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Abstract

Toward an Efficient Query Processor

for a Deductive Database System

Chi Hang Yim

Bottom-up processing, a popular paradigm for query processing in deductive
databases, consists of two phases — rewriting and evaluation. One of the most ef-
ficient rewriting strategies is the (generalized) Magic Sets method, while the Semi-
Naive Evaluation is one of the most efficient evaluation methods known in the sense of
avoiding duplicate inferences. Recently, a substantial amount of work has been done
on improving these methods. We propose a rewriting method, called Magic Filters,
which improves on the Magic Sets method, by cutting down the size of the magic
predicate, while retaining the tight filtering property of Magic Sets. Our method over-
comes some serious problems experienced by other claimed improvements on Magic
Sets in the literature. We also propose an evaluation method, called Forward-Semi-
Naive Evaluation, which improves on the existing Semi-Naive Evaluation method by
removing half the number of auxiliary relations required, while introducing a small
overhead. Finally, we integrate Magic Filters and Forward-Semi-Naive in a way that
they can take advantage of each other. We also provide analyses on the above methods
and compare them with existing methods. The results show significant improvements

over the existing methods.
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Chapter 1

Introduction

Recently there has been considerable interest in deductive databases in both the
database and Al communities, with apparently different goals. The database com-
munity, upon recognizing the inadequacy of the relational database technology for
many applications, has taken an active interest in deductive databases with a view to
move toward a more powerful data model allowing powerful query languages. On the
other hand, the search for a viable technology for supporting knowledge base systems
has sparked the interest of the Al community in this field.

Recursion is at the heart of the enhanced expressive power enjoyed by deductive
database query languages. However, there is a price for this enhanced expressive
power, in the form of high complexity of recursive queries. This observation has
sparked substantial research into the development of efficient query processing strate-
gies for recursive queries. The reader is referred to [Sag90,UlI89,BR86] for a survey.
[BR86] provides a performance evaluation of many of these strategies. It is customary
to picture query processing in deductive databases as comprising two phases: () a
rewriting phase in which the given query program is transformed into an equivalent
program which exploits and propagates the bindings in the given query and hence
executes faster, and (i¢) an evaluation phase in which the transformed program is
evaluated bottom-up using some evaluation method.

The (generalized) magic sets method [BR87,UlI89] and its variants (e.g., see
[Ker89,Ram88,Sek89,Vie89]) are among the most popular rewriting methods in wide
use. In fact, these methods are known to be equivalent [Bry89,U1i89a] in that they all




enforce the same amount of tightness in filtering out the generation of useless tuples
with respect to the given query. The traditional (tacit) assumption that the size of
the magic predicates will be much smaller than the size of the IDB predicates (see
chapter 2 for their definition) has been questioned and examples are now known where
the size of the magic predicates can dominate the overall query computi-tion. This
has led researchers to investigate ways of implementing the filtering performed by
the magic predicate using 2 number of filters, obtained by breaking down the magic
predicates (filters) over subset of the arguments of the magic predicate [Sag90,5588].
However, a close inspection reveals that while the size of the filters may be much
smaller than that of the magic predicate, the restriction imposed by the filters can
be much less tight than that imposed by the magic predicate. After a careful study
of this problem, we realize the loss of tightness of filtering is the result of a loss of
connectivity among the individual filters which are maintained independently (see
section 3.3). Two fundamental questions surrounding this problem are: (i) when is
it desirable to dissect the magic predicate into a number of smaller filters? and (iz)
given a situation where the magic predicate is thus broken down into smaller filters,
how can we realize the same tightness of filtering enjoyed by Magic Sets? In gen-
eral, it is impossible to completely characterize when the decomposition of the magic
predicate is desirable because this issue is often data dependent. However, we show
in this thesis that using a structural approach we can characterize those situations
when it is “safe” to decompose the magic predicate. We also address the second ques-
tion by showing how to “synchronize” the various filters in order to achieve the tight
filtering property of magic sets. We propose a Magic Filters [LY91] transformation
that realizes these goals.

We note that there have been numerous works on improving on the performance
achieved by Magic Sets on some special subclasses of programs. These works essen-
tially fall into two categories. Those in the first category employ conceptually dif-
ferent methods [Agr87,Cha81,HN88,Nau87,Nau88,RHDM86). Those in the second,
also applicable to special classes of programs, modify the Magic Sets method, possi-

ble integrating with other methods [AGNS90,Nai89,NRSU89]. Although the Magic
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Filters method would fall into the second category, it should be emphasized that the
applicability is as general as Magic Sets, and the improvement is not restricted to
any subclass of programs.

On the evaluation side, Semi-Naive Evaluation [UlI89] is one of the most effi-
cient evaluation methods known, in that it avoids duplicate inferences. Indeed, a
nice property of Semi-Naive Evaluation is that it does not repeat inferences. The
main argument in favor of bottom-up methods in the literature is their inherent set-
orientedness as opposed to the tuple-oriented nature of top-down methods [Ull89a).
An interesting question in the wake of this is, “is it possible to make Semi-Naive more
set-oriented?”. In an independent research, [RSS90] presents a conceptual framework
called Generalized Semi-Naive Evaluation, where the central idea is to make the facts
generated during evaluation of a rule immediately available to the evaluation of sub-
sequent rules. This has been shown to reduce the number of rule applications and
cut down some other overheads under a variety of assumptions. In this thesis our
concern has been the investigation of (i) the overheads associated with rule applica-
tions, (%) the relationship between rule applications and set-orientedness, and (iii)
the overheads associated with bookkeepin::. viz., in maintaining numerous temporary
predicates in a Semi-Naive type of evaluation. Our objective has been to reduce
the overheads and increase the extent of set-orientedness. We discuss a Forward-
Semi-Naive Evaluation embodying these principles and compare it with Semi-Naive
Evaluation.

Finally, we analyze the performance of the methods proposed in this thesis and
compare their performance with that of their ancestors, using simulation. We also
study the impact of data selectivity and structure on the performance of the methods.
Our results bring out the savings achieved by the Magic Filters over Magic Sets over
the range of data tested in the simulation. Our results also show (according to
the metrics for the overheads and set-orientedness used by us) Forward-Semi-Naive
Evaluation indeed reduces the overheads stated above and exhibits considerably more
set-orientedness compared to Semi-Naive Evaluation.

The thesis is organized as follows. In Chapter 2, we review the preliminary no-




tions. In Chapter 3, we describe the Magic Filters transformation with examples.
We identify the problem with a basic method and show how it is solved in the im-
proved method. Chapter 4 discusses the Forward-Semi-Naive evaluation method. In
Chapter 5, we discuss the performance analysis of the methods and discuss the re-
sults. Finally, in Chapter 6, we sumnmarize our contributions and discuss directions

for further research.



Chapter 2

Background

In this chapter, we briefly review the basic notions of Datalog related to this thesis.
The reader is referred to [BR86,L1086,U1188,U1189)] for a complete description of the
fundamental concepts of deductive databases and logic programming. Datalog can
be viewed as a simplified version of general Logic programming, corresponding to the
language of function-free Horn clauses. A Datalog program is a collection of rules and
facts which are in the form of (function-free) Horn clauses. A Horn clause has the
general form H :- G,,...,Gy, where H,G,...,G, are all atomic formulas of the form
p(t1,...,t), where p is a predicate symbol and ¢; are terms in the form of constants
or variables. The left hand side (H) is commonly called the rule head or goal. The
right hand side is the rule body and the atoms G; are called subgoals. The rule is
to be interpreted as a logical implication, meaning that H is true whenever all the
subgoals G; are true. If the rule body is empty, then the clause is called a fact, else
it is a (proper) rule. We use the following notation: predicate symbols and constants
are strings starting with a lower case letter, while variables are strings starting with

an upper case letter. For example, consider the following Datalog program:
ry : father(john,bill) :-
ry : father(george, john) :-
r3 : par(X,Y) :- father(X,Y).
ry : grandpar(X,Y) :- par(X, Z),par(Z,Y).
The strings father, par and gandpar are predicate symbols, the strings john,bill, and

george are constants, and the symbols X,Y and Z are variables. r, represents the

i,




anc(X.Y)

anc(X2o) par(Zo,Y)

anc(X,21) par(21.20)

par(X,21)

Figure 2.1: A proof tree

fact “John is the father of Bill”, and similarly r; is the fact “George is the father of
John”, The other rules r3 and r, represent the rules “if X is the father of Y, then
X is a parent of Y”, and “if X is a parent of Z and Z is a parent of Y, then X is
a grandparent of Y”. A rule is called range restricted if all variables appearing in
the head also appear in the body. The range restrictedness assumption is commonly
made and is a reasonable assumption necessary for ensuring that a Datalog program
always generates finite answers from finite databases. This is related to the so called
notion of safety and is discussed in detail in [Ull89). We henceforth assume that all
rules in our Datalog programs are range restricted.

There are two types of predicates in a Datalog program. They are the IDB (Inten-
sional Database), and the EDB (Extensional Database) predicates. IDB predicates
are predicates that appear in the heads of rules, while EDB predicates are predicates
that appear only in rule bodies. Associated with each predicate (IDB/EDB), there

is a corresponding relation, consisting of a finite set of tuples of arity corresponding



to the arity of the predicate.

In a rule of the form p(t;,...,t) - q1(u1y-« .y um)ye oy gu(vay - .., %), we say that
the predicate p depends on each of the predicates gy,..., q,. Clearly, EDB predicates
do not depend on any predicate. The depends on relation between predicates can be
transitively extended in the obvious manner. We say that a predicate is recursive
if it depends on itself, either directly or indirectly. A Datalog program is called
recursive if it contains at least one recursive predicate. A rule containing a subgoal
which depends on the head is a recursive rule. Otherwise it is an ezit rule. Given a
Datalog program, defining various (IDB) predicates in terms of the database (EDB)
predicates, one can query the database in terms of the predicates defined by the
program using a denial (goal) clause of the form :- p(Zy,...,%)? where p is defined
in the program and ¢; are variables or constants. E.g., the query :- grandpar(X,bill)?
asks for the set of all grandparents of bill. The reader is referred to [CGT89) for an
excellent informal introduction to Datalog. In the sequel, by a (logic) query program
we mean a Datalog program together with a query. The formal semantics of Datalog
program is the well known least Herbrand model semantics which is equivalent to the
least fixpoint semantics [L1o86). Thus the set of answers for a query - p(t;,...,#4)?
against a program P are those tuples p which are true in the least Herbrand model
of P.

Given a Datalog program P (assumed recursive without loss of generality) and
predicate p defined by P, we can construct a proof tree for a given tuple p(ty,...,1)
as follows. Unify p(¢y,...,%;) with the head of any rule defining p and generate
corresponding subgoals from the rule body. If there are any IDB subgoals generated,
the same process is recursively repeated. We can terminate this construction if at
some point we use exit rules in the generation of subgoals, for each of the IDB subgoals

generated. Consider the well-known ancestor program.

anc(X,Y) - par(X)Y).
anc(X,Y) - anc(X,Z),par(Z,Y).

Here anc(X,Y) denotes “X is an ancestor of Y” and par(X,Y’) denotes “X is a par-
ent of Y’. Fig. 2.1 shows an example proof tree for anc(X,Y), of height 3. By

7



mapping the various variables in the atoms corresponding to the leaves to constants,
we actually obtain a database. It follows from the construction that the atom cor-
responding to each internal node of this proof tree will be derived by the ancestor
Datalog program, given this database. Proof trees are used for constructing databases

with special properties in Chapter 5 .

2.1 Semi-Naive Evaluation

Two basic approaches of processing logic query programs are the so-called top-down
(also called backward chaining) and the bottom-up (or forward chaining) approaches.
The reader is referred to [BR86,U1188,U1189,L1086] for a through discussion of various
top-down and bottom-up methods as well as a comparison of their relative efficiency.
A basic edge of top-down methods over (traditional) bottom-up methods is their
goal-orientedness. Recent advances in the bottom-up technology have made available
numerous bottom-up methods which can effectively simulate the goal-orientedness of
the top-down methods. In addition, bottom-up methods possess a set-oriented fea-
ture (i.e. a set of answers is generated at a time) as opposed to the tuple-oriented
nature (i.e. one answer is generated at a time) of top-down methods. This is signif-
icant because in the database context, the number of disk accesses forms a sizeable
proportion of the overall query processing cost. It has been widely recognized [Ull89a)
that for database applications bottom-up methods arc more advantageous than top-
down methods. We limit ourselves to bottom-up evaluations in the sequel. One way
to compute the least fixed point in a bottom-up fashion is to repeatedly fire all the
rules until no new facts can be generated. This is known as the Naive evaluation
method. Obviously, Naive Evaluation is an extremely inefficient method in the sense
that inferences are being made repeatedly. That is, at the i* iteration, all the infer-
ences made from the 1°¢ to (i — 1)* iteration are made over and over again. A more
widely used bottom-up evaluation is the Semi-Naive [U1189,BR86] method. The idea
behind the Semi-Naive Evaluation is to “differentiate” the rules. That is, for each
IDB predicate p we have an auxiliary predicate Ap to represent the change of p in

the current iteration, defined as Ap = p; — pi—1, where p; denotes the set of tuples



of p generated in 1 iterations. We can differentiate a rule in a manner reminiscent of

the product rule of differential calculus. We replace a rule

h :- 15+« 5 9n.

having one or more IDB subgoals, by one rule for each IDB subgoal. If g; is an IDB

subgoal, then we have the rule

Ah g1y 0i-1, AgiJists - o1 ne
For example, consider the rule
p(X,Y) :- ¢(X,Y),r(X,Y).
where q, and r are both IDB predicates We then have two rules for Ap.

AP(XaY) - AQ(X’ Y))T(Xa Y)
Ap(X,Y) - ¢(X, Y),AT(X, Y).

The intuitive idea behind Semi-Naive Evaluation is to have the incremental relations
at the start of iteration i contain only the new tuples generated from the (i — 1)t
iteration. The technique is summarized in Fig 2.2. The algorithm expects a collection
of n safe rules with EDB relations R, ..., Rk, IDB relations P,,. . ., Ps, with associ-
ated incremental relations APy, ...,AP,,. We also use a set of temporary relations
Q1y- - - , @m to save the new results for the next iteration. The function eval accepts a
rule, a set of EDB relations, a set of IDB relations, and a set of incremental relations

as inputs and returns the result of evaluating the input rule.

2.2 The Magic Sets Method

A direct bottom-up evaluation of a query program, using Semi-Naive Evaluation is
often wasteful, for most of the tuples generated may have no bearing on the query.
Typically, the least fixpoint associated with a program is huge. Given a query, only
tuples which constitute answers for the query are of interest. For example, consider

the program in Fig. 2.3 for computing the set of same generate cousins. One may be




fori:=1tondo
begin
if r; is ezit rule then
AP; := AP; Ueval(ry, Ry,...,R:,0,...,0,0,...,0);
[* P; is defined by r;, where 1 < j <m*/

P; := P;UAP;;
end,

repeat
fori:=1tondo
begin
if r; is not ezit rule then
Q@; '=Q; U eval(r;, Ry,..., R, P,..., Py, APy,...,AP,);
end;

fori:=1tomdo
begin
AP; := Q;~ P
P, := F,UAPF;
end;
until AP; = 0 for all ;;

Figure 2.2: Semi-Naive Evaluation

10



only interested in knowing the set of same generation cousins of, say “Ann”. Thus,
we pose a query “:-sgc(ann, X)?" to the program. Thus, the program becomes a
query program — a program with a query. It is desirable to rewrite a query program
into a more effective form before evaluating it by a method such as the Semi-Naive
Evaluation. The underlying idea of rewriting is to generate a rewritten program P,
from a given a logic program P, and a query :-G? such that P, is equivalent! to
P, with respect to G, and P, is more efficient than P, when evaluated in a bottom-
up fashion. One of the most popular rewriting methods is the (generalized) Magic
Sets method, referred to simply as the Magic Sets method in the sequel. Before
we discuss how the Magic Sets method rewrites a program with respect to a given
query, we need several preliminary notions. A binding pattern of an n-ary predicate
p is a string of length n over the alphabet {b, f}, where the occurrence of & (f)
in a position indicates the corresponding argument of p is bound (free). A binding
pattern of p signifies the pattern with which p is “called” during query evaluation.
For instance, the binding pattern bf for the query predicate sgc denotes that the
first argument is bound, and the second argunient is free for predicate sgc. There are
two types of information passing. The first type is the backward information passing
also known as backward propagation [KKL86]. This corresponds to the propagation of
binding information in a predicate in a rule body to the head of a rule with the same
predicate. The second type of information passing is known as sideways information
passing or sideways propagation [KL86). In this process binding information is passed
from the rule head to a ricdicate in the rule body, or from one piedicate to another
predicate in the rule body via common variables. Note that sideways information
passing is local to a particular rule. As an example, consider the query program of
Fig. 2.3. Note that the query there corresponds to the binding pattern bf. Query
evaluation begins by a backward propagation which passes on the query binding to
the heads of rules r; and r, which propagate that information across the rule bodies
using sideways propagation. Specifically, this leads to the binding ann to the first

arguments of person, and parin the body of r; and r; respectively. Upon evaluation,

1This means that both P, and P, generate the same set of answers for the query :-G7.
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ry : 8gc( X, X) :- person(X).
ry : 8gc( X, Y):- par(X, X1),s9¢( X1, 1), par(Y, V1).
:- sgc(ann, X)?

Figure 2.3: Same Generation Cousins Query Program

one obtains bindings for the second argument of par which are propagated sideways
to the occurrence of anc which is thus called with the (same) binding pattern sgc®/.
The cycle repeats when this binding for sgcis “hooked” back to the heads of r; and
r, via a backward propagation.

Basically, the Magic sets method implements this information passing by trans-
forming the original query program to a more efficient program. This transformation
can be viewed as mimicking the top-down approach which restricts the generation of
useless tuples — tuples not relevant to the computation of the answer. We shall briefly
discuss the Magic Sets method with an example shown in Fig. 2.3. In Fig. 2.4, which
shows the Magic transformed program, the magic predicate mg can be viewed as a
filter, used to restrict the generation of useless tuples. The supplementary predicates
sup; and sup; are essentially used for an efficient realization of sideways propagation
and avoiding repeated join computations. Rule r{ initializes the filter mg, and r{ up-
dates the filter via backward propagation. Rules 4 and r} implement sideways prop-
agation while r4 and r§ compute tuples of sgc after applying the filters to restrict the
generation of useless tuples. The reader is referred to [BMSU86,BR87,Ram88,UlI89]
for a cumprehensive discussion of the (generalized) Magic Sets method and its vari-
ous extensions. [AGNS90,Nai89,NRSU89] describe some improvernents on the Magic

Sets method for the class of linear Datalog programs.
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711 mg(Xy) - sup(X, Xi).

1"2 ' supl(XaXl) - mg(X),par(X, Xl)'

751 supa(X, X1, 1)) == supi(X, Xy),89¢(X1, Y1)
T; ' sgc(X,Y) - sup2(XaX11Y1)apar(Y7 Yi)
5t 89c(X, X) :- mg(X), person(X).

rs: mg(ann) :-.

Figure 2.4: Same Generation Cousins Program Transformed Using Magic Sets
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Chapter 3
The Magic Filters Method

One of the most popular methods of bottom-up query evaluation for deductive
databases is the magic sets method [BMSU86,BR87]. Indeed the Magic Sets method,
(or one of its variants [Ker89,Ram88,5¢k89,Vie89]) has more or less become the stan-
dard facility for recursive query processing. It is known that the magic sets method
and its variants are equivalent in the sense that they generate the same set of facts
for the IDB predicates [Ull89,Bry89]. All these methods essentially mimic top-down
evaluation with memoing. However, in the overall time spent on processing a query,
the time for computing the magic facts should also be accounted for. While a formal
analysis of this has never been made - it is intrinsically hard - it appears that there
is some tradeoff between the efficiency of computation of the magic facts and the
effectiveness of the restriction imposed by the magic predicates.

Kifer and Lozinskii [KL86] proposed a framework for efficient evaluation of recur-
sive queries, which introduces the idea of restricting data flow using dynamic filtering.
In [KL86], corresponding to each argument of each predicate, there is a filter which is
updated dynamically at run time. [SS88] uses a unary filter for each bound argument
of each predicate. Computation of these filters can be performed relatively efficiently.
However, these filters can be much less tight than the magic predicates in restricting
the generation of “useless” tuples. Sagiv [Sag90] describes the envelope method which
uses several different envelopes to restrict the evaluation of rules. Envelopes are al-
ways of the order of the EDB in size and thus smaller than magic predicates, but are

less tight than magic predicates. Although dynamic filtering [KL86] is proposed as



an evaluation framework, whiie the methods in [SS88,5ag90] are rewriting methods,
it can be seen that [SS88,5ag90] are particular realizations of the ideas presented in
the general framework in {KL86).

In comparing the dynamic filtering of [KL86] with magic sets we observe that the
dynamic filtering method has the advantage that the filters computed are small in
size compared to magic predicates. On the other hand, the restriction imposed by
these filters can be far less tight than the one imposed by magic predicates. In this
chapter, we show that there is a structural way to approach this tradeoff between filter
size and filter effectiveness. Specifically, we show that under certain circumstances,
it is possible to keep the sizes of filters small while still preserving the effectiveness
of restriction achieved by magic predicates. In the next section, we motivate our
method with an example. In Section 3.2, we describe the basic magic filters method
in detail. In Section 3.3, we identify the problems associated with the basic method.
In Section 3.4 we discuss the improved method which overcomes these problems.

Finally, we discuss some pertinent implementation issues and conclude the chapter.

3.1 Motivation

The objective of a rewriting method of query processing is to transform the given
query program into a new equivalent program, which has restrictions, in the form
of filters, imposed on original rules, together with rules for computing these filters.
Ideally, we would like filters which are small compared to the original IDB predicates,
yet these filters should be as tight as possible in restricting the generation of useless
tuples for the IDB predicates. It is well known that the restriction imposed by the
magic predicates is by far the tightest among such “filters” produced by rewriting
methods. Although imposing tight restrictions on rule evaluation is of obvious im-
portance, the amount of work required for computing the restrictions, as well as their
sizes should be considered in the overall time for query processing. Indeed, there
are examples in which the computation of the magic predicates dominates the over-
all query processing time. The natural question to ask is whether it is possible to

keep the sizes of filters small while preserving the tightness of restriction enjoyed by
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ro: p(X,Y,2) :- flat(X,Y, Z).
r: p(X,Y, 2) :- upa(X, X,),upb(Y, Y1), p(X1, Y1, Z,),down(Z, Z,).
- p(1,2,2)?

Figure 3.1: A Simple Program With a Query

magic predicates. Qur thesis is that the magic sets method sometimes keeps essen-
tially unrelated sets of bindings together in the form of one magic predicate, which
unnecessarily increases the size of the filter (i.e., the magic predicate). To under-
stand the considerations involved let us consider an example. Fig. 3.1 shows a simple
program and a query. Notice that if subgoals are processed in the order given, then
the binding pattern associated with the IDB predicate p is unique. Fig. 3.2 shows
the magic transformed program corresponding to Fig. 3.1. Notice that the predicates
upa and upb are not connected at the time they are processed. Thus, the bindings
for X,,Y) in sup,(X,Y, X;,Y;) are computed by performing a Cartesian product be-
tween the bindings of X; in sup,(X,Y,X;) and those of Y; in upb(Y,Y;)!. Indeed
an optimal way to compute the join of the three relations wpa(X, X;), upb(Y,Y;),
and p(X1, Y1, Z,) is to first join upa (or upb) with p and join the result with upb (or
upa). The mechanism of the magic sets method has the effect of forcing the order
(upa a upb) < p on the above join expression. The consequences are: (i) an un-
necessary Cartesian product upa x upb (since upa and upb are not connected at this
point, upa ba upb = upa x upb) is computed, and (i) the second join (upa < upb) 0 p
involves a substantially large relation corresponding to the Cartesian product. Let us
next consider how the dynamic filtering method would handle this situation. For the
case of comparison, we cast the method of [KL86] as a rewriting method, which essen-
tially implements the same idea. Fig. 3.3 shows the rewritten program according to
the method of dynamic filtering. The dynamic filtering method essentially maintains
one filter for each bound argument of each predicate. For example, there are two

filters associated with p, namely {p' and tp?. Note that the rules in the transformed

1Even though sup; and upb share the variable Y, a quick reflection will reveal that sup, essentially
corresponds to the Cartesian product upa x upb, with restrictions imposed by mp
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ro : mp(1,2) :-.

™ mp(le},l) - sup2(X’ Y‘Xl, ]/1)

T2 ! SUPI(X1Y7X1) - mp(X7Y)’upa(XaXl)-

r3 : sup(X,Y, X1, Y1) - supl(X,Y,Xl),upb(Y,Y]).
T4 supl’-(Xa},?Zl) - sup2(X’Y,XlaK)vp(xh)flazl)-
rs : p(X,Y, Z) - mp(X)Y), flat(X,Y,Z).

re : p(X,Y, Z) - sups(X,Y, Z;),down(Z, Z,).

Figure 3.2: A Magic Sets Transformed Program

program in Fig. 3.3 are divided into five groups. The rules in Group 1 initialize the
filters with the query constants. The rules in Group 2 filter the various relations
using the associated filters, to create the filtered relations. For instance, the rules rg
and r;o define the filtered relation ip, using the two filters associated with p. Group 3
contains the transformed original rules, making use of the filtered predicates. Group
4 rules implement sideways propagation. Finally, the rules in Group 5 update the
filters, via a backward propagation. Notice th~* the problem of Cartesian product
is clearly avoided by the dynamic filtering method. In addition, the sizes of filters
are in general much smaller than the size of the magic predicate which carries the
Cartesian product of two independent bindings, and expands this Cartesian product
through recursion. However, we can create instances of the relations upa, upb, down,
and flat showing that the restriction imposed by dynamic filters can be much less
tight than the one imposed by the magic predicate. This motivates the question:
can we combine the ideas of magic sets and dynamic filters in order to realize the
advantages of both? We propose the method of magic filters as a partial answer to

this question.

3.2 Magic Filters — The Basic Method

Before discussing the magic filters method, we need several notions. We assume the
reader is familiar with the usual terminology associated with bottom-up processing,
such as binding patterns, sideways information passing, etc. as discussed in Chap-

ter 2. The first notion we need for our method is a more general concept of a binding
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* Group 1 - Initialization of Filters

r
T2 .
r3 .
T4 .

tupal(1) .
tupb!(2) :-.
tflat’(1) :-.
t flat?(2) :-.

* Group 2 - Filtering Original Relations

Ts ¢
Te ¢
Tr7 .
Tg ©
Tg
Tio0 ©
™1 ¢

tflat(X,Y, Z) :- { flat*(X), flat(X,Y, Z).
tflat(X,Y, Z) :- { flat®(Y), flat(X,Y, Z).
tupa(X, X1) :- tupa (X),upa(X, X1).
fupb(Y, Y1) - tupb(Y),upb(Y, Y1)
tn(X1, 1, Z,) - TPI(Xl)aP(Xl, Y1, Z,).
Ip(Xla},th) - tpz(},l),P(Xl, ],I,ZI)-
tdown(Z, Z,) :- tdown?*(Z,),down(Z, Z,).

* Group 3 - Generation of Answers Using Filtered Relations

T2 ¢
™3’

p(X,Y, Z) - 1flat(X, Y, Z).
P(X,Y,Z) - iupa(XaXl)aIupb(Ya}/l)’ ip(Xla K’Zl)vidown(za Zl)'

* Group 4 - Sideways Propagation.

T4 .
™5
T :

tp' (X)) - tupa(X, X1).
tp*(Y1) +- tupb(Y,Y1).
tdown?(Z,) :- tp(X1, Y1, Z1).

* Group 5 - Backward Propagation.

™7
™s:
T19 ¢
To0 -

tflat*(X) - tp'(X).
tflat®(Y) - tp*(Y).
tupal(X) :- tp'(X).
tupb!(Y) - tp*(Y).

Figure 3.3: A Dynamic Filtering Transformed Program
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Vi = {q}

V2 = {QI,Q:hrl}
q _6 y1 V2 V3 AL 9—:‘ Va = {q3,r3}

Ve= {"2, "4}

Figure 3.4: Hypergraph Representation of a Rule

pattern. Since our intention is to keep independent bindings separate, we need a
notation for indicating which bindings are related. In this context, a predicate may
well receive its bindings from several predicates (instead of one). Thus we need to
know the connectivity between a predicate and its various sources of bindings. We
choose hypergiaphs as a convenient formalism for this purpose.

A hypergraph [Ber73] is a pair H = (N, E), where N is a finite set of nodes
and E is a set of hyperedges, E C 2V, such that UE = N. We represent a rule
(more precisely the body of a rule) as follows. We let N be the set of distinct
variables in the body of the rule. A predicate p(X,,...,X,,), where X; are (not
necessary distinct) variables is represented using a hyperedge which contains exactly
those nodes corresponding to the distinct variables among Xj,...,Xn. For example,
Fig. 3.4 shows the hypergraph representation corresponding to the rule p(X,Y, 2)
- g(X,Y,X,W),r(X,2,Y,Z). Associated with each node we have a set indicating
the argument positions of predicates where the variable corresponding to the node
appears. For simplicity, we use a predicate name to refer to the hyperedge it cor-
responds to. Next, we define the notion of a binding group. Consider a rule h :-
91,-.-,9m. Suppose that the subgoals g; are processed in the order given. Let H
denote the hypergraph corresponding to this rule and H,, be the set of edges corre-
sponding to ¢1,...,gi-1.- Then by a binding group of g; we mean any maximal set of
nodes of the hyperedge g; that are connected in the hypergraph induced by H,,. For

example, consider the rule

p(X7 Y, Z) -0 (Xs X1)992(y, Yl)vgii(z, Zl),g4(xl, X'b Y2)7
95(11, Y2, 23),96( 21, Uh), ¢(X2, Yz, 22, W2, Up).
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Figure 3.5: Hypergraph Representation of Binding Groups

Fig. 3.5 shows the hypergraph representation of this rule. (For clarity, we omit the
argument position sets associated with the various nodes, which can be obtained by
inspection.) The binding groups of ¢ are {V;,V,,V3} and {V;} which correspond to
the argument positions {¢;, ¢2,¢3} and {gs}.

We next need a generalized notation for binding patterns capable of representing
binding groups. This will be used later to determine which bindings should be kept
separate. We use the letter b with different subscripts to denote different binding
groups. More precisely, the binding pattern of a predicate p is a string of length
n over the alphabet {4,,...,b,,f}. We refer to the symbols b; as binding symbols.
The interpretation of a binding pattern is that those argument positions for which
the binding pattern has the symbol f are free and all other arguments are bound.
Furthermore, two argument positions of p are in the same binding group if and
only if the binding pattern contains the same symbol, say b;, for those positions. For
example, for the predicate g corresponding to Fig. 3.5, the associated binding pattern
is ghb1bif2. Notice that this notation not only conveys the information about the
bound/free status of arguments; it also specifies the binding groups among arguments.

With each rule we associate a set of filters. These filters are determined by the
binding pattern received by the head predicate of the rule. There is exactly one filter
corresponding to each binding group in the binding pattern. The arguments of a filter
are those corresponding to the various arguments in a binding group. For instance,

consider the rule
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P(X, Y) B T(X’ Xl), S(YaYl)aq(Xl’ )/1)

Suppose the rule head received the binding pattern p%. Then we create two filters
ip1 and {p, corresponding to the two binding group. The filter {p, corresponds to
the first argument of p while {p; corresponds to the second.

We next describe how to determine the binding pattern of a predicate in a rule
body, from the binding pattern of the rule head. Let & :- g;,...,g, be a rule and let
h receives the binding pattern ®. Then g; receives the binding pattern ¢°, where
satisfies the following conditions.

(i) if a bound argument position? in g; is connected to an output variable correspond-
ing to the binding symbol &; in , then this argument should be assigned the symbol
b; in B, without violating (:t).

(2) if two bound argument positions in g; are connected to output variables corre-
sponding to the same binding symbol &; in a, then these argument positions should
correspond to the same binding symbol b; in 3.

(#72) if two bound argument positions of g; belong to the same binding group, then
they should both correspond to the same binding symbol in £.

With these preliminary notions, we next describe the basic method of magic filters.
For simplicity, we shall assume that in the programs we consider, the subgoals in
rules are so ordered as to guarantee a unique binding pattern for each IDB predicate.
There is no loss of generality in this assumption. The techniques of transforming
an arbitrary program so the unique binding property holds are a simple extension
of similar techniques for the traditional notion of binding pattern [UlI89], and will
be discussed in Section 3.4, where we also discuss several heuristics for obtaining
“good orders” for processing subgoals in a rule. In view of the above, it follows that
each rule in the program will receive a unique binding pattern for its head predicate,
during the course of query processing. In the following we describe the basic method
of using magic filters, with reference to the program of Fig. 3.1. Note that for the
given ordering of subgoals in the recursive rule, the predicate p is always called with

the same binding pattern p*%/., We rewrite the program with respect to the query
gP p prog P

2Detecting these is a routine task, and can be done as discussed in [Uli89].
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- p(1,2, Z)? as follows.
Step 1 We create a filter corresponding to each binding group of each IDB predicate.
For our example, this leads to two filters for p, which we denote tp; and {p,. We

initialize the filters using the query constants. Thus, we have the unit clauses

tpi(1) =
tp2(2) -

Step 2 We apply the various filters to the original rules. We implement this in a way
that generalizes the idea of supplementary predicates. To make the distinction clear,
we call the predicates generated by this process filtered predicates. An example will

clarify the process. Application of the filters to the first rule yields the rule
P(X, Y1 Z) - TPI(X)’ tPZ(Y)v flat(X, Ya Z)

For each rule containing several subgoals, we determine the predicates q,..., g,, with
rank 7;,...,1, in the subgoal ordering, such that (i) ¢; contains at least one bound
output variable®, and (ii) g; is disjoint from all predicates whose rank in the subgoal
ordering is less than i;. For each of the predicates ¢; identified above, we create the
filtered version of ¢; by applying the appropriate filter(s). The filters to be applied
are identified by using the argument position(s) that each filter corresponds to. For
example, for the second rule in Fig. 3.1, the predicates to be filtered are easily seen
to be upa and upb. The filter to be associated with upa is {p, since it corresponds tc
the first argument of p and upa contains the output variable X which occurs in the

first argument of p in the head. Thus, we generate the filtered predicates

Iupa(Xs Xl) - fpl (X)’ upa(X1 Xl)
tupb(Y, 1) == tpa(Y), uph(¥, Y).

Next we implement sideways propagation (of information) in the form of rules. This
process is, in principle, similar to the use of supplementary predicates in the magic
sets method. The major difference is that instead of a chain of supplementary predi-

cates, we may have several streams of such predicates, generated by the fact that we

3An output variable in a rule is any variable that appears as an argument of the head predicate.
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tpi(1) =-
tpa(2) =
X,Y, Z) - tpi(X), 1p2(Y), flat(X,Y, Z).
fupa(X, X3) - tp1(X), upa(X, X;).
$upb(Y, 1) :- {po(Y), upb(Y, 17).
1P(X’KZI) - Iupa(X, Xl),Iupb(Y, K),p(Xh },‘hzl)'
p(Xs ]/a Z) - 1P(Xs Ya Zl)a down(Z, Zl)
(X1) = tupa(X, Xy).
p(Y1) - tupb(Y, Y1).

Figure 3.6: A Basic Magic Filters Transformed Program

always try to maintain independent bindings separate. Another difference is that two
different streams could merge whenever the streams share some arguments with some
common predicate. For instances, the two filtered predicates above may be viewed
as two independent supplementary streams. The next subgoal to be processed is the
predicate p, and since the streams share common arguments with p, we merge them

as follows.
Ip(X,Y, Zy) - fupb(X, Xy), Jupb(Y, Y1), p(X1, Y1, Z1).

The rest of the sideways propagation is conducted in a similar manner. In our exam-
ple, since there is only one subgoal left, we complete the processing of the first rule

using the rule
p(X,Y,2) - 1p(X,Y, Z,),down(Z, Z;).

This completes the “filtering” of all original rules.
Step 3 In this step, we complete the definition of the filters by generating the rules
for computing them. This is done by identifying the filtered predicates which contain

the arguments corresponding to the filters. Thus we obtain the rules

tp1(Xh) = fupa{X, X,).
tp2(Y1) - Tupb(Y, 11).

This completes the transformation. The transformed program is shown in Fig. 3.6.
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Relation upa Relation upb Relation flat

XX Y|V X\|\Y|Z
1] 3 2|7 1110f11
1] 4 218 6212
315 819 319113
4| 6 7 {10 5| 7114

Figure 3.7: EDB Relations upa, upb, flat

3.3 The Column Mixing Problem

In this section, we discuss a source of inefficier ~v of the basic method described in
the previous section. Consider the example of Section 3.2. Compared with the magic
transformation, which would create a single filter containing the Cartesian product of
the bindings for X; and Y; and hence force the join of upa, upb, and p to be evaluated
as (upa X upb) o= p, the transformation we just described has the advantage of keeping
independent bindings separate and hence avoiding unnecessary Cartesian products.
However, we would ideally like to maintain the same effective restriction as is imposed
by the magic predicate on the generation of useless tuples. We shall show that in
general this may not be possible if we use the basic magic filters transformation
above. Let us illustrate the problem involved with an example. For the program of
Fig. 3.1, suppose that the EDB consists of the relations shown in Fig. 3.7. Using
the rules for the filters tp, and {p,, we see that these filters will contain the bindings
{1,3,4,5,6} and {2,7,8,9,10} respectively. It is not hard to see that the answer
to the query :- p(1,2,2)? is the empty set. However, the transformed program of
Fig. 3.2 generates the tuples < 1,10,11 >,< 6,2,12 >,< 3,9,13 >,< 5,7,14 > for
the relation p. Clearly, all these tuples are useless with respect to the given query.
Using this idea, it is easy to construct examples on which the program obtained
using the basic transformation produces an arbitrary number of useless tuples. We
can generalize the observation from the preceding example as follows. Let P be any
Datalog query program and let the associated magic predicate mp be n-ary, n > 1.

Suppose that the associated basic magic filters transformation uses n unary filters
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tP1,...,1Pa in place of the n-ary magic predicate. (The extension of the following
argument to the case where k < n filters are used, possibly because of the structure
of the rules, is straightforward and hence there is no loss in generality.) Consider the
Semi-Naive Evaluation of the programs obtained using the Magic Sets and the basic
Magic Filters transformations. Suppose that at the end of 1 iterations, each filter {p,
has m‘{ + mg + o+ m;’ distinct tuples, where m',’; tuples were added in iteration k,
k =1,...,1. The total number of tuples in the various filters is 3°7_, (mi+---+ml).
Note that these tuples really correspond to [1}-,(m] + - + m}) bindings. On the
other hand, for the same situation, the total number of tuples in the magic predicate
is at most 34_,(m} *mZ---+m}). In this case, the number of bindings is of course
exactly the number of magic tuples. In general, the number of bindings represented by
the n filters can be arbitraryly larger than the number of magic tuples. For example,
if each filter adds the same number m of tuples in each iteration, the number of
magic tuples is 2. m" while the number of bindings captured by the filters is (i- m)™.
Although the size of the filters can be smaller than the size of the magic predicate,
this argument shows that the filtering employed by the filters is much less tight than
is employed by the magic predicate. Thus, the basic filter method may produce a
large number of useless tuples. This feature of the basic transformation is extremely
undesirable. Notice that this is not offset by the fact that the filters are smaller than
the magic predicate. We note that the argument above also applies to the methods
described in {KL86,5588]. In Section 3.4, we describe a method which solves this
problem. For convenience of future reference, we refer to the problem above as the

problem of column mizing.

3.4 Magic Filters — The Improved Method

A careful examination of the problem of the basic method, illustrated in Section 3.3,
reveals the following. The reason for the lack of effectiveness of the filters is because
when they are applied to the rules, we apply all pairs of possible bindings for X
and Y to the rules. Thus, in addition to applying pairs of bindings for X and Y

that correspond to the same iteration, we also apply binding pairs that belong to
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L ”’l(o,l) -

ra2: tp2(0a2) -

r3: P(X, Y’ Z) - ’(Pl(i,X)a’fpz(iaY), flat(X,Y, Z)'

Tq: 1upa(Xa Xl) - 1’p1(i,X),upa(X, Xl)'

rs : fupb(Y, Y1) - 1p2(4, Y), upb(Y, 11).

Te - 1P(X1KZI) = tpl(ivx)a 1p2(i,Y), Iupa(X7 Xl)v 1Upb(),, }q),p(Xlal/la Zl)
r7: P(X, Y, Z) - IP(X,Y,ZI),(IOU)TI,(Z, Zl)

rs : tp1(next(i), Xi) - tm(i, X),tupa(X, X1).

re : tpa(nezt(i), Y1) - tpa(i, V), fupb(Y, Y1).

Figure 3.8: An Improved Magic Filters Transformed Program

different iterations. For instance, for the EDB considered in Section 3.3, the pairs
<1,2>,<37>,<3,8><4,7>,... are examples of binding pairs of X and Y
that belong to the same iteration. On the other hand, in pairs such as < 1,10 >,
< 6,2 >, the bindings for X and Y are generated in different iterations. Since in
the filtering method we maintain independent bindings separately, the “connection”
between pairs of bindings provided by the iteration in which they are generated is
lost. This is the reason why the basic method is not effective in reducing the number
of useless tuples generated, in general. One way to solve this problem is to use a time
stamp, which intuitively corresponds to the iteration in which a binding is generated,
as one of the arguments of each filter. We illustrate the idea of time stamp using
the example of Section 3.3. Fig. 3.8 shows the rewritten program incorporating
time stamps. At the time the filters are initialized, the corresponding bindings are
associated with the time stamp 0. Let us momentarily ignore the issue of how to
generate successive time stamps correctly, and consider the application of filters to
the original rule. Notice that in re we insist that the bindings for X and Y should
have been generated in the same iteration, by equating the time stamps of the filters.
Recall that this is exactly the connection we need to ensure that useless combinations
of bindings are not applied to the variables in rules. Thus, our next concern is
how to compute the time stamps correctly when we update the filters in backward
propagation. Notice that we need a way of generating unique time stamps for each

set of bindings generated in the various filters. At the same time, we also need
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to synchronize bindings corresponding to the same iteration of different filters. A
natural way of enforcing this synchronization is to associate the same time stamp
with these bindings. For this purpose, we use a function nezt(z), where i is a time
stamp, defined as follows. Recall that backward propagation refers to the passing of
bindings froin an IDB predicate in a rule body to a rule with this predicate as its head.
For example, rules rg and rg in Fig. 3.8 implement backward propagation on the filters
tp1 and tp; respectively. In general, a filter may experience backward propagation
more than once in a given iteration (e.g., see the original query program in Fig. 3.10
and the Magic Filters transformed program in Fig. 3.12). The function next(i) is
implemented as follows. If  is being considered during backward propagation for the
first time, then next(:) denotes maz +1 where maz derotes the current maximum of
the number of times backward propagation has been performed®. Otherwise, ¢ must
have been considered at least once before. In this case, next(i) denotes the value
nezt(i) that was generated when i was considered for the first time. We remark that
the nezt function does not have to be implemented literally as described above. The
description above is only a logical view of the nezt function. The same effect can be
achieved by simply updating the time stamps of the set of filters corresponding to
the same binding pattern with the same value.

We shall now show the algorithm of rewriting using magic filters. Some criteria for
ordering the subgoals in rules are shown in Fig. 3.9. Order of processing of subgoals
can have a significant impact on the performance of the system. Unfortunately,
there are no general criteria that can be used for all kinds of situations, and the
one in Fig. 3.9 are to be viewed as good heuristics useful for many situations. (The
priorities are in descending order, and the symbol > represents more preferable).
Next, we shall discuss the complete Magic Filters rewriting algorithm. The algorithm
is summarized in Fig. 3.11. The algorithm follows a “depth-first” approach, that is,
whenever the program encounters a backward propagation, it will first process the
backward propagation. The significance of depth-first will be discussed in Chapter 4.
We shall begin by briefly describing the algorithm. The program accepts a set of filters

4Notice that even within one iteration of evaluation of the rules, backward propagation may be
performed (perhaps corresponding to different filters) several times.
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1) predicate with binding > predicate without binding
2) EDB predicate > IDB predicate

3) more arguments bound > less arguments bound

4) less arguments > more arguments

Figure 3.9: Criterion for Ordering Subgoals

r : p(X,Y,Z) :- flati(X,Y, Z).
2 : p(X,Y, Z) :- upa(X, Xy),upb(Y, 1), p(X1, Zy, Y1), down(Z, Z,).
- p(1,2,2)?

Figure 3.10: A Program With Non-Unique Binding Pattern

as input. For each appropriate rule with respect to the input filters, we first order
the subgoals according to the heuristics suggested in Fig. 3.9. We then repeatedly
select a subgoal p, and do the following until all subgoals are selected. For each
p, we define the corresponding filtered predicate by generating a new rule. But if
p is the last subgoal selected, we redefine the original rule. In addition, if p is an
IDB, then we process the backward propagation corresponding to p first. We shali
illustrate the method with reference to the program and query shown in Fig. 3.10.
Using appropriate orders for processing subgoals, we find that two distinct binding
patterns are generated for the predicate p namely p%/, and ph/%,

We create a filter corresponding to each binding group of the query predicate. In this
case, this leads to two filters for p, which we denote 1pr’ b2/ and 1pg’b"’f . We initialize
the time stamps to zero, and initialize the other arguments with the corresponding

query constant. Thus, we have the unit clauses

tph*(0,1) =
tp%(0,2) =

Corresponding to the binding pattern p*%2/, We rewrite the rules as follows. We

transform the first rule r; to

p(X,Y, Z) - 1955 (4, X), tph* (3, ), flat(X,Y, Z).
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procedure rewrite(fil : set of filters);

/* Input : a set of filter corresponding to the same binding pattern */
[* Output : a set of rewritten rules corresponding to fil */
begin
for each rule corresponding to fil do
begin
Order subgoals;
repeat
Select a subgoal p;
if p is an IDB predicate then
begin
if the binding pattern of p is new then
begin
f := create_newfilters(p);
rewrite( f);
end
else
generate rules to update the existing filters;
end;
if p is the last subgoal then
redefine the original rule with p
else
Create filtered predicate corresponding to p;
until all subgoals processed;
end;
end;

Figure 3.11: Algorithm for Magic Filters
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For r;, we select upa, and upb and generate the following rules for the filtered predi-

cates.

tupah®/ (X, X,) - 191" (4, X), upa(X, X,).
tupt (Y, Yy) - 1935/ (3, Y), uph(Y, 7).

The next subgoal we select in the ordering is p. Since p is an IDB predicate, according
to the algorithm we generate the filters corresponding to p. At this moment, the first
argument and the third argument of p receive bindings from fupa®®/ and jupbbi®z/
respectively. Since we want to generate the transformed rules in the “depth-first”
order, we begin processing the current binding pattern pb/%2. Thus, we create the

set of filters corresponding to pb /b

1p’1"fb’(nemt(i),X1) - Tpglbaf(iax)’Iupablbz,(X’XI)'
tpn % (next(:), Y1) - 1p2% (i, Y), fupt®/ (Y, 13).

We next rewrite the rule v, with respect to p* /2.
P(X,Y,2) = tpr 7" (i, X), 193 (5, 2), flat( X, Y, 2).

We then rewrite r,. The subgoals we choose with respect to p?/% are upa and down.

We generate the rules for the filtered predicates.

tupa® /b2 (X, X;) - Tpll”fb’(i,X),upa(X,Xl).
tdown®/%(Z, 2,) - 1p39%(i, Z), down(Z, Z,).

We next choose the subgoal p which is an IDB predicate. Hence we write rules for
the filters corresponding to the binding pattern p’/%2. Since these filters have already
been defined, we can view this process as an “update” to the existing filters. For the

same reason, we continue with the processing of p /%2,

191 (neat(d), X1) = 1677 (i, X), fupa /%2 (X, X,).

105" (neat(d), 24) = 19372, 2),4¢"(2, 2,).
The next predicate to be defined is the filtered predicate {p>f*. Since p is receiving
bindings (via sideways propagation) from several streams (see Section 3.2), we have

to use the filiers corresponding to the various binding groups in order to prevent

column mixing (see Section 3.3).
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12X, 2, 1) - 1017 (5, X), 120 (3, 2),
tupat /% (X, X, ), tdownt/%(Z, Z,), p(X;, 24, 3).

At this point, it only remains to generate the rule for p as far as the processing of

the binding pattern p*/* is concerned.
p(X,Y,Z) - 1% (X, Z, Y1) uph(Y, V7).

We now resume the processing of p**2/. This yields the following rules.

1 (XY, Z4) - 137 (4, X), 100 (4, Y),
Iupabxbzf(X, Xl)a Iupbblb?-’(y, Yl)v P(X], Zla Yi)
p(X,Y, Z) - iph%/(X,Y, Z1), down(Z, Z,).

The complete Magic transformed program is shown in Fig. 3.12.

3.5 Duplicate Elimination

In the bottom-up evaluation using a Semi-Naive type of evaluation method, one of
the most important functions is the elimination of duplicate tuples. This is necessary
not only for making the evaluation efficient, but for the termination of the evaluation
as well. Indeed the termination condition of the Semi-Naive Evaluation is that no
new tuples are generated for any IDB predicates. Since in the Magic Filters method
a number of individual filters in synchrony realize the effect of the magic predicate,
they have to be updated (with new tuples) synchronously in a bottom-up evaluation.
Suppose that there are k such filters {p;,...,1px. Recall that each filters carry an
extra column for the time stamp, which implements the synchronization. Suppose
that in some iteration the incremental relations corresponding to tuples generated
in that iteration are Afp,,..., Afpi. The duplicate check to be implemented should
logically correspond to the duplicate check on the magic predicate in that we should
report duplicates exactly when the magic predicate gets duplicates. Using this obser-
vation, we note that we should report duplicates exactly when there are duplications

in all incremental relations, for the same value of the time stamp. More precisely,
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tp*%(0,1) -
tp5:*/(0,2) -
p(X,Y, 2) = PP (i, X), 19557 (i, Y), flat(X,Y, Z).
1“1’05’6’!()(, Xl) - 1pl;162!(2-, X)’ upa(X, Xl)-
tupb®b! (Y, Y1) - 1p3° (3,Y), upb(Y, V7).
tpi1 /% (neat(i), X)) = 19327/ (4, X), fupa®®2/ (X, X;).
tps /% (neat(i), Y1) = 105/ (3,Y), tupbtt2/ (Y, 1r).
p(X,Y, Z) - tpi (i, X), 1p3 1" (i, Z), flat(X,Y, Z).
tupahft2 (X, X,) - tpp % (i, X ), upa(X, X,).
tdown® /% (Z, Z,) = tp2 7% (i, Z),down(Z, Z,).
tpi** (next(i), X1) = 1652755, X), fupa® /52 (X, X, ).
tpy* (neat(s), Z1) = tp3 1 (i, Z), 1% (2, Zy).
% (X, 2, Y1) = 19}7% (3, X), 1957, 2),
tupab¥2( X, X), tdown®/%(Z, Z,),p( X1, Z1, 1h).
p(X,Y, Z) - $p"1%(X, Z,Y,),upb(Y, 1h).
tph8I (XY, Z4) = 1o} (4, X), 15 (3, Y ),
tupa®b2! (X, Xy), fupb®® (Y, Y1), p(X1, Z1, V1),
p(X,Y,Z) - tp"%I(X,V, Z,),down(Z, Z,).

Figure 3.12: Non-Unique Binding Pattern Program Transformed By Magic Filters
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let us picture each filter {p; divided into distinct compartments, each holding tu-
ples corresponding to the same time stamp, with each cornpartment corresponding
to a distinct time stamp. Once the relations Atp,,...,Afpi are generated, we test
whether the tuples in Atp; are all contained in one single compartment of }p;, such
that all compartments correspond to the same time stamp, ¢ =1,..., k. We conclude
that there are no tuples generated for the filter predicates exactly when this condi-
tion holds. Otherwise, we update all filters {p; with the tuples in At{p; synchronously
and associate them with a new time stamp. Since our termination condition is thus

equivalent to that of Magic Sets, the termination condition can be seen to be correct.
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Chapter 4

Forward-Semi-Naive Evaluation
Method

Semi-Naive Evaluation is one of the well-known evaluation methods for bottom-up
evaluation of logic query programs. Since the fundamental edge of bottom-up process-
ing over top-down processing is its set-oriented nature (see Chapter 2), any improve-
ments in the “extent” of set-orientedness of an evaluation method can be expected
to cut down the overhead in query processing. In this chapter, we discuss an eval-
uation method, called Forward-Semi-Naive Evaluation (FSN) which seems to be an
improvement of the Semi-Naive method in this direction. In Section 4.1 we motivate
the quest for such an improvement. In Section 4.2 we describe the FSN method and
illustrate it with an example. In Section 4.3 we present an efficient implementation
of this method. Results of performance evaluation of this method compared with the
Semi-Naive method are discussed in Chapter 5. Finally, we briefly discuss the issue

of rule ordering relevant in the context of the FSN method.

4.1 Motivation

Asseen in Chapter 2, one of the advantages of bottom-up evaluation of logic programs
is its set-oriented feature. When sets of tuples are being fetched rather than a tuple
at a time, the amount of disk I/O is reduced. This suggests the more set-oriented
a method is the better in terms of disk I/O and related overhead. The Semi-Naive

Evaluation method is a widely used bottom-up evaluation method. Before consid-



ering how to improve the extent of set-orientedness, it would be useful to have a
measure for this property. The first measure that suggests itself is the number of
tuples generated per rule application. A careful consideration, however suggests this
measure is far from accurate and could mislead us to the conclusion that to improve
set-orientedness is to reduce the number of rule applications, where the number of
tuples that must be generated is assumed to be fixed. The problem is that there
could be numerous “non-effective” rule applications during an evaluation (see Sec-
tion 5.4 for an idea of the number of such applications for a typical query program).
A rule application is considered effective provided it generates some nonempty set of
tuples. Thus, a correct measure of set-orientedness seems to be the number of tuples
generated per effective rule application. Besides increasing set-orientedness, it would
be desirable to cut down the number of duplicate inferences! generated during an
evaluation. In Semi-Naive Evaluation method, rules can only make use of the tuples
generated from the previous iteration. Many rule applications cannot generate any
tuples due to this reason, even though new facts are actually generated in the current
iteration but are just made invisible to the subsequent rules. This seems to violate
the fundamental principle of set-orientedness in a bottom-up evaluation. In order
to improve the set-orientedness of Semi-Naive Evaluation method, we must be able
to make an application of a rule generate more tuples’. In addition, as seen above
Sem-Naive Evaluation also has the side effect of making many rule applications non-
effective. To look at this problem, let us consider a segment of a program shown in
Fig 4.1. There are n rules ry,...,7, in this program segment. In each rule r,, an IDB
predicate p; is defined. There is a subgoal p;~; in each rule r; except for r;, which
contains the subgoal p, instead. Consider the Semi-Naive Evaluation of the program
of Fig. 4.1. Suppose for simplicity that the only IDB subgoal in r, is p,~; and all
other subgoals are EDB predicates. Since each rule in Fig 4.1 has to wait for the

preceding rule to generate the required new facts for the corresponding IDB relation,

1Duplicate inferences signify the same tuple(s) being redundantly generated several times during
the course of an evaluation.

2Notice that the number of useful tuples that must be generated by the method is considered
fixed. The idea, then is to generate as many of those as possible in each iteration with the objective
of generating the entire set of tuples quickly.
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Figure 4.1: A Segment of a Typical Magic-Transform Program

it is not hard to see that each rule only generates (new) facts every n iterations. In
other words, we fire n rules in each iteration, but only one rule is able to generate
new facts. The applications of rules that are incapable of generating new facts are
obviously non-effective and essentially from an overhead. This overhead becomes se-
rious when n is large or when a program contains many segments similar to the one
shown in Fig 4.1. Notice that such program segments may be generated as a result
of the transformation of one rule in the original program using Magic Sets method
(or its variants, including Magic Filters®), in which case n is of the order of the num-
ber of subgoals in this original rule. An example of this typical Magic-transformed
structure can be found in the Magic-transformed program shown in Fig 3.2 in the
previous chapter.

It is quite clear that, there is a need to reduce the number of non-effective rule
applications, and increase the extent of set-orientedness. One approach to achieve
this goal is to make the newly generated facts available as soon as they are generated.
An independent research introducing this idea can be found in [RS590]. We note that
a major concerns there, is to order the rules in such a way as to minimize the number
of rule applications. The authors propose and study a number of rule orderings
and show that a so-called cycle preserving ordering of rules always minimizes the
number of rule applications. It should be noted that for certain classes of rules,
cycle-preserving order does not exist [RSS90]. In addition, the only known algorithm
for deciding the existence of this ordering requires O(n!) time, where n is the number

of rulesin the program. In this chapter, we take a simple and realistic approach which

3Magic Filters will generate several smaller segments, depending on the number of binding groups.
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uses a reasonable rule ordering, and our major concerns here are: §) to reduce all the
avoidable overheads through an efficient implementation, and ii) to increase the set-
orientedness of Semi-Naive Evaluation. To this end, we propose a method called
Forward-Semi-Naive (FSN) Evaluation, and discuss an efficient implementation of
this method.

4.2 The Forward-Semi-Naive Evaluation Method

The fundamental idea involved in the FSN method is essentially this: make new
facts generated by a given rule during Semi-Naive Evaluation available to subsequent
rules, possibly referring to that predicate, as soon as they are generated. While this
appears extremely simplistic, certain issues have to be addressed before this method
can be implemented effectively. In the following, we describe these considerations.
Although it seems to be a definite advantage to reduce the number of rule application
during a bottom-up evaluation, it would be undesirable if the simplicity of Semi-
Naive Evaluation were lost in the course of this improvement. The most difficult
part of implementing FSN is to update the incremental relations (see Chapter 2).
If we simply replace the temporary relation used in the Semi-Naive Evaluation (Q;
in Fig 2.2) by the correspending incremental relations, the incremental relations will
become as big as the original IDB relations. In order to implement the idea of FSN
efficiently, we must be able to remove tuples from the incremental relations such that
the tuples removed have already been used by all rules in the program. We shall

illustrate the difficulties involved via an example. Consider the following program

r:8(X,Y) - p(X,2),t(Z,Y).
r:p(X,Y) - (X, 2),8(Z2,Y).
r3: 4 X,Y) - s(X,2),p(Z2,Y).
Conceptually, the FSN representation of the program is
rAsTHYX,Y) - ApU(X, 2),8(2,Y)U pi(X, Z), At(2,Y).
ry  ApTTY(X, Z) - AsHY(X,2), t5(2,Y) U sTY(X, Z),A(Z,Y).
rh  ATHYXY) - AsHY(X, 2), ptY(Z, Y)Y U SN ( X, 2),Apt(2,Y).
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(For convenience we use the Union operator in the rules.)

Here, superscripts denote the most recent iteration in which tuples were generated.
E.g., Ap*t! contains tuples generated in iteration (Z + 1) (in addition, possibly, to
tuples generated in iteration ¢ and so on). Let us concentrate on how Ap is updated.
First, we execute rj. The tuples in Ap' become “old” with respect to r{. At this
point, the tuples in Ap* are “new” with respect to rj. Therefore we cannot 1emove
any tuples from Ap at this moment. We then execute r) and generatc some new
tuples for Ap*, updating it to Ap**!. Finally, executing rj}, all tuples in Ap**! are
old with respect to 5. But only some of the tuples in Ap**! are old with respect to
ry. Thus, we know that there are some tuples in Ap*t! which are old with respect
to all rules, and hence have to be removed. Some bookkeeping is necessary to decide

exactly which tuples in Ap™t! can be deleted.

4.3 An Efficient Implementation of Forward-
Semi-Naive Evaluation

As seen in the last section, the difficulty in updating incremental relations is that
for each IDB predicate in each rule, we need to know which tuples have been used
by all rules in the evaluation, from the corresponding incremental relation. In this
section, we propose an effective implementation method to solve this problem. For
the sake of clarity, we first describe the method from a logical point of view and then
describe an actual implementation written in the framework of a database manage-
ment system. Let us use the example consisting of the three rules rj,r5, 75 of the
previous section as a vehicle. We shall show not only it is possible to identify exactly
which tuples in an incremental relation have been used by a particular rule, but it
is also possible to do away with the need for physically maintaining the incremental
relations as separate relations. Notice that since each IDB relation is updated using
the new tuples collected in its incremental relation, there is an obvious storage redun-
dancy in maintaining an incremental relation separately. Thus, there is an obvious
gain in eliminating separate storage of incremental relations. Fig. 4.3 represents a

logical viewpoint of our implementation method corresponding to the example of the
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previous section. We use logical lines to delimit the sets of tuples of the relation p
which have been used by given rules. E.g., in Fig. 4.3(b) all tuples above the line
marked 3 have been used by rj while those above the lines marked 1 have been used
by r3. In particular the tuples between line 1 and 3 have been used by 4 but not r4.
Thus the tuples above line 1 have been used by all rules. Let us next consider how to
“update” or move these lines as rules are fired. Initially, the relation p is initialized
(using any initialization rules or ezit rules). Suppose, without loss of generality, that
this leads to a nonempty relation for p. The top portion of Fig. 4.3(a) represents
the corresponding state, signifying no tuple of p has been used by r} or r4,* which
is obvious since none of the (recursive) rules has been fired so far. After r} is fired,
we obtain the state corresponding to the second (from top) portion of Fig. 4.3(a).
At this point, all (no) tuples in p have been used by 7} (r}). After 4 is fired, the
lines corresponding to rj and rj do not change. However, r) could have generated
some tuples for p. This yields the corresponding state in Fig. 4.3(a). Finally, after
r4 is fired, the line for r] is not changed, although the line for r} is pushed down to
the bottom, since all tuples in p have been used by r} at this time. This conceptual
method can be generalized to any logic program in the obvious manner.

We next address the actual implementation of these logical lines. The major ques-
tion is how to implement these lines without affecting the physical organization of
the relations. In order to do this, we add an extra argument called tag, to each IDB
predicate. This argument takes a natural number as its value. Whenever new tuples
are generated for a relation, we associate them with a new value for tag. For each
IDB predicate p and for each rule r;, we maintain the maximum value of tag maz;
signifying the set of tuples of that IDB predicate which have been used by r;. Notice
that this maximum has to be computed once before every application of ;. The next
time we fire r;, we can select tuples of p with tag value greater than maz; to get
exactly those tuples of p which have not been used by ;. An example of maintaining
this maximum with respect to v} from the previous example is shown in Fig 4.2.

For clarity, we choose to illustrate the idea with SQL embedded in the C language.

4Since r4 does not depending on p, we omit r4 from consideration, while discussing the use of
tuples of p by rules.

39




The predicates p(X,Y),s(X,Y), and ¢(X,Y) become p(tag,X,Y),s(tag, X,Y), and
i(tag, X,Y) respectively. We also employ a global variable ¢ serving as the counter
for updating tag in all IDB relations. For each IDB predicate g in each rule r;, we
maintain two variables newg,, and oldg; for representing the new, and the current
tag value respectively. Just as the logical implementation outlined before, the imple-
mentation described here extends to arbitrary logic programs. We see that by using
this simple idea we are able to achieve significant savings - (i) reducing the number
of auxiliary relations by half, (ii)identifying exactly which tuples in the incremental
relations (which are implicitly represented inside IDB relation now) have been used
by the rules, so these tuples do not have to be considered in further rule applications.
These savings are achieved at a relatively low cost of adding an extra column to the

IDB predicate.

4.4 Rule Ordering

The order in which the rules are fired in a FSN type of evaluation is quite significant.
Indeed, in the worst case, the performance of FSN can degenerate to that of Semi-
Naive Evaluation if the ordering of rules is not “right”. To understand this, let us

consider the following rules.

r:8(X,Y) - q(X,2),s(Z,Y).
r: q(X,Y) - ¢(X,2),p(2,Y).
r3: p(X,Y) - a(X,2),p(2,Y).

Suppose that the rules are evaluated in the order given above. In this case, it is not
hard to see that FSN registers no improvement over Semi-Naive Evaluation. The
reason is that the tuples used by each rule are those from a previous iteration. E.g.,
r, needs tuples of ¢ and s, however, they have not yet been generated in the current
iteration. For the given rules the order r3 = r, — r; can beseen to be optimal in the
sense of maximizing set-orientedness. In [RSS90], it is shown that a so-called cycle-
preserving order always guarantees optimality in a formal sense. However, as noted

earlier this order need not exist for certain classes of rules and even when it does exist,
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select maz(tag)
into :news,
from s;

select maxz(tag)
into newt,
fromt;

insert into p

select 7, X,Y

from s,t

wheres.Y =t.X and s.tag > :olds,
union

select iz, X,Y

from s,t

wheres.Y =t.X and t.tag > :0ldt,
minus

select 17, XY

from p;

olds; = news;;
oldl; = newty;
i++

Figure 4.2: SQL Representation of FSN
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Figure 4.3: A Logical Representation of the Incremental Relations

generating it can impose an enormous overhead (it takes O(n!) time, where n is the
number of rules). A promising practical approach in rule ordering is the following,
A predicate p depends on a predicate ¢ whenever g occurs as a subgoal in some rule
of p. The idea then is to try to order all rules for ¢ before all rules for p whenever p
depends on ¢. In the event of a mutual recursion, the tie has to be broken arbitrarily.
We call this the depth-first ordering. The Magic Filters transformation algorithm has
actually been implemented incorporating the depth-first ordering of the rewritten
rules. It should be emphasized that the depth-first ordering is always possible for all

programs and generating such an ordering can be done quite efficiently.
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Chapter 5

Performance Analysis

In this chapter, we discuss the performance evaluation of the Magic Sets and Magic
Filters method as well as Semi-Naive and FSN evaluation method. A comprehensive
analysis of all methods is a separate topic of research by itself. In this thesis, our
concern has been understanding (i) how the gains achieved by the Magic Filters over
Magic Sets by avoiding the Cartesian product, vary as a result of changes in various
sets of data, and (i) similarly, how the improved set-orientedness of FSN over Semi-
Naive Evaluation is affected by the data parameters. Consequently, we have taken a
“typical” query program which brings out the structural improvement of Magic Sets
on Magic Filters, and studied the performance of Magic Sets and Magic Filters on
this program over different sets of data. For Semi-Naive Evaluation and FSN we have
taken a similar approach. In Section 5.1, we describe the data set. In Section 5.2,
we describe the cost metrics used in the comparison of various methods. Section 5.3
compares Magic Sets and Magic Filters rewriting methods while Section 5.4 compares

Semi-Naive Evaluation and FSN methods.

5.1 The Test Data

We recall that the Magic Filters transformation applies to all Datalog programs.
However, since one of our objectives has been to study the variation of the perfor-
mance gains of Magic Filters method over the Magic Sets method, we have chosen
one of the simplest programs on which the Magic Filters transformation would differ

from the Magic Sets transformation. The query program is shown in Fig. 5.1. The



P(X’Y7Z) - flat(X,Y’Z)
p(x: sz) - UPG(X,XI), upb(},a },l)’p(xla},lv Zl)a down(zs Zl)
- p(1,2,2)?

Figure 5.1: The Test Program
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Figure 5.2: Sample Data Sets

choice of binary relations for EDB predicates lets us associate them with directed
graphs and allows us to relate results of our performance analysis to the structural

properties of the input data.

Bancilhon and Ramakrishnan [BR86] provide a detailed performance analysis of
f various methods. For our input (EDB) data, we start with the type of data cor-
E responding to that used in [BR86] as our basic data and consider many structural
5 variations on this basic data set, in our performance evaluation. Let us briefly de-
scribe the basic data next. For each EDB relation, the basic data set corresponds to a

digraph, conceptually divided into layers with the property that all tuples correspond
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to edges which always connect a node in a given layer to a node in the next layer.
Fig. 5.2(a) shows an example of such a basic data set. Note in particular that nodes
in the first (i.e. bottom-most) layer have only outgoing edges, and nodes in the last
(i.e. top-most) layer have only incoming edges. The edges are chosen at random
from a uniform distribution.

The basic data set has some special properties which may be considered too “pure”
from a practical point of view. For instance, all edges always go from one layer to the
next layer. In particular, there are no cycles or “short-cuts” (i.e. edges connecting
a node in a given layer to a node several layers away and thus providing a shortcut
between these two layers). The basic data set seems to be somewhat “artificial”
from a practical point of view in that such a clearcut layer separation with alledges
connecting only nodes in adjacent layers need not always exist. It seems reasonable
to expect that in practice there may indeed be edges connecting two layers which are
not necessarily adjacent giving rise to cycles and shortcuts in the process. Fig. 5.2(b)
illustrates this situation. We use the terminology of distent edges to denote edges
connecting nodes in non-adjacent layers. It is useful to distinguish between two
types of distant edges structurally as they exhibit different behavior - up-edges and
down-edges. It is not hard to see that up-edges essentially constitute shortscuts while
down-edges could give rise to cycles. For convenience of discussion, let us use the
generic term size of recursion to denote the overall number of tuples generated during
an evaluation of a recursive query. It should be recognized that cycles and shortcuts
in the input data affect the size of the recursion to varying degrees. Before describing
this difference, let us note that the way in which we use distant edges on top of
the basic data set is a replacement of normal edges. More precisely, suppose we use
10% distant edges in the basic data set. This then means that for every 100 edges
going out of a given layer, 10 are distant. This also explains why up-edges (acting
as replacements of some “regular” edges) are indeed shortcuts between the layers
connected by them. Thus, shortcuts always tends to reduce the overall size of the
recursion, since potentially long paths in the data have been replaced by shorter ones.

On the other hand, cycles (caused by down-edges) intuitively expand the size of the
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recursion. In fact, the number and the lengths of the cycle in the data can have
a rather serious effect on the overall recursion size. Indeed, unless some limits are
imposed on these parameters their effect could lead to a combinatorial explosion (in
terms of the number of tuples generated) which in turn would produce practically
intractable results.

With all these considerations in mind, we have made the proportion of up- and
down- edges somewhat lopsided favoring up-edges. We have thus chosen a ratio of
4 to 1 for up- and down- edges. This ratio is held constant across all parametric
variations on the data. We define the selectivity o of data as the average out-degree
of a node in the data.

We vary the percentage of distant edges d from 0 to 10 in steps of 2, where 0%
distant edges correspond to the basic data set. We vary the selectivity over the range
[1.67, 2.50]. Too low a selectivity leads to an extremely sparse data (digraph) which
causes the recursion to die down in a very few iterations, producing atypical results.
We helieve such results are atypical because unless the recursion is allowed to build
up and “stabilize” over several iterations, the results produced really correspond to
degenerate cases. On the other hand, too high a selectivity produces a combinatorial
explosion of the number of tuples generated. This is particularly serious when the
number of tuples in the EDB relations is large. Finally, we use 6 layers and 10,000
tuples in each EDB relation and hold these parameters constant through out the
performance evaluation experiment. For this size of the EDB relations, the chosen
selectivities 1.67, 1.82, 2.00, 2.22, and 2.50 correspond respectively to 800, 900, 1,000,
1,100, and 1,200 nodes per layer in the associated digraph whose edges are chosen at

random from a uniform distribution.

5.2 The Cost Metrics

In this section, we describe the cost metrics used to assess the performance of the
methods in our evaluation. For the comparison of the rewriting method, we used
three metrics - (i) the number of tuples generated T, (ii) the number of successful

inferences ST, and (7i%) the estimated cost of the query evaluation. The parameter T
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refers to the total number of distinct tuples (of various predicates including the query
predicate and any auxiliary predicates introduced by a rewriting method) generated
in the evaluation. To a certain extent, this parameter reflects the amount of work
needed for query processing including overheads. However, it does not account for
overheads due to duplicate tuple generation. For this purpose, we use the parameter
SI. Following [BR86) we define SI to be the total number of tuples (not necessarily
distinct) ever generaied during the evaluation. This can be computed by counting the
tuples generated before any duplicates are removed. Consider the computation of a
simple natural join of two relations. In this context, SI essentially corresponds to the
output cost [Ul189] in the join computation. Thus, the input cost must be accounted
for in order to obtain overall cost. This consideration extends to recursive query
evaluation in a natural manner, upon the realization that it is essentially iterated
computation of relational algebraic expressions. Since our objective has been to study
the effect of join costs (occurring during recursive evaluation), we mainly focuse on
joins in our estimated cost. Following [Ull89], we compute the input cost of a join
as follows. Suppose the join computed is r; > --- b4 r,, where ry,...,r, are any
relations’. Suppose that the join is computed taking r, as the “driving” relation.
That is, the join is computed by fetching in tuples of r; and then using them to
determine tuples from other relations to be fetched. Using a primitive model, we
account for the input cost by counting the number of tuples fetched in from the various
relations in this context. For every join performed in the course of the recursive
evaluation, we thus compute the overall cost of the join as the sum of the input
and output costs of join computation. The overall estimated cost of the evaluation
is computed by mainly focusing on the join cost, since join is one of the costliest
operations. All results were obtained by running the tests on 3 independently chosen

samples of random data and then taking the averages of the individual results.

1Since the Magic Filters transformation produces many filters, it is necessary to consider multi-
way joins rather than binary joins alone.
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5.3 Magic Sets vs. Magic Filters

In this section, we describe the results of the performance studies of Magic Sets and
Magic Filters on the query program of Fig. 5.1 for which the transformed programs
corresponding to Magic Sets and Magic Filters are given in Fig. 3.2, and Fig. 3.6
respectively. We test these transformed programs based on the Semi-Naive Evaluation
method described in the previous chapter.

We begin with the simple case. The simplest case is the basic data set with
no distant edges. The results are shown in Table 5.1, where Tuples, S.I., and Cost
represent the three metrics defined in the previous section. It is quite clear that the
Magic Filters method performs significantly better than the Magic Sets method. With
reference to the Magic Sets transformed program in Fig. 3.2, rules ro — r, create and
propagate the Cartesian product computation between bindings on X and bindings on
Y (which are independent) and rules r3 - r5 use the Cartesian product directly, while
re uses it indirectly. This imposes a substantial amount of overhead for computing
the answer. As the selectivity increases, this problem becomes more serious, since
higher selectivity increases the size of the Cartesian product. This can be verified by
studying the variation of the performance with respect to the selectivities in Table 5.1.
On the other hand, the Magic Filters method performs reasonably well even when
the selectivity increases. The results show that the performances always differs by
an order of magnitude.

Next, we shall see the effects of distant edges on Magic Sets and Magic Filters. In
Table 5.2 through Table 5.6, the effects of 2%, 4%, 6%, 8%, and 10% of distant edges
are shown respectively. In each case, we see the same relative performance between
Magic Sets and Magic Filters and a similar variation of the performances across the
range of selectivities, as in the case of 0% distant edges. In all cases, Magic Filters
continues to out perform Magic Sets by an order of magnitude. Let us next look at
the performance variation with respect to the proportion distant edges. Let us recall
that distant edges are a combination of edges causing shortcuts and edges possibly
causing cycles. Also recall that these two types of edges have opposite effects on the

size of the recursion. As a whole increasing the proportion of distant edges increases
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the various metrics of cost. This is because, as we discussed earlier, cycles tend to
dominate the overall effect of distant edges and hence lead to an overall increase in
the cost. However, notice that the increase in the cost does not seem to be strictly
monotonic, which is not surprising, considering the opposing effects of shortcuts and
cycles. As a final remark, we note that even with respect to distant edges, Magic
Filters exhibits a more gradual variation compared to Magic Sets, in terms of the
various performance metrics. Recall that with respect to the number of tuples fetched
from the EDB, Magic Sets and Magic Filters have the same performance, since they
enforce the same restriction on useless tuple generation. However, with respect to
the tuples generated for the additional predicates (viz., the magic predicate and the
supplementary predicates) the Magic Sets method generates extra tuples by storing
the Cartesian product of independent bindings, using this Cartesian product through
the supplementary predicates, and propagating it through recursion. The size of the
Cartesian product increases with the selectivity and the percentage of distant edges.
This is avoided in the Magic Filters method. We have summarized the results in the
form of plots (of Cost vs. selectivity and percentage of distant edges). Fig. 5.3 and
Fig. 5.4 show the individual plots for Magic Sets and Magic Filters respectively. In
Fig. 5.5 they are combined for easy comparison.

Some remarks about the test program in Fig. 5.1 are in order. Notice that even
though the test program is linear, the improvement in performance of Magic Filters
over Magic Sets is not peculiar to the linear structure of the program. Indeed, in
the test program, one or both the predicates upa, upb could well be IDB predicates,
possibly mutually recursive with p. Even in this case, the important thing is that
the bindings coming into the predicate p are structurally independent (in the sense
of this thesis) and on such occasions, we can expect Magic Filters to improve on the

performance of Magic Sets.

5.4 Semi-Naive Evaluation vs. Forward-Semi-
Naive Evaluation

In this section, we compare the two evaluation methods based on the performance
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Magic Sets Magic Filters
Selectivity | Tuples | S.I. Cost | Tuples | S.I. | Cost

1.67 1026 | 1035 2712 129 | 129 | 385
1.82 903 911 2363 192 | 192 | 547
2.00 6755 | 6909 | 17649 3451 345 | 991

2.22 31362 | 32382 | 75232 715 | 715 | 2063
2.50 45636 | 48769 | 109359 890 | 892 | 2616

Table 5.1: Relative Performance For 0% of Distant Edges

Magic Sets Magic Filters
Selectivity | Tuples | S.I. Cost | Tuples | S.I. | Cost
1.67 4632 | 4669 | 12114 310 | 310 | 879
1.82 4181 | 4243 | 10956 288 | 288 | 857
2.00 8070 | 8167 | 21161 401 | 401 | 1178
2.22 12466 | 12839 | 32637 504 | 504 | 1427
2.50 35620 | 37393 | 87118 754 | 754 | 2206

Table 5.2: Relative Performance For 2% of Distant Edges

Magic Sets Magic Filters
Selectivity | Tuples | S.I. Cost | Tuples | S.I. | Cost
1.67 1895 | 1898 4978 233 | 233 | 632
1.82 3179 | 3201 8316 2771 277 | 765
2.00 3621 | 3663 9470 273 | 273 | 813
2.22 10378 | 10500 | 27021 456 | 460 | 1264
2.50 43645 | 45988 | 104300 | 1082 | 1091 | 3066

Table 5.3: Relative Performance For 4% of Distant Edges
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Magic Sets Magic Filters
Selectivity | Tuples | S.I. Cost | Tuples | S.I. | Cost
1.67 1616 1624 4953 2061 206| 602
1.82 1412 1437 3731 208 | 208 617
2.00 3246 3271 8601 2713 | 273 | 766
2.22 17723 | 18252 | 46669 693 { 700 | 1950
2.50 105377 | 108907 | 268833 | 2669 | 2890 | 7390

Table 5.4: Relative Performance For 6% of Distant Edges

Magic Sets Magic Filters
Selectivity | Tuples | S.I. Cost | Tuples | S.1. | Cost
1.67 654 654 1717 130 | 130 383
1.82 3882 3940 | 10182 298 | 298| 873
2.00 4729 4775 | 55739 336 | 337 936
2.22 17708 | 17939 | 46630 807 | 863 ] 2340
2.50 101421 | 104860 | 265686 | 2943 | 3414 | 8562

Table 5.5: Relative Performance For 8% of Distant Edges

Magic Sets Magic Filters
Selectivity | Tuples | S.I Cost | Tuples | S.I. | Cost
1.67 2026 | 2029 | 5346 228 | 228 | 664
1.82 1625 1639 4271 226 | 226 | 676
2.00 6157 6230 | 16253 386 | 394 | 1122
2.22 6289 6381 | 16476 554 | 554 | 1554
2.50 99094 | 101651 | 260022 2406 | 2740 | 7121

Table 5.6: Relative Performance For 10% of Distant Edges

51




L9090

Overall Performance of Magic Sets

O
ooooooo
W,

e

OO
O OO0
4 oooﬂoo oooo

00

AKX
() 00 () 00 ()
4 o.ooo.

Figure 5.3

4

Overall Performance of Magic Filters

5.4

Figure

52



cosy

Figure 5.5: Overall Performance of Magic Sets and Magic Filters

analysis. Let us recall that FSN tries to improve on Semi-Naive Evaluation by re-
ducing the number of non-effective rule applications, and increasing the extent of
set-orientedness (see Section 4.2). As was clarified in Section 4.2, it is important
to distinguish between the activities of reducing the number of non-effective rule
applications, and increasing the number of tuples generated per effective rule appli-
cation. To this end, we separate these two issues in our performance analysis. in the
next section, we compare the relative performance of Semi-Naive and FSN evaluation
methods as regards the number of non-effective rule applications. This is done by
running the tests against the same basic query program of Fig. 5.1. In Section 5.4.2
we compare Semi-Naive Evaluation and FSN evaluation with the number of tuples
generated per effective rule application in mind. In order to avoid the interaction of
the reduction of the number of non-effective rule applications and set-orientedness
(which is necessary for an accurate estimate of the improvement in set-orientedness),
we use a new query program and test data where the data is so constructed that

all rule applications are effective. The details are discussed in Section 5.4.2. We
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note that the improvements of Magic Filters on Magic Sets and the improvement
of FSN over Semi-Naive Evaluation are conceptually independent. More precisely,
the interaction of FSN with Magic Filters is essentially identical to the interaction of
FSN with Magic Sets. Besides, our major concern is to study the improvements of
Magic Filters over Magic Sets (FSN over Semi-Naive) independently of any evalua-
tion methods (rewriting method). For this reason, we compare Semi-Naive and FSN

based on the magic transformation program.

5.4.1 Non-effective Rule Application

We use the same query program as the one used in the previous section and compare
the performance of the Semi-Naive Evaluation and FSN on the magic transformed
program. The main effect of selectivity is in deciding the number of tuples generated.
In particular, it does not influence set-orientedness or non-effective rule application.
Since selectivity does not play any essential role in here, we use a constant value
2.50 for selectivity. We then vary the amount of distant edges from 0% to 10% in
steps of 2%. We measure the amount of non-effective rule applications by counting
the number of relational operations which produce no tuples. We also include the
number of iterations required for the evaluation as part of the measurements. In some
sense, the number of iterations seems to represent the overall effect of reducing non-
effective rule applications. The parameters are denoted as Iteration, and Null-result.
Table 5.7 shows the results. We can see that FSN reduces the number of iterations
by 2/3 compared to Semi-Naive. Indeed, the evaluation of the program starts by
generating new tuples for sup; using the tuples in mp. Then new sup; tuples are
generated using the tuples in sup,. Finally, mp is updated using new tuples in sup,.
In general, these steps will take three iterations for Semi-Naive Evaluation, but it will
only take one iteration for FSN to accomplish that. Therefore, FSN only requires
one third of the number of iterations as compared to the Semi-Naive Evaluation in
this example. The number of iterations reduced because of this reason in general
depends on the predicate dependency of the program. Table 5.7 also indicates that

FSN reduces many of the non-effective rule applications by reducing the number of
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Semi-Naive Forward-Semi-Naive
Distant Edge % | Iteration | Null-result | Iteration | Null-result
10 46 267 17 67
8 49 279 17 60
6 44 258 16 58
4 22 126 9 34
2 16 91 6 22
0 16 88 6 20

Table 5.7: Number of Iteration/Null-result

iterations.

5.4.2 Set-Orientedness

As outlined in the beginning of Section 5.4, improvements of FSN on Semi-Naive can
come from reducing overheads such as number of non-effective rule applications or
from genuinely increasing the extent of set-orientedness of the evaluation method. In
order to assess the latter accurately, it would be preferable to prevent its interaction
with the former in contributing to an overall improvement. To arrange this, we start

with the following simple program

q9(X,Y) :- p(X,2),r(Z,Y).

2t r(X,Y) - a(X, Z),p(Z,Y).

: p(X,Y) - ¢(X, 2),r(Z,Y).
- p(1,2)?

The rules are intended to signify some arbitrary transformed rules produced using a
method such as Magic Sets or Magic Filters. We implicitly assume appropriate exit
rules for the predicates p, ¢,r with exit relations p., g., 7. (The exit rules are assumed
to be evaluated in the beginning of an evaluation). We consider a query :-p(1,2)?
which corresponds to the binding pattern p*. We shall first describe the synthetic
database we use in measuring the metric of interest to us effectively. Corresponding to
the tuple p(1,2) we create a proof tree of height n. Notice that the leaves of the proof

tree will consist of EDB predicates. The proof tree can be associated with a database
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upon mapping each distinct variable with a distinct constant. More precisely, the
EDB consists of the set of all tuples corresponding to the leaves of the proof tree,
obtained from the mapping above. It follows from this construction that each atom
corresponding to an internal node can be derived in exactly one way. In addition, each
rule application against this database is necessarily effective. This property of the
database lets us separate the effects due to a reduction of the number of non-effective
rule applications, and an increase in the number of tuples generated per effective
rule application, and lets us investigate whether an evaluation method is genuinely
more set-oriented than Semi-Naive in the sense of increasing the number of tuples
generated per effective rule application. We should remember that the performance
of FSN is sensitive to the ordering of rules. For the program above we use the order
r1,72,73. A quick reflection will reveal that Semi-Naive needs n iterations in order
to generate the atom p(1,2) from the database generated above ( from a proof tree
of height n for p(1,2)). We studied the number of iterations needed by FSN as a
function of the height of the proof tree for p(1,2). Fig. 5.6 compares the numbers
of iterations needed by Semi-Naive and FSN in order to generate p(1,2). FSN needs
about 2/3 of the number of iteration needed by Semi-Naive. Notice that this reduction
in the number of iteration needed was not achieved by cutting down non-effective rule
applications. Indeed, such a reduction can only come from being genuinely more set-
oriented than Semi-Naive method. Since the total number of tuples generated by
Semi-Naive and FSN is the same, this immediately implies a corresponding increase
in the number of tuples generated per effective rule application. We thus find that
these results and this experiment provide a justification for our intuitive argument
that FSN is inherently more set-oriented than Semi-Naive. We believe this improved
set-orientedness of FSN advances one of the fundamental advantages of bottom-up

evaluation.
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Chapter 6

Conclusions and Further Research
Directions

Deductive database query languages such as Datalog, while far more powerful than
conventional query languages based on relational algebra, introduce a high complexity
for query processing. Recognizing this, a substantial amount of work has been done on
efficient query processing for deductive databases. For database applications, bottom-
up query processing seems to be more advantageous than top-down processing. Under
this paradigm, query processing consists of two phases — rewriting and evaluation.
Magic Sets and Semi-Naive Evaluation are among the most efficient rewriting and
evaluation methods respectively. In this thesis, we have proposed improvements to
both these methods. For Magic Sets, we identified certain conditions (based on the
structure of the query program) under which the Cartesian product computed and
propagated by Magic Sets can be avoided. We proposed a Magic Filters method
which overcomes this problem and improves on Magic Sets. We first developed a
basic method, which, while avoiding Cartesian products, experiences the problem
of column mixing like some similar methods in the literature. The Magic Filters
method is obtained upon solving the column mixing problem of the basic method. We
compared Magic Filters and Magic Sets through performance evaluations. In addition
to showing an order of magnitude improvement over Magic Sets, Magic Filters are
seen to exhibit a more gradual performance variation as the data selectivity increases
and as the data contains relatively more shortcuts and cycles.

On the evaluation side, we noted that it is possible to make Semi-Naive Evaluation



more set-oriented, by making the results of a rule application available immediately
to all subsequent rules referring to that predicate. Based on this, we developed the
Forward-Semi-Naive Evaluation method. We studied the relative performance of FSN
and Semi-Naive evaluation by focusing on the number of non-effective rule applica-
tions and the number of tuples generated per effective rule application. On both
counts, our results show a significant improvement of FSN over Semi-Naive evalua-
tion. We showed that it is possible to incorporate a rule ordering that enhances the
performance of an FSN evaluation directly in the way the Magic Filters transformed
rules are generated. We also discussed an efficient implementation of the FSN method
that cuts down the number of auxiliary predicates needed by a half.

More research is needed for a more detailed comparison between Magic Sets
and Magic Filters. Also, as remarked earlier, several improvments on Magic Sets
for special subclasses of programs have been proposed in the literature (e.g., see
[AGNS90,Nai89,NRSU89)). Since the direction of these improvements is orthogonal
to the direction of this thesis, a comparison with such methods has not been made
here. In fact, because of the independence between the directions of Magic Filters
and those in [AGNS90,Nai89,NRSU89], there seems to be potential for integrating
Magic Filters with some of these methods. In particular, combining Magic Filters
with the Integrated Magic Sets method of [AGNS90] seems promising.

It would be desirable to extend the Magic Filters method to handle negated
subgoals in rules, say for the class of stratified logic programs. Another important
direction for extension is function symbols. Finally, a comparison of Semi-Naive
evaluation and FSN on arbitrary programs based on a knowledge of predicate depen-
dencies would be interesting. Ramakrishnan et al [RSS90] report some results along
this direction. We believe an analytical comparison bringing out the relative extents
of set-orientedness is useful from a practical point of view and is an important open

problem.
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