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N ABSTRACT

Toward an Optimal Theory and Computer-Based Implementation of
Pattern Recognition Feature Selection

Lokesh Datta, Ph.D. 1 \
Concordia University, 1984

\

This work deals with a difficult proplem of discriminating a.
weakly stationary complex Gaussian stochasti process against anothef -
ance matrices (patterns)

\

are different. The high level of mathematical or computational

when the mean values are similar and the covar

difficulty encountered in minimizing the probabjlity of classification
error has many times led workers in the areas df pattern recognition,
information theory, coMmuniéations, and cont( ] ;peory to utilize
suboptimal statistical distance measures for feat fe selection. —A-—new—— --
feature selectipn scheme 1is presented which deélg quite directly witﬁ ~
the Bayesian error expression. The scheme i{s| developed using a
combination of classical results, information-theoretic techniques, and
concepts of distribution fqnctién‘theony. As opposed to asymptotic
results, the scheme is found to be accurate for fiinite sample size.~
The approach to feature. selection 1is shown, b§ use of numerous
exémples, to be superior to the conventional ,K;d ta-Shepp strategy
whigh‘emp]oys distance measure; aﬁd asymptotics in its formulation., A
. Qet;11ed analysis of the computational complexity of a pattern
classifier incorporating the new feature ngection strategy is included

with an eye toward a computer-based implementation.| The proposed

configuration of the classifier consists of three modes lof operation,
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© V¥iz.; the training mode, the processing mode, and the decision-directed

mode. The system parameters are established in the fraining ﬁbde, the
classification task s performéd during the processing mode, and the

sy§tem parameters -are updated using the decision-directed mode to
account for realistic quasi-stationarity of patterns.. A combination of
some well-known and a variety of new computationally efficient résu1ts
are proposed in order to realize an efficient pattern classifier. In
the process, we present characteristic equation reducibility results on
centrosyﬁmetric and centrohermitian matrices which provide ‘a
significant reduction in the driéhmetic complexity encountered in the
principal component (eigenvalue/eigenvector) extraction. In addition,

an approximation of Toeplitz covariances by circulants 1is proposed

which replaces the principal component extraction by the discrete
'Fourfer,transformation (DFT). The DFT can then be .performed quite
efficiently by the fast Fourier transformation (FFT) algorithm or by
the Winograd fast transformation algorithm (WFTA). éesu]ts on the
feature selection method are further substaptiated by a variety of
important numerical results on the effects of a free parameter found in
the theory, d priori probabilities, and the numSer of’featurés selected
on the probability of classif1cat10n.error. This study on the theory
and comﬁuter-based impiementation of feature se]ection; including
numerical exahp1es .;nd comparisons, may prove useful 1in stochastic
signal classification applications such as 1image analysis/object

recognition, speech analysis/speaker recognition, and robotics. In
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addition, the theory pres%ited here 'ls a- -useful tool for evalua? ng the

performance of compe/ting feature selection schemes *rn' sftuat1/6ns when

the error probabﬂity is extremely 1qw, and thus, simu at'lon is-

impractical.

»




. .
. B
N
v v
. . R .
. »
. - . - * ’
b * .
s -
-
. - -
. ' s - 3
- N
N -
- - . -t
~ -
- .o
. R .
R .
T’ .
. ’
. . X N - - « - N
- o '
. .- -
[
- . » Py
- 1 e~
. L -
. . .
N . - W
- o
. [
L .
* ‘. M . . i -
. LY N
. * - - ! "
T -,
. . -
. N . -
. . s
-
B
. -
- . - -
.
- - - - ~
Ed N b
N g .
, R
> -
bt
| I : °
)
. A o
- »
R -
. N . .
- . L -
O - »”
< -
wf )
. . -
- . * . H R
» . .
e - . k] ..
- ,
. -~ Al ﬂ v
4
= - - 4 -
.
B - . -
. . . . -
- . - h
- - - . .
. . A a -
-t . .
K]
- - .
. - . <
- . . 1
- . e ’ - -
- R - - -
-
he - . ~
. ¢ . L
.
- . .
. . N .- . .
- - - - ’
. . . - -
- L3 o - .
- .
. - -
. - .
L] * .
. >
., . ., .
- ) *
RN - . .
. - . - ’
-
- . - - A -
' - . - e LTt °
w. N . . -
T N R o - N -

. .
« .
. . -
.. .
-
1)
N
- -
L
a & vy T
oo .
7
-
. .
.
. -
2
.
. L.
.
.
.
= -
[*Y -
[~ 4 "
R - o
o.
> '
e = .
-~ PR .
- . N
-
*
v
R \ -
‘ S
.
L -
.
e .
- .

. . \
. . P . . .
. N .
. -
-
\
o -
L]
L -
. -~ . -
>
A
- - .
- - . ‘
o . .
i : - -
4 - - -
,
) .- - e -
-
’
.
. . I . -
o x
L. :
.
s
s - < .
- s - . .
. M
: . . / [} e
-
. -
- - - v '
. - . .
. -
a + . . -
, -
. . |
. '
. «
. - v
s . R g
. . - .
. . -
\/ )
-
- ' .
-
-~ .
. ‘ - -
- ~ .
. o .
. [
- . .
. v L . - . -
PN N - c
.
- ; . N
5 - . oy
;o . .
. . .
. v .
N .
- . _ .
. ) - . -
¢t .
- 0
- .
. - bad N . .
> ® -
R
o . - @ -




‘
- . Y N . S
- R P
. -y- ‘ —
) N -

AFKNOHLEDGEM!ENTS

&

. The aqghor'wishes~t6 e;pfessmsfncere_graéitu&: to
. Dr. Salvatore D. Morgera for his_supervision,,gu1daﬁce, ehcourégement;
timeiy suggestions, and cooperation during tﬁe course of this work.
His friendship and help cér§31n1y déserve my compliments:.

e

" Ms. Marie Berryman is to be thanked for.an excellent job done with
a diffiéh]ﬁ manyscript in a short pgriod of time. .
P .Mr. P.mMisra,‘MF. M.S.0. Sharma,‘and Mr. E. wingrow¥cz of
_Conéa;dia Uhivérsity deserve a'Special mention, as do the other friends
at Concordia, for being there\when needed. A certain friend who has
been an 1nspir€tion for the completion of this work merits special
thanks. -
"Last but not least, it is with pleasure and pride that the moti-

vation provided by my parents ‘and sisters is ackﬁow]edged. K

)
i

TS
M




S ' T
k TABLE OF CONTENTS
// . & '
List‘/iof Figures OOOf'.'........0..0!"‘...“l\.,O..........OO..C...'.Q

/

/
! . T
List,of Tab1eso sssesv e evrsevsncctstonssesflscoccscsscsvsvsonssessncesase

Lfs(/t of‘ Symbols and Abbreviatians .. ..... [‘ xiv
i.'J_Introduction creevipeseresiiesnans . SO 1
L1, GensraI ,.f 1
1.2. Scope of the Thesis .?’ 4
1.3. Important Contributions oF .the WOMK ...e.eeeiveesss” 7
{teferenceé RECEERRTRITTTY eereeaan teseecccstnone R (1]
2. Methods in Pattern Recognition Feature Selection 11
e 2‘;1. Introduction ..... S TS | |
-2.2. Feature Selection in the Measurement Space ........ 13
"} 2.2.1. Statistical Distance Measures .i.......... . 14
2.2.2. Depender;cé MEasUres s.e:eecevesos 17
2.2.3. Euclidean Distance Measures ....... eeeeeen 19
2.3. Featuré Selection in the Transformed Space ........ {9
2.3.1. Karhunen-Loéve Transform .....ccceeececeesss éO
] |z.3.é.. Separability Measurg\..\..\.:\..;.......... 22
2.3.3. Non-Orthogonal Mapping .....cccveeecccencss 23
28, DISCUSSTON  +vvvseennrenneeeeeeeaeen e eeeeennas .24
References 26
3, Toward an Optimal Theory of Feature Selection ......... cor 30
31 INEROUCEION wvvvvvviiisevanioneennnenneneeneensy 30
A 32

3.2. Bayesian Discrimination - Finite Sample Sfze ......
I ' b

I
I
I

{

|

A



£
3

4

6.

- 3.3. ; Feature Selection - Finite Saﬁple'81ze ......iﬂ..... 38

3.4. Probability of Classification Erfor -

_Explicit Form ......... cerineean eeaaee Veereennan 54
3.5. Optimization of C]assif%cation Error ..7{:..\.1..{. ‘ 65
, 3.6. Discussion ..:......7 .............. tecidesiceniinnas 79
References ...eoeeees ceasescesensns :.......,71:.{ ..... ....“’ 82
Appendi x 3:A 'f;"'°"’°'°"i'°'°"°°"""7:E"°"‘;"""' 86
/

Efficient Rr{nc%pal Componenf Extraction for Péttern
Recognition ;eature‘Selgction et eaieeeearees e 88 .
4.1. AIﬁiroduction ..;.t..................Q;...;...:....' 88
4.2. On the Reducibility of Centrosymetric Matrices Ceeal 90
4.3. On the Reducibility of Centrohermitian Matrices ... 100

4.4. Approximation of Toeplitz Matrices by Circulants:

A Way of Improving Coﬁﬁutationa] Efficiency ....... 105
4.5. Discussion ............. etreccnnssacas S S 109
TREFEIENCES +evvveveroonsecesesnnssannssaosnoes eeeeriieeee— -112

Toward an Implementation of 0pt1m&1'?eatdremSelectféﬁ vee. 114

5.1. fntrodyction ...... ernaeeieas Cree e rneneeaaaene ve. 114
5.2.  The Training Mode ...... e P PPRL S [
5.3. The Processing Moﬁe ..... T S ceveee. 126

5.4. The Decision-Directed Mode .....;.......,f..:ﬂ..... 131
5.5.  DIscussSion .eepueeecnieniiecniniines Ceeresens veenes 133

References .....ceceececenssncas tesersisvasssanecoonsssenan 134

Performance Evaluation of the Feature Selection Scheme

and Effect of Certain Parameters on Error Probability .... 137




' 6.6.

6.7.

" Probability of Classification Error for

’
!
P { ‘! »

IntPOdUCtion ‘ ..l.ll.:.‘.l.. . l.:‘ll;.....lr.’tt -'.oo‘oo‘:‘mjvc -“’ 137
Computer SimuIation;of Pdfeerﬂ'CIassiffé? -
Performance ‘EvaIuaf¥6n .........,......;.....J....., 138

Effect of A Priori Probabilities on Root B oeeeseen 146

Effect of the Pé;ameter y on the Probability of

C‘QSS"fiCdtion EY‘Y'OY‘ ooo..ocao._c.o“‘fu_:" ooooooo LN 152

_ Influence of A Priori Probabi]iiies on the i .

*

Finite Sample Size R [ 3

Rérformance Enhancemené by Increa§1ng the’Number

Of FEAtUreS /vecvrtvonncronnsessancssssscnnscsnash 1658

Y

Dis’cussioﬁ ........‘I..'.'..’........0......'...... 175
P ARRREAS

Refere.nce‘s //.(...l_....Q.l......l.....l....‘l...'.....l...Q..- .177

" coné]usio‘ns ...‘O...’C....‘......l..'..'.".‘..“ ...... eoe o0 178"

7.1.
7.2.
" 7.3.

-
-

Introduction * ....'.:.........Ol....‘...l'..ﬂ‘...'.b....178

.

Concludjﬁﬁ Remarks on the Thesis ....ectoccecccssces 179

-
ALY

Ideas fOf‘ Future work ;-00-...00-.';"-.-oooooo;ccn-'ioo 0183
) - ’:P" -

P



LIST OF FIGURES

o

Vot

/ L

. Figure.1.1. . .-B;siczPattern_Rbtégdition System,
F1gur§ 3.1 W'Distribution:#unction F_(x) and Bounds, F;(x) and
“'Fﬁ(x). Cov%riance Example I. | '
. Figure 3.2 - Distribution Function FN(x) and Bounds, F;(x) and
) Fﬁk;). ~Covariance Exahple I1. ' '
Figure 3.3 Dist;#bution‘Function Fyy(x) and Bounds, Fg(x) and -
Fﬁ(x). Covariance Example III. y '
'ffguﬁe 3.4 d&stribuéion Function Fy(x) andeBounds, F;(x}— and

_Fﬁ(x). Covariance Example IV. ‘
Figure 3 e bistribution'Functiog FN(k) anﬁxBognds, F:(x) and
Fﬁ(x); Covariance Example V.
.Figure 3.6 Distribution “function F;(x). Rows of A sglected'SS
' 2} =_§I i=1,2,...,n. Covariance Example I. °

Figure 3.7 Extremal Distribution Family  F*, Cavariance Example

Iv. Note:' Va1ug$ of «=0.8, 0.9, 1.0 are

Inadmissible. ‘5"

. FTguré'3.8 lﬂobtidumCoordinatelFuncgibnal’ u(f). Eigenvalie
Selection is Ten Largest x;(io‘/df). Covariance
Example I, i

Figure 3.9 Optimum Coordinate Functional wu(t). Eigenvalue

Selection is One Largest and Nine smallest - k% (11/95).
Covariance Example I[.

" -Figure 3.10 - The Strategy for Optimal Feature Selection. .



" Figure j.ll

1

Figure 3.12

*

+ Figure 3.13

"<

- Figure 3.14

-

Figure 3.15
Figure 5.1°

Figure 5.2
Figure 6.1
. Figure 6.2
Figure 6.3
Figure 6.4
"Figure 6.5

Q

~

?v-

Information Qj[étionai aJ(u*)/ ta. Covariance

I. Note: . Circled Points are lnadmissible.

\ : '
Information Functional AJ(u*)/Aa. Covarifgﬁe.

I1. Note: Circled Points are,Inadﬁissible.

Information Functional AJ(gf)/Aa} Covar:aq?e
IIlT. Note: Circled Points éfe In§amissible.
Informgsjon Functional aJ(u*)/aa.” Covariance
Iv. Note: Circled Points are Inadmissible.’
Infermation Functional AJ(g*)/Aa.:’Covariance

V. Note: Circled Points are‘Inadmissiule.

-

The Strategy for Optimal feature Se]ect1on Consisting

of Three modes of Operation.

Example -

A

Example
Example
Example

Example

The Strategy for Optimal feature Selection in the Case

of Cirdulant Approximation of Toeplitz Covariénces,

R

tn P (n) vs n. Covariance Example I of Tahle.3.1.

\

"Ln Pe(n) vs n. Covariance Example III of Table 3.1.

"Ln Pe(n) vs n. Covarfance éxamp]e I1l of Table 3.1.

7
anPe(n) vs n. Covariance Example IV of Table 3.L.

" Ln Pe(") vs~n. Covariance Example V of Table 3.1.



—

-TABLE 3.1.

TABLE 3.2.

/

cr

iy

TABLE 4.1.

t

TABLE 6.1.
TABLE 6.2.

TABLE 6.3.

TABLE 6.4.
i

TABLE 6.5.

’

TABLE 6.6.

TABLE 6.7.

o

1

4 .ax’i-

R4

LIST OF TABLES .

Toeplitz Covariance Matrix Pairs ( RI‘RZ) Selected as

o

Examples.

e
with Respective Eigenvalue Selections; N=40, n=10,

P.(n) for New M-D Method and Conventional k-S Method

=T, )
Pe(n) for Circulant Matrix Approximation for New M-D
Method and Conventional K-S Method; N=&0, n=10,
Covarifnce Examples Refer to T;bIe 3.1.

Toeplitz Covariance Matrix Pairs (RILRZ) . Selected as

Examples. - 'ty .

b .
Pe(n), for New M-0 Methoq\fzﬁ Conventional K-S Method

-

with Respective EigenvaTue Selection; Nx12, n=3, m)=m,.

Error Bounds using Bhattachgryya'Dist3hce and -Simulation

»

Results for Pe(n), ‘for A1l Possible Eigenvalue

Selections for é?hmgle I of Table 6.1.

Error Bounds using Bhattacparyya Distance and Simulation

Results  for Pe(n), for All Possible Eigenvalue

Selections for Example I1 of Table d.l. /

-

trror Bounds using Bhattacharyya Distance and Simulation

Results for Pe(")’ for All Possible Eigenvalue

Selections for Example IIl of Table 6.1.

Effect of A Priort Probdbilities n;,%3 on Root pu  for

Example 1 of Table 3.1. »

Effect of A Priori Probabilities =;,x; on Root u for

[

Example I{ of Table 3.1.

b

‘\




~Xii- -
\\
\

TABLE 6.8. Effect of A Priori Probabilities mj,=; \Qﬂ Root u for -
E :rqe 111 of Table 3.1. ' ! |
TABLE 6.9. " Effdct of A Priori Probabilities x),%2 on Root u for

Example 1V of Takle 3.1. | o
TABLE 6.10. Effect of A Priori Probabﬂitiés my,n20n Root u for
Example. V of Table 3.1. ‘
_ TABLE 6.11. Effect of Parameter y on-Error Probability, Pe(n),
for Example 1 of ;Table 3.1, The Root u is -
Appropriately Selected %or T)=No.
TABLE 6.12. “Effect of Parameter y on Error probabi{ity,' P(n),
for Example II of Table ,3.1. The Rc\mt p o is.
- . gApprqpriately Selected for = =mnj. )
fABLE 6.13. Effect of Parameter y on Error Probability® Pe(ns,
o for Example III of.Table 3.1, The Root is
Appropriately Selected for wj=w,. |
TAPLE 6.14. Effect of Parameter Y‘L on Error Probability, Pe("n),\
for Example IV of Table 3.1." The Root 4 is ¢
Appropriate]y Selected for m;=m,. o
TABLE 6.15. Effect of Parameter y on Error Probabﬂity, Pe(n), )
for Exampl_e V of Table 3.1. The Root u s .
' ) Appropriately Selected for 1:1=1t2. . W
" TABLE-6.16 ~ Effect of A Priori Probabilities on Error Probabthy,
’ Pe(n). for Example I of Table 3.1. The Root u is
appropriately Selected for nl',uzdand y=10"'4.
TABLE“6.1'7. Effect of A Priori Probabilities on Error Probability,

) Pe(n),'&?fgr Example II of Table 3.1. The Root g s :

L4 A
- L



TABLE 6.18.

-

/

TABLE 6.19.

TABLE 6.20.

N .
\\‘

TABLE 6.21.

TABLE 6.22.

'Ix.

-3

TABLE 6.23.

LY
.

' St

TABLE 6.24.

TABLE 6.25.

»

Y

Appropriately Selected for

-X1ii-

o

ﬂl,nz an& Y=1l],0-4

Effect of A Priori Probab111ties on Errnr Probability,

P (").

Appropriate1y Selected for

Kﬂ‘nz

for Example II1 of Tab1e 3.1.

and

The Root

is
4.

y=10"", -

Effect of A Priori Probabilties.on Error Probability,

Pe(n)s

Appropriately Selected for

T2,

for Example IV of Table 3.1.
g

The Root

>

is

o4
and‘* -Y—}O -

Effect of A Priori Probabilities on Error Probability,

Pe(n),

Appropriately Selected for

Féﬁture°DiMension

Fn1=n2, y-la -5

o

n

for Ex@mple I of Tgble 3.1

ﬂl,nz

A ]

for Example V of Table 3.1.

The Root p
y=10

" Probability of Classification Error as a Function of

is,
-4

4

N=40,

L)
.

Probab111ty of C1a551f1cat1on ErroF as a Functlon “of

Féature,Dimension

N=40,' n)=N2o,

"‘.

y=10

-
-5

a

Feature Dimension

W

N’QO, n1=n2,

>

7'102

n

o

for Example I1 of Table 3.1y

'Probab111ty of C]ass1f1cat1on Error-as a Functlon of

for Example IIl"of Tab]e 3. 1

x i

/

"Probability of G+assiflcatlon Error as 'a Funcggon +of-

o< - 4

Feature D1mension

N 40, nl'-'-ﬂz,

v=10

n

5

“for Example 1v of Table 3.1; .-

Probability of ClaSsification Error as a Function of

Feature Dimension

RN1=R2, -
»

7=10-5.

n

for Example -V of Table 3.1;

)

o

N=40,

E4

—

LY

-

‘?x,‘




2

. -

-

Loen

MVN

" FFT

" WFTA

‘ . 'Xi V- / " . ’ ’ !

- | ‘ N |
LIST OF. SYMBOLS AND ABBREVIATIONS 'w ! -
n-dimensional .complex space ° . S, : .,

Matrix tomp1e£'qonjugate transpoée Ce

&
Matrix transpose *
Matrix appﬁoximation by circutant ] °
(NxN)-dimensional contra-identity matrix ' _
(NxN)-dimensional identi&yAmStrik\\\ ' . ' “»
e e ) o
" Class of (NxN)-dimensional centrosymmetric matri;es . ,?
Class of (NxN)-dimensional centiohermitian matrices - -
Multivariaté “nbrmal ‘ a
Karhunen-Loéve - . , e oA T -
Kadota-Shepp ' N ’ ot e
. vt . . L.t . s
L A . ~
Morgera-Datta e s o ) S
Centrosymmetric  *. . -~ L L
"Centrohermitian , S ' | S
Discréte Fourier transform , -
Fast Fou§1er transform
Winograd Fourier transfom aléoritﬁm,¢
. -
4‘ 9! ) )
< . - . l ".' _ . s
’ \\ e - L s
- 3 \ ’ ‘v
& - ‘- ‘ — n .
" ™ T . : é
. . . N - ¢ . . : ot [N v'
- » ’ 4}\ .
° 3 i .‘ > M a-‘t g L4 '.'
/ > [ ] . - -
. N ¢ ’. - ‘'
\ "4 ' . :
~ ' .

\\ ! . .
f:‘ - 4 . . o ¥



L ~ CHAPTER 1 -

INTRODUCTION °°

s

.1.1. GENERAL o

Can a-nachine‘be devised that acturate]g recogniZES a pattern? A
concerted effort to answer this question oy researchers 1n diverse
areas of'ﬁnterest,led to the conception of pattern recognition nearly

i~three decaoes‘ago. The challenge presented by the idea of deve]oping
tinte1ligent machines has translated into a considerable progress on
both the theoretica1 and practical fronts of pattern recognition.
Pattern recognition now finds applications in a wide variety of areas

such:as biomedical diagnostics, texture analysis for industrial inspec-‘

tfon, earfi~ resource satellite multispectral classiffcation, radar

remote sensing, speech analysis and speaker recognition, image analysis

3 and object recognition, and 1ndustr{a1 robotics.

recognition system. thure 1.1;dep1cts a pattern recognition system
consisting of & sequence of three stageg, viz., pattern representation,
. feature selection, and pattern;class1f1cat10n. The pattern representa-

tion stage 1nvo]ves gathering data measurements and converti them

into a suitable‘formlﬁpr machine processing. The feature selection
~‘stage of the pattern recognition system is,. perhaps. the most mportant
in that ft is. chiefly responsfble for the: performance of the system.

o ) The main purpose*of the feature selection stage is to reducﬁ the
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s
/dimensiqnality of the problem which may be necessitate& by constréints
of either a.technical or economical nature. An important part of the
- feature selection process is to ensure the reliability of the system by
extracting such information from the daka vectors that is the most
relevant to classification. The reduced dimensionality feature vectors
thus obtained are recognized by the pattern classification stage; From
a theoretical point of view, it is difficult to draw a boundary between ‘
the feature selection and classification stages. Agxrlgea1 feature
selector would make the pattern classification stééb trivial, an
almighty classifier would eliminate tﬁe need for the featufe §elector.
Unfortunately, a pattern recognition system without the feature selec-
tion component, though. theoretically feasible and‘plausible, may not be
rea1izeb1e given the practical constiaints of high dimensionality of
realistic prop]ews and computing power available. Consequently, it
generally is mandatory to incorporate the feature se1e§t1on stage as a
‘ process of reducing the)dimensiona]ity of the problem preceding the
classification stage. -

The performance of a pattern recognition system is measured in
térms of two important criteria: the probability. of classification
error and computational complekity. The problem of c]assif{cat1on is
primarily 6ne of partitioning the feature space in such.a manner that
the decisions are never wrong. In the case when tﬁislfannot be achiev-
ed, an attempt is made to minimize the probabiljty of c]assificat1on
error and, if some errors are more expensive than otherg, the average:
cost of errors. The second criterion of computational complexity f1s
viewed in terms of the cost and speed of a practical 1mp1ementation'of’

the system.’ '
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1.2. SCOPE OF THE THESIS

r

This work 1s primarily concerned with the feature selection stage
of the pattern recognition system. The problem considered here is that
qf discriminating a weakly Tstationary Gaussian stochastic process
against another. The Gaussian stochastic p'roc.esses are assumed &0 ‘have
similar n\eal;l vectors and different covariance matrices (pattl:ernsf.

A number of feature selection methods are discussed in Chapter 2.
These schemes approach-a minimization of'the probability d¢f classifica-
tion error in an "indirect" manner due to a general feeling that the
probability of classification error expression is either mathematical l’y

| or numerically intractable. Most of these !nethods. of féatur‘e ée‘lec‘tion
asymptotically approach the minimum error probability av\c_i» dre_ not work-
able and/or accurate for finite sample size. This motivates the de-
velopment of a feature selection strateqgy which deals directly witp the
probability of error expression and provides accurate classification
»results for finite sample size.

Cﬁapter 3 presents a new and accurate finite dimensionality infor-
mation-theoretic strategy for feature selection. The scheme deals in
more direct fashfon with the error probability expression. The techni-
que {s shown, by means of numerous examples, to be superior-to the
well-known Kadota-Shépp (K-S) metﬁod [1.1].l The K-S method 15 a typi-
cal example of conventional feature selection schemes 1in that it em-
ploys asymptotics and statistical distance measures in its formulation.
A more direct use of statistical distance measures, for example, the
~Bhattacharyya distance [1.2] is shown to provide "loose" bounds on the

error probability, thereby, failing to provide useful information

&
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for feature. selection. The probakegxggheme provides a: tool not only
for feature selection itself, but for & general performance evaluation
of competing pattern classification. schemes fn the case when an
’ extremé]y low error probability renders a computer simulation im-
practical.

’ Thg new featﬁre selection strategx is developed by using a combin-
ation of classical results due tovLapléce with further.refjnements by

Polya et al [1.3], distribution function theory, and information

theory. An appealing performance of the sEheme in terms of the error .

probabi1ity motivafe; an investigation into thecomputational complex--

ity of the technique in order to determine its feasibility for a
computer-based ¥mp1ementatfon. ‘ .

We begin by developing in Chapter 4 a variety of new rgsu]ts‘on
‘matrix theory with an eye towardVan efficient computer-based implement-
ation of the feature selection scheme of Chapter 3. Chapter 4 presents

the reducibility results on two classes of matrices of interest, name-

1y, centrosymmetric (CS) aﬁd centrohermitian (CH) matrices. The

results on CS matrices are a specialization of the results in [1.4] and
a generalization of the results in [1.5]. The reducibility results on
CH m&friées are the first of this kind to appear in the literature.
The results are useful for efficient principal component extraction
required by the feature selection process. In passing, we mention that
real symmetric and Hermitian Toeplitz matrices are special cases of the
class of CS and CH matrices, respectively. IH order to significantly
enhince the computational efficiency of principal component extractiop,
Chapter 4 also includes a method of approximating real Toeplitz covar-

fances by circulants. Principal component extraction can then be .
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replaced by the discrete Fourier transform (DFT). The DFT can be per-

formed quite efficiently by using the v;e'll~kno‘wn fast Fourier transform
(FFT) or Winograd fast transform algorithm (WFTA).

The results of Chapter 4 offer a significant*reduction in the
computational comple;/d'tyﬂof a computer-based implementation of a pat-
tern classifier employing the feature selection scheme of Chapter 3. A
?omp'lexity analysis of the classifier is presented in Chapter 5. The
/,//classifier operates in three modes, viz., the training mode, the pro-
" cessing mode, and the decision-directed mode. The system parameters
are estab]ishe‘db‘ln the training mode, the classification of patterns is
performed in thre processing mode, and the decision-directed mode, in
conjunction with the training mode, updates the system parameters
taking~1nto‘acc6unt -a realistic quasi-stationarity of patterns. The
study on implementation proposes efficient algorithms and corresponding
.computat‘lonal ‘complexity ‘analysis for every step in the c]agsification
'pr'ocess for realizing an efficient pattern classifier. A number 9f the
proposed algorithms are new.

Computer simulation results of the pattgrn classifier are present-
ed in Chapter 6. The probability of classification error results for
the feature selection scheme of Chapter 3 are compared with that of the
conventional K-S method. This comparison substantiates the claim made
in Chapter 3 regarding a superior performance of the new scheme 1in
terms of the error prq‘pabﬂity. The error probability results for the
new scheme are also ana;y_zed in view of error bounds on the' probabﬂit}/
of error using the Bhattacharyya ldistance. For the examples examined,

"~ the bounds are repeafed'ly found . to be quite loose’and devoid o? any

b

useful information for feature selection.
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Effect of a pniori probabilities of the .patterns on the overall
error prob‘at;ility,..for finixed_‘sample size is also conﬁidered in Cr;apter-
6. Althca:ugh, asympfdticaﬁ};;phg error probability is independent of a
priori probabilities [1.6],‘/’it is observed, as expected, that the
»error in.classification for finite sample size decreases as the a
priori probability of oﬁe pattern is {increased re‘lative to the other.

- Behavior of the classification error versus the number of features

d'

selected 1is examined. We find, consistent wit_h classical vthought,
that the error decreases sharply as the number of features is increased

to a certain value ‘and then the decrease in error begins to taper off -

gradually. - T~/

1.3. MAJOR CONTRIBUTIONS OF “THE WORK . |

This work offers a variety of new, interesting, and useful results
on the theory and computer-based implementation of pattern recognition
feature selection for finite sample size. The information-theoretic
approach to feature selection, deveYoped by utilizing classical methads
and distribution function theory, deals directly with the Bayes error
expr‘ession,' The work demonstrates the suboptimality of conventional
feature selection schemes employing statistical distance measures and
asymptotic formulation. A number of examples considered here and com-
parisons therof with a typical conventional scheme such as that of

Kadota and Shepp (K-S) [1.1] substantiate that the new scheme is always

at least as good as, and sometimes better, by an order of magnitude,
than the K-S method for finite sample size. The study finds the use of

‘statistical distance measures, by means of examples, often inadequate.
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A1l numerfcal examples considered discriminate between Toeplitz covar-
fances. Toethz covariances ar‘e of extreme practical importance in
that they are often used for information representation and modelling,
e.g., speech‘ representation for speaker recognition. An appreciable
data compression ratio of 0.25 (or 75% compression) is used for all
examples. These ex'ampl‘es ‘not. only permit us to demonstrate a better
performance of the new scheme in-comparison to the corventional methods
for feature selection, but also provide better understanding and
insight into the problem. Moreover, the comparisdns are the first of
this type to be found in the 1iterature. .
A computer-based 1'mp‘i ementation_ of the pattern classifier employ-
ing the new feature se}ection scheme is proposed. As with many feature

selection schemes, a prilncipal component extraction {s initially .re-

quired. Computationally efficient algorithms for this task are pre- .

sented which utilize certain a priori known structure of the covarianc-

es or covariance products involved, i.e., Toeplitz, or centrosymmetric

and centrohermitian, respectively. The reducibility results on centro-
hermitian matrices are the first to a;'apear; in the literature. In order
to increase speed significantly, approximation of the Toeplitz covar-
fances by circulants is proposed. This approach leads to satisfactory
error rates when there 1s sufficient 's_{:atist'lcal independence within
each data vector, and a]1ows the principal component extraction to be
replaced by-the discrete Fourier transform (DFT). The implementation
study continues with the presentation of most suitable algorithms and
corresponding complexity analysis for each step of the feature selec-
tion process in ‘order to realize an ‘efficient pattern classifier.

Several aspects of the implementation study may also be used to enhance



-

the computational efficiency of many other’ featuf'e selection schemes.

A detailed complexity anah;sis of;‘the pattern ctassifier employing the ‘

new feature selection scheme shall prove to be an important contribu-

tion\for practical. applications of stochasﬂtic signal classification

" such as encountered in passive sonar, as well as in the areas of image

-

processing, speech recognition, and robotics.
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CHAPTER 2

METHODS IN PATTERN RECOGNITION FEATURE SELECTION ~

—

2.1, INTRODUCTION . 4

Let x be an (Nxl)-dimensional. complex stochastic data vector
with multivariate nﬁrmal (MVN) distribution, N(ani)" hnder hypothe;
sis Hi i=1,2 for the binary or two-class hypothesis testiné problem.
The hypothesis Hi is assumed to have a priori probability n, i#l,2
with n1¥x2 =1 and =n; #0,1. The, general problem“of extracting n
features (n<N) :gy be viewed as that of g{ther selecting n suitable
measurements from the N elements of x , or of selecting n appro-
priate linear functionals constituting an n-dimensional linear space
an. In‘either case, 1tais desired to ﬁave a probébiliiy measure
corresponding to each pattern class in ,feature space. " The
effectiveness 6f feature.selection relates to the performance of the
pagiern classifier, wusually in terms of probability of error or
misclassification. Thus, the solution to the feature extraction

problem lies in choosing a subset of the N elemeMfs such that the

.
probability ‘of classificatidh error is minimized.

The mathematical ‘techniques.of feature selection in pattern recog-
nition may be broadly c]aséified 5nto two categories, namely, feature
selection in the measurement space, and feature selection in the traﬁs-
formed space. The development of feature selection schemes beloﬁging

" to the first category has been based on the implicit assumption that

the aéquisition of data or measurements representing the input
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patterns is costly. The main objective in this case then is to
minimize the cost associated with measurement “extraction and achieve a

reduction in the2dimensionality of the problem by reducing the number

. [ ,,
of measurements required to recognize the patterns. This can be ac-
R 3 ,

complished by eliminating the measurements which provide redundant,
irrelevant.' or 1nsignif1cant information. Reducing the number of
fnitial méasurements can, for example, lead to savings in sensor hard-
ware and computing power for data processing. A number of feature
selgbttnn séhemes in tﬁe measurement space’ are ﬁisfussed in Section
2.2. . R
- Feature selection schemes belonging to the second category ugi-
lize the entire representation vector to obtain 3'feature vector _¢f
lower dimension. The elimination of reduadant, ir?glevant, or inszgn-
ificant 1nforma§ion is. achieved by applying a transfo>mation which
mapf.the patterns from the’representatton space to a lower diménsion
feature space. The key to resolving the feature selgction problem
here 1is to construct an optimal transformation which minimizes the
probability of misclassification. Some interesting feature selection
schemes belonging to th{s cStegory are discusseq'ia Section 2.3. In
~ passing, we mention that the new and accurate technique of feature
selection presente& in Chapter 3 altso belongs to this pgrgicular cate-
gory.

Ié is interesting to note that the feature selection methods in
the . transformed space can be applied not oniy to the representati&n

vector for dimensionality reduction but also, to achieve further data

compression, in the feature space determined by feature selection

p ?N\\\
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schemes in the measurement space.  Although the feature selection

schemes of these two categories are not mutually exclusive in' their
applicability, such a simplistic approa’ch to the claséification of

methods permits us to discuss various aspects of these techniques;

for example, the performance reliability in terms of error proba-,

bility.

[

-

2.2. FEATURE SELECTION IN THE MEASUREMENT SPACE

»

he key to resolving the feature selection problem in the measure-

ment space is to obtain a subset of n features y from the set of N

rpeasurements of the data vector x such that the propabih‘ty of mis-
recogﬁition’ is }ninimized with respect to any other combination of a
features selected from— _x. Unfortunately, no simple exp;'essiqns éor
classification error are avaﬂaS]e lfor establishing the best set of

fe;atures and, in practice, one has to be satisfied with a compromise of

selecting a feature set y* which optimizes some criterion , J(l)"

»

i.e.,
Jy*) = max {J(y;)} (2.1a)
) {1'1}
or, )
y*) =.min {o(y)} - (2.1b)
—{11} ) -

with an assum§t1on that  J(y) ﬁan be related to error probability

[2.1]. The members of the family {11} in (2.1) are all the possible
C , .

combinations of n features that may be selected from N measurements
of the pattern x. ' The fojlowing subsectiogs discuss a number of ways

in which the task of optimizing J(y) may be accomplished.

\
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2.2.1. S?ATISTXCAL DISTANCE MEASURES

The notion of "distance". between two hyppthesis,or patterns has

been defined in many di fferent ways in mathematical statistics and all

-

distance measures are qualitatively related to the probab111ty of m1s-.

classification in a similar manner. The underlying concept for the use*‘

of distance measures is that the larger the d1stance established be-

tween two patterns by the featbres selected, .the better the perfo;hance
of the classifier (or 1ower error probability) [2:1- 2 5]. ,

Let p,(y) “Be the probability.density ﬁynction (pdf) of the fea-
turervector under hypothesis 1~i-1 2. The classnficatiom-of features

may be based, for example, on the 1og Tikelihood ratio [2 1, 2.2, 2.4,

-

2.6], given by,

o P ()] H
S () I

\

where the quantity T 1is a certain threshold value. "It is interesting

T (2.2)

to observe tha