I * National Library
of Canada du Canada

Acquisiions and

Bibliothéque nationale

Dwrection des acquisitions el

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1A ON4

NOTICE

The quality of this microtorm is
heavily dependent upcn the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyvright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395. rue Wellington
Ottawa (Ontano)

Youw fdee Ve it feinen e

Ohw iy Nole teMlerence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait oour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec luniversité
qui a conféré le grade.

La qualité d’impression de
certaines pages peut 'aisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

UNCONSTRAINED HANDWRITING RECOGNITION
APPLIED TO THE PROCESSING OF BANK CHEQUES

DipiIER GUILLEVIC

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREF. OF DOCTOR OF PHILOSOPHY AT
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

SEPTEMBER 1995
© DIDIER GUILLEVIC, 1995

A |

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street

Bibliothéque nationale
du Canada

Drrection des acquisitions et
des services bibliographiques

395, rue Wellington

Ottawa, Ontano Ottawa (Ontano)

K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-05079-3

Canadi

Your g Volre 1etérence

Qur e Notrg rélerence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CINE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

Abstract

Unconstrained handwriting recognition applied to the processing of
bank cheques

Didier Guillevic, Ph.D.
Concordia University, 1995

A method for recognizing unconstrained handwritten words belonging to a small
static lexicon is proposed. Previous approaches typically attempt to recognize char-
acters or parts of characters in order to recognize words. Our approach, in its first
step, bypasses the notion of characters. In addition to language independence, our
method is more context oriented and should prove to be more robust against poor
handwriting, spelling mistakes, noise and the like. Our computational theory is based
on a psychological model of the reading process of a fast reader. First a few graphical
clues such as ascenders, descenders and their relative positions are extracted from the
word. If these prove not to be sufficient to clearly identify the word, then details (sec-
ondary features including first and last characters of words) are extracted to enhance
the word recognition.

We designed and collected a database of bank cheques both in English and French.
This resulted in a one of its kind database in a university setting dealing with hand-
written information from bank cheques, both in terms of the size of the database
as well as the number of different writers involved. We further designed an innova-
tive, simple yet powerful in place tagging procedure for our database. It enables us
to extract at will not only the bitmaps of words, characters, digits, lines, commas,
etc...but also all kinds of contextual information.

We developed a fully trainable word recognizer with the requirement that the
switch to a different database and/or language shall not require any redesign nor

any extensive retraining time. The number of parameters within the system has

il

been kept to a minimum and whencver possible we designed algorithms that require
no parameters and therefore no training. Such an example is our slant correction
algorithm that shines by its simplicity and robustness. Whenever parameters might
need to be adjusted to a specific database, it is done automatically by running some
genetic algorithms.

We tested the generality and adaptability of our system on 2 different databases
of bank cheques (respectively English and French). We noticed that the system’s
parameters did not need to be readjusted for it to perform satisfactorily when the
switch was made from onc database to the other. At the time of this dissertation, our
survey indicates that this research is the only one in the literature which can handle
English cheques and our results are comparable to those published on the processing of
French cheques. Our preliminary results on the French database report a recognition
rate of 98.9% and 94.3% on the word and the full legal amount respectively among
the top 5 choices.

iv

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Ching Y. Suen
for having created a very stimulating and well-equipped lab environment, through
many ycars of dedicated efforts.

I am grateful to all the people who helped me one way or another during those
years at CENPARMI. Special thanks go to Steve Malowany, Stan Swiercz, Michael
Assels and William Wong for their technical competence, for maintaining our com-
puter network, and their great help in mastering the Unix operating system. Thanks
to Christine Nadal for her help in collecting the database of cheques. I am also
thankful to Raymond Legault and Liu Ke for helpful exchanges of ideas.

I am thankful to “my Pal” Peiying Zhu for her great help in many ways and her
friendship.

I am indebted to Nick Strathy for many fruitful discussions. His help in all the
aspects of conducting research, including structuring and managing my code, has
been of a significant importance in making that research possible.

I would like to express my gratitude to my external examiner Dr. Theo Pavlidis
as well as to the other members of my examining committee: Dr. R. Bhat, Dr. C.Y.
Suen, Dr. R. Gurnsey, Dr. T.D. Bui and Dr. Tony Kasvand. Their comments helped
to improve the quality of the final version of this thesis.

Special thanks to my coffee breaks pals, Peiying, Juliette, Nick and Louisa, for
sharing such relaxing and fun moments and to other members of CENPARMI and
other friends for ‘being there’ such as Patrice, Henry, Daniel and Satomi.

I would like to thank my early supervisors back in England, Dr. Andy Downton
and Dr. Graham Leedham. Their friendliness motivated me to pursue my studies.

Last but not least, j’aimerais remercier ma famille; mes parents, Nicole et Gilbert

ainsi que mon {rere, Serge.
b

A Nicole, Gilbert et Serge.

En souvenir de mes années tripartites:
o Mes années a 'ESIEE.
e Karlsruhe, Anfang meiner internationalen unvergeflichen Erfahrungen.

e My final year in Colchester.

vi

Contents

List of Tables
List of Figures

1 Introduction

1.1 Thechallenge
1.2 Motivation« . o i e e e e e e e
1.3 Previouswork e e e
1.4 Theproposal
1.5 Contributions e e e e

2 Psychological Models

3 Database
3.1 Previous databases oo
3.2 Design and printingof cheques. oL
3.3 Generating the chequeamounts
3.4 Collection of thedatabase
3.5 Storage of information o0 0oL
3.6 The truthing procedureo
3.7 The final database
3.8 Frenchdatabase o
3.9 SUMMALY . . ¢ vt e e e e e e e e e e e

vil

xii

Xv

S Ut N~

4 Legal Amount Processing 27

4.1 Preprocessing e J0
4.1.1 Baseline skew correction oL 30

4.1.2 Broken imagerepair 32

4.1.3 Slant correctiono 33

4.1.4 Smoothing o 37

4.1.5 Noiseremoval 39

4.1.6 Average stroke thickness o000 11

4.2 Segmentation of the amount intowords 11
43 Word recognition e 13
4.3.1 Global word features 44

43.2 Featurevector. 18

4.3.3 Probabilisticclassifier. oo o000 50

4.3.4 Nearest neighbour classifier 54

4.3.5 Confidence measure for the classifier 58

4.3.6 Word detailsextraction. L. 60

4.3.7 Character recognition., 66

4.3.8 Integrating character results with word results 76

4.4 Parsingmodule oo 82
4.4.1 Englishparser 82
442 Frenchparser i e 86

5 Experimental Results 91
5.1 Global features recognizer00 91
5.2 Character recognition oo 95
5.3 Integrating character and word recognition 96
5.4 Legal amount recognition. oL 97
5.5 Extra: Processing of French cheques. 98
5.5.1 French word recognition results 99
5.5.2 French legal amount recognition results 101

5.6 Comparisonofresults. 102

viii

57 Novelword spelling oo o 103

58 Demonstration’s interface00 oo oo 104

6 Conclusion 106
6.1 Summary of contributionso oo o 106
6.2 Strengths and weaknesses of the method 107
6.3 Futurework o e e 108
References 110
A Handwriting Samples 117
A.l Englishlegal amounts 117
A2 Englishwords i 134
A3 Characlers« . v v v i i e e e e e e e e e 142
A4 Frenchlegal amounts oo 148

B Baseline Skew Correction 156
B.l Determination of the baselineskew 156
B.1.1 Principal axis decomposition o000 156

B.1.2 Least squaremethod, 158

B.1.3 Local minima 166

B.2 Rotation of the original imageo 167
B.3 Summary i i e e e e 170

C Slant Correction Algorithm 171
C.1 Computation of the slanted histograms 171
C.2 Shear transformation o e 172

D Mathematical Morphology 175
D.1 Dilation and erosion o0 e e e e e e e 175
D.1.1 Dilation o e e e e 176

D.1.2 Erosion v v i it e e e e e e e e e 177

D.2 Openingandclosing 178

ix

D.3 Gray scale morphology Lo oo

D.4 Implementation

E Parameters

List of Tables

w ~3 O LT o W N -

wwmw.—ab—-'—-—-——b—ﬁu—‘u—-o—-—o"q
N = S O =S Gt LN — O

Example of randomly generated legal amounts in English 14
Grammar for generating the digit amounts 15
Meaning of each state of the grammar 16
Values taken by the terminal symbols 16
Example of randomly generated digit amounts 17
Estimate of samples per class generated with a set of 3,000 cheques . 17
Number of samples per word class in our database of legal amounts . 25
Number of single characters in our database of legal amounts 25
Character sets for the first and last position of words 68
Character features: 0 = NO, i = YES,2 =MAYBE 73
Grammar for the English legal amount 83
English final states: solely full dollar amounts 85
English final states: dollar 4+ cents amounts 85
Classes of terminal symbols for the English grammar 86
Grammar for the French legal amount 88
Classes of terminal symbols for the French grammar 90
English word recognition results (% correct in top N choices) 92

English word recognition results per class (% correct in top N choices) 93
Character recognition results (% correct in top N choices) 95

English word recognition results when merged with character recognition 97

English word recognition results when using the English parser 98
English legal amount recognition results 98
Word recognition results (% correct in top N choices) 99

xi

24
25
26
27
28

French word recognition results per class with AD features 100
French word recognition results when using the French parser 102
Legal amount recognition results (% correct in top N choices) 102

Comparison of word recognition results (% correct in top N choices) . 103

Novel word spellingo 104

Xi

List of Figures

E=N

O 00 = S

11
12
13
14
15
16
17

Various handwritingstyles 3
Definition of terms referring to handwritten cheque information . .. 12

Sample of cheque used for the generation of the ‘information’ database 14

Example of a Concordia cheque filled by a student 18
Legal amount written solely with capital letters 18
Samplesoflegal amounts 19
User interface for the tagging of the database 21
Image message after the tagging 22
Hierarchical diagram of the cheque processing system 28
Processing of the legal amount 28
A baseline-skewed image and its desired skew-free version 31
Baseline skewed words within “skew-free” legal amounts 31
(a) Original image, (b) Reconnected broken strokes 32
Side effect of the reconnection module. 33
Slant correction 34
Vertical histogram: (a) original word (b) slant-corrected word 35
Derivative of vertical histogram: (a) original word (b) slant-corrected

word . .. e e e e e e 36
Example of a word for which our current slant heuristic fails 37
Situation for the removal of black pixel 38
Situation for the removal of white pixel 39
(a) Original image (b) Smoothed image 40
Contour: (a) original (b) smoothed 40

Xiil

23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

..............

Examples of legal amounts to be segmented
Line removal: (a) Original(b) Lines removed

..............

Hierarchical diagram of the word recognizer

..............

Lower and upper reference lines
Ascender and descender bodies
Ascender and descender thresholds and buckets
Ascender, descender and loop features
Stroke features: (a) original image (b) vertical (c) horizontal (d-¢)
diagonal
Creating the feature vector for a givenclass
Probabilistic classifier: probability computation
Nearest Neighbour Classifier
Vector distance computation
Example: Distance between 2 ascender position vectors

Disconnected first and/or last charactersof words

Word represented as an ordered list of connected components
Locating the first characterofaword
Character extraction: first component overlapping the main body
Character extraction: character widthew
Character extraction: Thresholds for the character width
Character segmentation
Dynamic charactersets

Information available for each character . . .

Character shape variations according to the position within a word
Example of the distance map computation
Non-characters extracted from the first and last positions of words . .
Selection of the top character(s) for subsequent processing
Shifting up and down of word solutions
Shifting of the top TOP_.PERMUTATION word solutions
Parsing of the English legal amount

Parsing of the French legal amount

xiv

53
99
56
56
6!
62
62
63

57

59
60
61

62

63
64
65
66

lixample of legal amount recognition results 92

User interface for demonstration purposes 105
Eigenvectors ey, ez: Principal axis decomposition 158
Eigenvectors: Not appropriate for baseline skew estimation 159
Linearregression e 160
Polar coordinate system: (0,p) 161

Polar coordinate system: positive distance of a point toa line 162
Polar coordinate system: negative distance of a point to a line 163

Local minimas: (a) original image (b) local minimas (c) pruned local

minimas (d) outliers removed 166
Local minimas: (a) original image (b) pruned set of local minimas (c)

least square fitting line (d) resulting set of minimas 168
Baseline skew normalization, 169
Computation of the slanted histograms 172
Shear transformation by a given angle 8 174

Shear transformation of an image initially slanted at 60 degress . . . 174

XV

Chapter 1
Introduction

The reading of characters by computer known as Optical Character Recognition
(OCR) is a topic that has been investigated for many ycars [SBM80, MSY92). Nowa-
days both machine printed and handwritten characters are recognized by machines.
The extension of OCR to the reading of words has also heen investigated. Most solu-
tions to this problem rely on a process that segments the input into individual char-
acters. These characters are then exhaustively recognized. Systems are now in wide
commercial use for the processing of printed materials. However this technique has
not yet been successfully applied to read cursive handwriting. The problem remains
extremely challenging due to the great variability in handwriting styles, handwriting
devices, etc. ... Current research aims at developing systems for limited domain ap-
plications such as the processing of bank cheques. The defined lexicon plus a well

constrained syntax help provide a feasible solution to the problem.

1.1 The challenge

The processing of handwritten words is extremely challenging due to the great vari-
ability in handwriting styles (Fig 1), handwriting instruments, etc.... The problem
of recognizing handwritten words is so difficult that in order to get feasible solutions,
one needs to set some constraints. The 3 major components that influence the com-

plexity of a handwriting recognition problem are the size of the lexicon, the type of

CHAPTER 1. INTRODUCTION 2

handwriting and the number of wrilers. The more the constraints on these compo-
nents, the easier it gets to produce a solution; but do not misunderstand those words,
“casier” does not mean that the problem is a trivial one. It simply means that better
overall recognition rates can be attained.

Most of the studies in the literature deal with a limited number of writers, a small
lexicon, and sometimes some constraints on the handwriting. The more ambitious (by
necessity) studies are focusing on a database with “unlimited” writers, unconstrained
handwriting and a small lexicon, dynamic or static. As an example, people working
on postal applications (e.g. [Sri92]) are dealing with a problem of unlimited writers,
unconstrained handwriting and a “small” dynamic lexicon of city, state and street
names. The lexicen of city names, street names is a large one but can be reduced
dynamically with the help of the zip code recognition results prior to being passed
to the word recognition module. Another such application domain with “unlimited”
writers and unconstrained handwriting is the processing of bank cheques [Mor91,

GL93, GS95]. In this latter problem domain, the lexicon is small and static.

1.2 Motivation

Utility companies have great interest in a system which is able to process handwritten
cheques reliably. At the present the processing of payments is still done in a semi-
automatic fashion with operators keying in the amount read on each cheque. This slow
and costly process is a major bottle-neck for those companies and it would seem that
it is to stay that way for still quite a while. Indeed a recent Gallup poll commissioned
by the Financial Stationers Association (FSA) [Cas94] once again demonstrated that
as much as 83% of Americans still favor the cheque as the most convenient form of
monthly bill payment. For that reason and other factors research has been undertaken
at various centres and companies over the world in an attempt to bring a solution to
that problem. Even though progress has been made, no reliable system has reached

the market yet.

CHAPTER 1. INTRODUCTION

oudea, et Fore been |
<\L0f IQQV\M
%W/Zfbr ve e “Yotlaoi|

Sty Jen six b b o f)]

x SUA fral ~o-

{

Figure 1: Various handwriting styles

CHAPTER 1. INTRODUCTION 4

1.3 Previous work

We shall discuss here in general terms the research that has taken place to tackle
the problem of handwritten word recognition. A full detailed review would only be
duplicating other people’s work, so that the interested reader is referred to [Fav93]
for an in depth review of the research ficld.

Previous studies on word recognition typically apply some technique to segment
the word into individual characters [Say73, EK75, BS89, BHD91]. These characters
are then sent to a character recognizer and the combination of the recognition results
produced a ranked list of possible words. Such technique is commonly referred to as
analytical approach. While this approach can handle an “unlimited” lexicon size, it
has the drawback of relying on the results of the difficult and unreliable segmentation
stage.

Some other techniques [Far79, BG80, FS90, Mor91, GS95], known as global ap-
proachlook at the word as a whole, and extract some global features such as ascenders,
descenders, loops, etc.... Individual characters are not recognized as such but fea-
tures are extracted indicating which characters may be present in the word. This
approach has the advantage of avoiding the difficult segmentation stage.

The analytical approach is theoretically stronger in handling a large vocabulary.
Indeed with a constant number of classification classes (e.g. the number of letters
in the alphabet), it can handle any string of characters and therefore an unlimited
number of words. The wholistic approach on the other hand, must generally rely on
an established vocabulary of acceptable words. Its number of classification classes
increases with the size of the lexicon. The “whole word” scheme is potentially faster
when considering a relatively small lexicon. It is also more accurate having to consider
only the legitimate word possibilities. One disadvantage of a whole word recognizer is
its inability to identify a word not contained in the vocabulary. On the other hand, it
has greater tolerance on the presence of noise, spelling mistakes, missing characters,
unreadable part of the word, and the like. For a small vocabulary, it is feasible to
recognize cursive words using the wholistic approach.

An alternate approach coming from the speech recognition field is to scan words as

CHAPTER 1. INTRODUCTION 5

a whole and make use of Hidden Markov Models (HHMM) [GL93, GBL93]. The HMM
approach seems to be well suited for applications with limited dynamic lexicons such
as the reading of city names for postal sorting. An IIMM system has the ability to
recognize word classes for which no samples are present in the training set.

In the field of cheque processing, we are dealing with a limited static lexicon and
therefore alternate, less general but no less robust approaches can be investigated.
Our computational theory is based on the psychological model of reading of the fast
reader [GS93).

Some researchers seem to agree that the future of reliable recognition systems lies
in the combination of multiple classifiers [SNL*92, HHS94]. 1t is our intent to test
the feasibility of having a system based on the psychological model of the fast reader
as one of the basic word classifiers used for the recognition of legal amounts found in

bank cheques.

1.4 The proposal

If we were to analyze the work done by psychologists in the eflort to understand the
human reading process, one could classify the generated models into two main kinds.
The model of the fast reader is for those people who manage to read faster than they
can speak, while the model of the reading process for a slow reader matches the rest
of us. Slow readers are known to read no faster than they can speak. At the extreme
low end of the reading speed is the child who learns how to read. He analyzes each
character, then makes up words, then sentences.

Most of the algorithms for word recognition published in the literature do match
the model of the slow reader. We propose to investigate how a computational the-
ory based on a model of the reading process for a fast reader would perform in an

application like the processing of cheques.

CHAPTER 1. INTRODUCTION 6

1.5 Contributions

The first contribution of this work is to myself. Not only did I learn a lot technically
but I also gained insights into terms like patience and wisdom.

In a more practical sense, we did contribute a great amount of time designing, col-
lecting and then truthing the database of cheques that we later used for training and
testing our system. This resulted into a one of its kind database in a university set-
ting dealing with handwritten information from bank cheques. The in-place truthing
procedure is also innovative and unique of its kind in the literature. Its simplicity,
yet power, makes it a real asset for further generations of researchers working on our
database. It can also be easily applied to the tagging stage of other databases.

This work introduced yet another simple, but no less efficient, algorithm dealing
with the slant correction of handwritten words. Its power comes not only from its
simplicity but also from its robustness versus the numerous handwriting types found
in our database.

Last but not least, we designed a fully trainable word recognizer that should be
able to handle any small static lexicon of words written with the Roman alphabet.
Our computational theory based on a psychological model of the reading process for
a fast reader shines by its simplicity and still compares equally with other published
schemes. It is to be noted that this work is the sole study in the literature reporting
results on the recognition of handwritten English bank cheques tested on a significant
database. This work also compares equally with the sole other study reporting results

on the processing of handwritten French bank chequestested on a significant database.

Chapter 2
Psychological Models

Extensive work has been carried out by psychologists in the effort to understand
the human reading process. Waters [Wat77] conducted an extensive survey of the
literature discussing the psychology of reading and word recognition. As carly as
the beginning of this century, psychologists such as Huey [Hue08] pointed out that
a full understanding of the processes involved in reading would represent quite an
achievernent. However, as of today, a comprehensive model of reading yet remains to
be developed.

In psychological studies, a distinction is made between children who start reading
and adults who have already gained some experience in this process. Adults are
further subdivided into slow and fast readers. Young children and slow rcaders are
known to read no faster than they can speak. Studies have shown that fast readers
read much too fast to be able to identify every single character of a word [NB65].

Shebilske [SheT5] reports on the eye movement while reading. The reader’s eye
movement across a line is not continuous, but rather occurs in a series of short jumps
called ‘saccades’. The fixation time between saccades is roughly ten times longer than
the saccade. The typical saccade of 1 to 2 degrees requires 20 to 30 msec, wherecas
fixation time averages 250 msec. Initial processing of the visual stimulus must occur
during the fixation time because the stimulus pattern is blurred during a saccade and
its duration is too short for sufficient processing to occur.

In some studies [Smi69], words were found to be identified under conditions in

CHAPTER 2. PSYCHOLOGICAL MODELS 8

which their component letters could not be identified. These findings have led several
rescarchers to suggest that readers may in fact sample the visual data in reading
rather than process every element of the text.

Goodman [Goo67) portrays reading as a psycholinguistic guessing game in which
the reader processes and coordinates simultaneously three types of information: graphic,
syntactic and semantic. Prior to analysing the graphical input, the reader holds syn-
tactic and semantic expectations abor¢ the information residing there. He samples
the graphic cues in accordance with his expectation and uses this information to gen-
erate a guess. If the guess proves consistent with subsequent information, then it
is accepted. If not, the reader recognizes that he has misread the stimulus and he
reinspects it to correct his error,

The proficient reader is thought to ignore many of the features contained in the
graphic display. Goodman, in fact, asserts that the more efficient the reader, the
fewer printed cues he needs to derive meaning accurately from text. Furthermore, this
text sampling process is governed primarily by the adequacy of the meaning being
extracted. If the reader misreads a word but produces a semantically acceptable
substitute, he fails to recognize the discrepancy. However if his construction does not
make sense, then inaccuracy is detected.

Current research efforts have shown that fluent readers read much too quickly to
be identifying in succession the letters or words on the page, and that, fluent readers
need not in fact, process every letter or phoneme of the material they are reading into
a full perceptual representation in order to abstract meaning.

Massaro {Mas75] illustrates the notion of between letters (orthographic), between
word (syntactic), and within meaning (semantic) redundancies with the following
example:

Suppose the reader encounters the following sentence: ‘With the bases loaded
the boy hit the L_II over the fence’. Assume that the reader completely resolved all
of the letters in the sentence except for the two underline positions. Accordingly,
it is necessary to identify the two missing letters in the four letter word. Partial
visual information defines a vertical line at the first letter position and no feature

information is registered for the second position. The one visual feature in the first

CHAPTER 2. PSYCHOLOGICAL MODELS 9

position eliminates all vowel alternatives for that position, exemplifying the use of
visual information. Having determined that the first and last two letters are conso-
nants, orthographic constraints (orthographic redundancy) dictate that the second
letter is a vowel. At this point many possible four letter words remain, for example,
{tell, tall, ball, bull, hill, fill}. Syntactic information given by the surrounding words
(syntactic redundancy) eliminates all of the alternatives except nouns. Finally the
meaning of the other words in the sentence also provide contextual information (se-
mantic redundancy). It would make no sense to say ‘The boy hit the bull over the
fence', therefore ball is the only remaining alternative in the list given above.

There is a considerable amount of evidence which shows that redundancy is fairly
high in the English language. This evidence has led several rescarchers to hypothesize
that readers may utilize this redundancy to supplement visual information in reading.

This conceptualization of the nature of the English orthography along with stud-
ies showing that readers need not read on a letter by letter basis, has led several re-
searchers [Goo67, Mas75] to propose models of reading in which the reader is thought
to sample the visual data and capitalize on the redundancy of the English language
as an aid in fluent reading.

The fluent reader is thought to be involved in an active process in which he selec-
tively samples the visual data and combines this information with his knowledge of
semantic, syntactic and within word orthographic constraints to construct hypotheses
as to the meaning of larger units.

Waters [Wat77] reports on some studies which attempted to find out where the
eyes move next after a prediction. It is supposed that since the first letter of a
word contains much information about the identity of the word, the fixations of the
eye could happen at or near letters that follow blank spaces. In order to test this
hypothesis, in one study they had the blank spaces between words filled with X's.
The reading speed of slow readers was not affected by this manipulation of the text,
while fast readers showed a significant drop in reading speed. This experiment tends
to confirm that letters near blank spaces are important for the fast reader.

The skilled reader is thought to have learned guessing techniques, to utilize re-

dundancy in the text, to read for meaning, and not be concerned with the specific

CHAPTER 2. PSYCHOLOGICAL MODELS 10

stimulus pattern that confronts his eyes but rather with what information it gives him
about what he is reading and where to look next. The main task of the skilled reader
is then seen as one of extracting information from an array of redundant symbols.

All these models suggest that the fluent reader samples the visual data and in
doing so capitalizes on the redundancy of the English language as an aid to fluent
reading.

So far, most of the studies that have been proposed to tackle the problem of
cursive script understanding are based upon the model of the child that learns how to
read. Indeed, studies intend to recognize each and every single character of a word,
and then utilize some high level knowledge (such as a lexicon) to produce a valid
output word.

It would seem that a computational theory based on the model of the fast reader
could prove to be more efficient. In this model, prior to reading, the reader holds
syntactic and semantic expectations about the input text. He samples the input ac-
cordingly and uses the information to produce a guess. Hence, since such a model
is mainly based on non-visual information such as orthography, syntax and seman-
tics, the theory should prove to be more robust against spelling mistakes, missing
letters, unreadable letters and the like. Whereas the slow reader model is suitable for
applications dealing with printed material, the fast reader model would seem more

appropriate for the imperfect nature of cursive script.

Chapter 3

Database

In this chapter, we describe an image database for research in cheque processing. We
begin by presenting the design involved in the collection of the database. An clab-
orate tagging scheme has been semi-automated which allows for the tagging to the
legal amount of all kinds of information relating to words, characters, dashes, com-
mas, etc.... Complete description of a legal amount can thus be stored in the image
message. Words, characters, punctuation marks, and the like can be extracted auto-
matically whenever needed. This in-place tagging technique does not only facilitate
the truthing process but also enables the recognition system to take advantage of the
context in the design and training of various recognition modules. When designing a
particular recognition module, one itemizes the kind of contextual information that
one might want to use. The extraction of images with the desired contextual infor-
mation is then performed in a fully automatic way. Throughout this chapter, I might
refer to the terms date, courtesy amount, legal amount and signature when describing

the handwritten information found on cheques. These terms are defined in Fig. 2.

3.1 Previous databases

We report here the design, collection and truthing procedure of a database of in-
formation contained in handwritten cheques. This project has been undertaken to

provide a significant number of handwriting samples for the training of a Cheque

11

CHAPTER 3. DATABASE 12

Date

Courtesy amount

Legal amount

Signature

Figure 2: Definition of terms referring to handwritten cheque information

Processing System currently being developed at the CENtre for PAttern Recognition
and Machine Intelligence (CENPARMI).

Significant databases of handwritten digits and Roman characters are now avail-
able from various institutions such as NIST [SBSV94], CEDAR [Hul94], and CEN-
PARMI [SNL*92]. This enables any research team to adequately train their recog-
nition algorithms as well as to form a basis for comparison of results. However, a
similar database for cheque processing research is not available at the moment. The
collection of a database of cheque information is a non-trivial task. One of the main
problems that we may encounter is getting a financial institution to provide us with
real cheques. For security reasons and protection of the customer and the institution,
this is usually not possible without an explicit contract between the research centre
and the institution. This latter step can turn out to be a stumbling block.

This may explain why most of the research publications on the recognition of
handwritten words for cheque processing report results on small databases with a
total of only 5 to 25 different writers. To our knowledge, there are only two studies
which have reported results on a significant database, namely Gilloux and Leroux
[GL.93] from the French Post Office Research Centre as well as Moreau {Mor91] from
Matra MS2I. These teams are linked to the French Post Office (which also provides
Banking Services) which provides them with a database with a large number of writ-

ers.

CHAPTER 3. DATABASE 13

In the framework of our project, we decided to experiment with the design, col-
lection and truthing procedure of cheque handwritten information, while some ne-
gotiation was being conducted for the access to ‘resl-life’ cheques. The extraction
of information from real life data also implies that an extraction module should be
readily available. However, this is usually not the case m an on-going project where
modules are being developed in parallel.

For the reasons mentioned above, we decided to create our own database from
scratch. This included (a) the designing of cueques that would make it easy to extract
the information without the explicit use of an extraction module, (b) the generation
of the amounts to be written, (c) the collection of a meaningful database, as well
as (d) the design of a simple yet very efficient truthing procedure. These steps are

described in the following sections.

3.2 Design and printing of cheques

The ‘Bank of Concordia’ cheques that we designed (Fig. 3) are similar in appearance
to those from banks in the Montréal area. The major diffcrence being that these
cheques have a white background and lines are printed in a light blue colour instead
of black or dark ink. Using such a colour facilitates the removal of the lines from
the written information. We gave those prototypes to a printing company and had

15,000 cheques printed.

3.3 Generating the cheque amounts

Simply asking people to fill out cheques without specifying the amount they should
write would most probably result in a database having a selected few amouris coming
back over and over again (e.g. “One hundred dollars”). For example, we wouid not
like to have a database with a given word (say ‘eleven’) appearing only once or twice.
Otherwise this would make the training of our algorithm for this specific word rather
difficult due to the lack of training samples.

Thus such a scheme would not serve our purpose since we need a significant and

CHAPTER 3. DATABASE 14

Joan & Johin Doe 15741

FOE BANK OF CONCORDEN

CFPARME O LN s

11123L5 || DO2wE 789

Figure 3: Sample of cheque used for the generation of the ‘information’ database

sixteen hundred dollars

five dollars and twenty seven cents
eight

twelve hundred sixteen

fifty six dollars and fourteen

Table 1: Example of randomly generated legal amounts in English

somewhat equal number of samples from each class we are to recognize. For this
reason, we decided to generate the amounts ourselves. This allowed us to control the
approximate number of samples from each class that we would collect.

In order to control the exact number of words produced for each class, one might
be tempted to specify the amounts in full (Table 1) using some parser for the English
cheque amounts. While this is attractive, it limits the freedom of people to write down
amounts as they ‘feel’, and this may introduce some biases into the data. For a given
amount of 1203, one person might write down “One hundred and twenty dollars and
00 cents”, while another might simply write “One hundred twenty”. With concerns to
loosening the constraints, we opted for generating the amounts in digits as they would

usually appear on a phone or electricity bill. This scheme relaxes the constraints on

CHAPTER 3. DATABASE 15

S — $ DeS1|SI1

De — (digit | zero) (digit | zero) dot
S1 — zero T1 | digit T

T1 — zero H1 | digit It

T — Tl]e

H1 — zero Thl | digit Th

H — Hl]e

Thl — comma (zero TThl | digit TTh)
Th — Thl|e

TThl — digit

TTh — TThl]e

Table 2: Grammar for generating the digit amounts

the writers and still allows us to somewhat estimate the number of words generated
for each class. For the example of 1208 given above, we would compute one occurrence
for each of the following 3 classes ‘one’, ‘hundred’ and ‘twenty’.

We wrote a simple grammar (Table 2) to produce numerical amounts in the range
[0.008 — 99,999.998]. The meaning of each state of the grammar (non-terminal sym-
bols) is explained in Table 3. The terminal symbols digit, zero, dot and comma are
described in Table 4. Intentionally we limited the range of the amounts to a maxi-
mum of 99,999.99$. For increased reliability of the processing system and protection
of the financial institution, greater amounts are to be rejected from the automated
process so that they can be kandled ‘safely’ by a human operator.

While generating amounts, the transition from one step to the next within the
grammar is chosen randomly. Statistics are computed on the number of occurrences
of each word class as well as on the number of amounts which are within the ranges
[0.00 — 9.99], [10.00 —99.99], [100.00 —999.99], (1, 000.00 —9,999.99] and [10,000.00 —
99,999.99]. In order to be representative of the kind of cheques a utility company may
receive, we would like to have more samples belonging to the first four intervals than
to the last one. Taking these considerations into account, we adjust some weights
within each state of the grammar in order to produce more samples belonging to the

first intervals as well as to have a somewhat equal number of occurrences for each class

CHAPTER 3.

DATABASE

[45]

E_’j'—ig

H1
Th
Thi
TTh
TThl

([I |

Start symbol

Startl: produce the first digit

Decimal: to produce a decimal value (e.g. 0.40%)

Tens: produce the second digit

Tensl: produce second digit when previous digit was a zero
Hundreds: produce the third digit

Hundreds!: produce third digit when previous digit was a zero
Thousands: produce the fourth digit

Thousandsl: produce fourth digit when previous digit was a zero
Tens of Thousands: produce the fifth digit

produce the fifth digit when the previous one was a zero

Table 3: Meaning of each state of the grammar

dlglt = { ‘1’, (2$, (3’, L4’, c53’ ‘6,, c77, ‘8’, tg? }
zero = {0}
dot = {4}
comma = {°%'}

Table 4: Values taken by the terminal symbols

CHAPTER 3. DATABASE 17

$446.84 $624 $434.80
$70 $89.29 $93.77
$75.97 819 $408

Table 5: Example of randomly generated digit ainounts

one 441 eleven 148 ten 157 | hundred 1758
two 386 twelve 126 | twenty 197 | thousand 727
three 419 | thirteen 133 [thirty 167
four 423 | fourteen 126 forty 176
five 433 fifteen 138 fifty 171
six 405 sixteen 120 sixty 181
seven 429 | seventeen 143 | seventy 216
eight 405 | eighteen 130 | eighty 176
nine 406 | nineteen 136 | ninety 190

Table 6: Estimate of samples per class generated with a set of 3,000 cheques

in our lexicon. An example of some digit amounts generated following the rationale
described above is shown in Table 5. The estimated number of samples from each
word class that one might expect to collect with a set of 3,000 cheques is shown in
Table 6.

As we can see from the statistics of Table 6, we get at least 120 samples for each
word class with a set of 3,000 cheques. It is generally agrced that a minimum of 1,000
samples per class is needed to train a digit recognizer in a satisfactory fashion. If
the same ‘rule’ was to be applied to our research problem, then a minimum of 25,000
cheques would be needed. Ideally the database should be collected from ‘real-life’
cheques which might not have such a convenient random nature as our computer
generated amounts. As a result as many as 100,000 cheques might be needed for
training to attain the goal of a minimum of 1,000 samples per class. This represents a
major task and it is important to experiment with the design and procedures involved

in the building of such a database to insure its quality and usefulness.

CHAPTER 3. DATABASE 18

Joan & Johin Doe 15020
el l"}‘, 199y

M{) \’\CN 3—:103‘—
Torp {/L—QUJ'GN\J & vM/\vAdMJ M-~

%-&z/«é \01%/,/

w2345 || 002wk 78T

Figure 4: Example of a Concordia cheque filled by a student

— oME HuvpeED EiGHYY FlvE -<

Figure 5: Legal amount written solely with capital letters

3.4 Collection of the database

In order to have our cheques filled, we visited classes given at Concordia University
in the departments of Computer Science and Accountancy. Students in those classes
were asked to write 3 cheques each. The amounts (in digits) for each cheque were
predefined but the students were free to fill in any information they pleased in the
fields ‘date’, ‘Pay to the order of’, and ‘signature’. An example of a cheque filled by
some student is shown in Fig,. 4.

Since we are interested in developing a cursive script recognition module, as op-
posed to recognizing single characters, we introduced one constraint in the collection
process. Students were shown a slide of “full capital letters” style of handwriting, and
were asked to avoid if possible such style in favor of a more natural style of writing.
Even so, approximately 5% of the cheques we collected were written solely in capital

letters, one example of which is shown in Fig. 5.

CHAPTER 3. DATABASE

None hwrelred, ond fxpﬁﬁv —ome ——— 3¢

ﬂme hundred cnd nine , nixleen cerneW

At Abndecl ef Tt ="
/m hundiad Hhilin dbllr oo oy it

Wemwﬁ/%/ve_ jg:—/W

)

S

Figure 6: Samples of legal amounts

As mentioned by Hull [Hul94], the awareness by subjects that their handwriting
would be used to develop automatic recognition algorithms might have introduced
biases into the data. The desire of some students to perform well, may yield samples
that are abnormally neat, while others may try to “fool the computer” by making
their handwriting unusually sloppy. While the notion of ‘neat’ or ‘sloppy’ might be
hard to define, we feel that the vast majority of the data we collected does not belong
to any of these two extremes. Some typical images from our database are shown in
Fig. 6.

As of today, close to 2,500 cheques written in English have been collected. The
number of different writers is estimated to be about 800. We are also in the process
of collecting cheques written in French. At present, the French database is made of

close to 1,900 cheques corresponding approximately to 600 different, writers.

CHAPTER 3. DATABASE 20

3.5 Storage of information

The cheques from our datzhase have been scanned at 300 pixels per inch (ppi) in
8-bit greyscale. We designed a user interface to extract and binarize the written
information in a semi automatic fashion. For each cheque, the date, courtesy and

legal amounts have been stored into their own files.

3.6 The truthing procedure

We decided to investigate a simple yet powerful way of truthing the images of legal
amounts. One easy but tedious way might have been to extract manually each and
cvery single word from the images and store them into their individual files. The
same procedure would have had to be applied to the single characters as well as the
numerals. Such an approach has the disadvantage not only to be inefficient but also
to lose the contextual information in which the words were placed. While one might
attach a message containing contextual information to each file, it is not obvious to
think from the start the extent of contextual information that one might need in the
future.

Since our ultimate goal is to extract the information contained in the entire legal
amount image, we decided to have truthing the legal amount as a whole, rather
than creating manually a multitude of smaller files. The procedure we adopted not
only simplifies the truthing but also has the advantage of keeping intact the entire
contextual knowledge.

In order to facilitate the tagging procedure, we developed a user interface running
under the X window environment. This tool is presented in Fig. 7. The entire process
of truthing a legal amount is strictly mouse-driven. Upon clicking on the image, a
point is displayed on the image and its coordinates are entered in the image message.
The final tagging information for the amount in Fig. 7 is shown in Fig. 8.

In the message of a tagged legal amount, there are at the moment 2 main fields,
one called “WORDS” and the other “CHARACTERS”. The characters ;;’, ;" and *’

in the message are simply field separators that are used by some extraction algorithm

CHAPTER 3. DATABASE 21

Figure 7: User interface for the tagging of the database

CHAPTER 3. DATABASE 22

NU;J lendnad 'TL’JQ—,_,;QU\ —53

Image message:

::WORDS

.ine :5 66 :hundred :178 100 ;thirty :453 57 :dash :665 92 :eight :695 109 :linc0 :924 91 :2:1396 103
;:CHARACTERS

N 1634 ;T :465 60 :487 95

g e e

1\WORDS {CHARACTERS
R 4 . . ’.
.) ;f
nine hundred thiny cight N T /
o @
= -
L dash line0 2

Figure 8: Image message after the tagging

CHAPTER 3. DATABASE ’ 23

to access the words and characters in the image. Under WORDS, we tag the words
belonging to our lexicon as well as the lines, dashes, commas, digits, etc.... The
exclusive set is displayed in the pop-up menus of Fig .7. Under CHARACTERS, we
tag single characters that are disconnected from words.

From a tagged image, one can extract easily any part of the entity. First the image
is represented as a linked list of contours using a contour tracing procedure developed
at our centre [Str93]. Then the words or characters can be extracted by using the
information stored in the image message. As an example, in Fig. 8, the word ‘nine’
is composed of all the connected components located between the tag points (5,60)
and (178,100). Similarly ‘hundred’ is composed of the connected components located
between (178,100) and (453,57). The single characters are tagged slightly differently.
For a character, all of the connected components that make up the character must be
specified with a tag point. For example, the ‘T’ in Fig. 8 is composed of 2 connected
components; the one closest to the point at coordinates (465,60) plus the one closest
to the point (487,95).

Note that being able to specify more than a single connected component is rela-
tively important in the case of alphanumerals. Indeed, ‘T’ often has a disconnected
hat, as does the digit ‘5. This specific point was a drawback in the tagging proce-
dure adopted in [Hul94], because with their scheme, the alphanumerals could only be
composed of just a single component.

Apart from its obvious advantages of simplicity and completeness, the current
scheme proves to be extremely useful for training various classifiers. For example, to
design a classifier that would recognize and remove dashes, lines and commas from
the legal amount, in addition to their bitmap, one can extract various contextual
properties, such as the location in the sentence, the proximity to other connected
components or the existence of other components above or below. Similarly for the
design of a character recognizer, one can not only extract the bitmap (a list of con-
nected components) but also among other things the relative position of the character
within the word to which it belongs, the position of reference lines (section 4.3.1) com-
puted both at the sentence and at the word level and the slant computed at the level

both of the entire sentence as well as of the word containing the character. The

CHAPTER 3. DATABASE 24

adopted scheme will also prove useful when training an algorithm to perform the
splitting of the legal amount into individual words.

The contextual information is resident within the legal amount. One can extract
as much of it as one wishes at any time. Had the tagging procedure been similar to
the one in [Hul94}, then one would have had %o know at the time of tagging the exact,

list of contextual information that one needed.

3.7 The final database

At the moment, we have built a database of approximately 2,500 handwritten (non
printed) cheques written in English. The number of writers is estimated to be close to
800. The legal amounts from our cheques have been fully tagged with the procedure
described in the previous section. From these legal amounts, for each class in our
lexicon, we can extract the number of samples shown in Table 7. Additionally, we
can extract the single characters represented in Table 8. In Appendix A, we show some
data extracted from our testing sets. The first set corresponds to the handwriting of
students of the Computer Science department, whereas the second set is taken from
students in the Accountancy department. Occasionally the images of characters,
words and legal amounts had to be scaled down in order to fit them into a single page
in the appendix. Therefore the differences in sizes for a given character or word are
actually greater than what is implied from the figures in the appendix.

In addition to the words and characters mentioned in Tables 7 & 8, one can also
extract a significant number of commas, dashes, lines, etc.... These latter compo-
nents will be used to design some classifiers based on information such as the bitmap,
the location within the sentence and the proximity of other components in order to
extract the punctuation marks and facilitate the segmentation of the sentence into

individual words. Additionally, digits could also be extracted from our database.

CHAPTER 3. DATABASE

one 345 eleven 110 ten 112 | hundred 1207
two 287 twelve 81 | twenty 149 | thousand 486
three 316 | thirteen 95 thirty 135 and 797
four 309 | fourteen 93 forty 135 dollars 474
five 312 fifteen 97 fifty 132 only 34

six 297 sixteen 82 sixty 126
seven 317 | seventeen 96 | seventy 156
eight 283 | eighteen 94 eighty 140
nine 287 | nineteen 91 ninety 112

Table 7: Number of samples per word class in our database of legal amounts

a 237 o 32| A 6 S 178
c 18 r 359 C 2 T 269
d 1007} s 303|D 38

e 786 t 559 | E 114

f 218 | u 250| F 215

g 152 | v 191 H 94

h 40 |w 113} L 2

i 601 x 198} N 135

1 197 |y 21210 78

n 729 R 3

Table 8: Number of single characters in our database of legal amounts

o
(1]

CHAPTER 3. DATABASE 26

3.8 French database

Using the same procedure and tools described in the previous sections, French cheques
have been collected. The current database of French cheques consists of 1,861 cheques
for an estimated number of 600 different writers. Some samples of legal amounts

belonging to our testing database are shown in appendix .3.

3.9 Summary

We have described the design of an image database that has been collected for the
training and testing of a cheque processing system. To our knowledge, this represents
the only publication in the field describing a database for legal amounts extracted
from cheques. When compared with previous schemes for the tagging of postal address
databases, this design demonstrates a simple yet powerful procedure to keep all the
contextual information intact. Moreover we are able to isolate characters composed
of several distinct connected components, and this overcomes the problem of other
alphanumeral character databases.

The data were scanned at 300 ppi in 8-bit greyscale. This allows for experimen-

tation with greyscale recognition techniques.

Chapter 4
Legal Amount Processing

The current research is only one of the numerous modules needed to process a cheque
successfully. A hierarchical diagram of the whole recognition system is shown in
Fig. 9. Our work fits into the module dealing with the processing of the cleque
amount. Even so, it is only a subsystem handling specifically the recognition of the
legal amount. The hierarchical diagram of our system along with examples of the type
of input image we are working with is shown in Fig. 10. The 4 different sub-modules
from the legal amount processing system (Fig. 10) will be discussed in the following
sections.

The proposed reading algorithm will take its roots into the results of the psycho-
logical studies presented in Chapter 2. We will attempt to develop a computational
theory based on the model of the fast reader as defined by Goodman [Goo67]. Not
to depart from these intentions, we shall remember the advice given by Pitkin [Pit29)]
in his book entitled “The art of rapid reading; a book for people who want to read
faster and more accurately”. He recommends us to “Read wholes, not parts. Read
sentences, not words.” and finally to “Read for the broadest meaning first, then for
the details later if necessary”.

The present project is to recognize the legal amount from cheques. Before starting
to look at the stimulus, we will summarize the knowledge that we already possess. We
know that we want to recognize some amount. Hence we can define the words that

do belong to our lexicon. We alsc possess some knowledge of orthography, syntax

217

CHAPTER 4. LEGAL AMOUNT PROCESSING 28

CHEQUE PROCESSING
CONTROL

-
(SCAN PROCESS PROCESS CONVERT
cheque cheque_amount cheque_date information_strings
. J \ L J
f
cheque (EXTRACT E output_information
cheque_information_zones

Figure 9: Hierarchical diagram of the cheque processing system

Five: hundredd and thirteen ———-ﬁxﬂ

PROCESS
legal_amount

PREPROCESS SENTENCE_TO_WORD_SEGMENT RECOGNIZE PARSE
fegal_amount fegal_amount word fegal_amount

Figure 10: Processing of the legal amount

CHAPTER 4. LEGAL AMOUNT PROCESSING 29

and semantics. A natural language parser specific to our lexicon, will guarantee that
the syntax and semantics will not be violated. The parser is defined so that it gives
some indication as to what kind of word we should expect next.

Our goal is to read sentences, therefore we shall extract some features of the
whole amount, rather than attempt to segment first the input line into individual
words. The primary features that we extract should be invariant enough so that
they can be present in any type of handwriting style. At the same time, they are
to be discriminative enough to enable acquisition of useful information. This type
of features is referred to as ‘character dependent’ as opposed to ‘writer’ and 'time
dependent’ features [BG80]. This implies that these features are to be a characteristic
of the character, and it ought to be present each time the character is present in the
input. We chose to extract loops, ascenders, descenders, an estimate of the word
length and strokes as our primary features The length of an input word would
represent an estimation of the number of characters in the word. By combining this
graphical knowledge with our current expectation about the input, we attempt to
construct the words. Knowledge combination will be performed by a flexible matching
scheme, allowing for missing characters, misspelling, and the like.

If these preliminary features prove to be insufficient to recognize the input sen-
tence, we can then decide to read for the details, since it becomes nccessary. We
recall that Waters [Wat77] reported studies which showed that the letters next to
blank spaces were important clues for the fast reader. Therefore in our search for
details, we may decide to attempt to recognize characters on the left and right of
blank spaces. These characters are somehow easier to recognize than those within
a word. Indeed the position of at least one of the lateral sides of the character is
perfectly defined.

We recall that previous studies focus on recognizing the presence of some character
classes in their attempt to recognize words. This process can translate into segmenting
the words into characters or parts of characters ([Fav93]) or extracting some global
features to identify the presence of certain character classes ([FS90, GL93]). Therefore
all previous studies would fall into the psychological model of the reading process of

a slow reader. In other words, attention is focused on characters to make up words.

CHAPTER 4. LEGAL AMOUNT PROCESSING 30

The first step of our proposed word recognition approach bypasses the notion of
characters. It therefore implements the psychological model of the fast reader where
atiention is purely focussed on words rather than characters. Our proposed scheme
implies strong contextual information or an equivalent small static lexicon. Indeed
we recall that a fast reader might fall into the slow reader category when confronted

with text of an unfamiliar topic.

4.1 Preprocessing

__=
=) =) (F)E)

Preprocessing modules are needed to compensate for the limitation of some modules

in the extraction step such as binarization. Additionally we wish to normalize the
input image as much as possible in an attempt to reduce the great variability in
handwriting styles. Some of the processes performed are described in the following

sections.

4.1.1 Baseline skew correction

An image might be skewed with respect to the horizontal axis as shown in the pur-
posedly created example of Fig. 11. Such an extreme case is not likely to happen
in our application since legal amounts are generally written on the pre-drawn hori-
zontal lines found on cheques. Moreover when scanned in an industrial setting, some
mechanism forces the cheques to touch an horizontal flat bed.

Even though extreme cases are not likely to occur in our problem domain, some
words within a legal amount might be found to be skewed with respect to the hori-
zontal axis. In the examples of Fig. 12, the words “three” and “hundred” are found

to be skewed when other words in the legal amounts do not exhibit any baseline skew.

For such cases, a baseline skew correction module might be desirable. Accordingly

we did spend some time investigating various schemes to estimate the baseline skew

CHAPTER 4. LEGAL AMOUNT PROCESSING 31

Figure 11: A baseline-skewed image and its desired skew-frec version

E—*"@W«/ —e firz5 Sa ,—/‘pj

iw— P(M M\gﬁ @nd\ '\“QV\MT}

\

Figure 12: Baseline skewed words within “skew-free” legal amounts

"HAPTER 4. LEGAL AMOUNT PROCESSING 32

Figure 13: (a) Original image, (b) Reconnected broken strokes

of a given word. The various methods implemented as well as insights as to their
suitability and performance are presented in Appendix B.

Since the average skew of our word images was rarely greater than £5 degrees,
we decided not to ‘plug’ any skew correction algorithm into our system. It isto be
noted that at the cost of extra time needed to further design the deskewing module
as well as extra processing time for cach word image, better recognition results might

be obtained if a deskewing algorithm was added.

4.1.2 Broken image repair

The conversion of a grey level image into a binary image is a non-trivial task. Strokes
of characters or words are not always uniform in their grey level values. Parts of
strokes may be lighter than the remaining of the character or word dueto the writing
instrument, the writing styles, the paper background, etc.... This causes problems
for the binarization module. Once in a while a fully connected character or word
appears to be broken into several components by the binarization process. This
can generate errors for the feature extraction and the character or word recognition.
Experimentally we notice that when a break does occur, it is rarely wider than a few
pixels.

We implemented a module that checks whether 2 distinct strokes are ‘close’ to each
other. If this is the case, then the strokes are connected at their point of minimal
distance. An illustration of this process is shown in Fig. 13. After the reconnection
of strokes, the image is smoothed.

While this process is effective in doing what it is supposed to do, it might also

connect, as a side effect, isolated letters to the rest of the word as shown in Fig. 14.

CHAPTER 4. LEGAL AMOUNT PROCESSING 33

hundred hundred

Figure 14: Side effect of the reconnection module

This is undesirable for the second step of our word recognition module (section 4.3.6)
where the first and last letters of words are sought to be extracted effortlessly. The
connection of isolated letters to the rest of the word might result in an increased

difficulty in the extraction of those first and last letters of words.

4.1.3 Slant correction

Slant correction is the process which tries to normalize the slant of the handwriting
to the vertical. Some people write with the words slanted to the right of the vertical,
while others write more or less slanted to the left. Slant correction aiins to normalize
the handwriting to get a word with a slant of zero to the vertical. An example of
original words and their slant corrected version is shown in Fig. 15. First the average
slant of a word is determined by some algorithm; then the word is transformed through

a shear transformation (appendix C.2).

Previous approaches

Several studies have been made to remove slant in words. The basic approach used
is to look for straight line segments in words. The average orientation of these line
segments is then taken as the average slant of the word. In order to find these line
segments, several techniques can be used. Some people might use Hough Transform
[DH72, Fav93, LL94] or analyze the chain code of a word contour [KSN93]. Still other
people [Zac84, BS89] might operate by removing horizontal lines containing at least
one run of length greater than one parameter mazrun and additionally removing all
horizontal strips of height less some parameter stripheight. After these operations,

slant is estimated in some subwindows and then averaged. In earlier work [BG83],

CHAPTER 4. LEGAL AMOUNT PROCESSING 34

e W/g@ o —2
Nore Pusndsad- Pofte) Tusos B

vy

S o o [V) et

Figure 15: Slant correction

the slant was estimated by placing two horizontal thresholds through the centre of
the script. Crossover points where the script crosses the thresholds are determined
and an associated slope is computed from the crossover coordinates. The average of
these slopes is used as the measure slant of the script.

The approaches described above seemed appropriate in the application where
they were used. It was doubtful however that some of these techniques could perform
reasonably well on our database due to its great variability in writing styles. Indeed
for some words in our database, the centre of the script is either non-existent or
carries very little information. We were also attracted into designing a scheme that

would require no training and therefore no parameters to adjust.

The slanted histogram approach

Leedham and Friday [LF89] used angled histograms as a means of locating letter
boundaries in real hand-printed text. We extended that approach for the slant cor-

rection of handwritten words. Experimentally one can notice several properties of

CHAPTER 4. LEGAL AMOUNT PROCESSING 35

Figure 16: Vertical histogram: (a) original word (b) slant-corrected word

the vertical histogram for a slant-free word. To illustrate that point, we shall re-
fer to Fig. 16 which shows the vertical histogram both for an original word and its
slant-corrected version.

For a slant-free word, we notice that the vertical histogram shows the following

properties:

e The histogram shows a certain property of periodicity. The periodicity lies in
the succession of low values corresponding to the ligature between letters, the
horizontal part of the letters, and the like, followed by high values corresponding

to vertical strokes.

o The values for the lows correspond approximately to one or two times the stroke
thickness. One time the stroke thickness corresponds to a ligature. A value of
twice the stroke thickness should correspond to the middle part of a letter such

as ‘0, ‘c’, etc...

CHAPTER 4. LEGAL AMOUNT PROCESSING 36

.

Figure 17: Derivative of vertical histogram: (a) original word (b) slant-corrected word

e There are two kinds of ‘high’ value in the histogram. A large value corre-
sponding to long vertical strokes (ascenders, descenders), and a smaller value

corresponding to short vertical strokes from ‘main-body’ letters such as ‘n’, ‘r’.

Additional properties can be derived from the analysis of the histogram of the deriva-
tives (Fig. 17). The latter shows a succession of sharp (great) positive value followed
by a sharp negative value. A large positive value corresponds to the transition be-
tween a horizontal part of the word to a vertical part.

From these properties defined empirically, one can design several schemes to find
the one slanted vertical histogram corresponding to the average slant of the word. Our
current heuristic is to look for the greatest positive derivative in all of the slanted
histograms computed. Once the average slant has been found, the image is corrected

through a shear transformation (Fig. 15).

CHAPTER 4. LEGAL AMOUNT PROCESSING 37

Figure 18: Example of a word for which our current slant heuristic fails

Experimental results

The simple method illustrated here performs extremely well on almost every single
images in our database. However we could find a few exceptional cases where our
current heuristic failed. These are words with extra fancy long strokes such as the
one shown in Fig. 18.

If we were willing to treat these rare cases, then one could be willing to spend some
time fine-tuning the current heuristic. One possible solution could be to consider the
top n greatest positive derivatives for any given histogram. The value assigned to a
given histogram could then be the average or median of these top n greatest positive
derivatives as opposed to considering solely the greatest one. However, such images
were so rare in our database that we did not feel worthwhile to spend some extra
time fine-tuning our algorithm.

The algorithm has the potential to be efficient since all of the slanted histograms
are computed through a single pass over the image. Its complexity is therefore O(n)
with n being the number of (foreground) pixels in the image. Full details of the

algorithm are given in Appendix C.

4.1.4 Smoothing

Our smoothing procedures can be divided into two categories; e.g. those dealing with

single pixels and those dealing with more than one pixel.

CHAPTER 4. LEGAL AMOUNT PROCESSING 38

Figure 19: Situation for the removal of black pixel

Single pixels

Some masks are passed over the image to decide whether pixels should be removed
or added. A black pixel is removed when it matches one of the situations described
in Fig. 19. Similarly a white pixel is removed, that is a black pixel is added whenever
there is a match with one of the masks depicted in Fig. 20. The north, south, east
and west “remove situation” only differs in the rotation by 90° of the same basic 2
masks. In the masks, the letter ‘0’ stands for a white or background pixel, ‘X’ stands
for a black or foregrourd pixel and ‘7’ can take either value black or white.

To apply the masks, a white border one pixel wide is first added to the image.
Then starting from the top left corner of the image, we scan to the right and down.
We look for transition pixels from background to foreground or vice versa. Indeed
the masks need be applied only to transition pixels. Other pixels are never altered in
a smoothing procedure. When a transition is found, we apply the smeothing masks

to the black as well as the white pixel of the transition.

CHAPTER 4. LEGAL AMOUNT PROCESSING 39

Figure 20: Situation for the removal of white pixel

Several pixels

In some cases, we might want to remove or add more than one isolated pixel. For
example in Fig. 21(a), we wish to remove those consecutive pixels that are circled.
It is important for us because we use the number of runlengths in the rows of the
image for the computation of the reference lines as well as the estimate of a word
“length”. The proper search for the reference lines will dictate whether or not we are
able to detect ascenders and descenders in a word image. The number of horizontal
runlengths is also an important feature for our word classifier. So we defined a simple
smoothing operation that process the chain codes of both outer and inner contours.
The smoothed image is shown in Fig. 21(b).

The smoothing operation is described in Fig. 22 assuming that the segment shown
is scanned from left to right. The processing is similar when the segment is scanned

from right to left.

4.1.5 Noise removal

This module removes the smail spots from the image that could not be removed by

the smoothing procedure. The contour tracing algorithm [Str93] is run on the image

CHAPTER 4. LEGAL AMOUNT PROCESSING 40

I A2

(a) (b)

Figure 21: (a) Original image (b) Smoothed image

HEEEEEN HEEEEEE
T\EEST — i
Chaincode: 0o 7 0 1 o0 0o 0o 0 0 O
L] |]
EE~EN ., HNEENEE
Chaincode: 0O 1t 0 7 O 0o 0 0 0 O
(a) (b)

Figure 22: Contour: (1) original (b) smoothed

CHAPTER 4. LEGAL AMOUNT PROCESSING 41

“"“U/u Hurdad , ofof tron. — %
%{'—"l‘ '?—CQ‘! HP\\—\ {v\n\(%‘—j

Figure 23: Examples of legal amounts to be segmented

to get the list of all the connected components. Those components whose mass is less

than a given threshold are removed.

4.1.6 Average stroke thickness

The average stroke thickness is computed as defined in [Sch92]. First it is assumed
that the stroke width is the same throughout the entire image. Second we assume that
the set of all the components in the image can be modeled as a line with length [and
width w. Then the number of black pixels P is equal to [X w and the circumference
C of the shape is equal to 2(/ + w). From the preprocessing stage, the values of P
and C are known for all connected components. Solving these equations, the stroke

width, w, can be readily determined.

4.2 Segmentation of the amount into words

The SENTENCE.TO.WORD_SEGMENT module (Fig. 10) is called upon to segment

the sentence into words. From the legal amounts in Fig. 23 one can see that various

modules need to be developed in order to recognize lines, cormas, fractions, dashes

and ‘&’ sign.

CHAPTER 4. LEGAL AMOUNT PROCESSING 42

%\%W»W,—f%

~

®) \%w W y Ltiperdesn 22

Figure 24: Line removal: (a) Original(b) Lines removed

The segmentation module produces a ranked list of paths based on the detection
of lines, punctations marks, spaces between connected components and the knowl-
cdge about the legal amount structure [BBD*93, SC94]. The knowledge about the
lexicon (maximum, minimum length of words) and the possible existence of digits or
fractions (e.g. k) at the end of the legal amount restrict the number of possible
interpretations.

Due to the necessity of having a RECOGNIZE module to validate the various
paths generated, priority has been given to develop a word recognizer. Various classi-
fiers still need to be designed and trained to recognize and remove punctation marks
such as commas and dashes or signs such as ‘&’ arong other things. As an example
of such modules, we designed and trained a Bayesian classifier based on simple fea-
tures (i.e. aspect ratio and average vertical density) to recognize and remove the lines
that people have the tendency to write at the beginning or end of the legal amount
(Fig. 24).

Thanks to our simple, yet extremely powerful truthing procedure applied to our
database, the ground work has been completed for the implementation of this mod-
ule. For example, in order to design a classifier to remove commas, a database of
all the commas from our data can be generated with all the necessary contextual
information; and this can be done absolutely effortlessly. The proper implementation

of the segmentation module is left as further work.

CHAPTER 4. LEGAL AMOUNT PROCESSING

4.3 Word recognition

=)

=) ===

Given a list of paths produced by the segmentation sub-system, each of the paths is
parsed and a new ranked list of paths is generated with their associated confidence
value. The RECOGNIZE module is called upon to perform the word recognition. For
a given input, it outputs a ranked list of classes.

Previous studies typically focused on the notion of characters in order to recognize
words. Two approaches are generally taken. The first one involves scgmenting the
input word into individual characters or parts of characters [BS89] which are then
sent to a character recognizer. The combination of these recognition results then
produces a ranked list of possible words. The second approach involves scanning the
whole word and extracting features to hypothesize the presence of certain character
classes [FS90]. The use of Hidden Markov Models (HMM) [GL93, GBL93] also falls
into this second scheme. While techniques based on the notion of characters have the
ability to recognize word classes for which no samples are present in the training set,
they have either to rely on the results of the difficult segmentation stage or tend to
be sensitive to spelling mistakes, missing characters, poor handwriting and the like.

In the field of cheque processing, we possess a limited static lexicon and therefore
alternate, less general, and possibly more robust approaches can be investigated. Our
computational theory is based on the psychological model of reading of the fast reader
(Chapter 2). The fast reader in a first step, bypasses the notion of characters to focus
solely on words. If this proves to be insufficient, then the notion of characters is called
upon to identify those letters located next to blank spaces (first and last characters
of words). Eventually if these 2 previous steps prove to be insufficient to clearly
identify the input word, then a more traditional word recognition approach based on
the notion of characters would have to be applied (psychological model of the reading
process for a slow reader).

The hierarchical diagram for the word recognizer is shown in Fig. 25. If we were

to recall the model of reading of the fast reader as defined by Goodman, then our

CHAPTER 4. LEGAL AMOUNT PROCESSING 44

RECOGNIZE
word

[

[[| |
EXTRACT CLASSIFY EXTRACT RECOGNIZE
word_feature_global word word_details word_details
—_— v S

\.

Figure 25: Hierarchical diagram of the word recognizer

extraction of global features match the sampling of a few graphical clues from the
graphical input. Then we try to identify the word through the “classify” sub-module.
If these few global features prove to be insufficient to identify clearly the input, then
details are extracted. In our implementation, the details are going to be the first
and last letter of words. These characters are then recognized with the “recognize”
sub-module. The integration of results of the word recognition with the character

recognition is performed in the “recognize” head module.

4.3.1 Global word features

= =) (= =

At the moment we extract 7 types of global features: ascenders, descenders, loops,

an estimate of the word length, as well as vertical, horizontal and diagonal strokes.
These features are not so different from those used in other studies [FS90]. The main
difference lies in the fact that these features do not present a means to hypothesize the
presence of some character classes but rather are going to be used ‘as is’ to identify

words.

Reference lines

The reference lines delimit the main body of the word (Fig. 26). In order to determine

those lines, we compute the histogram of the number of runlength segments for each

CHAPTER 4. LEGAL AMOUNT PROCESSING 45

§ (C' N -=t— Upper reference line

| —— Lower reference line

Figure 26: Lower and upper reference lines

row in the image. From the maximum value of this histogram, we locate the reference
lines at the 50% cut off points.

The proper computation of these lines has a significant meaning to our approach.
Indeed the location of the references lines will determine whether or not the input.
word has ascenders or descenders; which in turn will influence whether or not the
word will be adequately recognized.

For that reason, one of the preprocessing steps is to smooth the contours of the
input word. Additionally we integrate as much contextual information as possible
by calculating the reference lines for a given input word as a combination of the
lines computed on the entire legal amount and those computed on the word taken in

isolation.

Ascenders, descenders

Empirically we noticed that the main body of a word is not uniform in height over
the entire width of the word. As an example, one can consider the word shown in
Fig. 27. The letter ‘n’ in that word is almost entirely below the main body while
the letter ‘e’ is emerging above the top reference line. Also one can notice that the
last letter of the word, the letter ‘d’ has a trailing tail that goes well below the lower

reference line. Obviously we do not wish those characters to trigger the detection

CHAPTER 4. LEGAL AMOUNT PROCESSING 46

Word_A >= tam * Word M
Word D >= tom * Word M
Word D >= toa * Word_A

Figure 27: Ascender and descender bodies

of ascenders or descenders. Consequently we need to set some thresholds for the
detection of ascender and descender bodies. These thresholds have been determined
empirically and are expressed as a percentage of the main body height. The three
conditions to be satisfied for the detection of ascender and descender bodies are shown
in Fig. 27. The three variables taas, tpar and tpa respectively stand for threshold
Ascender body to Main body, threshold Descender body to Main body and finally
threshold Descender body to Ascender body.

If the ascender body height is smaller than the ascender threshold then the as-
cender body height is set to zero and we do not look for the existence of ascenders.
The same procedure applies to the detection of descenders. An ascender (respectively
descender) body is further subdivided into 3 equally sized buckets. We look for as-
cenders by following the upper outer contour of the word. An ascender is detected if
the contour goes above the first bucket. The coordinates of the points where an as-
cender starts and finishes are stored. For coding into a feature vector, an ascender is
said to occur at the midpoint between its starting and finishing points. The features

extracted from the handwriting samples of Fig. 28 are shown in Fig. 29.

CHAPTER 4. LEGAL AMOUNT PROCESSING 47

Ascender threshold —

Reference lines <

Descender threshold ——

Ascender body
Main body

Descender body

Ascender buckets - | .

Descender buckets <

Figure 29: Ascender, descender and loop features

CHAPTER 4. LEGAL AMOUNT PROCESSING 48

Loops

Loops are detected simply as being the inner contours (Fig. 29) obtained by running
the contour tracing algorithm developed in our centre by Nick Strathy [Str93]. We

consider solely those loops that are located within the main body of the word.

Word length

Our estimate of the word ‘length’ is the number of ‘central threshold crossings’, or
in other words the number of runlengths of black pixels in the middle of the main
body. For increased robustness, we take the combination of the run length counts at

3 different rows within the main body of the word.

Horizontal, vertical and diagonal strokes

Strokes are extracted using Mathematical Morphology (MM) operations. For an
introduction to the basic operations of MM, the interested reader is referred to Ap-
pendix D.

The sizes of the structuring elements have been determined empirically and are
expressed relative to the average stroke thickness of the image. For each of the 4
stroke classes (horizontal, vertical, south-east and south-west), we first open the im-
age with an element whose length is a multiple (¢,r1) of the average stroke thickness.
We then close the resulting image with an element whose length is a fraction (t,,2) of
the average stroke thickness. We perform this latter step in order to connect neigh-
boring features. Finally we prune the resulting features by removing those connected
components whose height (resp. width for horizontal strokes) is less than a fraction

(tsera) of the main body height (Fig. 30)

4.3.2 Feature vector

In our classification scheme, we differentiate between the input feature vector and
the class feature vector. The input feature vector is computed when features are
extracted from some input image. When we attempt to classify the input word,

for each class in our lexicon we will convert this input feature vector to the class

CHAPTER 4. LEGAL AMOUNT PROCESSING 49

Fowrllon = A |~ |

(a) (c)

Figure 30: Stroke features: (a) original image (b) vertical (c) horizontal (d-¢) diagonal

feature vector specific to the class being considered. The differences between these
two vectors will be clarified hereafter. The word feature vector consists of the 11

following components:

e The relative position of the ascenders (array of 100 buckets)

e The relative position of the descenders (array of 100 buckets)

e The relative position of the loops (array of 100 buckets)

o The number of ascenders

¢ The number cf descenders

e The number of loops

¢ The word length

e The relative position of the vertical strokes (array of 100 buckets)

e The relative position of the horizontal strokes (array of 100 buckets)
e The relative position of the south east strokes (array of 100 buckets)

e The relative position of the south west strokes (array of 100 buckets)

When an ascender is detected in an input image, its position relative to the in-
put width is computed. Let us suppose that an ascender has been detected and
it is located at 78% of the total word length, then we set the 78'" bucket of the
ascender_position array to ‘1’.

The only difference between the word feature vector and the class feature vector
is the number of buckets used to express the position of the ascenders, descenders,
loops and strokes. For example, let us suppose that an ascender is detected at the
position 85% in some input word. When it is matched to the class ‘and’ which is a
3-letter word, the detected ascender will be converted into an ascender at the third

position in the word. When the input is matched to the class ‘hundred’ which has 7

CHAPTER 4. LEGAL AMOUNT PROCESSING 50

letters, then the ascender will be converted into an ascender at the 6'* position.

The process of extracting features, producing the input feature vector and con-
verting it to the class feature vector to match with the class “one” is illustrated in
Fig. 31. In order to simplify the figures, we only consider the ascender, descender and
loop features. Note that the class feature vector length is specific to the class being
considered.

The stroke features are separated into 3 kinds according to their location. We
compute a position stroke feature subvector for the ascender, main and descender

bodies.

4.3.3 Probabilistic classifier

=]
EEIEIE

We investigated the possibility of using a probabilistic scheme similar to a Bayesian

classifier for the classification of our data. For that scheme we used solely the as-
cenders, descenders, loops and word length features. Since our features might not
be entirely independent from each other, we will refer in this section to probabilis-
tic scheme and probabilistic estimates as opposed to Bayesian scheme and Bayesian
estimales. However the computation of the estimates is exactly the same as the
computation of Bayesian estimates.

Upon receiving an input image, its (word) feature vector is computed. This feature
vector is then sent to the classifier. For each class in our lexicon, the feature vector
is converted into a class feature vector which is sent to a module that computes the
s'milarity measure between the input and the class under consideration. The basic

algorithm for the classifier is as follows:

Given an input image:
1. Compute the word feature vector
2. For each class in the lexicon:
2.1 Compute the class feature vector

2.2 Compute the probability for the current class

CHAPTER 4. LEGAL AMOUNT PROCESSING 51

A) Inputimage

B) Extraction of features: Position relative to input image width

iIh.||l,dnmhﬂﬂuﬂﬂh) }Inl

. [12 54 N w
Position of ascenders 010 010 ind
" aq w
Position of descenders 0 i}
»

0
Position of loops o

Word length estimate 10

C) Feature vector when input is to be matched to class ‘one’ (3 letters):

Class ‘one’ (3 letters):

» £

" [] 12 “ 91 w
Position of ascenders 0010 1 iin —J ninj
Ve] 1 2
Ascender Position Subvector
Class Feature Vector:
ascender pos. descender pos _ loop position

ST L Tsle[eTols[sTsTo o 0]

an = ascender number, dn = descender number, In = loop number, w! = word length estimaie

Figure 31: Creating the feature vector for a given class

CHAPTER 4. LEGAL AMOUNT PROCESSING 52

3. Output the ranked probabilities

In section 4.3.2, we described how to compute the word feature vector and con-
vert it to a specific class feature vector. We will now specify how we compute the
probability of a given class using the class feature vector from some input image.

Using a training database, we computed for each class the probabilistic estimate of
cach feature. The matching between a feature vector and a class is done in two steps.
First we compute the probability for each feature component, then these probabilities
are combined assigning different weights to the various features.

‘The process of computing the class probability for a given input image is described
in Fig. 32 D. To simplify the figure, we assume that we are working with a single
feature (the position of the ascenders). In that figure we compute the probability of
some input image (hundrc!) when matched to the class ‘thousand’. The values given
as the probabilistic estimates represent the probabilities that a feature be present at
a given location. If the probabilistic estimate for a given position is greater than a
certain threshold (say 5%), then we can assume that the feature ought to be present.
Thercfore to each vector of probabilistic estimates, we associate a vector of binary
values which indicate whether or not a feature should be present at a given position.
This procedure enables us to introduce different weights for the match or the no match
of features. The probability is computed as indicated in Fig. 32 D. The probabilistic
estimate p; for a given position, represents the probability that a feature be present
at that position. Therefore if a feature is present in the input, then we use p;, else
1 — p; in the formula mentioned in Fig. 32 D.

The probability for the position features for descenders and loops are computed in
a fashion similar to the one described in Fig. 32 for the ascenders. The probability for
the number of ascenders and descenders is simply the Bayesian estimate computed on
the training database for that feature. The probability for the number of runlengths is
the sum of the Bayesian estimates over a ‘small’ window. For example if the number
of runlengths in the input image is 7, then the probability for the runlengths for a
given class is the sum of the Bayesian estimates for that class for the values 6, 7 and
8. We allow this ‘smoothing’ for increased robustness since the standard deviation for

the number of runlengths is much greater than the one for the number of ascenders

CHAPTER 4. LEGAL AMOUNT PROCESSING 53

Input image B) Extraction of the ascenders:

rt11g 00

W u"!idillll||u|u|||lh||||‘ il RN |

i A0 T U (I R)

Word feature vector
o 1 “ n »w

0010 N1h Din g

Transformation Word feature to Ciass feature vector:

Class ‘one’ (3 letters):

N
J 3) I g

Word feature vector

12 54 91 w9
010 1 o 1 D10 0
7/
\ 1 /
L B
Class feature vector
Class ‘hundred’ (7 letters): Class ‘thousand’ (8 letters):
£ N P
| - 1
Word feature vector Word feature vector
12 “ L1 9 0 12 S " w

Q11)] [N)] 010 g | T - 1 0] | Ining

NN 2 SV

L1 ro 10 I ITn 10 i1]
Class feature vector Class feature vector

Computation of the ascender position probability - for the class ‘thousand’:

0 1 2 3 4 b3 6 7
Class feature vector =D O Taltogrol1 IT'aJo Ty]

PO pl p2 p3 p4 p5 pb p?
Probabilistic estimates =P {ROLLASR I 0451 0050

g
Mk o mates] Masch | ot Fio maseh] Much | Mech | Muich]

Prob_ascender_position = { Weaght_Match * (p0 + p7 ¢ (3-62) + (1 p3) (] pS) e (1 pb)) »
Wesght_Nomaua * ((10-pl)e p'y }/
{ Wesght_Maich * S + Weigtu_Nomatch * 2 |

Figure 32: Probabilistic classifier: probability computation

CHAPTER 4. LEGAL AMOUNT PROCESSING 54

or descenders.

Once the probabilities of each feature component have been computed, we com-
bine them to produce the overall probability for the class under consideration. The
combination is a weighted sum of the probabilities.

While this scheme produced satisfactory results, the clustering of the training
data into subclasses had to be done manually. Unfortunately this is contradictory to
our original wish to produce a fully trainable system. Therefore we investigated a

different scheme, namely the nearest neighbour classifier.

4.3.4 Nearest neighbour classifier

A given input image is processed as follows. Features are extracted to create an input
feature vector. For each class in our lexicon, the input feature vector is converted to
a class feature vector. This latter vector is then compared to the vectors obtained

from our training samples.

Distance between 2 feature vectors

We will illustrate here the computation of the distance between 2 vectors. The feature
vector is made up of the eleven subvectors as illustrated in the previous section. In
order to compute the distance between two feature vectors, we compute eleven sub-
distances corresponding to the eleven sub-vectors. The eleven sub-distances will be

expressed as:

e dap: distance ascender position
e ddp: distance descender position
e dan: distance ascender number
¢ ddn: distance descender number
e dwl: distance word length

e dlp: distance loop position

e dvs: distance vertical stroke

e dhs: distance horizontal stroke

e dses: distance south east stroke

CHAPTER 4. LEGAL AMOUNT PROCESSING 55

Class ‘Four’

Training samples
Input Al
1 y ‘;40'!?1: nuno
- \ Colilclo] LColtielo]
]

l L__.__l___J

Input Class ‘and’

Traning samples

T
|

E|
N

Figure 33: Nearest Neighbour Classifier
e dsws: distance south west stroke

The final distance measure is taken as a weighted sum of those sub-measures. An
illustration of the matching of an input image to the stored feature vectors fromn the
training samples is shown in Fig. 33. To simplify the figure we consider only the
ascender features. From Fig. 33, intuitively we would like to have a measure that
would ‘tell’ us that the input image (“Four”) is closer to the “Four” training sample
than to the “and”. Indeed an ascender in the first position (as in the input image) is
‘closer’ to an image with an ascender in the second position (as in the sample “Four”)
than an image with an ascender in the last (right most) position (as in the sample
“and™).

A simple Hamming measure that computes the number of substitutions (Fig. 34a)
is not suitable since it gives a similar distance (2) in both cases. Therefore we designed
a minimum shift measure or Guillevic measure as illustrated in Fig. 34b. In this case,
we find that the distance d1 to the sample “Four” is smaller than the distance d2 to
the sample “and”. This corresponds to the result that we would expect when looking

at those samples in Fig. 33.

JHAPTER 4. LEGAL AMOUNT PROCESSING 56

w

a) Hamming distance b) Minimum shift distance - Guillevic distance

[T oo 0] [+ JoJo] (v Jofolo] [t ToJo|

(o T1 Jo 0] [0 o]} o[To o] [0 Jo [|
di=1+1+0+0 d2=1 + 0 + 1 a1 = 1+l a2 = 2+l
dl = 2 d2 =2 di= di/4 = 05 42 =d2/3 =1

Figure 34: Vector distance computation

(m_

a) Ascender position input and training sample vectors:
0\ 2 3 4 S5 6
Input X [o [o [1 l 1 1o I 0 l

|+ |
Tmnin;SlmpleYIl llllrolllo]o

b) Distance ascender position

- Remove those *1* pixels that do maich.
- Find the smallest "shift’ distance between those 2 veciors.

0 1 2 3 4 s 6 7 8

fOIOIOI‘llor;IOIOIOI
Y 4

[T JoJol 1t Jolol1]o]

dap= 241 1 +1
dapsdap/9 =59 =055

\.

Figure 35: Example: Distance between 2 ascender position vectors

The measure is computed as the minimum sum of the difference between each
possible pairing of features between the two subvectors. A similar notion was used in
[SBSV94] to compute the distance between two digits represented as a set of arcs.

The heuristic we use is the distance of the shifting needed to have both vectors
match. This heuristic incorporates the intrinsic notion of the ‘position’ features. The
measure between 2 ‘position’ vectors in a more general case is illustrated in Fig. 35.
In that figure, we assume that we use only the ascender features and that the vectors
represent the respective positions of the ascenders in the input image and a training
sample. Note that we normalize the distance by dividing it by the vector’s length

(e.g. 9 in the example of Fig. 35).

CHAPTER 4. LEGAL AMOUNT PROCESSING

ot
-1

We described in Fig. 35 the process involved in computing the distance between
2 position subvectors. The same procedure is used to compute the distances of the
position subvectors for descenders, loops and strokes. For the other feature subvectors
whose length is 1 (e.g. the word length or number of ascenders), the distance is
computed with a simple subtraction. For example, if the word length of the input
is estimated to be 10 and the word length of some training sample is 7, then the
distance for the word length dw! is computed as dw! = |10 — 7| = 3.

The distance from one input vector to a training feature vector is then computed
as a weighted average of the eleven sub-distances dap, ddp, dlp, dan, ddn, din, dwl,

dvs, dhs, dses, dsws:

dorototype = (wl *dap + w2 * ddp + w3 * dip +
w4 * dan + wd * ddn + w6 * din +
w7 * dwl + w8 * dvs + w9 * dhs + w10 x dses + wll * dsws)/
(wl 4+ w2 + w3 + wi + w5 + w6 + w7 + w8 + w9 + wl0 + wll)

Optimization of the weights

We introduced 11 weights in our classification scheme, one for each sub-vector of the
feature vector. We implemented a genetic algorithm [Gol89] to search for the optimal
combination of these 11 weights. The fitness score associated with each combination
of strings was chosen as the (top 3 choices) recognition rate computed on the entire
training set. We allowed the weights to be in the range [1 — 255] (8 bits). The string

of 11 weights consisted of 88 bits. The algorithm for the search is as follows:

. Generate randomly a population of N strings.

Compute the fitness value for each string in the population.
Reproduction

. Crossover

Mutation

Go back to 2.

D O W NN

The reproduction operator has been implemented as a biased roulette wheel where

each current string in the population has a roulette wheel slot size proportional to its

CHAPTER 4. LEGAL AMOUNT PROCESSING 58

fitness.

The simple crossover operation is applied on each pair of strings s; and s2. A
random position p along the string is selected. A random length [beginning at
position p in s, is selected. The substring of length [starting at position p in s, is
interchanged with the substring of same length and position in s;. At this point we
interchange weights rather than bits.

‘The mutation is the occasional random alteration of the value of a string position.
For a given mutation, the random bit 7 of the random weight w in the random string

s is flipped.

Modified k-nearest neighbour classifier

Given an input image, for each class in our lexicon, we compute the average of the
k nearest samples belonging to that class. We rank the classes according to their
respective average distance. A similar approach was used in [Ho92] (p.91) to reduce

the effect of single outlying samples.

4.3.5 Confidence measure for the classifier

When considering the nearest neighbour scheme, the classifier outputs a distance
value. This distance corresponds to the minimum distance of the feature vector to
the feature vectors from our training database. It would be interesting to output
instead a confidence value. Several approaches can be taken and we need to find the

approach best suited to our problem.

Relative distance to the second choice

One approach suggested in [SBSV94] is to compute the confidence value as a relative
distance of the first choice to the second choice. For example, say the first choice has
a distance output from the classifier of 0.1 and the second choice has a distance of
0.2, then the confidence of the first choice would be 1 — 3% = 0.5. Unfortunately that

scheme does not produce satisfactory results for our particular system.

CHAPTER 4. LEGAL AMOUNT PROCESSING 59

Confidence measure based on statistics

One method suggested by Jirgen Schirmann in his talk at CENPARMI is based on
computing statistics from the training database. For each class in the lexicon, we
compute one histogram. This histogram has as the r-axis the value taken by the
distance (say in our case from 0.0 to 0.4). We can further assume that this interval is
subdivided into 100 buckets. Now for cach sample in our training database, we use the
classifier to compute the distance from that sample to all of the classes in the lexicon.
Then for each class in the lexicon, update the histogram for the given distance. If
the input word identity is the same as the class whose histogram is updated, then we
update the bin ‘correct’ for the given bucket. If the input word identity is different,
then we update the bin ‘others’ for the given bucket.

After processing the entire training database, for cach class, we analyze the his-
tograms. For each value in the histogram, the confidence value is going to be the
ratio of the ‘correct’ bin over the sum of ‘correct’ plus the ‘others’ bin. In other
words, the confidence measure tells us for a given distance measure and a given class,
the percentage of times that value corresponded to the right class. In our particular
application, this scheme is used to identify those words for which further features
need to be extracted to enhance their recognition results.

However this measure cannot be used to rank the solutions from our word classifier.
Indeed for some word classes with few distinctive global features, their confidence
value will never be higher than say 35%. This is due to the fact that word classes
with few global features such as the set “One”, “two”, “Six", “Nine”, “ten” have
very similar feature vectors. As such, even though all the expected features might
be present, training samples from other classes also possess exactly the same features
and therefore a high confidence value can never be reached. That is the reason why
a low confidence value is interpreted as the need to extract word details, while a high
score means that we indeed recognized an input word belonging to a class which
possesses significant and distinctive global features such as “hundred”, “thousand”,

“eight”, etc....

CHAPTER 4. LEGAL AMOUNT PROCESSING 60

4.3.6 Word details extraction

When an input word cannot be adequately recognized with just a few graphical clues

and the contextual information, further details need to be extracted. The second step
of our computational theory, namely the extraction of details, will help in recognizing
those input words that are not recognized with a sufficient confidence value. Besides
graphical clues, other important features for a fast reader [GS93] are the characters
located next to blank spaces. Empirically we noticed that the first letter is often

disconnected from the rest of the word (Fig. 36).

Segmentation-free character extraction

In a first step, we try to investigate whether the first and last characters of a given
input word can be extracted without performing any segmentation. In other words,
we wish to check whether the characters are disconnected from the rest of the word.
A given input word is represented as a linked list of connected components (Fig. 37).
Those components are ordered with respect to the position of their centroid along
the y-axis. If a word contains only one single component (Fig. 37), this does imply
that there is no isolated character in the word.

When trying to locate the first (resp. last) character, we consider the left- (resp.
right) most components of the word. In our current implementation, we consider that
a character might contain up to 2 connected components. This restriction simplifies
the initial implementation as well as matches most of the cases but the ones corre-
sponding to a poor binarization. We will describe here the process involved in locating
the first character of a word. The same procedure applies for the last character.

We consider the first (left-most) component of the list. If the component is located
outside of the main body of the word as in Fig. 38, then we check whether the next
component is located within the main body. If this is not the case, then we exit
reporting that no character has been extracted.

If on the other hand, the first component overlaps with the main body of the word

CHAPTER 4. LEGAL AMOUNT PROCESSING

0 ue F0 LW. 3"‘/6’ ;-x
Sever eughl u‘dc,\f o i
f o ‘609_\[% el e

Tweds, \({w?*.(% mea
T Aty
| Ceenoloof Ly vz A vrc] 228

Figure 36: Disconnected first and /or last characters of words

61

CHAPTER 4. LEGAL AMOUNT PROCESSING

Figure 37: Word represented as an ordered list of connected components

Figure 38: Locating the first character of a word

62

CHAPTER 4. LEGAL AMOUNT PROCESSING 63

'8 2 ENE=
_ J L o

J

\.

Figure 39: Character extraction: first component overlapping the main body

as in Fig. 39, then we check whether the next component is located above the main
body. This latter case represents the possibility of having a disconnected ‘t’ stroke.
Once the components making up the character have been extracted, we wish to
check whether they can be reliably considered as a single character. Indeed the above
described method will yield not only single characters but also groups of joined char-
acters as depicted in Fig. 40. Therefore we impose some thresholds for the minimum
and maximum relative widths of a character. The width of an extracted character is
computed within the main body of the word as shown in Fig. 40. Indeed if we were
to consider simply the width of the bounding box, then characters such as “T" would

™

have a great relative width to the word. Therefore letters ‘T’ might be interpreted
as being groups of connected characters as opposed to single characters. The charac-
ter width thresholds are expressed relatively to the estimated character width for a
given input. From the word recognition results, the input word length in characters
is estimated as the average length of the top 5 choices (Fig. 41). Once an estimated
word length is computed, the estimated character width is expressed as the input

word width divided by the estimated word length. An example of this process along

CHAPTER 4. LEGAL AMOUNT PROCESSING 64

Figure 40: Character extraction: character width cw

with the selected thresholds is shown in Fig. 41. The thresholds ¢, t.; and t.3 have
been set to 0.5, 2.0 and 0.4 respectively. If the extracted character is found to be too
narrow or too large, then the procedure returns stating that no characters could be
extracted. The same procedure that we just described for the extraction of the first

character of words is applied to the last character.

Character extraction with segmentation

If the extraction modules for the first and last characters both return unsuccessfully,
then a brute force segmentation approach is applied. We first compute an estimate
of the number of letters in the input word as was described in Fig. 41. From this
estimated number of letters, we get the estimated character width ecw for the given
input image. For example, for an input word with an estimated number of 4 letters,
the estimated width of a single character would be approximately 25% of the bitmap
image. Therefore in the brute force approach, we would simply cut the first 25% of the
bitmap and associate it with the first character. The parameter ecw is increased by a
factor f.cw until the bitmap extracted contains at least one component cverlapping
with the main body of the word. Among others, this iteration takes care of input

words with long horizontal ‘t’ strokes. An example of the process involved in the

CHAPTER 4. LEGAL AMOUNT PROCESSING

05

A L AT R L

Word recognition results

Dist. Class

0.000 one (3 letter word)
0.000 two (3 letter word)

. five (4 letier word)
0.000 nine (4 letier word)
0.023 three (5 letter word)

bW N
(=}
=

==> Estimated number of letters in the input word:
L nbletters = (3 +3+4+4+5)/5 2 4

Input word

o Character extraction

VRRSE sl RSN 3 e e

cw <=1_cl * Word_width

cw <=1_c2 * {Word_width / nbletters)
cw >=1_¢3 * (Word_width / nbletters) §

cw

Figure 41: Character extraction: Thresholds for the character width

("HAPTER 4. LI.GAL AMOUNT PROCESSING 66

segmentation of the first and last characters for a given input word is described in
Fig. 12

The process described here for the segmentation of the first and last characters of
words is naturally subject to improvement. A more thoroughly developed segmenta-
tion scheme should eventually be substituted. An approach similar to the technique
used by Nick Strathy [Str93] for splitting touching digits could be used. Such a
scheme makes use of significant contour points and heuristics to find the optimal
segimentation path.

The complexity of a segmentation scheme. its design and training. though. should
not be underestimated. Therefore the current approach is simple in order to allow for
a faster prototyping and estimating the significance of the character extraction and

recognition for the overall word recognition module.

4.3.7 Character recognition
=]
=)) ==

While numerous approaches have been investigated for the recognition of Arabic

numerals, few studies report results on the recognition of Roman characters. One
difficulty associated with the Roman character set recognition is the greater size
of the lexicon when compared to digits. indeed. instead of 10 classes. we have to
deal with 26 to 52 classes whether or not we deal with both lower and upper case
characters.

In recent vears, one of the most popular approaches to recognize digits is the use
of artificial neural networks. At the cost of a lengthy training time. high recognition
rates and speed might be obtained. However. such networks uo not seem to have
been appliec to problems with a lexicon size greater than 10.

We decided to opt for a nearest neighbour scheme to recognize the characters.
Such a scheme will not only allow for fast prototyping but also allow for a recognizer

to be designed even with few training samples.

CHAPTER 4. LEGAL AMOUNT PROCESSING

NS

Word recognition results

OLRTE VLTS T AT ST RSO e

Dist. Class
000C two (3 letter word)
0000 nine (4 letter woud)
0023 three (S letter wond)
0026 one (3 letter word)
0089 five (4 letter word)

P TEPYE PR g

=> Estimated number of letters in the input word:
roletters =(3+ 4+ 5+3+4)/5 = 4

==> Estimated character width relative to word width:

/ ecw=1000/4=25% of the word width

Character extraction

o T S A Rt

Character segmentation

ecw =25 % --> Nocomponent within the main body

==> ecw = f_ecw ® ecw

==> SegIT.:ntation ieration stopped

J
‘ ecw = 31 % --> Component within main body

Last character

ecw = 25 % -.> Component within main body

==> Segmentation iteration stopped

=0

Input word E Segmentation-free extraction of K
. first and last character:
| ==> Unsuccessful
: | S——
L J —
|-

Figure 42: Character segmentation

CHAPTER 4. LEGAL AMOUNT PROCESSING 68

| Character position | Character set |
First a,d, e, f,h,n ot
Last d,e, n,o, 1,8, t,x,y

Table 9: Character sets for the first and last position of words

Problem analysis

We are not exactly faced with the recognition of Roman characters in general. Our
problem domain provides us with a lot of constraints on the characters to be rec-
ognized. First of all, we are not to recognize every single character in the Roman
alphabet. The characters we are to process are the ones corresponding to the first
and last characters of words belonging to our lexicon. The sets of first and last char-
acters we are to recognize are shown in Table. 9. Therefore the size of the character
lexicon is restricted to 9, if we consider a single character case, as opposed to 26 (the
size of the Reman alphabet) for a given character position.

We can further restrict the character set if we use the results of the word recognizer.
The word recognizer provides us with a ranked list of the top 10 solutions for a given
input word. From there on, we assume that the correct solution lies within the top 10
choices. The character recognition task is thereore translated into an attempt to shift
up the correct choice as close to the top of the list as possible. Therefore the character
recognition results are not intended to point to a word class not present in the top
10 list provided by the word recognizer. The process of using the word recognition
results to narrow down the character set for a given word position is illustrated in
Fig. 43.

When trying to recognize an input pattern, we not only know its position within
the word (first or last position) but also we know its position relative to the word
reference lines as well as information about the average slant of the legal amount
and word to which the input belongs. An exainple of a character bitmap along with
its associated information stored in the image message is shown in Fig. 44. The
information about the position of the character relative to the reference lines will be

useful in differentiating among character classes and possibly give a hint as to the

CHAPTER 4. LEGAL AMOUNT PROCESSING

Word recognition results

@ Dist. Class First, Last characters

1 0000 1two (1, 0)

2. 0000 nine (n,e)

3. 0023 three t.e)

4. 0026 one (0, ¢)

5. 0089 five (f,e)

6. 0125 ten (t, n)

7. 0.147 seven (s,)

8. 0.179 four f,n

Input word 9. 0183 and (a,d)
< _ 10. 0.196 six (s, x)

At R R S A ST LTI NART ST NN U P YA IO AT TR 20 it el oy

Dynamic character set for first and last positions

Char. pos. Character set

First (a,f,n, 0,51
Last (d.e,n, 0.1 x)

O T T L L L R T R L e TV

Figure 43: Dynamic character sets

TR A Y Py e T YR ZI)

Bitmap Image message

L SLANT :senterce .15 .word *-15

REFLINE ,mux -4 17
+ POSITION last

Bitmap with reference lines

Figure 44: Information available for each character

6Y

CHAPTER 4. LEGAL AMOUNT PROCESSING 70

First position Last position

\.

Figure 45: Character shape variations according to the position within a word

case of the character (lower or upper). Indeed if the character is located within the
main body of the word then it corresponds most likely to a lower case character.
Cursive characters extracted from handwritten words might look somewhat differ-
ent depending on their position within a word. Indeed some people have the tendency
to exaggerate the writing of the last character of words by drawing some longer than
necessary strokes. Some examples of the possible differences of character shapes ac-
cording to the location are shown in Fig. 45. For that reason, we decided to have 2

separate classifiers, each trained respectively on first and last characters of words.

Features

We decided to opt for slightly more complicated features than simply the pixel values.
We chose the pixel distance metric as defined in [SBSV94]. For mismatched pixels
between the test and the training samples, it takes into account the distance to the
ncarest pixel of the same colour (e.g. foreground or background). We use an integral
approximation to the Euclidean distance between pixels, truncated to a maximum

distance of 4. The total difference between two bitmaps B; and B, is expressed as:

> (B ® By)(D(B1) + D(By)) (1)

where By @ B, is the sum of the pixel-wise exclusive or of the two bitmaps B; and

B,, and D(B,) is the distance map representing distances to the nearest pixel of a

CHAPTER 4. LEGAL AMOUNT PROCESSING 71

4
Bitmap B Distance Map D(B)
3{2(1]|2f{2]3]a]4
B 2| r]2]a]a
BER R EBRERE
] {221]1]1]2
BERERR Llr]2]3)2]1]1]1
BEEENEERERNE 212 (343|221
BEREEEERER 2[3lal4alafa|3]2
BERERRRENRE 3{alalalalalals

Figure 46: Example of the distance map computation

different colour. The computation of the distance map is illustrated with an example
in Fig. 46.

Classifier

Character recognition algorithms are usually trained to recognize isolated charac-
ters, but no special training is performed to enhance the recognizer’s ability to reject
“garbage”. Garbage here might consist of two or more touching characters or parts
of characters. For our specific application, we cannot guarantee that the extracted
characters are going to be perfectly isolated single characters. Therefore we need a
recognizer with a good rejection ability. One such approach is to match the hypothe-
sized character to a set of templates for each character class. With adequate features,
it is possible to design a recognition system that will give high confidence value when
features do match and very low scce when there is a significant mismatch of features.
Consequently we adopted a k-nearest neighbour scheme.

The character recognition system is trained on z set of isolated characters ex-
tracted from the training database. As mentioned previously, we train two separate
recognizers respectively for the first and last cuaracters of words. These recognition
systems are trained solely on characters extracted respectively from the first and last

character positions of the training words. This is made possible through the tagging

CHAPTER 4. LEGAL AMOUNT PROCESSING 72

scheme applied to our database. Indeed the tagging of an input image enables us to
identify those characters located at the beginning and end of words. In fact we train
4 classifiers, one for each combination (position, case) where position can take up the
values FIRST and LAST and case the values UPPER and LOWER.

Since we are training specialized recognizers for a given character position and
a given character case, the number of training samples is less than if we were to
consider a general isolated character recognizer. This specialization puts an additional
constraint on the need for an even larger training set of legal amounts.

The prototype characters are norrnalized into one of three different template sizes
24 x 16, 16 x 16 or 16 x 24, depending on the aspect ratio of the original character.
The choice of three normalization sizes reflects the variety of the aspect ratios inher-
ent to the Roman characters (e.g. 1, a, m) as well as prevents spurious recognition
results which can occur when the aspect ratio of a character is very distorted during
normalization.

During a recognition cycle, the input character is normalized to the appropriate
size and its feature map is computed. The input is then compared to ali prototypes
of the same size. The score that is assigned to the match between a prototype and
the input is the distance described in Eqn. 1.

As mentioned earlier, a given input character is only compared to those classes
that are part of the dynamic character set generated from the word recognition re-
sults as illustrated in Fig. 43. For each of those character classes, we compute the
average distance of the k nearest prototypes belonging to that class. This distance is
further normalized by the size of the input character (height x width) in order to get
homogeneous distances over the 3 different template sizes and somewhat within the
range [6—1]. We then rank the classes according to their respective average distances.
This corresponds to the modified k-nearest neighbour classifier that we also apply to

the recognition of words (section 4.3.4).

Postprocessing

The information about the location of the reference lines relative to the position of

the character is used for several purposes. First of all, it is used to determine the

CHAPTER 4. LEGAL AMOUNT PROCESSING 73

First position
Features |a d e f h n o s t
ascender [0 1 O 1 1 0 0 2 1
descender [0 0 0 2 0 0 0 2 0O
Features |A D E F H N O S T
ascender {1 1 1 1 1 1 1 1 1
descender [0 0 O 2 0 0 0 0 O

Last position
Features |[d e n o r s t x y
ascender {1 0 0 0 O O 1 0 O
descender ([0 0 O O O 0 0 0 1
Featurese (D E N O R S T X Y
ascender |1 1 1 1 1 1 1 1 1
descender {0 0 O 0 O 0 0 0 2

Table 10: Character features: 0 = VO, 1 = YES, 2= MAYBE

likelihood of being in the presence of a lower-case character. If the word possesses an
ascender but the character does not, then it is assumed that the input character is in
lower case. In other cases, no assumption is made and both recognizers are tried on
the input. Additionally, it is used to differentiate among characters such as ‘4’ and ‘f’
whose sole bitmaps can be very similar. If the first choice of the character classifier is
the class ‘t’ and the second choice ‘f’, then we check how deep the character reaches.
If the character is found to have a descender, then the character results for the first
and second choices are reversed.

We also designed a simple feature data structure that lists explicitly for a given
character class, a given character case and a given character position, the presence
(YES), absence (NO) or possihility (M AY BE) of ascenders and descenders (Ta-
ble. 10). In other words, for a given character class, we wish to list the a-priori
likelihood of having the character within the boundaries of the reference lines or
spreading significantly over the top reference line or below the bottom reference line.

This helps us in reducing the ambiguity among character classes that exists when

CHAPTER 4. LEGAL AMOUNT PROCESSING 74

considering only the bitmap information. These values have been determined empir-
ically and it is interesting to note that a given character in a given case (e.g. ‘s’)

might hae different attributes according to its position within the word.

Character recognition output

For a given input character, both a lower and an upper case character classifiers are
called. The output of the character recognition module is the result of the classifier
with the lowest distance. For further processing, namely the integration of results
with the word recognition module and matching with lexicon words, we are only
interested in the identity of the characters and not their case. Indeed for us the

words ‘two’ and ‘Two’, for example, belong to the same word class ‘two’.

Further investigation

The training characters are the tagged isolated characters in our training databases.
In place of those, one could produce the training characters by running the segmen-
tation free character extraction procedure described in section 4.3.6 on the training
tmages. Doing so, we could possibly get some training characters better suited to
the testing data. As an illustration of this point, one can notice that the entities
extracted from the first and last positions of words might not be single characters as
we would expect (Fig. 47), but rather parts of characters or connected characters as
in ‘th’ or ‘ty’. Since the ultimate goal is to recognize words and not characters, we
should not restrict ourselves to the recognition of pure characters, but rather aim at
recognizing the entities located at the beginning and end of words that characterized
a given class.

Additionally in the current approach the same training samples are used for the
recognition of both the segmentation-free extracted characters as well as the seg-
mented characters. In their place, one might wish to produce a training database
possibly better-suited to the segmented characters by running the segmentation al-

gorithm on the training words.

CHAPTER 4. LEGAL AMOUNT PROCESSING

\

Figure 47: Non-characters extracted from the first and last positions of words

-]

[|

o

CHAPTER 4. LEGAL AMOUNT PROCESSING 76

4.3.8 Integrating character results with word results

The word recognition module produces the primary result of our system. Character
extraction and recognition is then used to supplement and possibly improve on the
word recognition. For that reason, the integration of the character results should
act as an agent to shift up and down the word possibilities. As a result we wish to
shift up the right choice closer to the top position of the input word recognition list
and shift down less possible word choices. Once the shifted solutions are close to the
top choices, we perform some reorganization of the top choices so as to improve the
recognition rate of having the correct solution among the top first or second choices

while keeping the same recognition rate for the top (say 5) solutions.

Top character(s) selection

The first step we chose to perform is to implement some measure to reflect the confi-
dence associated with the top choices of the character recognizer. Due to our limited
and sparse training database for characters, we cannot reliably apply the confidence
measure based on statistics described in section 4.3.5 to estimate the relative worth of
the top first choice to the second choice. On the other hand, the relative distance to
the second choice method can be applied regardless of the significance of the training
database, and consequently we used that latter approach. If the distance of the second
choice relative to the first choice is greater than the character recognition threshold
crt, then we assumed a high confidence for the first choice and consider for further
processing solely the first choice. On the other hand, if that condition is not met,
then both the top first and second choices are considered in subsequent processing.
An example of this top character selection is shown in Fig. 48.

While the confidence based on sta‘istics is not adequate here, it can still be used
later on in the processing. Indeed due to the limited number of training data, confi-
dence vaiues of zero can be obtained easily. This is obviously not reliable as it only
reflects the lack of training samples. On the other hand, a high confidence value can

be of some use.

CHAPTER 4. LEGAL AMOUNT PROCESSING 77

Word recognition results

eto 3 HUE IR TSR BES MILITRR P o WIS BRI S0 B BT L o Ted 5030 Lo TESRTRIEA PSR ALY T4 30

Dynamic characier set

0000 one

l.
2. 0000 iwo
3 0000 wx
4, 0000 ten »> First (. f,0,0,5,1)
S 0030 nine
6 0056 four Last W.e.no.n2)
7 0079 three
8 0090 five
9 0104 seven
Input word L 100130 and
Character recognition results
PR PEIRS KA T ATt Bt £ TR AL HIRTA
Input Dist. Class Selectedcase Top character(s)
0177 T (independent of
0348 F character case)
0S84 S
0647 ©
/ 0670 N 0m T
—— R680 A 0M8 F
| li 0S84 S B>
062 1 0647 0O
0670 N
0653 a REHD A
0681 3
0757 n
0986 o
4761 o
4647 E
4780 N
8680 D
ek 0 0247 o
a0 R 037 e
@ R6HO X 0648 0 gy O
064 d €
0287 o 0807
0371 ¢ 0878 =
0648
0694 d
0807
0875 x
-

Figure 48: Selection of the top character(s) for subsequent processing

CHAPTER 4. LEGAL AMOUNT PROCESSING 78

Shifting up and down

Upon selecting a maximum of 2 character choices for the first and last positions,
we now wish to use this information to shift up and down the choices in the word
recognition list. While we consider the top NBTOPCHOICE (10) choices of the
word classifier, our goal is to maximize the recognition rate for the correct solution to
be among the top TOP_SOL (5) choices. The first step we apply towards that goal is
to make sure that words that do match any combination of the character recognition
results are shifted up as close as possible to the top 5 choices. The algorithm for this

processing step works as follows:

For(i = TOP_SOL; i < NBTOPCHOICE; i =i + 1)
If the word does match some character combination
Then save that word and
try to move it up the list as follows:
1. Shift down the words from below TOP_SOL if
they do not match the characters and
they have a confidence value less than CONF_THRESHOLD
Record the new empty location in the list.
2. Try to look for a word in the TOP_SOL solutions
that could be shifted down, that is shifted out of
the TOP_SOL top choices.
If such a word is found that:
does not match the characters and
does not have a confidence value greater than CONF_THRESHOLD
Then shift down that word to the empty location down the list.
Record the new empty location

3. Place the saved word into the empty location.

It is much easier to view the process of shifting up and down with an example (Fig. 49).

Permutation of the top TOP_.PERMUTATION solutions

CHAPTER 4. LEGAL AMOUNT PROCESSING

Word and character recognition results
AN AESEAINIO N sl e feenteas e £ Lt
@ Dist. Conl. Class Top character choices
1. 0000 0413 one
2, 0000 0265 two
3 0000 0398 wsx
4. 0000 036! ten Fust ¢
S. 0030 0083 mne Lust o¢
6. 0056 0.186 four
7 0079 0145 three
8 009 0028 five
9 0.4 0033 seven
lnput word L 10 0.130 0005 and
@ Dist. Conf. Class Dist. Conf. Class
I 0000 0413 one L 0000 0413 one
2, 0000 0265 1wo 2. 0000 0265 wo
3. 0000 0398 ax 3 0000 0398 sx
4 0000 0361 1en 4. 0000 0361 ten
TOPSOL —¢—0056 0.186 four 60056 0186 four
7 0079 0.145 three ¢ 7
8. 0095 0028 (five 8 0090 0028 live
9. 0104 0033 seven 9. 0104 0033 seven
10 0130 0005 and 10. 0130 0005 and
Dist. Conf. Class Dist. Conf. Clnss
> 1 0000 0413 one ™ & 0000 0413 one
2 0000 0265 two 2 0000 0265 two
3 0000 0398 .ix 3 0000 098 ax
4, 0000 0361 «en 4 0000 0361 ten
1 L 3,
6, 6. NG 00K nine
7. 0056 0.186 four 7. 0056 0186 four
8 009 0028 five 8 0090 0028 five
9. 0104 0033 seven 9. 0104 0033 seven
10. 0130 0005 and 10 0130 0005 and
Dist. Cunf. Class
, 1. 0000 0413 one
2. 0000 0265 wo
3 0000 0398 sx
4 0000 0361 en
50079 0145 threc
6 0030 0083 mine
7 0056 0186 four
8 0095 0028 five
9, 0104 0033 seven
L 10. 0130 0005 and
\

Figure 49: Shifting up and down of word solutions

o

CHAPTER 4. LEGAL AMGUNT PROCESSING S0

Word and character recognition results
" UTRLIDNICR SIS B AR MR A AN RO I T SR TP 1 R PR TN
@ Dist. Conf. Class Top character choices
I 0000 0413 one
2 0000 0265 wo
3 0000 0398 six
4 0000 0361 ten Fusst
5 0030 D083 oine Last oe
6 0056 0186 four
7. 0079 0145 three
8§ 0090 0028 five
9 0104 0033 seven
L 10 0130 0005 ad
@ Dist. Conf. Class Dist. Conl. Class
1. 0000 0413 one I 0000 041V one
2 0000 0265 two 2 000 0265 (wo
3 0000 0398 mx 30000 0398 ux
4 000G 036 ten 4 0000 03I ten
Input word TOPSOL 5 ¢
= 6. 0056 0186 four 6 0010 0083 mne
——- 7. 0079 0145 three 7 0086 0186 {four
8§ 0090 0028 five g8 0050 0028 five
9. 0104 0033 seven 9 0104 0M3 seven
L 10 0130 0005 and 10 0130 0005 and
Permutation of the top solutions
@ Dist. Conl. Class — Dist. Conf. Class
I. 0000 0413 onces Y0000 0265 wo ;
2 0000 (0265 twode 2 0000 0413 one e
3 0000 0398 six 3 0000 0398 mx
4 0000 036) ten 4 0000 0361 ten
5 0079 0145 three 30079 0145 threeesfg
TOP.PERM 60030 0083 minc 6 00% 0083 nine |}
7. 0056 0186 four 7 0056 0186 for
8. 0090 0028 five 8 2000 0028 Jive
9 0104 0033 seven 9 0104 0033 seven
10 0130 0005 and 10 0130 0005 and
Dist. Conf. Class
! 0000 0265 1wo
2 0079 0145 three
3 0000 0413 one
4 0000 0398 wmx
S 0000 0361 ten
6. 0030 0083 nine
T 0056 0186 four
8 0090 0028 five
9. 0104 0033 seven
L 10 0130 0005 and
| W

Figure 50: Shifting of the top TOP_PERMUTATION word solutions

CHAPTER 4. LEGAL AMOUNT PROCESSING 81

After the shifting up and down of woid solutions, the correct choice is now likely
to be close to the top TOP_SOL solutions. We then choose to reorganize the top
TOP_PERMUTATION (5) solutions by performing some permutations. Essen-
tially we wish to move up those words that do match the character solutions as well
as make certain that words that do match first choice characters appear before words
that match second choice characters. The algorithm for the current implementation

is presented below:

1. For(i = 1; i < TOP_PERMUTATION; i =1 + 1)
If word_i does match some combination of the character results
Then look for some word to perform permutation
For(j =0; j<i; j=3j+1)
If word_j does not match any character combination and
word_j’s confidence is smaller than CONF_THRESHOLD
Then shift down by one position those words from
position j to position i-1 and

move word_i up to the j position.

If no permutation has been performed,
Then relax the requirements necessary for permutations:
Concentrate on one character position at a time.
If one of the character positions has a single choice
Then move up first those words that match that character
and then those words that match the other position choices
Else
If both character positions have 2 choices
Then move up first those words that match the first position
then move up those words that match the last position.
Else
If both character positions have a single choice,
Then move up first words that do match the character

with the highest confidence value (statistical) and then

CHAPTER 4. LEGAL AMOUNT PROCESSING

7
[)

those words that do match the other character position.
2. Make sure that words that do match top choice characters do appear
before words that do match the second choice characters.

Once again it is easier for the reader to visualize the process at hand with the help

of an example (Fig. 50).

4.4 Parsing module

| Lo
¢ - —

=) I

Our computational theory for word recognition has been implemented so as to be
fully trainable. This means that the system can be re-trained with very little effort
on a different database and potentially on a different language. The restriction on the
language would be that it also produces the ascenders and descenders found in the
lower case of the Roman alphabet. The only module requiring extra coding would be
the definition of the parser, since it is language dependent. Qur present approach has
been primarily tested on English cheques and therefore we shall discuss extensively
the parser associated with that language. The parser for French amounts is also
introduced as a natural extension of our work.

We recall that the segmentation module (section 4.2 produces a list of possible
segmentations of the legal amount into individual words. In order to process a given
path, the word recognition module described in the previous section is called upon
to assign recognition results on each word. The parser then works on the recogni-
tion results to produce a ranked list of syntactically and semantically correct legal

amounts.

4.4.1 English parser

A grammar has been designed to parse successfully the amounts found on cheques

up to a value corresponding to 99,9998. Our grammar will not be able to parse

CHAPTER 4. LEGAL AMOUNT PROCESSING 83

S — (number | teensminu.ten) S1 | tys S2 | ten S3
S — hundred H | thousand T | E

S2 — number S1 | SI

S3 — thousand T | E

H — and Hl|tys D | (number | teens) E | E

H1 — tys D | (number | teens) E | EE

T — number Tl | (teens | e) E | tys D | and T2
Tl — hundred H | E

T2 — number T1 | (teens | ¢) E | tys D

D -+ (number|e)E

Table 11: Grammar for the English legal amount

amounts of say 120,0008. This limitation has been done intentionally to limit the
complexity of the grammar as well as to increase the reliability of the system. The
idea being that any amount greater than 100, 0008 should be handled manually due
to the importance of such an amount. No error could be permitted. Therefore ‘big’
cheques are rejected from the recognition system so that ic can be handled ‘safely’ by
an opcralor.

The grammar allows for various formats such as ‘eleven hundred’, ‘one thousand
and one hundred’, ‘one thousand one hundred dollars’, etc.... The grammar is de-
picted in Table 11. Whereas the grammar is useful for the implementation, a diagram
makes it casier for us to visualize the parsing as well as extend or simplify the gram-
mar. The graph for the parsing of the English legal amount is represented with the
¢transition network depicted in Fig. 51. The nodes represented in grey are referred to
several times within the network. Their different background colours are intended to
facilitate the reader’s search for those nodes.

The final state E (resp. EE) takes 2 forms depending on whether we wish to
process only full dollar amounts; or whether we allow for the cent amounts to be
parsed. Experimentally we noticed that sometimes some people do write the cent

amounts n full letters as opposed to only writing them with digits at the end of the

CHAPTER {.

(A)

LEGAL AMOUNT PROCESSING

e
EE

number |
eens

number |
teensminusten

e

Figure 51: Parsing of the English legal amount

JHAPTER 4. LEGAL AMOUNT PROCESSING 85

El — and F | dollars F1 | F1
F1 — onlyF!F
EEl — F

Table 12: English final states: solely full dollar amounts

E2 — dollars Gl |and G2 | (only [e) F
Gl — andG2|(only|e)F

G2 — (number | teens) G3 | tys G4 | F
G3 — centsF|F

G4 — number G3 | G3

EE2 - G2

Table 13: kEnglish final states: dollar + cents amounts

sentence. Therefore there is a need to be able to parse such cases. ”Two hundred
dollars and fifteen cents” would be an example of a ‘dollars + cents’ amount fully
written in alphabetical letters. We should note however that these cases are not
as frequent as the writing of cent amounts in digits. Also we may want to try to
recognize solely full dollar legal amounts and if this does not produce satisfactory
results then switch to the second form. So we define 2 different grammars for the end
state E (Table 12 & 13). El (resp. EEL) stands for the parsing of full dollar amounts,
whereas E2 (resp. EE2) is able to parse both full dollar and dollar plus cent amounts.

In the grammar, identifiers beginning with a capital letter are non-terminal sym-
bols. S represents the starting symbol. The keywords ‘number’, ‘teens’ and ‘tys’
represent the classes of terminal symbols described in Table 14.

The keyword ‘teensminusten’ represents as its name may imply, the set of terminal
symbols ‘teens’ minus the symbol “ten”. The strings “hundred”, “thousand”, “and”,

“dollars” and “only” are terminal symbols. The terminal symbol ‘e’ represents an

CHAPTER 4. LEGAL AMOUNT PROCESSING 86

number = {“one”,“two”,“three”,“four”,“five”,*six",“seven”, “cight™,“nine™}
teens {“ten”,“eleven” ,“twelve” ,“thirtcen”, “fourteen” “fifteen™, *sixteen”,
“seventeen”, “eighteen”, “nineteen”™ }

tys = {“twenty” “thirty”,“forty”, “fifty™,“sixty”,“seventy™ “cighty™ “nincty™}

Table 14: Classes of terminal symbols for the English grammar

empty input. The size of the lexicon is 32.

No left recursion, nor any non-determinism is present in the above grammar.
Therefore it is acceptable for recursive descent parsing. We wrote a recursive descent
parser using the above grammar.

The classes ‘number’, ‘teens’ and ‘tys’ have been implemented separately using a
hash table (Table lookup algorithm from [KKR88]). This implementation allows for
fast matching of an input string to one of the classes.

At every stage of the parsing, the algorithm does print the expected classes for
the next input word. For example after having recognized a ‘two’ at the beginning
of the line, the parser tells us that it is expecting either an empty input, the word
‘dollars’, ‘hundred’ or ‘thousand’ as the next input. Any other string would resuli,
in an error message pointing out that the sentence does not form a correct amount.
We implemented a look-ahead mechanism. These predictions can be used at the

recognition level to limit the lexicon for a given input string.

4.4.2 French parser

Similarly as we did for English in the previous section, we designed a grammar that
is able to parse the legal amounts written in French up to an amount of 99,999%. Due
to the nature of the French language, the grammar is more complicated than the one
for the English language. The grammar is described in Table 15 and is represented
in Fig. 52. At the moment, we limited the grammar to the parsing of full dollar

amounts. We can see that when looking at the ‘simple’ end state E. Upon examining

CHAPTER 4. LEGAL AMOUNT PROCESSING 87

a databasc of French legal amounts, we may have to refine the current grammar. The
refinements may include allowing the parsing of the cent amounts if those are written
in full letters. We may also need to add a few terminal symbols that may appear in
the database of cheques.

Within the grammar, identifiers beginning with a capital letter are non-terminal
symbols. S represents the starting symbol. The keywords number, teens and lys rep-
resent the classes of terminal symbols described in Table 16. The keywords ‘number-
moinsunquatre’, ‘teensmoinsdix’, ‘teensmoinsdixonze’, etc...stand for some subsets
of the sets ‘number’, ‘teens’ or ‘tys’. For example, as we may guess from the name,
‘numbermoinsunquatre’ stands for the set ‘number’ minus the words “un” and “qua-
tre”. The above grammar allow for various formats such as “Mille et un dollars”,
“Mille un”, etc....

At the moment, the lexicon for the French amount consists of the sets number,
teens and tys plus the words “cent”, “mille”, “et” and “dollars”. Therefore the lexicon

size is 25, which is smaller than the lexicon size for the English amounts.

CHAPTER 1. LEGAL AMOUNT PROCESSING 88

S1

S2

D1
D2
T1

T2
T3
Ul
U2
Mi

C1

C2
C3
S3
D3
T4
TS5
T6
U3
U4

! L A A A A A !

L A A A]

un E | quatre S1 | numbermoinsunquatre S2 | dix D2 | teensmoinsdix DI |
(vingt | trente | quarante | cinquante) T2 | soixante 1'3 |

cent Cl | mille M1

vingt T1 | cent C1 | mille M1 | E

cent C1 | milleM1 | E

mille M1 | E

(sept | huit | neuf) D1 | D1

dix D2 | (number | teensmoinsdix) D1 | D1

et Ul | numbermoinsun D1 | D1

et U2 | dix D2 | (numbermoinsun | teensmoinsdixonze) D1 | DI
un D1

(un | onze) D1

(un | e) E | et Cl | quatre C2 | numbermoinsunquatre C3 |

dix D3 | teensmoinsdix E |

(vingt | trente | quarante | cinquante) T5 | soixante T6

un E [quatre S3 | numbermoinsunquatre E | dix D3 | teensmoinsdix F |
(vingt | trente | quarante | cinquante) T5 | soixante T6 | 15
cent C1 | S3

cent C1 | E

vingt T4 | E

(sept | huit | neuf) E | E

dix D3 | (number | teensmoinsdix) E | E

et U3 | numbermoinsun E | E

et U4 | dix D3 | (numbermoinsun | teensmoinsdixonze) F | E
un E

(un | onze) E

dollars | e

Table 15: Grammar for the French legal amount

CHAPTER 4. LEGAL AMOUNT PROCESSING

Figure 52: Parsing of the French legal amount

89

CHAPTER 4. LEGAL AMOUNT

PROCESSING

number
teens
tys

= {“un”,“deux”,“trois”,“quatre”,“cinq”,“six”,
douze”,“treize”,“quatorze”, “quinze”, “seize” }

= {“dix”’“onze”,“
N o

= {“vingt”,“trente”,

M " " ” W,

quarante”,“cinquante

”

" (e
)

111

soixante” }

sept”,“huit” “neuf”}

Table 16: Classes of terminal symbols for the French grammar

Chapter 5
Experimental Results

We describe in this chapter the results obtained after applying our computational
theory to the processing of cheques from our database. We will first discuss the
recognition of words using only our global classifier. The results on the recognition of
isolated characters will then be described; and finally the results of combining both
the word and character recognition results.

An example of the output produced by the legal amount recognition system is
shown in Fig. 53. For each word in the legal amount, the word recognizer produces a
ranked list of the 10 top possibilities (only the top 3 are displayed in Fig. 53). Then
the parser produces a ranked list of possible legal amounts. Note that the values
associated with each interpretation in Fig. 53 refer to a distance measure (e.g. the

smaller the better).

5.1 Global features recognizer

The word recognizer has been trained on a set of 1,496 legal amounts (5,322 words)
taken from our database of cheques described in Chapter 3. We tested the word
recognizer on a different set of 712 legal amounts (2,515 words), some samples of
which are shown in Appendix A. For clarification purposes, it should be noted that
the people who wrote the cheques in the testing database are different from those

who wrote the cheques in the training database.

91

CHAPTER 5. EXPERIMENTAL RESULTS 92

Efﬂ W&/&% e/;ff//%%/f

0128 eight 0.034 hundred 0060 and 0.243 eighty 0192 cighty 0034 dollars
0.279 hundred 0.209 thirteen 0.161 one 0333 eighteen 0205 eight 0270 eighteen
0.392 three 0211 fourteen 0.167 three 0352 eleven 0269 only 0295 thousand

0.118 eight hundred and eighty eight dollars
0.138 eight hundred and cighty seven dollars
0 146 eight hundred and seventy eight dollars

Figure 53: Example of legal amount recognition results

[Features [N= 1 2 5 10 |
ADS 72.6 84.0 94.3 98.4
AD 63.9 79.1 92.7 98.0 j

Table 17: English word recognition results (% correct in top N choices)

We experimented with two versions of our classifier: (a) ADS as in “Ascender
Descender Strokes” which considers the entire set of global features described in
section 4.3.1, and (b) AD for “Ascender Descender” classifier which is a simplified
version without the stroke features.

The size of our lexicon is 32 including the words ‘and’, ‘dollars’ and ‘only’. The
results of our ‘global’ classifiers on those images are shown in Table 17 which lists the
recognition rates for the correct result to be among the top N choices. Additionally we
show the recognition results for each class of our lexicon (Table 18). Note that these
results correspond to the words taken in isolation. The extent of the improvement
resulting from the use of the parser will be discussed in section 5.4.

The relative importance of each feature for the overall recognition performance
can be measured by the weights assigned by the genetic search (section 4.3.4) during
training. The values of the weights are shown in Appendix E. We recall from sec-
tion 4.3.4 that weights are in the range [1 — 255]). One can notice that greater weights

are assigned to the position of features (Wdap, Wadp, Wdip) than to their numbers (wyqn,

"HAPTER 5. EXPERIMENTAL RESULTS 93

[rFeatures " ADS | AD H
Class N= 1 2 5 10 | N= 1 2 5 10
one 62.5 88.5 100.0 100.0 86.5 92.3 97.1 99.0
two 77.5 93.3 100.0 100.0 23.6 89.9 989 1090.0
three 62.4 753 95.7 100.0 49.5 T72.0 96.8 100.0
four 65.5 79.1 90.9 100.0 60.0 78.2 91.8 100.0
five 60.2 80.6 97.2 100.0 30.6 38.9 93.5 100.0
six 70.5 86.3 97.9 100.0 36.8 66.3 98.9 100.0
seven 52.6 753 91.8 100.0 54.6 74.2 91.8 100.0
cight 87.6 93.3 952 98.1 72.4 78.1 87.6 98.1
nine 63.0 80.4 93.5 100.0 43.5 60.9 91.3 98.9
ten 52.9 61.8 88.2 100.0 52.9 70.6 88.2 94.1
eleven 55.6 62.2 T77.8 86.7 57.8 66.7 77.8 844
twelve 57.1 643 714 964 429 679 893 964
thirteen 58.8 73.5 94.1 100.0 35.3 529 73.5 88.2
fourteen 56.7 73.3 83.3 93.3 43.3 66.7 90.0 93.3
fifteen 59.5 714 833 929 40.5 54.8 T71.4 88.1
sixteen 39.1 52.2 69.6 100.0 25.0 45.8 75.0 95.8
seventeen 45.5 54.5 773 864 455 50.0 72.7 81.8
eighteen 74.1 81.5 92.6 96.3 63.0 77.8 88.9 100.0
nineteen 36.7 60.0 90.0 93.3 48.3 69.0 93.1 96.6
twenty 70.0 77.5 90.0 925 45.0 72.5 90.0 925
thirty 73.3 84.4 86.7 91.1 55.6 68.9 84.4 95.6
forty 58.7 739 87.0 93.5 58.7 69.6 91.3 100.0
fifty 60.5 73.7 81.6 94.7 474 684 789 89.5
sixty 37.5 625 875 97.5 375 55.0 725 975
seventy 59.2 714 939 98.0 59.2 75.5 91.8 98.90
eighty 86.0 93.0 953 100.0 81.4 90.7 95.3 100.0
n'nety 47.5 675 92.5 95.0 50.0 67.5 92.5 100.0
hundred 95.1 97.7 99.2 99.7 95.1 98.2 99.2 99.7
thousand 80.9 932 975 98.8 79.6 944 969 98.1
and 90.4 93.6 99.2 100.0 81.6 94.8 98.0 99.2
dollars 72.5 831 958 99.3 73.2 83.1 923 98.6
only 727 713 955 95.5 364 63.6 77.3 955
Average 72.6 84.0 943 984 63.9 79.1 92.7 98.0

Table 18: English word recognition results per class (% correct in top N choices)

CHAPTER 5. EXPERIMENTAL RESULTS 94

Wddn, Wdin). The greatest weight is assigned to the position of descenders. This re-
flects the fact that descenders appear less frequently than ascenders in the English
language and consequently they carry more information. One can also notice that
unexpectedly the weight assigned to the word length is almost the smallest one. This
might reflect the fact that reliable estimation of the word length (c.g. the number of
letters in a word) is hard due to the great variability in handwriting styles.

From the analysis of the results (Table 17 & 18), we note that the crude classifier
performs better on those words that have distinctive global features such as ‘hundred’,
‘thousand’ or ‘and’. The distinction between some word classes can be problematic,
For example, ‘Nine’ and ‘One’ both have similar features; an ascender at the beginning
of the word and a loop at the end of word, the loop in the ‘O’ not being a robust
feature. Since the AD classifier only makes use of mostly ascenders and descenders,
it has difficulty differentiating among some pairs of word classes with few and similar
features such as (‘One’, ‘two’), (‘One’, ‘Five’), (‘One’, ‘Six’), and (‘one’, ‘nine’).

In the results for the AD classifier (Table 18), it should be noted that for short
words, due to the limited number of features in the input, it is often possible to get
exactly the same distance of the input to several classes in the lexicon. For example,
the input image of a word “nine” can often match equally the classes “one”, “two”
and “nine”. Since the notion of a tie has not been implemented in our system, those
classes, instead of appearing as tied in first place, would appear as first, second or
third. In other words, in case of a tie, word c'~sses are ordered in the same relative
order as they appear in the data structure that defines our lexicon. ‘Therefore in
Table 18 for the AD classifier, recognition rates of 86.5 and 23.6 respectively for the
classes “one” and “two” do not imply that samples of “one” are recognized more casily
than those of “two”. In fact, it is only due to the fact that in case of a tic hetween
“one” and “two”, “one” always appears first. In practice, for the AD classifier, both
these classes are recognized with a low confidence value (section 4.3.5).

The use ot stroke {eatures in the ADS scheme allows to differentiate between the
difficult cases discussed previously. Indeed one can easily foresee that the use of
horizontal strokes should help significantly in differentiating among the classes ‘One’

and ‘two’. That is also what we realize experimentally. So the ADS scheme performs

CHAPTER 5. EXPERIMENTAL RESULTS 95

|| Character sets | Character case | Lexicon size | N = 1 2 5 |
All Lower 19 79.3 90.0 96.6
Upper 15 789 90.6 97.5
First & Last Lower 12 83.4 934 98.1
Upper 10 81.2 92.9 99.1

Table 19: Character recognition results (% correct in top N choices)

better than the AD on those word classes with few non-distinctive global features.
The AD and ADS schemes perform equally well on those word classes with distinctive
global features. Those classes are recognized with high confidence values and therefore
do not necessitate the extraction of additional features.
On the other hand, word classes with few global features (e.g. ‘one’, ‘two’, ‘five’,
..) are not recognized with high confidence values. Therefore, there is a need for
some classes to extract another important feature for a ‘fast’ reader [Wat77], namely
the characters located next to blank spaces. That is we should try to identify the
first and last letters of the words. Empirically we notice that the first letter is often

disconnected from the rest of the word.

5.2 Character recognition

The character classifiers were trained on a set of 5,615 characters (mixed lower and
upper case) extracted from our training images. We then tested on a different set of
2,414 characters from our testing databases. A few character samples extracted from
our testing databases are shown in Appendix A. Statistics on the number of samples
per class can be found in section 3.7.

For our specific application, we are faced with a lexicon consisting of 19 different
classes for the lower-case characters and 15 classes for the upper-case characters. The
results for both lower and upper-case characters are reported in Table 19. Since we
have to recognize only the first and last characters of words, we trained our classifiers

with the first and last isolated characters of words from our training databases. In this

CHAPTER 5. EXPERIMENTAL RESULTS 96

particular case, the lexicon sizes are reduced to 12 and 10 respectively for the lower
and upper-case characters. The recognition results on those characters are shown in
Table 19. It is to be noted that all of the results reported in Table 19 are solely based
on the character bitmap information. None of the contextual information described
in section 4.3.7 (e.g. the location of the reference lines) has been used here.

We should note that for these classifiers, the number of training patterns can be
as few as 1 or 2 samples per class. The lack of data is especially noticeable when
considering only the first and last characters of words. Still we believe that these
classifiers can evaluate the effect of integrating the character results and the word

recognition results.

5.3 Integrating character and word recognition

One should not underestimate the difficulty of integrating heterogencous recognition
sources, namely the character recognition results and the word recognition results.
Numerous investigations have been made on the combination of homogeneous rec-
ognizers [Ho92] which might imply that the subject is non-trivial. The scheme we
implemented for combining the character and the word recognition results is only a
first step towards a more complete study on the art of combining 2 heterogencous
recognition sources. The present scheme uses only very slightly the contextual infor-
mation described in section 4.3.7. As of today, we believe that we only investigated
the feasibility of integrating those 2 recognition sources. The next step will be to
fully use the complementarity of these 2 schemes in order to enhance the recognition
performance.

When merging the character recognition results with the word results, using the
scheme described in section 4.3.8, we obtain the new results shown in Table 20.
One can notice that since the character results are used to reorganize the top 10
solutions output by the word classifier, the top 10 score remains unchanged. Ior the
AD classifier, we rotice a small improvement in the top 5 solutions, while the main
enhancement resides in the boosting of the top 1 and 2 recognition rates. This is

due to the fact that the AD scheme lacks power to differentiate between classes such

CHAPTER 5. EXPERIMENTAL RESULTS 97

[| Classifier | Features || N= 1 2 5 10 |
Global + Character | ADS 73.5 84.6 94.8 98.4
Global only 72.6 84.0 94.3 984
Global + Character | AD 71.1 82.7 93.5 98.0
Global only 63.9 79.1 92.7 98.0

‘able 20: English word recognition results when merged with character recognition

as ‘One’ and ‘two’. Upon integrating the recognition results on the first character
with the AD scheme, a distinction can then be made between those 2 classes. The
enhancement observed when using the ADS scheme is not as significant since the latter
already has some capabilities of discerning some classes of first and last characters
with the use of horizontal, vertical and diagonal strokes. While the enhancement
in performance is not that significant for the ADS scheme, the integration of the
character recognition results still serves the goal of increasing the confidence value of
the top choice solutions when both word and character results overlap.

While we designed a scheme to integrate character with word results, little has
been done to investigate how the distance or confidence value of a given word hypoth-
esis should be boosted when its recognition is supported by the character results. This
point becomes espccially important when combining the word results to produce legal

amount candidates.

5.4 Legal amount recognition

Upon recognizing cach word, the results are sent to a language specific parser (sec-
tion 4.4) in order to output a list of the semantically correct legal amounts. Since
the parser puts constraints on the combination of words, the word level recognition
results increase accordingly. We computed statistics on the new word recognition
results after taking into account the context of a legal amount (Table 21). We also
report the recognition rates of having the correct full legal amount in the top N

choices (Table 22). In that respect, it is important to remember that the recognition

CHAPTER 5. EXPERIMENTAL RESULTS 08

| Parser | Features [N= 1 2 5 10 |
Yes ADS 774 88.2 96.3 982
No ADS 73.5 846 948 98.1

Table 21: English word recogaition results when using the English parser

” Features H N= 1 2 3 4 5 10 20]I
[ADS | 144 587 649 695 762 820 B87.0 |

Table 22: English legal amount recognition results

of the legal amount is only a ring in the chain making up a cheque processing systen.
The legal amount recognition results are to be combined with courtesy amount results
as well as the amount read on some utility bills. As such, the results displayed in

Table 22 reflect only the power of the legal amount module.

5.5 Extra: Processing of French cheques

While we were working on designing and implementing the legal amount recognition
system for the English language, a database of French cheques was being collected
using the same procedure and tools described in chapter 3. The current database of
French cheques consists of 1,861 cheques for an estimated number of 600 different
writers. We separated our pool of cheques into a training database of 1,345 cheques
(4,513 words) and a testing database of 516 cheques (1,622 words). Similarly as we
did for the English database, the authors of the cheques in the training database are
different from those of the cheques in the testing database. A few samples of the legal

amounts found in our testing database are shown in appendix A.4.

CHAPTER 5. EXPERIMENTAL RESULTS 99

[Language | Features [N= 1 2 5 10 ||

French ADS 71.9 84.6 94.0 98.7
AD 78.3 91.8 989 99.9
English ADS 72.6 84.0 94.3 984
AD 63.9 79.1 92.7 98.0

Table 23: Word recognition results (% correct in top N choices)

5.5.1 French word recognition results

The availability of this new database is an important step in order to test the design of
our system. We recall that we designed the current system with the primary concern
of creating a fully trainable module. One of the requirements being that the switch
to a different database and/or language should not require any redesign nor any re-
programming. As such we simply substituted the English training database with a
French one as well as substituted the English parser for the French one described in
section 4.4.2. To confirm that the above requirement still holds, we did not perform
any adjustments whatsoever of the parameters mentioned in Appendix E. The re-
sults obtained are reported in Table 23 along with the previously obtained results on
English words (from Table 17) for easy comparison. We also show the recognition
results obtained for each class in our lexicon (Table 24).

The first interesting point that we notice is that without any redesign nor any
reprogramming whatsoever, the system was able to be reused for the processing of
French cheques. May be even more surprising is the fact that without any modifica-
tions of the parameters mentioned in Appendix E, the results that we obtain for the
French cheques seem satisfactory. One can notice that for 2 classes, namely “huit”
and “dix”, the recognition rates are much lower than for other classes. Samples of
“huit” are misclassified as “cent” due to similar global features and the samples of
“dix" are misclassified as “six” and “deux”, once again due to similar global features.
A large number of these misclassifications are taken care of by the French language
parser when recognizing the words in the context of a legal amount.

Further analysis of the system’s behaviour comes from a comparison of the results

CHAPTER 5. EXPERIMENTAL RESULTS

100

| French Parser || YES NO |

Class N= 1 2 5 10 | N= | 2 5 10
un 86.7 93.3 96.7 100.0 86.7 93.3 100.0 100.0
deux 76.1 94.0 100.0 100.0 73.1 89.6 98.5 100.0
trois 81.3 96.0 98.7 100.0 76.0 96.0 100.0 100.0
quatre 924 99.0 100.0 100.0 95.2 97.1 100.0 100.0
cinq 89.6 96.1 100.0 100.0 922 94.8 100.0 100.0
six 72.6 90.4 100.0 100.0 64.4 83.6 100.0 100.0
sept 92.0 98.0 100.0 100.0 940 98.0 98.0 98.0
huit 69.9 91.8 98.6 100.0 274 78.1 100.0 100.0
neuf 76.6 95.3 96.9 100.0 71.9 922 98.4 100.0
dix 45.5 70.9 100.0 100.0 182 58.2 96.4 100.0
onze 84.4 91.1 95.6 100.0 79.5 88.6 95.5 100.0
douze 829 95.1 97.6 100.0 829 97.6 97.6 100.0
treize 59.5 83.8 100.0 100.0 73.0 89.2 100.0 100.0
quatorze 978 978 97.8 971.8 97.8 978 97.8 100.0
quinze 83.3 90.0 93.3 100.0 86.7 90.0 96.7 100.0
seize 514 68.6 97.1 100.0 514 743 97.1 100.0
vingt 92.6 98.1 98.1 100.0 852 944 98.1 100.0
trente 80.0 95.6 100.0 100.0 64.4 91.1 100.0 100.0
quarante 76.5 94.1 100.0 100.0 91.2 97.1 100.0 100.0
cinquante 95.0 100.0 100.0 100.0 95.0 100.0 100.0 100.0
soixante 84.5 97.2 98.6 100.0 84.5 944 98.6 100.0
cent 89.6 98.8 100.0 100.0 873 973 99.6 100.0
mille 89.4 98.5 100.0 100.0 80.3 939 98.5 100.0
et 95.7 95.7 100.0 100.0 95.7 95.7 100.0 100.0
dollars 96.9 98.5 100.0 100.0 89.2 923 96.9 100.0
Average 83.1 945 99.1 999 78.3 91.8 98.9 99.9 |

Table 24: French word recognition results per class with AD features

CHAPTER 5. EXPERIMENTAL RESULTS 101

obtained respectively from the English and the French words (Table 23). The most
obvious difference between the French and the English lexicon comes from the smaller
size of the French lexicon. One can notice that while the results for the ADS classifier
remained the same, the results for the AD classifier have significantly increased.

The results obtained for the French cheques seem to indicate that our featurc
extraction process is extremely robust versus different databases and languages. The
results obtained for the AD classifier seem to indicate that our ascender and descender
features and their associated parameters are independent of any database and/or
language. On the other hand, the ADS classifier does not seem to have fully taken
advantage of the smaller French lexicon; and that might imply that the stroke features
are not as robust as their ascender and descender counterparts.

One additional reason for the significantly higher recognition results for French
words when compared to English with the AD classifier (Table 23) is probably the fact
that French words do possess more distinctive ascender and descender features among
themselves. Whereas many English words have similar or no distinctive features,
French words do possess comparatively many ascenders and descenders.

In order to obtain higher recognition results for the ADS scheme on the French
database, one would need to optimize the weights of the classifier by running the

genetic algorithms mentioned in section 4.3.4.

5.5.2 French legal amount recognition results

Similarly as we did for the English cheques, we computed statistics on the word
recognition results when making use of the French parser (Table 25), as well as re-
porting results on the recognition of the correct full legal amounts among the top N
choices (Table 26). Table 26 includes the results on English legal amounts for easy
comparison.

Intuitively we expect the parser to increase significantly the recognition rates.
Indeed due to the nature of the French language, French amounts are generally longer,
in the number of words, when compared to their English equivalents. For example,
the English amount “ninety” is expressed in French with the 3 words “quatre vingt

dix". Consequently, as can be seen from Figs. 51 & 52, the French parser has more

]

CHAPTER 5. EXPERIMENTAL RESULTS 102

| Parser | Features [V = 1 2 5 10 |

Yes AD 83.1 95 99.1 999
No AD 78.3 91.8 98.9 999

Table 25: French word recognition results when using the French parser

| Language | Features | V= 1 2 3 4 5 10 20 |
French | AD [65.7 83.9 886 91.6 91.3 98.6 993
English [ADS || 44.4 58.7 649 69.5 76.2 82.0 870

Table 26: Legal amount recognition results (% correct in top N choices)

constraints, e.g. is more complicated, than the English one. The longer legal amounts
enable the parser to work more effectively; e.g. when an amount is made of a single
word, the parser has absolutely no effect.

Experimentally, we notice that the French parser contributes significantly to en-
hancing the recognition rate at the word level of the top 1 and 2 choices when com-
pared with the results obtained without the parser. Additionally, we notice that
the combination of the smaller French lexicon with more distinctive French words
and a more severe French parser leads to a real improvement when comparing the

recognition of the French legal amounts {Table 26) with the English ones.

5.6 Comparison of results

|

}

‘ We recall that the 3 major components that influence the complexity of a handwrit-

} ing recognition problem are the size of the lexicon, the type of handwriting and the
number of writers. The processing of handwritten bank cheques is a problem of a
small static lexicon with unconstrained handwritingand unlimited number of writers.
Therefore the only constraint is on the size of the lexicon and any attempts to tackle

the bank cheque processing problem should be tested on databases that do respect to

a certain extent the 2 major problem characteristics, i.e. unconstrained handwriting

CHAPTER 5. EXPERIMENTAL RESULTS 103

l | Language | Classifier [N = 1 2 5 10 ||
| Guillevic & Suen | English | Global features | 73.5 84.6 94.8 984 |
Guillevic & Suen French | Global features 78.3 91.8 989 99.9
Gilloux & Leroux | French HMM 79 87 95 98

Table 27: Comparison of word recognition results (% correct in top N choices)

and an unlimited number of writers. Unfortunately, in the literature, very few studies
on the processing of bank cheques do report results on databases which involve at
least a few hundred writers. As mentioned in section 3.1, to the best of our knowl-
edge most studies report results on small databases of only 5 to 25 writers. These
restrictions are obviously contrary to the nature of the bank cheque processing prob-
lem. Therefore these studies fall into a class of problem dealing with a small lexicon,
a small number of writers and a somewhat less “unconstrained” handwriting. The
small size of the database coupled with the small number of writers involved make
“true” unconstrained handwriting hard to achieve.

The lack of studies in the literature makes the comparison of results rather difficult.
As far as we know, the only study reporting results at the word level on a significant
database is done by a research team at the French Post Office [GL93]. They trained
their HMM based recognizer on a set of 2,492 word samples written by unknown
writers on postal cheques. The test set was made of another set of 2,492 words.
Their results as well as ours are reported in Table 27. Comparing results is not easy
since they refer to different databases, so we have to view the comparison on that

basis. It seems that at present our results are comparable to theirs.

5.7 Novel word spelling

While working on the databases that we collected on the island of Montréal, we had
to overcome some of our preconceptions about certain word spelling. Indeed we have
been faced with word spellings that could neither be found in our English dictionary
[Sin89) nor in our French dictionary [Dub86]. On the other hand, due the frequency of

CHAPTER 5. EXPERIMENTAL RESULTS 101

| Language | Original word [Novel spelling I

English fourteen forteen
forty fourty
ninety ninty

French dollar dollard

Table 28: Novel word spelling

appearance of such novel spellings, they could simply not be ignored and were inserted
into our training databases. The most common novel spellings that we encountered

are enumerated in Table 28.

5.8 Demonstration’s interface

In order to have “real-life” demonstrations, we designed a user interface (Fig. 54)
incorporating all of the modules developed so far in our system. It incorporates the
preprocessing operations, the basic segmentation module, the word recognition as
well as the parser. Upon clicking on appropriate buttons, one can demonstrate the
various features of the system as well as get the result from the recognition system.
That interface is also used to recognize on the spot the handwritten legal amounts

generated by the numerous visitors of our centre.

CHAPTER 5. EXPERIMENTAL RESULTS 105

Hlassitiv ' Retognies -

HE DO 0 TRT R e TR

0 Jis three O 061

forty

fifteen 0 397 mnme 0 103
seventy 0 429 four 0 108

e1ghty 0 447 two 0104
fourteen 0 458 one 0 150

0 224 forty three
0 244 seventy three

2

265 seventy nine
268 sewenty four
269 forty one
271 forty fave

Figure 54: User interface for demonstration purposes

Chapter 6

Conclusion

6.1 Summary of contributions

The first major contribution of this work is the creation of a database of cheques
that we later used for training and testing our system. This resulted in a one of
its kind database in a university setting dealing with handwritten information from
bank cheques. The in-place truthing procedure is also innovative and unique in the
literature. Its simplicity, yet power, makes it a real asset for further generations of
researchers working on our database. It can also be casily applicd to the tagging
stage of other databases.

This work introduced yet another simple, but no less efficient, algorithm dealing
with the slant correction of handwritten words. Its power cornes not only from its
simplicity but also from its robustness versus the numerous handwriting types found
in our database.

Last but not least, we designed a fully trainable word recognizer that should he
able to handle any small static lexicon of words written with the Roman alphabet. So
far tests have been made with the French and English languages. Qur computational
theory based on a psychological model of the reading process for a fast reader shines
by its simplicity and still compares equally with other published schemnes. It is to
be noted that this work is the sole study in the literature reporting results on the

recognition of handwritten English bank cheques tested on a significant database.

106

CHAPTER 6. CONCLUSION 107

This work also compares equally with the sole other study reporting results on the
processing of handwritten French bank cheques tested on a significant database.

it should also be noted that this work seems to represent the sole study imple-
menting the psychological model of reading of the fast reader. In other words, our
word recognizer in its first step appears to be the only one in the literature completely
bypassing the notion of characters in order to recognize words. All other previous
studies seem to have focused on the notion of characters in order to recognize words.
They do so either by segmenting the words into characters or parts of characters
or by extracting some global features to identify the presence of certain character
classes. Therefore all previous word recognition studies seem to be implementing the

psychological model of the reading process of a slow reader.

6.2 Strengths and weaknesses of the method

One goal of this study was the design of a word recognizer that would not require any
major redesign nor any extensive retraining time when the switch would be made to
a different training database and/or to different languages. Indeed being physically
located in bilingual Canada, the ultimate goal of this study is to provide a system
being able to process at least the 2 official languages, namely English and French. In

this respect, some of the strengths of the current approach are:

e The automatic learning capability of the system. The switch to a different
database or language does not require any redesign nor any reprogramming of
the system. The current system can be used to learn and recognize any small
static lexicon of words based on the Roman alphabet. So far it has been tested

on French and English.

e Our procedure to extract global features such as ascenders and descenders has
proven to be very robust versus the numerous handwriting types found in our

database.

e The number of parameters (Appendix E) has been kept fairly small for a rela-

tively complex system.

CHAPTER 6. CONCLUSION N

o The features as well as the design of the system are of such a general and robust
nature that our system can be casily applied to different languages based on

the Roman alphabet.

The principal weakness of the current approach is its difficulty in discerning word
classes with few distinctive global features. In the current application domain in the
English language, these are word classes such as ‘sixteen’, ‘seventeen’, ‘seventy' and
‘ninety’. For those word classes, the global recognizer performs poorly. ‘Therefore
more emphasis and work has to be put into the extraction and recognition of word

details as well as in the combination of the word and word-details recognition results.

6.3 Future work

This work has built a solid foundation for a more thorough investigation into the still
sparsely studied recognition of handwriting applied to the processing of bank cheques.

Future work will certainly concentrate on some of the following items:

e Improvement of the word details extraction. This might be realized by using a

more thoroughly studied segmenter such as the one in [$tr93].

e Creation of a word details training database using the word details extraction
tools. It should be remembered that we do not aim at recognizing characters but

rather distinctive entities located at the beginning and end of words (Fig. 47).

e Possibly extraction of word details in addition to the first and last characters

of words.

e Thorough study into the combination of the heterogencous recognition results,

namely words and word details.

e Communication between and combination of the legal amount processing mod-

ule, the courtesy amount module and the payment slip module.

e Eventually, as is done in the widely investigated field of digit recognition, the

combination of several word classifiers should be studied. Due to their different

CHAPTER 6. CONCLUSION 109

nature, the combination of our word approach computational theory with a more

conventional character based approach should prove to be interesting.

References

[(BBD*93] C.J.C. Burges, J.I. Ben, J.S. Denker, Y. Lecun, and C.R. Nohl. Off line

[BGSO]

[BG83]

[BHD91]

[BM90]

[BS89]

[Cas94]

recognition of handwritten postal words using neural networks. Inferna-
tional Journal of Pattern Recognition and Artificial Intelligenee, T(-1):689
704, 1993.

M. K. Brown and S. Ganapathy. Cursive script recognition. In Proceedings
of the International Conference on Cybernetics and Socicly, pages 47 51,

Boston, MA, Oct 1980.

M. K. Brown and S. Ganapathy. Preprocessing techniques for cursive

script word recognition. Pattern Recognition, 16(5):447- 458, 1983,

M. Mohammad Beglou, M.J..J. Holt, and S. Datta. Slant independent, let-
ter segmentation for cursive script recognition. In international Workshop

on Frontiers of Handwriting Recognition, pages 375-380, Bonas, France,
1991.

Dan Bloomberg and Petros Maragos. Generalized hit-miss operations. In
SPIE Image Algebra and Morphological Image Processing, pages 116 128,
1990. vol. 1350.

Radmilo M. Bozinovic and Sargur N. Srihari. Off-line cursive script, word
recognition. IELE Transaclions on Pattern Analysis and Machine Iulel-
ligence, 11(1):68-83, Jan 1989.

Sean Casey. Checks still america’s favorite payment method. [tem Pro-

cessing Report, page 7, December 1994.

110

REFERENCES 111

[CGM93)

[CGMY5)

[CHIT*90]

[DH72]

[Dub86]

[EK75)

[Far79]

[Fav93]

[FS90]

T. Caesar, J. M. Gloger, and E. Mandler. Design of a system for off-line
recognition of handwritten word images. In Proc. European Conference
dedicated to Postal Technologies, pages 156-161, Nantes, France, June
1993. Service de Recherche Technique de la Poste.

Torsten Caesar, Joachim M. Gloger, and Eberhard Mandler. Estimating
the baseline for written material. In Proc. International Conference on
Document Analysis and Recognition, pages 382-385, Montreal, Canada,
August 1995. IEEE Computer Society Press.

Pecter B. Cullen, Tin Kam Ho, Jonathan J. Hull, Michal Prussak, and
Sargur N. Srihari. Contextual analysis of machine printed addresses. In
Proc. USPS Advanced Technology Conference, pages 779-793, 1990.

R. Duda and P. Hart. Use of the hough transformation to detect lines and

curves in pictures. Communications of the ACM, 15(1), January 1972.

Jean Dubois, editor. Dictionnaire de la Langue Fran caise, lexis. Larousse,
Paris, France, 1986.

Roger W. Ehrich and Kenneth J. Koehler. Experiments in the contex-
tual recognition of cursive script. TEEE Transactions on Computers, c-
24(2):182-194, February 1975.

Raoul F. H. Farag. Word-level recognition of cursive script. {EEE Trans-
actions on Compulers, c-28(2):172-175, February 1979.

John T. Favata. Recognition of Cursive, Discrete and Mized Handwrilten
Words Using Character, Lezical and Spatial Constraints. PhD thesis, State
University of New York at Buffalo, 1993.

John T. Favata and Sargur N. Srihari. Recognition of handwritten words
for address reading. In Proc. USPS Advanced Technology Conference,
pages 191-205, 1990.

REFERENCES 12

[GBL93]

[GL93)

[Gol89]

[Goof67)

[GS93)]

(GS94)

[GS95)

[GW8T)

Michel Gilloux, Jean-Michel Bertille, and Manuel Lerous. Recognition
of handwritten words in a limited dynamic vocabulary. In Proc. Kuro-
pean Confercnce dedicated to Postal Technologics, pages 148 155, Nantes,

France, June 1993. Service de Recherche Technique de la Poste.

Michel Gilloux and Manuel Leroux. Recognition of cursive script amounts
on postal cheques. in Proc. European Conference dedicated to Postal Tech-
nologies, pages 705-712, Nantes, France, June 1993. Service de Recherche

Technique de la Poste.

David E. Goldberg. Genetics Algorithms in Search, Oplimization and
Machine Learning. 1989.

Kenneth S. Goodman. Reading: A psycholinguistic guessing game. In
Frederick V. Gollasch, editor, Language and Literacy: The selected wril-
ings of Kenneth S. Goodman, pages 33-43. Routledge & Kegan Paul, 1967.

Didier Guillevic and Ching Y. Suen. Cursive script recognition: A fast
reader scheme. In Proc. International Conference on Document Analysis
and Recognition, pages 311-314, Tsukuba Science City, Japan, October
1993.

Didier Guillevic and Ching Y. Suen. Cursive script recognition: A sen-
tence level recognition scheme. In International Workshop on Fronticrs of

Handwriting Recognilion, Taipei, Taiwan, December 1994,

Didier Guillevic and Ching Y. Suen. Cursive script recognition applied to
the processing of bank cheques. In Proc. International Conference on Doc-
ument Analysis and Recognition, pages 11-15, Montreal, Canada, August

1995.

Rafael C. Gonzalez and Paul Wintz. Digital Image Processing, pages 125
130. Addison-Wesley, 1987.

REFERENCES 113

[HHS94]

(H092]

[11S787]

[Hue08]

[Hul94]

[Jaig9]

ED

[KSN93]

[LF89)

Tin Kam Ho, Jonathan J. Hull, and Sargur N. Srihari. Decision combina-

tion in multiple classifier systems. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 16(1):66-75, January 1994.

Tin Kam Ho. A Theory of Multiple Classifier Systems and Its Application
to Visual Word Recognition. PhD thesis, State University of New York at
Buffalo, May 1992.

Robert M. llaralick, Stanley R. Sternberg, and Xinhua Zhuang. Image
analysis using mathematical morphology. IFEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-9(4):532-550, July 1987.

Edinund Burke Huey. The psychology and pedagogy of reading : with a
review of the hislory of reading and writing and of methods, tezts, and
hygiene in reading. Cambridge [Mass.] : M.LT. Press, 1908. 1968 ed.

contains new foreword and introduction.

Jonathan J. Hull. A database for handwritten text recognition re-
search. IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(5):550-554, May 1994.

Anil K. Jain. Fundamentals of Digital Image Processing. Prentice Hall,
Englewood Cliffs, NJ, 1989.

Brian W. Kernighan and Dennis M. Ritchie. The C' Programming Lan-
guage. Prentice Hall, second edition, 1988.

F. Kimura, M. Shridhar, and N. Narasimhamurthi. Lexicon directed seg-
mentation - recognition procedure for unconstrained handwritten words.
In International Workshop on Frontiers of Handwriting Recognition, pages
122-131, Buffalo, NY, 1993.

C.G. Leedham and P.D. Friday. Isolating individual handwritten char-
acters. In IEE Colloquium on ’Character Recognition and Applications’
(Digest No.109), pages 4/1-7, London, UK, October 1989.

REFERENCES 11

[LL94]

[LSG+95)

[Mas75]

[MG92]

[Mor91)

[MSY92]

[NB65]

[Pav82]

[Pit29]

[PM92]

Seong-Whan Lee and Dong-June Lee. Slant estimation and correction for
off-line hangul script using hough transform. In International Conference
on Computer Processing of Oriental Languages, pages 353 358, Tacjon,
May 1994.

L. Lam, C. Y. Suen, D. Guillevic, N. W. Strathy, M. Cherict, K. Liu, and
J. N. Said. Automatic processing of information on cheques. In FEEE Int.
Conference on Systems, Man & Cybernetics, Vancouver, Canada, October

1995.

D.W. Massaro, cditor. Understanding Language : an Information-
Processing Analysis of Speech Perception, Reading, and Psycholinguistics.
Academic Press, 1975.

Sriganesh Madhvanath and Venu Govindaraju. Using holistic features
in handwritten word recognition. In Proc. USPS Advanced Technology
Conference, pages 183-198, 1992.

Jean-Vincent Moreau. A new system for automatic reading of postal
checks. In International Workshop on Frontiers of Handwriting Recog-

nition, pages 121-132, Bonas, France, 1991.

Shunji Mori, Ching Y. Suen, and Kazuhiko Yamamoto. Historical review
of ocr research. Proceedings of the IEEE, 80(7):1029-1058, July 1992.

U. Neisser and H.K. Beller. Searching through word lists. Britush Journal
of Psychology, 56:349-358, 1965.

Theo Pavlidis. Algorithms for Graphics and Image Processing. Computer
Science Press, 1982.

Walter Boughton Pitkin. The art of rapid reading; a book for people who

want to read faster and more accurately. New York : McGraw-I1ill, 1929.

Theo Pavlidis and Shunji Mori, editors. Proceedings of the [ELLE, vol
ume 80. IEEE, July 1992.

REFERIENCES 115

[Pre92]

[SayT3]

(SBMS0]

[SBSV94]

[SC94]

[Sch92]

[Ser82]

[SheT5)

[Sin89]

[Smi69)

William H. Press. Numerical recipes in C: the art of scientific computing.

Cambridge University Press, 1992.

Kenneth M. Sayre. Machine recognition of handwritten words: A project
report. Patlern Recognition, 5:213-228, 1973.

Ching Y. Suen, Marc Berthod, and Shunji Mori. Automatic recognition
of handprinted characters - the state of the art. Proceedings of the IEEE,
68(4):469-487, April 1980.

Stephen J. Smith, Mario O. Bourgoin, Karl Sims, and Harry L. Voorhees.
Handwritten character classification using nearest neighbor in large
databases. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 16(9):915-919, September 1994.

Giovanni Seni and Edward Cohen. External word segmentation of off-line
handwritten text lines. Pattern Recognition, 27(1):41-52, 1994.

Jiirgen Schiirmann. Document analysis - from pixels to contents. Pro-
ceedings of the IEEE, 80(7):1101-1119, July 1992.

Jean Paul Serra. Image Analysis and Mathematical Morphology. Academic
Press, 1982.

Wayne Shebilske. Reading eye movements from an information-processing
point of view. In Dominic W. Massaro, editor, Understanding Language:
An Information-Processing Analysis of Speech Perception, Reading, and

Psycholinguistics, chapter 8, pages 291-311. Academic Press, 1975.

John Sinclair, editor. Collins Cobuild English Language Dictionary.
William Collins Sons & Co Ltd, London, England, 1989.

F. Smith. The use of featural dependencies across letters in the visual
identification of words. Journal of Verbal Learning and Verbal Behavior,
(8):215-218, 1969.

REFERENCES 1o

[Smi85a]

[Smi85b]

[Smiss]

[Smi94]

[SNL*92]

[Sri92]

[Str93]

[Wat77]

[Zac84]

Frank Smith, editor. Reading. Cambridge: Cambridge University Press,
2nd edition, 1985.

Frank Smith, editor. Reading without nonsense. New York: Teachers

College Press, 2nd edition, 1985.

Frank Smith, editor. Understanding reading: a psycholinguistic analysis
of reading and learning to read. Hillsdale, N.J. : L. Frlbaum Associates,
4th edition, 1988.

Frank Smith, editor. Understanding reading. Hillsdale, N.J. : L. Erlbaum,
5th edition, 1994.

Ching Y. Suen, Christine Nadal, Raymond Legault, Tuan A. Mai, aud
Louisa Lam. Computer recognition of unconstrained handwritien numer-
als. Proceedings of the IEEE, 80(7):1162-1180, July 1992.

Sargur N. Srihari. High-performance reading machines. Proceedings of the

IEEE, 80(7):1120-1132, July 1992.

Nicholas W. Strathy. A method for segmentation of touching handwrit-
ten numerals. Master’s thesis, Concordia University, Montréal, Québece,
Canada, September 1993.

Gloria Sydna Waters. The word supcriority effect in fluent and less fluent
readers. Master’s thesis, Concordia University, Montreal, Quebee, Canada,
September 1977.

G. Zachopoulos. Slant estimation and correction for off-line cursive script.
Master’s thesis, State University of New York at Buffalo, 1984.

Appendix A
Handwriting Samples

We show in this appendix some samples of handwriting taken from our English and
French testing databases. It is to be noted that occasionally some images of legal
amounts, words or characters had to be scaled down in order to be displayed in this
appendix. Therefore the differences in size for a given legal amount, word or character

are even greater than what is shown in the figures of this appendix.

A.1 English legal amounts

Some samples of legal amounts taken from our English testing database are shown in

the following pages.

117

APPENDIX A. HANDWRITING SAMPLES L8

Mg fwrelned, Mﬂif&y o ——— 5

Mire hundred cnd nime , mxleen cents
 — Fifl% four <3

— fihves e

~8IX Thesand anal Bighty Foue —°
Fom}y -~ Se\ler\

e

fevenly -three

Sevt’/) f&ousanJS .Yeveq ’)uoc/rmz/s anc/ SpHy ope =

— Nd:‘,w L _ SR T |

— 420%(b dred elglby dourr ’w‘
9&%0\%{6@«0(avnd Fw b’lmv(ho(4*6/7"'(&. %,. a,&

En'o)ﬁf Awrrecd mnleon —— _

-—

oV

— Yv \v\ww& soualwen — 35

APPENDIX A. HANDWRITING SAMPLES 119

= muma /mM Aol m‘/}w?lzu\—-——‘“/é
5/2/»1‘ Thorvworrd and Xv’}ﬂ%_%«r&« &7

= Six e dteH o tovec oo

— gcrey Wﬂ?’% ajé/.._-——————-——""

= N ieteon axd 19

TW_% u‘?lvf' Kollors » K;r’% Ax
Thnfeem . DPollor Owery— —
e — %
Gt - Thnssed Fhe — 2
Apelean)

~+ten ¢7

~— €leven 0(0”:\(5

APPENDIX A. HANDWRITING SAMPLES 120

O"\Q ﬂ\)»&o\.\é\ &\'w \‘\W\A&Q\ é’ ?oxm-— een
/(ft\st HReowcnch wo Remdieds ,Q«‘q(kh/ e,

awty Heaw. hunded iy fonr g1 ok,

Owe aad /001-6 - hete tonly
f\f\/%cﬂ?/fdﬁ aﬂ%‘“- or

Stx RunsSensl & T BV —r oo,
T {"7%8671 = 0o
Jom %@M@nu/M%n ditle

&Mdﬂw 7
Fovurdasn, — 4

é‘:opa o drerad ety - :F:ue (L
Two ool gz'x/h/}, "

M‘ﬁw hwnded msl eleven _ %X
Seventeen Ond = = &

APPENDIN A. HANDWRITING SAMPLES

121

Eght [Hund v ‘ﬁﬁhhar Three auns{ 92

Mine Aeoveoms 1! Severs lerrored 'ﬁgfee/)

K, Aismdosd minedoon —31
Jhree — __ o0
A———ﬁwn/ Acllars » e

Fowr Qundreds amd %'x‘t? . two

:Zf_fe W—-ﬂéa« — K
lwelle doblre mimebion

one Fhetwamd. W'waso'p —G3

—Af—MWM Lo —— ys
"’Mﬁ-%@%-—r -/7

Sootowrdber ot Sprbinn follps —
Fijty -twt’ st

APPENDIX A. HANDWRITING SAMPLES 122

o

Drven

- FOU(' lA,u.quea, OArA e’eve,\ S3

Two- }?urzcbzecﬂ and zlwen'fy 7€u)u
daj* Yhouwoand ;tm hundwed and hoelve —33

\\ -, " 5

G thousand F‘ve Bunddred Hirky Lwo

Ten —#7
Fre lucided ond sody-ome dollans — - = 63

ﬁo — 73

seven ‘wvu{rea(au.l &we.n-j7-:eveq ‘;f/

Four hisndiacl acd bisly dollaes __ ol
Ninet, - ora. dollors S5
— o

’%W/équ@ o

o
[J%]

APPENDIX A. HANDWRITING SAMPLES 1

T——— e L\w-}-v{ﬂ(\~\-\.‘-y 7)""'—\- a~c A %6—
— pogsers thovaond and ,wat‘{-{-’o‘m —

M AN QU
fve hundred omd i flean 05

\7,“,.,_ M%% #o

Ahonae. humdnad dmd &w"&ﬂ,(\
—— o MM,@%? Srne —""

/(%f'ﬂc, P 5;2

—S<2n xX
i i .
Se Veabeen

One humdaad, Auection e

e o ool Hose Judid $fifly e~ x

— Dix —
L%WW* —0¢

APPENDIX A. HANDWRITING SAMCLES 124

9.‘71& - Olass ouby——
bight Nondreol arcd foity ace dobluac

—o hundud ovd \é%{ﬂa/\ —>

ONU hunama o dollavy
1%356&%%\\ &M,m)“-NI‘L.

APPENDIX A. HANDWRITING SAMPLES 125

XL

— one thowtatd mne Aencued ﬁken;-”
Hive Mendhedl ant 25

ONYy Eacht TRwiands uoe ndeland tn-
— - ¥7) MMW —_—
MWWWW—-———”
— ol — 7%
“m@-@mmwdﬁwwﬁg, —F
St Thovwarnd) Forno Hhumdre) Sucer **
V.M() 7‘4—-‘)"" L0

- Tkt Puumdnad Jforry oL — &/

W Yhowsard angd, &M{M?&ﬂ —

APPENDIN A. HANDWRITING SAMPLES

/\vu%ﬂt Fie rdnd gna thinken. 9
Jhe hunaaas ano gy poiass ——————=
e Feandrnd oughly, = Foar ——
Feﬂﬁ% C =
—— bk Zﬂ_#ﬁ
gt husad thven. ——

Esht-Tproeedd + Gicliin Dutloes —75

gix Wwnidad and 8x %
—Aine Fotoand Do Hodbad Sy, Frce =
‘9"&4-\/&._, —_— 0o
B\/o ﬁau;./»s —

Je.-b«.t(?/ Ak Y R— a7

— S000, SN —

fe/L. oéﬂmf’ ane 5471% /Z’w ant’
%W doelars— —_—

APPENDIX A. HANDWRITING SAMPLES 127

b 8

— 2ght MW—M
Gttt 16—
/Mw MMW

S;WM M 2ok >
ﬁ__.-—-—-——% . ¥

— Jwo Jhundad Elavenc > 0
Lol Honlood Ep b s ¥

T ift Srwsoascatt i o

Fivg flundnd Hhirton, and @k 2ighly - deeen 07113_
L loklunl 152

D hundired oA &EW&V\ __e®
Four trsenlyy = dawen o

APPENDIX A. HANDWRITING SAMPLES 128

——~?¢H Ynowand by b e

~ Appen hondnd i iy s ————
Gl e Devdand @@ laon S ——
~ T huomdned asity guie ®
Wu Huuw,ond e hundad
Foun Hurdrad ard Zoandy - e o

Ning. Thousamd Mine HudieA Bl 74//% —
Ou,a-'dztv —
K rven Awnoisd ond wda e
Jooa Jonolned and boalle — *°

fwma/%mscmd seven hundied — '3
Thiwee vhowsand ﬁ—ﬁhﬁﬂwﬁn&ﬂﬂd o
—=po S Aollort W;{

Four undred ang fifreon delloss and. é:da-m

APPENDIX A. HANDWRITING SAMPLIS 129

.

FIve THOUSand /e Hunaned ond 7277 »ure —

Seven haonartoel ond Lhindan

’%IWM Jo

ove wind/ed. Sourtun dollag 0&3*9“

R

— N
bty dhnee 70
Tve Yenndlind! «47'3(7— wing dollors £ 51(?57[Ctnf

Four Thousand and eleven dothms— %
- e\a\\‘\“ \'\\)\V\d CeC‘J +U~>€<\"T\-§\-wl

APPENDIX A. HANDWRITING SAMPLES 130

—_— /:/Fd"o-v- ?/&ﬂ \aid
7/&4 M%?W/%
—— Ao huisndrad ard. 2aghdy o
Mw@xm\m — b

38

Leventy- e Aoy
Ome dyumd aed swu&j S an *o
?/M Aollaco —se
ggﬁ(&n as-llors

Foit Fowsanet M/Mv@/m&wg-—— d
jaw\f/wmw Toro Fundiad 2nd prserdaen, %"
e Tousond. S hudred. hrotn,
P Four Hendud £fdmﬁy —efphf NS5
e fundred denty Tuo oud

FAuwsle olellonre ~ -
Fazzr &x«mc{/&/ IOJXZ/,ZQ(A. -

APPENDIX A. HANDWRITING SAMPLES 131

Mq\w MM\W &.»P.\m'*“e'
e hunctad and mmﬁ%u —_—
by o st miy——————
-”///Mé/nf Arvpprid ad m/m&edow///w
=10 Wwaend sopen Rundror and loven—
divhund o d d’uqh&oﬂ) - {%00
Lce Auraud M@? ome ——SH

Cra hundied ond Fhitian
'MWWW———“—’“

um]%-ng-f ¥
/&: Sloosand W-A.«ol«/a@ g

Fithe. s
i) s Fhcoond e ool Sl

’LA/ZL& Au/)wZﬂem/ a.m,l M _—B
Five WCQM!‘A/M@”

APPENDIX A. HANDWRITING SAMPLES 132

— Forn Yurdred, Feveldpe P

/""""'//-(xa: Wa—nﬂ%/lo X

—_— ggﬁt Huousend and #7)2 Twe o
88)\K Thowaamo. Fe. wumdsod Q\S\X“%Q/r% 67

Nine fundre At Hirdee n «?
6&0&»_ -

fee fwded a.d Direfee
77le Wo/ qu«/%ﬁ%_o/

Lith A e Ot ok Ao ——
Foe hundeed eard Jyl—m: dolle ond 29

Yhrte fonclocol ot Zon —

Ciglt - Umsad &5¢¢ Hosled e fors Con—
Feptar *

APPENDIX A. HANDWRITING SAMPLES 133

Fw dudd o f mtos — o
CN—EUAN) gy
A twitid dbdlir

e N Noneed + Yoo~y
one Nurdhod and oo dotlhro ———

7@,4/ QL//W avol M %M"Cmté

— Ve Q1o Wonskead, aipn—
A&‘oe - hurdud and Lightun W
O Ww/%.; ,@}M &

l\j e lton and -KNWKX -tHvae cp s

Swly - Sevtr. bollax, ——

33

APPENDIX A. HANDWRITING SAMPLES 131

A.2 English words

The words shown in this section are also taken from our English testing database,
They have been slant corrected. The words are different from the samples of hand-

writing shown in the previous section (A.1).

APPENDIN A. HANDWRITING SAMPLES 135

APPENDIN A. HANDWRITING SAMPLES 136

JIQMMQQW

Eleven E‘Q"{V\ e_le,vev\,

éi’{mbnj”k‘“‘“ {een ‘(‘\ feen i ez
0L b P e H’LMW h—ﬁw\

{Ems pppeifln o

fEman

F. F’/‘T q \ 9+y
By g
Rfty Mi

iy
I

APPENDIX A. HANDWRITING SAMPLES 137

Tova
four Xfm I "Jowr éc:wv

Fown pwr Toun %PM fm
Fou/LLu/\ {00(,'[4\9’\){@(1?&0 QMMW

Fourbeen frsteen e ben foutin o
Y fousten GouhBn g g0 doutivec
hsalred homeing Olucmdnact hendrasl Hoodeedl.
bodred. Hunaredhuediad Hundred Handred
Fudced # undudhundred hiaodeedhomdsd

PDive M N i AL TS
nmne nine asns. AN N)- nQ
mM Nine wme Y Tune
wincteon. NiretzonNinekeeonNantean sl

C’\ﬂj,v\n:ke.uv\ Niagheon, N:lUl:tQM..\ {M&EQ"\ W‘l‘%

APPENDIX A. HANDWRITING SAMPLES

N (\me*\(
Dw 0w One
one ome Ore
[g PN I SWVe e
only. mkl OM
Ay Y

oy Y

wuLn DN e N suwen
trem. SeUen Nore
Sevien A [N e
SUNHLN cponizen ALANLLD

Gotanbaan =ROENTNSns,

WQAMMM peocdeen

138

N‘,MH M
N\M%»G Nlﬂ\x["la
ey
(e

Owe

Uhe

e

oy Bl
ity

Seve Anm

seven e
SMWN— S LU
M ronerfon.n

2 verd o fuaniean

Sy Sy

APPENDIX A. HANDWRITING SAMPLES 139

&W Jo ey
ot St

%M‘Lv{ Sovenuf-ﬂ M\I»o' QVm{\-‘,

T&w Thirteen 'Vw\tu.\ Thirteen Hhitern

St Sk M
Six fet

Aix Ry Our

2. wx Si
sictee~GiXTLN sexTeen
¥ e, dalop i SStnn .
Sh&w\ I Mi‘w«/

y (SRS IR iy
miw‘\‘em

APPENDIX A. HANDWRITING SAMPLES 140

ot Drintion tholwn tooteen 'fhpﬁnm.,

+ it s Prickion Thotet. Ywdan HULIEON
Tuabiz Ty ‘H“"‘ba TMJ"a _d":b
Thinty A gty v, Bk
Ay gy iy G e
le:g/ thowsand Thowsand Trowsand thmsand
Mot Haouroud thensord Ahowsanel Wonasd
Hooronod honsodle Thossend Bheam cometothrcrasomnol
“Chowsomd TR thnee Twue 4"’&
Thiee A e Thaae Ahe
Fhrce e Fow Awe Thaee
Thoee “Twd/vedwelvetle Codat
Tudve Fodee Twelst o utlut
AR At tlnelin Bt o

W‘%ﬂiy Tuucnhl "'WWAZ l ‘;E

APPENDIX A. HANDWRITING SAMPLES

141

APPENDIX A. HANDWRITING SAMPLES 142

A.3 Characters

A few characters extracted from our English testing database are shown in the fol-

lowing figures. These characters have also been slant corrected.

APPENDIX A. HANDWRITING SAMPLES

Py wrr=x 22 20 o)
AW prrvx 222 QD w
\UEA\L.J\QMJ\‘_WUP xT = 2 OOn\U N v
AWOW L c==x2Z00 VN «
WU e v 12 & onod\P
AW =z 12= 0 «V
AFlomWiuw YT 2 22 0O vn
awwWwwimF =22200nr AR
Povwa- bt =220 0N w»
AR p LT 2= O v
U wuMN cnTts 220N
€W Wi b \WTT =2 NOO%Q/

11

APPENDIX A. HANDWRITING SAMPLES

SR .

«.\r(.T\QQadlUIdQ
s> ¢ 2 0o 3> % ¢
— % 3§ 4 s S T o
TTa\anad..dlme
FY—v 6 ¢« S 3= -0
FTOOY s § 3 =T
=" s xS =0T
/Iu_lTOaa. o U -0 «—
T s s s o O
—plm 2 ¢ 8 8 T
w A=~ o s e =

o
2

a:.&.dla, d o IO A —=

LT~ o

LS T

Y/

o
S
v
v
J
J
S

do— o=
& T iy T C
o Yoo
o VYSo
o o G &
o wNSL
o YEhT
YV v

145

AT Ll D e e = &
Q\J&..U&!u\h\\hVM(-\L n.:nr\N

N oo < S f e e e C e <

PSS o= L £ 3 . - o2 - — o s
SNe-) L < . . e~ & ¢ 7
O N D A S S-S T N P
043«11\5\“\ =S - o em N - K <
~~ DIV = - . . - K ¢
~ e~ £ x-< - . e - R =
= ODNT) S e - - e e e —m <
nddr)drUQ..UK\.mln/c - —_——ee €
AT VYN L = £ . 1(..."..\..\W

APPENDIX A. HANDWRITING SAMPLES

116

APPENDIX A. HANDWRITING SAMPLES

O 0 v © o 0 o

o J o o
0 o 0 0 0 0 © O o 0O ©

Q

V\Ano

G-

¢

0

0 o [

0

¢

Or r n h vy ¢ r r

0
[

(o]

¢

¢

Y

¢ N O T

4

v % o N a+-—F 2 O 5
“n % L ——T—+ I >
N U N~ e == 33 O 3
A0t 5 >
ANV =+ F S5 30
29 VP g = 4 T = I
AWV M- = s S5 3
~ W u+- a4+ 3 3 >
IR T e st =T
-~ N n &M 4 LT 5 o
v P

147

APPENDIX A. HANDWRITING SAMPLES

¢ V v VN N uUu NV Vv

O U v

W X HESN ~ &)
$ % > w5oTD—
WXWXWGVIJ.N‘
wxxkj.ﬂm.d
TN % TN a5
3 X * x> ~>o_
3 # x>\ ")
ww%*xV/V/u.U
§ 3 X A%~ Do
UVQWKK\%MIM!U\O
5 2 2R ot)3
> v.\/meNu/Jq(

Y

Ww W wwaaw w w

vy Uv v N v

APPENDIX A. HANDWRITING SAMPLES 148

A.4 French legal amounts

A few samples of the legal amounts found in our French testing database are shown

in the following pages.

APPENDIN A, HANDWRITING SAMPLES 149

Mg —
@7*«/4//‘_””

— Ol Quaze———— I
— @wfgﬁ Cﬁ%""&i

—_— 4,4_./2'4, =3
——-—-’M* 3\
< &;{7‘ QAug/a Ce?
— . %7’;}& 20
v oo Kl
Arein fomt Aoyt ,su.go‘
_______.__%ﬂ/\z”z/& 4
Lt -Heei? %

W(Za«dewiL —)

APPENDIX A, HANDWRITING SAMPLES 150

Storlede LU sty ——
Mex mitly gumze dptlars —— ¥
— Hut ant aovze dellazs —»

Ve s
— Aly tnd /@@%7/ 50
— g eltn) peing o
- Syt @k Dey =
~ s —s¢
— Wum’%??l e oo

//éux, muua»fcui u/f%/f,—?«ﬂuz—fo
@qa_/u O T ?z.ugx — 77
/Mﬁ%‘w M@J oouzp — &7

S‘L ‘-'-‘M\’ 3/.44.«0».(1-
—_— ;)u‘/’&u(' %@ML-QAM ——-——“——Ml

APPENDIX A, HANDWRITING SAMPLES 151

\') ‘\M.(\.g m xF— \«a
W, Tewp Al
— Tk - Wt 00

&n@ centt 7/wal"c% ¢ b
Ay panlar peig e —— d
st Cutfong-

M do\\o.r v

APPENDIN A. HANDWRITING SAMPLES

)2(//&4(,2{' ?aah/mjf/@aa mg,o_._
T/ dollaeo e3

bl Fosis s gy |

APPENDIX A. HANDWRITING SAMPLES 153

g ot dacatic- rinpts

UTE W TV iy
’°‘UC£U<A- wulQo %‘M.TL- Mw‘se

—AOC wole o Kol ket W —$Y

— douge ———— x4
— Thoo Cert oy 3§
—\\%M&Jw Wwom%}:—m

—-%fwﬁwé/wm%-——

APPENDIN A. HANDWRITING SAMPLES 154

7’141’0/'5‘ -
gaY; ¢ ’;e%)v — &
Co QM (g — vJ
M (f:-ow 2k
— Agt b A Rt 29

~—T e Cen? x/mmz’z-wf.a/o/@oi
ij > Tnende - Hoid dAollone. — R4
» o

T en” G uitee Ving? @/—

‘-—————qu‘& ?uq&l 6
Dw;c rlle. Treate Goade — §3
[P0 ran¥e dewx — H
/(&4/ el SoyarZ Zaz'x: 2

/?A%Awéﬂﬂ-'ﬁé/-ﬂ“xvaf-m-?f——"

N _ Y

APPENDIX A. HANDWRITING SAMPLES

155

Appendix B
Baseline Skew Correction

Several methods have been experimented in the literature in order to detect the
baseline skew of a word. We will present in this appendix some of these methods as

well as other approaches that we have tried.

B.1 Determination of the baseline skew

B.1.1 Principal axis decomposition

In order to determine the average skew of an image, we decided to experiment with the
computation of its principal axes [GW87] which are the eigenvectors of the covariance
matrix obtained by using the pixels within the image as random variables. The two
ei=envectors of the covariance matrix point in the directions of maximal region spread,
subject to the constraint that they be orthogonal. A measure of the degree of spread
is given by the corresponding eigenvalues. Thus the principal spread direction of a
region can be described by the largest eigenvalue and its corresponding cigenvector.

If we consider the coordinates of each pixcl in the object to he two-dimensional

random variables, then the mean is computed as follows:

R

my

1 P

156

APPENDIX B. BASELINE SKIEW CORRECTION 157

and the covariance matrix:

1

I [& .
C, 5 [Z .v,m'l - mym, (3)
1=1
where P is the number of pixels from the image that need to be rotated (e.g. fore-
ground pixels), and z, is the vector composed of the coordinates of the ¢** pixel.

In order to find the cigenvalues and the corresponding eigenvectors for the covari-

ance matrix, we nced to solve the following two equations:

del(M —-C;) = 0 (4)
C.X = XX (5)

where X is an eigenvector. Upon solving Eqn. (4), we obtain two values for A. We
sort Lhese values so as to assign the greatest absolute value to A;. Doing so, we will
assign to the eigenvector ey, the principal axis for the image under consideration. We
proceed with solving Eqn. 5. The result of these computations for a given input word
is illustrated in Fig. 55. The algorithm for the computation of the eigenvalues and

corresponding eigenvectors is as follows:

1. Compute the mean and covariance matrix as mentioned in Eqns. 2 and 3
2. Compute the eigenvalues using Eqn. 4.
Put the greatest absolute value of A into A;.
3. Compute the eigenvectors e, e; using Eqn. 5 corresponding
respectively to the eigenvalues A and A,.
4. From the coordinates of e, output the value of the baseline skew

corresponding to our coordinate system.

If we align the original coordinate system to the eigenvectors, we can normalize the
baseline skew of input words so that it becomes aligned to some standard direction.

Experimentally, we notice some problems when using the eigenvectors to deter-
mine the baseline skew of an input image. Indeed since the eigenvectors are con-
strained to be orthogonal, they are not only sensitive to the baseline skew but also
to the slant of the word (for a description of the word slant, the reader is referred

to section 4.1.3). Therefore the baseline skew cannot be properly determined with

APPENDIX B. BASELINE SKEW CORRECTION 158

e2 cl

Figure 55: Eigenvectors ey, e3: Principal axis decomposition

eigenvectors when the input word happens to be slanted. An example of this is shown
in Fig. 56. Here the word has a true baseline skew of 20 degrees. The computing of

the principal axes gives us a skew of only 16 degrees.

B.1.2 Least square method

One method commonly used for "he detection of baseline skew is to fit a straight line
through a set of data using a least mcan square approach. The data can be a set of
local minima corresponding more or less to the baseline of the text [BG83, CHITt90,
CGM93] or the set of all foreground pixels from the input image [MG92].

The basic idea is to fit a reference line through a set of points so that the sum of
the squares of the distances of each point to the line is minimized. The true distance
of a point to a given line is the length of the normal vector joining the line to the
point. For computation purposes, this distance can be approximated or evaluated
more precisely. In the first case, the computations are casier. We will investigate
both methods.

APPENDIX B. BASELINE SKEW CORRECTION 159

e2 el

Figure 56: Eigenvectors: Not appropriate for baseline skew estimation

A pproximate distances

Lincar regression is used to fit a straight line to a set of pixels from the input image.

The equation of the line is represented by:
y=az+b (6)

We compute the vertical distances between the line and the actual data points as
shown in Fig. 57. In order to find the best line to fit our data, we wish to minimize
the sum of these distances. This sum is called the error sum and is computed as

follows:

E =) d)

> (yk — azy — b)?

k=1
The minimum occurs when the derivative equals zero. Therefore we set to zero the

partial derivatives of E with respect to the two unknown coeflicients a and b. This

gives us the two equations:

oFE

e = —2,§mk(yk—-azk—b)=0 (8)

APPENDIX B. BASELINE SKEW CORRECTION 160

d2
y2
+ + X
x1 x2
_
Figure 57: Linear regression

or
T ZJ;,—(LTk—b—O (9)

Solving these two equations for a and b gives

g = " Dok=t TkYk = k=1 Tk Li=1 Yk (10)
N k=1 T — (Lhay 74)?
b — EZ:l .'Ei EZ:I yk - Zz:l Tk E;::l mkyk

n Z;::l xi - (zz=l .'l:k)2

Once the slope a and the y-intercept b have been calculated, the equation of the

(1)

straight line which best fits the data has been determined. The bhaseline skew can
then be estimated as the angle between the best line fit and the y-axis and is expressed
as 0 = arctan(a).

Experimentally, the linear regression method applied to the entire set of pixels
from the input image and the eigenvectors method seem to give similar results for the
approximation of the baseline skew. Better results could certainly be obtained if one
were to find an effective way to separate the ascenders and descenders (section 4.3.1)
from the main body of the word. However this involves further processing of the

image that we do not see fit to discuss here.

APPIENDIX B. BASELINIE SKEW CORRECTION 161

v (-sin 6, cos 0)

u (cosB, sing)
P(x, y)

[Figure 58: Polar coordinate system: (0, p)

Precise distances

The precise distance of a point to a line is understood here as the minimum distance
of a point to a given line. This distance is obtained when we perform the orthogonal
projection of the point on the line. The distance can easily be computed if we express
the equation of the line with (0, p) where 0 corresponds to the angle of the line to
the r axis and p is the distance of the line to the origin of the coordinate system

(Fig. 58). The coordinates of every point on the line satisfy the following equation:
Pi=p (12)
As a result the equation of the line can be expressed as:
—zsinf+ycosf—p=0 (13)

This representation has the advantage of having well defined parameters for any
types of lines. In the previous case where the equation of the line was represented by
y = ax + b, problems could occur in determining the coefficients when the line is to
become parallel to the y-axis. In this case, a becomes hard to evaluate since its value
is heading towards the infinity.

The angular representation is also well suited for computing the distance of any

given point to the line. Let us consider the first case of a point P(z,y) which lies

APPENDIX B. BASELINESKEW CORRECTION 162

Figure 59: Polar coordinate system: positive distance of a point to a line

above the line as shown in Fig. 59. If we compute the scalar product of the two
vectors P and v, we get the distance D shown in the figure. Since we are interested

in the distance d from the point to the line, we need to subtract p from D:

P# = D
Pi-p D—p
ﬁ.f)’—p = d

We note that d has a positive value.
If we consider the second case where the point is located below the hine (Fig. 60),

we get in a similar way the distance d":

Ps = -D'
Pi-p = -D' —p=—(D'+p)
Pi-p = —-d

So for any given ooint (z,, ¥:), its distance to the line is cormputed as:

d = Pi-p

APPIENDIN B. BASELINE SKEW CORRECTION 163

v(-sin 0 , cosB)

\/<e"

.

Figurc 60: Polar coordinate system: negative distance of a point to a line

d, = —z,sinf+y,cosf—p (14)
with the value of d, being:
0 if P€line
di = ¢ >0 if Pis above the line

<0 if P is below the line

The notion of a point lying ‘above’ the line meaus that the point lies on the side of
the half plane pointed to by the normal vector ¥.

In order to get the least square fitting line, we have to find the values of 6 and p
that minimize the sum of the square of the distance of each point to the line. The
sum of distances is expressed as follows:

N N
E=) d*=) (—a,sin0 4 yicos 0 — p)* (15)
1=1

1=1
We want to find the values of 6 and p that set the partial derivatives to zero. We

have to solve the following two equations:

%—f = 29N (—zicos0 — y;sin0)(—z;sinf + yicos§ — p) = (16)
% = 23N (~1)(~z;isin0 + y; cos 0 — p)

APPENDIX B. BASELINE SKEW CORRECTION 164

From the second equation, we can express p as a function of . The set of equations
(16) can then be simplified to:

Asinfcos0+ 2Bsin*0 — B =0 (17)
1 N N

p= N(——sinOZ.r,-{-cosOZy,) (13)
t=1 =1

with the constants A and B defined as:

N

1 Y A
A =) (af-9f) - Rl) wi)? ﬁ(gy.)"'

t"'l i=1

B = Z:c,y, 21,21/,
1=1

1=1

In order to solve (17), we perform a substitution of variable:

a=sinf = cosf =V1-a? (19)
Equation (17) becomes:

AoVl —a? + B(2a* - 1) =0 (20)

By putting one terin on each side of the equality sign and raising both terms to the

power of two, we get the following:
Ca'-Ca®+ B*=0 (21)
with the constant C defined as:
C=A*+4B
We perform one more substitution of variables as follows:
7y =a (22)

Equation (21) beccmes:
Cy =Cy+B*=0 (23)

APPENDIX B. BASELINE SKisW CORRECTION 165

The solution to the above equation is:

_if 1Al ,
7—2(1_{:\/5) (24)

Since €' >= A?, % <=1, which means that both solutions for v are positive. At
this point we recall that v = a® and a = sin0. Since we will compute baseline skews
approximately in the range of [-20, +20], we are interested in the value of v that

corresponds to a small angle; c.g. in the range [—20, +20]. Therefore we choose the

R R
7_2(1 sqrtC) (25)

We know that o is equal to +,/7 and should satisfy the equation (20). This gives us

smaller of 4:

a single solution for «. Lastly we get 0 = arcsin(c):

— arcsin [[E1 — JALS ,
6 = arcsin (:i:\/g(l - sqrtC)) {(26)

Using moments, Jain [Jai89] gives a simpler formula for the computation of 6. For

a shape represented by a region R containing N pixels, the centre of mass is expressed

as:
1 1
m=—y, >y.m, ﬁ'::—ﬁ S Y om (27)
(mm)eR (m,n)eR

The (p, q) order central moments become:

foa= 3o Y(m—m)yn —n) (28)

(mn)eR

and the orientation, representing the angle of axis of the least moment of inertia, is

given as:

1 2411)
0 = —-arctan | ————— 26
2 (ﬂz.o — Ho,2 ()

Experimentally, we did not notice any significant improvement when using the

precise as opposed to the approrimate distances of a point to a line.

APPENDIX B. BASELINE SKEW CORRECTION 166

(c) (d)

\.

Figure 61: Local minimas: (a) original image (b) local minimas (¢) pruned local
minimas (d) outliers removed

B.1.3 Local minima

The above described least square fitting method is usually applied to a small set of
points as opposed to all the pixels from an input image. Generally the local minima
are chosen as the restricted set. An example of an input image and its associated
local minimas is shown in Fig. 61 a,b. We recall that in our system an input image is
represented as a linked list of connected components. For each of these components
we compute the local minimas of the lower part of the contour. The resulting sct
of points (Fig. 61 b) need to be pruned to remove those points lying on retrograde
strokes as well as those for which the component they belong to lie on top of another
connecied component (Fig. 61 c). In [CGM93], they refer to this pruning procedure
as projecting the contour of all top level connected components to the lower margin.
In this way, they determine the lowest contour parts.

In order to determine the baseline of the word, one still needs to remove those

points that do not lie on the baseline, as for example the local minima of a descender.

APPENDIX B. BASELINE SKEVW CORRECTION 167

Indeed orientation problems do occur when the local minima selected do not all lie on
the true baseline of the word. This pruning is usually accomplished by fitting a line
through the set of minima by the least square fit approach and removing the outlying
points (Fig. 61 d). While this seems to work in some cases, it might have undesired
effects on other images. In Fig. 62 ¢, we notice that the least square fitting line is
positioned away from the points of interest so as to minimize the square distance to
the outliers. As a result, when removing the points that are farther than one standard
deviation (Fig. 62 d), we notice that we lost one of the desired minimas as well as
kept one of the undesirable minima. For that reason, Press ([Pre92] p. 700) refers
to the least square fitting as a non-robust technique, due to its undesired sensitivity
to outlying points. Therefore a more robust approach should be investigated for the
removal of outliers from the set of local minima. Such an approach can be minimizing

the sum of the absolute distances

E

z: i) (30)

n
Y- lyk —azi — bl
k=1

as opposed to the square distances as in Eqn. 7.

Caesar & al. [CGM93, CGM95] use the least square measure but assign to each
minimum a weight reflecting the curvature of the stroke where the point lies. A peaked
minimum has a lower weight than a flat minimum. An iterative linear regression
analysis is then anplied to the set of minima. In each iteration, the furthest point
is removed from the sct. The procedure is repeated until the remaining least square
distance is less than some acceptance threshold. This iterative weighted process seems

to produce a reliable system for estimating the position of baselines.

B.2 Rotation of the original image

In order to normalize the baseline skew of our data, we need to rotate the images so
that their baseline axis is aligned with the axis of the coordinate system. The process-

ing involved is represented in Fig. 3. We note that the rotation is performed around

APPENDIX B. BASELINE SKEW CORRECTION 168

L

Figure 62: Local minimas: (a) original image (b) pruned set of local minimas (c)
least square fitting line (d) resulting set of minimas

APPENDIX B. BASELINE SKEW CORRECTION 169

d
:

J Rotation
J v X v
! Translat:on i
sl <« |-

Figure 63: Baseline skew normalization

the mean of the image. The coordinates of this point are computed following Eqn. 2.
The three operations of translation, rotation and final translation are combined into

a single transformation matrix. The rotation algorithm we are using is as follows:

For every pixel of the final rotated image:

1. Compute the coordinates (7,j) of the corresponding pixel in the
original image.

At this point, we have two options A or B:

2.A If the original pixel value is non-zero, set the rotated pixel.

2.B Compute the number of pixels among the neighbours of (7,j) which
have non-zero values.

If the number of non-zeros is greater than a given threshold,

then set the rotated pixel.

We may want to choose option B if the angle of the rotation is great (e.g. say greater
than 50 degrecs) and the image resolution is low. Option B does compensate for the
distortion encountered in greater angle rotation. For our typical application, option

A followed by a smoothing operation is sufficient.

APPENDIX B. BASELINE SKEW CORRECTION (70

Intuitively, it may seem more logical and faster to perform the rotation in a differ-
ent way. That is to start from every non-zero pixel of the original image, compute the
new coordinates in the rotated image, and set the corresponding pixel. Experimen-
tally though, such an approach leads to output corrupted by a lot of white pixel noise.
The results have a better graphic quality when rotation is performed as specified in

the above described algorithm.

B.3 Summary

We described several techniques for the computation of the baseline skew of a given
input image. None of techniques described seem to clearly outperform any of the
others. More tests on actual skewed data would be needed to des'gn and evalunate a

truly reliable algorithm.

Appendix C

Slant Correction Algorithm

This appendix describes the computation of the vertical slanted histograms used in
the slant correction algorithm as well as the shear transformation of an image by a

given angle.

C.1 Computation of the slanted histograms

We compute histograms at various angles from the vertical axis by steps of ‘delta_teta’
degrees. In a single scan of the image, all of the slanted histograms are computed.

The algorithm used is as follows:

For each pixel of the image (¢,]):

For each of the slant values (k *delta_teta):

1. Compute the new value v of the ordinate j in the slanted histogranm.
Its value is computed as follows:
v =j — (height — i) * tan(k * delta teta)

where height represents the height of the image.

o

Increment the count in the v column of the k*! histogram:

histogramy[v] = histogrami[v] + 1

The algorithm described here assumes that the origin of the image is at the top left

corner with the i and j coordinates increasing downwards and to the left respectively.

171

APPENDIX (. SLANT CORRECTION ALGORITHAI l

-3
t

L ;...

y j %
= o
X (height-i)tane
Y e — -
1
height
height-i
10
v J
N

Figure 64: Computation of the slanted histograms

Iig. 84 gives a graphical representation of the computation of the new ordinate »
from j. The formula is valid both for positive and negative angles; that is hoth for
right- and left-slanted words.

In our application, we did fix the value of delta.leta to § degrees. It can be set to
a lower value if processing time is not a matter. For both left and right directions,
the nuinber of histograms computed is ‘nb.histograms’ (set to 15). As a result, we
compute a total number of 29 histograms for angles varying from --70° to +70°, by

steps of 5°.

C.2 Shear transformation

Once the average slant of a word has been found, we wish to correct the image in
order to obtain a ’slant-free’ image. In order to do so, cach pixel of the original
image is transformed into a ‘new’ pixel with a formula similar to the one used for the
computation of the slanted histograms. For cach pixel (¢, j) in the original image, we

compute the new coordinates (u,v) of this pixel in the ‘slant-free’ image as follows:

APPENDIX €. SLANT CORRECTION ALGORITIM 173

w=1

v =) — (height - i) « tan(0)

where 0 is the average slant of the input word. Fig. 65 gives a graphical representation
of the computation of the new coordinates (u,v) from (¢, j). Point A is transformed
into point B. We note that points belonging to the bottom row of the image, as we
would expect, are not modified by the transformation. It is therefore important to
apply the shear transformation to images that have been previously skew corrected.
It is also necessary to eliminate the possible blank rows (and columns) that are
surrounding the image. This latest task is performed by an ‘auto_crop’ module.
These operations arc performed prior to the slant correction of the image.

We note that the general shape of an image with a small slant will not be changed
significantly by the slant correction operation. On the other hand, the quality of
the resulting image will be lessened for greater slant values. Indeed it is to be noted
that while the y-coordinate is corrected, the x-coordinate remains the same. In other
words, the height of the word is not changed while the width of the image will probably
change. As a result, the greater the value of the slant, the greater the variation
of the aspect ratio of the image. Experimentally, the observed degradation in the
image quality is not significant for our processing. The worst case (most slanted
handwriting) in our database is a sample of small handwriting (small height) with a
slant of 60 degrees to the vertical. The image and its slant corrected version is shown
in Fig. 66. One can notice that the elongated length of the letter ‘h’ for example is

much shorter in the slant corrected version.

APPENDIX C. SLANT CORRECTION ALGORITIIM 174

y]
= I
X (height-i)tane
y B~——
u, 1 1
height
height-i
0
v J
.

Figure 65: Shear transformation by a given angle 0

w%
{‘\\.\v-v—-o RO D D NS | e DN

7
T v Pe trtreP o =0 g it~ f‘~¢, o 9’?"4/:_3

Figure 66: Shear transformation of an image initially slanted at 60 degress

Appendix D

Mathematical Morphology

Mathematical morphology provides tools based on shape characteristics for the pro-
cessing of digital images. A good introduction to the 2 basic operations of mathe-
matical morphology (crosion and dilation) is presented in the paper by Haralick &
al. [HSZ87). The interested reader, though, should not overlook the hook by Serra
[Ser82]. Of special interest is the hil-miss transform (HMT) defined by Serra. Usual
erosion and dilation is only a hit transform. We are restricted to “hits” and “don’t-
care” in the structuring clement. This severely limits the generality. The HMT, on
the other hand, is an extremely general pattern matching operation. IIMT gener-
alizes the function by looking for match simultaneously in the foreground and the
background pixels. For some applications of the HMT, the interested reader is re-
ferred to [BM90]. In this latter paper, Bloomberg demonstrates among other things
how to detect lines of only a given thickness.

[shall present in this appendix the 2 fundamental operations of MM (erosion and

dilation), as well as the derived operations of opening and closing.

D.1 Dilation and erosion

Mathematical morphology is based on set theory. The set of all the black pixels in a

black and white image constitutes a complete description of the binary image. Sets

175

APPENDIX D. MATHEMATICAL MORPHOLOGY 176

in Euclidean 2-space denote foreground region in binary images. Sets in Fuclidean 3-
space may denote time varying binaiy images, or static graylevel images. Additional

dimension space may denote additior.n' image information like color.

D.1.1 Dilation

Dilation combines two sets using vector addition of sct clemer ts,

Definition 1 Lel A and B be subsets of EN. The dilation of A by I3 15 denoted by
A @ B and is defined by

ABB = {ceEN|c=a+baec Aandbe B)
{ce BN |3ac A, Fbe Bye=a-+b)

Ezxample:
l——.‘ ole
ele eoje|e
ST B [l
A B AdB

A= {(0,1),(1,1),(1,2),(2,0)}
B = {(0,0),(0,1)}
A® B = {(0,1),(0,2),(1,1),(1,2),(1,3),(2,0),{2, 1)}

The dilation is commutative and associative becanse addition is commutative and

associative.

I

A& B BopA
A(BaC) = (AoDB)dC
In practice, the roies of the sets A and B are quite different. A is the image undergoing

transformation and B is referred to as the structuring clement.

The dilation operation can also be considered in terms of image translations:

Proposition 2 A a subset of EN. z ¢ EV.
The translation of A by z, denoted (A); is defired as:

(A)z = {c€ EN |c=a+z for somea € A}

APPENDIN D. MATHEMATICAL MORPHOLOGY |

-3
~1I

The dilation of A by B can be computed as the union of translations of A by the

elements of B:

A®B= (A
be B

When the origin belongs to the structuring celement, the dilation is said to be exten-
sive. This means that the dilated image contains the original. On the other hand, if
the origin does not belong to the structuring element, then it may happen that the
dilation of A by B has nothing in common with A.

Ezample:

[o] ofofele
oleje]e 1
(o] o|e|efe
{ B AaB

D.1.2 Erosion

The erosion combines two sets using the vector subtraction of set elements. For A

and B, sets in the Euclidean N-space, the erosion of A by B is defined as follows:

Definition 3 The erosion of A by B is denoled by A© B and is defined by:

ASB = {ze EN|z4+b¢€ A for cvery b€ B}
= {z€ EV|Vbe Bx+be A)
= {z€ EV|Vbe B,3c€ A,z =a—b}

The erosion of an image A by a structuring element B can also be expressed in

terms of intersection of image translation:

Proposition 4 The erosion of an image A by a structuring element I3 is the inter-
section of all translation of A by the points —b(b € B):

A6 B = [(A)w
beB

Still another way to express the erosion follows:

APPENDIX D. MATHEMATICAL MORPHOLOGY 178

Proposition 5 The erosion of an image A by a structuring element B is the sct of

all clements x of EN for which B translated to ¢ is contained in A.
Ao B={zreEN|(B), <A}

Framplc:

o

e/
B A6B

A= {(0,0),(0.l),(O,Z).(O,:}),(].l),(?,l)}

B = {(0,0),(0,1)}

A©B= {(0’0),(0.1).(0,2)}

> (0|ele

I'he erosion in non-commutative.

D.2 Opening and closing

In practice, the dilation and crosion operations are usually applied in pairs. An image
is cither first croded then dilated or first dilated and then eroded. As a result, the
image details smaller than the structuring elements have been suppressed.

The opening opcration is defined as the combination of the erosion followed by
the dilation. Closing is referred to as the compound of the dilation followed by the

crosion. The definitions of these two ‘new’ operations follow:

Definition 6 The opening of an image A by a structuring element K, denoted by
Ao K is defined as:
AocoK=(A6K)d K

Definition 7 The closing of an image A by a strucluring element K, denoted by
Ao I is defined as:
A K = (A K)o K

Erample:

APPENDIX D. MATHEMATICAL MORPHOLOGY 17y

I eoloj0|O® o L 2K J
* e ®
® []
A N AOR AoN = (AONM)DA

Fzample:

® ® o|loje|e eole|e
ofe [®le] olele ole
A K A A Aoh =(APh)ON

D.3 Gray scale morphology

In the previous examples, mathematical morphology has been expressed in terms of
set theory. A pixel in the transformed image was either selected or non-selected.
Hence we presented the binary morphology. The operations described earlier can be
extended to handle gray scale images by using a min or max operation. The gray-scale

dilation can be computed according to the following proposition:

Proposition 8 Let f: F - E and k: K — E. Then f Dk : F i K — I can be
computed by:
(f @ k)(z) = max {f(z — 2) + k(z)}

2€ K
r-z€F

In a similar way, we can express the gray-scale erosion:

Proposition 9 Let f: F > F and k: K = E. Then fOk: FOK — I¥ can be
compuled by:
(o k) @)= min {f(z +2) - K2))

z+2€F

Gray scale opening and closing are defined in a similar way as with binary images.

Definition 10 Let f : F — E and k : K — E. The gray scale opening of f by the
structuring element k, denoted f ok is defined by:

fok=(fak)Dk

APPENDIX D. MATHEMATICAL MORPHOLOGY 180

Definition 11 Lel [: F — E and k : K — E. The gray scale closing of f by the
structuring element k, denoted f o k is defined by:

fek=(fok)Ok

D.4 Implementation
The basic algorithm for both the binary and gray scale dilation operation is as follows:

For each pixel X of the final image
{
max=0
for each non-zero pixel Z of the mask
if X-Z is a non-zero pixel of the image
then max = MAX(max, f(X-Z) + k(Z))

final image: value of pixel X: max

£(X-Z): value of the pixel at coordinates(X-Z) in the original image

k(Z): value of the pixel at coordinates Z in the mask

We note that:

(7 non-zero pixel of the mask) A (X — Z non-zero pixel of the image
F)
= Z 4+ (X — Z) = X non-zero pixel of the resulting dilated image

by definition of the dilation of 2 images.
Using a slightly different algorithm, we notice that the algorithm performs better

in terms of time efficiency. Therefore, we used the following algorithm for the dilation:

For each non-zero pixel X of the original image

{

max=0

APPENDIX D. MATHEMATICAL MORPHOLOGY

for each non-zero pixel Z of the mask
max = MAX(max, £(X) + k(2Z))

final image: value of pixel X+Z: max

f(X): value of the pixel at coordinates X in the original image

k(Z): value of the pixel at coordinates Z in the mask

Appendix E

Parameters
Scction Parameters Description Value
4.3.1 tans Ascender, descender detection 0.5
4.3.1 tpas Ascender, descender detection 0.6
4.3.1 tpa Ascender, descender detection 0.6
4.3.1 Lstrt Extraction of strokes 2.5
4.3.1 tyera Extraction of strokes 0.5
4.3.1 toira Extraction of strokes 0.5
4.3.4 K knn classifier 3
4.3.4 Nearest neighbour classifier weights adjusted by Genetic algorithms
4.3.6 ta Extraction of character 0.5
4.3.6 teo Extraction of character 2.0
4.3.6 ta Extraction of character 04
4.3.6 fecw Segmentation of character 1.25
4.3.8 crt Character confidence 1.5
4.3.8 CONFTHRESHOLD Word confidence threshold 0.35
4.3.8 TOP.SOL Integration word - character results 5
4.3.8 TOP_PERMUTATION Integration word - character results 5

APPENDIN E. PARAMETERS

AD scheme: Weights assigned to cach feature sub-distance

Section Parameters Description Value

4.34 Wdap weight for distance position of ascenders 194
Wdan weight for distance number of ascenders 11
Wddp weight for distance positions of descenders 240
Wdn weight for distance number of descenders 83
Wlp weight for distance position of loops 187
Wdin weight for distance number of loops 148
Wewi weight for distance word length 96

ADS scheme: Weights assigned to cach feature sub-distance

Section Parameters Description Value

4.3.4 Wdap weight for distance position of ascenders 248
Wan weight for distance number of ascenders 92
Wydp weight for distance positions of descenders 122
Wddn weight for distance number of descenders 238
Walp weight for distance position of loops 219
Wqin weight for distance number of loops 108
Wawl weight for distance word length 177
Wqys weight for distance vertical strokes 156
Wahs weight for distance horizontal strokes 177
Wyses weight for distance south-east strokes 123
Wasws weight for distance south-west strokes 95

183

