MIETRTing both sies by[.E.._ and letting £ = QL_ s
. .\~ > 3

P A" 5‘(.%2to-y o A". é__ C_S_):: . h , . )

Oc- O(]+em +[ 0,00 +eCl)J4[ £ _(x )4 o ’ | .
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For given proportions of a T-shape of given length, with a given yield
stress and elastic modulus, equation (3.9) gives the-effective axial

strain £ for each level of mean axial stress , Y The resulting

curves are plotted in tgrm; of the non-dimensional function&%— and 'g’i .
in Fig. 4.4 to 4.6. ' '

v
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" Fig. 3.4 - Stresses for Unloading Stage

»

a) First yield in tension \

b) Fully plastic in stem | ‘
c) The T-section, with f as the ra}:io of the flange to the stem area

d) Stress distribution along the strut for fully plastic Stem
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CHAPTER IV

ECCENTRICALLY LOADED STRUTS TESTS

‘4.1 INTRODUCTION

In order to determine the actual behaviour of the eccentrically
loaded struts, and to compare this with the theoretical findings, a
., - "
number of experiments were c#ried out on T-shape aluminum bars.

»

4.2 Description of the Stru,tso‘v

The struts testéd were 6063-T6 aluminu?z alloy , with T-shape cross

v sections in three different slenderfess ratios ( — = 56, 80, 140).
Fig. {4.1) shows the shape 3nd dimensionsof the cross sections, as well

as their geometrical properties. At each end, two.bolts.were used to
attach ‘the web of the 'bars to 5 mm thick plates, Fig. (4.2). These

plates: provide pinned ends for beﬂnding about the y-axis and fixed end

for x-axis' bending.

-~

4.3 Material behaviour: .

L]

[19] are as follows: ( o
. . N .
s . Py,
- Yield sigrength,Oy,the stress at which the material dis-
plays a permanent set of 0.2X.” The onset of ndn-linear

behaviour is below this stress level and for the alloy

u
Some of the mechanical properties of aluminum whiéﬁ"are "defined in

s

- era e Sps

. g

0 X i v — & o — e
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GEOMETRICAL PROPERTIES O
T'SHAPE . STROTS.

C1=4.8 .

I'=0,
-, A=225, -
v Oy=230
Ce=37
L=840,
.I/r=140
e/r=1,2

C1=8.7
C2=27.5
r=10.9
A=268
Cy=230
Ce=108
L=872
L/r=80
'e/r=1.05

C1=9.4
.C2=28,8
A=274,6
=230
. Ce=220
. L=640
L/r=56
. e/r:1 005
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: used in the tests (6063-T5) the limit of proportionality™
is approximately 80% of the measured yield stress.
- Ultimate tensile strength, O’u;,thehstress obtained. by
dividing the maximum load by the original cross section
i of the specimen. °* |

- The elastic modulus E; the slope of the straight 1iné of

the stress-strain curve, E = 7x10% MPa. ' Y

- Tangent modulus, the slope of stress-strain curve for

e

stresses above the proportional limit.
? " /

—

The stress-strain curve for aluminum used in this study (6063 -T5)was
found experimentally and is shown in Fig. (4.3).

1

4.4 Instrumentation . . .

4

Force and shortening measurement: The force “was applied by an
Irgstron testing machine\. This system has a chart which plots the

apMied force against th% shortening of the strut.

4.5 Test Procedure

The Mprocedure was Qasicall'y the s‘anie fc')r_ all three specimens.
Compression force was applied to thé end‘glates. As the force 1ncreaseé,
the'sho'r"tening (movement of the cross head of machine) was continuously
record“ed up to t\he maximum force, an_q into the unloading phase until -

rupture occurred in tension..
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;4.6 Test Results

| - 7

! 9

'
IN

The load-shortening results obtained from the tests are shown, for

different slenderness ritio in Figs. (4.4, 4.5, 4.6). The coordinates
O

are =—— and 43 which are non-dimerisional. The result from the theory
- Oy Oy 1

(relgtions 3.8, 3.9) are also shown. The maximun compressive loads,
Pmax ., are show?yin Table 4.1. - :

, ’ : P kN v
Slenderness Ratio max !
L/r - -

Experiment Theory

140 145 5.1

] 80 F13.4 13.6

\ -
56
19.5 19%

_ TABLE 4.1

Maximum Compressive Capacity of Eccentrically loaded Struts

I

' The non-inear load-shortening behaviour of the struts was observed

for all of the struts, but more conspicuously for longer struts. Three

£

regions in the curwes are noticable:

)

-

"1 - Loading Phase:

4

The curve in the loading reg1on'showed a small difference

between experiment and” theory. The experiment §ave. more
- . {.
shortening than the theory gives.
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{ LOAD-SHORTENING RELATIONSHIPS
FOR T-SHAPE STRUTS(L/r =k40)
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IT - Peak region of the loading-unloading curve.

no- 37 -

In our experiments this region has a smooth crest. There is
. no sharp drop between phase I - .III and.as anticipated the
crest is shorter for the less slenﬁer struts. The maximum
capacity is close to that predicted using an elastic model

up to first yield.

II1 - Unloading phase

The unloading curves from the experiment lay between the
.theofetical erves for extreme fibre yield (3-8) and a fu1]¥
plastic stém (3-9) moving in general, ‘toyard, the fully
plastic model as shortening p}ogressed. However, 'the’
important part 19 the present study is the elastic loading
range up to the maximum capacity of the strut. The unload-
ing reéion could be useful for computing the ultimate load

capacity of the truss. -

4.7 Equivalent Stiffness of EccentricZShy Loaded Struts

!

For axially loaded. struts the behaviour is linear .and the axial

‘stiffness is defined by Eé-. For eccentrically loaded strut the-stiff- -

l

ness is no longer %ﬂ-and the load-shortening.relationship is no longer
11522;/;;‘;;;EE§§Fd in Chaptér 3, and is given theoretically by equation ’

(3.5




~value of A; and Aé are given by:

-38- :

For analytical purposes the‘theoretical\re]aticnship is approxim- -

ated by two straight lines (Fig. 4.7).

The slope of a straight line is: >
s. 99y . O

v EEOy 3

The slope S for concentrically loaded diagonal struts is unity (Hooke's
Law). In eccentrically loaded diagonals the siopeof a straight line,in
load-shortening relationship diagram,is obtained by using an equivalent

.

§- P WL O ) . A e
A'E . §E EE
Thus the equivalent area for each of the two straight lines in Fig.
(4.7) is equal to the gross area (A) times the slope of the load-
shortening curve. The location of tne point Bl 1is arbitrary, énd is
chosen so that the twd straight lines reflect the curve as realistically

as possible. Given yj, the value of x1 can be found from (3.5), and by

kaowing y2, x2 (the maximum capacity and corresponding shortening), the

L)

Al = % A . ! . (4‘1)
N A H A . (8.2)



- o v e egrngts ¢ g S M T ot e e gty .
" e T L St T — -
S e PSR,

A
/

[ 3]

o

- \ ~
L

“

where A and Az are equivﬂent areas of the eccentricany loaded strut
1n first and second stagesof loading behaviour
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CHAPTER V
" COMPUTER PROGRAM DESCRIPTION

5.1 INTRODUCTION &

A computer program had been developed under the direction of Marsh
[16] and used initially for'thg collapse analyse of orthogonal grid
space trusses with concentrically loaded members. This program has been

modified for analysing trusses with eccentrically loaded diagonals.

5.2 . Computer Program Structure

N

*The program performs a series of elastic analyses using the

.. stiffness method. Three different approaches can be followed:

~

1) iilast.ic analysis: the first member which rgaches its
capacity in compression or tension limits the analysis
(Fig. 5.1a). : | '

2). Flastic plastic;»analysis: the buckled or yielded members
become fully p}gstic and undergo plastic deformation
without changes ‘in their forces. (Fi'g‘.‘S.lb)

3) Elastic unloading: the buckled lmembers.:go into.unloading °

. phase which is introduced to the computer by using a

negative area (Fig. 5.1c).
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—
The procedure in the computer program is similar to that used by
Shin Be [23] for space trusses. The following steps'are_used for the

analysis:
f "

t

Step 1:- The geometry of the truss: e _numbers'and size.of the bdys and

r‘;f ) depth of the truss are input.. Y
/

Member properties: _Area and capacities in tensibn and compression (Pt;

P;) and elastic modulus, E, are input.

| \
!l4 . . )
i

Step 2: Elastic Analysis: A unit load is ‘applied to all nodes. ATHg ‘
- displacement of the joints [X] are Telated to the elongafions [x’]' of the -

. members’ by: | | ‘ p
LS ) N & . , -

, D=l S A

A .
¢ °

- . Co o i ( 2
Matrix [c] is called the kinematics matrix. Forces in the ‘mempers“ ‘[P] C
are found from the load-elongation relationship. . '

. <
N N-_‘
1}

P = ‘—[—EA X (5.2).
B ] - k . “ -
~ This 1s expressed in matrix form by: . '
, 9 + \r . 3 o ‘
[P) = [5] [x] RO .
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\ ~
. . \ g

[S] is the member stiffness matrix, [P] is the internal hforcg matrix.

-

(W], the external joint loads, should be in equilibrium with intqrna]
. A 4

forces [P] if the structure is stable; . . : .
' .5‘\\ ) ) .

! . . i ,
(W} =-[A3CP] . . ~ (5.4)
( e \
in which the matrix [A], called the stati]c matrix, is.the transpose Jf
fc]. . . ‘ ]
W L or (] = )" (8.5)
From (5.74)aand‘ (5.5) we have.
[s] A1 . [X] ‘ (5.6)

[N] = [A] .

. \‘ .
[A] and [S] can be determined according to the geometry of “the structure

and to the types and sizes of the members. [W] is given.

-’

> L

From (5.6) matrix [X] is. obtained and from (5.1) matrix [x] is

‘Using (5.1), (5.3) and (5.5) we éet:
.- N

") = 18] AT I

I

Step 3: Calculation of Forc‘e Factors:

Thg capacity of each ‘member (Py . or Pc) is divided by the force n
the member. (P1], due to ‘the unit 1oad. The resu]ting ratios are\ force

factors.’ The smallest of these force factors is-called Ki.

v « ' \
. : v

3

.

I

———
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Step 4. R_esidua] Capacities: ' X !

-+

The forces in all members [P1] are mu]tipHed by the.ratio Kj, to
give matrix [KiP1]. To find the resi{iual force 1in each member, the
forces [K1P] are"'NQtracted from the members' cépacities (Pt or P¢),

leaving the residual cap%c#ﬁes, (Pt-K1P1) or (Pc-K1P1).

[

Those members that are left with zero capacity (or less than a :
'se’lected small amount) are removed from the structure, .The failed :‘
member'*s are repla’éed eitﬁer b;« the plastic or the unloading condition
s'impl"y‘by chang~1‘ng their area to zero or § negative number, respect- )
ively. : o : ‘ .

AN
Step6: R

The new cdpacities of- the. membhrs are the residual capacities
(Pt-KlPi) or (Pc-KiP1). (It is to be noted that compression force in a 1
member will reduce the compressive ca'pacity and_ increase the tensile
capacity. This co‘nside;ation covers.those cases where load reve‘zrsals. '

" occur as yielding progresses). _ * ' I
The converted truss (with residual members' capacities) is; re-. ) g

analysed for unit load by repeatipg steps (2) to. (5). The new force .
factor K2 will be obtained and more members, .whose' capacities are

e&hau§ted |, are rep¥aced lgy zero or negative area. - !

3 -
/ v i
. . ~
» ]
» - . \ B
¥ :
N

* u
U U PRV ,S\
o ’ : w AN ’
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»

In p‘ny cycle some members are removed from the truss. This

3

procedure continues until either the stiffness matrix becomes singular,
’ ~

i.e. the structure is not stable; or, ;uh,ere negative areas are used, the '

load increment becomes zero at the limiting capacity due to the internal

equilibrium reached between the forces in the members. The ultimate
o

load capacity of the truss is the sum of the force factors ( K).

1

The displacements of joints and elongations of members are a]so}

b0

given in the' output Jf the computer program.

I 4 .

5.3 The Modified Computer Program for Eccentrically’Loaded
Diagonal Space Trusses

n .
As already discussed in Chapter 3, the behaviour of struts under

eccentric load is non-linear (Fig. 4.7).

[ 8

-’

In concentrically loaded diagonals the pair (PC,'A)J is Ehe property.
of each member. In eccentrically loaded member the pairs (P¢]l,A1),
(Pco'A2) are required. The computer program is modified to accept this

piece-wise behaviour for diagonals through the following procedures:

i

- Properties of chords are the same as in the original prog-

ram, but for diagonals (Pc], A]) is the capacity and area. \
i 3 .
T '

LA MY
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A unit load is applied and forces in all members are

L3

\
computed.

The diagonals which reach the first part of their capac‘1t1es

' (écl) are then replaced by (Pc2, A2).

*

The other members which have not reached their first capac-

ities are replaced by their resWacities.

4

The procedure continues and each. time a member reaches -the
" end of the first stage of its capacity, it is rep]aced by
‘area (A2) and its residual capacity When the first
diagonal reaches point (B2) where its ent1re capacity is
exhausted (Fig. 4.7), it may be given a negatwe area, as
_ discussed in section (5.2) step 5, to find the truss'
ultimate capacity. (The reserve beyond the pomt/wQen the
, most mgmy loaded diagonal reaches its 1limiting capacity ‘

~
- has been found to be smail).

- The other procedures are exactly like those of the original

. program, explained in the previous section (5.2).
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CHAPTER VI

INFLUENCE OF ECCENTRICALLY+LOADED DIAGONALS OM THE
BEHAVIOUR OF SPACE TRUSSES .

6.1 INTRODUCTION
[ . \ :

Generally when the éhords control, because they behave as if con-

" centrically loaded, failure of the truss is brittle. Diagonals, when
« concentrically loaded, also buck]g suddenly, but as they are separate
pieces and discontinuous}/ip¢§ may be loaded eccentricgl]y. As -dis-
Eussed *in Chapter 3, the ieccentﬂcity gives a non-linear behaviour e;nd
gradual bowing prior to réaching their maximum capacities. The influ-
ence,of T-shape d}agonﬂs/on the behaviour of triangulated space grids

_ is the subject of this chapter.

When the T-shape diagonals control the collapse load twow phenomena

- ’ . o

,are observed: : . -

1) The bow in the diagonals increases gradué]ly and becomes
noticeable prior to attaining the maximum capacity.
Because there is no sudden buckling, the distribution of -
interior forces changes smoothly, and the truss behaves

, in a ."quasi ductile" Manner. This gradual bowing

©

provides a visible sign of distress, which could give

enough time to evacuate the building.

\

. |

. N ,
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'2) The a_kia] stiffness of the T-shape diagonals decreases
' with 1ncreasing'load. - As the diagonals control the
force carried by the associated chords, this allows the

transfer of force to othen chords. n

The influence of T-shape diagonals on the truss varies depending on
the support locations. The two most commonly used types of support

arrangemeht are four-corner, and boundary. For each type, two trusses

a -
were analysed; one witJh eccenturically loaded diagonals, the other with .

concentrically loaded diagonals, and the results were compared.-

¢

g

6.2 Four Corner Supported Orthogonal Grid Space Truss with T-Shape

Di agonals\}
\

A truss composed of 12x12 bays and supported on four corners (fig.

6.1) was analysed with both'concentrically and ecc‘entricaHy loaded
diagonals. The design was such that dia_gor;als always controlled,
achieved simply by using cr;ords,_strong enough not to buckle or yield.
A1l the chords were assumed to be equal in size and capacity, as were
the diagonals (table 6.1). The change from the first to the second
sta;;e of loading, for diagonals, was at 0.8 of the ultimate capacity of

struts (Fig. 6.2).

”

e
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Member Type mm< KN

Chords 1000 | 100 | 50
Diagonals ) '
concentrically . 300 50 15
loaded
diagonals 1st ‘ -
eccentric- | part .| 80 | 40 12
ally
loaded 2nd ~

part 30 3

Table 6.1

Properties of Chords and Diagonals used for Analyses of Trusses

Forces in the chords for both concentrically and .eccentrically
loaded diagonals from computer analysis of the 12x12 bay truss is shown
in Figure (6.3). As seen in Table 6.2, the capacity of the truss for
both kinds of diagonal is equal while the required chord capacity
decreased almost 12%. This decreése is due to mo;e uniform d'istribution

o‘f forces in the edge chords.

&
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Table 6.2

Computer Result for Truss and Chord Capacities.Four Corner Supported

The stiffness of the T-shape diagonal AT (Fig. 6.3) decreases with

increasing load, causing less load to be transfered to the edge chord,

as AB accepts and transfers more load to the second chord giving a more

uniform force distribution between the chords.

\»\ \ '
The mrds in the central region carry almost the same force for

both eccen&}ica]ly and concentrically loaded diagonals.

6.3 'Boundq&#y - Supported Trusses
. L

B

A trusq identical to the one discussed in section (6.2), with the

same memberfz\properhes shown 1in Table 6.1, but supported a]ong the'

i
boundaries \mder uniform load, was analysed. Again the diagonals

reached their maximun capacities first. Referring to Fig. (6.4) for

cbncentrical\y-]oaded diagonals, the central boundary diagonal (;\-5) '

reached its tmaximum capacity first. The forces in the other diagonals

i
Di agonal Max. truss | Chord | Diagonal
Type . capacity Eer Capacity force

node KN kN
Concent. 0.32 37 S '
loaded
Eccent,
loaded, 0.32 "33 15
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and chords are sﬁovm in Fig. (6.4). 1In the case of T-shape diagonals,
the same diagonal, AD (Fig. 6.4), was the first to reach its first stage

of capacity (Fig. 6.2). On increasing the applied load the diagonal -AE,
possessing less stiffness, 'acce’pts less load. Consequently, the other
diagonals along the edge, progressively from the middle toward the

corners, accept more load until they also pass their first s‘tage of

loading. Finally, the first diagonal (7\-3) reaches its maximun capacity,
The analysis for the 12x12 bay truss required 10 cycles, each showing

that a diagonal reached its first stage of capacity.

The forces in the diagonals and chords, when diagonal AD reac hed
its maximum capacity, are shown in Fi’;. (6.4). As is seen, the forces
in the chords are very close. The computer output showed a 4X increase
in capacity'for the eccentrically loaded diagonal truss compared to the

concentrically loaded one (Table 6.4).

Di agonal Max. truss Chord Diagonal
Type capacity Eer capacity force KN
node N KN
Concent.
loaded 2.176 96.4 15
eccent. 2.276 95 15 |First stage 1 2
loaded ) i second stage 3

Table 6.3 - Computer Result for Boundary - Suppbrted Truss

£ s e g+ e e
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i

Although the increése in load carrying capacity of ihe truss is not,
great, the'important effect of ~T-shape diagonals 1nl boundary-supported
trusses is the resulting "quasi ductibility". A more uniform distrib-
ution of the shear forces along the boundaries, in comparison to the.

truss with concentrically loaded members,was also’ achigv€d.

6.4 Optimization

s

Marsh, in his paper [21]‘ discusnses optimization based ¢ heavier
chords towards the edges wl'ﬁch have a tota) capacity equal to that of
the chords in the central zone. Again, a 12x12 bay, four corner
suppor;ted truss was modeled to analyse for optimization. The arrange-

ment of heavy and light chords is showm’in Fig. 6.5 and Table 8.5. -

Member type Area nmm2 |Py  KN[P, KN
Light chords 480 35 25
| Concent, diagonals 300 50 15
| 1st
Ecc. stage 80 30 12
diagonals
2nd . 3
B stage 30 |

Table 6.4 - . Member Properties for Optimum Trjuss

Lt e v e s
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The analysis shows a 20% increale in load carryi ng capacity for a-

truss with T-shapé diagonals over that with concentrically loaded diag-
. ™

onals. The forces in the chords are shown in Fig. 6.5. The T-shape

diagonal truss has better moment distribution between the boundary zone

.chords, and most of the chord capacity has been used.
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CHAPTER VII ' '
¢ 0

TEST ON SPACE TRUSS 1

&

7.1 INTRODUCTION

»

"In order to show the principles of the influence of T-shape diag-
onals on the behaviour of space trusses, and to compare theory to
experiment, a small 3x2 bay space truss was tested, The truss- was

e .

designed so that the middle chord (4-14) would approximately take twice

as much load as the side chords (3-13, and 5-15), if the dfggonals were

< f
concentrically loaded (Fig. 7.1). By usjng T-shape *diagonals, as the -~

load increases, thb. stiffness _ of central diagonals decreases, and
transfer less load to the middle chord. The result is that, 'as the

ultimate capﬁcity is approached, all chords carry almost equal load.

’

' k)
*

7.2 Description of the Test Model i

13

The truss was composed‘of 2x3 equal 131é mn bays, and was 658 mm
high. The chords were 50.8 x 50.8 x 3.17 mm steel angles., The maximum
capacity in tensionﬂras calculatfd basea on’ gross area, from wnich'ﬁhe
area of the two holes was Eubtracted. “The maximun tensile and compress-
ive capacity for chords arg given in table 7.1. '

4 . X

-
5
\

.| Area Pt Pe’
Chords |' mm | L/r KN KN

Steel 300 | 130 3 [ 35
angle

<

TABLE 7.1 -, Test Chords Properties
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Diagonals were T-shape aluminum alloy (Fig. 7.2) with the properties as

follows:
A = 400 mm?
r =11.2 mm
*f = 1100. mm (centre to centre of the holes) )
%:980

Oy- = 230 MP,, = 73.4 WP,
Ci/r = 0.9, Co/w =

%- = 1.1 assuming application of load at the middle of the

flange of the attached angle, 3.2 thick (Fig. 9.2).

e

-

Using tﬁé}theoretical relatijonships (3.5) and (4.1, 4.2), the capacities
and shortening of the first and second stage were chosen such that the
end of the first stage was at approximately 0.75 of the ultimate capac-

fty. This ratio was obtained from trial analyses and gave the most

uniform distr1butibn of load in the chords.

A

yl = 0.13, xl = 0.43, y2 = 0.18, x2 = 0.93

By using relation (4.1, 4.2), the equiva]ent areas of each stage of non-

- linear loading of T-shape diagonals are found (Taglg 1.2).

/

Diagonals Area mm¢ [Py  kN{P. kN
Corcentrically 400. 70. 16.5
loaded , _

1st 120 54. 12
Eccentrically| stage
loaded .
2nd 40 16. 4.5
stage | »

TABLE 7.2 - Properties of the Test Diagonals




7.3 Load and Deformation Measurements
: &
¥ .

Loading: The loading system was composed of three jacks; installed
on joints, 4, 9, 14 fFig. 7.1), by which .compressive loads were
applied. Special connections were made for t;: tips of. ‘the jacks to
transfer the forces to the Angles in the joints. The truss was fixed-to
a bed by four square rods. Readings of the loads were taken from

separate gauges on each of the jacks.

Strain: Two gauges were mounted on each chord, one on each side of
the neutfa] axis, of the section. At each load increment, the strains in
the three compression chords were measured. Fig.* 7.1 shows the
locations of tAe strain gauges.

' )

Deflection: Four dial gauges were used to measure the vertical
movements of the nodes 4, 9, 3, 8 (Fig. 7.1). The maximum deflection
was expected to be at central joint' 9, therefore only deflection of

point 9 is shown in Fig. 7.7.

7.4 Test Procedure

The loads on the three nodes (4,9,11} were simultaneously increased

¢ in increment of 1800 KN. After each increment of load, readings were
\

-
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taken for load, strain, and deflection. Also the bows in diagonals were

pbserved, and pictures were taken.

The loads were increased until the strains in the chords were
almost equal to each other. The loads were then removed. The diagonals
became straight again, and the measured residual strain was.negligible.

This means that the system was in the elastic range.

7.5 Test Results

-

The load on the three nodes (4,9,14) when the middle 'and side
chords carried equal forces was 21600 kN. Table 7.1 show the strain in

central chord and the average strain ip the side chords.

The area of each chord is 300 mmZ. The modulus of elasticity for
steel is 210 GPa, and 70 GPa for aluminum. The fov:ces, F, in the chords
were computed from Hooke's law, F = E £ A For each applied load,
corresponding chord forces are shown in Table 7.2. These are plott‘ed

in Fig. 7.3.

4

Diagonal forces: From the condition of equilibrium in Fig. 7.4, if’

the fqrces in the edge or middle chords are given, all the forces in the
/
other chords and diagonals can be calculated.

The forces .in the diagonals 1-4 and 1-3, (Fig. 7.4), obtained from
equilibrium, are listed in Table 7.4 and plotted in Fig. 7.5.
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&

One 6f the most important results of the test was the observation
of the bow of the diagonals. Before applying the load, the diagonals
were all straight to the eye. 0% applying the load the diagonals
started to bow. When the load on each node was 17100 kN the deflection
at the centre of the diagona] 1-4 (Fig. 7.1),with the 1ength‘of 1100 mm,
was 9 mm, and at 21600 KN was 20 mm. The/ bowing was gradual and

noticeable.

Deflection: The deflection of the central point (9) of the truss
(Fig. 7.1) was measured in the experiment and plotted vs. applied load
{n Fig. 7.6. Also plotted in the same figure is the computer analysis

result for a truss with concentrically loaded diagonals.

7.6 Discussion of the Test Results N

The following points were considered: -

- The results from computer analysis are limited to the
boint where the first diagonal reaches its maximum capac-
ity.

\
- The weight of the structure was negligible.
- Although the truss was symmetrical and the three loads

equal, because the loads were applied and controlled man-

ually, and due to built-in imperfgctions in the structure,
some diffegences were measured in force for two similar

chords which, theoretically, should carry identical loads.
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- The maximum capacity of the truss in the experiment was
21600 KN. This value was used as the maximum applied load
in the computer analysis for trusses with both concentric-

~
ally and eccentrically loaded diagoan:\\\\

» N
Comparison between forces which were carried by the middle and side
chords shows a good agreement between experiment and theory. (Fig.
7.2). The ratio of the forces in the middle and side chords, when diag-
onals are loaded concentrically (Table 7.4),is 1.87. The Matio of the

forces in chords, when d}agonals are eccentrically loaded, i§ 1.1 experi-

‘mentally and 1.25 theoretically. The difference between two ratios

(1.87 and 1.10) shows that truss with eccentrically loaded diagonals has
more uniform force distribution between chords than concentrically
loaded one. .
3

The ratio of the forces carried by the diagonals (1-3 and 1-4) was
1.87 according to computer resu1t§ of concentrically loaded diagonals,
and 1.31 experimentally'for eccentrically loaded diagonals (Table 7.4).
These two ratios show the improvement effected by allowing diagonal
(1-4) to accept and transfer more load, which causes more even distri-
bution in the chord fopces.

An additional, but incidental finding was the deflection of the
truss in the 'central point 9 (Fig. 7.1). The deflection of the

Py UMY 5 SR e e tmw s
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-

eccentricg)ly loaded diagonal truss fs more than that of the concentri- =
cally loaded one, which should be considered in truss design. The
deflegtion for the truss with eccentrically loaded diagonals fin the

experiment was 20% more than the computer analysis for concentrically

~ loaded diagonals. (Fig. g.6).

-~ gy

e
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Strain in

Strain in

Strain

Load Strain in
on each Left Side Right Side Average of in Middle
node Chord Chord side chord Chord
1.8 13 15 14 27
3.6 27 29 28.5 54
5.4 43 46 44.5 80
6.3 52 56 54 92
7.2 58 62 60 103
8.1 70 73 71.4 114
9.0 ‘78 8l 79.5 125
9.9 - 88 90 . 89 137
10.8 97 99 ' 98.5 148
11.7 105 107 106 157
12.6 113 115 114 167
13.5 124 128 125 176
14.4 134 136 135 185
15.3 144 146 145 195
16.2 153 155 154 205
17.1 164 166 165 214
18.0 174 176 175 222
18.9 183 185. 184 230
19.8 194 196 195 237
20.7 207 209 208 243
21.6 223 225 224 248
Table 7.1

Applied Load and Strain in Chords from test

. - %&- e L R R ERE
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Load on Forces in Forces in >,
© |Each.Nody | Side Chord Middle
T kN KN Chord kN .
1.8 - .9 1.7
3.6 1.8 3.4
5.4 2.8 5.1
6.3 3.4 5.8 ~
7.2 3.8 6.5
8.1 4.5 7.2
9.0 5.0 7.9
9.9 5.6 8.6
10.8 6.2 9.3
11.7 6.7 9.9
12.6 7.2 10.5 ’
13.5 7.9 11.1 ~
14.4 8.5 11.7
15.3 ° 9.1 12.3
16.2 9.7 12.9
17.1 10.4 13.5
18.0 11.0 14.0
18.9 11.6 14.5 .
19.8 12.3 14.9
20.7 13.1 15.3 .
21.6 14.1 15.6 A
Table 7.2 ;
Applied Load, Forces in Chords Obtained from Experiment - .
4 .
2 'J;““;’ﬁ
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-
- FORCES IN MEMBERS KN
‘ THEORY ~ EXPERIMENT
Applied on Each
Node Load KN Chords Diagonals .Chords Diagonals
Edge | Central-| 1-3 | 1-4 | Edge | Central | 1-3 | 1-4
5400. . 2.9 5.4 2.4 | 4.5 ] 2.8 5.1 2.42] 4.59
‘ b
21600. 13.3 | 16.7 {1l.6 |16.1 ] 14.1 15.6 12.1} 15.9
, Table 7.4
| Forces in Chords and Diagonals from Theory and Experiment !
a at the beginning and the end of loading an the truss.
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CHAPTER VIII
" CONCLUSIONS

An eccentrically loaded strut (T-shape) has been studied. The
load-shortening relationship in the elastic range is non-linear, the
Rtiffness decreasés with increasing force, and the bowing is gradual and

quite noticable.

The use ‘of T-shape diagonals gives a "quasi ductile® behaviour to
space trusses which makes them safer and more controllable, while the
distribution of moments and shear forces is made more uniform.

For an optimum truss employing heavy edge chords, an increase of
22% in load capacity was obtained by using T-shape diagonals (fpr the

same chord size).

To demonstrate the influence of T-shape diagonals on behaviour ?f
space trusses a small 'spaée}truss was’ tested. The test results can b;
summarized as follows:

1. The diagonal§ in the truss bowgd gradually, with midspan
dgﬁecﬂon ‘of 20 m at the maximum load , while " stin
elastic. | ) . 8

2. The experimental® re?_lat'ionship between'applied load and
internal forces in’the diagonals differed somewhat from
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the computer‘analysis, but the final force carried by_
the diagonals are in reasonable agreement.
3. The important result of the test was the demonstration
that the middle chord and side chords carried almost
equal Toad at the limiting capacity (computed ratio of
1.8:1 for concentrically loaded diagonals)t%’
B (™ expeﬁimental load capacity - of the truss in the
elastic -range agreed with the computer analysis. This
indicifes that the equivalent area used for the T-shape

diagonals was appropriate. !

Suggestions for more research:
- Other types of sectfon for eccentrically loaded struts
need to be studied in respect to load-shortening relation-

ships.

- The influence of T-shape diagonals on trusses which are

supported over more than one span needs to be analysed. :
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