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ABSTRACT

Theoretical and Experimental Investigation of Converging Cylindrical Shock

Waves Propagating in Narrow Cylindrical Chambers

Gley Zitouni

The propagation and stability of converging cylindrical shocks, produced in an
annuiar shock tube, cquipped with a three increment arca contraction, was investigated
for various cylindrical chamber widths and two annular shock Mach numbers of 1.26 and

1.44.

The Method of Characteristics,  integrated using the Hartree scheme, was
employed to determine the shock Mach number and pressure-time variations in the
cylindrical chamber. These numerical values were verified experimentally by employing
a sct of piczoelectric pressure transducers placed at five different locations. In narrow
cylindrical chambers, a new test section was employed to determine boundary layer effect
on the shock strength. For a cylindrical chamber width of 2.5 mm, experimental results
were found in excellent agreement with the inviscid numerical solution. For smaller
widths, an empirical cquation of the shock Mach number variation was developed.
Stability of the converging shocks was examined from the serics of spark shadowgraphs

taken near the geometric centre.
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NOMENCLATURE

Latin Symbols

a Speed of sound

c Positive characteristics

C Negative characteristics

c° Particle path characteristics

D Major diameter of the shock front

d Minor diameter of the shock front

K Coefficient found experimentally (cquation (4.7))
M Mach number

M, Annular shock Mach number

M, Cylindrical shock Mach number

M, Plane shock Mach number

n Amplification exponent

|3 Fluid pressure

p fluid pressure in Log form

D, Driven chamber pressure

o Driver chamber pressure

R, Distance between the outer edge of cylindrical chamber and the centre
R, Shock radius

5 Specific entropy




S Cross scction area
l Time

1 Temperature

u fluid velocity

X x-coordinate

Creck Symbols

Y Isentropic gas constant

¢ Distance between the centre and the last point on the data line
A Mesh ratio

& Perturbation parameter

p Density

o] Courant number

x1i



CHAPTER 1

INTRODUCTION

The focussing of spherical and cylindrical shock waves has been used for various
engincering and scientific applications. It is an effective and cconomic means of
producing high temperature and pressure gas at the implosion centre. For instance,
converging shock waves process has been successfully adopted in the production of high
temperature and density plasmas [1], synthetic diamonds from graphite carbide and
ncutrons [2].  Morcover, they are used in rescarch related to particles launched at
hypersonic velocity.  They are also associated with rescarch related o substance

behaviour under severe conditions in a high energy medium [3].

For over three decades, converging shock waves production and analysis has been
the focus of numerous experimental and theoretical studies. Perry and Kantrowits, [4,5]
were the pacesetters for the production of converging cylindrical shock waves. They used
a conical shape known as teardrop configuration. Their set up consisted of a cylindrical
shock tube having an axisymmetric tear drop shaped inner core used to transform a plane
shock wave into a cylindrical shock once. Basced on the same principle, converging shock
detonation wave was investigated experimentally by Knystaus er af. [6] and Takayama
etal [7,8],. Wu eral [9) and Neemeh el al. [10], however, used a three increment arca

arrangement.  Shock waves produced using this method were proven to bhe highly




symmetric in shape. Apart from these methods, Matsuo et al. [11] produced cylindrically
converging waves using explosive shells. Here, shock strength is controlled by the
amount of explosives.  Parameters related to shock propagation were determined by

employing an clectrical ionization probing mechanism.

Analytically, Guderley [12] was the first to present a comprehensive investigation
involving cylindrical and spherical shock wave propagation in air and he obtained a
similarity solution. In his solution shock strength was found to be proporional to R”, R
heing the distance from the centre of implosion and n a constant that depends on the
specific heat ratio . This model clearly implies that theoretically a converging shock
wave can increase in strength indefinitely as the radius R approaches zero. In practice,
at the centre of implosion, temperature and pressure can attain very high but finite valucs
due to experimental limitations. Based on Guderley’s theory many investigators focused
their effort on the development of similarity solutions for the converging process.
Among these we find Butler [13] and Stanyukovich [14]. Since the above principle was
hased on strong shock assumption, it is considered an adequate description of the shock
motion at the vicinity of the centre where shock Mach number is very high. Other
investigators have attempted to provide approximate solution to shock propagation away
from the point of collapse. Chester [15,16,17] treated the problem by considering a shock
wave moving through a small arca change and using small perturbation theory he derived
a Mach-area relationship. Based on the same principle but with different assumptions,

Chisncll [18] developed a more general first-order relationship between change in area



and shock strength.  Later, Whitham [19]. adopting a completely different approach,
derived a Mach-area relationship using the characteristics set of cquations.  Chester,
Chisnell and Whitham relation, known as the CCW theory, describes the effect of the
change in arca on the shock dynamics. Surprisingly, the CCW theory was found to give

cxcellent results when compared with the experimental values.

Simple physical argument, analytical [20] and numerical [21] treatments confirm the
general prediction that converging shocks ought 1o be unstable. Stability of converging
shock waves is an important factor for the understanding of the imploding mechanism.
The final statc of gas at the centre of implosion depends directly on the degree of
symmetry of the converging shock wave.  Conventionally, the degree of symmetry is a
scale by which stability can be measured. In other words, a converging shock wave is
said to be stable if it is unsensitive to the external perturbations as well as those within
the flow domain. Based on this principle Ahmad [22] investigated the stability of
converging cylindrical shock wave through the interaction of the converging shock with
cylindrical rods of different diameters. He noticed a shift in the collapse point liom the
geometrical centre, in all cases, indicating shock instability. Earlier, Wu er al. [23]
studied the stability of converging shocks perturbed by a small circular aperture in the
shock tube and found a similar degree of instability as they progressed towards the centre.
In recent experiments Watanabe and Takayama [24] have shown that initial perturbations
caused by the supports of the annular section of the shock tube grew with shock

propagation, resulting in carly onsct of shock instability. The theoretical work of Butler




[13] and Whitham [19] gave a comprehensive investigation of imploding shock stability.
This analysis shows that converging shocks arc unstable and for perturbed shocks the
perturbation increases with R according to the relation € o« R %, However, their analysis
was limited to very strong converging shocks and the use of the CCW  Area-Mach

number shock propagation law.

An important factor that influence the converging shock propagation is the
cylindrical chamber configuration at the end of the shock tube. Any modification in the
cylindrical chamber width involves changes in the upstrcam conditions.  Since the CCW
arca-Mach number relation was based on uniform upstrcam conditions, it is not evident
that the produced converging shocks would follow a specific propagation law. Narrow
cylindrical chambers result in shock attenuation due to the boundary layer and produces
a complex flow field in the pre-shock region. However, large cylindrical chamber width
is associated with multiple lateral reflections of the imploding shock. The scope of this
thesis was, therefore, to examine experimentally the converging cylindrical shocks
produced by the present apparatus. The experiments consist of pressure measurements
to determine the shock strength and pressure time variation at different radii. The effect
of the cylindrical chamber gap on the law of shock propagation will also be investigated.
Exuact solution to this problem will be numerically obtained by the method of
characteristics.  Assuming inviscid flow, the solution will be compared with the
experimental results to judge wether the produced cylindrical shock is following any

shock propagation law and to  determine the minimum cylindrical width below which



boundary layer becomes significant.  Due to the difficulties in isolating the effect of the
upstream conditions from thosc due to the boundary layer 1n the original model, a new

one is designed to remedy this problem.

In chapter 2, the details of the computational method used is outlined.  The
description of the experimental set up including the new design is given in chapter 3. A
detailed discussion of the experimental results vis-a-vis the computational and the
theoretical ones is presented in chapter 4. A comprehensive analysis of  shock
propagation is outlined through the interpretation of the pressure measurements and the
different scts of the schlicren photographs obtained near the geometric centre. In chapter

5, the conclusion drawn from this thesis work is presented along with future progress.




CHAPTER 2

THEORETICAL DEVELOPMENT

1.1. Method Of Characteristics

The unstcady compressible form of the Navier-Stokes equation is a set of
nonlincar partial differential cquations that describc completely the fluid flow. However,
the fact that these cquations are nonlinear, analytical solutions are not possible without
adequate simplifications.  Although, the linearization of these equations provides
approximation solutions, it is not without loss of accuracy. At a supersonic speed the
flow witnesses the presence of wave-like discontinuitics with well defined direction of
propagation, known as Mach Waves. The determination of these Mach Waves or
characteristics is the technique on which the solution of supersonic flow problems
depends. The propagation of these waves can be represented in a wave diagram which
can be constructed using the method of characteristics. In spite of its complexity, when
it comes to multi-dimensional flow field, it still retains a considerable advantage over the
other numerical methods when dealing with many unstecady one dimensional flow
problems, which is our case. It provides simple, exact and adequate means of analyzing
the propagation of converging (diverging) shocks, as well as the determination of fluid

properties at a given point in space and time.

In the absence of body forces and neglecting gravitational effect, the one-



dimensional time-dependent compressible tflow can be represented by the following set

of equations [25].

9p _E o u s 2.1
ac U *"ax PSox (2.1
au au 1 9P 22
ik o ax 0 (.21

where p, u, p and § are the density, particle velocity, pressure and cross scetion area,
respectively.

If we assume that each particle in the {low maintains a constant entropy along its path we

have
aS aS 2.3)
3t "Yax 0 (2
where s is defined as
s=c, 1n(%)+const (2.4)
p

by differentiating cquation (2.4) and using cquation (2.3) we get

op , 0P _ 1—(_& u—E) (2.5)
9t ox p

The local speed of sound is defined by

a:,l_Y_I_’ (2.6)
P

Multiplying equation (2.1) by @® and using equation (2.5) we get

opP _a_P zaU pua 2 9s (2.7
9t Yax P e T 5 oax )




Multiplying cquation (2.2) by pa we obtain the following:

Su . ,08u, 0P 2.8
paat+pauax+aax 0 (2.8)

Adding and then subtracting equations (2.7) and (2.8) we get

opr op du Su
3¢ * (uta) =, P2 [-§E+ (uta) ax]

=_PL§2%§ (2.9)

Dividing cquation (2.9) by pa and using equation (2.6) to eliminate the density term we
get

a (o 9P, (Ou Buj__wads 5 19
since
16p_0Jln P
P dt at
and
10p_0JlnP
P ox dx
cquation (2.10) becomes
a oln P dln P du du ua 0s
e s et il dad —_—] = - 2222 2.
Y[ 3t +{uta) . ]i[at+(uta) ax] 5 Bx (2.11)

the quantities between brackets in cquation (2.11) represent the substantial derivatives of

In P and u in the x,r planc such that

— =uta
dt

If we define

then equation (2.11) becomes



d_38 2 :
T at+(u+a) 3% along C* curves
d-_9d _ 0 - -
HE° 6t:+(u a) I along C~ curves
ad'ln(p)  d'u__auds (2.12)
Y dt dt S dx
adiln(P) du__auds (2.13)
Y dt dt S dx

Hereafter, the term In P will be replaced by p for simplicity.
Furthermore, cquations (2.12) and (2.13) can be non-dimensionalized using the following

transformations:

x'=%
RD

p’=ln P’=1ln P-1n P,

where R, is the implosion chamber radius, T, the ambicnt temperature ond P, is initia!

pressure at the driven section of the shock tube.




Then we have

a'dp' dwu'__au’ 3s
Y de/ dt’ 5  ox'

a'dp' _du'__au 8s

Y dt’ dt’ S ox’

It is more convenient to omit the primes and use equations (2.12) and (2.13) in non-

dimensionalised form.

Equations (2.12) and (2.13) arc known as the compatibility relations. They
describe the behaviour of the different physical quantities along the characteristics. The
characteristics are curves in x -t plane whose inverse slope are u+a and u-a. In a physical
sense w+a and u-a are the speeds by which these waves, carrying information related to
flow propertics, pressure, density and velocity, propagate within the flow field. Equation

(2.3) define a third characteristic direction which is the particle path.

In conclusion the method of characteristics is defined by the following three terms:
I.  The characteristics speeds by which waves carry information about the physical

quantitics travel within the flow namely, u+a, u-a and u.

to

Compatibility rclations which are given in equations (2.12), (2.13) and (2.3). They
represent the behaviour of the physical quantities along the characteristics.
3. Domain of dependence which is defined by the area ABP in figure 2.1. Any

disturbance of the iniual data outside of this section does not influence the solution

10



at point P,

2.2. The Computational Method

In general, the method of characteristics gives the most accurate solution for
hyperbolic systems because it represents the physical nature of the flow. It is probably
the most convenient method for solving flows involving discontinuitics. Although,the
characteristics equations are full description of the flow behaviour they are still nonlincar
because the specds of propagation vary from point to point. However, it we assume that
u+a, u-a and u arc frozen within the time interval At the physical quantitics can be
convected in a wave-like way, unchanged and with constant speeds, at a local scale. In
an axially symmetric casc the solution is affected only by the change of arca presented
in the RHS of equations (2.12) and (2.13).

The RHS is defined as a source term given by

au 9s

RHS=- —
S Ox

(2.14)
For a cylindrical wave the cross section area is proportional to the radius x, then we have
RHs=-24 (2.15)
X

The characteristics curves become straight lines in the x-t plance with inverse slopes u, u-a
and u+a. The general characteristics solution can be summarized in figure(2.1). Thiough
a point P we can draw three characteristics namely C*, € and C°. The solution at point

P depends on the initial data line nAt that the three characteristics C*, C and C” intersect

11




at points A, B and C, respectively. These points are determined by interpolation along
the initial data line. The accuracy of this method depends on the accuracy of the
interpolation procedure as well as the choice of the mesh ratio Av/Ax. If we define the

grid coordinates in x-r planc by:

x(jAx,nAt) =x{ (2.16)
Hence;
p(jAx,nAt) =py (2.17)
u(jAx,nAt) =uy (2.18)
a(jAx,nAt)=ay (2.19)
Then from figure (2.1) we get
x(A) =x;'+(u+a)At (2.20)
x(B) =x4'+(u-a)At (2.21)
x(C)=x/+u At (2.22)
ut x{=JAx (2.23)

Then ift we define the mesh ratio

s At (2.24)



We get
x(A)=(F+A(u+a))Ax (2.25)
x(B)=(j+A(u-a))Ax (2.20)
x{(C) =(F+Au) Ax (2.27)

Define the Courant numbers as:

0,=A(u+a) (2.28)
0,=A(u-a) (2.29)
a,=Au (2.30)

It has becn proved that the characteristics method yiclds a stable solution if” the mesh ratio
A is less than the slope of the characteristics in x-f planc. This criteria for stability was

obtained by Courant er al. [26], known as the CFL condition, and it is given b

1
[u[+a

Or in term of Courant number
(2.32) |0g] < 1.0, i=0,1, 2
The compatibility relations can be solved by the following numerical approximations:

Z o t-p@ ]+ uf ua) ) =25 T —BE

! x;"+x(A)

w!
w'
-~

13




Eg[pj"‘l—p(B)]—[uj‘”—u(B)]=-2"a—25{——nTA—§-— (2.34)
Xj "'X(B)
S;’l._.s(c) (2.35)
where
—_ uit+u(A) — ajt+a(a)
R - S
and
— uft+u(B) —_ aj''+a(s)
2 2 e 2

2.3. General Point

For a general point the quantitics at A, B and C are determined by lincar
interpolation between two known nodal points.  From the stability criteria established
above, these intersection points are interpolated for in the interval [f,j+17] for negative
charucteristics slopes and in the interval /j-1,71 for positive ones. The two different cascs

are presented as follow:

1) Subsonic tlow

From figure 2.3 the flow propertics at points A and B can be approximated as

follow:

14



I

us=Ajuzal [ufy-ut] +u.

n

a;=7\|uta| (af;-a”] +a!

Hi

p2=7*luta| (prsi-D3)+p)

i1) Supersonic flow

This case is presented in figure 2.4,

u§=7»|uta| [uy,-uy)+u?

a;--?\[uia] (al.,-a)]l+a;

Ity

p2=)\|uia| [p?-x—p7 ) *p;]

To deal with this directivity problem many schemes have been constructed in
order to establish an automatic direction switching. Among these we find Reo [27] and
Moretti [28] . The above system of cquations can be put in more compact form using

Courant-Issacon-Rees linear interpolation formula [29] given by

ua=A(ue gy -+, -+ (2.76)
B

ax=Mu[a)~a|+u’[a, -a"D)+a (2.27)
B

pa=hulpa=p 1wl D) (2.%8)

15




where,

(4, ,xa )+ | u,xa
u=o122 127412
2

and

— Uy 0, ,) - I u,xa,, l
2

At point C we only need to interpolate for the entropy s and flow speed u. The latter

property is employed to relocate C on the initial data line. The following scheme is used:

u(C)=MvLu, = +v [l -, ]) +u)” (2.39)
s,"" =5(C)=A(v s, -5,1+v*[5,2, =5, D) +s)” (2.40)
where
y'=
2
y =
2
and
_ u(C)+u,"°l
U=

Since the solution depends only on the slopes of the characteristics the values of u and

16



a at point P are initially set equal to w" and @" . Once provisional values of the flow
quantities at P are computed, they can be used to calculate new values using the

characteristics relations.

———— e—

" 7. - 948y (N1
Py B P A P apg e, B,
a, +a2 Y ‘Y x(B) +.\’, \(A) +"_ln
nel a; L. 2a,u At
u =u(A)-—(p" -p(A))- :
v X(A)+x,
P;.l'-‘;d
nol_ Y
p, =¢

2.4, Shock Point
2.4.1. Converging Shock

The fluid ahcad of the converging shock is at rest (u#=0)) and assumed isentropic.
The flow properties are all known and constant. However, quantitics behind the shock
arc function of time t and the radius x, they arc determined numerically by shock fitting
technigue. In addition to the information provided by the compatibility relation along the
characteristics an additional relation should be introduced to express the sudden change
(jump) in propertics across the shock. This jump condition is presented in the form of
Hugoniot equations [3(0] which are derived from the conservation laws of mass, cnergy

and momentum.
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(y +1)M!
P
(Y -1)M2+2

where p, and p, are pressure and density ratio across the shock, respectively.
pi=in@ )+In(P,)

pi=In(p )+In(p )

a
a,’: 2
P,
P,

s,’=sa+ln(p,)—71n(P,)

2a, 1
M,-—-)
Y +1 M,

/
u=

where p)/, p/. a,/ and s, arc density, pressure, local speed of sound and entropy,
respectively, behind the shock, expressed in term of the shock Mach number M, and the
undisturbed flow quantitics ahead of it. To express the influence on the shock of the flow
behind it, a right moving wave is nceded. The remaining other two characieristics
originate from points on the shock and propagate into the flow with 4 and u-a. The left
moving wave (propagating with w-a) counteracts with the right moving characteristics

(propagating with w+a) and distort them creating a complex and highly nonlinear fluid
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flow. This explains how the shock adjust not only to change in the medium geometry
;namely the radius x, but also 1o the nonlincar interaction with the flow behind it The
computational procedure which is shown in figure 2.5 can be summarized in the following
steps:

1. Assume a shock Mach number M, , then use the Rankine-Hugoniot equations given
above to calculate the flow propertics at point P downstream of the converging shock.
2. Calculate shock displacement Ax, and determine the location of point P at time

(n+1) At in x-t plane using the following relation:

MS +M,"
Av =~

5

a At
[+

3. From point P with a slopc

0= (u(A)+a(A) +u(P)+a(P))
2

determine the location of  point A on the initial data linc nAr

x(4)=x"-Ax_+ulr
4. Knowing the location of point A it is then interpolated for between the nodal points
j and j-1.
5. A provisional pressure value is then caleulated using compatibility relation

along characteristics.
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Y Zu]a,At
PP)=pA)+ —[u(A)-u +———
a, x(A)+x,
where
X =Ax, +x]

6. Substitute the pressure value obtained in step 5 into Rankine-Hugoniot equation to
calculate a new Mach number. If the new calculated Mach number is different from

the assumed one the procedure is repeated until an exact solution is obtained.

2.4.2. Diverging Shock
Unlike the converging shock, the diverging shock wave is moving into a medium with

unknown quantitics. Figurc 2.6 shows the general computation method for this case. AP
is a left moving wave, namely, C characteristics. It expresses the effect of the disturbed
flow on the diverging shock. Ahcad of the shock the three characteristics are needed to
compute the unknown quantities. The procedure is similar to that of general point except
the solution should satisfy a variable boundary condition created by the presence of the
shock. The following is a bricl summary of the solution procedurc.
1. Calculate JMock displacement Ax; and determine the location of point P at time(r1+ 1)At

in the x-r plane using the following relation:

Ax, =(M]"a," —uj") At
here, 4" and )" are sound speed and flow velocity ahead of the diverging shock at

time nAr, respectively.



2. Use the general point algorithm to determine the flow propertics ahead of the diverging
shock at point P.

3. Assumc a shock Mach number M, , then use the Rankine-Hugoniot equations to
calculate the flow properties at point P behind diverging shock.

4. From point P with a slopc

- = (u(4)+a(4) +u(P) +a(P))
2

detcrmine the location of point A on the initial data line; nAr.

x(A)=x+Ax -uAt
5. Knowing the location of point A it is then interpolated tor between the nodal points
jand j+1.

6. Calculate pressure at point P using the compatibility relation along the characteristics

linc AP.
Y 2mAf
p(P)=p(A)+—[uA)-u;~ ————
a, X(A)+x,
where
x =Ax, +xj"

7. Substitute the pressure value obtained in step 6 into Rankine-Hugoniot equation to
calculate a new Mach number. If the difference between the new calculated Mach

number and the assumed one is not within a preset error repeat steps 2 to 7 with
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M, +Ml"
Axf(—z—— a(P)-u(P)) At

2.5. Flow Near The Axis

At the centre of the implosion chamber the source term in the compatibility relations
is indeterminate as the radius x goes to zero. To overcome this singularity the incident
shock reflection is assumed to take place at a small distance from the centre. Then, at the
vicinity of the centre we have, x=¢ and u=0. The numerical solution is illustrated
schematically in figure 2.8.
I. The values of the flow quantitics at C and A are first set equal to those of

point (1,nAr).

9

. A pressure value at point P is initially guessed

‘>

. Following the particle path the position of C is obtained using the following relation:

x(C)=g+|u(C)|At

u(C)=Au [u' -u,_ 1 +u,_,

b

Calculate the flow propertics at point C by interpolating between point € and m-1.
a{C)=Au_[a-a,_)+a,.,
POY=NU [P =Py ] +Poy

Since the flow is isentropic along the particle path we have:

22



+1 —
Se =S(O)=AU 5. -5, +8,.,

and

(y-Dph’ 1 -pC)
ai"'=a(Ce ¥

5. The position of point A is obtained using the following relation
W(C)=+|u,|At

6. Again the quantitics at point A arc obtained by lincar interpolation between points €

and m-]
w(AY=Alu; {1 -] +t4,n-,
AT 10 -ar ) it
pAY=A (][ P i ]+P
where

|u(4)-a(4)-a(P)|
2

lu;|=

7. Using the relation along C a new value of p is calculated, it is compared to the
initially guessed value.
8. If the difference between the old and the new value is greater than the presct

error, a new value is then assumed.
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2.6. Implosion Chamber Inlet

At the inlet of the implosion chamber isentropic and uniform conditions were
throughout this flow domain. Constant C* characteristics were therefore assumed at the
inlet which together with the reflected C waves upstream give the flow properties at the

open end.

The above assumption can be represented by the following relation:

ao

2 a(P)=u’+

u(P
P)+—= -5

a(P)+u(P)=a°+u®
Here, a” and «” are speed of sound and flow velocity at time =0 and x=0, respectively.
The computational solution is illustrated in figure 2.7. The following algorithm is
adopted to obtain the different flow propertics.
1. Assume a pressure value at point P and set the remaining flow properties at point P

cqual to those of point 1.

o

Determine w«(P) and a(P) from the above system of equations and obtain the location

of point A using the following equation:

Ax=l4A) -a(A);u(P) —a(P)|

3. Dctermine flow propertics at point A by interpolating along the line nAt.

4. Calculate the pressure p(A) using the following compatibility relation:



PA)=p(P)+ . [u(d)-u(P) + A
a l"—}*
2

]

where

=_u(P)+u(A) = a(P)+a(A)

Us——~—
2

2

5. Compare the value of P(A) obtained in step 4. with the one caleulated in step 3. 1If
the difference is not within an accepted range assume a new value for P(P) und

restart the procedure..

2.7. General Remarks About The Computational Procedure

Based on the Courant-Friedrichs-Lewy stability criteria the smallest Courant number
is taken to be 0.5. It is noticed that values greater than (1.6 yiclds a unstable solution
especially in the neighbourhood of the of axis symmetry. In this case the largest velocity

is that of the shock, so the condition of stability is

Au, < 1.0

where, u, is the velocity of the shock wave.

As the shock converges toward the centre its velocity increases, then in order to keep
a constant Courant number, a much smaller mesh ratio is needed.  Although, in this
procedurc we cstablished an algorithm that changes the space interval Ax automatically
as the shock wave progresses toward the centre, there is no way we can lind  the exact

space step that gives a stable solution.




For the shock fitting outlined above the new location of the shock on (n+1)At data
line is not a nodal point. To adjust to this variable boundary condition new nodal points
arc established, by lincar interpolation, on the data line (n+1)At. The local pressure at any

point of the flow is obtiined by linear interpolation along the new data line.



CHAPTER 3

EXPERIMENTAL SET UP AND PROCEDURE

3.1. Shock Tube

Experiments were performed in a conventional air-to-air shock tube made from
scamless steel tubing with .7 cm wall thickness, 15.41 ¢m inside diameter and 5.81 meter
total Iength. It consists of a 2 meter long driver section, followed by a .81 meter long
driven section as shown in figure 3.1. Furthermore,the driven section is subdivided into
two parts, namely, a 2.74 meter long and a 1.07 meter long test section. Standard and
well centred flanges arc adopted to assemble the different subsections using cight M18§
bolts. Scaling is assurcd by the use of ncoprene O-ring scals which are scated in some
grooves machined on the different flanges. High vacuum grease is also applied around the
O-rings to practically climinate any possible leakage. The shock tube is supported by five
rigid steel supporters whose hight can be adjusted accurately. Compressed air supply for
the shock tube is taken from a large high pressure reservoir this being charged by an
clectrically driven reciprocating compressor. The supply enters the shock tube viaa 1 om
diameter copper tubing through a control panel. Pressure in the driven section could be
atmospheric or sub-atmospheric, depending on the annular Mach number required in the
cxperiment, namely, .44 and 1.26 corresponding 1o 63.31 Kpa and | atm driven pressure,
respectively. Vacuum pressure is supplied by an clectrically powcered Edwards’ vacuum

pump through a copper tubing connccted to the driven section. Pressure supply s




measured by a two of gauges mounted on a control panel; MFG testing gauges with
operating range (O - 760 mm Hg) and (0-40 bar) were used to measure the vacuum
pressure and the pressure supplied o the driver scction of the shock tube, respectively.
Manually operated control valves are used to monitor the preset pressure ratio between
the driver and driven sections for a given Mach number. A pnecumatically driven plunger
centred within the driver section of the shock tube is adopted to burst the diaphragm as
in figure 3.2. Diaphragms are cut from Mylar plastic sheets of different thickness in
accordance with the required shock strength. At the downstream cnd of the test section,
a three conical area contraction were employed to magnify and redirect the annular shock
wave 1o produce a cylindrically converging shock wave as it enters the implosion

chamber.

3.2. Upstream Of The Test Section

As it approaches the test section, the originally produced normal planer shock wave
is converted into a planer annular shock wave by a two-part aluminium annular tube,
1O1.6 mm in diameter and 1.830 meter long, mounted concentric with the driven section
of the shock tube as shown in figure 3.3. The aluminium tube is held by four webs, 1.3
cm thick and 4 em wide, carefully machined to fit into a 280 nun in diameter aluminium
flange to assure its alignment inside the shock tube. The schematic of this flange is
shown in figure 3.4. Here, part A is a machined such that its internal bore is equal to the
inner diameter of the shock tube. Part B is a ring with 10 mm outer diameter and 7.6 cm

mner diameter and itequipped with four webs, 4 ¢m wide and 1.3 ¢m thick. To minimise




the effect of the webs or the shock front shape. fins of 10 degree inclined angle are
placed at their both ends. A § degree chamfer is machined at the upsucam end of the
aluminum tube to minimize any disturbances caused by the inlet geometry and to assure
a smooth transition from normal to annular shock wave. All the parts are designed to fit

properly to avoid any possible lcakage.

At the end of the shock tube a three increment arca is made by means of a 20 mumn
thick and 150 mun diameter cylindrical part fitted inside an aluminium flange located at
the downstream end of the shock tube using a sct of eight M8 bolts. An inner bore  is
made in the aluminium flange to accommodate a fine quality optical glass window as
shown in figure 3.5. Rubber gasket of .5 mm thickness is used for scaling. Using this set
up the annular shock wave, propagating between the two concentric aluminium tubes, is
magnificd as it passcs through the three-arca contraction and then turned ninety degiee
to its original direction of propagation to finally hecome a cylindrical shock. This

cylindrical wave converges as it moves in the cylindrical implosion chamber (test section).

3.3. Test Section

The original test configuration is shown in figure 3.6, To vary the width of the
cylindrical chamber’ width without simultancously modifying the geometry of the three-
arca contraction a more flexible design is introduced. It consisted of a 70 mm diameter
concentric disk, mountca at the end of a 102 mm diameter cylinder and made to move

axially inside the implosion chamber to vary its width as in figure 3.7. At the vicinity of
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the cylindrical disk edge the converging shock is split into two parts one of which will
propagate into the test section. To assure a smooth separation and avoid unnecessary
disturbances a 15 degree chamfer is machined on the cylindrical disk. Shims of different
diameter were used o vary the chamber’s width. Alignment of the cylindrical disk is
assurcd by a cylindrical step machined at its end and set to fit into a ground cylindrical
bore in the 102 mm diameter part. In the previous design where of the gap width variation
is obtained through a direct movemert of the 102 mm diameter cylinder, it was not
possible to analyze shock propagation without modifying the flow condition at tl;e three-
clement contraction. The advantage of the new design is to isolate and examine the
influence the boundary layer growth on the flow behind the shock. The changes in the
post-shock conditions will be reflected on the shock strength through a complex wave
intcraction. Using this sct up the analysis can be extended to very small chamber widths
without chocking the initially produced shock wave as the geometry of the three-element

contraction is altered.

3.4. The Schlieren System

Figure 3.8 is a schematic representation of a conventional schlieren photography
system. This sct up consists mainly of a 4 Kv-spark source charged by a high voltage
power amplifier and operates at pulse rate less than .10 microseconds. A pair of
condensing lenses of focal length 17.5 cm were placed adjacent to the light source. Their
function is 1o focus the light rays to single points on both the knife edge and the spark

clectrode located at their focal distances. The Knife edge, which is made of four razor



blades held together to an adjustable frame by four screws, is used to monitor the amount
of light send to the camera and provide a sharp and effective light source and remove
unwanted secondary images [31]. To rcorient the light beams so they can pass through
the implosion chamber a double headed spherical mirror with 1230 mm focal length is
employed. After passing through the test section, the light rays were again reflected on
the spherical mirror then they were redirected through a planc mirror onto an open shutter
camera. To assure the alignment of the different components of the system a continuous
light source is used. The schlicren system is triggered by a pressure transducer placed
upstream of the three-clement contraction. Some difficultics were encountered when we
attempted to photograph the converging shock wave as it collapses at the centre due to
the finite time delay of the system. The sct up is then adjusted by trial and crror so that

all the photographs are taken by referring to the converging shock collapse time (1=0).

3.5. Experimental Procedure

Before firing the shock wave, the shock tube was checked carefully for any
nonalignment or leakage. It is also clecaned for any mylar fragments resulting from
previous firings. Mylar sheet of .5 mm thickness, which was determined experimentally,
was secured between the driver and driven sections. The test section was cleaned and
initially set to 2.5 mm width, using shims of different thickness, scparately. Then it is
placed inside the shock tube axisymetrically and sccured to the downstream cnd of the
annular aluminium tube. Initially the pressure at the driver scction is raised to 30 psig and

the pressure at driven scction is kept at atmospheric conditions. Then the shock tube was
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triggered and the mylar diaphragm was ruptured. Oscilloscope traces, obtained from
piczoclectric pressure transducers, with sensitive element diameter of 2.5 mm and
pressure/voltage gain presented in wble 3.1, placed at radial distances of 35.00, 24.13,
13.97, 8.89 and 3.81 mm from the cylindrical chambers’ centre, were cither photographed
by oscilloscope camera or directly traced on ALLEN datagraphs. A set of photographs
for the converging/diverging cylindrical shock were also obtained in order 1o study its
stability. Shock waves were generated with two different values of pressure ratio across
the diaphragm that is 30 psig/1 anm and 50 psig/30 cm Hg for cylindrical chamber widths

ranging from 2.5 mm to .33 mm.

Initially the Mach number for the planer shock wave M., was found from the shock

tube relationship given by:

Ye-1
1 a, v,+1 27M2+(y -1) p, S

M- ——=() oy [T L2y P 3.1)
M, a 1,1 ¥,+1 D,

where a, and g, are sonic speeds at the driven and driver sections respectively. Similarly,
Y. ¥, arc the specific heat ratio for high and low pressure sections of the shock tube.
However, as the shock propagates downstream its strength is altered, partially duc to wall
friction and boundary layer formation in the shock tube and during its transformation
from planer to annular shape. It is obtained experimentally by placing a pressure
transducer with 327 Kpa per volr gain, slightly upstream of the three-element contraction.
Pressure measurements were also taken along the test section at different radii. Typical

oscilloscope traces are shown in figure 4.1. The first sudden jump in voltage which
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signals the passage of the annular shock is used to measure its strength. Knowing the
voltage risc across the shock Av and the transducer gain G,, shock strength can be

calculated using:

Ap=GpAv (3.2)

Shock Mach number M,, can then be calculated from the following relation(11):

1
M =(1+ X1 APy (3.3)
2y py

where p, is the pressurc/vacuum ahcad of the shock.

In this experiment t(wo Mach numbers were used, namely 1.26 and 1.44 corresponding
1o (30 psig)/(1 amm) and (50 psig)/(30 cm Hg) shock tube pressure ratio, respectively.
These values are slightly less than those found using equation (3.1) which are used to set
the shock tube pressure ratio. The second jump in the oscilloscope traces signals the
presence of a reflected shock wave formed as the annular shock reaches the three-arca

contraction. It has no significance as far as this experiment is concerned.

For a purposc of double checking, a sccond method was adopted to calculate the
annular shock strength. Two transducers were placed upstream of the three-arca
contraction at a distance Ax = 152 mm. from cach other. From the definition of Mach

number we have:
M == (3.4)

where u, is the absolute shock wave speed given by:

(98]
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-Ax (3.5)
.V

substituting cquation (3.5) into equation (3.4) we get:

Ax
M ==X (3.6)
« a,At

here, At is the measured time interval during which the shock travels the distance Ax and

a, is the local speed of sound ahead of the shock given by

al -:‘/'YR_T'l (3-7)
where T, vy and R are the measured temperature ahead of the shock wave, the specific

heat ratio and the gas constant, respectively. Pressure difference across the shock can be

calculated using:

2
Ap=—-?—’(M,2,.-l) (3.8)
Y+l

Mach numbers obtained using both methods are close within a .2% error. This error is
very insignificant since the attenuation of the shock due to both the three-clement
contraction and the boundary layer formation in the implosion chamber is much greater

than that caused by the shock tube.

TABLE 3.1 transducers’ gain and radial location

TYPE SN 1178 SN 1175 SN 1239

GAIN (Kpwvolt) 231 327 377

LOCATION (11m) 24.13 13.97 3.81
35.00 8.89
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CHAPTER 4

RESULTS AND DISCUSSION

Exact solutions to converging/diverging cylindrical shock waves were numerically
obtained by integrating the characteristics equations using the Hartree time ntegration
scheme. These results were compared with those obtained experimentally using miniature
piczoclectric pressure transducers.  Numerical results of the shock Mach number versus
the cylindrical chamber radius were also compared with those obtained by the CCW Arcea-
Mach relationship. Boundary layer effects was experimentally examined by varying the
cylindrical chamber width using a new model. Symmetry of the converging shock was
examined from a sct of spark schlicren photographs taken near the geometric centre of

the cylindrical chamber. The details are presented in the following sections.

4.1. Pressure and Shock Mach Number Measurements

Based on the theoretical finding of Guderley {12], Mach numbers of converging
cylindrical shocks vary according to the relation Me<R,". Where n is a constant which
depends on the specific heat ratio Y. As the converging shock Radius R, goes to zero,
M, becomes infinite. To determine the local values of the shock Mach numbers, pressure
measurements were carried out at different locations along the shock path.  Typical

oscilloscope traces are shown in figure 4.1a-d. Thesce were obtained from  piczoclectric




transducers located at four different radii, R= 24.13 mm, 13.87 mm , 8.89 mm and 3.87
num with a cylindrical chamber width of 2.5 mm and a plane shock wave of Mach number
1.44.  As noted in the figures there are two sudden increases in pressures; one
corresponds to the converging shock and the other to the expanding one. Following the
passage of the converging shock, the pressure increases gradually due to continuous wave
reflection resulting from the arca change. The first sudden increase in pressure AP,
corresponds to the incident shock and is used to determine the shock Mach number using

the following relation :

v+1 AP, 4.1)

where p, is the pressure in the driven section.

From cquation (4.1) and the experimental results presented in figures 4.1a-d, the
shock Mach number variations with radius were obtained. The results arc shown in figure
4.2. Here, the radial dependence of the shock strength is very evident. Additionally, the
experimental curve is characterized by a monotone profile indicating the absence of local
acceleration or deceleration of the converging shock wave. These results were compared
with those obtained theoretically by the CCW theory and numerically by the method of
characteristics. A good agreement was noted between the three sets of data. However, at
larger radius there is a tendency for the experimental points to lie below the theoretical

curves. This slight divergence could be attributed to the multiple lateral reflection of the
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cylindrical shock as it passes through the area contraction. Deviation of the numerical
data from the simplifiecd CCW solution represents the net effect of the sccondary wave
reflection, which was omitted in the derivation of the theory. Near the geometric centre
the effect of these disturbances become insignificant and the three curves are almost
identical. The only parameter that controls the converging shock wave strength is the
area change. The scale of variation of shock strength duc to flow disturbances is much
negligible compared to that of arca change. Due to the finite size of the transducer’s
sensitive element it was not possible to determine Mach number at very small radius. In
this experiment the initial Mach number is 2.04 measured at R, = 35 mm where R, is the
distance from the centre to the outer edge of the moving disk in the test section. At this
radial location the calculated Mach number is 2.07. Since both the experimental and the
theoretical curves merge at smaller radius, the experimental amplification factor was

expected to be higher than the theoretical onc.

Similar tests were conducted for annular shock Mach number of 1.26 with a
cylindrical chamber width of 2.5 mun for R=24.13 mm, 13.87 mm, 8.89 mm and 3.81 mm.
A plot of Mach number versus radius is obtaincd using cquation (4.1) and the
oscilloscope traces shown in figures 4.1e-h. The results arc shown in figure 4.3, Here,
the Mach number variation follows the same trend as the previous case. However,
experiment points tend to lie slightly under the theoretical curves at smaller radius than
that of the stronger casc. These relatively large discrepancics are partially due to the

multiple reflection downstream of the contraction arca. In addition this deviation suggests
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that initially weak shocks tend to be more influenced by the flow conditions behind them.

This effcct diminishes as the converging shock approaches the centre.

Figure 4.4 represents the variation of the shock strength with the radius in a log-log
scale for an annular Mach number of 1.44. Here, the converging shock amplifies
according to power law M=CR" with n=.20. This value for n is slightly higher than that
obtained by Chisncll [18] with n=.197 for strong shocks. This minor deviation implics
that boundary laycr and flow complexity duc to the shock-area contraction interaction has
no significant effect on shock attenuation for cylindrical chamber widths greater than 2.5

nim.

Note that all tests were carried out for a single cylindrical chamber width of 2.5 mm.
Good agreement indicates that boundary layer has a minimal effect on the cylindrical
shock propagation. The main parameter contributing to the shock attenuation is the lateral
instability of the converging shock, specifically in the case of larger cylindrical chamber
widths. This factor is the outcome of a significant change in flow variables along the
shock front which in turn induces an important shock deformation. Consequently,
multiple reflections take place as the shock converges toward the centre.  These
reflections cause the pressure to fluctuate about a mean value, as seen in the oscilloscope
traces. As the converging shock approaches the centre, shock front deformation becomes
large, which eventually results in a Mach type reflection followed by a shock collapse.

For narrow cylindrical chambers this may be different.  Further details concerning
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cylindrical shock propagation in a narrow cylindrical chamber will be discussed in the

following section.

4.2. Narrow Cylindrical Chamber Width
4.2.1. Experimental Observations

In order to determine the influence of boundary layer on shock wave propagation, a
new model , shown in figure 3.7, was used. A sct of tests were carried out for an
initially strong shock (M = 1.44) and cylindrical chamber widths of 0.6 mam and 0.3 mm.
Results are shown in figures 4.52-d. Pressure measurements were taken 24.13 nm, 13.97
mm, 8.89 mm and 3.81 mm from the geometric centre. At these radial locations the
pressurc at a fixed point behind the converging shock increases with time and decreases
as the reflected shock passes. The experimental results corresponding to cylindrical
chamber widths of 0.30 mm, 0.60 mm and 2.5 mm were compared to the numerical values
obtained using the method of characteristics as shown in figure 4.6 through figure 4.16.
For W=0.6 mm and 0.3 mm pressure distribution behind the converging shock is found
to be lower than that corresponding to the cylindrical width of 2.5 mm which clearly
illustrates that flow in region upstream of the shock displays a high degree of
unsteadiness resulting in an important shock attenuation. Since the cffect of arca
contraction is well isolated in the new model, the main source of disturbance is the
viscous effect. The overall trend of the results obtained suggests that boundary layer
influence on flow behaviour amplifies as the converging shock approaches the centre.

The interaction of the incident shock wave and the change in the cylindrical chamber
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radius gives rise o two types of shock, namely, a reflected shock and a transmitted one.
The reflected wave propagates upstream as a compression wave when the change in
radius is ncgative (converging shock) and as an expansion wave if the change in radius
is positive (diverging shock). During the convergence process reflected disturbances
result in a pressure increase in the pre-shock region. This effect causes the boundary
layer to slow down and consequently thicken considerably depending on the converging
shock strength. This thickening of the boundary layer results in a pressure increase in the
free stream zone causing the flow to slow down. This phenomena has a significant effect
on the driving mechanism of the converging shock. In the case of the cylindrical width
of .30 mm this ecffect is more pronounced. An important shock attenuation is observed.
Flow non-uniformity behind the shock increases immensely as the shock progresses
toward the centre. Such a phenomena can be seen from figure 4.14 to figure 4.16 where
a large pressure fluctuation is present.  In the case of cylindrical width of 0.6 mm a
reasonably good agreement between the experiment and the computational is observed.
The discrepancics between the two sets of data is a result of the complex interaction
between the upstream moving disturbances and boundary layer. The observed drop in
pressure in the pre-shock domain could also be attributed to no-uniformity of flow
propertics along the shock front. This variation induces a large shock deformation which
grows larger with the widening of the cylindrical chamber. As the shock propagates
toward the centre this effect becomes very significant yielding a lateral reflection of the
shock which in turn results in pressure drop and adds to the complexity of the flow

behind it. As discussed above the interaction of the reflected shock wave and a positive
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radius change will produce a transmitted shock (diverging) and a rereflected wave
(expansion wave). The latter will propagate downstream causing a sharp drop in pressure
behind the diverging shock wave. The diverging process is quite complex because it
includes shock boundary layer interaction particularly at very namow cylindrical chamber
width (.30 mm). This is concluded from the pronounced difference between the
computational maximum pressure and the experimental results. Morcover, experimental
values were obtained from a digital oscilloscope which gives a discrete number of points
and therefore is unable to detect the exact value of the sharp peak noted due to the shock
reflection.  Behind the diverging shock the rate of pressure  decrease  obtained
experimentally agrees very well with the computational. There is, however, a difference
in the time at which the diverging shock reaches the sensitive element ol the pressure
transducer. This indicates a dramatic shift in the centre of implosion.  This effect implies
that boundary layer causes the converging shock to collapse at a much carlier stage. The
deviation of the centre of implosion from the gcometrical axial is smaller in the case of

.60 mm width compared to the .30 mm cylindrical chamber configuration.

Additionally, a sct of experiments were conducted for M =1.26 and R=24.13 mm, 13.87
mm, 8.89 mm and 8.81 mm with W=0.60 mm and .30 mm. From the results shown in
figure 4.17 to 4.22 it can he concluded that pressure attenuation due to the narrowing of
the cylindrical chamber is more significant than that corresponding to the strong case.

Flow non-uniformity is quite strong particulary at smaller radii.
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To determine the boundary layer effect on converging cylindrical shocks strength,
Mach number versus radius plots were obtained using equation (4.1) and the oscilloscope
traces presented in figures 4.5 and 4.26. The results are presented in figures 4.23 and
4.24 for cylindrical chamber widths ranging from 2.5 mm to .30 mm and initial Mach
number of 1.26 and 1.44, respectively.  From the figures the inlet conditions (R = R, =
35 mm) just downstream of the contraction area were found to be unaffected by the
variation of the cylindrical chamber width. This demonstrates the ability of the new model
in isolating the effect of the boundary layer on the shock wave propagation from those
due to the disturbed nature of the flow downstream of the contraction area. The narrowing
of the cylindrical chamber width resulted in a weaker transmitted shock wave. This is
attributable o the boundary layer effect since the ratio of the boundary layer thickness
to the cylindrical chamber width is greater than .167. For the stronger shock (M = 1.44)
wave the boundary layer influence is more evident at larger diameter. As the shock
progresses towards the centre, the disturbances due to the presence of the boundary layer
arc suppressed. This observation is valid only at cylindrical chamber width greater than

.6 mm. For cylindrical chamber of .30 mm the shock attenuation is more severe.

To illustrate the effect of the area contraction on shock amplification, tests were
carried out for an incident plane shock of 1.4 using the original model. The results are
presented in figure 4.25. 1t is clear that at larger radius, the 0.6 mm width is found to
produce stronger shocks than the 2.5 mm one.  However, at smaller radius the latter

results in a stronger converging shock wave.



At larger radius, where the flow is almost two-dimensional, and for cylindrical
chamber width of .30 mm the converging shock displays a slight decrease in strength,
This phenomena is interpreted to indicate the presence of a local deceleration somewhere
downstream of the contraction arca. Here the boundary layer may have attained a
maximum value creating highly unsicady pre-shock flow conditons.  This ctfect was
studied by Mirels [32] for two-dimensional shock tube. For cylindrical width of 0.6 mm
the boundary layer cffect is only dominant at larger diameter (up to 13.8 mm). However,
as the shock approaches the centre of implosion it gains enough momentum enabling it

to overcome the disturbances gencrated by the boundary layer.

To illustrate the effect of the boundary layer on the amplification rate of shock
strength a log-log plot of the shock Mach number versus radius is presented in figure 4.4
It is clear from the figure that the shock amplifies according to R". For cylindrical
chamber width of 2.5 mm boundary layer effects are neglected and n=0.20. for the 0.60
mim case n=.189, if the new design is employed. Using the original model a lower shock
amplification rate is noted with n=.165 for cylindrical chamber width of 0.6 mm. This
effect is primarily attributed to the area contraction. For the cylindrical width of .30 mm
the shock propagation did not obey the power law. This is a result of a significant

weakening of the shock subjected to the boundary layer effect.

4.2.2 Theoretical Formulation

Shock attenuation in the case of planc shocks propagating in constant arca tube was




studied in dewils by Mirels [32]. For a small range of M, the pressure variation behind
the shock follows the relation:

(R,-R)'? 4.3)
W

AP, , -
where,
AP, i: Pressurce variation downstream of the shock (Kpa)
W: Cylindrical width (mm)
R,: Radius of the concentric disk (mm)

R.: Shock wave radius (mm)

From the normal shock wave relation we have

Mo | P21 v-1 (4.4)
‘AP 2y 2y

P,: Pressure upstream of the shock (Kpa)
P, Pressure downstream of the shock (Kpa)
The change in Mach number due to the boundary layer and area change can now be

approximated by the following relation:

PV i VR 40 06 2 W @)
y P, 2y 2y

cquation (4.3) can be written in an altemative form by introducing the proportionality

wrm o
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_ 2
AP, = a/R, A-R/R) (4.6)
W, (MW,

[

substituting cquation (4.6) into cquation (4.5) we get the following relation:

P, JT-RJR)

4.7
wWIw -
M,- Mo 11 11 ey
P, 2y 2y
where,
L
WO
and

W,: Maximum cylindrical width (2.5 mm)

The cocfficient K was found by correlation between the theoretical and experimental
results. For the annular Mach number of 1.44, K=14.2. There is a good agrecment
between the experimental results and those obtained by cquation (4.7) as noted in Dgure

4.24.

4.3. Stability Analysis
The stability of propagating cylindrical shocks is often related to the degree of axial
symmetry of the shock front. A cylindrical shock wave is said to be stable if it maintains

a cylindrical shape and axial symmetry throughout the converging/diverging process. On
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the basis of this principle, schlieren photography is quite sufficicnt to analyze the stability
of the shock front subjected to strong disturbances within the flow domain. The most
important source of disturbance considered in this experimental analysis is the boundary
layer as it interacts with the shock propagation. In order to provide a comprehensive
qualitative analysis of the of the boundary layer effect, the cylindrical chamber was first
narrowed 10 (1.6 mm and then to 0.30 mm. The latter cylindrical chamber configuration
is associated with a significant change in the shock wave dynamics and a complex flow
ficld, as concluded from the pressure analysis presented in the previous sections. In the
subsequent paragraphs detailed discussion about the influence of boundary layer on the

stability of converging/diverging cylindrical waves is presented.

In order to examine the effcect of the cylindrical chamber configuration on the final
shock wave stahility and the flow condition, two sets of photographs were obtained for
W=0.6 mm and 0.3 mm and annular shock Mach number of 1.26 . Figures 4.27 and 4.28
show a sequence of spark shadowgraph for cylindrical chamber width of 0.6 rnm and 0.3
mm, respectively. Each photograph was taken with similar shock tube firing using
dilferent time delay settings. This experiment showed a remarkable repeatability which
made it possible to obtain a reliable series of photographs showing the evolution of the

shock front shape as it approaches the centre of collapse.

From figure 4.27 one can infer that the converging shock seems 1o maintain its

cylindrical symmetry up to a relatively small radius for a cylindrical chamber width of
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0.6 mm. Atthe vicinity of the centre, the cylindrical symmetry is lost in favour of an
elliptical one. This can be observed in figure photograph (b) and (¢). For the 0.3 mm
case shock asymmetry started at much earlier stage. In both cases the shock front does
not regain its symmetry as it converges towards the centre. In figures 4.27d and 4.28f,
two pairs of vortices arc noted behind the expanding shock. The presence of these
vortices reveals the occurrence of Mach type reflection which is characterized by the
formation of two pair of triple point where an incident shock (converging shock),
reflected shock, slip line and Mach stem intersect.  This shock confluence is formed as
the shock breaks down near the geometrical centre.  The shift of the cotlapse centre [rom
the geometrical onc can be perceived from figures 4.27¢ and 4.28¢ where the shock
collapsing is not very acute. In the 0.3 mm case shock collapse occurred in much wider
region than the 0.6 mym casc indicating a larger shift in collapse centre from the
geometrical one.  Unfortunately, the schlieren photographs were unable to depict the
changes in the flow propertics behind the converging shock as it undergoes the above-
mentioned transformations. The only important obscrvation as far as flow condition is
concerned is the presence of some concentric circular rings behind the collapsing shock.
These are scen in figure 4.28d and they are the result of multiple reflections of trailing
weak waves off the upper and the lower walls of the cylindrical chamber.  Apart from
this, the presence of these circular rings may possibly be a consequence of the vibration

effect that the experiment sct up may undergo.

From figures 4.27d and 4.28f onc can sce that the diverging wave has regained the
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circular symmetry and secems to be stable. Expanding trailing disturbances were formed
and were stronger than those observed behind the converging shock. Flow non-uniformity
is more pronounced and increases with the diverging shock propagation. This intense
flow non-uniformity is the result of the strong expanding waves that trail the diverging
wave.  The latter disturbances have the effect of decreasing the flow velocity,
significantly. Conscquently, the vortices seem to maintain their position at the vicinity
of the centre. In figure 4.28¢ the converging shock is transformed into a quatrefoils. The
latter effect substantiates the general hypothesis [24] that states that the supports, used to
hold the inner tube just upstream of the test section (see figure 3.3), are accountable for
initializing shock perturbation. The presences of the quatrefoils agrees with the number

of supports adopted in the present experimental work.

Similarly, a sequence of shadowgraphs was obiained for a cylindrical chamber width
of 2.5 mm and a shock Mach number of 1.26. It is clear from figure 4.29 that the shock
front is circular in shape. The shock maintains its symmetrical shape up to very small
radii. The pair of vortices scen behind the diverging shock indicates that break down in
shock front curvature did occur somewhere near the geometric centre. The relationship
between the direction of propagation of these pairs of vortices and the shape of the shock

hefore collapse will be discussed in section 4.3.2,

4.3.1. Amplification

The boundary layer effect on shock deformation is examined using the perturbation
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parameter s, defined as,

where AR is the value of the shock displacement given by:

aR-2-d

where D and 4 arc the major and minor axis of the shock front, respectively. The

average shock diameter is given by,

therefore we have

i D+d
From the shadowgraphs in figurcs 4.27 and 4.29 the varnation in shock front
perturbation was obtaincd. The results are presented in figure 4.30. The experimental
values were compared 1o those obtained theoretically from the analysis of the stability of

cylindrical converging shock (Butler, 1956). The theoretical perturbation parameter is

given by:
E=% o (%)4-598 (4.8)
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from the figure the experimental perturbation parameter was obtained

AR R

= o (—2)7062 for W=0.60 mm
R.r RO
AR R

E= o (=)0 for W=2.50 mm
R.\' RO

These relations are in fairly good agreement with the equation (4.8). The experimental
results, however, tend to increase in a modest rate in comparison to the theoretical ones.
This is duc 1o the fact that Butler’s analysis was based on a very high Mach number. In
the present experiment, however, Mach number attains a reasonably high value only at
the centre of collapse. In both relations the ratio of the shock deformation to the mean
shock front radius docs not tend to zero. It increases monotonically with shock front
travel.  The rate of shock distortion for W=0.60 mm grows more rapidly than that
corresponding to W=2.5 mm. This is an indication that a cylindrical shock wave,
travelling in a narrow cylindrical chamber, tends to be more unstable. The converging
shock does not scem to regain its symmetry. This analysis provides a good quantitative
demonstration of the degree of shock deformation, but it fails to explain the nature of the
shock collapse as it approaches the centre. The degree of sharpness of shock collapse
dictates the final state of the gas at the centre of the cylindrical chamber. Therefore, more

details are required to undertake this mechanism.

4.3.2 The Collapse Mechanism

To shed light on the different stages of converging shock collapse, a two-dimensional
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test was conducted using a 51 by 51 mm square shock tube for a planc shock Mach
number of 2.2. Here, the nearly elliptical shock reflection on both sides of the major axis
(figure 4.28¢) was simulated by considering a planar shock reflection from a curved wall.
A sequence of spark schlieren photographs is shown in figure 4.31. The initially planar
shock front is reflected from the centre of the wall curvature. The initial reflection is of
the Mach reflection type followed by a regular reflection. The contact surfaces, resulting
from the Mach reflection, roll up to form a pair of vortices. The latter continue to slowiy
propagate and remain behind the reflected shock where the particle path is relatively
small. From the two dimensional tests of figurc 4.31, the dircction of propagation of the
pair of vortices trailing behind the reflected shock indicates that for clliptical converging
shocks a pair of vortices will form and will propagate in a preferential directions being

perpendicular to the major axis of the converging elliptic shock.
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CHAPTER 5§

CONCLUSION AND RECOMMENDATIONS

5.1. Conclusion

The propagation and stability of converging/diverging cylindrical shocks in wide
and narrow cylindrical chambers was studied, experimentally, through a series of pressure
measurements and spark schlicren photography. These results were compared with those
obtaincd numerically by the method of characteristics. The boundary layer effects on the
shock stability were experimentally analyzed by examining a set of spark shadowgraphs
taken for different cylindrical chamber configurations. The tests were carried out for two
incident plane shock Mach numbers, namely, 1.26 and 1.44. From the present study the

following conclusions can bhe drawn:

1. For a cylindrizal chamber width of 2.5 mm, excellent agreement was noted
hetween the experimental values and the numerical ones obtained by the
method of characteristics. This suggests that the present shock tube employed
prevails the same uniform upstrcam conditions that were employed in the
derivation of the CCW theory and the numerical integration of the

characteristics equations.

2. The proposed new model was effective in isolating the boundary layer effects



from those induced by the interference of the arca contraction.  Flow
conditions at the test section inlet remained undisturbed as the cylindrical
chamber was narrowed which cnabled us to obtain a satisfactory comparison
between the experiments and the CCW which was based on uniform {low

conditions upstrcam of the arca contraction.

Shock Mach number and flow condition in the test section depend strongly on
the cylindrical chamber width. Narrow cylindrical chambers induce a sharp
decrcase in shock strength and an increase in flow non-uniformity. The later
is the result of a complex interaction between the boundary layer and the
disturbances which propagate in the flow domain. Larger cylindrical widths,
however, results in a severe lateral shock deformation and eventually leads to

lateral shock stabilitics.

The asymmetry of the test section is an important parameter that controls the
shock attenuation and stability, particularly in the case of a narrow cylindrical
chamber. For cylindrical chamber widths larger than (.6 mm, the converging
shocks were found to retain their symmetry down to small radii. For smaller
width the circular symmetry of the shock is lost in favour of an clliptical one
at a much earlier stage. In all cases, shock breakdown is followed hy the
formation of a pair of vortices that propagates in a dircction normal to the

major axis of the cllipsc.
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5. For all test section configurations the converging shock does not collapse to
a single point. The distance between the centre of collapse and the geometric

onc is found to increase as the cylindrical chamber is narrowed.

6. In all cases considered, the diverging cylindrical shock was found to regain its
cylindrical shape as it propagates outwards. However, its strength.was

strongly reduced by the chamber narrowing.

7. From the cxperimental results, an empirical equation was developed to
determine the variation in shock strength with radius R for a wide range of
cylindrical chamber width W. For cylindrical chamber widths W/R, > .04,

boundary layer is found to have almost no effect on shock propagation.

5.2. Future work

Most of the previous works indicate that converging shocks are unstable. If an
attempt is made to improve the stability, some measuring devices must be available to
indicate the degree of such improvement.  Presently, Neemeh and his associates are
considering the vortices as the measuring mechanism. They are developing a relationship
hetween the vortex pairs size and shape and the degree of shock instability. Once this
relationship is developed, attempts will be made to cnhance the stability of the shock

using the vortex geometry as the measuring tool of such an improvement.
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Figure 2.1.

The general solution of the characteristics method

Figure 2.2.

The computational solution of the charactensuces method
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Figure 2.3. Characteristics method for a subsonic flow
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Figure 2.4. Characteristics method for a supersonic flow.
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Figure 2.5. The characteristics method solution for converging shock
points
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Figure 2.6.  The characteristics method solution for diverging shock
points
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Figure 2.7.  <he characteristics method solution for flow points at
the test section inlet.
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Figure 2.8. The characteristics method computational solution for
flow points near the axis.
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y-axis 1 em =1 volt

Figure 4.1a

M, =144, R=13.87 mm
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Figure 4.1b
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M, =144, R=8.89 mm
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Figure 4.1c
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Figure 4.1d
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Figure 4.1e
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Figure 4.1f

73




M,=1.26, R=8.89 mm
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Figure 4.1g
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Figure 4.1h

Figure 4.1. Oscilloscope traces for M,=1.44 and M,=1.26 with W'=2.5 mm.
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Figure 4.2.  Shock Mach number versus radius for M, = 1.44 and W=25mm
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Figure 4.3. Shock Mach number versus radius for M, = 1.26 and W = 2.5 mm.
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Figure 4.4. Shock Mach number versus radius for M,=1.44 in Log-Log scalc
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Figure 4.5b
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Figure 4.5d
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Figure 4.51
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Figure 4.5  Oscilloscope traces for M,=1.44, R=24.13 mm, 13.87 mm, 8.89
mm and 3.81 mm, W=0.6 mm and 0.3 mm.
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Figure 4.6. Pressure history for M, = 1.44, W=2.5 mm and R=24.13 mm,

comparison of the experiments with the results obtained using the
method of characteristics.
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Figure 4.7. Pressure history for M, = 1.44, W=0.6 mm and R=24.13 mm,
comparison of the experiments with the results obtained using the
methcd of characteristics.
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Figure 4.8. Pressure history for M,=1.44, W=0.3 mm and R=24.13 mm,
comparison of the experiments with the results obtained using the
method of characteristics.
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Figure 4.9. Pressure history for M,=1.44, W=2.5 mm and R=13.87 mm,
comparison of the experiments with the results obtained using the
method of characteristics.
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Figure 4.10. Pressure history for M,=144, W=0.6 mm and R=13.87 mm,
comparison of the experiments with the results obtained using the
method of characteristics.
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Figure 4.11. Pressure history for M,=1.44, W=03 mm and R=13.87 mm,
comparison of the experiments with the results obtained using the
method of characteristics.
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Figure 4.12. Pressure history for M,=1.44, W=2.5 mm and R=8.89 mm, comparison

of the experiments with the results obtained using the method of
characteristics.
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Figure 4.13. Pressure history for M,=1.44, W=0.6 mm and R=8.89 mm,
comparison of the experiments with the results obtained using the
method of characteristics.
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Figure 4.14. Pressure history for M,=1.44, W=0.3 mm and R=8.89 mm,
comparison of the experiments with the results obtained using the
method of characteristics.
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Figure 4.15. Pressure history for M,=1.44, W=2.5 mm and R=3.81 mm,
comparison of the experiments with the results obtained using the

method of characteristics.
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Figure 4.16. Pressure history for M,=1.44, W=0.6 mm and R=3.81 mm,
comparison of the experiments with the results obtained using the
method of characteristics.

92




MOC EXP.,W=25mm
- — A
1,000 |- \
800 | A
- I
jP)
V]
?5’ 600 |- A
2
o
(o X
A
A
400
A
}.
200 |
o bl 00 )
0 20 40 60 80 100 120 140 160

Time, ms (x 1E-3)

Figure 4.17. Pressure history for M,=1.26, W=25 mm and R=24.13 mm,
comparison of the experiments with the results obtained using the

method of characteristics.
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Figure 4.18. Pressure history for M, =1.26, W=0.30 mm and R=24.13 mm,
comparison of the experiments with the results obtained using the
method of characteristics.
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Figure 4.19. Pressure history for M_=1.26, W=25 mm and R=13.87 mm,
comparison of the experiments with the results obtained using the
method of characteristics.
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Figure 4.20. Pressure history for M,=1.26, W=0.30 mm and R=13.87 mm,
comparison of the experiments with the results obtained using the
method of characteristics.
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Figure 4.21. Pressure history for M, =1.26, W=2.5 mm and R= 8.89 mm, comparison
of the experiments with the results obtained using the method of
characteristics.
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Figure 4.22. Pressure history for M,=1.26, W=0.3 mm and R= 8.89 mm, comparison

of the experiments with the results obtained using the method of
characteristics.
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Figure 4.23. Shock Mach number versus radius for M,=1.26 with W=2.5 mm,
0.6 mm and 0.3 mm
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Figure 4.24 Shock Mach number versus radius for M,=1.44. The dotied lines
represent data obtained using equation (4.7)
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Figure 4.25. Shock Mach number versus radius for M,=1.44 using the original
model
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Figure 4.26b
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Figure 4.26d

103




M,=1.26, R=24.13 mm, W=03 mm

Scale:
x-axs: 1 om = 10 psec
y-axis: 1 em =1 volt

s

Figure 4.26e
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Figure 4.26f
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Figure 4.26 . Oscilloscope traces for M,=1.26, R=24.13 mm, 13.87 mm, 8.89
mm and 3.81 mm, W=0.6 mm and 0.3 mm.
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Figure 4.27 Spark shadowgraphs illustrating the propagation of cylindrical
shock wave in a narrow cylindrical chamber for M,=1.26 and
W=0.6 mm
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Figure 4.28 Spark shadowgraphs illustrating the propagation of cylindrical
shock wave in a narrow cylindrical chamber for M,=1.26 and
W=0.3 mm
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(e)

Figure 4.28 (continued)
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Figure 4.29 Spark shadowgraphs illustrating the propagation of cylindrical
shock wave in a narrow cylindrical chamber for M =1.26 and
W=2.5 mm
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Figure 4.30 Rate of propagation of the converging cylindrical shock for M,=1.26
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Figure 4.31 Spark schlieren photographs of plane shock reflection from a
semi-circular end wall, M, =2.2
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