NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'Université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, tests publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SFC 1970, c. C-30.
Torque Pulsations and Currents in Induction Motors with Unbalanced Voltages

Asghar Khan

A Thesis in The Department of Electrical Engineering

Presented in Partial Fulfillment of the Requirements for the Degree of Master of Engineering at Concordia University Montréal, Québec, Canada

October 1987

© Asghar Khan, 1987
Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ABSTRACT

Torque Pulsations and Currents in Induction Motors with Unbalanced Voltages

Asghar Khan

A dynamic circuit model of the induction motor is developed for unbalanced supply voltages using the conventional circuit model for balanced supply conditions. The equations governing the various motor performance variables such as currents, average torque and pulsating torque are derived, and it is ascertained that the frequency of the pulsating torque is twice that of the supply. Transient analysis of the motor with this model is provided. Graphical plots are shown for the currents and pulsating torque against average torque for different kinds of unbalance.
ACKNOWLEDGEMENTS

I wish to acknowledge my heartfelt gratitude to Professor J.F. Lindsay for suggesting the problem, for his guidance and assistance during the entire preparation of this thesis.

I gratefully acknowledge the encouragement and full support provided by my parents, brothers, sisters, colleagues and friends, and my wife.
Table of Contents

- ABSTRACT .. iii
- ACKNOWLEDGEMENTS ... iv
- LIST OF FIGURES .. vi
- LIST OF TABLES .. viii
- LIST OF SYMBOLS .. 10

CHAPTER 1: INTRODUCTION .. 10
 1.1 Significance of Negative Sequence .. 2
 1.2 Sources of Negative Sequence ... 3
 1.3 Review of Earlier Work ... 3
 1.4 Scope of this Thesis .. 4

CHAPTER 2: THE TRANSFORMED CIRCUIT MODEL .. 5
 2.1 Introduction .. 5
 2.2 Analysis .. 7
 2.3 Numerical Parameters .. 10

CHAPTER 3: TRANSIENT AND OPEN LINE CONDITIONS ... 11
 3.1 Introduction .. 11
 3.2 Analysis .. 11
 3.3 Numerical Parameters .. 16

CHAPTER 4: RESULTS ... 17
 4.1 Introduction .. 17
 4.2 Steady-state case .. 17
 4.3 Transient case ... 32

CHAPTER 5: CONCLUSIONS .. 38

REFERENCES ... 40

APPENDIX: ... 42
 APPENDIX A: STATOR VOLTAGES .. 42
 APPENDIX B: MOTOR PARAMETERS .. 43
 APPENDIX C: COMPUTER PROGRAM .. 44

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>Negative Sequence unbalance due to single-phase loads.</td>
<td>3</td>
</tr>
<tr>
<td>Fig. 2.1</td>
<td>Model for balanced motor operation.</td>
<td>5</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Model for unbalanced operation of motor.</td>
<td>6</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Transformed circuit model of motor.</td>
<td>6</td>
</tr>
<tr>
<td>Fig. 3.1(a)</td>
<td>Schematic of balanced motor.</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 3.1(b)</td>
<td>Schematic of an open-line at C.</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 4.1</td>
<td>I_{ab} versus average torque for line-to-neutral load unbalance.</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 4.2</td>
<td>I_{bc} versus average torque for line-to-neutral load unbalance.</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 4.3</td>
<td>I_{ca} versus average torque for line-to-neutral load unbalance.</td>
<td>20</td>
</tr>
<tr>
<td>Fig. 4.4</td>
<td>I_a versus average torque for line-to-neutral load unbalance.</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 4.5</td>
<td>I_b versus average torque for line-to-neutral load unbalance.</td>
<td>22</td>
</tr>
<tr>
<td>Fig. 4.6</td>
<td>I_c versus average torque for line-to-neutral load unbalance.</td>
<td>23</td>
</tr>
<tr>
<td>Fig. 4.7</td>
<td>Pulsating torque versus average torque for line-to-neutral load unbalance.</td>
<td>24</td>
</tr>
<tr>
<td>Fig. 4.8</td>
<td>I_{ab} versus average torque for line-to-line load unbalance.</td>
<td>25</td>
</tr>
<tr>
<td>Fig. 4.9</td>
<td>I_{bc} versus average torque for line-to-line load unbalance.</td>
<td>26</td>
</tr>
<tr>
<td>Fig. 4.10</td>
<td>I_{ca} versus average torque for line-to-line load unbalance.</td>
<td>27</td>
</tr>
<tr>
<td>Fig. 4.11</td>
<td>I_a versus average torque for line-to-line load unbalance.</td>
<td>28</td>
</tr>
<tr>
<td>Fig. 4.12</td>
<td>I_b versus average torque for line-to-line load unbalance.</td>
<td>29</td>
</tr>
<tr>
<td>Fig. 4.13</td>
<td>I_c versus average torque for line-to-line load unbalance.</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 4.14</td>
<td>Pulsating torque versus average torque for line-to-line load unbalance.</td>
<td>31</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Fig. 1.1</td>
<td>Negative Sequence unbalance due to single-phase loads.</td>
<td>3</td>
</tr>
<tr>
<td>Fig. 2.1</td>
<td>Model for balanced motor operation.</td>
<td>5</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Model for unbalanced operation of motor.</td>
<td>6</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Transformed circuit model of motor.</td>
<td>6</td>
</tr>
<tr>
<td>Fig. 3.1(a)</td>
<td>Schematic of balanced motor.</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 3.1(b)</td>
<td>Schematic of an open-line at C.</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 4.1</td>
<td>I_{ab} versus average torque for line-to-neutral load unbalance.</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 4.2</td>
<td>I_{bc} versus average torque for line-to-neutral load unbalance.</td>
<td>19</td>
</tr>
<tr>
<td>Fig. 4.3</td>
<td>I_{ca} versus average torque for line-to-neutral load unbalance.</td>
<td>20</td>
</tr>
<tr>
<td>Fig. 4.4</td>
<td>I_a versus average torque for line-to-neutral load unbalance.</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 4.5</td>
<td>I_b versus average torque for line-to-neutral load unbalance.</td>
<td>22</td>
</tr>
<tr>
<td>Fig. 4.6</td>
<td>I_c versus average torque for line-to-neutral load unbalance.</td>
<td>23</td>
</tr>
<tr>
<td>Fig. 4.7</td>
<td>Pulsating torque versus average torque for line-to-neutral load unbalance.</td>
<td>24</td>
</tr>
<tr>
<td>Fig. 4.8</td>
<td>I_{ab} versus average torque for line-to-line load unbalance.</td>
<td>25</td>
</tr>
<tr>
<td>Fig. 4.9</td>
<td>I_{bc} versus average torque for line-to-line load unbalance.</td>
<td>26</td>
</tr>
<tr>
<td>Fig. 4.10</td>
<td>I_{ca} versus average torque for line-to-line load unbalance.</td>
<td>27</td>
</tr>
<tr>
<td>Fig. 4.11</td>
<td>I_a versus average torque for line-to-line load unbalance.</td>
<td>28</td>
</tr>
<tr>
<td>Fig. 4.12</td>
<td>I_b versus average torque for line-to-line load unbalance.</td>
<td>29</td>
</tr>
<tr>
<td>Fig. 4.13</td>
<td>I_c versus average torque for line-to-line load unbalance.</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 4.14</td>
<td>Pulsating torque versus average torque for line-to-line load unbalance.</td>
<td>31</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table A.1</td>
<td>Stator voltages for line-to-neutral load unbalance</td>
<td>42</td>
</tr>
<tr>
<td>Table A.2</td>
<td>Stator voltages for line-to-line load unbalance</td>
<td>42</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>slip</td>
</tr>
<tr>
<td>N</td>
<td>Negative sequence components</td>
</tr>
<tr>
<td>P</td>
<td>Positive sequence components</td>
</tr>
<tr>
<td>Rs</td>
<td>Stator resistance</td>
</tr>
<tr>
<td>Rr</td>
<td>Rotor resistance referred to stator</td>
</tr>
<tr>
<td>Xls</td>
<td>Stator leakage reactance</td>
</tr>
<tr>
<td>Xlr</td>
<td>Rotor leakage reactance referred to stator</td>
</tr>
<tr>
<td>Xs</td>
<td>Stator reactance</td>
</tr>
<tr>
<td>Xr</td>
<td>Rotor reactance referred to stator</td>
</tr>
<tr>
<td>Xm</td>
<td>Magnetizing reactance referred to stator</td>
</tr>
<tr>
<td>Xms</td>
<td>Mutual reactance between stator coils</td>
</tr>
<tr>
<td>Xsr</td>
<td>Mutual reactance between stator and rotor</td>
</tr>
<tr>
<td>Tp</td>
<td>Amplitude of pulsating torque</td>
</tr>
<tr>
<td>Tave</td>
<td>Average torque</td>
</tr>
<tr>
<td>(\omega_m)</td>
<td>Rotor speed</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Position of stator winding ab</td>
</tr>
<tr>
<td>(\beta)</td>
<td>Position of stator winding bc</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Position of stator winding ca</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Unbalanced three-phase voltages are a common occurrence in an electric supply system. A major cause of this is the non-uniform application of single-phase loads on the three phases. Also, unbalanced impedances in three-phase transmission and distribution equipment used by utilities can lead to such conditions. This may detrimentally affect the operation and integrity of three-phase apparatus in both customer and utility installations.

Unbalanced voltages and currents can be resolved into components of symmetrical balanced three-phase quantities known as positive, negative and zero sequence components. For a balanced system, the positive sequence voltage or current is the magnitude and displacement as each phase voltage or current, and the negative and zero sequence components are nil. Therefore, the negative and zero sequence components represent a measure of unbalance.

The two definitions [1] currently used to describe voltage unbalance are the 'NEMA unbalance', which is mostly used in North America, and the 'Voltage Unbalance Factor (VUF)', most often used in Europe. These can be stated as follows:

\[
\text{NEMA} = \frac{\text{Max. deviation from, average voltage}}{\text{Average voltage}} \tag{1.1}
\]

\[
\text{VUF} = \frac{\text{Negative sequence voltage}}{\text{Positive sequence voltage}} \tag{1.2}
\]
These definitions result in different values of unbalance for a given set of phase voltages. Generally, the VUF is higher than the NEMA depending on the phase displacement of the negative sequence component with respect to the positive sequence.

1.1 Significance of Negative Sequence

Polyphase induction motors are widely used for industrial, commercial, and domestic purposes. It is well known that voltage unbalance plays a serious role in three-phase induction motor performance, in terms of losses and currents, both line and phase, and torque. The negative sequence impedance, which corresponds to slips of approximately two \([2]\), is much lower than the positive sequence impedance. Hence for a given negative sequence voltage, a disproportionately high negative sequence current will flow. This negative sequence impedance is comparable to the motor locked rotor impedance. Moreover, rotor losses will increase more than the stator losses. In addition, the negative sequence also brings about a negative rotating field in the air-gap, thus producing a negative torque. This not only reduces the average torque which is a well-known phenomenon, but also introduces torque pulsations, a cause that has not been studied to its full extent, in the mechanical drive system.

1.2 Sources of Negative Sequence

The negative sequence voltages can be created in several ways. One such method is shown in Fig.1.1. A single-phase, highly reactive load produces a well-recognized voltage unbalance. The load unbalance in this illustration could also be the result of one blown fuse on a power factor correcting
capacitor. The resulting negative sequence voltage would be the same as that due to a comparable lagging load connected to that phase.

Fig. 1.1. Negative Sequence unbalance due to single-phase loads.

The second method of producing the negative sequence voltage is through unequal impedances in each phase of the supply system. This occurs due to widely spaced untransposed conductors, such as low voltage high impedance bus runs. Severe negative sequence conditions, which can rapidly lead to motor failure, happen when one phase is completely lost. This may be due to a fuse blowing or any other opening of just one of the three motor phases.

1.3 Review of Earlier Work

Earlier work [3,4] was concerned with the evaluation of the positive, negative and zero sequence components of voltages, currents and impedances of the motor at a particular point of operation. Motor losses were determined and graphs presented in an attempt to provide easy access to the respective voltage sequence components from line-to-line voltages. The protection of induction
motors against excessive line currents and overheating [5,6,7] has been another area of interest. Graphs were obtained to suggest critical points of operation.

Unbalanced voltages also occur due to system faults such as outage of a phase, phase-to-phase faults or phase-to-ground faults. Motor performance in terms of heat loss and rotor overheating [8,9,10] has been investigated when subjected to such disturbances. With the advent of power electronic converting equipment, non-sinusoidal voltages are fed to the induction motors. The harmonics in the supply have led to a greater concern over torque pulsation [11]. Recent literature has mentioned torque pulsations [12] to a small extent, but no simple method for their prediction has been included.

1.4 Scope of this Thesis

A quantitative analysis of motor currents and torque pulsations for various unbalances is outlined. To provide a suitable comparison, the open-line characteristics will be presented. Graphs of line and phase currents, and amplitude of pulsating torque against the average torque are shown. Transient motor behaviour when subjected to unbalance or vice versa is provided. The calculations of the currents is based on a dynamic circuit model of the motor having three axes on the stator and two on the rotor. This enables the direct modeling of currents and voltages of the actual stator coils. Details of the derivation of the required parameters values from those of the conventional model for balanced operation are included.
CHAPTER 2

THE TRANSFORMED CIRCUIT MODEL

2.1 Introduction

The induction motor can be represented by the conventional model for balanced operation as shown in Fig. 2.1.

![Fig. 2.1. Model for balanced motor operation.]

For unbalanced operation, the circuit model of Fig. 2.2 is used. When working with this model the 3-phase voltage variables are transformed to their symmetrical components in order to obtain the symmetrical current components and then transformed back to the actual currents. However, a dynamic circuit model having three axes or phases on the stator as shown in Fig. 2.3 [13] will provide the solutions directly. The various equations for this model will be formulated in this chapter.
Fig. 2.2. Model for unbalanced operation of motor.

Fig. 2.3. Transformed circuit model of motor.
2.2 Analysis

For sinusoidal steady-state operation, the parameters of the transformed model are related to those of the conventional model as follows:

\[X_{ms} = \frac{2X_m}{3} \]
(2.1)

\[X_s = \omega L_s = x_{ls} + X_{ms} \]
(2.2)

\[X_r = \omega L_r = x_{lr} + X_m \]
(2.3)

\[X_{ar} = X_m \sqrt{\frac{2}{3}} \]
(2.4)

The equation for steady-state operation of the machine is given as:

\[V = R I + p\omega_m G I + jX I = Z I \]
(2.5)

where 'p' is the number of pole-pairs and the resistance, reactance and rotational coefficient matrices can be given as follows:

\[
R = \begin{bmatrix}
R_s & 0 & 0 & 0 & 0 \\
0 & R_s & 0 & 0 & 0 \\
0 & 0 & R_s & 0 & 0 \\
0 & 0 & 0 & R_r & 0 \\
0 & 0 & 0 & 0 & R_r
\end{bmatrix}
\]
(2.6)
\[
X = \begin{bmatrix}
X_{\alpha} & X_{\beta} & X_{\gamma}
\end{bmatrix}
\]

The steady-state solution of (2.5) is as follows:

\[
I = Z^{-1}V
\]

If only the average value of the torque is required, it is obtained from

\[
T_{\text{ave}} = I^t G I
\]

provided the vector \(I \) contains the rms values of the currents. The instantaneous torque (2.10) is obtained by first deriving the instantaneous currents corresponding to the magnitudes and phase angles in the vector \(I \),

\[
T = i^t G I
\]

After manipulating and simplifying (2.10), the result is
\[T = \sum_{n=1}^{n=3} A_n \left[-\cos(2\omega t + \phi_d + \phi_n) + \cos(\phi_d - \phi_n) \right] \]

\[+ \sum_{n=1}^{n=3} B_n \left[-\cos(2\omega t + \phi_q + \phi_n) + \cos(\phi_q - \phi_n) \right] \]

\[= T_p(2\omega t) + T_{ave} \]

(2.11)

(2.12)

where 1, 2 and 3 represent phases ab, bc and ca respectively, and

\[A_1 = 0 \]

\[A_2 = G_{42} I_d I_{bc} \]

\[A_3 = G_{43} I_d I_{ca} \]

\[B_1 = G_{51} I_q I_{ab} \]

\[B_2 = G_{52} I_q I_{bc} \]

\[B_3 = G_{53} I_q I_{ca} \]

The magnitude of the pulsating torque is obtained by adding the oscillatory terms only, which have both magnitude and phase angle, and the average torque by adding the constant terms only. This is presented in (2.13) and (2.14).
\[T_p = \left[\sum_{n=2}^{n=3} A_n \frac{1}{(\phi_d + \phi_n)^0} + \sum_{n=1}^{n=3} B_n \frac{1}{(\phi_q + \phi_n)^0} \right] \] \hspace{1cm} (2.13)

and

\[T_{ave} = \left[\sum_{n=2}^{n=3} A_n \cos(\phi_d - \phi_n) + \sum_{n=1}^{n=3} B_n \cos(\phi_q - \phi_n) \right] \] \hspace{1cm} (2.14)

Although it is not evident, (2.14) gives the same values for the average torque as (2.9).

2.3 Numerical Parameters

\[
[R] + [G] = \begin{bmatrix}
0.2 & 0. & 0. & 0. & 0. \\
0. & 0.2 & 0. & 0. & 0. \\
0. & 0. & 0.2 & 0. & 0. \\
0. & 0.03 & -0.03 & 0.3 & 0.0439 \\
-0.0347 & 0.0173 & 0.0173 & -0.0439 & 0.3
\end{bmatrix}
\] \hspace{1cm} (2.15)

\[
[X] = \begin{bmatrix}
11.22 & -5.33 & -5.33 & 13.06 & 0. \\
-5.33 & 11.22 & -5.33 & -6.5 & 11.31 \\
-5.33 & -5.33 & 11.22 & -6.5 & -11.31 \\
13.06 & -6.5 & -6.5 & 16.55 & 0. \\
0. & 11.31 & -11.31 & 0. & 16.55
\end{bmatrix}
\] \hspace{1cm} (2.16)
CHAPTER 3

OPEN-LINE AND TRANSIENT CONDITIONS

3.1 Introduction

This chapter deals with the analysis of the induction motor behaviour when one line is open circuited, and the transient performance of the motor when unbalance occurs and when the balance is restored. The equations governing such cases are developed from the ones obtained in Chapter 2.

3.2 Analysis

The balanced and open-line circuit diagrams are shown in Fig.3.1. The various voltage and current relations that can be derived from these figures are as follows:

\[v_{a'b'} = v_{ab} \quad (3.1) \]

\[v_{a'c'b'} = -v_{bc} - v_{ca} \quad (3.2) \]

\[v_{d'} = v_d \quad (3.3) \]

\[v_{q'} = v_q \quad (3.4) \]

\[-l_{a'b'} = l_{ab} \quad (3.5) \]

\[l_{a'c'b'} = -l_{ca} = -l_{bc} \quad (3.6) \]

\[l_{d'} = l_d \quad (3.7) \]
Fig. 3.1. (a) Schematic of balanced motor.
(b) Schematic of an open-line at C.
\[l_q' = l_q \]

(3.8)

The above equations (3.1-3.8) can be presented as follows:

\[v_n = C^t v_o \]

(3.9)

where

\[v_n = \begin{bmatrix} v_{a'b'} \\ v_{a'c'} \\ v_{d'} \\ v_{q'} \end{bmatrix} \]

\[v_o = \begin{bmatrix} v_{ab} \\ v_{bc} \\ v_{ca} \\ v_d \end{bmatrix} \]

\[C^t = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \]

(3.10)

and

\[l_o = C l_n \]

(3.11)

where

\[l_o = \begin{bmatrix} l_{ab} \\ l_{bc} \\ l_{ca} \\ l_d \\ l_q \end{bmatrix} \]
\[l_n = \begin{bmatrix} l_{a'} & b' \\ l_{a'} & c' & b' \\ l_{a'} & c' & b' & d' \\ l_{q'} \end{bmatrix} \]

\[C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \] (3.12)

The new resistance, reactance and rotational coefficient matrices can be obtained from their old matrices as follows:

\[\begin{bmatrix} \text{new parameters} \end{bmatrix} = C^t \begin{bmatrix} \text{old parameters} \end{bmatrix} C \] (3.13)

Hence, the new matrices will be as shown:

\[R_n = \begin{bmatrix} R_s & 0 & 0 & 0 \\ 0 & 2R_s & 0 & 0 \\ 0 & 0 & R_\tau & 0 \\ 0 & 0 & 0 & R_\tau \end{bmatrix} \] (3.14)

\[X_n = \begin{bmatrix} x_{ls} + x_{ms} & x_{12} & X_{sr}\cos\alpha & X_{sr}\sin\alpha \\ x_{21} & 2(x_{ls} + x_{ms}) & X_{23} & X_{24} \\ X_{sr}\cos\alpha & X_{32} & x_{lr} + x_{m} & 0 \\ X_{sr}\sin\alpha & x_{42} & 0 & x_{lr} + x_{m} \end{bmatrix} \] (3.15)

where

\[X_{12} = X_{ms}[\cos(\alpha-\beta) + \cos(\alpha-\gamma)] \]

\[X_{21} = X_{ms}[\cos(\beta-\alpha) + \cos(\gamma-\alpha)] \]

\[X_{23} = X_{32} = -X_{sr}[\cos\beta + \cos\gamma] \]
\[X_{24} = X_{42} = -X_{sr} [\sin \beta + \sin \gamma] \]

\[G_n = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ M_{sr} \sin \alpha & -M_{sr} (\sin \beta + \sin \gamma) & 0 & L_{r2} \\ -M_{sr} \cos \alpha & M_{sr} (\cos \beta + \cos \gamma) & -L_{r2} & 0 \end{bmatrix} \] (3.16)

Thus, the new equations for steady-state operation of the induction motor with an open-line at C can be written as in (3.17).

\[V = [R_n + p \omega_m G_n + jX_n] I = Z_n I \] (3.17)

The solution of (3.17) will give the new currents. Equations [2.9 - 2.14] can be then be used in a similar procedure with the new parameters to obtain the average torque and pulsating torque.

In the transient situation, the steady-state equation (2.5) can be rewritten as

\[v = [R + p \omega_m G] I + L I' \] (3.18)

To solve for I, the above equation is rearranged as follows

\[I' = L^{-1} [-(R + p \omega_m G) I + v] \] (3.19)

The torque can then be attained from (2.10), which is

\[T = I' G \]

The mechanical system representation can be given as follows:

\[\dot{T} = B \omega_m + J \omega_m' \] (3.20)

or
\[
\omega_m' = \frac{1}{J} \left[T - \omega_m \right]
\] (3.21)

Equations (3.19) and (3.21) can be combined and solved using a Fourth Order Runge Kutta numerical integration.

3.3 Numerical parameters

\[
[R_n'] + [G_n] = \begin{bmatrix}
0.2 & 0. & 0. & 0. \\
0. & 0.4 & 0. & 0. \\
0. & 0. & 0.3 & 0.0439 \\
-0.0347 & 0.0347 & -0.0439 & 0.3
\end{bmatrix}
\]

\[
[X_n] = \begin{bmatrix}
11.22 & 10.67 & 13.06 & 0. \\
10.87 & 22.00 & 13.06 & 0. \\
13.06 & 13.06 & 16.55 & 0. \\
0. & 0. & 0. & 16.55
\end{bmatrix}
\]
CHAPTER 4

RESULTS

4.1 Introduction

This chapter presents the results attained from the equations determined in the previous chapters. Plots of steady-state performance of the induction motor for the two unbalanced cases (line-to-line and line-to-neutral loads) with regards to current and pulsating torque are given. The transient situation is shown by comparison of speed and average torque for the various cases.

4.2 Steady-state case

The steady-state unbalanced situation is presented in two ways: the line-to-neutral load and line-to-line load. Figures 4.1-4.7 represent the first case while the latter is shown in figures 4.8-4.14. The various degrees of voltage unbalance and the per unit values of torque that were used in the above mentioned figures are as follows:

1 = balanced supply
2 = 1% unbalance
3 = 5% unbalance
4 = 10% unbalance
5 = open-line c

1 p.u. Torque = 20 N.m
Fig. 4.1. I_{ab} versus average torque for line-to-neutral load unbalance.
Fig. 4.2. I_{bc} versus average torque for line-to-neutral load unbalance.
Fig. 4.3. I_{ca} versus average torque for line-to-neutral-load unbalance.
Fig. 4.4. I_a versus average torque for line-to-neutral load unbalance.
Fig. 4.5. I_b versus average torque for line-to-neutral load unbalance.
Fig. 4.6. I_c versus average torque for line-to-neutral load unbalance.
Fig. 4.7. Pulsating torque versus average torque for line-to-neutral load unbalance.
Fig. 4.8. I_{ab} versus average torque for line-to-line load unbalance.
Fig. 4.9. \(I_{bc} \) versus average torque for line-to-line load unbalance.
Fig. 4.10. \(I_{ca} \) versus average torque for line-to-line load unbalance.
Fig. 4.11. I_a versus average torque for line-to-line load unbalance.
Fig. 4.12. I_b versus average torque for line-to-line load unbalance.
Fig. 4.13. \(I_c \) versus average torque for line-to-line load unbalance.
Fig. 4.14. Pulsating torque versus average torque for line-to-line load unbalance.
4.3 Transient case

The transient performance of the induction motor is presented for the following cases:

(1) Balanced direct on-line start of motor.

(II) Unbalanced direct on-line start of motor.

(III) The supply becomes unbalanced at slip of 0.03 and switching angle of 0°.

(IV) The supply becomes unbalanced at slip of 0.03 and switching angle of 90°.

(V) Balanced is restored.

The above mentioned situations are presented in Figures 4.15-4.19.
Fig. 4.15. Starting torque and speed characteristics for a balanced supply.
Fig. 4.16. Starting torque and speed characteristics for unbalanced supply.
Fig. 4.17. Transient characteristics when the supply gets unbalanced at a slip of .03 and switching angle of 0°.
Fig. 4.18. Transient characteristics when the supply gets unbalanced at a slip of .03 and switching angle of 90°.
Fig. 4.10. Transient analysis when balance is restored.
CHAPTER 5

CONCLUSIONS

The discussion and results of the previous chapters lead to the following points:

1. The dynamic circuit model gives a convenient method for detailed calculations of currents, average torque, pulsating torque and motor losses.

2. The phase-angle of the negative sequence voltage depends on the way the single-phase load is connected, as well as the phase to which it is connected. Hence, there is no simpler procedure to calculate the currents based on the magnitude of the negative sequence current only.

3. The superposition of the positive and negative sequence currents in the simplified model is not feasible.

4. The initial unbalanced transient behaviour of the motor for a direct line start has a slight difference from the balanced one.

 The amplitude of the oscillating torque is reduced by a small amount because of the negative developed torque.

5. The inertia of the motor keeps the transient speed fairly similar to that with a balanced source.

6. The changeover from balanced to unbalanced conditions and vice versa, under standard operating conditions presents a very stable performance of the motor and is not likely to cause any problems.
7. The pulsating torque is virtually independent of the load on the motor and the amplitude of this torque approaches half rated torque when the negative sequence is 5%. There may be some applications where this would make a simple induction motor unsuitable.

8. The open-line curve shows dependence on motor load since the negative phase sequence on open line is dependent on motor load.

9. Some characteristics for seemingly small unbalance are surprisingly close to those for the open-line situation.

Nowadays, many applications of induction motors are being employed with power converting equipment. Due to the non-linearity of the switching devices used in converters/inverters, harmonics are produced even when the supply is balanced. Therefore, with an unbalanced three-phase source, the generation of such harmonics will be greatly increased. Further studies that are being conducted presently, will investigate and analyse the harmonics generated for a three-phase, six-pulse, AC-DC converter under unbalanced supply conditions, where both the magnitude of the supply voltage and the phase angle are unbalanced.
REFERENCES

APPENDIX A
STATOR VOLTAGES

<table>
<thead>
<tr>
<th>Line-to-Neutral Load Unbalance</th>
<th>Phase Voltage (Magnitude / Angle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>V_{ab}</td>
</tr>
<tr>
<td>Balanced</td>
<td>120 / 30°</td>
</tr>
<tr>
<td>1% unbalance</td>
<td>117.04 / 29.93°</td>
</tr>
<tr>
<td>5% unbalance</td>
<td>109.94 / 29.78°</td>
</tr>
<tr>
<td>10% unbalance</td>
<td>100.78 / 29.51°</td>
</tr>
</tbody>
</table>

Table A.1. Stator voltages for line-to-neutral load unbalance.

<table>
<thead>
<tr>
<th>Line-to-Line Load Unbalance</th>
<th>Phase Voltage (Magnitude / Angle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>V_{ab}</td>
</tr>
<tr>
<td>balanced</td>
<td>120 / 30°</td>
</tr>
<tr>
<td>1% unbalance</td>
<td>120.17 / 28.59°</td>
</tr>
<tr>
<td>5% unbalance</td>
<td>120.41 / 27.18°</td>
</tr>
<tr>
<td>10% unbalance</td>
<td>121.11 / 24.40°</td>
</tr>
</tbody>
</table>

Table A.2. Stator voltages for line-to-line load unbalance.
APPENDIX B

MOTOR PARAMETERS:

Stator resistance, \(R_s = 0.2 \, \Omega \)
Stator reactance, \(X_s = 0.55 \, \Omega \)
Rotor resistance, \(R_r = 0.3 \, \Omega \)
Rotor reactance, \(X_r = 0.55 \, \Omega \)
Magnetizing reactance, \(X_m = 16.0 \, \Omega \)
APPENDIX C

COMPUTER PROGRAM

C THIS PROGRAM DETERMINES THE VALUES OF CURRENT,
C TORQUE, AND COPPER LOSSES FOR ANY SET
C OF VOLTAGES APPLIED TO AN INDUCTION MOTOR
C FOR SPEEDS RANGING FROM 1620-1800 RPM.

PROGRAM CAL(INPUT,OUTPUT)
C
C LEGEND OF VARIABLES TO BE USED
C
RS = STATOR RESISTANCE
RR = ROTOR RESISTANCE
XM2 = MAGNETIZING REACTANCE
XS2 = STATOR LEAKAGE REACTANCE
XR2 = ROTOR LEAKAGE REACTANCE
XM3 = MUTUAL REACTANCE BETWEEN STATOR PHASES
XS3 = STATOR SELF-REACTANCE
XRT = ROTOR SELF-REACTANCE
XMR = MUTUAL REACTANCE BETWEEN STATOR-ROTOR
C CASE = CHARACTER THAT SPECIFIES THE CONDITION
C WHETHER THE MOTOR IS OPERATING UNDER
C NORMAL OR OPEN-LINE CASES.

COMPLEX A(5,5),A3(5,5),B(5),B1(5),C(5),CC(5),CL(3),SUM
COMPLEX AO(4,4),A4(4,4),BO(4),B2(4),CD(4),CCO(4)
REAL ANGB(5),ANGC(5),ANGCC(5),WA(5),RESI(5,5),REAC(5,5),G(5,5)
REAL RESI0(4,4),REA0(4,4),GO(4,4),XY(5,4)
INTEGER PP,CA(5,4),CT(4,5)
CHARACTER CASE*2

PI=ACOS(-1.)
READ*,PP
C
PP= POLE PAIRS

CALL MATSET(RESI,REAC,G,6)
C
* SET UP WORKING MATRICES

3 READ*,CASE
IF(CASE.EQ.'C') THEN
C
* NORMAL OPERATION

'READ*(B(I),I=1,5)
C
* READ IN STATOR VOLTAGES

PRINT1
1 FORAMAT('I')
CALL COND(B,5)
C
* CHECK IF SUPPLY BALANCED OR NOT

CALL ANGLE(B,ANGB,5,PI,1)
C
* FIND PHASE ANGLES OF VOLTAGES

PRINT99
99 FORMAT(/'SPEED',5X,'CUR(AB)',5X,'CUR(BC)',5X,'CUR(AC)',5X,
* 'CUR(A)',6X,'CUR(B)',6X,'CUR(C)',6X,'TORQUE',6X,'PULSE TOR')
C
* SET UP OUTPUT TABLE

0055,SP=1620,1800,4.5
C
* RUN FOR SPEEDS FROM 1620 TO 1800 RPM

W=2.*SP/PI/60.
C
* CHANGE FROM RPM TO RAD/SEC

CALL ASET (RESIS, REAO, G, A, W, 5, PP)
CALL SOLUA (A, A3, B1, C, WA, 5, SUM)

* FORM IMPEDANCE MATRIX *
CALL SOLUA (A, A3, B1, C, WA, 5, SUM)

* DETERMINE THE PHASE CURRENTS *
CALL ANGLE (CC, ANGC, 5, PI, 0)

* FIND PHASE ANGLE OF CURRENTS *
CALL LNEC (C, CL, 5)

* GET LINE CURRENTS *
CALL CONJ (C, CC, 5)

* DETERMINE CONJUGATE OF CURRENTS *
CALL ANGLE (CC, ANGC, 5, PI, 0)

* FIND ANGLE OF CONJUGATE *
CALL LNEC (C, CL, 5)

* GET AVERAGE TORQUE *
CALL PTRQ (G, CC, PP, TRQ, 5)

* GET PULSATING TORQUE *
CALL LOSS (C, RESIS, COPLOS, 5)

* GET COPPER LOSSES *
PRINT 115, SP, (ABS (CL(L)), L = 1, 3), (ABS (CL(L)), L = 1, 3), TRQ, PULT

105 FORMAT (2X, F6.1, 4X, 3(F7.4, 5X), 3(F7.4, 5X), F7.4, 5X, F7.4, 5X)

55 CONTINUE
GO TO 3
ELSE IF (CASE.EQ. 'O') THEN

C * OPEN-LINE CONDITION *

READ*, (B(L), L = 1, 5)

C * READ IN THE STATOR VOLTAGES AND *
C * FORM THE RESISTANCE, REACTANCE AND ROTATIONAL *
C * COEFFICIENT MATRICES FOR THE OPEN-LINE CASE. *
PRINT 116

116 FORMAT ('1/4X, 'OPEN LINE CASE' '/4X, 'RESISTANCE MATRIX' /')
CALL LNEC (RESIS, CA, CT, RESIS, 5, 4, XY)
PRINT 117

117 FORMAT (6X, 'REACTANCE MATRIX'/)
CALL CTZC (REAC, CA, CT, REAO, 5, 4, XY)
PRINT 118

118 FORMAT (6X, 'G MATRIX'/)
CALL CTZC (G, CA, CT, GO, 5, 4, XY)

C * TRANSFORM THE INPUT VOLTAGES FOR OPEN-LINE CASE *

D072.1 = 1.4
SUMM0 = 0
D070. J = 1.5
SUMM = SUMM + CT (I, J) * B (J)

70 CONTINUE
B (I) = SUMM

72 CONTINUE
PRINT 99,
D075, SP = 1620, 1800, 5
C SP = 1620.

W = 2 * SP * PI / 60.
CALL ASET (RESI0, REAO, G0, AO, W, 4, PP)
CALL SOLUA (AO, A4, 80, B2, CO, WA, 4, SUM)
CALL PHCUR (CO, C, CA, 4, 5)
CALL LNEC (C, CL, 5)

CALL CONJ (C, CC, 5)
CALL ANGLE (C, ANGC, 5, PI, 0)
CALL ANGLE (CC, ANGC, 5, PI, 0)
CALL LNEC (C, CL, 5)

CALL PTRQ (G, CC, PP, TRQ, 5)
CALL LOSS (C, RESIS, COPLOS, 5)
PRINT 115, SP, (ABS (CL(L)), L = 1, 3), (ABS (CL(L)), L = 1, 3), TRQ, PULT

75 CONTINUE
ENDIF

999 STOP
END
SUBROUTINE MATSET (RESIS, REAC, G, K)

- This subroutine uses the d-q parameters of the induction motor and transforms them to 3-phase stator, 2-phase rotor values.
- These values are then used to form the resistance, reactance and G matrices.

REAL RESIS(K,K), REAC(K,K), G(K,K)

T = 2.43
PI = ACOS(-1.)
TH1 = PI * T
TH2 = 2. * TH1
READ *, RS, RR, XS2, XR2, XM2
PRINT 100, RS, RR, XS2, XR2, XM2
100 FORMAT ('1', ',', 'STATOR RESISTANCE', 'B1, F4.2, ',', 'R', 'TOR RESISTANCE', 'B1, F4.2, ',', 'STATOR REACTANCE', 'B1, F4.2, ',', 'R', 'TOR REACTANCE', 'B1, F4.2, ',', 'MAGNETIZING REACTANCE', 'B1, F4.2, ',)

XM3 = XM2 * T
XS3 = XS2 + (XM2 * T)
XRT = XR2 + XM2
XMSR = XM2 * SQRT(T)

DO7, I = 1, 3
DO5, J = 1, 5
 IF (I .EQ. J) THEN
 RESIS(I, J) = RS
 REAC(I, J) = XS3
 G(I, J) = 0.
 ELSE
 IF (J .LE. 3) THEN
 RESIS(I, J) = 0.
 REAC(I, J) = XM3 * COS(TH1)
 G(I, J) = 0.
 ELSE
 RESIS(I, J) = 0.
 REAC(I, J) = 0.
 G(I, J) = XRT / (120 * PI)
 ENDIF
 ENDIF
ENDIF
5 CONTINUE
7 CONTINUE

DO9, I = 4, 5
DO8, J = 4, 5
 IF (I .EQ. J) THEN
 RESIS(I, J) = RR
 REAC(I, J) = XRT
 G(I, J) = 0.
 ELSE
 RESIS(I, J) = 0.
 REAC(I, J) = 0.
 G(I, J) = XRT / (120 * PI)
 ENDIF
ENDIF
8 CONTINUE

9 CONTINUE
G(5, 4) = -G(4, 5)
REAC(1, 4) = XMSR
REAC(4, 1) = XMSR
REAC(1, 5) = 0.
REAC(5, 1) = 0.
REAC(2, 4) = XMSR * COS(TH1)
REAC(4, 2) = REAC(2, 4)
REAC(3, 4) = XMSR * COS(TH2)
REAC(4, 3) = REAC(3, 4)
REAC(2, 5) = XMSR * SIN(TH1)
REAC(5, 2) = REAC(2, 5)
REAC(3, 5) = XMSR * SIN(TH2)
REAC(5, 3) = REAC(3, 5)
G(4, 1) = 0.
G(4, 2) = XMSR * SIN(TH1) / (120 * PI)
G(4, 3) = XMSR * SIN(TH2) / (120 * PI)
G(5, 1) = XMSR / (120 * PI)
G(5, 2) = -(XMSR * COS(TH1) / (120 * PI))
G(5, 3) = -(XMSR * COS(TH2) / (120 * PI))
SUBROUTINE COND(B,K)

* THIS SUBROUTINE FINDS OUT IF THE SUPPLY VOLTAGE IS BALANCED OR
* UNBALANCED AND PRINTS VOLTAGE UNBALANCE FACTORS (BOTH NEMA AND VUF).

COMPLEX B(K),H1,H2,VP,VN

H=SORT(3.)
H1=COMPLX(-.5,H/2.)
H2=COMPLX(-.5,-H/2.)
D=.001
D1=ABS(B(1))-ABS(B(2))
D2=ABS(B(2))-ABS(B(3))
D3=ABS(B(3))-ABS(B(1))
IF((D1.GE.D).OR.(D2.GE.D).OR.(D3.GE.D))THEN

PRINT125

125 FORMAT(5(6X,'UNBALANCED SUPPLY'/,55X,19('-')))
VP=(B(1)+(H1*B(2))+(H2*B(3)))/H
VN=(B(1)+(H2*B(2))+(H1*B(3)))/H
AVG=(ABS(B(1))*ABS(B(2))*ABS(B(3)))/3.
AMX=O.
DO95,I=1,3
AX=AVG-ABS(B(I))
IF(AX.GT.AMX) AMX=AX
95 CONTINUE

PRINT130,ABS(VN/VP),AMX/AVG

130 FORMAT(10X,'VOLTAGE UNBALANCE FACTOR = ',20X,F5.3,'/',10X,'NEMA UNBALANCE FACTOR = ',20X,F5.3) ELSE

PRINT126

126 FORMAT(5(6X,'BALANCED SUPPLY'/,57X,17('-'))) ENDF
RETURN
END

SUBROUTINE ASET(RESIS,REAC,G,A,W,K,P)

* FORM THE IMPEDANCE (Z) MATRIX.

COMPLEX A(K,K)
REAL RESIS(K,K),REAC(K,K),G(K,K)
INTEGER P
P=POLE PAIRS
DO20,I=1,5
DO15,J=1,5
A1=RESIS(I,J)+(G(I,J)*W*PP)
A2=REAC(I,J)
A(I,J)=COMPLX(A1,A2)
15 CONTINUE
20 CONTINUE
RETURN
END

C * SOLVES FOR THE CURRENT IN THE STATOR AND ROTOR.

COMPLEX A(K,K),B(K),A3(K,K),B1(K),C(K),SUM
REAL WA(K)
PI=Aacos(-1.)
N=K
IA=K
M=1
IB=K
IJOB=0
DO25,K1=1,K
 B1(K1)=B(K1)
 DO23,K2=1,K
 A3(K1,K2)=A(K1,K2)
23 CONTINUE
25 CONTINUE
CALL LBT1C(A,N,IA,B,M,IB,IJOB,WA,IER)

C * THIS SUBROUTINE IS FROM IMSL. THE RESULT IS THE
C * SOLUTION OF A COMPLEX MATRIX IN VECTOR B.
C * VECTOR B IS CHANGED TO C AND THE ORIGINAL
C * CONTENTS RESTORED, I.E., STATOR VOLTAGES.

SUM=CMPLX(0.,0.)
DO30,K1=1,K
 C(K1)=B(K1)
 B(K1)=B1(K1)
 SUM=SUM+(A3(1,K1)*C(K1))
 DO27,K2=1,K
 A(K1,K2)=A3(K1,K2)
27 CONTINUE
30 CONTINUE
RETURN
END

SUBROUTINE ANGLE(B,ANG,K,PI,N)

C * FIND PHASE ANGLE OF CURRENT OR VOLTAGE.

COMPLEX B(K)
REAL ANG(K)
RTD=180./PI
DO66,I=1,K
 X1=REAL(B(I))
 X2=AIMAG(B(I))
 IF((X1.GT.0.).AND.(X2.GT.0.))THEN
 ANG(I)=ATAN(X2/X1)*RTD
 ELSE IF((X1.GT.0.).AND.(X2.LT.0.))THEN
 ANG(I)=360.-ABS(ATAN(X2/X1))*RTD
 ELSE IF((X1.LT.0.).AND.(X2.LT.0.))THEN
 ANG(I)=180.+(ATAN(X2/X1)*RTD)
 ELSE IF((X1.LT.0.).AND.(X2.GT.0.))THEN
 ANG(I)=180.-ABS(ATAN(X2/X1))*RTD
 ELSE IF((X1.EQ.0.).AND.(X2.GT.0.))THEN
 ANG(I)=90.
 ELSE IF((X1.EQ.0.).AND.(X2.LT.0.))THEN
 ANG(I)=-90.
 ELSE IF((X1.EQ.0.).AND.(X2.EQ.0.))THEN
 ANG(I)=0.
 ELSE IF((X1.LT.0.).AND.(X2.EQ.0.))THEN
 ANG(I)=180.
 ELSE IF((X1.GT.0.).AND.(X2.EQ.0.))THEN
 ANG(I)=-180.
 ENDIF
IF(N.EQ.1) PRINT135,B(I),ABS(B(I)),ANG(I)
135 FORMAT(5X,F10.5,' +J ',F10.5,10X,' OR ',8X,F9.5,' AT ',F9.5,' DEGREES')
66 CONTINUE
RETURN
END
SUBROUTINE CTZC(X,CA,CT,Y,K,NK,XV)

C * HERE THE [C]*[Z]*[C] IS OBTAINED FOR THE OPEN-LINE CASE:

REAL X(K,K),V(NK,NK),XV(K,NK)
INTEGER CA(K,NK),CT(NK,K)

DO48,i=1,K
DO47,j=1,NK
 CA(I,J)=0
 CT(J,I)=0
47 CONTINUE

48 CONTINUE
CA(1,1)=1
CA(2,2)=-1
CA(3,3)=1
CA(4,4)=1
CT(1,1)=1
CT(2,2)=-1
CT(3,3)=-1
CT(4,4)=1
DO54,i=1,K
 DO53,j=1,NK
 XV=0.
 DO50,l=1,K
 XX=XV*X(I,L)*CA(L,J)
 50 CONTINUE
 XV(I,J)=XX
52 CONTINUE

54 CONTINUE
DO64,i=1,K
 DO63,j=1,NK
 YY=0.
 DO60,l=1,K
 XX=XX+CT(I,L)*XV(L,J)
 60 CONTINUE
 YY(I,J)=XX
62 CONTINUE

64 CONTINUE
PRINT 120,((Y(I,II),II=1,NK),II=1,NK)
120 FORMAT(4(4X,F8.4))
RETURN
END

SUBROUTINE TORQ(G,C,CC,P,TRQ,K)

C * DETERMINES AVERAGE TORQUE USING [I] TRANSPOSE CONJUGATE TIMES THE
C * G-MATRIX TIMES [I].
COMPLEX C(K),CC(K),TR
REAL G(K,K)
INTEGER P
TR=CMPLX(0.,0.)

DO37,i=1,K
 DO35,j=1,K
 TR=TR+(G(I,J)*C(J)*CC(I))
35 CONTINUE
37 CONTINUE
TRQ=TR*P
RETURN
END
SUBROUTINE PTRQ(C,G,ANGC,PP,PULT,K)
C
* PULSATING TORQUE AS WELL AS AVERAGE TORQUE ARE DETERMINED.

IMPLICIT COMPLEX(Z)
COMPLEX C(K)
REAL G(K,K),ANGC(K)
INTEGER PP

PI=ACOS(-1.)
DTR=PI/180.
DO80,I=1,K
 ANGC(I)=ANGC(I)*DTR
80 CONTINUE

A1=G(4,2)*ABS(C(2))*ABS(C(4))
A2=G(4,3)*ABS(C(3))*ABS(C(4))
A3=G(5,1)*ABS(C(1))*ABS(C(5))
A4=G(5,2)*ABS(C(2))*ABS(C(5))
A5=G(5,3)*ABS(C(3))*ABS(C(5))

Z1=CMPLX(A1*COS(ANGC(2)+ANGC(4)),A1*SIN(ANGC(2)+ANGC(4)))
Z2=CMPLX(A2*COS(ANGC(3)+ANGC(4)),A2*SIN(ANGC(3)+ANGC(4)))
Z3=CMPLX(A3*COS(ANGC(1)+ANGC(5)),A3*SIN(ANGC(1)+ANGC(5)))
Z4=CMPLX(A4*COS(ANGC(2)+ANGC(5)),A4*SIN(ANGC(2)+ANGC(5)))
Z5=CMPLX(A5*COS(ANGC(3)+ANGC(5)),A5*SIN(ANGC(3)+ANGC(5)))
Z2=-Z2+Z1+Z3+Z4+Z5
ZP=Z2*PP
PULT=ABS(ZP)

C X1=A1*COS(ANGC(4)-ANGC(2))
C X2=A2*COS(ANGC(4)-ANGC(3))
C X3=A3*COS(ANGC(5)-ANGC(1))
C X4=A4*COS(ANGC(5)-ANGC(2))
C X5=A5*COS(ANGC(5)-ANGC(3))

C TORC=(X1+X2+X3+X4+X5)*PP
RETURN

SUBROUTINE PHCUR(C,C1,CA,NK,K)
C
* GET THE PHASE CURRENTS FOR THE OPEN-LINE SITUATION.

COMPLEX C(NK),C1(K),X
INTEGER CA(K,NK)
DO80,I=1,K
 X=0.
 DO78,J=1,NK
 X=X+CA(I,J)*C(J)
 78 CONTINUE
 C1(I)=X
80 CONTINUE
RETURN

END
SUBROUTINE LINEC(C,CL,K)
 * GETS THE LINE CURRENTS FROM PHASE CURRENTS
 * OBTAINED IN SUBROUTINE SOLUA.
 COMPLEX C(4),CL(K)
 CL(1)=C(4)-C(3)
 CL(2)=C(2)-C(1)
 CL(3)=C(3)-C(2)
 RETURN
END

SUBROUTINE CCNJC(C,CC,K)
 * GETS THE CONJUGATE OF THE CURRENT.
 COMPLEX C(K),CC(K)
 DO32,I=1,K
 XI=REAL(C(I))
 X2=AIMAG(C(I))
 CC(I)=CMPLX(X1,X2)
 CONTINUE
 RETURN
END

SUBROUTINE LOSS(C,RESIS,COPLOS,K)
 * OBTAIN POWER LOSSES.
 COMPLEX C(K)
 REAL RESIS(K,K),
 COPLOS=0.
 DO45,I=1,K
 Z=ABS(C(I))**2
 COPLOS=COPLOS+Z*RESIS(I,I)
 CONTINUE
 RETURN
END