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ABSTRACT
Tunability of photonic gaps in one and two dimensions
Frangois Xavier Sezikeye

The transfer matrix method is used to evaluate the dispersion relation of
electromagnetic (EM) waves propagating through complex systems in which the
refractive index varies periodically along one dimension. The width and the posi-
tion of the photonic gaps in this dispersion relation are shown to depend on the
width, the refractive index, and the position of an additional structure in a con-
ventional superlattice unit. In this way, certain gaps increase by a factor two to
an order of magnituce, and c:hers decrease when compared to the correspond-
ing gaps of the unmodulated system, especially to that of a quarter-wave (QW)
structure.

The transmittance of finite one-dimensional (1D) periodic structures is
shown to follow closely the gap pattern when the number of units is sufficiently
large. When the periodic arrangement is slightly changed to produce a Fi-
bonacci chain, or a finite regular bi-layered structure with a missing layer, narrow
allowed bands are introduced in the gaps. This leads to very few frequencies
allowed to travel in a given medium.

Two-dimensional (2D) structures, with a refractive index that varies peri-
odically along two dimensions are studied with plane wave methods. The gaps
of the unmodulated system become larger or smaller, and sometimes vanish de-

pending on the index and the dimensions of the added structure.
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CHAPTER 1

INTRODUCTION

1.1 Historical review

Without gyoing as far as Abelés’ works' on transmission of electromag-
netic waves in thin layers in 1948, the study of gaps in periodic media can be
retraced to the works Bykov® on the effect of a one-dimensionsional (1D) perio-
dicity on the spontaneous emission in the mid 70’s. Since then, a tremendous
progress has been made n the study of 1D systems, following the works of
Yariv* and van der Ziel®. The localization of light and the photonic gaps in two
and three dimensions have been investigated since the mid 80’s, especially by
Yablonovich®, John® *', Soukoulis®, Leung®, etc... At the same time, several

transmission experiments have been conducted by Smith® and McCali*®.

One of the most important applications of periodic structures is the Bragg
reflection in semiconductor lasers. The first lasers with 1D Bragg reflectors were
realized in 1975%°. Nowadays, reflectances as high"' as 0.9995 are common in
the industries. Investigations on 2D Bragg reflectors® in the early '90 suggest
that they will soon replace the 1D reflectors in 1D laser diode arrays, and that
3D reflectors will be coupled to 2D laser diode arrays. Another application of the

photonic gaps is the thresholdless lasers which appeared in 1988’ .




The analogy between electrons and photons in periodic structures was
first noticed by D. Kossel' in 1966, and since then, the methods used in these
two fields are very similar. Similar to electrons in crystal, light propagation in
media whose refractive index varies periodically, is associated with allowed

and forbidden bands. The latter are called photonic gaps.

1.2 Motivation

The existence of photonic gaps has been found very usefull especially
with the realization of the Bragg reflectors used in semiconductor lasers. The
lasing cavity"' must effectively eliminate any undesired frequency that would just
produce heat, lower the efficiency of the system, and even destroy the semicon-
ductor. In addition, the operating frequency of the laser must be greatly re-
flected, so that every photon induce the emission of several other in-phase
photons, thus reaching more easily the lasing threshold energy™ * **. Here, the
photonic gap which is responsible for the reflection must be centered on the de-

sired frequency and it must be narrow.

Sometimes, photonic gaps are used to let some frequencies pass and
stop others, for instance in a medium where spontaneous light emission occurs,

orin a filter® " ®

. In all cases, the gap width must be specified. In real life, a
high reflectance that can be obtained by a finite periodic structure is sufficient.

Here it is crucial to obtain the same reflectance with fewer elements.




Photonic gaps do not appear necessarily at the frequency range where
they are most needed and they do not aiways have the optimum bandwidth. The
present work investigates methods that can tune the gaps and the reflectance to

specific values.

1.3 Photonic gaps

When waves travel through a periodic potential, some frequency bands
are not allowed. The word “potential” stands for a certain propagation character-
istic of the considered wave. Gaps have been found to occur for electronic®,
electromagnetic®® and acoustic’ waves. The corresponding “potential” is the
electric potential, the refractive index (or the dielectric constant), and the bulk
modulus, respectively. As an example, the time-independent Schrodinger equa-
tion for an electron in a 1D periodic potential V(x)=V(x+a), and the correspond-
ing electromagnetic wave equation in a medium with a periodic refractive index

n(x)=n(x+a), are, respectively,

Viy+ 2m(3h’3](5- V(x)y=0, 1.01
and
Vio+n*(x)p=0. 1.02



As can be seen above, Egs. 1.01 and 1.02 are similar and one expects further

analogies between their respective solutions.

The phenomenon of forbidden bands has been thoroughly studied for
electrons in crystals where they are known to occupy definite energy bands.
The electronic band structure of a crystal determines if the element is a metal, a
semiconductor or an insulator. The generalization of the gap notion to electro-
magnetic waves suggests that the equivalent of a photonic semiconductor can
be made, with possibilities of donor and acceptor levels in the gap. Even if
some success has been claimed in the study of photonic gaps, no equivalent of

the known semiconductor devices has been produced up to now.

Research in semiconductors has introduced the term “band gap engineer-
ing” as it underlines the various methods developed to tailor the semiconducter
gaps to specific values suitable for applications. In semiconductor superlattices,
a method has been proposed for tuning the minigaps by Peeters and Vasilopou-

los®

and by Vasilopoulos” et al. in more detail. It consists in adding barriers at
the centers of the wells and it exploits the properties of the corresponding elec-

tronic wave function to move the minibands in the desired direction.

Until now, in photonic gap studies, only simple periodic structures have

been analyzed®

, such as those shown in Figs. 1.1 and 1.2. Even in three di-
mensions®, this was the rule. In the present approach, the nth unit of Fig. 1.1 is

modified as shown in Fig. 1.2, for example.



So far, the reported photonic gaps are very small, about 1.15 Ghz %,
One of the problems in this field is the modulation of the photonic gap. As we are
not aware of any proposed modulation method, we study the change of the
photonic gap bandwidth obtained by changing the structure of the periodic unit
in analogy with electronic superlattices®. The idea is that a more frequent dielec-
tric contrast in the unit leads to multiple destructive or constructive reflections of
the waves and thus to an increase or decrease of the gaps. The same idea

can be applied to the two-dimensional system of Fig. 1.3 and will be detailed

later.
layer 2 layer 1 layer 2 layer 1
np n, Ny nm
z=(n-1)L 7z=nL z=(n+1)L
Fig. 1.01 Simple 1D two-layered superlattice; n, and n; are the refractive indices of the
two layers.




z=nL z=(n+1)L.

Fig.1.02: Possible 1-D multilayered unit

O

O

o O O
O O O
o O O

O

Fig. 1.03 Simple 2D structure. The shaded circles have a refractive index different from

that of the background.



1.4 Outline

The work is organized as follows. In chapter 2. we give the dispersion
relation for 1D periodic structures in analytic form. Maxwell’s equations and the
boundary conditions at the interfaces separating adjacent layers, are used to
find the transfer matrix that links the electromagnetic wave’'s magnitude and
phase in one unit to those of the following unit. This matrix contains the informa-
tion on the forbidden and allowed frequencies. The gap position and width are
studied as a function of the angle of incidence, the layers’ thickness, the refrac-
tive indices, and the complex structure in the basic units. The results of these
modifications are compared to the photonic gaps of a quarter-wave (QW) stack

characterized by two layers with the same optical iength per unit.

In chapter 3, we study finite structures, where the most interesting fea-
ture is the transmittance or transmittivity. Numerical 1esults are obtained for QW
finite structures, complex structures, pseudoperiodic structures such as Fi-
bonacci chains, and structures with defects. Defects introduce narrow allowed
bands in gaps. Where experimental resuits are available, they match closely the

numerical results.

Chapter 4 deals with the tunability of the photonic gap in 2D structures; in
a square lattice of cylinders or prisms, cylinders or prisms with different dimen-
sion and/or index are added to the unit and the photonic gaps are compared to

those of structures with no interstitial elements. The transfer-matrix technique®




is not used here, as the plane-wave method is simpler to implement. Again the
polarizations of the electromagnetic waves (TE and TM) are considered sepa-
rately. Some conclusions are very similar to those pertaining to 1D structures,

such as the maximum gap etc...

The fifth chapter analyzes possible applications of tuned gaps, what can

further be done, and gives the conclusions.




Chapter 2

FHOTONIC GAPS IN 1D SUPERLATTICES

2.1 Superlattice description

A 1D superlattice is a layout of two or more parallel layers of different re-
fractive indices, repeated in a periodic pattern. The most favorite material con-
sists of a GaAs layer followed by a Gai.« Al As layer bacause of their matching
lattice parameters® and their flexibility in varying their indices by choosing a
suitable concentration x. The refractive index can vary from 2.97 for AlAs up to

3.59 for GaAs™ ? for the energies around 1.6 eV. It is given by
Naa-xapoas =3.59-0.7 1x+0.091 x> 2,01

The lateral dimensions are supposed to be infinite, and the index varies
only in the z direction. The most general form of the index pattern of our super-
lattice is shown in Fig. 2.01. If, for instance, the widths d, and d, are the only
ones to be different from zero, we have a two-layered structure. We assume that
we have a certain liberty in choosing the magnitude of the widths d; and the in-

dices. However, in practice, it would be very difficult to collate too thin layers if




their indices are very different.

36 | )
34
o
X
[}
©
£
@ a0l ——
8
93 dn dl
30 |-
28 ]
7
9L

nlL

Fig. 2.01 Possible refractive index profile within one unit

2.2 Trénsfer matrices

A periodic structure with layers of different refractive indices exhibits
gaps of energy in which no electromagnetic waves can propagate. For 1D
structures, one of the ways of finding these photonic gaps is the use of the
transfer matrix method® as it has been used in semiconductor superlattices for

electrons”. The transfer matrix links the field amplitudes Ay and By in the

10




first layer of the (n-1)th unit to Ay, and By, in the first layer of the nth unit, as

shown in Fig. 2.02.

B!(n h an B!n
» » —
d| dv —————
< < +—
Al(v-l) Avn Aln
(n-1L nL z

Fig. 2.02 EM waves in one unit

The most general case consists of an infinite chain of similar units, with v
layers in each unit. Each layer has its own refractive index and width, and the z-
axis is chosen to be perpendicular to its faces. The overall width of the unit is the

period L.

Let us consider the electromagnetic fieid in the mth layer of the nth unit.
The most general electromagnetic wave is a sum of two waves, the transverse
electric (TE) and the transverse magnetic (TM) waves, which can be studied
separately. The TE wave has its electric field E perpendicular to the plane of in-
cidence, in the present case, the yz plane, whereas the TM wave has the mag-

netic field H perpendicular to the plane of incidence.

In the present investigation, we only consider lossless and non magnetic

(n=1) layers. In such a case, Maxwell's equations read

11



VxE=-=, 2.02
. JE

VxH=e=r, 2.03

VeE=0, 2.04

VeH=0. 2.05

These equations can be combined to give the wave equations for E and H.

VxVxE+eaaf=o, 2.06
-

Vx(leH)+ J t' =0. 2.07
£ ot

The solutions of the wave equations are sums of forward and backward waves;

in the mth layer of the nth unit, they read
E(y,Z,t)= E(y,Z)e iof _ (Almelkm“ nl.) + B e (L 77 nl))c‘("yy '-') , 2-08

nmn

H(y.z.t)=H(y,z)e ™ =(C,e* " +D_g """ ’)c'("’ “ 2.09

The wave vector component along the z axis, k., is given by
K, =—=2cos,, 2.10
c

where w is the electromagnetic frequency, n, the refractive index of the mth

layer, 8y, the angle of incidence, and c the velocity of light in vacuum.

12



Maxwell’'s equations will help solving the boundary problem at inter-
faces'® '* *. The fields have to be continuous at the interfaces, or if we consider
the electric (magnetic) field only, the field and its first derivative®® with respect to
z (Ex and JE, /dz or H, and dH, /dz) must be continuous. For the electric fields,
this translates into the following equations in layers m and m+1, with subscript s

for TE waves and p for TM waves:

Eem + Een = Egimin ¥ Estmin) 2.11
(-E,,+E,, )N, cOSO,, = (—Eis(m, L+ E,s(m”,)n(m”, cosh,,,, » 2.12
(E,pm +E,p,,,)cos6rn = (E.p(m”, +E,p(m”,)cose(mm, 2.13
(—Eipm +E,pm)nm = (—E,p(m”, + E,p(m”,)n(m”,. 2.14

Combinations of Egs. 2.08 to 2.09 and 2.11 to 2.14 give the relation between the
electric field amplitudes in adjacent layers. From the last layer of the (n-1)th unit
to the first layer of the nth unit, cf. Fig. 2.02, the matrix form of the boundary

conditions for TE waves reads

For TM waves we obtain

13



km kL

_e v

n, AXW
K, v

nve 4 J Bn J

2.16

Between two adjacent layers of the same unitj and j+1, j going from 1 to

v-1, the transfer matrices for TE and TM waves are as follows

( Py e )(AL] e LT (A:,"
t—k,ze“‘"“' ke " LB‘n J= LA Y-S LB,’,“ | Y
and
_E_euk,,z\, '_(lz_e "‘nAI] Ai (Me.k“.m;\, MZ_ LI AN
= , .18
—n,e"r" ne J B! J -n, e n,e "o [B!," 2
\
where
A, = Zd, 2.19

Here, d; is the width of the jth layer. By matrix manipulations, one easily finds the
transfer matrix M that links the amplitudes of the electric fields in two adjacent

units. For the (n-1)th and the nth unit we have

( Al A:]
=M J .
LB:-I B::

2.20

14



M is a 2x2 matrix and has the properties
Mu = Mz.z ) M, = M;. ; 2.21

where * denotes the complex conjugate of the element considered. Thus, two
matrix elements are sufficient to define the matrix M. If 2EM, 3EM, 4EM desig-
nate the transfer matrices of two, three, and four-layered units for TE waves,
and 2MM, 3MM, 4MM the equivalent matrices for TM waves, the matrix elements

for TE waves are found to be

1
26M,, = Zn=—{lk.. +he (ko 4k, Jexplilkd, +k,d))
127%2z
+(klz - k:’z)(kZZ - klz)exp[i(_k22d2 +klzdl)]} ’ 2'22
and
1 .
2EM,, = 2m——{(ki ~ks ko i, ) explil 0, +k, 0, )
1222
+(k,, +ko )k, — Ky, Jexplil-k. d, +k,,0, I . 223

The corresponding equations for 4EM; with which most of the calculations have
been carried out are very complicated. To simplify their form, we introduce the

notation

k.+k. =k , k,-k,=k,
mm_oomon 224
kll k.z - q' ’ kIZ - k|z B QV

15



Ry, = expli(k.d, +K,d, ~ kg, +kd:-)]. 2.25

Then we have

1
1Y S —
" 24k4zk32k22klz
{k|4k43k32k:1R4121 + RNR-Uk‘ZkZlRMZI + RukuRuku 4 2.26
+ K KKK R, +KKGKGKGR, 5 KGR GKGR,
+k|4k41k12R21R4v1 +R14RMEUE’|R4I l}’
and
MM, =
! 24k4zk31k22klz
{kuknkuklenn + knEMkukamn + kl.sknE\:kanzl 2.27
+ knkuks:Elenzl + RMRMRukaM:l + RHRJ\kuR:lRun

+Rl -lk-URS Z‘.EZ’ 1R432l + kl-tk_-l]R‘! ZEZlR-Hll }'

All the matrix elements aMM;; can be obtained from the matrix elements of
aEM; upon replacing k; by nf/k,z. The most important quantity in the matrix

elements is the ratio between adjacent layers’ indices.

16




2.3 Dispersion relation

The transfer matrix M between two corresponding layers of adjacent units
can be used to link similar layers belonging to any two units of the structure by

means of in Eq. 2.28.

A ,. A

=M . 2.28
a) o)

In physical problems, we expect M" to be finite even when n goes to infin-
ity. In other words, the absolute value of its determinant must be equal to or
inferior to one. When the layers are lossless, as they are in our case, the de-
terminant is equal to one, and the matrix M is called unimodular®. Its eigenval-

ues are found by solving the following equation.

AR - )

MLB szLB o (M—pI)L J=O. 2.29
" h B,

Equation 2.29 shows that the determinant of (M-pl) is equal to zero, with |
standing for the identity matrix. With det (M)=M;;Mz-M2M2=1, Eq. 2.29 can be

solved and the eigenvalues p be found as follows;

det(M"pl)= (Mn —p)(Mzz —p)—MllM’ll
=p2 "p(Mn +M22)+1
=p2—ptr(M)+l= 0.

2.30

17




This gives

2.31

+

_ M+ JtrM—-4
= > ]

Equation 2.28 can now be written as follows

(%] [N [M]

o) o) e

Again, the condition of a finite value when n goes to infinity prescribes a

solution of the form
Ip"l =1 & p=e*, 2.33

The combination of Egs. 2.31 and 2.33 gives a condition of existence of

any wavelength in the periodic structure, i.e. the dispersion relation
cos (KL) = trM/2. 2.34

In fact, any wavelength that will yield a value of cos(KL) superior to 1 or inferior
to -1 will not propagate in the medium. Thus, the study of band gaps is reduced
to the calculation of the trace of the matrix M, and if we take into account Eq.
2.21, the matrix element My, is sufficient. Then, we can say that only frequen-

cies that fulfill the condition -1 <tr(M)/2 =Real(M,,)< 1, can propagate through

the superlattice.

18



The analysis of My, in Egs. 2.22 to 2.27 suggests that the contrast of ad-
jacent refractive indices will determine the width of the gap by giving to the real
part of My, a value out of the physical limits. The index of each layer is coupled
to that of its neighbors, an absence of contrast will lead to an absence of contri-
bution of terms containing the difference of the indices. A large contrast will lead
to an important contribution in a negative or a positive way thus maintaining the

trace below -1 or above 1 and making the gap larger.

For a two-layered structure, the dispersion relations for TE and TM waves

are respectively given by

cos(KL) = cos (k, d, )cos (kzzdz)——;-(l;—‘i+%}in (k,d,)sin(k,,d,), 2.35
2z 1z

and

cos (KL) = cos (k,,d, ) cos (k.,d,) - %(f'n-'%— + %—:i]sin (k.d)sin(k,,d,). 2.36
2*Mz 1"*2z

The frequency dependence of the equations above is shown in Fig. 2.03 for a

angle of incidence equal to 0.5 rad.

19
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Fig. 2.03 Dispersion relation w vs KL. The discontinuities at KL=nr, n=1,2,3 represent

the first, second and third photonic gaps, respectively.
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2.4 Numerical results

Up to now, the superlattice structures that are found in the literature are

101242 We will in-

made of two layers different in width and refractive index
sert an extra layer in one of these two layers and study if the gaps vanish, widen
or shrink when the width and the refractive index of the extra layer vary. Further,
we will see the sort of gap we can get if the index varies spatially in a more

complex fashion, for instance, in a triangular pattern.

The basic two-layered structure considered here is the QW stack in which
the optical path OF = Width+Index is the same for each layer. in this particular
case, the middle of the band gaps o and the gap width Aw; are easily deduced
analytically® from Eqgs. 2.35 and 2.36, with KL=nr+ix corresponding to gaps. |f

we assume a normal incidence, we obtain

nci

(l)‘ = 2dln| ’ 2.37
and
ao = io 35
n(n, +n,)
Aw, =4 2.38
0, i=2,4,6..
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That is, all even-numbered gaps vanish identically. By considering that gaps are
created by the buildup of successive reflections, we can easily see why only
odd gaps are present under normal incidence for a QW structure. When an
electromagnetic wave is reflected by an interface separating a low index medium
from a high index medium, the reflected wave is 180° out of phase with respect
to the incident one®. Hence, a wave, with length equal to a quarter of the optical
width of a QW layer, that travels through a QW unit and back, will be in phase
with the wave reflected by the first interface of the unit. On the other hand, a
wavelength equal to twice the optical length of the QW layers will interfere de-
structively with the wave reflected from the previous unit thus preventing the re-

flections to build up.

Let us take a QW structure made of two layers of Ga,.AlLAs with
different values of x such that the indices are equal to 3.59 and 3 for widths
equal to 90 nm and 107.7 nm, respectively. The z axis is perpendicular to the
layers. According to Eqs. 2.39 and 2.40, gaps are expected at odd multiples of

uy for an angle of incidence equal to zero with
wo=1.46 10" rdss, 2.39
Aw =0.228 w. 2.40

All gaps are equal in magnitude, thus their relative width with respect to the
middle of the gap gets smailer and smaller for higher gaps. As the ratio Aw/o is

the quantity that often matters in experiments, there is practically no gap at high
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frequencies. Anyway, it would not be realistic to go far beyond the first gap en-
ergy because the indices will change with the energy. So, at twice the first QW
midgap, the index ratio for adjacent layers jumps from 0.7 to 0.8 according to

Afromowitz >, and the transfer matrix has no longer the same eigenvalues.

A more practical unit for o is c/L where ¢ is the velocity of light in vac-
uum and L the width of one unit. If the angle of incidence 0 varies from 0 to 7/2,
k. and k, will change accordingly and the use of the transfer matrix method

yields the results shown in Fig. 2.04 for TE waves and in Fig. 2.05 for TM waves.

)
(c/L)

2 4 6 8 10 12 14

K, (1/L)

Fig. 2.04. QW stacks, band structure for TE waves. The parameters are L=197.7nm,

d,=0.455L, d,=0.545L, n,=3.59, and n,=3.
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Here, k,=0 corresponds to 8=0, (normal incidence), i.e., k,=k. The oblique limit

corresponds to 8=v/2 and any other angle between these two limits would corre-
spond to a straight line passing by (0,0), between the y axis and the oblique
limit. At 0=0, a QW structure has only odd gaps but at other angles, even and

odd gaps appear.

Fig. 2.05 shows the dispersion relation for TM waves in the same struc-
ture. At a certain angle of incidence, there is no gap at all. This can be explained
by considering that at each interface, the electromagnetic wave is partially re-
flected and partially transmitted. When the reflected waves build up (constructive
interference), the transmission can be completely inhibited’, and forbidden
bands occur. But for TM waves there is a certain angle, the Brewster angle o ,
defined in terms of the indices of the incidence medium (n) and the transmission

medium (n’) by

!

n
o, =tan '—, 2.42
h

at which there is no reflection, and consequently no gap either. The dotted line

in Fig. 2.05 corresponds to the Brewster’s angle.




)
(c/L)

0 2 4 6 8 10 12 14

k, (1/L)

Fig.2.05. QW stacks, TM band structure. The parameters are L=197.7nm, d,=0.455L,
d,=0.545L, n,=3.59, and n,=3.

In the study of the gap variations, we will give results only for 8=0 . Since
the gaps for TE and TM waves are similar at this angle of incidence, we will only

treat the TE waves.

For non QW two-layered periodic structures, the even gaps exist even at
normal incidence as shown in Figs. 2.06 and 2.07. The absence of gap at the

Brewster angle is still apparent in Fig. 2.07.
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Fig. 2.06. Non QW, band structure for TE waves. The parameters are L=197.7nm,

d|=0.41 I_, d2=59L, m=3.59, and n,=3.

K/(UL)

Fig. 2.07. Non QW, TM band structure. The parameters are L=197.7nm, d,=0.41L,
d>=0.59L, n,=3.59, and n,=3.
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Let us now see what happens when the width of one layer, say the one

with the highest index, varies from zero (no periodic structure) to the whole width

of the unit (no periodic structure again). In figure 2.09, we plot graphically the

gap width Aw versus the first layer's width for a normal incidence.

3.0 “ :
T

25F i
|

w 15F i

(c/L)
(1] S S —
05}
0.0 A i 2 L E i i i 1 I
0.0 0.2 0.4 0.6 0.8 1.0

d, (L)

Fig. 2.08 Frequency vs first layer's width. The parameters are L.=197.7nm, n,=3.59,

ny=3, d,=L-d,, the dashed line corresponds to a QW stack.

For a QW stack structure (dotted vertical line) we only have the odd gaps as
seen before, all equal. Other maxima correspond to constructive interference of
different reflected waves which happens when the layers’ widths fulfill the condi-
tion (20.+1)dini=(2p+1)dzn,, ,B=0, 1,2, 3,..., and 2ad;n,=2pd,n, correspond to

minima i.e., to zero. Fig. 2.09 shows how gaps change with the first layer's width,
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with maxima at d,=0.145 L, 0.21L, 0.455L(QW), 0.71L and 0.81L. as predicted.
For the same unit width, the thiner the layer with the higher refractive index, the
larger the maximum gap and the higher the midgap values as Figs 2.07 and 2.08

indicate.

0.12

0.10

0.08
Aw 005
(c/L)

0.04

0.02

0.00
0.0

Fig. 2.09. Gaps vs first layer’ s width. The parameters are, L=197.7nm, n,=3.59, n,=3,
do=L-d, .

If we now consider four layers per unit instead of two, as shown in Figs.
2.10 and 2.11, we obtain a similar result as for a non QW structure, i.e., odd
and even gaps and no gap at the Brewster angle . Thus, the results for four-
layered units are similar to those for two-layered units. However, there are also

some important differences that will be emphasized below.
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(c/L)

ky (1/L)

Fig. 2.10. Four-layered units, band structure for TE waves. The parameters are
L=197.7nm, dy=0.455L, d,=0.272L, d4=0.163L, dy=0.11L, Ny=n;3=3.59, and n,=n,=3,

Let us now investigate how gaps change as a function of the extra layer's
index (na or ny). As shown in Fig. 2.12, at n3=3.0 we have a two-layered QW
structure, the first gap is at its maximum (odd gap) and the second is equal to
zero. These widths will decrease or increase linearly with respect to the index ns.
When n3 reaches its maximum value, the first band gap drops to 57 % of its
original value, whereas the second gap increases up to 93% of the maximum

value.

Now, if we consider that the third layer moves inside the unit, the first gap
decreases until the extra layer is in the middle of the second layer, see Fig. 2.13.

At the same time, the second gap increases and becomes larger by 60% relative
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Fig. 2.11. Four-layered units, band structure for TM waves. The parameters are the

same as those of Fig. 2.10.

to the QW value. When the third layer is adjacent to the first one, we have only
the odd gaps (QW two-layered structure), all equal to Awqw. The first gap
reaches a minimum of 44% of Awaw when the second and the fourth layers have

the same width.
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Fig. 2.12. Gaps vs refractive index of the 3rd layer. The parameters are L=197.7nm,

d;=0.455L, d,=0.272L, d3=0.163L, d,=0.11L, n,=3.59, and ny=n,=3.
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Fig. 2.13. Gaps vs position of the 3rd layer. The parameters are ny=n;=3.59, ny=n4=3,

L=197.7nm, d,=0.319L, d5=0.136L, and d,=0.545L-d,
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When the extra layer is placed in the middle of the second one, the

variation of the gaps with the 3rd layer's width is shown in Fig. 2.14.

025

020 |-
05 |-
Aw

(cl) oo}

005 ¢

00 " 1 i A N
00 01 02 03 04 05

dy (L)

Fig. 2.14 Gaps vs width d; of the extra layer. The parameters are L=197.7nm, d,=0.455L, and

do=d,.

At d;=0, we have a QW structure. In this case, there are only odd gaps. As
shown in Fig. 2.14, the first gap decreases uniformly and hits the zero when the
third and the first layers have the same width. All odd gaps vanish at this value
of ds. The structure unit can be divided into two units of a non QW periodic
structure. The second gap has a maximum a little higher than the QW gaps (8%
wider). The third gap reaches twice its starting value before falling down to zero.
The fourth gap has two maxima, the first lower by 15% and the second larger by

29% than the QW gap.
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A major difference between two-layered and four-layered structures is
shown in Figs. 2.09 and 2.14, when we compare the maxima of the third gaps.
For the same unit width, the four-layered structure has a maximum gap twice as

large as the maximum gap of the two-layered structure.
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Fig. 2.15 Gaps vs width d, of the extra layer (non QW limit). The parameters are
L=197.7nm, d,=0.41L, and d,=d, .

If we start with a non QW structure, the second and the fourth gaps do not
vanish at d=0. For certain values of dj, they can change by a factor of 4 as
shown in Fig. 2.15. Eventually, all gaps vanish when the extra layer takes all the

place as the index is uniform along the whole unit.

If the refractive index of the extra layer changes linearly, as shown in

Figs. 2.16 and 2.17, the general picture is the same as for four ordinary layers.
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Fig. 2.16. Gradual third layer index change, TM waves. The parameters are L=197.7nm,

dy=0.46L, d»=0.27L, d3=0.16L, d,=0.11L, n,=3.59 and n,=3.
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Fig. 2.17. Gradual second layer index change, TM waves. The parameters are

L=197.7nm, d,=0.23L, d,=0.14L, d1=0.09L, d,=0.54L, n,=3.59 and n,=3.



Fig. 2.18. Gradual index throughout the unit, TM waves. The parameters are d,=90nm,

dr=107.70M, Nmn=3, and Ny.,=3.59.

In such a structure, we have a gap pattern similar to that of Fig. 2.11 (similar
midgaps) but the second gap is twice smaller than that of its counterpart in Fig.

2.11.

In Fig. 2.18, the index varies linearly throughout the unit; as a result, we
have the first gap that is the most noticeable (Aw/w,=7.5% for a midgap w, =
0.995); the other gaps are very small (Aw,/w; = 0.3% with t,=1.99). The result
for the first gap is comparable to the results of a QW structure (Aw,/,=15 %,

w=1). As the Brewster's angle is given by the index contrast between adjacent

layers, when the change of index is gradual, those layers have almost the same

index and the angle will be equal to 45°.
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K, (1/L)

Fig. 2.19. Symmetric gradual index throughout the unit, TM waves. The parameters are

Nmin=3, Nmax=3.59, and L=197.7nm.

In addition all band gap widths are very close, the deviation for the first three is

less than 1%.

A dramatic change occurs when the the index pattern is symmetric as
shown in figure 2.19. The relative band widths (Aw/w) for the first, second and
third gaps are respectively divided by 1.25, 10 and 3 and have absolute values

of 0.06, 0.006, and 0.02 c/L.

A well-known phenomenon in optics is the suppression of the reflection of
light at the interface between two different media by putting between them a

layer of index equal to their geometric mean®, n = 1/n,nz.
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Fig. 2.20. Three-layered units, TM waves. The parameters are L=197.7nm, d,=0.137L,
d,=0.318L, d5=0.545L, n,=3.59, n,=3.38, and n,=3.

In general, a three-layered periodic structure has odd and even gaps of different
widths as shown in fig. 2.20. The TE case does not have anything special, con-
sequently, we plot only the TM case in order to show the Brewster angles. Here,
they ought to be, respectively, equal to 46° and 51.7° for the first and the second
inerfaces. Again, they are too close to be distinguished and we show only one
corresponding to the dashed line. The values at 0° are the same for TE and TM

waves.
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Fig. 2.21. Three-layered units, TM waves, suppressed reflection. The parameters are

L=192nm, d,=0.47L, d2=d,=0.265L, n,=3.59, ns=3, and n,= ,/n n,.

The gaps are considered as the reflection build-up of all interfaces that
interfere constructively until no wave at all is transmited. In a two-layered QW
structure, the wave undergoes two reflections, and for an even-multiple fre-
quency of the fundamental, the second reflected wave is = radians out of phase
with the first one, and thus interferes destructively, while the third interferes
constructively with the first reflection. In total the even gaps will vanish. If now
we suppress the second reflection by the addition of a third layer of suitable in-
dex, one may expect a band structure where all odd bands would be equal and

regularly spaced (at multiples of the fundamental QW frequency) but where even
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bands would be still there because the first reflection is no longer there to annihi-

late them. The results in Fig. 2.21 seem to confirm that at normal incidence.

Gaps at a particular angle of incidence can be derived directly from the

dispersion relation (Eq. 2.35). Results are plotted in Fig. 2.22 for a four-layered

30}
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Fig. 2.22. Dispersion refation for a four-layered structure. The parameters are
L=197.7nm, d,=0.455L, d,= 0.272L, d2=0.163L, and d,= 0.11L. The discontinuities at KL=nn,
n=1,2,3 represent the first, second and third photonic gaps, respectively.

infinite structure. When KL is equal to a multiple of =, there is a jump in fre-

quencies, showing the different gaps.

In this chapter, the transfer matrix method has been used to obtain the
gaps in multilayered infinitely long superlattices as a function of the index and

the width of the layers. The next chapter deals with finite superlattices.
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Chapter 3

FINITE 1D STRUCTURES

3.1 Transmittance of finite periodic structures

In general, the experiments involve finite samples, and very large sam-
ples yield results very similar to those of the infinite ones. In infinite structures,
we find forbidden bands or gaps for the propagation of electromagnetic waves
in the medium. In finite structures, this corresponds to total reflection and the
allowed bands are the equivalent of total transmission. In very long samples, the
matching is very close, but for small structures, the reflectance is not necessarily

equal to one and zero for the forbidden and allowed frequencies, respectively.

The transmittance is generally calculated by taking the nth power of the
transfer matrix when we have a finite structure with N identical units, and we
compare the amplitude of the incident wave to that of the reflected and transmit-
ted waves®. As the transfer matrix is unimodular, its Nth power is given by Eq.

3.01:

MM =[M|1UN-1 "UN 2 M12UN 1 ) , 3.01

M2|UN—1 M22UN I—UN 2
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with

sin(N- KL
N sinkL 302

The coefficient of reflection ry, the reflectance Ry, and the transmittance
Ty are defined by Eq. 3.03. According to Eq. 2.31, they can be connected to the

transfer matrix by Eq. 3.04:

- Ru=n , Tu=1-Ry; 3.03
AL,
leUN~l
fy= ot 3.04
N MIXUNI—UN2

An example of the transmittanceof various 5- unit structures as a function of the

frequency is shown in Fig. 3.01

100
s

075

| S units, L=197.7nm, n,=n,=3,
| n=n,=3.59,d =0.455L

transmittance
o
g

026 [ —- 24ayered QW,d,=0.545L
2-ayered non QW, d=0.379L
[ ———4-ayered, d,=d,=0.15L, d,=0.245L
000 [ -y 1 A 'l A L
0 1 2 3

o (cl)

Fig. 3.01. Transmittance for S-unit structures.
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Fig. 3.02. Transmittance for 17-unit finite structures. The labels QW and non QW pertain

to two-layered units. The parameters are the same as those of Fig. 3.01.

Let us try to see how the transmittance varies with the number of units for
QW, two-layered, and four-layered structures. We expect the transmittance

pattern to match more closely the gap profile as the number of units increases.

Figures 3.01 and 3.02 show when the optical path is the same in a two-
layered structure (QW case), the minima are equal and placed at odd multiples
of the frequency of the first of them. The larger the number of units, the deeper

the minima: 0.49 for five units, 0.009 for 17 units and 0 for 50 units.

The insertion of an extra layer in one of the QW layers, in addition to

generating another minimum between the odd ones, makes the minima different.
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Fig. 3.03. Transmittance for 50-unit structures. The parameters are the sarne as for Fig.

3.01.
The first isolated minimum is higher than the second one which in turn is higher
than the third minimum. The latter is 0.10 for 5 units and for 17 units, we have

practically no transmittance in a gap 7.3% wide in relative value (Aw/w).

For a QW structure, we change only the width of one layer, and we get
still another transmittance pattern. As expected from what is known about infinite
periodic structures ( Fig. 2.05), an extra minimum is inserted between odd min-
ima. The third minimum is deeper than the first, and the second minimum be-
comes deeper as the number of units increases, dropping from 0.92 for 5 units

to 0.51 for 17 units but it is still different from zero even for 50 units.

We can foretell that for more units the transmittance pattern will

look like the gap pattern. So, most of the conclusions that were valid for infinite
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structures hold approximately for a very large number of units. For a very limited
number of units, the iateral fringes are few and shallow; for a large number of
units, the lateral fringes are numerous and very thin. It is therefore possible to
select desired frequencies with a proper choice of a layered structure or by

varying the number of units.

We now consider the case when electromagnetic waves undergo losses
while traveling through one absorbing layer. This means that if one refractive in-
dex is complex', the transmittance will decay exponentially with the frequency
and the larger the number of units, the faster the decay. In the results of Fig.
3.04 we have taken a complex index n,=3.0 - 0.05i. The minus sign in this ex-
pression indicates that there is loss of energy in the layer. Even the plot for a
four-layered structure with losses follows an exponential decay. The minima do
not change compared to the same structure without losses. Near the gap edges,
the transmittance drops to 40 % of the incident waves (in energy) for the first gap
and as low as 5 % for the second gap of the QW structure. For the 50-unit
structure, the transmittance at the edges of the first gap is 3 % and for higher

frequencies it drops rapidly to zero.




transmittance

Fig. 3.04. Transmittance for a 17-unit QW structure with losses (C), a 17-unit four-
layered structure with losses in one layer (A) and a 17-unit four-layered structure without losses
(B). The parameters are the same as those of Fig 3.02, except for the refractive index of the
layer with losses.

Considering the case of three layers per unit with one layer acting as anti-
reflection medium (see chapter 2), a few units exhibit a transmittance very simi-
lar to the one of a QW stack , for which all the minima have the same value
(0.49), at odd multiples of the fundamental frequency (Fig. 3.05). For more units,

very thin pseudo-gaps appear at even frequency multiples(Fig. 3.06). For 50

units, the transmittance is 0.6 at =20,
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Fig. 3.05. Transmittance with an antireflection layer(5 units). The parameters “re

L=197.7nm, d,=0.455L, d,=d3=:0.26L, n,=3.59, n,=3.28, and Na=3.
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Fig. 3.06 Transmission with an antireflection layer (50 units).




3.2 Pseudoperiodic structures

Sometimes, one wishes to transmit electromagnetic waves concentrated
in a very narrow band, or inversely, to reflect only frequencies near a fixed
value. Periodic structures with a defect and structures with prearranged succes-
sion of layers, such as Fibonacci chains, can meet such conditions. On the other
hand, one does not want unpredicted wavelengths to be reflected or transmitted.
Hence, one must study the influence of random variation of the layers’ widths

around some nominal values.

3.2.1 Missing layers

One or more missing layers have as a consequence the introduction of
allowed states in the forbidden band, in analogy with donor or acceptor levels in

semiconductor electronic bands.

When the 49th layer of a 50-unit bi-layered structure changes its index
from n, to n, (index flipping) , the pseudogap near the left edge of the main gap
becomes deeper (see Figs. 3.07 and 3.08) thus isolating a shallow level corre-
sponding to a donor lever in the electronic terminology. The transmittance in
this level attains a maximum value M=0.97 for a minimum m=0.02, this repre-

sents a change of more than 16 db.
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Fig. 3.07. Transmission near the first band gap(50 units). The parameters are

L=197.7nm, d,=0.455L, d,=0.545L, n,=3.59, and n,=3.
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Fig. 3.08. Index flip for the 49th layer. Other parameters are the same as those of Fig.




If the index of the 50th layer flips from n; to ny, the level in the gap shifts
to the right edge (equivalent to an acceptor in the electronic band theory) but

otherwise the transmittance has the same characteristics.

3.2.2 Fibonacci Chains

One of the most studied quasi-periodic arrangements are the Fibonacci
chains'’ defined as follows: Suppose we have two different layers, say one long
L the other short S. Different Fibonacci chains, made out of these units are

given in table 3.01.

Fo L

3 LS

F, LSL FiFo
Fa LSLLS F2F1
an LSLLSLSL ......... FnFn 1

Table 3.1. Fibonacci chains, L for long, S for short.
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These chains are of interest since they are intermediate between the
perfect order of periodic systems and systems where n varies randomly. We
have already seen that a limited random change introduces new states in an or-

dered system.

The results for the transmittance of a 34-layered Fibonacci chain'? shown
in Fig. 3.09 can be compared to those of a QW sequence of 17 units in which
the first gap is centered at >=0.961, and has a width Aw=0.112 (see Fig. 3.02).
Here we observe two very deep pseudo-gaps centered at w= 0.73 and «=1.19

with the same width Aw=0.1.
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Fig. 3.09. Transmittance for a 34-layer Fibonacci chain. The parameters are 21 layers

vith d=90nm, n=3.59, and 13 layers with d=107.7nm, n=3, L=197.7nm.
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Another interesting feature about the Fibonacci chain is that if we make
a Fibonacci sequence of 21 layers of the lowest index and 13 of the highest, we

still have the same transmittance profile.

Pseudoperiodic structures like Fibonacci chains are very different from
random sequences made of the same layers as Figs. 3.09 and 3.10 show; Jef-
fries'® reached a similar conclusion using a Thu-Morse pseudoperiodic ar-

rangement.

Fibonacci chains have been made experimentally'? and the theoretical

gap values were found to closely match the experimental ones.
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Fig. 3.10. Random sequence of 34 layers. The layers’ parameters are the same as

those of Fig. 3.09.
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In this chapter, finite periodic structures have been studied and structures

with 50 units have been found to yield results that are very similar to those of
the infinite structures. If only a significant decrease in the transmission is de-
sired, a small number of units can be sufficient. Pseudoperiodic structures, such
as Fibonacci chains and periodic sequences with missing layers, help introduce
thin allowed levels in the gaps at the desired frequencies. The introduction of an
antireflection layer in a unit will introduce narrow pseudo-gaps at even multi-
ples of the fundamental frequency without any noticeable change in the odd

values.

With this chapter, we conclude the study of 1D structures. In the next

chapter we consider 2D structures.
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Chapter 4

2D STRUCTURES

4.1 2D Description

The 2D structures we will be studying have in general the lattice form of
Fig. 4.1 below. The rods are infinitely long in the z direction and they have the
form of cylinders or prisms with a square cross section. Many authors have
worked on similar structures, but all of them were interested in the very exis-

%. 4. 2533 not in their possible modulation. Again, the

tence of the photonic gaps
band gaps will be tuned by changing the dimensions of the rods and their di-
electric constants. The lattice is supposed to be infinite, and this enables us to
use the plane-wave method. When modified appropriately, the transfer matrix
method of chapter 2 can be used for a finite number of lattice elements® in or-
der to obtain the transmittance. Actually, the experimental situation one can

have is characterized by a finite number of rods of finite length®. However, in

what follows we will consider only infinite lattices.
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Fig. 4.01. Square lattice of square rods with interstitial rods

4.2. Plane-wave method

The plane wave method consists of considering reciprocal lattice vectors
as corresponding to plane waves that constitute a complete basis in which any
other wave can be expanded. This method is quite heavily used in electronic
band gaps studies in three dimensions®, in photonic gaps in three®, two?, and
one® dimensions. In the later, it yields the same resuits as the transfer matrix
method.

As the structures are periodic, Fourier analysis is helpful in finding those

basis waves. We start again with the wave equations. 2.02 and 2.03 and as-




sume an exponential time dependence of the electric and magnetic fields; that
is, we write
X(F,t) = X(F)e™, 4.01

where X =E or H. Inserting this expression in the wave equations,we obtain

VxVxE— E
| " 4,02
VX(EVXH)——zFI 0.
In a periodic medium, the eigenfunctions of Eqs 4.02 are given by the
Bloch functions® X(F)=e*7X, (), where X, () is a function with the periodicity
of the lattice. Expanding f(k(F) in Fourier series over the reciprocal lattice vec-

tors G, we have

énl( (F, t) = énk(F)e_b"'" = e'('-‘-i'@nk') Zénk(é)eléi’
G
4.03
H (r t) an(f) “lnt el(kr’%u!)Zan( kle,'

The Fourier coefficients ée = E(é) and FIG = I:l(é) satisfy the following equations;

(§+G)X(E+é)xéé+2—j§eéé,ﬁé,=O,

4.04
2 eq (k+G)x (k+G)xHy, + m—2Fi
d-
where n(7) = 1/¢(F); the periodicity of the dielectric constant implies
e(f)=¢, re,(F-R), 4.05

with R being a lattice vector.
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Now the dielectric constant can be expanded in a Fourier series in reciprocal

space and it reads
@) =] o %igf)dr 4.06
Vs s . .
WS stands for Wigner -Seitz cell. Combining Egs. 4.05 and 4.06 yields

~ l A i - —
&(G) =eaaéo+v—wslwse G g (F)df, 4.07

where ¢,(7) is the dielectric constant measured from ¢, taken as the value of

the background. In order to use Eq. 4.04, we have to find the coefficients €5

this can be done by expanding ¢, in a Fourier series.

The main structures we will be dealing with involve cylinders spheres,
and prisms. The unit step function wiil be used to distinguish the regions of dif-
ferent dielectric constants since we will assume an abrupt change of the latter.
For spheres we have®

€0(F) = (€, ~&,)8R-[f]), 4.08

and for cylinders,

€,(F) = (g, - e)e(R ~py)

){ Jc—x\+c—-)) 4.09

We recall'' that for p,y=+/x’+y?, the unit step function 6 is defined as
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1forp,, <R,
ofR, - p, ) =cyl 2 |=1 oforp, >R, 410
R, )|, P
A for p,, =R,.

In the case above we will consider two sorts of cylinders in the unit cell:
one centered at the origin of the lattice, and another at a point ¢, i + ¢, j. Their
indices and radii are, respectively, ¢, ,Rp, and g, Re.

Similarly, for prisms with rectangular cross section, we have

q Ae )M
cuy= -0 o 5 - Jo 2 -l

+(ec—ea)e(A—;—lc,-4)6[%"’——|c,—y|} 4.11

The refractive index enters the formalism through (ken)’=0e/c? , where k,
stands for the wave number in vacuum.
51, 52

For a unit square of side d, Eq. 4.07 yields

2sinba

£,=0(d-Ixl), e(o)= do 4.12
2ned, (G, C)
e(x,y)=9(c—p,,)@e(Gx,)=—a;G—’-, 4.13
xy
e(x+a) o e*“¢(a), 4.14
with
ca 28iNbat
ab-|x-c)=e ot 4.15
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For the prisms with a square cross section of side A,, the Fourier series

coefficients read

= 4e,—¢,) sin(A,G, /2)sin(A,G, /2)

)= =5 G, G,
4.16
+ 4(83 _83) (CXG-’CVG,) Sin(Ach / 2) Sin(Ac GY/Z)
& ° G, G,
For structures with cylinders, ¢, is given by
A znﬂb(eb - Ea) Jl(Rbey)
Eo(G) - d: ny
417
+ 2ch(£c —&, ) e~|(C,(G, vaG,) Jl(Rchy)
d’ G,
For G=0, Egs. 4.16 and 4.18 take the simpler forms
. (eb_ea) k] (Ec—ea) 2
Me=—g At—g A | 4.18
and
~ ﬂ:Ré(Eb B 8a) nthz(ec - ea) 4.19

Me(@) ==+

respectively. The formulae for n(é) are obtained from those for ¢(G) by replac-
iNg €ap With 1ap.

The wave vector k varies in the reciprocal space as indicated in Fig.4.02.



Fig. 4.02. Variation of K inthe recipracal space.

To simplify the calculations, we consider the case where the electric field

(or the magpnetic field) is parallel to the z axis and the dielectric constant varies

only along the x and y directions. This means that (k + G)is normal to E,, or to

—

H, that is,
(k+G)LE,, (k+G)LH, . 4.20
Consequently,
(k+G)x(k+G)xE, =k +G[ E,,
(k4 @)k &), = s Gl G, 2
The reciprocal lattice vectors are given by >
G =%—?p7+3—?q}; P.q=0,1,2,+, 4.22

where g« and g, are basis vectors in real space. Equations 4.04 can be written

in a matrix form after introducing the following notations:
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8, = —n(O)|E + éi +—5,
e 4.23
0, =[G, - G |k + G, Je(k+ G,).
and
Q, = %2-8(0)— k+&]
Q,= ‘é’ e(G,-G,) no®lvel(i) for p=v 4.24

where AeA={l-,2-10}and(ij) e X, i,j=—%,—%+l,---,—;—.

There is a bijection between the sets A and |, that will link the quantities ©,, and

Q). o vectors Gij. Now, Egs. 4.04 read i

Qn le Q13 El
Q21 sz st Ez

=0, 4.25
931 Qsz Q33 E3
and
®Il 612 913 HI
0, 0, © H
21 22 23 2 - O 4.26
631 ®32 633 H3
For a 2D square lattice, we have gx=gy=g and some expressions can be
simplified:
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si along T'X, 0<s<

[ SR [e)

k=1 g—? +sj along XM, 4.27
si+sj along MT;

¢=0 along TrX,
k= -rlgzcosw; 3 ¢= 12':- along XM, 4.28

Q= tan"g-g along M.

Equations 4.16 and 4.17 show that the Q,, and ©,, matrices are hermitian for
lossless media. Equations. 4.04 can be solved only for those values of o for
which

det(@,,)= 0, and det(0,,)=0 . 4.29

Only for these cases do non-evanescent electromagnetic waves exist in the pe-
riodic structure. If the determinants were not equal to zero, every coefficient E or
H would have to vanish in order to satisfy Eqs. 4.29 because the rows of matri-
ces (®,,) and (L2,,) would be independent.

For each k, we will find values of o for which the determinant is zero.
Only the projection of the k vector on the xy plane is considered in our case. The

relation between k and w is given by

IRI =19 oso, 4.30
c

where 0 is the angle between k and the xy plane.
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In order to solve our eigenvalue problem, we have to consider a infinite
number of elements. Fortunately, the Fourier coefficients of ¢ go rapidly to zero
when the reciprocal vector increases as Egs. 4.15 and 4.17 contain sin(x)/x and
Ji(x)/x, x increasing with the lattice vectors. This is an indication that as we
consider more and more elements in reciprocal space, the series converges.

The appearance of sin(x)/x and J(x)/x in Egs. 4.16 and 4.17 indicates
that the most important parameter P that determines the gaps is given by

P.=(g, —ea)niz"- , 4.31

for circular cross sections, and

2
Ps = (Eb - ea) 3? ’ 4,32

for square cross sections. In other words, the most relevant quantities are the
filling fraction, A,%/d” and the dielectric constant contrast, e,-¢.. Some authors®™
have aiready studied the effect of the filling fraction and the dielectric constant
contrast on the total gap, i.e., the band width where TM and TE gaps overlap.
They do not seem to have any limitation on the dielectric constant and the val-
ues they used are generally very high. In the foilowing section we will principally

see how the TE gaps vary with values accessible to experiments.
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4.3 Numerical resuits

Most of the 2D structures that have been studied consist of a styrofoam

33, 26
d

(e=1.04) backgroun , with alumina composite rods (e=9) at square or hex-

15, 39, 40

agonal® lattice vectors. Gaps were found theoretically and experimen-

%25 and even localized levels were introduced in the gaps® by removing

tally
some rods. In this section we will investigate how the gaps can be modified by

changing the unit of the structures.

As dielectric constants are fixed by the choice of materials, all we are free
to change is the dimensions and the position of the rods. We can modify the
magnitude of the the lattice basis vectors, by putting intersticial rods in the unit

cell or by removing rods. In analogy with the 1D case, we expect to have a

Fig. 4.03. Possible dielectric contrast. The equivalentof a 1D QW is obtained when the

condition (A area)+e, = (B area)* €y is satisfied.




maximum gap if we have a 2D equivalent of a QW structure, that is | if the rod-
to-styrofoam cross section ratio (the filling fraction) is equal to the inverse of the

index ratio (with & o< n* ). This is shown schematically in Fig. 4.03.

This is true only for TE waves (s polarisation), and when the dielectric
constant of the background is lower than that of the rods. This applies to the re-
sults shown in Figs. 4.04, 4.05 and 4.12. As shown in Fig. 4.05, square rods ar-
ranged in a square lattice yield a maximum relative bandgap width of more than
30% (Awi/ay) for the s polarization but no gap appear for the TM polarization in

the

(O]

(nc/d) o6 | L’ ’

Fig. 4.04. 2D “QW" square lattice with square cross section rods, for TE(solid curves)

and TM (dotted curves) waves. The parameters are d=1.27cm, §,=0.40cm, ¢,=1, and &,=9.



same frequency range. Consequently, we give results only for the s polarization
as many authors® 2 % do. All square lattices have d=1.27 cm as the lattice unit

vector, s is the side of the square cross section rods.

035
030
025 |

020

Aw0®

0.0 -

- @, (arbitraryunits)

005 -

A(o{u)1

000 N 1 2 ] " 1 ) 1
00 0.1 02 03 04

filling fraction

Fig. 4.05. Ratio of the first gap (Aw,) to the midgap frequency () as a function of the
filling fraction of square rods of permittivity 9 in a background of permittivity 1.
For ratios other than those of Fig. 4.04, the gaps decrease in importance

as shown for example in Figs. 4.05 and 4.06.

Square and cylindrical rods give similar first gaps when they have the
same filling fraction near the “QW" case. As the dimensions of the rods in-
crease, and correspondingly the filling fraction, we have complex band struc-

tures and at s=0.67 d, we observe as many as three gaps® in the same fre-
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quency range but these gaps are less important as can be seen by inspection of

Table 4.1 and of Fig. 4.06.

(1) i b —
(nc/d) os |

04 |
——sQ
02 |- ---CY
00 | '
r X k M f

Fig. 4.06 Rods with a square (SQ) or circular (CY) cross section. The parameters are
d=1.27¢m, s,=0.85cm(SQ), 1,=0.48cm(CY), e.=1, and £,=9. Here, the QW condition is not satis-
fied.

We notice that cylinders and prisms no longer yield the same second and third
gaps™ which are much larger for the cylinders (three and four times larger, re-
spectively). Table 4.01 gives the results for cylinders in a square lattice with an
interstitial cylinder per unit. The radius r, and the dielectric constant g, of the
main cylinders are equal to 0.48 cm and 9 respectively. The radius r. and the

dielectric constant ¢, of the interstitial rod vary. A very strong interstitial structure



(in dielectric constant or in dimensions) annihilates or strongly diminishes the

first gap, but for gaps of higher ordgcr the relative width can decrease or in-

crease.
Main rods Interstial rods | 1st gap 1 2nd gap 3rd gap

fo fe, Ec 1, Awy /o) oy, A/, En2 | 3, AWs/03
0.48cm, 9 no rod 0.527, 9.6% 0.867, 10.9% | 1.28, 7.4%
0.48¢cm, 9 0.24cm, 9 no gap 0.926, 11% 1.26, 3.95%
0.48 cm, 9 0.24cm, 4 0.502, 3% no gap 1.35, 6.1%
0.48 cm, 9 0.12cm, 9 0.509, 5.9% | nogap 1.33, 9%

Table 4.01. Midgap frequencies and relative gaps for cylindrical rods. The main rods are

at the corners and the interstitial ones are at the center of the square units.

The experimental gaps® for the case without interstitial cylinders have a

relative width equal to 15% for the second midgap (0.87) in the (1,0) direction

for only 172 cylinders; the corresponding calculations (Fig. 4.06) for an infinite

number of cylinders give 28% and 0,885 respectively.

Let us go back to the rods with a square cross section in square lattices.

When we introduce an interstitial rod at the center of the unit cell, the second

curve of Fig. 4.05 seems to lower down and gives rise to two full gaps in the
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cases when the dielectric constant of the added prism is low (e=4) or the di-

mensions are small (s.=0.5sy), as shown in Figs. 4.07 and 4.08.

1.4

e ——-
12| v

1.0
. j\/\/

()]
(ne/d) °°[ . -
' [ )

o4k
[]
02} .
0.0 I ' E:]
r X M r
k

Fig. 4.07. Interstitial rod at the center of the unit cell. The parameters are d=1.27cm,
85=5.=0.42cm, £,=9, e.=4, and g,=1.

For the first case, the midgaps are located, respectively, at 0.703 and
1.13 with relative widths of 9.7% and 15.7 %; the corresponding values in the
second case are 0.72 and 1.06 and the relative widths 14% and 15 %. We recall
that, if the interstitial rod is absent there is only one unmodulated gap at this fre-

quency range with a midgap at 0.79 and a relative width of 30%, cf. Fig. 4.04.

When the interstitial rods are on the axes, as shown in Fig. 4.09, the

second and the third curves move together. The filling fraction being larger, we



expect the gaps to be smaller than those of Fig. 4.06. Indeed, this is the case,
the first gap is centered at 0.755 and has a relative width of 6 %, whereas the

second midgap is centered at 1.247 with a relative width of 1.4%. When the

(rc/d) .

Fig. 4.08. Small intersticial rod at the center of the square. The parameters are
d=1.27cm, s,=0.42cm, s.=0.21cm, &=£.=9, and g,=1.
sides of the extra rods are equal to one quarter of the main rods’ sides, we have
a picture very similar to that of Fig. 4.06, but the full gap in this interval is a little
smaller, 24% instead of 30%. When the filling fraction is large enough, the sec-

ond curve joins the first and the first gap disappears.
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Fig 4.09. Small interstitial rods on the axes. The parameters are d=1.27¢m, s,=0.42cm,
5:=0.21cm, e,=1, £=9, and e=4.

Fig. 4.10 shows the case where all the rods have the same dimensions
with different dielectric constants. Only the first gap survives with a midgap equal
100.745 and a relative width Aw/w equal to 1%. If the added rods have the same
dielectric constant as the regular ones, the only gap that does not vanish is
situated between the second and the third curves, and it has as midgap value

0.91 and a relative width of 3.6%.
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Fig. 4.10. Rods on the axes, with the same size as the main rods. The parameters are

d=1.27cm, $,=5.=0.42cm, £,=9, e.=4, and e,=1.

© g
(nc/d) osl-
04 p
oz}
wol l |
r X M r

00

Fig. 4.11. Low-index rods in high-index background. The optical areas are equal. The

parameters are d=1.27cm, sy=1.207cm, £,=9, and g,=1.
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When the dielectric constant of the rods is inferior to that of the
background, the situation is quite different even if the product “dielectric con-
stant * cross section” is the same as in the case of the first largest gap above. If
styrofoam rods (or air , similar dielectric constant) are placed in a silica compos-
ite background at the lattice vectors, the first midgap is at 1.39 and the width

1.6% as shown in Fig. 4.11.

08 =

w
(nc/d) os -

04 - __I I__

02

0.0

Fig. 4.12 Low index rods in high index background, {=0.45. The parameters are

d=1.27cm, s,=0.42cm, £,=9, and g,=1.

For afilling fraction f=45%, instead of the 90% used in Fig. 4.11, the situation is

no better, the first midgap is around 1.4 and the width 0.5 %.



In this chapter, the plane wave method has been used to find the variation
of the TE photonic gaps in 2D structures when extra rods afe added. The larg-
est gaps are obtained when high dielectric rods are placed in a low dielectric
constant background, and the product “dielectric constant * cross section area”
is the same. This is the equivalent of a 1D QW structure. The next chapter gives

the conclusions.
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Chapter 5

CONCLUSIONS

In the first part of this study, we have outlined the general transter-matrix
method used to describe the propagation of the electromagnetic waves in 1D
superlattices. This method is based on matching the solutions of Maxwell's
equations at the interfaces. The transfer matrices express the change that the
TE and TM electromagnetic wave undergo when they pass through just one pe-
riodic unit. They were found analytically for two, three and four-layered units. In
physical situations, the electromagnetic field must be finite. This imposes a limit
to the eigenvalues of the transfer matrix and the frequencies that give values
which are out of range, and therefore are forbidden, giving rise to photonic band

gaps.

Starting from the QW structures that have the largest regularly spaced
odd gaps when the incident wave is normal to the interfaces, we have found that
non QW structures exhibit even gaps. At angles different from the normal, the
gap picture is different for TE waves and TM waves, odd and even gaps exist for
all structures, with always a total absence of gaps at the Brewster's angle for

TM waves.
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The introduction of an extra layer in one QW layer shows even and odd
bands even for the normal incidence. From this point of view, the situation is the
same as for non QW structure. Still, the TM waves do not exhibit any gap at

Brewster’s angle.

The variation of the gap width has also been studied for normal incidence,
when one layer of a two-layered unit changes its width at the expense of the
other one. Maxima have been found when the optical widths of the layers are

odd multiples of one another.

The effect of the change in position, index and dimension of the extra
layer in a four-layered unit on the gap width has been investigated. The second
gap increases and the first decreases linearly with the index. The width of the
gap varies symmetrically with the position of the extra layer. As a function of this
position, the second gap width resembles a quadratic function turned down-
wards with a maximum reaching 162 % of the QW value. In contrast, the first
gap resembles a shallower and upward oriented parabola with a minimum of
43% the QW value. The increase of the extra layer's width leads to a decrease

of the first gap width; while other gaps will either increase or decrease.

An ant-reflection layer keeps equal odd gaps while it introduces even

gaps in a two-layered structure.

The second part of this thesis deals with 1D finite structures and transmit-

tance. The extent one has to go to, in order to get almost the same results as



those of a 1D infinite structure has been evaluated. Any number of units larger
than fifty is sufficient but for three-layered structures with an antireflection layer
we need more units to show a total reflection at the even gap frequencies.
Missing layers have been found to introduce very narrow minibands in the main
gap and Fibonacci chains have a peculiar transmittance pattern that the ratio

between the number of different layers cannot explain.

The last part of the thesis treats 2D infinite periodic structures us-
ing the plane-wave method. The equivalent of a 2D QW, that is to say, a con-
stant optical path (surface times dielectric constant), still yields the largest gap
when the rods have the higher index, (Aw/w superior to 30%). The dimensions of
the rods have been changed and more gaps were introduced in the same fre-
quency interval. Extra structures on the diagonal or on the axes reduced the first
gap or divided it into two parts while the dimension or the dielectric constant
have been found to be less imoortant than their product. The same thing can be
said about the general form of the rods. Near the “QW” configuration, cylindrical
and square rods yield essentially the same gap pattern, provided their base ar-
eas and their dielectric constants are the same. A gap can disappear in a certain

frequency interval if the dimensions of the rods are changed or if interstitial rods

are introduced.
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5.2 Possible applications and further study fields

The main application up to date of the periodic structures is the Bragg re-
flection in semiconductor lasers. A well tuned Bragg reflector can eliminate un-
desired frequencies from the !asing cavity and greatly reflect the most usefull
ones. 1D, 2D, and 3D Bragg reflectors can be used as mirrors for 1D and 20
laser diode arrays with more convenience than coating® *'. Thresholdless lasers
derived from the elimination of non lasing energy will make possible a furtier

miniaturization and integration of low energy lasers.

Spontaneous light emission has been investigated when gaps are
present’. The frequency selection is easier™ ?” and the control of the gap fre-

quencies can help.

The separation of TM and TE waves could be carried out in 1D structures
because they don’t have gaps at the same frequencies when the angle of inci-
dence is different from the normal. As for 2D structures, TM and TE gaps always

occur at different frequencies. This would be a possible way to polarize light.

In a further research project, a finite 2D periodic structure could be
studied with the scattering method in order to see if transmission is larger in
certain directions. The method suggested by Sigalas et al.* yields results for
the transmission only in one direction and the limits of the periodic arrangement

of the rods are not specified.
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Still an other aspect of tunability of photonic gaps in 2D periodic struc-
tures that can be studied , is the case of th~ cylindrical and spherical symmetry®

and extra structures (embedded shells) .

Finally, one can study the transmission of electromagnetic waves emitted

by a special antenna through periodic media.
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APPENDIX

The programs used in plotting the figures derive directly from the
formulae in the text. For the figures in chapter 2, Eqgs. 2.15 through 2.18 are
used to find the transfer matrix elements. These equations are more flexible
than Egs. 2.22 to 2.27 because we can change more easily the number of layers
per unit, and keep the remainder of the program intact. Matrix muitiplications are
automatically carried out by the program. All the programs in chapters 2 and 3
are built around the same subroutines giving the transfer matrix. The triangular
index profile is approximated by 20 small layers with gradual refractive indices.

The transmittances in the third chapter suppose that the media
surrounding the structure have the same refractive index as the first layer. The
same calculations can be made with the air or the vacuum acting as the input
and output media. The gaps will be centered at the same frequencies but they
will be larger. The calculations can be carried out by considering one large unit
with 34, 68 or 100 layers, the results are the same as if we use Eq. 3.04.

The figures in the fourth chapter are plotted from results obtained with the
evaluation of the determinants of matrices shown in Eqgs. 4.25 and 4.26. The
dimensions of those matrices were limited to 49:49. As the calculations are
quite heavy and there is no way to guess where the roots aie, the simplest

method is used: when the determinant undergoes a sign change, we consider
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that the last value of the frequency is a root. When we compare the results
obtained with 81x81 matrices to those obtained with 49x49 mairices at chosen
frequencies, we conclude that our results are precise up to 3 significant figures.
The determination of the matrices determinants were done with a routine found
in a numerical recipes book™, but the calculations were still highly CPU time
consuming. A figure such as that of Fig. 4.07 would take 100 minutes of vax?2
CPU time with 49x49 matrices, 61x61 matrices would take 160 minutes and
81x81 would take more than 6 hours. Combined to the low priority we had on
that machine, we could wait for days before we could analyze the effect of a
change on a given structure. The situation was not better on Alcor, the machine
is slower, and to make things worse, the working session must be open all the
time your program is running: it does not carry out any batch jobs after you have
logged off.

Despite of those difficulties, we were able to find results thar were similar

to those found in the literature®.
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