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ABSTRACT

Two-Dimensional Numerical Modeling of

Ice Cover Leading Edge

Xiu Tao Zhang

The phenomena of the ice melting is the result of the heat transfer
between river flow, the atmosphere, and the ice cover. The water temperature
beneath river ice covers has the most important influence on the heat flux to
the overlying ice cover. To model or simulate the behavior of the ice cover
melting, proper estimation of the heat transfer coefficient at water-ice
interface is important, because it plays a key role in calculating the heat flux
from the river water to the ice cover. Whether the heat flux from water to the
ice cover can be calculated precisely depends to large extent on determining
accurately the heat transfer coefficient. Most of the empirical equations for
predicting the heat transfer coefficient in the literature only apply to the fully
developed flow and result in under-estimating the ice melting in the
entrance region of the ice cover in the model application. Proper evaluation
of the heat transfer coefficient in the entry region is of large interest in

modeling the ice cover melting.

The present research aims at studying the effects of the heat transfer
coefficient on modeling the ice cover melting, leading to a method that

overcomes the under-estimation of ice melting in entrance region in
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traditional numerical models application by using a variable heat transfer
coefficient. Three empirical approaches for predicting the heat transfer
coefficient for ice-covered rivers have been examined and their effects on ice
cover melting were compared. A new formula for the evaluation of heat
transfer coefficient which varies with the distance in flow direction has been
derived to be employed in a numerical model, with goal of a better modeling
of ice cover melting near the leading edge. The work was carried out through
the application of a two-dimensional numerical model. The results from the
computations have been compared to experimental observations and field

study.
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CHAPTER 1

INTRODUCTION

1.1 Phenomena of Ice Melting

Water bodies in rivers and lakes are frequently utilized to dissipate
excess of heat from power plants. The heated effluent discharges may alter the
hydrothermal and ecological environment of the aquatic system. In cold
regirns, where rivers are ice covered for a considerable period of the year,
these thermal effluents have the effects of provoking the premature or

accelerating the decay of ice covers.

The phenomena of the ice melting is the result of heat transfer
between the river flow, the atmosphere, and the ice cover. Heat flows by
convection from the water to the ice, and by conduction through the ice
cover. It has been widely recognized that the water temperature beneath the
river ice cover has an important influence on the heat flux tc the overlying
ice cover. Even if water temperature is very close to 0°C, the resulting heat
flux from water to the overlying ice can still cause significant ice melting. The
roughness on the underside of the ice is another main factor influencing the

heat flux from water to the ice cover.



1.2 The Problem Considered

To model or simulate the hehavior of the ice cover melting, proper
estimation of the heat transfer coefficient plays an important role in
calculating the heat flux from the water to the ice cover. Whether the heat
flux from water to ice cover can be calculated precisely depends to large extent

on determining accurately the heat transfer coefficient.

Empirical equations for predicting the heat transfer coefficient as well
as the theoretical analyses for evaluating the Nusselt number are not sparse
in the literature. The application of these formulas in the computation of
heat transfer between water and the ice cover requires a knowledge of the
physical properties of the flow. Mostly, these empirical equations are
applicable in fully developed flow and the value of the heat transfer
coefficient predicted from the empirical equations is constant, resulting in
constant heat flux estimation between water and the ice cover, which does
not agree with the entry region of the ice cover. In the application of the heat
flux from water to the ice cover, the ice cover melting in the entry region is
often under-estimated by the empirical formulas. Proper formulation of the
heat transfer coefficient in the entry region is of considerable interest in

modeling ice cover melting and transient retreat of the leading edge.



1.3 Literature Review

1.3.1 Investigation of Water-Ice Heat Transfer

The subject of river ice cover melting has been studied previously by a
number of researchers. Dingman et al. (1967) obtained better agreements with
measured ice free reaches using improved relations between the heat loss rate
and meteorological conditions. A one-dimensional model of sea ice
thermodynamics to simulate heat transfer below, within, and above the ice-
snow cover was developed by Maykut & Untersteiner (1971). Hsu (1973)
verified the quasi-steadiness of the heat conduction through the ice cover.
Paily et al. (1974) solved the one-dimensional energy equation including the
effect of longitudinal dispersion in the model. Hewlett (1976) studied the
movement of the leading edge of the ice cover through laboratory
experiments. A one dimensional model was developed by Ashton (1979) for
ice cover suppression under given meteorological conditions. Heat transfer
processes as well as varying meteorological conditions were considered. A
two-dimensional model for computing an equilibrium surface temperature
from energy balance was applied for Lake Erie (Wake & Rumer, 1979). Also a
one-dimensional model for St. Lawrence ice cover was developed by Shen-
Chiang (1984). Plouffe (1987) employed a two-dimensional numerical model
of river ice cover melting due to a side thermal effluent. A two-dimensional
model for ice cover melting under turbulent flow conditions was

accomplished by Sarraf et al. (1990).

A few studies have also been carried out to predict the heat flux from

water to the overlying ice cover in natural rivers (Baines, 1961; Ashton and



Kennedy, 1972; Cowley and Lavender, 1975). Calkins (1984) compared
predicted heat flux with field measurements. He found that the heat transfer
coefficient computed from field data on both ice cover melting and water
temperature attenuation are higher than the values one would compute
based on extrapolation of previous laboratory data. Wankiewicz (1984)
modeled the growth of river ice during the winter of 1977-1978 for Caribou
Creek. Marsh et al. (1986) used different correlations for calculating the heat
flux and the results were compared to temperature decay method and field

measurement.

13.2 Entry Region Influence on Heat Transfer

The thermal entrance region can have influence on the hea: transfer
process. The heat transfer coefficient varies substantially in this region. White
(1984) defined that for laminar flow the local Nusselt number can drop to
within 2% of the thermally developed value in the thermal entry length.
Ozisik (Ozisik, 1985) defined that the thermal entry region is the length
required from the beginning of the heat transfer section to achieve a local

Nusselt number equal to 1.05 times the corresponding fully developed value.

Little work appears to be done on predicting the ice melting in the
entrance region of the ice cover by using proper heat transfer coefficient. It has
already been found that the heat flux is higher in the entry region of the tubes
or pipes. Therefore, a few empirical formulas or equations of heat transfer

coefficient were derived to be applied in the entry region.



One of the available formulation of the mean Nusselt number for
laminar flow in the entrance region is given by Hausen (Ozisik, 1985), but it is
only to be used in a circular tube at constant wall temperature for laminar
flow. A rather simple empirical correlation has been proposed by Sieder and
Tate (1936) to approximate the mean Nusselt number in the entrance region.
This correlation is also valid for laminar flow in a circular tube at constant
wall temperature. Another form of the correlation for the Nusselt number in
the entry region is recommended by Ozisik (Ozisik, 1985) for turbulent flow.
However, the relation is applicable only for liquid metals in turbulent flow

condition.

Finally, surface roughness effects on heat transfer rate were
investigated by a number of researchers. Dipprey and Sabersky (White, 1984)

found that roughness can increase heat transfer by a factor up to 2.5.

1.4 Objective And Scope of The Work

The present research aims at studying the effect of heat transfer
coefficient on modeling the ice cover melting, with a focus on the entrance
region. Three empirical approaches, the Dittus-Boelter, the Colburn and the
Petukhov-Popov equations which are commonly used for predicting the heat
transfer coefficient for ice-covered rivers, have been studied through the
applications of a two-dimensional numerical model. Modeling results were
compared to the experimental investigations done by Hewlett (1976) and a

field study on the Mississippi River (Ashton, 1980).



Based on the heat and momentum transfer analogy, a new derivation
of the heat transfer coefficient has been obtained. The new proposed
correction is a function of the distance in the flow direction, producing the
largest value at the leading edge and gradually small one downstream. This
new correlation produced a closer estimation of the ice melting in the entry
region of the ice cover in which the heat transfer coefficient is often under-
estimated in ice melting modeling when empirical formulas are used. The
new correlation has been tested through the application of the model. The
results from the computations have compared well with the experimental

observations (Hewlett, 1976).

The computations were carried out through the application of a two-
dimensional numerical model. The hydrodynamic fields of channel in the
laboratory and Mississippi River were modeled using the depth integrated St.
Venant equations for shallow water, incorporating the effect of the ice cover
presence on the flow. Inlet water temperature in both cases were also
simulated in the model and water temperature distribution was determined
from the unsteady depth average energy equation. The laboratory operating
conditions and meteorological conditions in the field were reproduced

accurately in the model.

The numerical solutions were obtained using a finite difference
method. The energy equation for temperature distribution was solved using
upwind scheme, while a modified version of the MacCormack scheme was

employed to discretize the hydrodynamic equations.



The computational results were compared to the experimental data
given by Hewlett (1976) and the field data carried out by the US. Army Cold
Regions Research and Engineering Laboratory (Ashton, 1980).

1.5 Outline of The Thesis

The thesis is grouped into five chapters. This chapter is an introduction
to the accomplished research. Chapter 2 gives the basic theory of the
convective heat transfer between the water and ice cover. Various empirical
equations for predicting the heat transfer coefficient, including three
equations used in the modeling, are also presented. A new correlation to
solve the problem encountered in the entry region of the ice cover is derived
and described. A two-dimensional numerical model utilized in the present
research is described in chapter 3. The governing equations, the numerical
schemes employed as well as the equations for the ice cover used in the
model are presented. In chapter 4, descriptions of the procedure of the
computations are given and the modeling results are discussed. The
conclusions to the research are drawn in chapter 5. All the references used

during the course of the research are listed at the end of the thesis.



CHAPTER 2

HEAT TRANSFER AT WATER-ICE INTERFACE

2.1 Ice Cover Decay

The thermal effluent discharged into the river has the most dominant
effect on ice cover melting. Heat transfer from water to the ice cover is caused
by convection. The fluid flow under ice cover is classified into the group of

forced convections.

In convective heat transfer, the expression for the local heat transfer
coefficient can be developed from the temperature profile and the thermal
boundary layer thickness. This is similar to the expression for the local drag
friction coefficient cf which can be obtained from the velocity profile and the
velocity boundary layer thickness. In the boundary layer region, the velocity
and temperature distribution strongly influence the heat transfer by

convection.

2.2 Thermal Boundary Layer and Heat Transfer Coefficient

2.21 Temperature Profile in the Boundary Layer

The thermal boundary layer is to profile the temperature distribution

in the fluid near a solid surface. Consider a water at a uniform temperature




Tw flowing under an ice cover maintained at a constant temp=rature T, as
shown in Fig. 2.1. In this figure, 8.(x,y) is the dimensionless temperature
profile outside the boundary layer, while 6y(x,y) is the dimensionless
temperature profile in the boundary layer which can be defined as (Ozisik,
1985):

oo -T2 T o

where 6i(x,y) = dimensionless temperature profile in the boundary layer;
T(x,y) = local temperature in the water; Ts = ice surface temperature; Ty, =
mean bulk water temperature; x, y = longitudinal and transverse directions

respectively.

At the ice surface, the water temperature is equal to the ice surface

temperature, hence
Bixy)=0 at y=0

At distance sufficiently far from the ice surface, the local water

temperature T(x,y) is assumed to remain the same as Ty; then
Bi(x,y) > 6. =1

In the thermal boundary layer, the shape of the dimensionless

temperature profile changes in both the longitudinal and transverse

directions.
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Fig. 2.1 Thermal boundary layer under an ice cover
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2.2.2 Characteristics of Heat Transfer Coefficient

In a given convective heat transfer problem, the heat transfer
coefficient can vary with many parameters, such as flow velocity, body shape
and size, surface roughness, surface and flow temperature, and fluid
properties. Nusselt Nu number is usually a function of these parameters

(White, 1984):

Nu = f (Re, Pr, generic shape ) (2.2)

where Re = Reynolds number; Pr = Prandtl number. While the
dimensionless form of the heat transfer coefficient can be expressed in terms
of the Nusselt number Nu (Marsh et al., 1987):

Nu = hwl‘(R (2.3)

where hy; = heat transfer coefficient from water to the ice cover; k = 0.54,
thermal conductivity of the water; R = hydraulic radius. In the case of ice-
covered river, the hydraulic radius R is calculated as the half of the water

depth (Marsh et al., 1987).

For a given fluid the Nusselt number depends primarily on the flow
conditions, which can be characterized by the Reynolds number Re expressed

as (Kreith, 1961):

Re = (2.4)
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where p = 1000, density of water; u = velocity of the water flow; u = dynamic

viscosity of water.

In the laminar flow, the Reynolds number remains small, yielding a
small heat transfer coefficient. In the turbulent flow, the heat is transferred
very rapidly between the edge of the boundary layer and turbulent bulk of the

flow. So large Reynolds number produces a large heat transfer coefficient.

On the other hand, the Prandtl number Pr is a function of the fluid
properties alone which relates the temperature distribution to the velocity
distribution. It has been defined as the ratio of the kinematic viscosity v of the

fluid to the thermal diffusivity € of the fluid (Kreith, 1961):
_v_%H
Pr e =k (2.5)
where cp = 4.1868, specific heat of water; v = kinematic viscosity of water.

For river ice heat transfer, the heat flux (qwi) from the water to the

bottom surface of an ice cover can be determined by (Ozisik, 1985)

G ) = { T, y)} - 26

In terms of the local heat transfer coefficient hyj (x), the heat flux (qwi) is

given by (Ozisik, 1985)
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Gw (X) = hua () [ Ty (x) - T5 (%) ] 2.7)

where x = space coordinate longitudinal direction; y = space coordinate
traverse direction; qy; (x) = heat flux from water to the ice surface at location x
along the ice cover; hy; (x) = heat transfer coefficient at water-ice interface at
location x; Ty(x) = bulk mean water temperature at location x; Ts(x) = ice

surface temperature at location x.

Combining Eq. (2.6) and (2.7) we obtain

h~vx (X) == k oT (x’ y)

To X)-Ts (x)  dy | ¥=0 (2.8)

Combining Eq. (2.1) and Eq. (2.8), the local heat transfer coefficient can

be expressed in terms of the dimensionless temperature profile 6¢(x,y)

hw: (X) = (2.9)

- ael (x, y)
kT] y=0

As can be seen from the above Eq. (2.9) the heat transfer coefficient in
the thermal entry region is a function of distance in the flow direction. In the
case of ice cover melting, the dimensionless temperature profile (8,(x,y))
along the ice cover is decreasing, which implies that in the thermal entry
region the heat transfer coefficient decrease along the ice cover downstream.
Eq. (2.9) is valid for heat transfer under conditions of constant surface heat

flux or constant surface temperature in the thermal developing region.
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The effects of the thermal entry region on the heat transfer coefficient
are substantial. In this region, the heat transfer coefficient varies considerably,
being the largest near the entrance and decreasing with the distance until both
the velocity and the temperature profiles for a fully developed flow have
been established. The thermal entry length depends on the geometry of the
entrance, the roughness of the surface, and the Reynolds and the Prandtl
numbers. For any given Reynolds or Prandtl number in turbulent flow, the
local Nusselt number in the entrance tends to approach an asymptotic value
within the length of 40 times hydraulic diameter (White, 1984). In the present
modeling of ice cover melting, the entrance influence length is about 8
meters long. While the ice cover, of about 8.2 meters in length, is just within
the effective influence of the thermal entrance region in the case of
experimental investigation (Hewlett, 1976). The heat transfer coefficient
therefore is changing with the distance in the longitudinal direction along the

ice cover.

2.3 Analogy Between Heat and Momentum Transfer

2.3.1 Evaluation of Heat Transfer Coefficient

There are some methods available for the evaluation of the heat
transfer coefficients in the literature. Although in most cases of practical
problems, determining the heat transfer coefficient by analysis is quite
difficult and impractical with available methods or by experimental
investigation, a number of empirical equations for predicting heat transfer
coefficient as well as the theoretical analyses for evaluating the Nusselt

number have been developed. The most commonly used correlations
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relating the Nusselt number Nu and Reynolds number Re to heat flux are

described as below.
Colburn Equation

The Colburn equation for turbulent flow over a smooth surface in an

ice covered river is expressed as (Ozisik, 1985):
Nu = 0.023 Re0-8 pr? (2.10)

for

0.7 < Pr<160
Re > 10,000

Equation (2.10) is only applicable for the smooth surface. To account for
the rough surface effect on the heat transfer coefficient, a roughness term is
introduced and the Nusselt number Nu can be expressed in terms of the

Manning’s roughness such as (Marsh & Prowse, 1986):

2
Nu=Re pr»—£0 2.11)
KZ R”

where n; = Manning's roughness coefficient of ice surface; Ky = the
Manning's unit conversion factor; for the ice covered river, the flow is

divided into two sections. It is more accurate to use the depth of the point of
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maximum velocity below the ice cover (Do) for the hydraulic radius R

(Wankiewicz, 1984):

D,

=—t 2.
® 1+ (ny/m) 212)

where Dg = depth of the point of maximum velocity below the ice cover; Dy =
total flow depth; np = Manning's roughness coefficient of river bed.

Therefore, the Nusselt number in Eq. (2.11) can be written as:

gn2[1+(ny/n)*]"

Nu =Re Pr' (2.13)
K2 DY
and the heat transfer coefficient can be calculated using
2 n W
hm=gn,pcpu[1+(nb/n,) ] 2.14)

K2 Pr»D?

Dittus-Boelter Equation

In the Dittus-Boelter analogy, the Nusselt number Nu is stated as

(Oazisik, 1985):

Nu = 0.023 Ref® pym (2.15)

therefore, the heat transfer coefficient can be obtained by :



b = 0.023 k Re08 Pym
" R
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(2.16)

where m = 0.4 for heating and m = 0.3 for cooling of the fluid. In the case of

ice cover melting, m = 0.3. The range of applicability of Eq. (2.15) is the same as

for the Colburn equation. Also it only applies to the smooth surface.

Petukhov-Popov Egquation

An accurate correlation, which is applicable for rough surface, has been

developed by Petukhov-Popov (1963):

where

x=1.o7+12.7(1>x%-1)(52£)%

[¢]

L

Il
£ e

(2.17)

(2.18)

and D = hydraulic diameter; m = 0.11 for heating with uniform wall

temperature; m = 0.25 for cooling with uniform solid surface temperature; m

= 0 for uniform solid surface heat flux; ub and pw = viscosity at bulk fluid and
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at surface respectively; ¢; = drag friction factor; f = Darcy-Weisbach friction

factor. Eq. (2.18) is applicable for fully developed turbulent flow in the range

104 < Re < 5x 106
0.5<Pr<200 with 5 to 6 percent error

0.5 < Pr < 2000 with 10 percent error

23.2 New Formula for Thermal Entry Region

Previous discussions of the heat transfer coefficient in turbulent flow is
limited to the region where the asymptotic value of the heat transfer
coefficient is reached. A practical correlation for the heat transfer coefficient at
water-ice interface in the entry region of the ice cover is to be made. The heat
flux is much higher in the entry region of the ice cover and a constant heat
transfer coefficient is not adequate to be used in the thermal entry region of
the ice cover. An equation for a variable heat transfer coefficient should be
developed and applied if accurate modeling of the ice cover melting is to be
achieved. The analogy between heat and momentum transfer can be utilized
to derive a new correlation for the heat transfer coefficient. Such correlation
should be a function of distance from the leading edge, therefore, reflecting

the influence of the thermal and velocity boundary layers in this region.

When a fluid flows under an ice cover, the flow field is separated into
two distinct regions. (1) The boundary layer region, in which the longitudinal
velocity component varies rapidly with the distance from the ice cover and

the velocity gradients and the shear stress are considered large. (2) In the



19

region outside the boundary layer, the velocity gradients and shear stresses

are negligible, as illustrated in Fig. 2.2.

In two-dimensional flow the shearing stress tin the boundary layer is

expressed as:

r=pdu (2.19)
and the rate of heat flow per unit area across an ice cover perpendicular to the
y direction is

Qw _ . dT 2
yy kdy (2.20)

where T = water temperature; A = area of the ice cover; qu; = heat flux from
water to the ice cover; k = thermal conductivity of water. Combining Egs.

(2.19) and (2.20) yields

Qe _ . kdT
A Tl»l o (2.21)

since cp =k / p (i.e,, for Pr = 1) we get the equation

q“ﬂ =. 2
Atc, du=-dT (2.22)

where ¢p = specific heat of water. Integrating Eq. (2.22) between the limits u =0

where T = Tg, and u = u. where T = T, yields
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Qw - .
Atc, Uoo = (Ts - Tw) (2.23)

where u. = bulk velocity of the water. Now by definition, we have

Qw
hy = ——22— 2.24
A(T.-Tw) (2.24)

2

pu2,
r=em (2.25)

_ Nu
St Re Pr (2.26)

Eq. (2.26) can be given by

=< (2.27)

where ¢f = drag friction factor; St = Stanton number.

Eq. (2.27) is known as the Reynolds analogy for momentum and heat
transfer in fully developed turbulent flow over a flat surface which relates the
Stanton number St, or heat transfer coefficient, to the drag friction factor .

However, it is only valid for Prandtl number Pr = 1.

On the basis of the Reynolds analogy, Colburn developed a modified

analogy based on experimental investigations. He found that correlating heat
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transfer data for fluids having Prandtl numbers ranging from 0.6 to about 50
requires the correction of Stanton number in Eq. (2.27) by a factor of Pr2/3, or

(Colburn, 1933)

StP® = % (2.28)

This expression is referred to as the Colburn analogy which can apply

to laminar as well as turbulent flow under an ice cover.

To apply this analogy in practice it is necessary to know the friction
factor cf. In view of the flow behaviors, the friction forces are also governed by
the boundary layer characteristics, which is large near the leading edge of the
surface and decreases with increasing distance from the leading edge. One of
the empirical equations, used to evaluate the local friction factor for a
turbulent flow over a flat smooth surface with Reynolds number range

between 5 x 10° and 107, is given by (Kreith, 1961):

u_, XL
cr = 0.0576 () " (2.29)
where x, = distance from the leading edge of the flat surface; v = kinematic
viscosity of the water.

This equation is valid for fully developed turbulent boundary layer and

confined to a smooth surface. The value of cf given by this equation is much
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smaller than those corresponding to a rough surface particularly in the entry
region. It is therefore necessary to introduce the roughness effects into this
equation. In fact, the effects of the roughness as well as of the entry region can
be combined to be reflected by a single factor, the friction factor or the

roughness coefficient in the entrance region of the ice cover.

In reality the boundary layer under an ice cover generally begins with
laminar flow over the forward portion of the ice cover and becomes turbulent
layer beyond, as illustrated in Fig. 2.2. The occurrence of the transition from
the laminar boundary layer to turbulent boundary layer depends on the
Reynolds number, which is usually in the range of 5 x 105 and 107 (Kreith,
1961). However, this critical value is strongly dependent on the surface
roughness as well as the geometry of the fluid. With very large disturbance,
the transition may begin at a Reynolds number lower than that value. In the
present study, because of the presence of the ice cover on the channel flow
with its rough surface of the underside and blunt edge of the ice cover, it is,
therefore, reasonable to assume that the turbulent boundary layer starts at the
beginning of the ice cover (xc = 0). Therefore, the average friction coefficient
over the surface of the ice cover with length L can be obtained by integrating

Eq. (2.29), or

- _l- ' um L /5
Cf= L Cf dx =0.072 (—‘D—) (2.30)
0

and by definition we have (Henderson, 1966)

f_o
§=3 (2.31)
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8 2
f= _g,_gm. (2.32)

where f = Darcy-Weisbach friction factor. Combining Egs. (2.30), (2.31) and
(2.32) we get the following expression for mean Manning's roughness
coefficient corresponding to a smooth surface of an ice cover:

u L

072 pis T 5
g R™( " ) (2.33)

ng =0

where L = total length of an ice cover; nm = mean Manning's coefficient over

an ice cover.

Mean Manning's coefficient ny, obtained from Eq. (2.33) is only valid
for a smooth surface. A correlation factor cp is introduced to the friction factor
in accordance with the roughness coefficient of a rough surface in the entry

region:

2
Cp=te (2.34)
nk,
and Eq. (2.29) becomes
U, XL
g = 0.0576 ¢ ) " (2.35)

where nje = Manning's roughness coefficient over the ice cover; cn = friction

correlation factor; ¢ = friction factor for rough surface.
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Therefore, a new approach for predicting the heat transfer coefficient
for the ice cover particularly suitable for the entry region is then developed by

combining Egs. (2.35) and (2.27):

h, = 0.0288 c, —K Pra (-)0.8 (2.36)
XE.2 k)]

where hx = local heat transfer coefficient.

It can be seen from the equation (2.36) that the value of the heat
transfer coefficient is proportional to 1/x0.2, indicating that the heat flux
obtained by using Eq. (2.36) is decreasing with the distance, or being large in
the entrance and decreasing toward an asymptotic value. The equation can
apply to the entry region or the short length of the ice cover for either smooth

or rough surface as long as the friction factor is properly correlated.



CHAPTER 3

TWO-DIMENSIONAL NUMERICAL MODEL

3.1 Introduction

A two-dimensional numerical model was utilized in the present work
to predict ice cover melting using different heat transfer coefficients. Three
empirical formulas, the Dittus-Boelter, the Colburn, and the Petukhov-Popov
equations, together with the proposed correlation, were used to compute the
heat transfer coefficient at ice-water interface. These equations were computed
at each computational time step during the modeling process to produce the
corresponding instantaneously values of the heat transfer coefficient. Results
generated from the modeling have been compared with experimental and

field data.

3.2 Governing Equations

3.21 Hydrodynamic Equations

The river hydrodynamics field is established by using the depth

integrated St. Venant shallow water equations, which express the principles

of conservation of mass and momentum in x and y directions respectively:



Continuity equation:

ch oJuh dvh
—t—t—>=0

& & dy

Conservation of momentum equation in x direction:

OU LB F _enh i (), (T, Tax . Tox

g ———te
ot ox Ody ox ox P a9y P P P

Conservation of momentum equation in y direction:

a_v+.a_E+.a_G.=gh§£+_a_ 1’1)+i(3¥i)+1ﬁ-3’_",
ot ox ody dy ox P gy P P P

where the conservative variables E, F, G and I are defined as:
E=E (x,y,t) =u2h
F=Fxyt)=uvh
G=Gxyt) =v2h

I'=H+0926
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3.1

(3.2)

(3.3)

(34)

(3.5)

(3.6)

(3.7
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and Tpx and Tpy = bottom stresses in the x and y directions respectively given

by equations (3.8) and (3.9):
I.lﬁ = g h Sfx (3-8)
p
I;_u ghSgy 3.9)

where Sgy, Sgy = friction slopes expressed as
y P P

_nZua(u2+v2)

Sfx =

- (3.10)

_n2vA(u2+v2)

Sty = R43

3.11)

Txx, Txy (= Tyx ) and 1yy are depth averaged turbulent stresses expressed as:

duh

oy, 022
p Vi Ix ) (3.12)
Ty _ ., Ouh, ovh
p -—V‘(ay + ax ) (3.13)
LR AL (3.14)

-_p— oy
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In all equations above, x and y = planer coordinates; t = time; H=h +
Zg, Zs = bed elevation; h = h(x,y,t) local water depth; U = U(x,y,t) =uhand V =
V(x,y,t) = vh unit width discharges in x and y directions respectively; 6 = ice
cover thickness; vy = turbulent viscosity; x = turbulent kinetic energy. 1sx and
Tsy = surface stresses; p = water density which is assumed constant. The value
of 92% is employed to account for the density ratio between ice and water. R =
hydraulic radius; n = combined Manning's roughness coefficient of ice and
river bed. In the case of open water the hydraulic radius is set equal to the
water depth. But for an ice covered flow the hydraulic radius is equal to one
half the river depth. For the open water flow the Manning's coefficient is
determined by bed friction. For an ice covered river a combined Manning's
coefficient for river bed and ice cover underside is from Sabeneev formula

(Wankiewicz, 1984):

3 3/2
(Tt "\
n ( : )/ (3.15)

where np and n; = Manning's coefficients of river bed and ice cover underside

respectively.
3.2.2 Energy Equation

The temperature distribution in the river flow field is calculated by the
use of the two-dimensional unsteady heat energy conservation equation
governing the temperature distribution in a vertically homogeneous stream

which is given by:
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aTh+a:rU+aw=2(th§I)+—a—(hDy§z)+h(D (3.16)
g dx dy oOx ox dy oy

where T = water temperature; ¢ = source term which represents the heat flux
from water to atmosphere; Dy, Dy = longitudinal dispersion coefficients in the
x- and y-directions respectively given as (Ashton, 1979)

D, =k, U"R (3.17)

Dy =k, V'R (3.18)

where ky, ky = dispersion constants in the x- and y- directions respectively; U,

V* = shear velocities in x- and y- directions respectively and are defined as

U* =7S; gR (3.19)
V' =S5 ER (3.20)

3.3 Heat Transfer Equations

3.3.1 Top Surface Heat Exchange

The phenomena of top ice melting is the result of the heat transfer at

air-ice interface. When the river is not ice covered heat transfer occurs at air-
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water interface. Each individual heat exchange process is influenced by the

river surface conditions.

The surface heat exchange process consists of following major
components: (1) solar (shortwave) radiation, ¢i; (2) long-wave radiation, ¢u;
(3) evaporative heat flux, ¢¢; (4) convective heat transfer, ¢.. However, the
heat transfer from precipitation and geothermal heat transfer through the
river or channel bed are not significant in modeling the ice melting. The
meteorological conditions influencing these components are cloud cover, air

temperature, wind velocity and air vapor pressure.

The heat transfer due to these processes are shown schematically in Fig.

3.1.
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Fig. 3.1 Heat transfer at air-ice, water-ice and air-water interfaces



33

Short-Wave Radiation

The solar radiation outside the earth's atmosphere varies with distance
from the sun which may be determined from weather records on cloud cover
conditions. A part of the solar radiation is reflected, while the another part
reaches the ground surface. When clouds are present, most of the radiation
will scatter and be absorbed. Under heavy clouds all radiation reaching the
ground surface will be diffuse. The incoming solar radiation can be therefore

calculated using the cloud cover data such as (Shen & Chiang, 1984)

o =(a-b (¢ -50)) (1-0.0065C?) (3.21)

where ¢ri = incoming shortwave radiation; ¢, = latitude on the earth's
surface; C = cloud cover in tenths (ranging from 0 for a clear sky to 10 for a
completely overcast sky). The constants a and b reflect the annual variation in
solar radiation intensity, which are given in Table 3.1 for the winter period

(Shen & Chiang, 1984).



Table 3.1 Annual Variation of Solar Radiation Constants

(Shen & Chiang, 1984)

Month a b
December 418 8.2
January 595 11.0
February 955 11.2
March 1650 12.7
April 2319 8.4

Since part of the solar radiation reaching the water surface is reflected

back into the atmosphere, the net solar radiation for the water surface is in

the form

ds=(1-a) On (3.22)

where ¢ = net shortwave radiation; a = 0.1, surface albedo.

In the case of the ice cover, the value of albedo is determined from the

material behavior of the ice cover. The albedo is obtained from (Shen &

Chiang, 1984)
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o=04 Ta<00C (3.23)

a=0,+(0i- a,)e-¥Ts T,200C (3.24)

where a;, &3, and y = empirical constants, their values are 0.41, 0.25, 0.7,

respectively; T, = air temperature.

A portion of solar radiation penetrating the ice cover can be considered
as an internal heat source in the water body. The penetration of the

shortwave radiation is calculated from:

¢sp =P s e-™0 (3.25)

where ¢sp = penetration of the shortwave radiation into the water body; B; =
fraction of absorbed solar radiation which penetrates the ice-water interface; 1;
= 0.07, bulk extinction coefficient. The value of B;is chosen as 1.0 due to the

small difference in the refractive indices of ice and water.

Long-wave Radiation

The long-wave radiation is influenced by the meteorological factors
and it consists of two components. These components are the long-wave

radiation emitted from the river surface and the net absorbed atmospheric

radiation.

According to the Stefan-Boltzmann law the radiation emission from

the river surface is predicted from (Shen & Chiang, 1984)
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Obs = €5 6 Tk (3.26)
where ¢ps = long-wave radiation emitted by the river surface; €5 = 0.97,

emissivity of both the water and ice surface; 6 = 4.903 x 10-7, Stefan-

Boltzmann constant; T = water or ice surface temperature.

The atmospheric radiation is generally expressed as a function of air
temperature which can be obtained from weather records. Under clear skies
the atmospheric radiation can be computed from:

Opa = 0 Tak (¢ + d v&7) (3.27)

and for the cloudy condition, the correlation of the radiation is using Bolz's

formula (Shen & Chiang, 1984)

Oba =0 Ta(c +dvey) (1 +k.C?) (3.28)
where ¢pa = atmospheric radiation; T,k = air temperature; e, = air vapor
pressure; ¢, d, ke = empirical constants, their values are 0.55, 0.052 and 0.0017,

respectively.

With emittances of 0.97 for water or ice cover, the net radiation can be

finally calculated as

Ob = dps - 0.97 Ppa (3.29)
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where ¢, = net radiation.
Evaporative Heat Flux

Evaporative heat transfer from water surface can be calculated by the

Rimsha-Donchenko formula (Shen & Chiang, 1984)
de= (1.56[8.0 + 0.35 (Tys-Ta) ] +6.08 V,) (es-e,) (3.30)

where ¢, = evaporative heat flux; V, = wind velocity; e; = saturation vapor

pressure at the water surface temperature; T, = water surface temperature.

When an ice cover is present, the value of 0.5 is added to Eq. (3.30) due

to reduction in the evaporative process:

e =0.5(1.56 [ 8.0 +0.35 (Tyys- Ta) ] + 6.08 V,) (es-e,) (3.31)

Convective Heat Flux

The convective heat flux is calculated using the Rimsha-Donchenko

formula (Shen & Chiang, 1984)
0c=Cc( 8B0+035(Ts-Ta) +39V,) (Ts-T,) (3.32)

where C; = 0.5, coefficient accounting for the reduction in convective heat

transfer due to the presence of the ice cover.
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Top Surface Ice Melting

The top surface temperature of the ice cover is determined by the heat
exchange at the air-ice interface, which is obtained from (Shen & Chiang,
1984)

Tf'Ts

0s(1-Bie-®) -y~ 0c - dc + ki =0 (Ts<00C) (3.33)

where ki = 2.219, thermal conductivity of ice; Ty = 0 °C, freezing point

temperature for fresh water.

When the top surface temperature calculation is performed, the surface
temperature may exceed (>) 0°C, the melting point of ice. In this case, the top
surface temperature (Ts) is set to 0°C and the top surface melting is calculated

using:

AB
At

ds(1-Bie™®) - dp-0e-c =-p L (T, = 00C) (3.34)

where p; = 920, density of the ice; L, = 33.5 x 104, latent heat of fusion of ice;

A8 = change in the ice thickness at the upper surface during the time step At.
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3.3.2 Bottom Surface Heat Exchange

Heat flux from water to ice cover has the most dominant effect on the
ice melting. Heat flux calculation from water to underside of the ice cover is

given (Kreith, 1963)
qQwi = hwi ( Tw - Ts ) (335)

where gwi = heat transfer from the water to ice cover; hyj = heat transfer
coefficient at water-ice interface; T, = bulk water temperature. The formula
for the calculation of heat transfer coefficient has been discussed in detail in

chapter 2.

Assuming a linear temperature profile through the ice cover, the

bottom surface melting is determined by (Shen & Chiang, 1984)

Ki'T‘[é_B - Qwi= PiLi éf”— (3.36)
t

where A0y, = change in ice thickness at bottom surface during the time step At.
3.3.3 Source Term Calculation
The heat exchange components in the energy equation (3.16) depends

on whether the river is ice covered or not. In the case of an ice cover the

source term ¢ is given by (Shen & Chiang, 1984)
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¢ =dsp - Quwi (3.37)
and for the case without an ice cover
¢=0s- O - 9~ c (3.38)
therefore the source term can be determined from
o ¢ (3.39)

—Cphp

3.4 Numerical Solution
34.1 Hydrodynamic Equation Solution

Solution of the hydrodynamics equations (Eq. (3.1), (3.2) and (3.3)) is
obtained by use of the finite difference scheme, which is an explicit, forward
time central space scheme based on a modified version of the MacCormack
method. A finite difference grid is overlain on the hydrodynamic field with
all values defined at each grid point. In the MacCormack scheme, the two-
dimensional operator is split into a sequence of one-dimensional operators.
Each operator is further split into a predictor-corrector sequence described as

follow:

L (At) =Ly (Atx ) Ly (Aty ) Ly (Aty ) L, (Atx ) (3.40)
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where Ly, Ly = one dimensional finite difference operators, respectively; Aty ,

Aty = half the time increment At.

Therefore the solution at each time increment for each grid (i,j) is

obtained by
w’i].}:l=Lx(Atx)Ly(Aty)L'y(Aty)L‘x(Atx)\V;d (3.41)
where W = flow characteristic, such as velocity or water depth.

Fig. 3.2 shows the finite difference grid. Subscripts of i indicate points in
the x direction and j indicate points in the y direction. The MacCormack
operator, in x direction applied to the hydrodynamic equations yields (Garcia,

1983)

hR o g -.‘i% (UL, - Uly,) (3.42)

h s+ Hp
uni2 = ._A_‘z(p;‘J-}:ril_quAtz( ij 7 il

Y Ax 2
.7 ... 3.43
( Zﬁ.j f1-1,) ) - Srflxi.j + Aty ( fvril._] _ _SXij ) ( )
Ax p
+ e B2 (U, -2 UL+ Uy
Ax?

where At = one half the time step At.
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Fig. 3.2 Illustration of finite difference grid
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The stability criteria for the finite difference scheme is determined by
the Courant-Friedrich-Levy criterion. The maximum time step in the
modified MacCormack scheme is given by (Baldwin, MacCormack & Diewart,

1975)

. 2 Ay
At € Min |—28x__ 3.45
t (u+Vgh v+Vgh) ( )

The time step chosen should be the minimum value of these two.
3.4.2 Energy Equation Approximations

The upwind scheme is employed to solve the temperature equation
including convection and dispersion in the flow domain. In the upwind
scheme it is assumed that the heat is transferred from the upstream of the
flow to the downstream. Fluid flowing from upstream to the downstream is
a. the temperature that prevails on the upstream and does not know
anything about the fluid toward which it is heading, but carries the full
characteristic of the fluid from which it has come. The upwind scheme is

illustrated in Fig. 3.3 (Patankar, 1980):
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Fig. 3.3 Illustration of upwind scheme
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The discritization of the two-dimensional energy equation is given by

hn+l rl-m-l hn+1 1 - At ( aUT BVT )

.

-&*(Dm(m).j W2 (Thy - T8, - Dby B2y CThy - Thyy)) +

( ik Biam (Tha - To) - Dyiham Bam (Th - T ) +
A o)

(3.46)

where

oUT _ Uirary Tiy -Uiapy,j Tion,j
ox Ax

for Ui.qny;and Uisap),; >0 (3.47)

oUT _ Uivayy Tivr -Uiasmyy Tij

for Ui.ap), and Ui+qar2), <0 (3.48)

Bx AX
Ui, + U;
U,y = —’I—J—z—” (3.49)
Ui, + U;
Uiy = —L5—2 (3.50)

34.3 Initial and Boundary Conditions

To solve the governing equations the initial and boundary conditions

are needed, together with geometrical data of the area in which the solutions
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are sought. The initial and boundary conditions have to fulfil certain

conditions in order that the problem is well posed.

The initial and boundary conditions depend on the actual flow
situation and a number of boundary values have to be prescribed to
determine the solution. Table 3.2 shows the required boundary conditions for

the hydrodynamic equations.

Table3.2  Number of boundary conditions for 2-D problems

Sub-critical flow Super-critical flow
u? + v2<gh u + v2> gh
Inflow Outflow Inflow Outflow
2 1 3 0

The water depth at all computational points is initially specified to the
outflow boundary water depth. Temperature at all points is set to the inflow
temperature. The water velocity components are initially set to zero over all
computational zone. Initial ice thickness is set according to laboratory record.

Fig. 3.4 shows the boundary conditions at closed boundary.

Closed boundaries are locations where solid walls limit the flow field
such as river banks. The velocity perpendicular to the wall is equal to zero at
all time and non slip boundary condition applies when € is not zero. The
temperatures of the fictitious point are set to the temperature of the inside

adjacent cell. Convection and dispersion are zero at the boundary due to zero
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wall velocity and zero temperature gradient across the boundary, resulting

zero heat flux at the bank.

Closed boundary
Vi,j
1 Fictitious point
Uij =— O O—-Uj
172 Ay 1
-V.

Fig. 3.4 Boundary conditions at closed boundary




CHAPTER 4

MODEL APPLICATION AND DISCUSSION

Different heat transfer coefficients employed in ice melting calculation
can lead to different melting predictions. The study of the behavior of ice
cover melting using a number of different heat transfer coefficients was
carried out through the application of a two-dimensional numerical model.
Three different empirical equations, the Dittus-Boelter and the Colburn, the
Petukhov-Popov equations together with the new derived formula were
applied respectively in the model to compare their effects on the ice melting.
The computational results were compared to experimental observations and

field study as well.

4.1 Computational Procedures

Computational procedures were performed by first solving the
hydrodynamic equations, i.e. the continuity equation, momentum equations,
to obtain a steady flow field before an ice cover was imposed on top of the
water. Then, the thermal effluent was introduced and the solutions of the
energy equation were obtained until a steady hydrothermal flow field was
established. Based on the steady hydrothermal flow field the heat transfer
processes between air-ice, air-water and water-ice interfaces were considered.
Before conducting the computations of the heat flux between water and the

ice cover surface underside, three empirical equations, for the calculation of
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the heat transfer coefficient as well as the new formula, were computed at
each grid point according to the hydrothermal considerations. Consequently,
the model evaluates the ice cover growth and decay as a result of the heat
transfer processes. Continued use of the hydrodynamic equations allowed for
the consideration of variations in the flow field due to the continuous

changes in the ice cover thickness.

Repetition of these steps would advance the numerical solution
through any desired time level. In modelling laboratory experiments, a
maximum time of 300 minutes melting was considered corresponding to the

actual experimental time.

4.2 Experimental Conditions

A total of seven experiments were conducted by Hewlett at Iowa
University in 1976 (Hewlett, 1976). However, data from three of these
experiments were utilized in the above studies, among which experimental
run 1# had complete data. Therefore, experimental run 1# conditions were
simulated in the model and modeling results were compared to the

corresponding data.

In the laboratory experiments, the channel had a length of 12 meters
and a width of 0.6 meter as shown in Fig. 4.1. The average unit width
discharge of the channel was about 0.037 m2/s with a slight variation with
time as shown in Fig. 4.2. The water depth in the channel under ice cover was

about 0.2 meters and the slope of the channel was near zero to 0.025.




Ice cover

Water flow i

0.2

Channel bed

12

(All dimensions are inm)

Fig. 41 Channel geometry used in experiment 1#
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Fig. 42 Water discharge variation with time during experiment #1

The mean water temperature was about 1 °C and the laboratory
ambient temperature was near 0 °C. The variation of inlet water temperature
with time is shown in Fig. 4.3. Both the variations of the discharge and
thermal effluent temperature in the inlet of the channel were accurately
reprocuced at each computational time step following the experimental

records.
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Fig. 43 Water temperature variation with time during experiment #1

An ice cover was formed on top of the water with a length of 8.2 meters
starting at about 2 meters downstream from the channel inlet. The average
initial ice cover thickness was about 0.05 meter but differed slightly from one
point to another. The profile of initial ice cover thickness is shown in Fig. 4.4.
The initial conditions in the model were set to the actual thickness of the ice
cover as given at each point. In chapter 2 it was established that the length of
thermal entrance influence is about 8 meters, which means the length of the
ice cover used in the experiments was just within the effective length of
thermal entrance region. The heat transfer coefficient in this region is
therefore a function of distance in the flow direction and could not be taken

as a constant.
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Fig. 4.4 Initial ice cover thickness in experiment #1

The probes designed to measure the ice cover thickness in experiments
were installed at distances varied from 0.12 meter near the leading edge to 1.5
meter towards the downstream end of the channel as shown in Fig. 4.5. Table

4.1 lists the distance of each probe from the leading edge.



QOutet

(All dimensions are in m)

Fig. 4.5 Probes distribution over the ice cover in experiment #1
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Table 4.1 Distance of each probe from the leading edge

Distance from leading edge

Probe No. Probe No. Probe No.

Probe 11

Probe 2 24.69 Probe 12 499.87
Probe 3 37.19 Probe 8 162.15 " Probe 13 606.55
Probe 4 62.18 Probe 9 187.15 Probe 14 713.23
Probe 5 87.17 Probe 10 286 51 Probe 15 819.91

4.3 Computations Using Existing Formulas

4.3.1 Heat Transfer Coefficient and Its Effect on Ice Melting

Modeling results generated by using the Colburn equation (Eq. (2.14)),
the Dittus-Boelter equation (Eq. (2.16)), as well as the Petukhov-Popov
equation (Eq. (2.18)) were compared with experimental investigations

performed by Hewlett (1976).

The variations of the various heat transfer coefficients along ice cover
is shown in Fig. 4.6. Their values are also given in Table 4.2. Fig. 4.6 shows

that the three equations have produced constant values of heat transfer
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coefficients along the ice cover. The Colburn and the Petukhov-Popov
equctions gave relatively large values of heat transfer coefficient, with higher
values given by the Colburn equation because both account for the roughness
of the ice cover bottom surface. However, the Dittus-Boelter equation
produced the lowest values of the heat transfer coefficient. This equation does
not account for the roughness of the ice surface underside. As can be seen
from the Table 4.2 the values produced by using the Colburn equation are
about 2 times higher the values given by the Dittus-Boelter equation and

about 1.6 times the values yielded using the Petukhov-Popov equation.
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Table 4.2  Computed values of the heat transfer coefficient
along ice cover (J m2s10C-1)
Distance Heat transfer coefficient
from leading Dittus-Boelter Colburn Petukhov-
edge (m) Popov

0.08 561 1093 938
0.1 561 1093 938
0.2 557 1084 929
0.3 553 1072 921
0.5 553 1072 917
0.7 548 1068 917
0.9 553 1059 913
1.1 553 1072 921
1.3 553 1068 917
1.4 553 1072 921
1.6 553 1072 925
2.0 557 1072 934
4.0 565 1072 946
6.0 565 1072 963
8.0 565 1072 963
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The effect of the heat transfer coefficient on ice cover melting can be
depicted from Figs. 4.7, 4.8, 4.9, 4.10 and 4.11 for probes 1, 2, 3, 11 and 14
respectively. These figures compare computed ice cover thicknesses to
experimental observations. Since the ice cover thickness was observed to
decrease faster near leading edge, it is important to take closer intervals near
this location for comparison, as is the case of probes 1, 2, and 3. Probe 11 was
located at about the middle length of the ice cover while probe 14 was near
the end of the ice cover. For probe 1 (Fig. 4.7), located at about 0.12 m from the
leading edge, the three empirical equations have under-predicted ice melting
up to 50 minutes after the starting of computation. After this only the Dittus-
Boelter equation continues to yield under-predict results. Fig. 4.7 shows that
the Colburn equati~ has given the closest results while the Dittus-Boelter
equation greatly under-predicted ice cover melting. In probe 2, about 0.24 m
downstream from leading edge, using the Colburn equation, the model has
over-predicted ice melting almost from the beginning. The Petukhov-Popov
equation has given the closest results to the experiment while the Dittus-
Boelter equation again under-predicted ice melting for this probe much the
same for probe 1. Fig. 4.9 shows the same comparison but for probe 3. Both the
Colburn and Petukhov-Popov equations have over-predicted ice melting
since the beginning, whereas the Dittus-Boelter equation gave the closet
results among the three equations. Further downstream as for probes 11 and
14 shown in Figs. 4.10 and 4.11 respectively, the Colburn and the Petukhov-
Popov equations have consistently shown over-prediction of ice melting all
the time, while the Dittus-Boelter equation gave better agreements with
experimental results in this region near the end of the ice cover. In probe 14,
the Dittus-Boelter equation has slightly shown an over-prediction of ice cover

melting.



ICE THICKNESS (cm)

ICE THICKNESS (cm)

6
5-
4-
q
3-
2 - Experiment
4{ |—— Dittus-Boelter N«""m
{~ |~—®— Colburn e,
4 |—¢— Petukhov-Popov "
0 v .
0 100
TIME (min)

200

Fig. 4.7 Computed vs measured ice thickness for probe 1

6
o NN N Exmrlment
5 ———eo—— Dittus-Boelter
—#—— Colburn
4 - Petukhov-Popove
3 -
2 -
1 e
0 v ¥ T
0 100 200

TIME (min)

Fig. 48 Computed vs measured ice thickness for probe 2

60



ICE THICKNESS (cm)

ICE THICKNESS (cm)

Experniment
1 |—— Dittus-Boelter
19 |—=— Colburn

¢ Pegtukhov-Popov

1
0 100

TIME (min)

Fig. 49 Computed vs measured ice thickness for probe 3

""“"uu

2 o (e Experiment
——e&— Dittus-Boelter
19 |—=— Colbumn

1 \me— Petukhov-Popov

Y T T
0 100 200

TIME (min)

Fig. 410 Computed vs measured ice thickness for probe 11

61



ICE THICKNESS (cm)

2 n (T T Experlmen‘
————  Dittus-Boelter
14 |—®— Colbun

A = Pgtukhov-Popov

0 — Y T T
0 100 200

TIME (min)

Fig. 4.11 Computed vs measured ice thickness for probe 14

62



63

Figs. 4.12 and 4.13 give the ratios of the ice cover thickness using the
Colburn and the Petukhov-Popov equations to that of the Dittus-Boelter
equation for probes 2 and 14 respectively. The ratios of the Colburn to Dittus-
Boelter equation are larger than those of the Petukhov-Popov's due to larger
values of heat transfer coefficient produced by the Colburn equation. Since a
constant heat transfer coefficient was used, the ratio is increasing with time
but at an almost constant rate. The differences of the effects on ice cover
thickness due to different heat transfer coefficients used has reached a high of
more than 80 percent, as seen from the ratio of the Colburn to Dittus-Boelter

equation for probe 14.
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Fig. 412 Ratios of the ice thickness for probe 2
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Fig. 4.13 Ratios of the ice thickness for probe 14

Figs. 4.14 and 4.15 present the profiles of the ice cover thickness at time
100 and 200 minutes, respectively. As shown in these figures the Dittus-
Boelter equation gave the best predictions among the three equations. The
Colburn and the Petukhov-Popov equations over-predicted the ice melting
seriously from the very beginning. It is also noted three profiles of the ice
cover thickness from the empirical equations are parallel, resulted again from
the constant heat transfer coefficient. The variations of the ice thickness in
time averaged over the length of the ice cover are given in Fig. 4.16. The

Dittus-Boelter equation has yielded the best results most of the time.
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Fig. 4.16 Computed vs measured ice thickness averaged over distance

4.3.2 Melting Rate of the Ice Cover

The effect of the heat transfer coefficient can also be gauged by
considering the ice melting rate. Fig. 4.17 shows the variations of ice melting
rate at different probes. The values of the melting rate are presented in Table
4.3. Fig. 4.17 shows that the computed ice melting rates are constant along the
ice cover. The Colburn equation produced the largest values of the melting
rate, which were about twice the values of the Dittus-Boelter equation. The
Petukhov-Popov equation generated values of 1.6 times the Dittus-Boelter
equation. The Dittus-Boelter equation resulted in larger than observed ice

melting rate beyond probe 9 in the downstream direction, about 1.9 m from
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the leading edge. The Colburn equation produced over-predicted values of

the melting rate at probe 2 and beyond.
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Fig. 4.17 Variations of melting rates from empirical formulas
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Table 43  Mean values of the computed and measured ice

melting rate at different probes (am/min)

Probe Experimental Computational Results
No. Results Ditws-Boelter Colburn Pc;m(;khzv-
— 1 || Popov

Probe 1 0.0270 0.0110 0.0220 0.0179
Probe 2 0.0210 0.0108 0.0216 0.0176
Probe 3 0.0160 0.0107 0.0215 0.0175
Probe 6 0.0120 0.0107 0.0215 0.0175
Probe 9 0.0100 0.0108 0.0215 0.0176
Probe 11 0.0100 0.0108 0.0215 0.0177
Probe 14 0.0100 0.0109 0.0214 0.0176

4.3.3 Water Temperature and Depth

The variations of computed water temperature along the channel
beneath the ice cover are shown in Figs. 4.18 and 4.19 for 100 and 200 minutes,
respectively. The water temperature resulted from using the Colburn
equation was much lower than the other equations. However, the highest
values of the temperature profile along the channel were obtained by using
the Dittus-Boelter equation. At the leading edge, the water temperature
resulted from the use of the Dittus-Boelter and the Petukhov-Popov
equations were about 1 °C. The Colburn equation generated the water

temperature below 1 °C due to higher heat losses. At time 200 minutes, the
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water temperature gradient obtained from the Dittus-Boelter and Petukhov-
Popov equations were lower than those at time of 100 minutes, indicating
larger heat transfer from water to the ice due to thinning of the ice. By using
the Colburn equation the water temperature at 200 minutes was higher than

before because most of the ice cover has melted.
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Figs. 4.20 and 4.21 show the variations of water depth under ice cover at
time 100 and 200 minutes respectively. In these figures the water depths
obtained using the Colburn equation are the highest due to higher ice melting
rate than that from the other two equations. At time 200 minutes the water
depths generated using the three equations were higher than those by about

6% at time 100 minutes due to the ongoing melting of the ice cover.
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Fig. 420 Computed water depth variations at time 100 min
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4.4 Results from New Formula

441 Heat Flux

The variations of the heat transfer coefficient produced using the new
formula (Eq. (2.36)) were compared to those of the experiment and the three
empirical equations as well. These variations are shown in Fig. 4.22. Table 4.4
lists the values of the coefficient along the ice cover. As shown in Fig. 4.22, in
contrast to the empirical formulas, the variations of the heat tran. r
coefficient along the ice cover given by the new formula fit better with the
experimental results. They have large values near the leading edge and
smaller ones toward the end of the ice cover. Actually, the variations of the
heat transfer coefficient can be divided into two distinct zones along the ice
cover. In the entry zone, within the length of about 0.5 m from the leading
edge, the values of the heat transfer coefficient show rapid decrease with
distance. In the immediate neighborhood of this zone, which can be called
transition zone, the heat transfer coefficient varied rather gradually with
distance. The ratios of the heat transfer coefficients from experiment to all
equations are shown in Figs. 4.23 and Table 4.5. Fig. 4.23 shows that the Dittus-
Boelter equation got quite large 1:atio near the leading edge but better results
afterward. Both the Colburn and Petukhov-Popov equations had smaller
values than the Dittus-Boelter equation near the leading edge but much
larger downstream. The new formula generated smaller ratio values than the
Dittus-Boelter and Petukhov-Popov equations near the leading edge and
much closer values of the heat transfer coefficient to experiment for the rest

of the ice cover.
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Table 4.4 Mean values of the heat transfer coefficient from

new formula and experiment along ice cover (J m-2 s-10C-1)

Distance from Heat transfer coefficient
the leading New formula Experiment
edge (m)
0.08 1097 1340
0.1 1030 1294
0.2 925 1055
0.3 825 846
0.5 749 641
0.7 699 607
0.9 666 590
1.1 645 578
1.3 624 569
1.4 615 565
1.6 599 561
2.0 574 557
4.0 511 540
6.0 477 519
8.0 448 498
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Table 4.5  Ratio of experimental heat transfer
coefficient to computed values
x /R 1 5 10 ] 15 ] 20 | 25 | 30 | 35
Ratio
New formula | 126 [ 086 | 0.89 | 0.93 | 0.97 | 1.03 | 1.04 | 1.00
Dittus-Boelter ] 231} 116 | 1.05} 1.01 | 1.00 | 1.02 | 1.00 | 0.93
Colburn 1.18 | 0.60 | 0.55 | 0.52 | 0.52 | 0.53 { 0.52 | 0.48
Petukhov-Popov | 1.38 | 0.70 | 0.63 | 0.61 ; 0.60 | 0.61 | 0.60 | 0.55

The percentage differences between computed and measured heat
transfer coefficients are given in Table 4.6. The standard deviations (op.;) of
these differences are presented in Table 4.7. Clearly, the new formula had the
closest values of the heat transfer coefficient to the experiment and gave the
smallest values of deviation among all the equations. Both the Colburn and
Petukhov-Popov equations had large differences and deviations as well. The
Dittus-Boelter equation shows larger differences than both the Colburn and

Petukhov-Popov within first 0.3 m from the leading edge but closer values of

the heat transfer coefficient to the experiment afterward.




Table4.6  Differences between computed and measured
heat transfer coefficient (%)
Distance Differences
from the (%)
leading Dittus- Colburn | Petukhov- New

edge (m) Boelter Popov formula
0.08 -58.8 -184 - 30.0 -18.1
0.1 -56.6 -15.5 -27.5 -20.4
0.2 -47.2 2.8 -11.9 -12.3
0.3 -34.5 26.7 9 -25
0.5 -13.5 67.3 43.7 17
0.7 -9.1 75.9 50.8 15.1
0.9 -6.2 79.4 54.3 12.8
1.1 -4.0 85.5 59.4 11.6
1.3 -2.9 87.5 61.2 9.6
14 -2.1 89.6 63.5 8.9
1.6 -0.8 91.0 64.7 6.7
2.0 0 92.5 67.7 3.0
4.0 4.7 98.4 75.0 -5.4
6.0 8.9 106.5 85.3 -8.1
8.0 13.4 115 92.9 -10.1
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Table 4.7  Standard deviations of difference between computed

and measured heat transfer coefficient (%)

Standard deviation (op.;)

Dittus- Colburn Petukhov- New
Boelter Popov formula
23.6 44.2 39.7 12.3

Fig. 4.24 and Table 4.8 show the ratio of the heat transfer coefficient of
the new formula to that of the three empirical formulas, in which X is the
length from the leading edge and R is hydraulic radius. As shown in Fig. 4.24
that, near the leading edge, the heat transfer coefficient from the Dittus-
Boelter equation is about 1.83 times the values from the new formula but
with closer values obtained downstream. Both the Colburn and Petukhov-
Popov equations have closer values than the Dittus-Boelter equation in the
leading edge, however, about 1.5 times the new formula after 1 m

downstream from the leading edge.
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Table 4.8 Ratio of the heat transfer coefficient from

new formula to empirical formulas

x; / R 1 ) 10 15 20 25 30 35

Ratio

Dittus-Boelter | 1.83 | 1.36 | 1.17 | 1.10 | 1.03 | 0.99 | 0.96 | 0.93

Colburn 094 |1 070 ] 061 | 057 ] 0.54 | 0.51 | 0.49 | 0.49

Petukhov-Popov | 1.10 | 0.81 | 0.71 | 0.66 | 0.62 | 0.59 | 0.57 | 0.57

44.2 Melting Rate of the Ice Cover

Table 4.9 lists the mean values of ice melting rate from the experiment
and the new formula along the ice cover. A comparison of computed melting
rates from all equations to those of experiment at different probes along the
ice cover is shown in Fig. 4.25. The melting rate computed using the new
formula reflects the thermal entrance influence and gives a better agreement
with the experiment, being large at the leading edge and small near the end of
the ice cover. The differences in melting rate between experiment and
computations are presented in Table 4.10 and Table 4.11, showing the

standard deviation (on.;) of differences of the melting rates.




Table 49  Mean values of ice melting rates over time
using the new formula (cm/min)
Probe No. Exgriment New formula
Probe 1 0.0270 0.0201
Probe 2 0.0210 0.0162
Probe 3 0.0160 0.0146
Probe 6 0.0120 0.0125
Probe 9 0.0100 0.0113
Probe 11 0.0100 0.0100
Probe 14 0.0100 0.0091
Table 410 Differences of melting rate between
computations and experiment
Difference (%)
Probe Dittus- Colburn | Petukhov- New
No. Boelter Pogov formula
Probe 1 -59.3 -18.5 -33.7 -25.6
Probe 2 -48.6 29 -16.2 -229
Probe 3 - 33.1 344 9.4 -8.8
Probe 6 -10.8 79.2 45.8 4.2
Probe 9 8 115 76 13
Probe 11 8 115 76 0
Probe 14 9 114 76 -9
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Table 4.11 Standard deviations of the difference

in the melting rate (%)

Standard deviation (op-1)

Dittus- Colbum Petukhov- New
Boelter Popov formula
28.9 56.8 48.9 14.0

The standard deviation of the error using the new formula is
shown to be the smallest among the four equations. The Dittus-Boelter
equation has also given noticeably smaller value than those of the other two

empirical equations.

4.5 Field Comparison and Discussions

The numerical model was also applied to the field case using three
empirical equations, Dittus-Boelter equation, Colburn equation and
Petukhov-Popov equation. Computational results were compared to the field
data of Feb. 17, 1980, which was carried out by the US. Army Cold Regions
Research and Engineering Laboratory, Hanover, N.-H., US.A. The field study



was performed on the melting of river ice by a side thermal discharge on the

Mississippi River near Bettendorf, lowa.

The field investigation was conducted from February 13 to 18, 1980 on
the Mississippi River ice suppression due to thermal effluent. Ali together
there were 16 locations at which field measurements were taken along the
river in the study site. Field measurements included water velocity,
temperature, and water depth. The open water reach was determined from
aerial overflights photos. Tabel 4.12 presents each site measurements location
and names. The location of the origin is defined at somewhere upstream of
the river. The measurements location name and origin are shown in Fig.
4.26. For the water velocity and depth, only some of field measured data are
available. Water velocities were measured at the edge of the ice cover at
different water depth. In the comparison of the field data to computational
results, the depth averaged water velocity from field data was used. Water
depth measurements were taken within certain distance from shore in the

field.

The Mississippi River, at the field study, is approximately 1 km in
width and 12km long in longitudinal direction. The water depth varied
between a minimum of 2 m and a maximum of 10 m with a gradual increase
in the downstream direction. The river flow discharge during the study was
about 850 m3/s with the mean flow velocity of about 0.25 m/s. The geometry
of the river in study site and location of the thermal discharge from the
power plant, which is approximately 3 km longitudinal direction from the
entrance, are illustrated by Fig. 4.26. The elevation contour line of the river

bed is shown in Fig. 4.27, in which z stands for the bed elevation above an
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arbitrary datum. Both discharges in the entrance and from power plant were
exactly reproduced in the model. The river bed elevation was also taken into

account in the modelling.



Table 4.12 Site measurement name and location

Location name Longitudinal direction
from origin (m)
BB-B -216
BRM-0 0
DBRM-1 320
BH-2 970
PRN-3 1530
MLD-4 2173
TAT-5 2980
TLD-6 3510
PLD-7 4260
SLD-8 4590
UCP-9 5130
CT-10 5346
IBRG-11 6450
INDC-12 7342
ULP-13 8290
BDB-14 8640
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Three hour meteorological records, including air temperature, cloud
cover tenths, wind velocity and vapour pressure, were taken from the Molin,
Illinois airport weather office located 6 miles from the study site. Table 4.13
presents meteorological conditions for the 17th of February, 1980. On the 17th
the colder air temperature affected lengthening open water reach. In the

computations, the daily average meteorological conditions were considered.

Table 4.13 Meteorological conditions of Feb. 17,1980

Air temperature (°C) - 18.75
Cloud cover (tenths) 0.0
Latitude (degrees) 41.5
Wind velocity (m/s) 3.99
Vapour pressure (mb) 1.05

The thermal effluent discharge, originated from the riverside power
plant, was almost constant during the study period with the average
temperature of 8.9°C. Inflow water temperature was slightly above 0°C at the
entrance to the study reach. The value of 0.05°C of inflow water temperature
was used and average water temperature of 8.9°C from power plant was

considered in the model.

Ice cover edge locations were determined from oblique aerial

photographs. The river was originally covered with ice extended from
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upstream to downstream over a whole width of tl'2 river. An initial average
ice thickness of 0.25m was taken as an initial simulation condition in the

modeling.

Figures 4.28, 4.29 and 4.30 show ice thickness distribution from
modeling. Contour line of 0.25m ice thickness from using three empirical
equations is shown in Fig. 4.31. In the figures solid black line stands for the
initial ice thickness of 0.25m and z presents value of ice thickness. As can be
seen the original ice thickness of 0.25m contour line, near thermal effluent,
moved away from the shore. This results indicate that ice thickness within
this closed contour line area is thinner than 0.25m after suppression of the
river ice occured. Results from using the Colburn equation show the contour
line of 0.25m extends up to about 6.9km downstream from thermal effluent
source. While results from the Dittus-Boelter equation has a stretch of about
3.7km and from the Petukhov-Popov equation about 5.8km. This implies that
the Colburn equation produced the largest heat transfer coefficient, resulting

in more ice melting than those of other two.

Water temperature distribution generated from three equations are
showit in Figs. 4.32, 4.33 and 4.34. Fig. 4.35 presents 0.14°C contour line near
thermal discharge. Results show the Colburn equation has 3.1km in length of
0.14°C contour line. The extended contour line of 0.14°C from the Dittus-
Boelter equation and the Petukhov-Popov equation are 5.8km and 3.5km
respectively. The closed contour line area from the Colburn equation is the
smallest because more heat transfered from water to ice cover, resulting in

lowering water temperature. Contrarily, the contour line area is the largest in

Y
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the case of using the Dittus-Boelter equation due to small heat flux from

water to ice cover.

Water depth comparison between computations and field
measurements at different location is presented in Figs. 4.36 to 4.38. These
figures show that computations have a good agreement with field
measurements. Three modelling results by adapting three equations do not
have big difference in water depth calculation. The average values of water

depth in longitudinal direction are given by Table 4.14.

Table 4.14 Mean water depth in Mississippi River (m)

Mean water depth (m)
Field measurement “ 2.92

Dittus-Boelter equation " 289

Colburn equation 293
Petukhov-Popov equation 2.92

Figure 4.39 to Fig 4.41 show water flow velocity from modelling
compared to field measurements at different location. Computational results
have the good agreement with field data. Three equations produced results

close to each other in velocity.
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Table 4.15 Mean water flow velocity in Mississippi River (s/m)

Field measurement 0.248
Dittus-Boelter equation H 0.236
Colburn equation " 0.222
Petukhov-Popov equation Il 0.220

The comparison of ice free reach from modeling to the field data also
shows that that the Colburn equation generated the closest results to the field
study. The values of ice free reach from modeling and field study are listed in
Table 4.16. The Petukhov-Popov Equation also produced closer results to field

measurements than that of the Dittus-Boelter Equation.

Table. 4.16 Values of ice free reach for Mississippi River (km)

Len_g_th of ice free reach (km)

Field measurement 4.3
Dittus-Boelter Equation 2.1
Colburn Equation 2.7
Petukhov-Popov Equation 24
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CHAPTER 5

CONCLUSIONS

A new formula, based on Reynolds-Colburn analogy for the
computation of heat transfer coefficient at the water-ice interface, has been
derived in order to get accurate ice melting prediction in the entrance region
of the ice cover by using a numerical model. This new formula was used
successfully in a two-dimensional numerical model to predict ice melting in
the entry region. Computational results showed that the new formula had a

very good agreement with experimental observations (Hewlett, 1976).

Three empirical formulas, the Dittus-Boelter, the Colburn and the
Petukhov-Popov equations have been employed to generate the heat transfer
coefficient for the prediction of ice melting in order to compare their effects
on melting the ice cover. A comparison with the new correlation was also
undertaken in the study to compare its effects in the entry region. The
modeling results using these empirical formulas showed that both the
Colburn equation and the Petukhov-Popov equation yielded higher values of
the heat transfer coefficient than the Dittus-Boelter equation. This is due to
the influence of roughness term in these two equations. The three equations
produced only constant values of heat transfer coefficient, in contrast to the

new formula which generated a variable heat transfer coefficient.
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Conclusion can, therefore, be drawn that in numerical modeling of the
ice cover melting in the entry region, it is important to use a varying heat
transfer coefficient. The three empirical equations commonly used in
predicting the heat transfer coefficient in modeling of ice cover melting only
apply to the fully developed flow. One may obtain different results of the ice
melting by adapting different formulas.

Further research is needed to confirm the computational results by
experimental work. Particular attention can be given on the effect of surface

roughness on melting rate in the entry region.
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