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Abstract

Three Dimensional Multilayver Composite Finite Element Method

for Stress Analysis of Composite Laminates

Jianhua Han, Ph.D.

Concordia University, 1994

This thesis covers four subjects. These are the formulation of the hybrid varwational
functional oy parteal stress finite clements for the stress analysis of laminated compos-
ite structures, development of the iso-function mcthod 1o set up the assumed stress
field which is free of spurious kinematic modes in the hybrid finite clements, devcl-
opment of the method of formulating multilayer composite finile element for vi.ree
dimensional stress analysis of composite laminates and the applications of multdlayer

composile finile clements for interlaminar stress analysis of several examples.

In order to satisfy the continuous and natural discontinuous conditions in laminated
composite structures, the three transverse stresses and the three in-plane strains are
taken as basic variables. The basic equations based on the basic variabies for stress
analysis are given. The variational functional is derived by satisfying these basic
equatiovs with the application of the weighted residual method. The iso-function
method is developed to set up the partial stress field which is required to form the

finite element based on above variational functional. This method gives an casy
)

it



way to form a stress ficld and cnsures that the stress Held is free from zeto energy
modes. Three 3-1 composite elements are formulated based on the vatiational fune

tional and by incorporating the iso-lunction technique. To enforce the satisfaction
of the continuity condition at interlaminar surfaces and traction free condition at
the upper/lower faces of a laminate, tue composite elements are multilavered to for
mulate a super finite element which is named as multilayer composite element. The
continuity of the three transverse stresses across the laminate thickness is assured a
ptiori by introducing a partial stress ficld vector associated to the lower and upper

sirfaces of a lamina.

By means of multilayer composite element, stresses in a beanv and ina rectangnlar
laminated plate under transverse loading ate calenlated. Results are compated with
Exact elastic theory solutions, classical lamination theory solutions, hybrid finite
clement solutions and high order shear deformation theory solution. The analysis
of straight edge effect problem demonstrates that the stress distributions predicted
by the present multilayer composite linite element also satisfy traction free edpe
condition. The present finite element has clear advantage over displacement formu
lated finite element and computationally more eflicient than the conventional hybrid

clements.

v
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Chapter 1

Introduction

The structure of composite materials has two most distinguishable propetties. The
firat is its anisotropic relation between strain and stress. The second is it usnally

appears as a lamination in structure.

Because of these properties, the main difliculty for the stress analysis of composite
structures is the so called continuous and discontinuous problem or conjunction con
dition. Based on equilibrium and compatibility at the interlayer surfaces, the three
in-plane strains and three transverse stresses must be continuons. The other three
in-planc stresses and three transverse strains may be described by a finite disconti-
nuity which is caused by the abrupt change of material property or orientation of

different laminac{l].

Normal analysis techniques such as the classical lamination theory (CLT){2, 3, 1, 5]
and displacement formulated finite element method[6] have difficnlties satisfying the
above conditions. The classical lamination theory, which does not indlude transverse
shear effects, can provide reasonable predictions (exclnding transverse shear stresses

and strains) only for relatively thin plates. As transverse shear effects come to play a




more important role in laminated composite plates with low span-to-thickness ratios,
CLT leads to a very poor description of laminate response. In displacement formu-
lated finite element method, where the stresses are obtained from the derivatives
of displacement, it is difficult to enforce the continuity of three transverse stresses.
Numerical analysis also showed that the results using displacement formulated finite
clement, method are not satisfactory(7]. It is possible to employ the three dimen-
sional anisotropic elasticity theory[1] to obtain exact solution of composite laminates
as long as every lamina is treated separately and bound with other laminae with
boundary conditions at interlayer surfaces. Pagano[8] presented an example on how
to apply this technique. However, because of the difficultics in setting up differential
formulations for complicated boundary conditions and the difficulties in obtaining
solution for these diflerential formulations, the direct application of three dimen-
sional anisotropic clasticity theory is limited to problems with simple loading and

boundary conditions.

Since 1960’s, many works have been done for the prediction of interlaminar stresses
in laminates of composite materials. These previous studies can be classified as

[ollows

(a) Finite Difference Method: Works in this area include Pipes and Pagano [9, 10,

[1], and Altus et al [12]. All these works involved displacement formulation.

(b) Finite Element Method: Works with application of displacement formulation

include Heppler et al [13], Engblom et al [14], Pandya et al [15] (using a dis-
placement formulated high order plate clement); and Yeh et al [16], Natarajan,
Lucking and Hoa [17, 18], Chaudhuri et al [19] (using a three dimensional dis-
placement. formulated elementi), and Reddy {20, 21, 22] (layerwise theory).
With application of stress formulation, there is Rybicki [23]. With applica-
tion of hybrid formulation, there are Mau et al [24], Nishioka and Atluri [25],
Wang et al [26, 27], Khalil et al.[28], Spilker [29], Liou and Sun [30, 31}, Liao

et al.[32, 33, 34]. With application of mixed formulation, there are Moriya

3]



[35], Kwon and Akin [36].

(c) Perturbation Method Works include Hsu et al [37] by using displacement. for-

mulation, Tang and Levy [38](boundary-layer matching method) by using
r*1ess formulation, and Ye and Yang [39](boundary layer theory), Bar-Yoseph
and Pian ct al [40, 41, {2](matched asymptotic expansion method) by using

stress formulation.

(d) Variational Method: Pagano [13](Rayleigh-Ritz Mecthod, mixed formula-

tion), Wang and Dickson _:1](Garlerkin Method, mixed formulation), Vong,
[45] and Chatterjee, Ramnath [16](Mixed Variational Principle), Lagace
[47, 48](complementary energy principle).

(e) Expcrimental Method: Whitney et al [19], Berhaus et al [50], Ierakovich et
al [51].

For theoretical and numerical methods, the above works can also be simiply classified

as follows

(a) Displacement Fo: mulation, in which only a displacement field is assumed.

(b) Stress Formulation, which only assumes a stress field.

i¢) Mixed Formulation, in which hoth stress field and displacement field are as-

sumed.

(d) Hybrid Formulation, which assumes both the stress field and displacement

field, but the assumed field at boundary surface is different, fror: that in the

interior.

During the last few years, the Finite Element Method of analysis has rapidly become
a very popular technique for the computer solution of complex problem in engineer-

ing. The displacement formulated finite element and the stress formulated finite




clement, both have difficully to satisfy the continuous condition of three transverse
stresses and three in-plane strains and allow the remaining three transverse strains

and three in-plane stresses to be discontinuous.

Many techniques have been proposed to satisly the conjunction conditions at the
interlayer surfaces, which have been mainly on the mixed or hybrid formulated fi-
nite elements. Spilker[52), and Pian{40], emphasized the continuity of transverse
stresses @,, 0y, Orz, in their stress formulations. Reissner[53], based on potential
energy principle, presented a mixed variational theorem, which requires a semi-
potential energy density through partial Legendre transformation. Later[54], Reiss-
ner pased his work on a gencralized potential energy principle, which requires a
semi-complementary energy density through partial Legendre transformation to ar-
rive at the same results as in[53!. Reissner gave a few caamples, however, he did
not. give the general form of the semi energy density. Moriya[35] developed an 8-
node mixed plate finite clement based on the modified Hu-Washizu principle. Both
Reissner and Moriya took in-plane strains €, ¢y, ¢ry, and transverse stresses o, oy,
0.z, as independent variables for analysis of laminated structures. Huang [55, 56]
presented a new type of elastic energy in terms of in-plane strains ¢, €, ¢;y, and
transverse stresses o, 0y;, 0z:. On this basis, luang developed a laminate func-

tional and esiablished a corresponding variational principle.

Since the hybrid finite element has the reputation of high accuracy in stress calcu-
lations and it is casy for a hybrid element with an assumed stress field to satisfy
the condition of transversc stresses continuity, many works have been done in the
application of hybrid finite element in analysis of composite laminates. Mau et
al.[24](1972) developed a laminated thick plate element by using hybrid method.
Iowever, in the assumption for the stress field, tr.nsverse normal stress was not in-
cluded. Constant transverse displacement through the laminate thickness was also
assumed. These assumptions did not agree well with the actual mechanism of defor-

mation of laminated plates in bending. Spilker[57](1982) developed an eight-node



1soparametric multilayer plate clement for the analysis of thin to thick compos-
ite plates. This model has the generality of describing laminate response but the
assumption of constant transverse displacement through laminate thickness still re-
mains. In 1987, hybrid elements[31] with linear transverse displacement have been
developed for analysis of composite laminates. Usually, those hvbrid elements have
an assumed stress field of six stress components. Later, Liao et al.[32, 33, 31] pro-
posed a hybrid clement with partial stress field ol transverse shear stresses @y, 0,..
In 1992, Ian and Hoa [7] developed a composite finite clement with lincar trans-
verse displacement and with a partial stress field of three transverse stresses ., oy,
02z, since these three stresses are required to be coutinuous through the thickness
of a laminate. The assumption of the partial stress field of three transverse stresses
reduces the size of the mapping matrix and compliance matrix needed for the formu-
lation of the element stiffness matrix and makes it possible to enforce the confinuity

and natural discontinui., conditions exactly in advance.

It can be scen from the works of previous researchers that by taking the six globally
continuous components of stress and strain( three transverse stresses, three in-plane
strains) as basic variables and by treating the interlaminar surfaces as boundaries
with six continuity conditions between every two adjacent layers, the formulated
variational principle satisfies the three transverse stresses and three in-plane strains
coniinuity conditions and permit possible discontinuities of three in-plane stresses

and three transverse strains.

However, in order to derive finite elements based on the above mentioned varia-
tional principle, it is necessary to assume partial stress fields a priori. Finite element
formulations involving an assumed stress ficld are cursed with zero-energy modes.
These zero-energy modes have plagued the hybrid finite clement method since the
beginning. Previous rescarchers have proposed many techniques to overcome the
zero-energy modes. Pian and Tong[58] proposed that the number m of the unde-

termined coefficients in the stress field should satisfy the relation m > n —r, where



n is the total degrees of freedom and r is the degrees of rigid body mode. Atluri
ct.al[59, 60], using a symmetric group theory, identified the different possible modes
that exist for a certain type of element. In 1989, [luang [56] proposed a modal
analysis technique to obtain the stress modes from the deformation modes of an
assumed displacement field. Ir. 1992, llan [7] proposed an iso-function method for
formulating the assumed stress ficld. The method gives an casy way to form a stress

ficld, which is free from spurious zero energy modes.

Thus, to develop a finite element method for stress analysis of composite laminates,
a technique of taking three transverse stresses and three in-plane strains as basic
variables has to be used; to form the new finite clement based on the technique, a
proceduie to construct the partial stress field has to be developed to ensure no zero

cuergy modes exist in the element.

This thesis covers four subjects. These are (1) the formulation of the hybrid varia-
tional functional of partial stress model finite elements for the stress analysis of lam-
inated structures, (2) development of the iso-function method to set up the assumed
stress field which is free of spurious kinematic modes in the hybrid finite elements,
(3) the formulation of multilayer composite finite elements for three dimensional
stress analysis of composite laminates and (4) the application of these multilayer
composite finite clements for interlaminar stress analysis in several examples. The
present finite element model has clear advantage over displacement formulated fi-
nite element and computationally much more efficient than the conventional hybrid

clements.

Chapter 2 of this thesis discusses the continuity and discontinuity in laminated
structures of composite material. It introduces the global continuity variable and a
corresponding basic vector for finite element analysis. Thus the discontinuity of the
three transverse strains and three in-plane stresses are allowed to occur naturally
while the continuity of the three transverse stresses and three in-plane strains is

enforced a priori. Basic equations for elastic stress analysis are derived based on



the ba=ic vector instead of the usual three displacement variables. The weighted
residual method is applied on those basic equations and a variational [unetional is

derived.

In Chapter 3, the iso-function method is developed to set up the partial stress ficld
which is required to form the finite clement based on above variational functional.
This method gives an casy way to forim the stress field and the partial stress lield
and cnsures the stress fieid is free from zero-energy modes. Partial stress fields for
a three dimensional cight nodes clement, a three dimensional sixteen nodes element
and a three dimensional twenty nodes clement are proposed with the iso function
method. Numerical results prove that the finite elements with those three partial

stress field are {ree of zero-energy mode.

Chapter 4 formulates three dimensional composite elemen s with 8 nodes, 16 nodes
and 20 nodes based on the previously proposed variational funetional with incor
poration of the iso-function technique te determine the partial stress fields.  lor
verification, stresses in a beam under sinusoidally distributed transverse loading was
calculated with composite clerient. Results are compared with those from elastie

theory and from twenty-node displacement finite element.

In Chapter 5, to enforce the saticfaction of the continuity condition of three trans-
verse stresses and three in-plane strains at interlaminar surfaces and traction free
conditions at the upper and lower faces of a composite laminate, a super finite ele
ment consisting of mauvy layers is formulated. This element is named as multilayer
composite finite clement. The continuity of the three in-plane strains ¢, ¢,
is satisfied automatically because of the continuity of the in-plane displacements
through the interfaces of composite elements. The continuity of the three transverse
stresses 0, Oyz, 0z, across the laminate thickness is assured a priori by introdncing
a partial stress ficld parameter vector which is associated to the lower and upper
surfaces of a lemina in a laminate. A three dimensional four node multilayer com

posite finite element and a three dimensional cight node inmiltilayer composite finite



element are formulated based on the three dimensional eight-node composite finite

element and sixteen node composite element respectively.

Chapter 6 applies the multilayer composite element for the stress analysis of three
composite laminates. Stresses in a laminated beam under sinusoidally distributed
transverse loading was re-caleulated with multilayer composite element. Compared
with results using the composite element. the results from the multilayer composite
clement are almost the same inside the beam. but is traction free at boundary. Re-
sults are also compared with those based on elasticity theory. classical lamination
theory. and those by using hybrid finite element method. Numerical analysis shows
that the results based on classical lamination theory. which is independent of the
span-to-thickness ratio, can provide reasonable predictions only for the thin plate
(i.c. span-to-thickness ratio larger than 50). Excellent agreement with exact elastic-
ity solution is obtained for both the multilayer hybrid element of full stress model
and the multilayer romposite element of partial stress model. The second applica-
tion is the analysts of bending of a simply supportcd rectangular laminated plate.
Results also ate compared with Ixact elastic theory solution. classical lamination
theory solution, hybrid finite element solution and the high order shear deforma-
tion theory solution. High accuracy of the multilayer composite finite element is

observed.

The analysis of straight edge effect problem demonstrates that the stress distri-
butions predicted by the present multilayer composite finite element also satisfy

traction-free edge condition.

o



Chapter 2

Basic Equations and Variational

Functional

The continuity and discontinuity in composite laminates or so called conjunction
condition are discussed. The six globally continuous variables arve defined as basie
variables. In order to apply the Finite Element Method, the thice displacement,
components are taken instead of the three in-plane strains. A basic vector is com-
posed and equations of clastic analysis of composite laminates based on this basic
vector are given. A variational functional is introduced. By defining a displacement
and a partial stress field, the composite finite element equations are derived [rom
this variational functional. The six continuous conditions are satisfied across the

elemeni.
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Figure 2.1: Laminate struclure, coordinate system and stress convention.

2.1 Continuity and discontinuity in composite

laminate

In composite laminates there are discontinuities due to variation in material property
or the orientation of fibers. On the other hand, for perfectly bonded laminates, the

displacements arc continuous and so are the reaction forces at interlaminar surfaces.

In this thesis, the lamina plane is denoted by cartesian coordinates z, y, and in the

through-thickness direction by z as shown in fig.2.1.

Within cach lamina, all components of displacement, strain and stress are continu-

Ous,

At interlaminar surfaces in perfect bonding, the displacements are continuous. Their

in-plane derivatives, ¢, ¢, ¢y are therefore continuous. That is

(rl — CIH-I

' = ¢, (2.1)
1

€ry' = Coy'T



From equilibrium consideration, the transverse stresses are also conti ]
> . ans s¢ stresses are also continuous,

0y = 0yt (2.2)

O'.r:' = 0'1‘:.+]

where ¢ means the i-th interface between i-th and (i4+1)-th layer. However, because
of changes in material properties or fiber orientation, the corresponding in-plane
stresses may not be continuous across the interlaminar surfaces. For the same rea-

sons, the corresponding transverse strains c;, ¢z, (> may not be continuous,

This means the in-plane strains and transverse stresses are globally continnous across
the laminate, and the other components of strain and stress are locally continnous
within each lamina but may or may not be continuous across the interlaminar sur

faces. Thus all components of stress and strain can be grouped as
g I

€= {trr €y} (2.3)
€L = {Co, Gar o} (2.1)
o, = {02,0:,0.:}" (2.5)
o1, = {0200} (2.6)

where €,, o, denotes globally continuous strain and stress vectors, €4, @, are locally

continuous strain and stress vectors.
Witli above notation, the continuous condition can he expressed as

g

i, —_ 1411,
75'linterface = @' linterfaces

(2.7)

t], — 14-1],
€9 Imtcrface = €y |mtcrfucc'

11



2.2 Basic variables

As described in above section, a composite laminate exhibits discontinuities. From
consideration of equi! brium and compatibility, the three transverse stresses o, 0y,
0z and three in-plane strains ¢, ¢y, ¢;y must exhibit global continuity. As such
neither displacement formulation method nor stress formulation method can satisly

the six continuity conditions a priori.

It is obvious that if the six globally continuous variables are taken as basic variables,
the six continuous conditions at the interfaces will be satisfied easily. Let the six
globally continuous variables of strain and stress constitute a global field vector,
€ -
q= = {tz, Cy, Coys 02y Oyzs Oz } (2.8)
Oy
which is continuous across the interfaces of the laminate. Let the other six variables

constitute a local field vector,

o

pP= ’ = {o'xaa'yaa.ry,-cza_‘fyz’—(xz}T (29)
—E€],

which is only continuous within the lamina. The negativesign before €, is introduced

to ensure symmetry of the combined constitutive relation.

The global ficld vector q and the local field vector p are related by
p=Rq (2.10)

where R is called the combined constitutive matrix, written as

oL [ R, R; ] € (2.11)
a' .

—€L R: Ry g



From Hooke’s law, we have

o = Ce
€= So
where
C — stiffness matrix of material
S — compliance matrix of material

and

o], T
o= = {0'1-, Cys T1y Oz, Uy:’”r:}

. fg _ T
€ = —{Cr,(yvtrya(:»‘yu‘r:} .
€L

This relation of strain and stress can be rewritten as

a,,lz[cl C'z] €
o] tcl cl|e

and

Then we have

R; R, ] [ G —CC;'C; C.Cy'
[ R; Rq ]_[ c;'c! —c; ]
. R, R, S/ -S7'Ss;,
[ R, R, ] _[ _sTs;' s!s:is, -, ]

13
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Because S and C are symmetric matrices, it can be shown that,

. R, R; 7 R RT
Rlz[ ! 2]=[ ' i’r] (2.18)
R.’i R4 R2 R4
Since,
R’ =c! - C,C;''cl = C, - C,C5'Cl =Ry (2.19)
R! =c;'"cl = ¢;'c! =R, (2.20)
k! =C,c;' =C,C5' =R, (2.21)
R! = -c;'" = -C;' =R, (2.22)
we have
R=RT (2.23)

Thus it is proved that the combined constitutive matrix is a symmetric matrix just

as the stiffness matrix and the compliance matrix.

At the interlaminar surface, the global field vector q is the same for two adjoining
laminae, but the combined constitutive matrix R may be differert (caused by vari-
ation in material properties or fiber orientations). Generally, the local field vector
at the interface is

(1)
pmtcr]acc = R(t)qmterfacc'

(+41)

(2.24)
1
pmtcrfacc = R(H. )qmterface

where 7 refers to lamina 7. Discontinuity occurs naturally.

The continuous requirement of three in-plane strains ¢, ¢y, ¢,y is equivalent to the
requirement of continuity of the displacement u, v. Thus, for the convenience of
applying finite element method. the following six globally continuous variables are

taken as basic variables and they constitute a basic vector

T
r= [u v ow O, Oy an] (2.25)

4



2.3 Basic Equations and the Variational Func-

tional

With the definition of the above basic vector, a variational functional can be derived.
Different formulation methods are available for this particular variational lunetional.
It can be derived from the general Hellinger-Reissner Principle as Reissner suggested
in his work [53, 54] and later used by Pian and Li [61]. or from the Hu-Washizu
Principle as did by Moriya [31]. Huang also derived the functional by means of

Weighted Residual Method [56].

In this thesis, the Weighted Residual Method is used to form a variational functional
for interlaminar stress analysis of composite laminates as proposed by Huang [56].
Differences between this variational functional and others will be discussed in next

section.

2.3.1 Basic Equations

For applying weighted residual scheme, basic equations to be satisfied for inter-
laminar stress analysis of composite laminates will be derived first. These basie
equations include equilibrium equation, constitutive equation, strain-displacement,

cquation, compatibility equation and boundary condition.

Equilibrium Equation

In linear theory of elasticity, the equilibrium equations of a three dimensional elastic

solid are

do, oy, + do,,

F.=0
dr dy Jz +
do . ) o,
dory | o, Doy FE, =0 (2.26)

9z | Oy Jz

15



which can be written as

where A is a corresponding operator, F is prescribed body force.

Combined Constitutive Equation

Instead of the usual constitutive equatiens of

o = Ce

or

€ =So,

for laminates, we usce the combined constitutive equations:

P=Rq

Partial Strain-Displacement Equations

The partial strain-displacement relations are

Ou
=

dv
= o
Y ay

ov + Ju
Gy = o+ —
Y 0r  dy

or expressed in matrix form as

€, = B,u,

16
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(2.29)
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where

200
B,=1 0 0, (2.33)
woa 0
U
u= v . (2.:“)
w

in which u is displacement vector, u, v and w are components of displacement vector

in z, y and z directions respectively.

Compatibility Equations

Compatibility equations are

Jw
G=—
T 0z
dw Ov
yr = T rans 23!’
‘v dy + Jz (2.35)
dw N du
Crz = 75—~ Y
dr = 0z
which can be expressed as
€, = B.u (2.36)
where
[0 0 2
Bi=|o 2 2 (2.37)
) i
5 0
Boundary Conditions
The geometric boundary conditions are
u=u
V=0 (2.38)

17




In matrix forin, it is

where

gl

w=

£l
1

v

w

(2.39)

(2.40)

in which @ is prescribed boundary displacement vector, @, 7 and @ are components

of the prescribed boundary displacement vector in z, y and z directions respectively.

The force boundary conditions are

which can be written as

TNy + Trylly + 00,

Orylty + oynty + ayn; =

OrzNyp + Oty + 0N, =

Q¢
=t
]

g

where, & is the lincar stress tensor

O Ory Or:

Qc
i
Q
ix)
<
q
<@
Q
b

Oz Oyz O,

n.

=T,

=T, (2.41)

=T,
(2.42)
(2.43)
(2.44)

in which, n,, ny,n, are the direction cosines of the external normal to the boundary

surface at the point under consideration.

18



2.3.2 Variational Functional

By taking the six continuous variables as basic vanables, the preseribed geome
try boundary conditions(eq.2.38) arce satisfied in advance, so are the partial strain-
displacement relations(eq.2.31) and the combined constitutive equation(cq.2.30). To
vatisfly the rest of the basic equations (equilibrium equation, compatibility cquation
and forced boundary condition), we introduce these relations into the weighted resid-

ual integral, which is expressed as

1= 3 { [ [(A@)+F) wi + (61, B) wa) an,
+/ (5 - T) w;,d.s',} =0 (2.15)

where w, W, wj are vectors of arbitrary weight functions.

Without loss of generality, these arbitrary functions can be defined as,

w, = —éu (2.16)
wy = —bo, (2.17)
W3 = ou (2‘18)

-
I

do, Jdo,, do,, Y e
;{_/1:, [( Ox + dy + iz + I') bu

((?aty do, Jdoy,

I,]é
9r Tay "o T ’) v
do.., do,, Jo, ,

Oz dy dz + IZ) bw

Jdw 5 dw  oov 5
- z = o g, — z T 5 T O z
¢ 0z ‘v dy 0z Tu

- (c" — Ql—u- - QE) 60”] dv,

dr 0z
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+/ [(arnz + ozynty + 00, — T,) bu

130

+ (o‘rynx 4 oyny + oy.n, — T_,,) v

+ (annf + Oyity + 0.0, — Tz) 6w] ds]}

=10 (2.49)

Applying the technique of integrating by parts, we have the equation

do, do,, 0o,
15 (l -
/n, ((’)a' + dy + 0z ) Mt

0 d d
- /u, (ara—;&z + arygaéu + arz—,d—;(‘iu) dv,

+ / (ozns + Ozyny + 0..n;) duds, (2.50)
S0

Thus

0 J 0
I = Z {/u, [(af—,();&u + a,ya—y6u+au—a—;5u)

J

J d d
+ (a‘ymév + ayb—ljév + ay:—a—;év)

J 7] J
+ (anm&u + oy, 5;610 + 02556w)

=6 (Feu + Fyv + Iw) — b0, (cz - —)

Jw dv Jd du
_6ayz ((yz - —é—:l; - '_z) - 50’12 ((1‘2 — -é; — E):I ({U]

—/ 6 ('I'Iu + Tyv + 'I’Zw) dsJ} =0. (2.51)

This could be rearranged to be

I =) {/U ((o:6¢ + aybey + 0rybesy

) J
—€:00, — ¢, 00y. — (;;60;;)
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to 5@ f o Juw Lo dv A Juw * du
P9z T\ oy To:) T\ oy T ot
Jw ow oo dw u
6 z PN IO B !
oo 0z + oy (')1 + Jz )ern"(().r t ('):)]‘hj
—/ O (Fru+ Fyv + o) de,
U

_/ é ('I'J.u +T,o+ 'I':w) (1.\',} = {),

Jo

or

duw duw  do
I = Z{ p 5qdv +/ [ _—f—"(’!/: (7)‘_/+;)—”>
l') ~ K ~

J

+0o,. ((,))—ui—kzu)]dv —/ O (1w o+ Foa)dy,

_l ) (7}(1 + 'l'yv + 1'.w) ([_5-}} = 0.

Jo

In matrix form, it is

;{jié(‘)q Rq) dv, +/ 0',, B, u) dv,

— | §(F u)dv -—/ 6 (T u) ds } = () (:2.5:1)
[ 8(Fa)do,— [ o (T u) s,
or can be wrilten as
= 62[/ ( a'Rq+o,Bu-F u)(/u
—/ T U(/SJ] =0 (2.55)
80

It can be seen that Iis a complete variation. Thus we rewrite the above integral as

a variational functional as
fllc = 0

21




e = 22|

where,

q s global vector,

R is combined constitutive matrix,

-]

is a compatibility relation matrix.

=

is prescribed body force vector.

e

is prescribed boundary surface {orce vector.

2.4 Discussions on the Variational Functional
The variational functional developed in the last section can also be derived from the
Hellinger Reissner principle [61]. The procedure is briefly expressed as follows.

The original version of the Hellinger-Reissner Principle which involves all the dis-

placements and stresses is in the form

Bl = 0 (2.57)
1 .. "
e = ¥ [ |-507Se + o (B de, — 17 (2.58)

where o are the stresses, S is the compliance matrix. and the strains € are expressed

|8
§V]



in terms of displacements . by Bu, as

20 0
0 + 0
dy
Y D U
oo U
Bu = v I8
0 0 2
0 2 o |[U®
Jx Jy
] '
L 0 57 ]

W represents the work by applied loads.

(2.59)

Divide the stresses o and strains € into the global and local parts,

€ = {(r-‘w"v}T

€, = {(:a(yz,(xz}’r
o, = {Uzaay:-JJ:}T

o, = {(71.0’!,.0'“/}1'

The stress-strain relation becomes

€, [ S| Sz o,

€7, Sé Sy o,

By substituting Equation 2.60 into LEquation 2.58 but

(2.60)

(2.61)

eliminating the in-plane

stresses o, by using Equation 2.61. with the definition of Equation 2.17, we ob

tain the modified Hellinger-Reissner Principle as

1 . . 1, .
.z = Z/ [Eeng,eg + 0, Rae, + Ea,,’R,Iay + ag’s,,] dv, — W (2.62)
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or can be writien as

|
pp = Z/ [iq' Rq+ a'gTeL] dv, - W (2.63)

This variational principle was first suggested by Reissner [53, 54] and was derived

independently by Moriya [35] through the Ilu-Washizu principle.

Comparing Equation 2.56 and 2.63, we find that the two variational {unctionals are
the same. However the derivation procedures for equation 2.56 give a clear physical

meaning, while that of liquation 2.63 does not.

Compared with Huang’s procedure [56], the present dcrivation did not take the
continuity condition (cquation 2.7) as a basic equation. The continuity condition
must be enforeed later at interlaminar surfaces. This will be presented in more detail

in Chapter 5.



Chapter 3

The Iso-Function Method for
Assuming Partial Stress Field

To take the three transverse stresses as basic variables, a partial stress field has
to be assumed. Finite element formulations involving assumed stress field have
been cursed with spurious kinematic modes. These modes have plagued the hybrid
formulation method since the beginning. llere, a new method was developed to
form the partial stress field, which formulates the assumed stress field on the basis
of the previously assumed displacement field. With this method, the partial stress
fields for 3-D, 8-node, 16-node and 20-node isoparametric composite finite elements

are obtained.

25



3.1 The Stress Field and Spurious Zero Energy

Mode

In 1964, Pian[62] developed a technique of hybrid finite element in which the assumed

stress field consists of several stress terms multiplied by corresponding stress field

paramecters as

g = alﬁl -+ 02:62 +--+ Umﬂm = Pﬂ

Based on Hellinger-Reissner principle:
oMy =0,
1 - —
1, = /V (~307S0 +oTe — Flu)do - / T uds,
So

where B8 can be determined by the nodal displacement § as
B =H"'GS§,

in which

H - /v P7SPdv,

and
G= / PTBdv.
v

The element stiffness matrix is given by
Ky= GTH—IG,
and the clement governing equation is

Ky =f,

26
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where

f= /‘ N7Fdv + ' NTTds (3.9)

Se

in which, N is the matrix of saape function of the finite clement.

A few questions have arisen since the formulation of the hybrid finite element

method:

— how many stress ficld parameters should be assumed and

— what are the proper stress field terms.

An unproper stress field will vield spurious zero energy modes, which are not rigid
body motion and without any energy produced by boundary [orces. Thus spurious

displacements exist due to an improperly chosen stress field.

A few researchers have attempted to provide answers to the above questions. Fracijs
de Veubeke[63], Pian and Tong[58] gave a necessary, but not suflicient condition to

assure no zero-encrgy modes to occur:
m2n-—r (3.10)

where m is the total number of assumed stress field parameters, nis the total number
of generalized displacements, r is the number of rigid body degrees of freedom of the

element.

Ahmad and Irons[64] suggested usc of an cigenvalue technique to assess a hybrid

stress field and to determine the kinematic modes.

Spilker, Maskeri and Kanial65] stated that G controls the rank of the element stifl-
ness matrix. Recently Huang [56] showed that H also has effects on the rank of

stiffness matrix.
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Brezzi[66], Babuska, Oden and Lee[67, 68], presented necessary and sufficient condi-
tions for stability and convergence, which are named as the Ladyzhenskaya-Babuska-

Brezzi conditions.

Spilker(69] investigated the 3-1D hybrid elements and suggested using complete sets

ot cach order of stress field terms.

Atluri ete. [59, 60] using a syminetric group theory, gave all the possible strain and
stress field terms. By checking the integration of the products of the strain aud
stress terms in cach sub-group, they gave two choices for 2-1). 4-node elements(5/3),
cight choices for 3-1), 8-node elements(183), and 381 choices for 3-1), 20-node
clements(543). However numerical analysis has shown that most of these choices

badly result with spurious zero energy problems|[56).

In 1989, Huang [56] presented a modal analysis technique to form the stress field
for hybrid element and the partial stress ficld for composite element. In his method,
the stress field is assumed as

o=P3 (3.11)

where

o stress in the element
P = (01,00, 0] is assumed stress mode
m = n — ris the total number of stress field modes

In this modal analysis technique, the stress mode P is formed from the deformation

mode 8 of corresponding displacement formulated element by an iterative method.

The iterative equation is

o't = P'H” G, (3.12)

o
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where j = 1.2.---.m: m is total number of deformation modes of the clement,

1= 1,2,3.---.is the iteration number.

H = /‘ P'I.SP'(IF (3.13)
G :/ P'' Bdv (3.11)
v
Then
Pl+1 — [0.!‘+|‘0.'12+|.,_,.n:”“ (.H.”))

With above method, Huang[56] analysed and gave the partial stress fields for a |
node square plane element and an 8-node three dimensional brick element of isot ropic

material.

It is clear from equation(3.13) that H depends on the material properties. That
means the stress mode P derived by Huang's iterative method depends on the
material properties. This limits his modal analysis method to isotropie material, It
is not reasonable to use an element developed from an isot ropic material to formmlate

an clement for anisotropic materials.

For 8-node tliree dimensional brick element of isotropic material, the assumed partial

stress ficld given by Huang [56] is

a 1 00 & »p 0 0 &
o (SO0 1000 ¢ €0 (3.16)

it is obvious that this stress field does not include any arbitrary lincar or high order
terms in the transverse direction to make the continuity of transverse stresses across
the elements possible. Thus this stress field could not satisfy the requirement of

continuity of stress across clernents.
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Eigenvalue analysis of the finite clement stiffness matrix formulaced with the stress

field given in (3.16) also shows this stress field weakens vhe stiffness of the clements.

3.2 The Iso-Function Stress Field Formulation
Method

In this section, a new method called iso-function stress field formulation method is

presented. The assumed displacement field is expressed as
u=da (3.17)

where ® and a are defined as:

® = [h), ¢z, -, Pn] is a vector of displacement functions of an element. ® only
depends on the number of element degrees of freedom, and have no relation

with the clement gcometry and material properties.
a = [ay,ay, ++,a,]" is displacement field parameter.

n - total number degrees of freedom of the element.

Then, the nodal displacement of the element can be expressed as:

- @,
6= qu a=Aa (3.18)
o,
We have
a=A"'$ (3.19)
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and

u=0A"16 (3.20)

Compare this equation with equation (4.30), we have
N=0oA"!, (3.21)
where N is the shape function of the element.
Then the strain field could be expressed as:
e =Va (3.22)

where

¥ is the first derivative of ®
a9

P ——
d(z,y,z)

(3.23)

and the stress field derived from the assumed displacement field is
o =CVa (3.24)

Equation(3.24) can also be written as:

Z C,_,ll‘_ i = ZZ’l/)]kC,']ak (325)

1 k=1

g; =

n
]:

Then, in matrix form, the stress field in equation(3.24) can be written ag

o = Oy (3.26)

where, © is the stress function formulated from the assumed displacement field,

which is only determined by the degree of freedom of element. 4 is stress parameter,
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which is formed from the products of C,, and ax and depends on the boundary

conditions, shape of the element and element material properties.

Now, let’s assume that the originally assumed stress field takes the form as

o=Pp (3.27)

where, P is the assumed stress field function, which is only determined by the degrees
of freedom of the stress field. B is the assumed stress field parameler, which is
determined by the elemen® boundary conditions, element geometry, and element

material propertics.

The difference between the stress distributions given by equation(3.26) and (3.27)
is: in equation(3.26), the stress is obtained from the derivation of displacement

distribution, but in equation(3.27), the stress is basic variable.

If the assumed displacement field does exactly represent the real deformation of ¢he
clastic element, for example, in the case of n — 00, and the assumed stress field
does exactly represent the real stress distribution in the element, the stress field

given by cquation(3.26) and equation(3.27) should be same. That is

0y = PB (3.28)

which yields

P=0 (3.29)

For rcal problems, n is a finite number. The assumed displacement field is only an
approximation of the actual deformation state of the element. If the displacements
arc taken as basic variables, the stifflness matrix will be stiffened compared with
the actual stiffness of the clement. If the assumed stresses are taken as basic vari-

ables, the corresponding stiffness matrix will be weakened compared with the actual
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stiffness of the element.
With above, the following conclusions for formulating assumed stress field can be

arrived,

1) The number of assumed stress field parameters e should be:

m> n-—r (3.30)

and for composite element;:

m>n—r—s (3.31)

where s is the number of non-zero modes of the semi-displacement stiffness

matrix Ky (see equation 4.16).

2) The corresponding displacement field of the element should converge to the

real displacement field.

3) The assumed stress field function, O, should at least include some arbitrary
linear or high order terms in the z direction in order to make the continuity

of stress across the elements possible.

4) By taking
0="P, (3.32)

an iso-function stress field is formulated:

o=Pj (3.33)

The third condition makes the continuity of stress variables through the laminate

possible.
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Based on similarity in form of the stress expressions, the iso-function stress ficld
formnulalion method was presented. The forinulated stress field may not be better
than others, but the method proposes an casy way to form the partial stress stress

ficld which is zero-energy-mode free as will be shown in the following sections.

3.3 Examples of the iso-function method

3.3.1 The Partial Stress Field for 3-D, 8-node Finitc Ele-

ment

With the above method, an iso-function partial stress field can be formed for 3-D,

8-node composite element as follows:

lor a 3-D, 8-node isoparametric element (sce I'ig.3.1), the displacement field is

where
u(é,1.¢)
u=1{ o) (3.35)
w(é, n,¢)
N, 0 Ny 0 0 -+ Ng 0 O
N=[o N 0 0 N 0O - 0 Ng O (3.36)

0O 0 N 0 0 Np -+ 0 0 Ng

in which

M= SO+ 66+ +,0) (3.37)
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Figure 3.1: 3-1), 8-node isoparametric element

Thus we have

u = dg -~ a1€ + a2 + asC + a4€ny + as€C + agnC + az€nC
V= bo -+ b]f + I)QI] + ();;C -+ 1).|EI] + 1)55(: + ,)(;I[C 4 [)7£I[C
w = cg+ 1§+ can 4 e3¢ + iy + es€C+ conC + 7€y

or in matrix form
u = ¢a

in which
1 00 €0 0 -+ &y¢ 0 ()

b=1010 0€& 0 -~ 0 £y¢ 0
00100¢ - 0 0O &

I
a:{ do b() Co U l)] Cy o ag [)7 ('7}

The strains derived from the assumed displacement field are

du
g =g = a1 +ai+ asC + azng
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(3.39)

(3.40)



d
(T] = -,——Ii = b2 + b;]f + bGC + b?é(

dn
. ¢ + crg
CC_BC-CB csé +cem + crén
7] d
CUCZ_()_l,;J+a_Z:(02+b3)+(c4+b‘)€+ben+c64+b7€n+67€€
13} ad
cge = 0—2" + % = (&1 + a3) + (ca + ag)n + as + ¢csC + arén + cmC
¢ —Q’i+%—(b+ ) 4 asa€ + ban + (bs + as)¢ + bm( + ar§
577_86 o 1+ a2 4 al) 5 T ds 1 3

Then the stress ficld derived from the assumed displacement field is

o = Ce (3.41)
in which
T
ff={ Og, Oy O¢s Opey el 0577} (3.42)
) T
e={q a0 e ow0 g ) (3.43)

IFor on-axis orthotropic material

(Ch Cia Cia 0 0 0
0 0 0 DFYRE | 0
0 0 0 0 Cs5 0
[ 0 0 0 0 0 Ces |
Thus
UC = 0316'5 + 03261] + C336C (345)
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¢ = Cutyy

oe¢ = Cracgg

or in matrix form

where

,
¢ o ogc]

v = [Y1:72: Y3 1 T1o)

o, =0y

1 00 &6 00mn 00C¢CO0O0 &
0 100C¢E0O0n00C¢CO0 0 &
001 00¢600nHn 00C¢C O 0 & 0 ¢ 0 0

v, = Cyay + Caaby + Cases

72 = Cus(cz + bs)
vs = Caslar + a3)
Y4 = Ca2bs + Caacs
75 = Caalca + bs)
76 = Cssas

v7 = Caaq4 + Csacs
vg = Cuaabs

79 = Css(ca + ag)
Y10 = Ca2bs + Caras

Y11 = Cuacs

Y12 = CssCs
Y13 = Caacr
Y14 = Caabs
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(3.16)
(3.47)

(3.19)

0 ¢ 0 & O
0O 0 0 0 &

(3.50)
(3.51)
(3.52)
(3.53)

(3.54)



A
Y15 = Cssar

1
716 = Cmazr

A
Y17 = Csser
118 = Caabr

! J
Y19 = Caacr

By the iso-function method, the partial stress field is

o,

where the partial stress field function

P =0

1 00¢ 00

n

= 10100 &00

= P3

00 ¢ 00 &
70 0C¢CO0 0 & 0
00100¢600p 00C¢ 0 0 & 0 p¢ 0 0

(3.66
(3.67
(3.68
(3.69

S N e N e

(3.70

0 0 n¢ 0 &C O

0 0 0 &

(3.71)

Similarly, for ofl-axis orthotropic material with one of the symmetry planes coincid-

ing with the ¢- or z-coordinate axis, the material stiffncss matrix is

Crz

C

Csa
0
0

Cea

Cha

Cas

Css
0
0

Ce3
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0
0
0
Caa
Cs4
0

0
0
0
Cis
Css
0

Cie |
C26
CBG

0

0

Ces |

(3.72)



The transverse stresses are

oc = C315£ + Coatnp + Caae e + (';;;;(E,] (3.73)
Tp¢ = C‘”CUC + ('45(& (3.71)
og¢ = Coatye + Cssege (3.75)
Thus
=77 Tal (3.76)
in which

71 = Ca1ay + Cagby + Cazes + Cus(by + a2) {3.77)
Y2 = Cua(ca + bs) + Cus(cr + a3) (3.78)
v3 = Css(cr + az) + Csa(ea + by) (3.79)
Y4 = Ca2bg + Cyacs + Chgay (3.80)
Y5 = Caslca + bs) + Cisas (3.81)
Y6 = Csa(ca + bs) + Cssas (13.82)
Y7 = Caaq + Cascg + Cighy (3.83)
g = Caabs + Cas(ca + ap) (13.84)
Yo = Csabs + Css(ca + ag) (3 85)
Y10 = Cazbe + Caras + Ca(bs + ag) (33.86)
111 = Caacs + Cascs (3.87)
Y12 = Csacs + Csses (13.88)
s = Cuer + Csear (3.89)
Y1a = Caabr + Cisar (3.90)
Y15 = Csabr + Cssar (3.91)
Y16 = Canar + Casly (3.92)
Y17 = Caser (3.93)
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718 = Csser (3.94)

Y19 = Cazbr (3.95)
Yoo = Caatr (3.96)
Va1 = Csacr (3.97)

The corresponding partial stress field function, by the io-function method, is

1 00 & 00 nn00CO00O
P =[0100¢00w5n00CO0
00100¢O004 00

&n 0 0 n¢ 0O 0 & 0 0
0 & 0 0 ¢ 0 0 & 0 (3.98)
0 0 & 0 0 ¢ 0 0 &€

3.3.2 The Partial Stress Field for 3-D, 16-node Finite El-

ement

The displacement field of a 3-D,16-node isoparametric element (Fig.3.2) is

u=Né (3.99)
where
u(é,n,¢)
u= U(f,n,(:) (3100)
w(é,7,¢)
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n 1¢ 15
41D 3,1 6/ | U 7
11(0,1) T C
| J_’
¢12 O > ey n
(=1,0) 10(1,0) 9/1)-{——10"——-— )
9(0, —1) A T
I(—1,-1)  2(1,—1) 2 10 3
Figure 3.2: 3-D, 16-node isoparametric element
The shape functiou {or the clement is
N 0 N, 0 0 -+ Nyg 0 0
N=|0 N 0 0 N 0 -+ 0 Ng 0 (3.101)

0 0 N 0O 0 Ny oo 0 0 Ny
in which, for corner nodes
1 . .
Ne=g(I+ &)U +nm) (1 + O+ — 1) (3.102)

where t = 1,2,3, -+, 8, and for mid-side nodes

1 . . , .
No= (104 6O +um)(1+ G0 (1= €)1 =€)+ (1= n")1 = ui)]  (3.103)
where ¢ = 9,10,11,---,16.

Equation(3.99) can be written as
u = da (3.104)

According to equations(3.99), (3.102), and (3.103), (3.104) will be

u = ag+ a1 +az + a3+ asdn + asfC + agnC + a7€iy(

+ag€? + agn® + a1o€®n + an €3¢ + a4 ayn*C
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+a € 0¢ + arsén’C

v o= by + b€+ ban + bsC + babn 4 bsEC + benC + bz€nC
b8 + bon® + bio€?n + b11€7C + bia€n’® + bian*¢
+b14E9C + bisén*C

w = g+ &+ e+ esC + el + es€C+ cenC + eréng
+es€? 4 con® + 108 + en €2+ cabn® + can’C
+enéng + asén’C

Thus we have

1 00 €00 -~ &% 0 0

d=10100¢€0 -~ 0 &P 0 (3.107
00100¢€¢ -+ 0 0 &%
and
T
a:{ gy [)0 Cog U b] (& A / Y b15 6‘15} (3106)

The strains derived from the assumed displacement field are

(¢ = %g— = ay+ aqn + asC + arpQ + 2ag€ + 2a10€n + 2a1,£¢
taan?® + 2a14€0C + arsn*¢
() = :—j—g = by + byl 4 bsC + b6C + 29y + byo€® + 2126 n
+2b13nC + 014€%¢ + 2b15E ¢
= %% = 3+ esé 4 con 4 b+ en€ 4 aan® + ey + asén’
G = g—l”]‘ + %i—y = (c2 4+ by) -+ (¢4 + bs)E + (2¢9 + bg)n + csC

+(2¢12 + b7)En + c76C + 2¢135€ + 2¢15E0€
+(c10 - bn)f2 + bm']2 + bl4§2ll + c,«:fzc + b15§I)2
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__(')w+__'u_( + )_*_(‘) + )C+( + ) + ¥
= (c a: ac I : Ug)r s
)&. )C VOl 3 R s )q Cy 6l S
+(2('10 + (I,-)fl} + 2('||£C + ('-;I]C + 2('1 ;fl}(

‘i’"nf2 + (12 + ‘113)'12 + a 152'1 + "1{-5'}2 + "l-'»’l.:c

dv  du .
% + an = (b1 4+ a2) + (2bs + a)E+ (by + 2a0)y + (bs 4 )¢

+2(bio + a12)En + 2(biy + a7)EC F (br + 2a03)nC + 2y 4 ars)En

+a10€® 4 bian® + are¥y + bisn*¢

Then the stress ficld derived from the assumed displacement field is

o=Ce (3.107)

For on-axis orthotropic material, we have

oc = ("n(f + Cpey + ('-H‘C

g, =(v,|4( -

0g 3G
7e¢ = Csateg

or in matrix form

where

in which

o, = Oy (3.108)

%
Ty =13 %y (3.109)

7¢C
Y =0T ar s Yol (3.110)
71 = Csray + Caby + Cygey (3.111)
Y2 = Caalea + by) (3.112)
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73 = Css(c1 + aa)

Y4 = 2C31ag + Cazbs + Cascs
¥s5 = Caa{ca + bs)

v = Css(2¢5 + a5)

Y7 = Cs1a4 + 2C52b9 + Cascg
¥s = Cia(2¢q + bs)

Yy = Css(ca + ag)

Y10 = CUs2bs + Cayas

Ty = Cuacs

712 = Cssc

Y13 = 2Ca1a10 + 2Ca2b12 + Cazer
Y14 = Caa(2¢12 + by)

Y15 = Css(2¢10 + az)

Y16 = 2Ca1a11 + Cazby

Tir = Cucr

18 = 2Cs5¢1

Y1 = Caraz + 2Caby3

Y20 = 2C4c13

Y21 = Csser

Y22 = 2C31a14 + 2Ca2bs5

Va3 = 2Cu4c15

Y214 = 2Cs5¢14

Y25 = Cazbio + Cszen

Y26 = Caa(cro + bi1)

Y27 = Cssan

Y28 = Cnayz 4+ Cazerz
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Ya9 = Caabya (3.139)

Y30 = Css(cr2 + ary) (3.140)
Va1 = Cazc (3.141)
Va2 = Caabry (3.142)
Va3 = Cssa14 (3.143)
Va1 = Cazbia (3.114)
Yas = Cuaciy (3.115)
Y36 = Ca3cis (3.116)
Va7 = Caabis (3.147)
Y38 = Cssts (3.118)
Y39 = Cmays (3.119)
Y10 = Cssc15 (3.150)

and

1 006009 00C00¢& 0 0 & 0 0
©=10100£600700¢0 0 & 0 0 & 0
001 00€¢E00Rm00C¢C 0 0 & 0 0 &

7 0 0 é¢ 0 0 £ 0 0 52 0 0 €& 0 0
007 0 0 &¢ 0 0 & 0 0 72 0 0 €% 0
0 0 n¢ 0 0 é¢ 0 0 € 0 0 22 0 0 €4y

¢ 0 &P 0 0 % 0
0 ¢ 0 &2 0 0 o0 (3.151)
0 0 0 0 &% 0 n%
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By the iso-function method, the partial stress field is
o, =P3.

Thus the partial stress field function is

] 0O0E00nH 00C 00 & 0 0 & 0 0O
P=0=[0100¢€6004500¢0 0 ¢(& 0 0 & 0
00 100¢€¢00p500C¢ 0 0 & 0 0 &

¢ 0 0 &¢ 0 0 €0 0 52 0 0 €y 0 0
0 ¢ 0 0 &¢ 0 0 ¢ 0 072 0 0 € 0
0 0 9 0 0 €¢ 0 0 €2 0 0 52 0 0 &%

¢ 0 & 0 0 7} 0
0 €%¢ 0 ¢&* 0 0 0 (3.152)
0 0 0 0 &% 0 g%

Similarly, for off-axis orthotropic material with one of the symmetry planes coincide

with the (- or z-coordinate axis, the transverse stresses are

G’C = C3] (6 -+ 03261’ -+ ng(C -+ C36€£7’ (3153)
0’7’C = C44Cn<- + C45(€C (3154)
O'é‘(‘ - (;‘54(,,,( + C55(€C (3155)
Thus
v = [717 DI IR LT v742] (3156)
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in which

Y1 = Ca1ay + Caaby + Cases + Cag(by + a2) (3.157)
Y3 = Caslcz + b3) + Cys(c1 + a3) (3.158)
¥y = Csa(cz + bs) + Css(cr + az) (3.159)
74 = 2C31ay + Cazbs + Caacs + Cag(2by + ay) (3.160)
vs = Caa(cq + bs) + Cys(2¢s + as) (3.161)
Y6 = Csa(ca + bs) + Css(2cs + as) (3.162)
vy = Caraq + 2C33by + Ciazes + Ciss(by + 2ayg) (3.163)
vg = Caa(2¢y + bg) + Cas(ca + ag) (3.164)
Yo = Cs4(2¢y + bs) + Crs(cq + as) (3.165)
Y10 = Ca2bs + Caras + Cas(bs + ag) (3.166)
Y11 = Cuaco + Cascs (3.167)
Y12 = Csace + Csscs (3.168)
Y13 = 2Cs1a10 + 2Cs2012 + Caser + 2C36(b1o + ay) (3.169)
Y14 = Caa(2¢12 + b7) + Cys(2¢10 + ay) (3.170)
15 = Csal2erz + br) + Csa(2e10 + az) (3.171)
Y16 = 2Ca1a11 + Cazbr + 2C36(b1y + a7) (3.172)
Y17 = Caacr + 2Csscn (3.173)
Y1s = Csacr + 2Css¢1 (3.174)
Y19 = Cniar + 20501y + Cig(br + 2a14) (3.175)
Va0 = 2Cs4c13 + Cascr (3.176)
Y21 = 2Cs4c13 + Csser (3.177)
Yoz = 2C31a14 + 2Cs2b15 + 2Cs6(b1a + ass) (3.178)
Y23 = 2Cuc1s + 2045014 (3.179)
Y2a4 = 205415 + 2C55¢14 (3.180)
Y45 = Cazbyo + Cazcyy + Cseero (3.181)
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Vo5 = Caalcio + bin) + Cusan
Va7 = Csa(cro + b11) + Cssay;
Va8 = Caiayz + Caacys + Caghyz
Va9 = Caabrz + Cas(ciz + ay3)
Y39 = Csabiz + Css(ci2 + ¢13)
Va1 = Caserq + Caetra

V32 = Casbrg + Casany

Y33 = Csabra + Csyitag

Y4 = Cs2abi

Va5 = Caacia

Va5 = Csac14

Va1 = Cascis

Yag = Caabys + Casars

Yag = Csabrs + Cssars

Y40 = C31015 + Casbys

Ya1 = Cusess

Y42 = Csscrs

and, by the iso-function method, the partial stress field function is

1
P=1o¢
0
n¢ 0
0 #¢
0 0

00 & 0095 00C¢CO00O0Z¢ O O & 0 O
100 €¢E00=#n 00C¢CO0 0 & 0 0 € 0
0100¢E00n9n00¢C¢ 0 0 & 0 0 &

0 &m¢ 0 0 € 0 0 32 0 0 €y 0 0
0 0 ¢p¢ 0 0 € 0 0 72 0 0 £ 0
¢ 0 0 &¢C 0 0 € 0 0 72 0 0 €%
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E€C 0 0 & 0 0 ¢ 0 0
0 €% 0 0 &% 0 0 »%¢ 0 (3.199)
0 0 €% 0 0 &% 0 0 g%

3.3.3 The Partial Stress Field for 3-D, 20-node Finite El-

ement
The displacement field of a 3-D, 20-node isoparametric clement (Fig.3.3) is
u=N6é (33.200)
where
u(€,n,¢)
u= v(é"',’,c) (3.2(”)
w(é,n, ()
Ny 0 N 0 0 -+ Ny 0 0
N=10 N 0 0 N; 0 -+ 0 Ny 0 (3.202)
0 0 N 0 0 Ny - 0 0 Ny
in which, for corner nodes
1
N, = g(l + & + a.0) (1 + COEE+ nn + (0 —2) (3.203)

for mid-side nodes

N, = %(1 + £+ n)(1+ O — €)1 — €2)
+(1=n*)(1 = n?)+ (1= )1 = ¢F)) (3.204)
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Figure 3.3: 3-D, 20-node isoparametric clement

Equation(3.200) can be written as

u=oa (3.205)

According to equations(3.200) and (3.203), (3.205) will be

[

w

= ap+ 1€ + agn + asl + asén + asfC + agn + az€n¢ + agt?

+(19772 + (l|0C2 + (lnfz’l + (11252@' t 01357]2 + d14f72C + a15€C2

any? + a7EnC + asfn* ¢ + arenC?

= by + b€ + bay + bsC + baln + bs&C + benC + brén( + b€’

+bgn? + biaC? + 0112y + b1262C + biabn?® + bran®¢ + bysEC?
+b16nC? + b17E20C + bigln®C + bryénc?

= co+ 1€ + can + 3 + cabn + csEC + csnC + cr€nC + g€’

+eon® + c10C? + ené®n + c126%¢ + cizén® + c1an*C + asé¢?

+enC? 4 e1rEn¢ + astn®c + Cle'lCZ

50



Thus we have

100 &£00 -+ & 0 0

©=10100 €0 -« 0 £&¢* 0 (3.206)
00100¢-- 0 0 &yt
and
T
a——:{ao bo co ay by ey o0 ay 1o (‘“,} (3.207)

The strains derived from the assumed displacernent field are

d . .
¢ = 5;— = a1 + aqn + asC + azn¢ + 2ag€ + 2a11 €y + 2a42€¢

+(1137)2 + (115(2 + 2(11761]4 + “18’]2C + (l]g)l](:2
dv

M = g = by + b4€ + beC + brEC + 2bon + b11€? + 2by5€y
+201anC + bisC* + bi7€7C + 2b18EnC + by
« = 86_10 = c3 + ¢s€ + conp + 1€ + 2¢00¢ + 1262 + e’
+2¢15€C + 2160 + c17€%) + 1s€n® + 21060
e = %% N gic = (e2+ ba) + (ca + bs)E + (20 + bs)n + (s + 2io)

+(2c13 + br)én + (7 4 2b15)EC + 2(crq + big)nC + 2(ers + bio)éi
+(cin 4 b12)E* + bran® + c16* + hir€%n + 1782 + bk + c19€ ¢
e = Gp+ g =+ a0) + (et as)€ + en @+ (e 4 2o
+(2e11 + az)én + 2(e12 + a1s)EC + (7 + 2a16)9¢ + 2(c: 7 + aro)€nC
+a€® + (a3 + ara)n® + a5 + a17€%n + s n? 4 c1an*C + cronc?
¢y = ;T P (b1 + ag) + (268 + aa)€ + (ba + 2a9)n + (bs + )¢
+2(bn1 + a13)€n + 2(brz + a7)éC + (br + 2a14)0¢ + 2(by7 + a1s)EnC

+011§? + 6137]2 + (bys + Uui)C2 + ﬂnszl + bw’lzc + a19€C* + "1'-"1(2

51



Then the stress field derived from the assumed displacement field is

o =Ce (3.208)

For on-axis orthotropic material, we have

o = C:ntf + Cazep + Csscc
Ty¢ = Cmcng

7g¢ = Coveg

or in matrix form

o, =0y (3.209)
where
¢
o, = Tn¢ (3.210)
%€C
Y =177 Vadl (3.211)
in which
7, = Cs1ay + Czby + Caacs (3.212)
Y2 = Cu(ez + by) (3.213)
73 = Css(c1 + a3) (3.214)
Ya = 2C31a8 + C32b4 + Caacs (3.215)
vs = Caalcs + bs) (3.216)
Y6 = Cs5(2cs + as) (3.217)
Y7 = Ca1aq + 2Cs3b9 + Czcs (3.218)
Vs = Caa(2co + bg) (3.219)
¥s = Css(cq + as) (3.220)
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Y10 = Ca2bs + Cayas + 2Ca3¢10

Y11 = Caa(cs + 2b1o)

Y12 = Csslcs + 2aq0)

T3 = 2C31ay; + 2C3b13 + Cazer
Y14 = Caa(2c13 + b7)

Y15 = Css(2cn1 + ar)

Y16 = 2Ca1a12 + Caghs + 2Ca3¢15
Y7 = Caalcr + 2by5)

Yis = 2Css5(cia + ays)

Y19 = Ca1a7 + 2C32014 4+ 2C33046
Yoo = 2Ca4(cra + bis)

Y1 = Cssler + 2a16)

Yoz = 2031017 + 2C'39D1s + 2C 33019

Va3 = 2Ca4(c1s + bro)
Va4 = 2Cs5(c17 + ayo)
Va5 = Cazbiy + Czeny
Ya6 = Caalcnr + bi2)
Yo7 = Cssary

Y28 = Caraya + Cyacyy
V29 = Caabia

Y30 = Css(cis + a1a)
Y1 = Carars + Cazhig
Va2 = Caaci

Va3 = Cssais

Y34 = Cascrr

e
Va5 = Claabyz

(3.231)
(3.235)
(3.236)
(3.237)
(3.238)
(3.2:39)
(3.240)
(3.211)
(3.242)
(3.243)
(3.244)
(3.245)
(3.246)




Vg = (/'55(‘17
Yar = Cazby7
Yag = Caacr7
Va9 = C33618
Y40 = Caabis
T = Cssa1
Yaz = Cz1a18
Y43 = CssC18
Yag = Cazbig
Y45 = Caacio
Y6 = Caayg

Yar = Crscio

By the iso-function method. the partial stress field is

o,=Pp

Thus the partial stress field function

P=0O=

g 0 0 £&n¢
0 »¢ 0 O
0 0 5 0

1 00 €&600mn00CO0DO0 &

01 00€600n00¢C¢0O0 0
06100¢003700°C 0

0

8
0

0 & 0 0 72 0 0
0 0 52 0

0 0 ¢°

¢ 0 0 &

94

0 0 n°

(3.247
(3.248
(3.249
3.250
3.251

A S N N

3.252
3.253)

—~ e e e e

3.254)
(3.255)
(3.256)
(3.257)
(3.258)

0 0 €& 0 0©
En 0 0 & 0
0 & 0 0 &

¢ 0 0 & 0
0 ¢ 0 0 ¢y
0 0 ¢ 0 0



0 &¢ 0 &* 0 0 7°¢ 0 £ 0 9t 0
0 0 &¢C 0 &2 0 0 0 0 £&* 0 0 (3.259)
Ep 0 0 0 0 & 0 ¢ 0 0 0 g

Similarly, for off-axis orthotropic material with one of the symmetry planes coincide

with the (- or z-coordinate axis, the transverse stresses are

o¢ = Cglc€ + C320p + C;mcc + (/‘3(;(6,, (3.260)
On¢ = CM(')C + C“""iC (3.261)
Tec = C54cn< + C55(£C (3.262)
Thus

Y=Y 75V (3.263)

in which
¥, = Ca1a1 + Cazby + Cyyes + Cug(by + ag) (13.2064)
¥y = Caa(cz + bs) + Cas(cr + a3) (3.265)
v3 = Csa(ca + b3) + Css(cr + a3) (3.266)
¥4 = 2C51ag + Cazby + Cyscs + Ca6(20s + ay) (3.267)
s = Caalea + bs) + Cus(2cs + as) (3.268)
ve = Csa(cq + bs) + Css(2¢s + a5) (3.269)
v, = Caraq + 2C52b9 + Cazcs + Cas(bs + 2ay) (3.270)
s = Caa(2¢9 + bg) + Cas(cs + ag) (3.271)
¥ = Csa(2co + bs) + Css(cq + as) (3.272)
Y10 = Ca2be + Ca1as + 2C3¢10 + Cas(bs + ag) (3.273)
7). = Caslcs + 2b10) + Cs(es + 2a10) (3.274)
Y12 = Csalce + 2by0) + Csscs + 2a19) (3.275)
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Y13 = 2C31a1 + 2C32013 + Cascr + 2C36(byy + a1a)
114 = Caa(2¢13 + b7) + Cu5(2¢1y + az)

Y15 = Csa(2¢13 + bz) + Cs5(2¢1y + a7)

Y16 = 2031012 + Cazbr + 2C53¢15 + 2C36(b12 + a7)
7 = Caa(er + 2b15) + 2Cas(crz + air)

Y18 = Csalcz + 2bis) + 2Css(c12 + ai5)

Y19 = Caraz + 2C32b14 + 2C33¢16 + Cas(br + 2a44)
Yoo = 2Caa(c14 + big) + Cys(cr + 2a16)

Ya1 = 2Csa(c14 + big) + Css(cr + 2a16)

Yoz = 2C31ay7 + 2C32b15 + 2C33¢19 + 2C36(by7 + a18)
Yo = 2Ca4(C18 + big) + 2Css(ci7 + ago)

Y4 = 2Cs4(c18 + big) + 2Cs5(cy7 + ayg)

Ya5 = Cazbiy + Cazerz + Casan

Y26 = Caa(en + biz) + Casara

Yor = Csalcnn + biz) + Cssarg

Yos = Cara13 + Cazciq + Cashia

Yoo = Caabrs + Cas(crz + @)

Va0 = Csabia + Css(cra + a1q)

Va1 = Ca1a1s + Csabie + Cag(brs + a16)

Y32 = Cuacrs + Casars

Ya3 = Cracis + Cssa15

Va1 = Cascrr + Casarr

Yas = Caabrz + Cisa17

Yas = Csabrz + Cssay7

Yar = Cnbiz

Yag = Cucr7
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Y30 = Csacrr (3.302)

Yao = Cascis (3.303)
Yar = Caabrs + Cusary (3.304)
Yaz = Csabig + Cssays (3.305)
Va3 = Carcig + Casbig (3.300)
Yas = Cascrs (3.307)
Yas = Csscis (3.308)
Yas = Csabig + Casayy (13.5309)
Yar = Caucry (3.310)
Yas = Csacro (3.311)
Y49 = Ca1t19 + Cisgbyy (3.312)
V50 = Cascry (3.313)
Y51 = Cssero (3.314)

and, by the iso-function method;the partial stress field function is

1'00&E00np 00CO00EY O 0 & 0 0
P=10100¢60049900¢0 0 & 0 0 & 0
001 0O0E&E0O0VULO0O0C¢C O 0O & 0 0 &

nC 0 0 &n¢ 0 0 £ 0 0 42 0 0 ¢ 0 0 £y 0 0
009 0 0 ¢é¢ 0 0 € 0 0 » 0 0 ¢ 0 0 €y o
0 0 n¢ 0 0 é¢ 0 0 € 0 0 52 0 0 ¢t 0o 0o -

¢ 0 0 &> 0 0 7% 0 0 £ 0 0 gct 0 0
0 €%¢ 0 0 &% 0 0 4% 0 0 &&* 0 0 gt o0

0 0 €¢C 0 0 & 0 0 ¢ 0 0 & 0 0 g
(3.315)




3.4 Eigenvalue Analysis of Elements Formulated

with Different Stress Fields

'This section presents the cigenvalue studies of the finite elements formulated with
the partial stress field derived by the iso-function method in previous sections. Iist,
the physical meanings of the cigenvalue and eigenvector in the analysis of the finite

clement stiffness K¢ are explained.

3.4.1 Eigenvalues and Eigenvectors of the Finite Element

The standard cigenproblem of the finite clement stiffness matrix K¢ is
K=\ (3.316)

where K° is the n by n stiffness matrix of a single finite clement. If K° is positive
semidefinite or positive definite, there are n eigenvalues A, (i = 1,2,3,---,n) and
n corresponding cigenvectors ¢, (i = 1,2,3,- -, n) satisfying Equation 3.316. The
i-th eigenpair is denoted as (A,, ¢,), where the eigenvalues are ordered according to
their magnitudes:

0<S A <Xh< - Shash, (3.317)

If K¢ is positive definite, A, > 0, i = 1,2, n, and if K® is positive semidefinite,
A 20,i=1,2,---,n. where the number of zero eigenvalues is usually equal to the

number of rigid body modes.

A poor stress field may lead to a stiffness matrix K which has more zero eigenvalues

than the number of possible rigid body modes. Comparing Equation 3.316 with the



following element equilibrium equation

K6 =f° (3.318)

in which 8° is the element nodal displacement vector and f* is the clement nodal load
vector, we ~an conclude that for a non rigid body mode, a zero cigenvalue means
a deformation mode without loading or a mode of the body deformation without
any energy produced by boundary forces. This kind of rigid body mode is usually
narned as the zero-energy mode or spurious mode. The spurious deformation exists

due to the unproperly formulated element stiflness matrix.

By comparing with Equation 3.318, Equation 3.316 also shows that the physical
meaning of an eigenpair (\,,#,) is that the ¢, is the deformation mode and the ),

is the corresponding measure of the stiflness of this deformation mode.

Another frequently considered cigenproblem is the one to be solved in vibration

analysis. In that case, we consider the generalized cigenproblem

K¢ = AM"¢ (3.319)

where K° and M are, respectively, the stiffness matrix and mass matrix of the finite
element. The eigenvalues A, and eigenvectors ¢, are the free vibration frequencies
(rad/sec) squared, w?, and corresponding vibration mode shape vectors, respectively.
The mass matrix M® may be banded or may be diagonal with m,, > 0; i.c., some
diagonal elements may possibly be zcro. A banded mass matrix, obtained in a
consistent mass analysis, is always positive definite, whereas a lumped mass matrix
is positive definite only if all diagonal elements are larger than zero. In general, a

diagonal mass matrix is positive sermnidefinite.

We note that the generalized cigenproblem in Equation 3.319 will reduce to the

standard eigenproblem in Equation 3.316 if M° is an identity matrix. In other
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words, the cigenvalues and cigenvectors obtained from solving Equation 3.316 can
also he thought of as frequencies squared and vibration mode shapes of the element
when unit mass is specified at cach degree of freedom. Corresponding to the pos-
sible cigenvalues in the solution of Equation 3.316, the generalized eigenproblem in
Fquation 3.319 has eigenvalues A, > 0,1 = 1,2,3,---,n, where the number of zero

cigenvalues should be again equal to the number of rigid body modes in the element.

From above studics, we have following conclusions about the eigenvalues of the

stiffness matrix of a finite element:

(1) In static studies, A, is the element stiffness of the i-th deformation mode and

é. is the corresponding deformation mode shape of the element.

(2) In vibration studies, A, is the square of the i-th natural vibration frequency
of the element with 2 unit mass matrix and ¢, is the corresponding natural

vibration mode shape.

(3) The number of zero cigenvalues should be equal to the number of rigid body

modes in the element.

(4) For an un-properly formulated finite element, if the number of zero eigenvalues
exceeds the number of rigid body m:udes in the element, the spurious zero-
energy modes are involved in the element. The exceeded number equals to the
number of spurious modes involved. Generally, this element is not suitable to

be applied in static analysis or vibration analysis of any systems.

3.4.2 Eigenvalue Analysis

The following tables show the results of eigenvalue analysis of elements formulated
with the stress fields given by the iso-function method in previous sections and those

given by other methods.
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In tables 3.1 to 3.4,

LM
Ad
where
Ai — the i-th eigenvalue of hybrid(sce equation 3.7) or composite fornmmlated

finite element with assumed stress field.

Ag — the i-th eigenvalue of the corresponding displacement formulated finite ¢l-

ement.

Ai = 0 indicates a zero-encrgy (deformation, or natural vibration shape) mode
brought by an assumed stress field. A, = 1 means the i-th mode of the element
formulated with an assumed stress ficld has the same static and dynamic perfor-

mance as that of the corresponding displacement formulated clement.,

In the tables, ficld F-1 to F-8 are the cight choices given by S.N. Atluri [59, 60] by
using group theory, field F-9 is given by T.1L.H. Pian [70], feld F-10 is the partial
stress field giver. by Huang [56]. Field 11 is the partial stress field for 3-1, 8-node
composite element formulated by the present iso-function method, and field 12 is

for 3-D, 20-node one.

The results of eigenvalue analysis show the composite finite clements formulated
using the iso-function stress field have the same cigenvalue property as the corre-
sponding displacement elements. This is generaliy true because the iso-function
method just equates the assumed stress function to the stress function derived from
the displacement field. This property also makes the composite elements o have

less obstacle to be applied in dynamic analysis of composite laminates.
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Table 3.1: Kigenvalue analysis results of stress fields

Field| -1 [ P2 [ F3 | F4 | F5 | F6 | F-7 | F-8 | F-9
A1 | 0.000 [ 0.000 | 0.000 [ 0.000 | 0.157 | 0.000 | 0.000 | 0.000 | 0.867
X2 | 0.504 |0.053 | 0.000 | 0.000 | 0.566 | 0.000 | 0.504 | 0.000 | 0.867
Ay 10.473 | 0.086 | 0.029 | 0.000 | 0.309 | 0.029 [ 0.473 | 0.086 | 0.473
A ] 0.473 ]0.198 | 0.198 | 0.029 | 0.473 | 0.198 [ 0.473 | 0.309 | 0.546
As | 0.473 [0.309 | 0.275 [ 0.086 | 0.473 | 0.309 | 0.473 [ 0.473 | 0.546
As | 0.667 [0.189 | 0332 " 0.121 [ 0.289 | 0.667 | 0.333 | 0.289 | 0.667
Az | 0.667 [0.333 | 0.333 [ 0.189 | 0.333 | 0.667 | 0.333 | 0.289 | 0.667
As | 1.000 [0.333 ] 0.322 | 0.333 | 0.333 | 1.000 | 0.333 [ 0.333 | 0.667
Ao | 0.929 [0.250 | 0.929 | 0.500 | 0.250 | 0.929 | 0.929 | 0.500 | 0.929
Ao |0.619]0.167 | 0.667 | 0.428 | 0.167 | 0.619 | 0.667 | 0.428 | 0.619
A |0.667 [0.167 [ 0.702 | 0.502 | 0.167 | 0.667 [ 0.702 | 0.502 | 0.619
Az | 0.702 [ 0.667 | 0.786 | 0.667 | 0.667 | 0.702 | 0.786 | 0.667 | 0.667
Ay | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Are | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
As | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
M | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Az | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
As | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

3.5 Conclusion

The iso-function method is developed in this Chapter. The method gives an casy way
to determine that how many stress field parameters should be assumed and what arc
the proper stress field terms, which will ensure that no spurious zero energy modes

exist in the finite element.

The method takes the same number of stress ficld parameters as those from a dis-
placement field. However, the values of the stress field parameters form a displace-
ment field are decided by the displacement solution through the displacement-strain

relation and constitutive relation, while the values of the stress field parameters
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Table 3.2: Eigenvalue analysis of partial stress fields, 8-node element

Field | F-10 | I*-11
A | 1.000 | 1.000
A2 | 1.000 | 1.000
As | 0.636 | 1.000
Aa [ 0.701 | 1.000
Xs | 0.701 | 1.000
Xé | 0.667 | 1.000
Az | 0.806 | 1.000
Xs | 0.806 | 1.000
do | 0.929 | 1.000
Ao | 0.667 | 1.000
A | 0.930 | 1.000
M2 ] 0.930 | 1.000
Az | 1.000 | 1.000

Ais | 1.000 | 1.000

Table 3.3: Results of cigenvalue analysis, 16-node element

Field | F-12
M 1.000
A2 1.000

Az | 1.000

Table 3.4: Results of cigenvalue analysis of 20-node clement,

Field | F-12
by 1.000
Ay 1.000
Asq | 1.000
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assumed with the iso-function method are determined by solving a finite element

cquation directly.

The iso-function method takes the same stress field terms as those from a displace-
ment field.  This ensures that all the stress modes exist in a good displacement
clement will be available in a corresponding Lybrid or composite element and en-

sures no spurious deformation modes exist in the element.

‘T'he number of stress field parameters and correspor | 1g stress field terms, suggested
by the iso-function method, are sufficient for expelling the spurious modes, but
may not necessary. The hybrid or composite element composed of the stress field
assumed by the iso-function method has the same stiffness and natural vibration
propertics as the corresponding displacement element. Reducing the stress ficld
formed with the iso-function method will certainly weaken the finite element, but
not necessary introduce in the spurious modes. Thus, the stress field provided by
the iso-function method could be treated as a base field for further reduction to
weaken the element and save computational efforts, or for further enlargement to

include special functions for some particular applications.
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Chapter 4

The Composite Finite Elements

With the iso-function method for establishing partial stress field in Chapter 3 and
the variational functional described in chapter 2, three dimensional composite [i-
nite elements can be formulated based on existing displacement. formulated finite
clement. This chapter gives a genceral procedure for the formulation ol composite
finite elements. Specifically, a 3-1), 8-node, a 3-D, 16 1ode and a 3-1), 20-node are

formulated.



4.1 Composive Finite Element Method

4.1.1 Element Governing Equation

The composite finite element governing equation is derived from the variational

finctional presented in chapter 2 equation 2.56, which is repecaved here

ollc = 0

1 4 P =T —]
Il = E[/U <§q1Rq+angcu—F7u)dv1—/s Trudsj] (4.1)

J

in which,

e
q = = {C-‘L" (-w(zy, Uzaayzaazz} (43)
o, ,
o, =P8 (4.1)
r Ri Ry
R = ] (4.5)
B R3 R4

r C, - C,C5'cl c,C5! ] (16)

L C;'C] -C;!

_[ s -S;'S; ] (1.7)
L _g’'s:! sTs-'s, - S, '

(4.8)

o Fv =
Flo o Pl

o]
A
I
I
v © o©

[=2}
(=]



where

u is the displacement vector at a point in an finite element,
6 nodal displacement vector
N matrix of element shape function
q global vector,
o, transverse stress,
B partial stress ficld parameter vector,
R combined constitution matrix,
B, matrix of compatibility relations,
F is prescribed body force,

T is prescribed boundary surfa-c force.

The basic variables are

oy, = Gy: (4‘))
Oz J
Cr

=14 ¢ (=B,>0 (4.10)
Cry

where B, is the transformaticn matrix of partial strain-displacement. refation,
B, = B,N (1.11)

in which, B, has been defined (2.33).
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The three in-plane stresses and three transverse strains are the derivatives of above

basic variables and can be obtained as

into the

“C =

Oz
0, =4 oy = Rs¢, + Ryo,
Ozy
C:
—€,=—14 ¢,. ¢ = Rag; + Ryoy
CIZ

variational functional (4.1), we have

/,
=T =T
— (/ F ud'vJ-{-/ T uds])]
v, S0

i

J

x|

R, R € —
1 [ e o, ] v V40, "B dy,
2 R3 R.4 o,

(4.12)

(4.13)

(4.14)

> [/ = (egTRleg + 0, Rse, + €, Ry0, + 0,"Ryo, + QO'QTECU) dv,
J

)

- (/U F—Tudv] +/30_T—Tuds])]

1 | R . —
E [/ (:)-Eglleg + §0g1R40’g+0'yrR3€g 4 UgTBcu) dU]
J . l‘] r4

- (/ F udv, +/ —T_Tudsj)]

> [ / (é&TBgTS,"Bgé ~28"P,"C;'P,B

J &
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+87P,” (B.N — SIS7'B,) §) dv,

- ( / §TNTFdv, + / 6"'NTTd.-,)]
vy 80

Define
K, = / B,”S;'B,dv,
]
H - /Pg7'c;'Pg(/(»J
]
G = / P,” (B. - SIS;'B,) d,
Yy
f = / NTFdo + / NTTds,
where

in which, B, has been defined in (2.37).

The variational functional will take the follvwing form:

Mo =% [%6TK,,6 - %,B"'Hﬁ +87GS - 6"'f]

J

From the partial stationary condition of 1l

ol
8

the partial stress field parameter can be expressed as

B=H"'Gé
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(4.16)
(1.17)
(1.18)

(-1.19)

(1.20)

(4.21)

(1.22)

(4.23)



Substitute equation(4.23) into equation(4.21), the functional takes the form:

e =3 [%5”’1(,,6 + %5"'(:"‘11-'(;6 - &'t (4.24)

J

Using another partial stationary condition of 1l¢

dllc

We have the composite finite clement equation
Keb=1 (1.26)

where

Ke=K,+G'H'G (4.27)

Equation(4.26) is called the composite finite clement cquation. The stiffness ma-
trix of composite element is made of two parts, one serni-displacement formulated
stiffuess matrix Ky and one semi-hybrid formulated stiffness matrix GFTH™'G. The
term composite here means a combination of displacements and hybrid formulation,
and also means the element is designed for the stress analysis of composite laminates.

The eleanent itself has no relations to composite materials.

4.1.2 Formulation Procedure of Composite Finite Element

Since the three displacements and ilie three transverse stresses are taken as the basic
variables, a displacement field and a partial stress field for the element have to be set
up in order to form the composite finite element equations with above variational

principle.



Partial Stress Field

There are several different assumptions of the stress field. Here, the partial stress

field in a composite finite clement is assumed as

o, =P,3 (1.28)

where

P, = [P,,Py.---,P,,] is a3 xn matrix of assumed stress field funclions.

B¢ =[B1, B2+, B is the assumed sirvess field paramcter veclor in a composite

finite element.

m is the degree of freedom of the assumed stress field.

c

o,° is the global stress vector in the element

o, =4 o (41.29)

Displacement Field

The displacement ficld in an element is assumed as

u‘ = N§* (4.30)

wherce
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N is a matrix of shape functions.

6

N =[N NI, -, NI (4.32)

in which
0 at any node except i;

N, = (4.33)

1 at the i-th node

and
1 00
I=101 0 (4.34)
0 01
is the element nodal displacement vector

T
68-: u; u; --- un] (‘135)

in which n is the total number of nodes of the finite element and u, =
{u, v}, 0 = 1,2, nis the displacement vector of the i-th node of the

clement

With the displacement field, the globally continuous in-plane strains at any point

in the element will be

e,* = B,6° (4.36)

where

e
1l
L:wl
Z,

-1
o



L0 0

=10 ﬁ 0N (-1.37)
& om0

Element Stiffness Matrix

The element stiffness matrix of the composite finite element is

KCE — ch + G",IIHP_lGr (";s)
in which
K, = /‘ B,"S;'B,dv,, (1.139)
H = /‘ P,’C;'P,dv,, (4.10)
G = /‘ P,” (B, - SJS;'B,) dv,, (1.11)
ff = NTF dv + NTT ds,, (1.12)
‘,f “ S”l
where
B, =B/N
0 0 i
0 £ Z|N (1.43)
5w 05
Stress and Strain
After solving the governing equation, the displacement u”; stress o' and strain ¢
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arc

given hy following relations, in terms of nodal displacement 6°.

u” = Né°

(
o, :ﬁ
\
€° =4
\
{
0'1,‘ = 4

0, ¢ =P8 =PH'GS

0-.172

Cz

= B,5

Gy

oy = R]ng +R20'g('

Ory

= [s7'B, — S7'S]P,H' G| &

_Elae — -

= [-

or

= Rafge + R40’gc

s!s;'B, - C;'P,H"1G| 6°

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)



S;'B, - S;'S;P,H'G"
o° _ ! L — [ $

5 (-1.50)
o PH G

Cyz B,
C. sis;'B, + C;'P,H'G"

4.2 3-D Composite Finite Elements

With the previously developed formulation procedures of composite finite element
and the iso-function technique for assuming a partial stress field, three dimensional
composite elements are formulated based on the existing various linite elements
with a displacement shape functions. In this section, we applied the composite
finite element method in three iso-parametric finite clements, and formulated a 3-1),
8-node composite clement, a 3-1, 16-node composite element and a 3-1, 20-node

composite element.
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4.2.1 3-D, 8-node Composite Element

Figure 4.1 shows a three dimensional eight-node isoparametric finite element. The

3] 8
!
7 6/ 7
! ¢
e
i n
IS g I
3 L7
7/
2 3

(a) in global coordinates

(b) in local coordinates

Figure 4.1: 3-D, 8-node composite element.

displacement field in the natural coordinates is defined as

u® = Né° (1.52)
in which
u(€, 1, ¢)
u’ = “(f*’]’() (‘1.53)
w(&,n,C)
Ny 0 0 N 0 0 -+ Ng 0 O
N = 0 N 0 0 Ny O 0 Ng O (454)
0 0 »~n 0 0 Ny oo 0 0 Ny
where N is the shape function of the element, in which
.| -
M=+ 6O+ (1 +0.0) (4.55)
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fori=1,2,3,---.8.

The isoparametric finite element has the coordinate relation between the natural

(local) and global coordinates, according to the shape fanction ol the element, as

Xy
R
X2
y = N ¢ > ( 1.h6)
| Xs )

in which x, is clement nodal global coordinates,

£
X, = 7 (1.57)
where 1 = 1,2,--+,8, or can be wrilten as
81
! =Z§(1+EJ€) (l-{-u,l}) (l+(,C)J', (-1.08)
=1
5.1
v =225 (1+68) (1) (1+¢0) 0, (+.59)
]::]
8 1 ,
z= ‘,g(l+EJ£) (|+I}jlj) (I'I“C,C) z, (1.60)
J:
The partial stress field is
o, =P, (1.61)

in which, the stress field function matrix P, has alrcady been formed by iso funetion

method in chapter 3. For on-axis orthotropic material, equation (3.71) repeated here

~J
-1



100 &0 0 »p00¢C00E& 0 0 g O & 0
P,=10100¢00500¢0 0 & 0 0 0 0 &
001 00 & 00 g 00C¢C 0 0 & 0 ¢ 0 0

and the corresponding clement partial stress field parameter veetor 3 is

r
B = [ Fy PUR PRI It ] {1.63)
For off-axis orthotropic material, ecquation (3.98) repeated here is

1 00 600 5 00C¢CO00
P = 1(0100¢004500CO0
001 00€¢00 5 00C

&y 0 0 5o O 0O €& 0 0
0 & 0O 0 ¢ 0 0 €& 0 (1.61)
0 0 & 0 0 »¢ 0 0 &

and the corresponding clement partial stress field parameter vector 8 is

"
B =P P o, P (41.65)

4.2.2 3-D, 16-node Composite Element

Figure 4.2 shows a three dimensional sixteen-node isoparameter finite element.
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' ¢
I
| J >
S R N
L/ 12
9, 11
2 10 3
(a) in global coordinates (b) in local coordinates

Figure 4.2: 3-1), 16-node composite clement

The displacement field of the element in the natural coordinates is defined as

u® = Né§°
where
u(€,1,¢)
u® =1 v(&n.()
w(é,n,()
Ny 0 0 N, 0 0 --- Ng 0 0

N=}0 N 0 0 N, 0 -+ 0 Ng 0
0O 0 N 0 0 Ny --- 0 0 N

where N s the shape function of the element, in which, for corner nodes

IM:éU+QOU+mMU+COM£+mU—U

where i =1,2,3,--..8

(4.66)

(1.67)

(4.68)

(4.69)



for mid-sidc nodes

1 . M 3
No= 21+ 600 +n)(1 +¢,0) (L= =€)+ (L= - D] (1.70)
where 7 == 9,10, 11,---,16.

The coordinate relation between the natural (local) and global coordinates of an

isoparametric finite element is defined according to the shape function of the element
as
Xy

y = NJ x,2 b (1.71)

t:

\ X160 )

in which x, is clement nodal giobal coordinates,

where 1 = 1,2,.-+, 16, or can be writien as

(1+ &8+ 01+ (0 (6L + ny — 1),

Mc. uoo[\lﬂ:

.&lv—a

(L4 €O+ (1 +¢O [0 =1 =€) + (1 =) (1 = )] 1,
(1.73)

y (1+ €60 +n.0)(1 + COEE+ 0y — 1y,

-

Il
IIMm
OO | P

—
[+2]

©0
| o—

(14 661+ )1+ ) [ = €)1 =€)+ (1= )1 = 42| w,
(1.74)
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00| +—=
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I o .
+3 4 EOU +u1+CO (=€) =€)+ (1~ )0 - 1) 5
t=1}
(1.75)
The partial stress field is
o, =P8 (4.76)

in which, the stress field function matrix P, has alrcady been formed by iso-function
method in chapter 3. For on-axis orthotropic material. equation (3.152) repeated

here is

1 00 £ 0025y 00¢0O0¢& 0 0 & 0 O
P,=10100¢€¢002500¢C0 0 ¢ n 0 0 & 0
001 00&0 0y 00¢ 0 0 & 0 0 &

¢ 0 0 &¢ 0 0 € 0 0 2 0 0 €y 0 o0
0 ¢ 0 0 &¢ 0 0 0 0 2 0 0 €5 0
0 0 ¢ 0 0 €¢ 0 0 & 0 0 42 0 0 &%

¢ 0 & 0 0 g 0
0 ¢ 0 &* 0 0 0 (4.77)
0 0 0 0 &2 0 p%¢

and the corresponding partial stress ficld parameter vector 8° is

B = [ B B2y oy Pao ]T (1.78)




For off-axis orthotropic material. equation (3.199) repeated heve is

1000050000 0 0 & 00
P=(0100&c0024500¢00 &y 00 &0
00t oo &ao0 g 00c¢ 0 0 &0 0 &

nCou 0 & 0 0 &0 0 4t 0 0 &y 00
0 ¢ 0 0 &¢ 0 0 & 0 0 0 0 &y oo
0 0 ¢ 0 0 &C 0 0 & 0 0 2 0 0 &Yy

¢ 0 0 &2 0 0 pc 00
0 €%¢C 0 0 &% 0 0 ¢ 0 (1.79)
0 0 &¢ 0 0 & 0 0 )k

and the corresponding partial stress field parameter vector 8° is

‘= [ /jls d},- tt . 1"41 (l:\'())

4.2.3 3-D, 20-node Composite Element

Figure 4.3 shows a three dimensional twenty-node isoparametric finite element.
The displacement ficld of the clement in the natural coordinates is defined as
u” = Né§" (1.81)
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Figure 1.3: 3-D. 20-node composite element

m which

Ny 0 0 Ny 00 -0 Ny 0 0 -l
N = 0 AV| 0 0 1\'2 0o - 0 4\720 0
0O 0 N 0 0 Ny - 0 0 Ny

where N ois the shape function of the element, in which, for corner nodes

] ] . ..
Ne= (LU + 91+ GOEE+nn + (¢ = 2)

[y

where i =1,2,3,..- .8

for mid-side nodes

N = {0HEO0 F a0 [0 - €
+H(1 =) = p?) + (1= )1~ ¢P)

where 1 = 9,10, 11.---.20.

(4.85)



The coordinate refation between the natural (local) and global coordinates of an

1soparametric finite clement is defined according to the shape function of the element

as

| X0

in which x, is element nodal global coordinates,

where 1 = 1,2,

.20, or can be written as

8
Z, (L+EE+ L+ COEE+ 4+ ¢,C- 2)r,
=1

Z~(1 + 6O+ +¢O [(1 =€) - &)

+H(1 = p?) (L= nf) + (1= ¢ = D)),

—

8
y =2 (L EON + )1+ COEE+ 0+ (¢~ 2)y,

20
#3100+l 40O [0 - €01 - €)
H(1= )1 = p?) + (1= )1 = )] w,

(1 + E:E)(l + ,]1”)(1 + CIC)(£z£ + ’]z" + th - 2)‘71

(1 )(1~'/,)+(1——C)(l~—c‘.)]z,
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The partial stress field is

o, =P,f (4.91)

in whichi, the stress field function matrix Pgyhas alrcady been formed by iso-function
method in chapter 3. Lor on-axis orthotropic material, equation (3.259) repeated

here is

1 0000255 00CO0O0CE O 0 & 0 O
| P,=|0100¢0024500C¢C0 0 €& 0 0 & 0
001 00€¢E0O0Hyy 00C 0 0 € 0 0 &

pC 0 0 &p¢ 0 0 2 0 0 92 0 0 20 0 & 0
0 ¢ 0 0 &¢ 0 0 £ 0 0 720 0 ¢2 0 0 &
0 0 ¢ 0 0 &C 0 0 € 0 0 420 0 ¢C2 0 0

0 &¢ 0 & 0 0 7%¢ 0 &* 0 ¢ 0
0 0 €% 0 &* 0 0 0 0 &* o o |, (4.92)
4 0 0 0 0 & 0 ¢ 0 0 0 pc?
and the corresponding partial stress field parameter vector 8¢ is
T

B =| B o 1 B (193

For off-axis orthotropic material, equation (3.315) repeated here is

1 00 & 00 »n00C¢CO0O0E& 0O 0 & 00
P=10100€6009700¢C¢0 0 & 0 0 & 0
001 00¢EO0O0H0O0C¢C 0 0 £ 0 0 &
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n¢ 0 0 &¢ 0 0 & 0 0 0 0 G0 0 & o0 0
0 ¢ 0 0 &¢ 0 0 &€ 0 0 72 0 0 ¢ 0 0 &y o
0 0 ¢ 0 0 &¢C 0 0 & 0 0 v 0 0 ¢ 0o 0 &Yy

¢ 0 0 & 0 0 p} 0 0 & 0 0 gyt o0 0
0 €¢C 0 0 &% 0 0 % 0 0 & 0 0 gt o0

0 0 &¢ 0 0 &% 0 0 »%¢ 0 0 €& 0 0yt
(1.91)

and the corresponding partial stress field parameter vector 8° is

r
B = [ Pie Bay oy P ] (-1.95)

4.3 A Numerical Example

In order to check the efficiency and accuracy of the composite element, interlam-
inar ctresses in a laminate subjected to bending loads are calculated with three

dimensional, eight-node composite element developed in section 4.2.1.

The laminaled strip considered herein is a three-layer symmetric cross-ply laimi-
nate(0/90/0) made of unidirectional fibrous composite material (see Fig.4.4). The
laminate is infinitely long in the y direction and simply supported on the ends # = ()

and z = [ with length to thickness ratio of S = I/h = 4.
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q(r) = ~qosin(wz/l)

Ll A

> T

Figure 4.4: The three-layer cross-ply laminate(0/90/0) beam with sinusoidally dis-
tributed transverse loading

The material stilluess properties are

k= 111G Pa

Er =342GPa

CLr = 342G Pa (1.96)
Grr = 1.37G Pa

vrr =vLr = 0.25

where, I is the direction parallel to the fibers and T' the transverse direction. The
Poisson ratio vy, measuring strain in the transverse direction under uniaxial normal

stress in the L direction. A sinusoidally distributed transverse loading

s e
g(r) = —Qosm(—l—)

is applied on the top surface of the laminate as shown in fig.4.4.

The boundary conditions are

oz, h/2) = q(x)
o.(r,—h/[2) = op.(x,h[2) =0

0:(0,z) =o.(l,2) =0
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w(0,z) =w(l.z2)=0

Because of symmetry, only half the length { of the laminate is modeled. There are
ten uniform elements in the hall length, one element in the width and two, four, cight
elements per layer in three cases making a total of 60, 120, 210 three dimensional

cight node composite clements respectively for three different finite element meshes.

The numerical results will be presented in terms of normalized values which are

defined as

o, = o.(L/2,2)/q
g, = 0,(L/2,z)/q
;= 0::(0,2)/q0
i = Eru0,z2)/(hqo) (1.97)
W00E k3 wiL]2, )] (qol")

&
it

Y
!

= z/h

The distribution of transverse stress o, is shown in fig.4.5, which compares the
results calculated with 60, 120, 240 8-node composite elements and the results of
Pagano’s elasticily solution [8]. The comparison of siresses o, o, and displavement

it are shown in fig.4.6, fig.4.7 and fig.4.8 respectively.

The distribution of stress of the sume problem was solved by using conventional 3-1)
displacement formulated element{71], which modecled the laminate with 432 three
dimensional, 20-node displacement elements. The results of the shear stress o,
from the 240, 8-node composite clements and 432 20-node displacement. elements

are shown in fig.4.9, compared with the results of Pagano’s clasticity solution.

Fig.4.5 indicates that the shear stress o, of composite element solution quickly
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Iigure 4.6: stress o.(r =1/2), results of 8-node composite element
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Figure 1.9: Shear stress o, (0 = 0), compared with 20-node displacement element

1esulls

converges to the exact elasticity solution as the number of elements increases. The

good convergence property of the present CFE is also shown in Fig. 4.10, which

shows the 1esults of convergnece study of stress o, and o,.. In the figure, o is the

in-plane normal stress at o = [/2, = = h /2 [rom CFE, o2 is the corresponding stress

tom Pagano’s exact solution. o, . is the transverse shear stress at + = 0. = = h/6(at
)

inferlace) form CFE, while o2, is the corresponding stress from Pagano’s exect

solution.

I'ig. 1.9 shows the composite clement solution is in better agreement with the exact
Pagano’s elasticity solution, although the composite element solution uses only 240,
S-node while the displacement formulated element solution uses 432, 20-node ele-
ments. The CPU time consumed for 210, 8-uode composite elements is 2 minutes
x4

H8.91 seconds and that for 132, 20-node displacemeat elements is 18 minutes 2.87

seconds. The programs were run on a VAX 6510 computer.
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4.4 Conclusions
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'This chapter provides the Composite Finite Element. technigne and gives formnla

tions of three different 3-D composite finite elements with this new technigne, The

numerical example shown in this chapter clearly exhibits that the composite linite ¢l

ement has the advantages of excellent accuracy and high eflicienicy over conventional

displacement formulated element.

The displacement element can not satisfy the continuity condition at the interlace

between layers. The composite clement does not ensure that this condition is sat

isfied automatically as mentioned in Chapter 2, except when only one composite

clement is used to map the whole thickness of a composite laminate,

The numerical results of this chapter also raise the necessity to satisly the traction
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free condition at lower and upper surfaces of a composite laminate. Figure 4.5 shows
that the shear stress o,, at lower o1 upper surfaces can Fe as high as 50% of the
maximunn valie when only six elements are nsed to map through the thickness of

the laminate.

However, since the composite finite element model takes the three transverse stresses
as Lasic variables, it is possible to enforce the satisfaction of the continuous condition
and traction free condition in advance as will be shown in the next chapter. This is

impossible for conventional displacement. elemeunt method.
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Chapter 5

The Multilayer Composite
Element for Stress Analysis of

Laminates

5.1 Introduction

The numerical analysis of composite finite clement developed in the last chapter
shows clearly the importance to have a finite element that is traction free at the
upper and lower surfaces of composite laminates. It is also obvious that the con-
tinuous and natural discontinuous conditions are not satisfied automatically across
the interlaminar surfaces. In order to overcome these difficulties, multilayer element,
technique has been used. Mau et al.[24] developed a laminated thick plate element
using hybrid mcthod. However, transverse normal stress was not, included in the
stress ficld. Constant transverse displacement through the laminate thickness was

also assumed. These assumptions did not agree well with the actual mechanism
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of deformation of laminated plates in bending. Spilker[57] developed an cight-node
isoparametric multilayer plate clement for the analysis of thin to thick compos-
e plates. This model has the gencrality in describing laminate response but the
assumption of constant transverse displacement through laminate thickness still re-
mains. Later, multilayer hybrid elements[31] with linear transverse displacement,
have been developed for analysis of composite laminates. Usually, those hybrid el-
ements have an assumed stress field of six stress components (full stress field), and
has very large assumed stress ficld. For example, the two types of stress ficld used by
C.'T.Sun[30] and W.J.Liou[31] in a three dimensional, eight-node multilayer element
have 48 stress parameters and 55 siress paramelers respectively. For the specific
structure of composite laminates, Reddy and Robbins have also proposed a finite
clement, technique, which they named as the layerwise theory of Reddy [20, 21, 22].

However, their works are mainly on the displacement formulated finite clements.

This chapter develops the multilayer compousite finite elements based on the com-
posite finite elements provided carlier for interlaminar stress analysis of composite
laminates. Since the matrix size of the partial stress field is only a quarter of the
[ull stress field, the mapping matrix for forming the element ’stiffness’ matrix in
composite element is smaller than that for those elements with a full stress field.
Therefore, less computing time is required for formulating the ’stiffness’ matrix of

partial stress field clements.

In composite finite element, the partial stress field formed with the iso-function
method is assumed inside the houndary of an clement. 1t is difficult to apply
boundary couditions : ich as the traction free condition on upper/lower surfaces
of a laminate and the traction continuity condition at interlaminar surfaces to the
stress field directly. For this reason, a new surface stress field parameter vector
is introduced. With the surface stress ficld parameter vector, the interfacc trac-
tion continuous condition is satisfied automatically and the traction free condition

is satisfied simply by assigning zero to a number of stress field parameters at the
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Figure 5.1: Geotnetry and layer numbering conventions for the isoparametric nml
tilayer composite clement

upper/lower surfaces of a laminate.

Figure 5.1 shows the geometry structure of a multilayer composite finite element
which is composed of n layer clements. The multilayer composite element itsell can
be seen as a laminate with n perfectly bonded layers (layer clements). In the figure,
z corresponds to the transverse direction of the laminate. The layers are nmnbered
from bottom to top of the laminate. Thickness and orientation of the laminate can

be varied {rom lamina to lamina.

The traction free conditions at the top and bottom surface of a laminate are

Oy — oy =10 2=h/2 (5])

1 I 1 .
Oyz = O0p; — 0, = 0,:--—/./2 (r)u)

The continuous condition of stresses at the inter-laminar surfaces is
1 — 141 o ¢ .. _ .
o, |C=1 =0, |C=—1 i=1,2,--.n—1 (5.3)
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5.2 Multilayer Composite Finite Element
Method

5.2.1 The Partial Stress Field Surface Parameter

Now. let ns introduce a new vector of paramneters a.

\
(n"

1
! Q,

=4 3 (5.1)

!
\ ”r J
in which, r is the number of parameters in the vector a.

Assume that a' is attached to the lower surface of the i-th layer element and a't!

to the upper surface. Thus, for a lamina 1, the surface parameter vector is

1 al -
¢ = (5.5)
aH—l
For the ¢ — th lamina. define
B' = Uy’ (5.0)

where U is a transformation matrix of stress field parameter. Now, the partial stress
ficld is

o, =P, Uyp' (5.7)

The physical meaning of surface parameter o' is that, at the lower surface of the
i-th layer, we have

o;'lc- =P Ul = A(l.n)a’ (5.8)
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and. at the upper sutface of the i — th layver, we have

o, |co =P, U] = A& p)a! (5.9)

Thus, at the interface between the -th and the (¢ 4 1)-th lamina. we have

‘711'|C=1 =A(f.a't!t = 0"1'“,(:—1‘ (n.10)

This is to say the traction continuous condition is satisticd automatically.

The transformation matrix can be derived divectly by satisfying equation 5.10. "The
detailed derivation procedure will be shown later in sections of the 1 node multilayer

composite element and 8-node multilayer composite element.

Now, with the introduction of the partial stress field parameter vector af, the partial
stress {ield 1n the -th layer is

o, =P, (D.11)

where

5.2.2 The Variational Functional and Element Equation of
Composite Element Method

‘The variational functional given in equation 2.56 repeated here is

oll, = 0
Z [/ (quRq + UyT—B,u — FTU)IIUJ — / '_fl‘udsj] . {5

~ 1/, 2 Js,n

e
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For multilayer element ) the functional can be written as

n 1 . T
e =53 [/ (39 R + o, B’ —Fw')do) — |, T7u’ds3}. (5.14)

1
2 =1 )

In this equation, j is used to count the number of multilayer elements, <. hile 7 is
used to count the number of layers in the j-th multilayer element. ( 7 is used to
count aceross the thickness ot the laminate, 7 is used to count with the plane of the
laminate). o) is the volurne of the ¢-th layer in the j-th multilayer clement. s} is the

surface of the 1-th layer in the j-th multilayer clement.

Because

1 1 1
La'R'a _l T T R, R; €
24 9 =56, oy . ; .
R; R, o,

1 : . . €,

— T 1 1 i 17 1 T H g

) [ €' Ry +0," Ry, " R;+0," R} ] .

Oy

(" Rie,' + 0, Rie,' + €, Ryo,* +0, Ryay’), (5.15)

|-

and because

= Ry, (5.16)

we have

. 1, = .
;a'Rq' = 5 (" Rie,' + 20, Rie, + 0, Rio,') . (5.17)

Substitute 5.17 into equation 5.14, we have

n 1 . 1 )
He= 323 [/‘ (359'7R'1€g' + 5"le 10 + o'g‘TRgegj
T =1 Ly \<&

+o, B — F'u') dv! - / T‘Tu'ds;]. (5.18)



Because

€,' = B,§'. (5.19)
o, =P,p', (5.20)
u' = N§'. (5.21)

cquation 5.18 becomes

+cp’ (R’B +BL.) 5 — 6"'N"'F'] Ao

-/ 6’7'N”'T'ds;}. (5.22)
Define
K, = / B,"R}B,dv' (5.23)
u;
H' = - [ P,R,P,dv, (5.21)
1 ~,T L] i S It
G = /N'Py (B. +R}B, ) dv! (5.25)
£ = / NTF'dv' + / NTT'ds!, (5.26)

and substitute them into equation(5.22), the functional takes the form:

1 P
HC—ZZB 6K 6 - —tp "Hp' +¢' 08 - 8'f (5.27)

7 =1

Assembling all the layers in the j-th multilayer element from 1 to n, and defining

100




the assembling rule as

(g )
d2
§={ & (5.28)
{(n+1)
| d™

where d¥, is the nodal displacement vector at the k-th faces

r A’
k
uy

k
v,

k
Wwy

k
112

d (5.29)

I

m

w"J

in which, k = 1,2,---,n+1, m is the number of nodes at surface k that is contained

in a multilayer composite element, and

( a] 3
2
p={a ¢ (5.30)
an-H

According to these two assembling rules (eq.5.29, 5.30), at the multilayer element

level, we have

} =

&
I
A

K (5.31)

i~
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H=Y H (5.332)
=1

G=) G (5.33)
1=1
f=r (5.31)
l"_‘l
Then, ¢q.5.27 can be writien as
~ /1 o o .
He=)" (éérKdé—%¢’H¢+¢’G6—6'ﬂ ‘5.:35)
/

J

To satisfy the traction free conditions, some components of the hottom surface
parameler vector ! and top surface parameter vector a"t! should be zero. Elimi
nating these zero surface parameter form ¢, we have a redu-ed @, and 11, G from

H, G i cspectively. Thus eq.5.35 becomes

o= (éa"‘xda - %@TH;O +@"G6 - 6"‘f) (5.36)

J

Equation 5.36 gives a variational functional based on the laminate level. The fune
tional takes three transverse stresses and three i-plane strains as basie variables
and impose that the stresses in the laminate automatically satisfy comtinnous con
ditions between lamina and traction free conditions at top and botiom surfaces of

the laminatec.

Using one of the partial stationary conditions of 1l

dll¢

— = D
o ) (5.37)

we have
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Substitute it into c¢.h.36. the functional become
{

o 1l Tl —
e =) (%a'Kda + 545' GH'Gs- 6Tf) (5.39)

2

Applying anciher partial stationary condition of ¢
Oll¢
— =10 5.40
dé ( )
We have the multilayer composite finite clement cquation

K.6=f (5.41)

whete

K,=K,+G H G (5.42)

is the ‘stiffness’ matrix of a multilayer composite element which exactly is a kind of

super-clement laminated by n layer elements.

5.2.3 Formulation Procedures

'T'he procedure required to formulate a multilayer composite finite element includes

the following steps

1. Set up coordinate relations and displacement field,

r

Set up partial stress field and transform the ficld parameter 8' into surface

paraimeter vector @' to enforce the cont inuity condition
3. Form element matrices at layer level

4. Formi element matrices at laminate level
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5. adjust clement mat rices to satisly traction free condition

Coordinate Relations and Displacement Field

Consider the multilayer element composed of n perfectly honded laminae as shown in
fig 5.1. To achieve general applicability, an isoparaimetric finite element formulation
is adopted, which interpolates the element coordinates and element displaceinents
through the natural coordinates. For a typical i-th lamina, assuming, the displace
ments u, v, and w to vary lincarly through thickness of cach lamina, the coordinate

rclation can be expressed as

m

L= ZNJ Y (H.13)

J:l

y=_ Ny, (5.41)
1=1
- L+ ¢

o= L8 U O (5.15)

where m is the number of nodes at a surface in a multilayer composite elemoent,

The displacement field can be assumed as

m ) 1 o l v

u' :z:le\f,q)[( 2(')11;4— ( 1“11;”} (H.46)
J:
m 1 — ¢ 14+ ¢

cFueal0 00
7=1 - “ ]
m |l - 1+ C

w' = Z:INJ(fa’}) [( y C)w; + ( ;(')u)’,“} (H.48)
]:

where [V, is shape function.

0 at any node except j;
NJ = (-r).’“))
1 atthe j-th node.
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Partial Stress Field and Transformation Matrix

For the o th lamina, the partial stress field given by the iso-function method is

o, =P,3 (5.50)

Transform the partial stiess parameter vector @' into the surface parameter vector

@' throngh a lincar transformation

A = Uyp' (3.51)

Thus the partial stress field of the /-th lamina in terms of partial stress field surface
parameter vector is

g, =P, (5.32)

whete

P,=P,U (5.53)

Element Matrices at Lamina Level

After setting up the displacement field and the partial stress field. the element

matiices at lamina level are calculated as

K, = /(IBQ"R;BQ(Il'; (551
H' = — [ B,RiP)d, (5.55)
G' = [P, (B.+RB,)d (5.36)
o= [ N'Fdg+ [ N, (5.57)

Element Matrices at Laminate Level

Assembling all these element matrices of the »-th lamina from 1 to n. and defining
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the assembling rule as

d!
d2
6= d'

d(u+l)

where d*, is the nodal displacement veetor at the A-th sutlace

il

dk

(5.58)

{H.5h

in which. & = 1.2.--- n 4+ 1. o is number of nodes at a smface in a multilaye

composiie element. and

an+|
7

According these two assembling 1ules (eq.5.59. 5.60). at the laminate level, we have

K=Y K/

1=1

o H

1=z
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G=)@ (5.63)

1=1
n

f=)Tr (5.61)

Stiffness Matrix

Before formulating the stiffness matrix of multilayer composite clement, some ad-

justment is needed to satisfying traction free conditions.
At upper surface of laminate, the transverse stresses are

04" lcoy = A&, N (5.65)

At lower surface of laminate, the transverse stresses is

oy le_, = A n)a’ (5.66)

Forcing these transverse stresses {o satisly traction free conditions will yield some
zero parameters in surface vector ! and o"*!. Eliminating these zero surface param-

eters {tom ¢, we have a reduced vector @ from ¢, and H, G from H, G respectively.
Thus, the stiffness matrix of multilayer composite clement is calculated as
-1

Km = Kd + ETH 6 (5()7)

The element eqnation is

K"]6 = f (5-68)
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Figure 5.2: The 1-node, 3-1) multilayer composite clement

5.3 3-D, 4-Node Multilayer Composite Element

A four-node three dimensional laminate is shown in the fig.5.2.

Coordinate Relations

4
r=3 Nur, (5.69)
=1
4
y=3_ Ny, (5.70)
=1
~_(1_C)~1 (1+C)~1+| 4
= 5 ° + SR (n.71)

Displacement Interpolation and Shape Function

L]
=Y N,(&n) l(__z.‘_ 4 (_l_gf_)u;“} (5.72)
7=1
4 —
1=1
4 -
(65 [(1 3 (')'lU; + Ll__::—Qw;+l] (574)
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where the shape function for four node clement is

N,(€,n) = 41 (1+&¢) (1 +n,m), j=1,2,3,4 (5.75)

Partial Stress Field

Actually, every layer element in a 4-node multilayer element. is a three dimensional
8-node element, for which the partial stress field for off-axis orthotropic material has

alrcady been given by the iso-function method, cquation (3.98) repeated here as

o,=P,8 (5.76)
where
100 &E00n»n 60 CO0O0
P, = 1010060095 00CV
061 00C¢E00R7 00C
En 0 0 ¢ 0 0 & 0 0
0 & 0 0 »¢ 0 0 & 0O (5.77)
0 0 & 0 0 n¢ 0 0 &
and the partial siress ficld parameter vector 8 is
( w
B
B,
B=1{p | (5.78)
{ Pai )
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So for the i — th layer element. the transverse stresses are

‘72_" = dy + 336 + Iz + A+ 318y + Il + e (H 74)
’I( = dy 4+ 358 4 Jan + IuC+ A&n 4 A+ 358 (5.80)
0&- = 3y + Fe€ + Fon + 35,0 + &y + A A 35 EC (D.81)

At the upper surface of the i — th layer element, ¢ = L., the stiesses are

Ua = (B + o) + (B + Aie)+ (32 + i)+ 31 €y (1.82)
;]Q (B + 31+ (3 + 350)E + (35 + 3=+ 3,80 (h.83)
UfL (B3 + Big) + (86 + 350)€ + (B0 + A + 3180 (H.81)
At the lower surfaces of the ¢ — th layer element, ¢ = =1, the stresses are
= (B} = Bro) + (B = Pr)€ + (3 = Biadn + 31,60 (5.8%)
nc = B = Bi) + (5 = Bn)€ + (A = i + 316 (5.56)
O = (= Bi) (s = )€+ (s — B + Bialy (557)

Traction Free Conditions and Continuous Conditions

The traction free conditions at the top and bottom surface of a laminate are

O'I';C = Ug(: = 0%::[,/2 (.")QH)
U'IIC = a‘&. = a'C = 0fo=cny, (5.89)

To satisfy these conditions, we have

By + By =0
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and

U‘g'k':l = Ug'.H,C:_]

35+ 35, =0
g + A =0
Py =10
A3+ 80, =0
i+ 8 =
P9 + 35 =0

J 3;'5 = (

R
By — Al =0
dr = 3 =0
Ay =0

gy =3l =0
s — gy =
By~ il =0
B, =0

By~ Bly=0

3(1 - dz]l =
ﬂs} - dils =0
111'5 =0

The continuons conditions at {he inter-lamina surfaces are

11

(5.90)

(5.91)

(5.92)



Thus, we have

Bt e =" - 3
I+ Jy = ‘ﬁ“ - d;stI
F+ =3 = Al
Fa = A3

Iy 4+ = ,1}“ - .'f;l“

Fy+ By = - d’izl

g+ 3. = dé“ - ;i;;' 1H.93)
A= ,‘};TI

Ay + 3y = oyt - /’;;rl
Ao+ oy = a5 - Ay
By + s = ”J)H - /i;:l

ot o+l
s = /’)5

From above equations(eq. 5.90, 5.91 and 5.93), it could he deduced that

Bl =y =3 =0 (5.94)

Thus, the partial stress field could be simplified as
1 5 4
o, =P, (5.95)

where the stress function is

100EO0O0 R 00CO00 R 0 0 6 0 0
P,=|0100€¢007500¢C00 ¢ 0 0 & 0 (5.96)
001060€E00700¢C 0 0 40 0 0 &
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and the new partial stress field paramcter vector 8 is

( A3
y 3}

ﬂ=<:f

/’1
{ Bis

(5.97)

In order for the element to be traction free on the upper/lower surfaces and con-

tinuous at the interlaminar surfaces in a laminate, corresponding to equation 5.93,

equation !

.91 and equation !

ol Tayer element should satisfy following equations.

where, 1 = 2,3,

,Hl + /310 = l+l

/3l + /31(, Bft“ -

g+ Ay = Bt -
Ay + By = Pyt -
By + fiz = Byt
/j‘é + ﬁllt = /Jl'alsﬂ
B3y + By = Byt

5+ /318 = 'H

%+ﬂg=ﬁy‘

ceon—lyandforr =1

dll - 61‘0 =
/3: - /jl]b =
/37l - /3113 =
d:‘! - /3111 =

TR
Ps — ﬂll': =

113

/Bl+l

J141
16

Gty
H!+l
_ /3:+1
/31+l
~ i
~ B!
- g'+1

0
0
0
0
0

5.90, the parameters of the simplified partial stress field

(5.98)

(5.99)



-3, =0
4l -3, =0
gt —dly=0
/’tl) - /;:s =0
fori=rn:
By + 3y, =0
Py + Ay =0
/3: + /?’,’A, =0
/f; + /;;'2 =0
Bs + s =0

Ao + iz = 0

Now, lets introduce a new vector of parameter ¢,

where

t
o

1
L o

t+1
141
al+] — < . f

| ";}H
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(5.103)




Assume that a' is attached in the lower surface of the i-th layer element and o

in the upper surface, and defining af, ot (k=1,2,--,9) as

So we have

. s14-1 s141
0‘1“ _ﬁ +ﬂ10—/3 - B

o == Bo=A" + A

. ’" s141 1+l
0‘;rl = /j /316 = B34 Ars
o) =/3" = AT A

t+l 1+l
/j + /31 3= D7 B3

0;=/§;“5113=/3’7_ +ﬂ1;
’ ’1 2141 2141
l=ﬁ2+/311=ﬁ2 —ﬂn

“4262 :511— 3y l Jf'ﬂ;
o = fy+ B = By — A
oy = fy - Brr =By + By
ot = Pyt Ba= Ay —

oy =fy—Hu="Hs +8

1 r141 st
0‘!:+ —ﬁ3+,312-)33 — By
X} 'l l '1—
ap = ﬂs ,Uu =f3 + B

i 141

Q? ﬂs + ﬂ]B /3(, — By
" ve vie1 el
as:ﬂﬁ“ﬂlszﬂs + Bis

” .1 it 2141

agt =Py 4+ B =By — P

r1—1

" Ji—1
oy = ﬂg Bis = Bg + 85
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. . . Al . . - .
Above equations give a relation between 8 and a, which in mairix form is

where

ia= = (o' — ol
o= L (ot 4 o)

= (o - o
fy= 3 (ost"+ o)
B L (o = o
By = % (a5t + o)
B = % (a5 — o

{8} =1 {
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= -1

1, b

in which «

,n) to a'(t

2t

Liquation 5.106 transfers partial stress parameter 3 (i = 1,2,.--

1’2,'

--,n + 1), which are assumed to exist on the boundaries (interlaminar faces)

of layer clements. The new partial stress field which ensure the continuity between

layers is

(5.108)

For convenience, it is rewritten as

(5.109)
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where

P,=P,U (5.110)
al
P = { } (h.111)
a|+l
Thus by taking ¢' instead of ,é' as unknown stress paramcters, the continuity con-

ditions of transverse stresses are automatically satisfied. This could be proved as
y }

follows:

Since the 1-st to 9-th columns of Pglcle are zero as can be seen by perlorming

the multiplication using equation (5.96) and (5.107),

000000000 1 457000000
Poleo,U=1000000000000T1 €& 5000/ (5112
00000000G0000G0O0O0T1 €y

we have

ay’l(:] = f)g‘PiIC:]

_ B ul®
= le:] o

1 €7 00000 0
0001 ¢y00 0] {a} (5.113)
00 00O0O0T1 €y

I
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and for ¢ = - 1, the 10-th to 1€ th columns of psl(:-lU are zero,

1 €9 00000000000O0GO0O00
Pyleo,U=10001€6 4200000000000 0][ (51L)
0000001 &y 0000O0O0OCODO

50 we have

a'ylch = 139901“[(:—1

.._]
P | U "
T6=-1 a't?

1 & 00 0000
0001 ¢n000|[{a"}. (515
0000001 ¢y

il

Thus

ay'leor =0, e (5.116)

This completes the proof for transverse stress continuity:,

To satisfy surface traction free conditions as defined in equations (5.88) and (5.89),
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from equations (5.99). (5.100) and (5.101). we have

A
o 2 o] 2 o o)
S lem e e b e

2

2
B QL ]

-
-

and

(5.117)

(5.018)

Similarly, for on-axis orthotropic material by satisfying the traction [ree condition

(5.88, 5.89) and continuous condition (5.92), we have

100 EO 7 0C0 04 0 & 0

P,=|0100€000CO0 0 0 0 £

001000 09np00C U0 ¢ 0 O

and by introducing a new vector of parameter ¢,
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(5.121)
(5.122)

in which

we have the partial stress field as

(5.123)

where

(5.124)
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layer n

_ l( layer 2

layer 1

(a) Layer numbering

Figure 5.3: The 8-node, 3-D multilayer composite element.

(b) Top view

5.4 3-D, 8-node Multilayer Composite Element

The eight-node three dimensional laminate is shown in the figure 5.

Coordinate Relations

Displacement Interpolation and Shape Function

2 N(¢
=1
8

2 N,(&n

J

-

Z: (6,0)[

(l +()uz+l

1 + (l + C)UI+I

(140

(5.129)

(5.130)

(5.131)




where the shape function for the eight node clement is

Nl = 11 = €)1~ m3(=1 =€ = 1)
No(gn) = (1 +€)(1 = m)(=1+ € =)
Ny(sm) = 21+ €)1+ n)(=1 + € +1)
Nu(€m) = £(1 = €)1+ (=1 = € +1)
No(€n) = 51— €)1 =),
No(en) = 501 +6)(1 ~ ),
Na(gm) = 51 = €)1 + ),
Ny(gn) = 5(1 = €)1 = ),

Partial Stress Field

A

¥

’

’

(5.132)
(5.133)
(5.134)
(5.135)
(5.136)
(5.137)
(5.138)

(5.139)

Actually, every layer element. in a 8-node multilayer element is a three dimensional

16-node clement, for which thc partial stress field for off-axis orthotropic material

has alrcady been derived using the iso-function method as shown in equation 3.199

and repeated here as

o,=P,8

where

1 0060025 00C¢00¢& 0 0 &

—

00£600n00CO0 0 & 0

C 0 0 ¢ 0 0 £ 0 0 52 0 0 &

0 ¢ 0 0 &¢ 0 0 & 0 0 42 0
0 0 ¢ 0 0 &¢ 0 0 € 0 0 g2
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0
00100600 5n00CO0 0 & 0O

0 0

0 ¢ 0
0 &C

0 0

0 & 0
0 0 &

(5.140)



EC 0 0 & 0 0 i 0 0
0 €% 0 0 €&* 0 0 p¥ 0 (5.1:41)
0 0 &¢ 0 0 & 0 0 g%

and the partial stress field parameter vector 8 is

[ )
B

g={" 3 (5.112)
L 12 J

So for the ¢ — th layer element, the transverse stresses are

or = B+ A&+ B+ Bl + Bt + Aed + AanC + Mu€ag
+ 03587 + Bagn® + 03,620 + B2 + Pinbn® + Bn’C (5.113)

ghe = Bat B+ Ban + BLC + BLkn + B126C + BaonC + A
+B36E% + Booh® + B + B¢ + Bl + Bin’C (5.111)

ke = Bt Bib + B+ Bl + Biskn + AiebC + Mg + Buabuc
+ 8582 + Bign® + Bial®n + Bisl2C + Blobn® + pin*C (5.145)

At the upper surfaces of the ¢ — th layer clement, ¢ = 1, the stiesses are

o = (B Blo) + (By+ A€+ By + i+ (B + 3 )6

+(Bss + B e + (Bas + Bio)n® + By + By’ (5.146)
ope = (B4 i)+ (Bi+ Bi)E + (B + Aaohn + (Bia + Bi)én

+(Bas + B3)E" + (Bag + B0’ + M + By’ (5.147)
ggc = (By+Bia) + (B + Bis)€ + (By + By)n + (Bis + H)én

H(Bor + Ba6)E" + (Bio + Bi)n® + B’ + Bl (5.148)
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At the lower surfaces of the 1 — th layer element, ( = —1. the stresses are

(72 = ( m) + (/3 m)f + ( -3 <))’7 + ( ﬂ22)£’7

+( B — B34)E° + (B3 — Bi0” + Il + /3;,7&;‘2 (5.119)
oue = (B = H) + (B = Bi)€ + (B3 — Byo)n + (B1y = B3)én

+( By ~ B35)E% + (359 — By In® + B5,6%0 + B4sén’ (5.150)
age = (s = P) + (55 = M)l + (g = B + (D15 — F24)En

(e — M )EE + (B — Bl + B2y + Blobn’? (5.151)

Traction Free Conditions and Continuous Conditions

The traction free conditions at the top and bottom surface of a laminate are

[aby 1
—_—
ot
[ g\
~—

G;}C = UEC - Ul::h/? (' .

To satisly these conditions, we have

By + 31 =0, B+ 3y =0,
Py + 3y =0, I+ 85 =0,
Py + By = 0, 85 + 88 =0,
Py = 0, By =0,
Ay + 313 = 0. B8 + Py =0, (5.154)
Ay + 1 =0, Bis + 03, =0,
Bz + B3 = 0, 30 + B4 =0,
135'3 =0, 13:’,’9 =0,



and

3 =3}, =0,
1= 3y =
fjés - "":]n =0,
8l =0,
d = o =0,
By — By =
Bae — P35 = 0,
B3, = 0,
3 =3, =0,
By — iy = 0,
B~ B, =0,
31y = 0,

3 — 3l =0,
3py — Jhs = 0,
3y — 3 = 0,
A1 =0,

ds — 3, =0,

A’,l‘ i ."l“ = 0.,

;;l) - i:l = ()
s == 0.

A = Aix =0,
g — i3y, = 0,
i)

q0 ."ﬁz =0,

3l = 0.

The continuous condition beiween the inter-lamina surfaces is

O'gl}(“:_, = aql+|lC=-|

Thus, we have

ﬁl + /3]0 /jz+l |+l
By + By = 057 — B!
/j'i)s + /jt - /jx-H /jl'f'l

/3” — /31+1
ﬂ2+/31 — ,U'-H d|+l

By + By = Bt — B3
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P=1.2,-,n— |

W+mmﬂW—mF
a+ By = A — !

Ao + o = Aot! — i

/3,7 — ,m

/5;‘ + /’;7 — /;;,H jx+|

B+ By = B — !

(H.105)

(5.156)




Py + By = P! = Bag! Bo + By, = Byt - B! (5.157)

52 = ﬂ'“ ﬂ:lis = ,35:{’
A+ By =yt - a3 B+ Big = A5t — B
By + fy = et — B! Bis + By = At = gyt
Byr + B = 3 = o o+ Bl =Bt - B!
By = Ay} Pio = st

From above equations(eq. 5.151, 5.155 and 5.157), it could be deduced that

By = By = =Py = Oy = By =0 (5.158)

I'hus, the partial stress field could be simplified as
o, =P8 (5.159)

where the stress function is

1 00 €& 0045 00C¢C 00En 0 0 6 0 0
P,=|0 100 €600 700¢C0 0 & 0 0 & 0
061 O00E&EO0 0 0O0C¢C 0 0 & 0 0 &

gC 00 &¢ 0 0 €0 0 2 0 0
0 ¢ 0 0 €n¢ 0 0 & 0 0 72 0
0 0 n¢ 0 0 & 0 0 ¢ 0 0 7?

¢ 0 0 5} 0 0
0 €¢ 0 0 7% 0 (5.160)
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and the new partial stress ficld parameter vector 3 is

d,
“1

,"2

,3" =4q 3 ‘

L ﬂ.’;(i

/

(5.161)

In order to be traction free on the upper/lower surfaces and continnous on the

interlaminar surfaces in a laminate, corresponding to ¢q.H

ADT, eq 5,100, eq.h 10,

the parameters of the simplified partial stress field of layer element should satisfy

following cquations.

N S L
Ao, =g =gt
ot Bra= i — A
/jld + /322 = /"zlti - /":J;l
Bos+ B = B = By
R A A
By + By =By = By
Byt A= A7 ~ Ay
Byt B = By = By
/714 + /jzs = f/ild - ﬂlztl
B + By = P — i
Bao+ fls = Py ~ o
Byt B = A = A
Byt Bru=a" = Ay

ﬂ +62] - /j() /1T|
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" " a4l it
Bis + Bag = Bis — Baa

’t 71 'l+| 'l+1
ﬂ27 + ﬂ33 = ﬂrr - /933
st+1 s141

/9.130 + [;:36 = ﬂso - ﬂSG

where, 1 =2,3,---,n— 1.

Fori=1:

.1 /1
/51 - ﬂw =0
/1 ’1

/34 - ﬂw =0
.1 .1

ﬂ7 - ﬁlg =0
’1 .1

ﬂ]S - ﬂn =0
11 ‘1

ﬁ'zs — B3 =0
’1 /1

Bag — B33 =10
1 A

.Bz - ﬂll =0
.1 1

/35 - /317 =0
’1 .1

Lg— [320 =0 (5.163)
’1 .1

/314 - /323 =0
.1 .1

ﬂze - ﬂaz =0
21 ,1

/329 - ﬂsr. =0
,1 .1

Ba — 512 =0
.1 21

Be — ﬁlS =0
/1 .1

B — ﬂ21 =0
1 .1

ﬂlS - ﬂu =0
1 ‘1

527 - 533 =0
/1 .1

/330 - /336 =0



Fori=n:

&y + 8, =0
13'5! + /;,1'7 =0
By + = 0
H;l‘x + /;;,3 =0
Bys + By =0
Bog + B =0
By + 8, =0
Bg + s =0
,5; + /3;11 =0
B;ls + ﬂL =0
B+ Ay =0

Bao + g =0

Now, lets introduce a new vector of parameter ¢,

where

ai

a't!
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(5.165)

(5.166)




att = 77 (5.167)

Assume that o' is attached in the lower surface of the i-th layer element and a*+?

in the upper surface, and define o}, o't! as

1 2141
= G 4 = 51 ~ B (5.168)
’q A} r1—1 21 —1
Zﬂ —ﬂw ,31 + 3 10 (5-169)
So we have
B, = E( ot +a;‘) (5.170)
fro = 5 (01" —a) (5171)

In the same way, define the rest of o, a'k“ (k=2,3,4,---,18) as

s14-1

'H = ﬂ4 +ﬂlb = ,Bt — P
oy =4 — /3”16: /3:1— + ﬂ;—(;

Q;AH = B? /319 = ,57 - B;:l
ay /319 137 /3”19]
ot = ﬁu+mz—mﬁ By
ay = ﬂ'n ﬂn = /éllal B;?l
aft! = Bys + i = Ay — Aoy
ol = fos — by = Ao + 85

2141 2141

agt = ﬂ28 + ﬂ34 = (g — B

o = ﬂ ﬂ.’M = 1628 /3;3;
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T d'“ A1
Q;-:d —/j” :fd /dl.l-

*“—yi+qr_u“'~ﬂﬁ

af = d, ~ 35 = 4, \ +d,;

, +1 141
o=+ Ay, */3' i

0g = ‘Ux - ﬁ'zu = /i i + /j'z;

" .1 141 141
age! =Bt By =4, - ’u

: 4] t1—1
Cym::/’n /3“—ﬂ“ +/7‘

e

i s -1
ot =P+ Ay, = A - ey

t<
—

oy = ﬂ?(i - ﬂ:;'z = /j'z; + /i‘—

. ” . set-1 '+'
C’l;l = fhyy + Py = Pag ~ Tas
oy, = /3’29 - /j’ls = ﬂzg +/}'r”

2 2141 e
O]jl ‘/j +'le =4, IJ;

e~

Ay =y~ =4y 4 4
aif =4, + 628 =y =
Ay =fy -y = A 4 4
ol = fy+ 4y, = g g
oy =y~ oy = Ay 4 4

2 " 1 '1+l
oy’ —/i|5+/f2‘ /jl’ ~ 1y

Qg = /j;s - /:};'l = /11:, + 344
off! =yt B, = pnt A
al?“‘ﬂn_/jgj“/jz? /lnl

aif' = A+ By = ' - gt

Qpg = /jJU ﬂ;o = ﬂ;u + /’u,
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(5.173)
(5.174)
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where

U= ;lj[u ()l (5.175)
in which
u(i,)) =0, ij=1,2,-+-,36 (5.176)
except

u(l,1) =1, u(1,19) = u(2,7) =1, w(2,25) =
u(3,13) =1 u(3,31) = u(4,2) =1, u(-1,20) =
u(5,8) =1, u(5,26) = u(6,14) =1, u(6,32) =
u(7,3) = 1, W(7,21) =1, u(8,9) =1, u(8,27) =
u(9,15) =1, u(9,33) = u(10,1) = —1, (l() 19) =1,
u(11,7) = -1, wu(11,25) =1, u(12,13) = —1, u(12 I
u(13,4) =1,  u(13,22) = 11(1/1,10) =1, (1l ) 1,
w(15,16) =1,  u(15,34) =1 u(16.2) = —1, (16, 20) 1,
u(17,8) = —1, u(17,26) =1, u(18,14) = —1, wu(18,32) = I, )
u(19,3) = =1, w(19,21) =1, u(20,9) = -1, u(20,27) =1,
u(21,15) = —1, u(21,33) =1, w(22,4) = -1, w(22,22) =
u(23,10) = —1, u(23,28) =1, u(24,16) = -1, w(24,31) =
u(25,5) =1, u(25,23) =1, w(26,11) =1, u(26,29) =
u(27,17) =1,  «(27,35) =1, u(28,6) =1, u(28,24) =
w(29,12) =1,  w(29,30) =1, u(30,18) =1, «(30,36) =
w(31,5) = —1, w(31,23) =1, u(32,11)= u(32,29) =
u(33,17) = —1, u(33,35) =1, u(31,6)=—1, u(34,24) =
w(35,12 = —1, u(35,30) =1, u(36,18) = —1, w(36,36) =

Equation(5.174) transfers partial stress parameter ﬂ” (z=12---,n)toa' (i =
1,2,---,n 4 1), which are assumed to exist on the boundaries (interlaminar faces)

of layer elements. The new partial stress ficld which ensure the continuity between
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layers is
. a'
o, = PgU{ } (5.178)
a1+1

For convenience, it is rewritten as

o, =P, (5.179)
where

P,=P,U (5.180)

, { o' }
@' = (5.181)
az-H

. . At . .
Thus by taking ¢' instcad of 3 as unknown siress parameters, the continuity con-
ditions of transverse siresses arc automatically satisfied. This could be proved as

follows:

Since the 1-th to 18-th column of 159|<=.U are zero as can be seen by performing

the multiplication using equation(5.160) and (5.175),

000000000000000000O0TIL¢
Pylc,U = [00000000000000000000
000000000000000O00D0O0O0O0O

n fn €& 2000 0 0 0 00O0 O 0 O

00 0 01 & npénp € n2000O0 0 O

0 0 0 000O0O0 O 0 1¢ 1 &y & 9
(5.182)
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we have

al+l

, ~ , o'
091IC=1 =P, = Pgle_, U { }

1L &npénp € 22000 0 0 0 000G 0 0 0
=({000 0 0 0 1 &y &y 892000 0 0 0ff{at)
000 0 0 0000 0 0 0 1 &y &y €8 y?

—_—

(5.183)

and for ( = -1, the 19-th to 36-th column of P9|C=—IU are zero,

V&g &y € 9000 0 0 0 000 0
Pyle—sU = {000 0 0 0 1 €y & € 4000 0
000 0 0 0000 0 0 0 | & y.£y

0 6 000000 000000000000
0 0 0060000O00000000GOOO
&€ 220000000000 00000000

(5.181)

we have

a|+2

- - i a:-H
‘791+ |C=_1 = Py‘P'H,(:._l = P_,,IC:_]U
1 & npénp €€ 9220000 0 0000 0 0 0

=000 0 0 01 ¢ g & € 532000 0 0 0 {a?)
000 0 0 0 00O O0 O O 1 &y & & )
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Thus

o5'lem = 05, (5.186)

This completes the proof for transverse stress continuity.

'To satisly traction free conditions as defined in equations (5.152) and (5.153), from

cquation (5.163) and (5.164), we have

a'={al }=0 (5.187)

and

$antt 3 =0 (5.188)
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Chapter 6

Applications of Multilayer

Composite Elements

6.1 Cylindrical Bending of s Simply Supported
Long Strip

The laminated strip considered herein is a three-layer symmetric cross-ply laini-
nate(0/90/0) made of unidirectional fibrous composite material(fig.6.1). The lam-
inate is infinitely long in the y direction and simply supported on the ends 2 = 0

and z = L with length to thickness ratio S = L/h.
The material stiffness properties are

B, = 174.6G Pa,
Er = 7GPa,
Grr = 3.5GPa, (6.1)
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(1'1“1' = 1.‘101)0,

vpr = vy = 0.25.

where, L is the dircction parallel to the fibers and T the transverse direction. The
Possion ratio vy measuring strain in the transverse direction under uniaxial normal

stress in the L direction.
A sinusoidally distributed transverse loading

q = qosin(wz/L) (6.2)
is applied on the top surface of the laminate as shown in fig.6.1.

The numerical results will be presented in terms of normalized values which are

defined as

o = 0:(L[2,2)/q

o. = 0.(L]2,2)/q

0r: = 0::(0,2)/qo

v = Eru(0,z)/(hqo) (6.3)
w = 100Lrh3w(L/2,2)/(qL?)

: = z/h

The maximum central transverse deflection w with respect to S is shown in table 6.1,
where the surface number indicates the location of cach surface of laminate starting
from bottom to top of the laminate. Normal displacement # and in-planc normal
stress o, are shown in fig.6.2 and fig.6.4. Through-thickness transverse shear stress
o,. and transverse normal siress o, are shown in fig.6.3 and fig.6.5. The 6. of CLT
is computed by invoking equilibrium considerations. The elasticity exact solutions

are cvaluated by using the same procedures as given in [8]. The results predicted
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(a) Top view (b) Side view

Figure 6.1: The three layer cross-ply simply supported long stvip under sinusoidal
loading

by hybrid finite element method with full stress field are from [31]. The table shows
that the results based on classical lamination theory, which is independent of the
span-to-thickness ratio, are accurate only for the thin plates(i.c. S is larger than 50).
Excellent agreement with exact solution is found both for the hybrid element and

for present multilayer composite element.

The distribution of stress of the same problem was solved by using conventional
3-D displacement formulated element in [71], which modeled the laminate with 432
three dimensional, 20-node displacement elements. Fig.6.6 compares the shear stress
0z: from the 8-node multilayer composite element and from the displacement. ele
ments. It shows the multilayer composite element solution is in better agreement
with the exact Pagano’s clasticity solution, although the muliilayer composite ele
ment solution is using fewer elements (5 8-node multilayer composiie elements, one
in y-direction, 5 in x-direction. Every multilayer element is compaosed of 12 layer

clements).

The CPU time required for the 8-node multilayer composite element solution is
2 min 10.07 s on a VAX 6510 computer compared with 24 minute 2.87 sccond

CPU time for the 432 conventional 20-node finite element solution(15279 Degree
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Figure 6.2: Through-thickness in-plane normal displacement and normal stress dis-
tributions for S=4
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Figure 6.3: Through-thickness Transverse shear stress and normal stress distribu-
tions for S=4
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Figure 6.4: Through-thickness in-plane normal displacement and normal stress dis-
tributions for S=10
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Figure 6.5: Through-thickness transverse shear stress and normal stress distributions

for S=10
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Table 6.1: Maximum transverse central deflection w for different S

S | No. | Exact Hybrid Present CLT
4 ] 3.023 3.022  3.029 0.5096

4 1 3 12925 2931 2923 0.5096
2 | 2.864 2.868  2.862 0.5096

1 ] 2.839 2819  2.838 0.5096

, 4 10931 0933 0933 0.5096
10 3 10933 0932  0.932 0.505u
2 10931 09307  0.930 0.5096

1 0929 0927  0.929 0.5096
410527 0527  0.527 0.5096
501 3 |0.521 0527 0.527 0.5096
2 10527 0527  0.527 0.5096

1 | 0527 0527  0.527 0.5096

No.: Surface number

Exact: Pagano's clasticity exact solution(8]

Hybrid: Hybrid finite clement method[31]

Present: the present, Multilayer Composite Element method

CLT: Classical Lamination Theory

Of Ireedom). Almost same accurate results have been obtained with 10 4-riode
multilayer composite element (10 in x-direction, 1 in y-direction, every multilayer
clement was composed of 12 layer elements, 1452 DOF), which took 2 minute 57.54

second.

145



Exact — )
0.2+ Present o— ¢ -
Disp - .- '

©
—
T

L N I |
S & & 5
[ < R &
T 1T 1
{

056 : —da,,

Iligure 6.6: Shear stress o,., compared with 20-node displacement element (S 1)

6.2 Bending of Simply Supported Rectangular

Laminates

The second example analysed with the laminated finite element method is the bend

ing of a simply supported rectangular laminated plate(fig.6.7). 'T'his type of problem
has been investigated by Pagano[111] with anisotropic elastic theory, by Reddy[112]
with higher order shear deformation theory and late by Lion and Sun[31] with hybrid
finite element method. To validate the accuracy of the present method, the results
are compared with these previous works. The plate is a symmetric three layer

cross-ply (0/90/0) laminated plate subjected to sinusoidally distributed loading
g(z,y) = qusin(me[/a)sin(mwy[b), (6.4)

and lamina material propertics are the same as in previous example, The predicted

results are presented in Table 6.2 and 6.3, where the elasticity solution[111], higher
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&2

(a) Top view (b) Side view

Figure 6.7: Bending of a simply supported rectangular laminated plate under sinu-
soidal loading

order shear deformation solution[112], hybrid finite clement solution[31] and clas-
sic lamination theory solution are also included for comparison. The normalized

gnantities are expressed as

(02,04,02y) = (02,0y,04)/(¢0S?)
(Oyer0.2) = (0y:,0.:)/(405)
w = 100L7w/gohS* (6.5)
z = z/h
5 = a/h

A quarter of the plate is modeled with a 4 by 4 mesh on the planc of the plate
and twelve layer e;cments through the thickness of the plate. For the case of S=20,
b=da, the aspect ratio of the layer element is as high as 180, and still high accuracy

of interlaminar stresses is observed.

Table 6.2 and Table 6.3 show the excellent accuracy of the present laminated finite

clement. The CLT solution is accurate only for thin plates; the disagreement is
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significant when the span-to-thickness ratio S is small.

Table 6.2: Normalized deflection and stresses in a square laminate (b=a)

S Source &I(%,%,:i:%') dy(%,.%’,i%) 0‘1(0,%.0) ay: (5.0,0) u'(

)

Pagano 0.801 0.534 0.256 0.217
-0.755 -0.556
Hybrid 0.717 0.517 0.263 0.221 2.020
-0.679 -0.541
Reddy 0.7346 0.1832 1.921I8
Present 0.806 0.538 0.262 0.220 2.041
-0.760 -0.561
10 Pagano 0.590 0.285 0.357 0.1228
-0.590 -00.288
Hybrid 0.580 0.285 0.367 0.127 0.7518
-0.580 -0.289
Reddy 0.5684 0.1033 L7125
Piesent 0.590 0.283 0.360 0.1206 0.75H92
-0.589 -0.287
20 Pagano 10.552 £0.210 0.385 0.09:38
Hybrid +0.553 +0.210 0.395 0.0998 0.5170
Present +0.552 +0.210 0.385 0.0971 0.5167
CLT +0.539 £0.180 0.395 0.0823

Pagano: elasticity exact solution[8].

Hybrid: Hybrid finite element method[31].

Reddy: Migh order shear deformation theory[112], ¢, is given at o, (’r 3, 7),
and g, is given at o, (%, %, L—‘)

Present: The current partial stress finite clement model.

CLT: classical lamination theory.
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‘Table 6.3: Normalized deflection and stresses in a rectangular laminate (h=3a)

S  Source o, (%,%,:L-g) oy (%,%,i%‘) Frs ((),%,@ &y (£,0,0) @ (%,Q,())

2

4 Pagano 1.14 0.109 0.351 0.0334 2.82
-1.10 -0.119

Hybrid 1.717 0.10%R 0.360 0.0326 2.828
-0.975 -0.118

Reddy 1.0356 0.1028 0.2724 0.0348 2.6411

Present 1.13 0.106 0.350 0.0325 2.829
-1.08 -0.121

10 Pagano 0.726 0.0418 0.420 0.0152 0.919
-0.725 -0.0435

Hybrid 0.709 0.0429 0.428 0.0151 0.921
-0.707 -0.0448

Reddy 0.6924 0.0398 0.2859 0.0170 0.8622

Present 0.718 0.0410 0.417 0.0151 0.917
-0.717 -0.0435

20 Pagano 0.650 0.0294 0.434 0.0119 0.610
-0.650 -0.0299

Hybrid 0.653 0.0298 0.450 0.0118 0.611
-0.646 -0.0304

Reddy 0.6407 0.0289 0.2880 0.0139 0.5937

Present 0.647 0.0291 0.431 0.0119 0.607
-0.6147 -0.0298

CLT +0.623 +0.0252 0.440 0.0108 0.503

Pagano: elasticity exact solution{8].
Hybrid: Hybrid finite element method{31].

Reddy: High order shear deformation theory[112], 6, is given al 6, (%, -g—, %),

and oy is given at o (

CLT: classical lamination theory.

a b h
2'2°6

Present: The current partial stress finite element model.
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6.3 Analysis of Edge Effects in Angle-Ply Lami-

%
nates

This section applies the multilayer composite finite element technique to predict free
edge effects on interlaminar stresses of a composite laminates under uniaxial exten-
sion. The new finite element approach is locused on exact satisfaction of traction
free condition at upper/lower surfaces of laminate, continuous condition of three
transverse siresses and three in-plane strains, and natural discontinuity condition of
three transverse strains and three in-plane stresses at interfaces. Stress distributions
of symmetric angle-ply and cross-ply laminates are analysed. Predicted stresses also

satisfy the traction-free-condition at free edge.

6.3.1 Introduction

The edge cffect on stress distribution has long been of concern in the study of the
failure behavior of composite structures. This problem is very diflicult, to solve for

it involves geometric and material discontinuities.

Many numerical analysises have been done on the stress distribution in the vicinity of
traction free cdges in a laminate subjected to uniform axial strain. In ref.[9], a fimte
difference scheme was used to analyse the edge eflect problem of a [£45], laminate,
In ref.[23], a three dimensional finite element method was used to analyse the edge
effects in [+45], and [90/0], laminates. In ref.[113, 114}, a quasi-three-dimensional
finite clement analysis was used to analyse the edge eflects problem. The methods
used in the above analysis can all be classified as displacement formulated method,
which can not exactly satisfy interlaminar traction continuity and upper/lower sur-
face traction-free conditions. To satisfy these conditions, a hybrid-stress model is

used in many studies [115, 116, 69], which, if the stress field is composed of all six
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stress variables as usual, may not satisfy the natural discontinuous condition. There
are also works on satisfying traction-free-edge (TFE) condition {113, 117]. Certain
similarities are observed in results obtained by ail these investigators. However,
there are also a number of discrepancies, and it appears no uniformly acceptable

solution has yct been found even for this problem.

From previous studies, it is found that there are four conditions of stress distributions

should be satisfied in the study of edge effects of composite laminates. These are

1, Traction free condition at upper/lower surfaces of a laminate,

2, Continuous condition of three transverse stresses and three in-plane strains at

interfaces,

3, Natural discontinuity condition of three transverse strains and three in-plane

stresses at interfaces,

4, zero value of stress oy, 0,y, and o, at [ree edges, or so called as traction-free-

edge condition.

The multilayer composite finite element technique developed in previous chapters
exactly satisfy the first three conditions in advance. Here the new finite element
technique is applied for the analysis of the free edge effects of angle-ply composite
laminates and cross-ply composite laminates. It is noticed that stress distribution
predicted by this finite element technique also satisfy the traction-lree-edge condition

in both cases.

6.3.2 Edge effects in angle-ply composite laminates

'T'he problem to be analysed is a four layer finite width symmetric angle-ply laminate

subject to a prescribed uniform in-plane normal strain e, (Fig.6.8). The laminate
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Figure 6.8: Laminate geometry

8

Iy = 0.6b, I = 0.34b, Iy = 0.06b
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n elements in region 1 ny clements  ny clements
mesh l:ny =3, np=4,n3 =2
mesh 2: ny = 3, ng = 6, ny =1

mesh 3: n; =3, nyg =8, ny =10

Figure 6.9: Finite element meshes

consists of four identical plies symmetrically stacked in {15/ — 45}, sequence. The

elastic constants with respect to principal aterial axes of cach ply are

]511 = 20.0 x IOG])Si
Eyy = 2.1 x 10%psi

= : (6.6)
iz = vy = Vo3 = 0.21

(;]2 = G31 = G23 = (0.85 x lO“psi.

The thickness of each ply is denoted by by so that the total thickness of a laminate
is 4ho, and width is 2b. The ratio of the width to thickness of a laminate is 4; i.c.

b = 8hy. The finite element meshes used for analysis are shown in Fig.6.9.
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The results of stress distributions on the mid-plane (z = 0) and on the interface
(2 = hy) are shown in Fig.6.10 and Fig.6.11 respectively. At the mid-plane, the
stresses predicted by using three different meshes are the same. At the interface, the
stresses from three finite element meshes only show differences in the very vicinity
of traction free edge of the laminate. Three in-plane stresses oy, o, 0, show a
moderate 'rise’ as y/b approaches 1, but decrease to some finite value at y/b=1.
The maximum value of o, amounts to about 10% over the average o, of the laminate
and the maximum value of 0., is about 15% over the average value of o, at the

interface of z = hy.

At free edge y/b=1, comparing the results predicted with three different meshes,
a high stress concentration of transverse shear stress o, and a singular bchavior
of transverse normal stress o.are found. Transverse shear stress oy, is almost zero

along the width of the laminate. It is checked that the self-equilibrium condition,

[ oo ha)dy = 0 (6.7)

b
/ oyz(y, ho)dy =0 (6.8)
0
are satisfied.

At free edge y/b = 1, we have the traction-free-edge conditions as follows,

oy(b,z) =0 (6.9)
Ory(b,2) =0 (6.10)
0y:(b,2) =0 (6.11)



It is checked that the first and second condition are exactly satisfied. At the corner
of interface (z = ho) and free edge, there are two nor zero shear stresses o, with
same magnitude but opposite direction (sce Fig.6.12}. Thus the tolal shear stress
oy al that point is zero and the third condition is still satisfied with neglecting a
very small value at free edge. It is checked that this value converges to zero as line

mesh is used. Through the thickness, the condition

hf?
/ Tegly = by2)dz =0 (6.12)
—hf2

is also satisfied.
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Figure 6.10: Stresses at the midplane z =0
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6.3.3 Edge effects in cross-ply composite laminates

The problem to be analysed is the same as that given in previous section except
that the stacking sequence of four identical plies in this case in [0/90], or [90/0],.
The results of stress distribution of ¢., o,. and o, along interface (z = hy) are
shown in Fig.6.13, Fig.6.14 and Iig.6.15 respectively. These three stresses show
steep gradients in the vicinity of free edge at interface. Other three stresses are
in a normal behavior, that means their values are similar to those predicted with
Classical Lamination Theory (o,,=0,.,=0, 0, is almost a constant, in a ply, sce table

refth6.4).

The Fig.6.13 shows that stress o, rises sharply towards the free edge in a possible
singular behavior for both laminates ([0/90], and [90/0],). In Fig.G.14, the magni-
tudes of stress a,, for both laminates also increase towards the free edge, achieve
the maximum value at y/b = 0.988 and then decrease to zero quickly. 19g.6.15 gives
the distribution of in-plane stress o, which also rises sharply in the vicinity of free

edge for both laminates in a possible singular behavior.

As for the traction-free-edge condition (eq.6.9 to c¢q.6.11) atl free edge y = b, il is
checked that the eq.6.10 and 6.11 are exactly satisfied. At the corner of interface

(2 = ho) and free edge, there arc two uor zero stresses a, with same magnitude

Table 6.4: Normal stress o,/¢, x 10% (psi) in [0/90], laminate

in the middle (y=0) at free edge (y=b)
Ply 0 90 0 90
CLT 20.08 2.09 20.08 2.09
MCE 20 08 2.09 20.10 2.17

Ply: means ply orientation.
CLT: Classical Lamination Theory.
MCE: the present. Multilayer Composite finite Element method.
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IYigure 6.13: Stress o, at the interface z = hg

but opposite direclion (see 'ig.6.16). Thus the total stress o, at that point (y = b,
z = hg) is zero and eq.6.9 is still satisfied with neglecting a very small value at frce
edge. It is found that, with fine element mesh used, this value converges to zcro
while the magnitude of two opposite direclion o, increases. Through the thickness,

the condition
h/2
/ a,(y = b,z)dz = 0 (6.13)

is also satisfied.
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6.4 Conclusion

In this chapter, the multilayer composite finite element. i.as been introduced for the
stress analysis of laminated composite plates. For any composite laminate, the stress
distribution should satisfy the following three conditions: the continuity condition of
three transverse stresses and in-plane strains, natural discontinuity condition of three
transverse strains and three in-plane stress at interlaminar surfaces and traction [ree
condition at laminate upper/lower surfaces. The multilayer composite finite element

technique satisfies all above three conditions exactly in advance,

Interlaminar stresses of three examples have been caleulated with the present finite
element approach. Results have been compared with available solutions using var-
ious anal/tical methods. Excellent accuracy and fast convergence of the multilayer

composite element model have been observed.

As for the free edge problem, there is an extra condition named as traction-frec-edge
condition, which concern the stress behavior at free edge. The nnmerical results
predicted by the current finite clement are also found to satis{y the traction free-

edge condition.

For angle-ply laminate, present study shows that interlaminar stresses o, and o,
rise sharply towards the free edge but o, shows convergence 1o a finite value while

0. seems 1o be singular at free edge.

For cross-ply laniinate, it is found tnat interlaminar stresses oy., o, and in-plane
stress o, a1so rise sharply towards the free edge bat o, achieves its maxinnim value
at y/b = 0.988 then decreases quickly to zero, while 7, and o, increase in a possible

singular behavior at free edge.
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Chapter 7

Contribution And Suggestion For
Future Work

In this thesis, & 'owing have been done:

A hybrid variational functional of partial stress model have been used and re-
vised for the formulation of composite and multilayer composite finite element

for 3-D stress analysis of composite laminates.

Introduction of the iso-function method to set up the partial stress field. The
iso-function scheme gives an casy and simple way to form a stress field and

ensures that the stress field is free from zero-energy modecs.

Formulation of 8-nodes, 16-nodes and 20-nodes three dimensional compos-
ite finite elements, which consists of two semi-stiflness matrix, one is semi-

displacemient stiffness matrix, another is semi-hybrid stiffucss matrix.

lutroduction of the concept of partial stress surface parameter vector which is

associated to the upper and lower surfaces of a layer. The multilayer composite
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finite clement was formulated.

o Interlaminar stress analysis of two bending examples show the excellent ac-
curacy and high efficieny of the present multilayer composite finite clement

model.

e The multilayer composite finite element satisfies the continuity condition, nat-
ural discontinuity condition and upper/lower surface traction free condition
automatically in advance. The stress analysis of straight edge effect problem
shows that the results from multilayer composite finite element. analysis also

satisfy the traction-free-edge condition at free edge.

Following future works are suggested:

o Study the possibility and technique of an-iso-function method for assuming
the partial stress ficld to formulate the multilayer composite element., That is
to use less stress parameters to reduce computing time or Lo use more stress

paramelers {o increase accuracy.

e Develop multilayer composite plaie element and multilayer composite shell

clement for thin laminates.
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