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ABSTRACT

It is well documented that side walls interference
effects can alter the steady hydrodynamic force coefficients
of single bluff bodies set in a narrow channel. The variation
of the steady drag and 1ift coefficients for a two dimen-
sional circular cylinder and a triangular prism due to wall
interference are reported here for a large range of blockage
ratios. The effect of wall constraint on the Strouhal fre-
quency is also examined for a limited range of blockage
ratios. The gap velocity and the contracted jet velocity
are used to normalise the steady force coefficients and the
vortex shedding frequency. The resulting dimensionless para-
meters are shown to be generally constant in the range of

blockages tested.
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INTRODUCTTION

The need to use a model relatively large, compared to
the test section dimensions in model simulation occurs due
to the imposed physical limitations. Some of these may be
related to the sensitivity of instrumentation, which requires
a threshold value of a physical variable to be present for
effective recording (higher signal to noise ratio). In some
applications, one may be forced to provide a large obstruction
in a relatively small area as in air ducts. In such cases,
power estimates which depend on the pressure losses can be
easily obtained once the force coefficient data is available
for these oversized obstacles. When the model is larger, the
construction of a geometrically similar body is simpler, as
considerable detail can be incorporated in it with ease., From
a purely practicél view point, much of model testing is done
in flows bound by side walls while the prototype applications
are generally in unlimited flows. All these factors indicate

thatwall interference data is needed in practical applications.

The results of blockage study on single bodies will often
provide some qualitative leads related to interference effects
caused by adjacent members in grouped bodies. Interference of
flow past groups of bodies include applications in heat ex-

1,2,3
’

changer tubes ocean pilesu, bridge piers5 and grouped

buildings.

ANALYTICAL METHODS

Glauret® discussed the characteristics of interference
effects and classified them for purposes of mathematical

modelling.

Maskell’ provided a correction formula based on the concept
of a quasi steady wake bubble. He used momentum balance argu-
ments and estimated the effective increase in the velocity due

to wall interference. He checked his theory based on the data



of Fail®., He explained constraint (blockage -~ see appendix 1)
as an excess in the dynamic pressure. This implies a dynamic
similarity which renders the pressure distribution to be in-
variant when the body is set in a narrow channel except for
a scaling factor which depends on the base pressure Pp. In

other words, Cp/k? is to be constant,

where,
CD = the drag coefficient, and
u, = ku dEnotes the separation velocity
u = the undisturbed velocity
k = an emphirical constant.

Shaw's results?® for flat plates indicate that the contribution
of the down stream section is the predominant factor in deter-
mining the magnitude of the drag at higher blockages. Since
the value of k is closely related to the base pressure co-
efficient, Shaw's results lend support to the invariance of
CD/k2 for large blockages. While striking a momentum balance
between the down stream section at the vena contracta and the
section far upstream of the body, Maskell assumes that the
factor (b'/B)? is small (Fig.l). Here, (b'/B) is the ratio
of wake area b' (Fig.l) to test section area B. As such,
Maskell's theory is only of very limited use. Further, one
also notes that the data used by Maskell to support his
theory are related to tests where the blockage was limited

to 0.045. TFor flow past bluff objects, increased blockage
results in increased values of us :he yelocity at the point
of separation. This results in fogpody pressure distribu-
tiond that are no longer normalised by a simple increment

in the velocity. This invalidates Maskell's assumption
related to dynamic similarity, although the gross character-
istics such as the steady drag force for blocked flows can
still be handled by giving an increment to u, the undisturbed

velocity.



Modil® presented an interesting discussion about blockage
theories and asserts that Maskell's theory fails to corelate
his data for larger blockages. He suggested that higher order
terms be used in Maskell's expression to obtain a modest
improvement in correlating his own data. Any theory which
tries to accommodate the constriction effects by providing a
simple increment to the velocity (or indirectly the dynamic
pressure) fails to properly account for interference character-
istics where boundary layer effects control the wake dynamics
of bluff bodies, such as circular cylinders. This criticism
is true of Maskell's theory as well as the present simple
proposition advanced in this report. The results presented
in a subsequent section for the circular cylinders will bear
testimony to this fact.

1

Toebes!? questioned Maskell's assumption about the wake

b* It is

admitted that even the near wake is dynamic. However, for

pressure Pw being equal to the base pressure P

want of an alternative procedure, this assumption though weak
may not by itself lead to erroneous assesment of steady force
parameters. Toebes12 earlier provided a critical apprisal of
the hodograph methods. He provided a new expression to link

the steady drag and the oscillatory lift with the help of a

dynamic model.

Sarpkayal3 used complex variable techniques to obtain
the characteristics of flow past a two dimensional plate set
at different angles in a conduit. Specifically, he obtained
expressions for the contraction coefficient C. of butterfly
valves. Observe that the maximum width of the wake in cons-
tricted flows is readily obtained when one determines the
contraction coefficient CC (Fig.l). For higher blockages,
Shaw'" observes that "Although the concept of a free stream-
line bounding the issuing jet does not strictly apply when
diffusion of the jet occurs, the velocity of the jet at the
separation point (us) is still equal to that over the core of

the jet (uj) at the vena contracta'. This suggests that B/b,



Cc’ k and hence u, are interrelated (Fig.l). As such, the

coefficient of contraction CC is an important parameter for

confined flows.

As a matter of fact, the above assumption of velocity
invariance along the free streamline up to the region where
the wake reaches its maximum width is taken for granted in
the classical free streamline models!® and their modifications!®,
On the other hand, when we connect u with Cc in unconfined
flows, we run into difficulty. Unconfined flows can be con-
sidered as the limit of constricted flows and this gives the
absurd result of the separation velocity u_ being equal to
u according to earlier arguments (Cc=1 for unconfined flow),
Shaw? recognised the above facts in his elegant analysis of the
wall constraint problem as applied to a normal flat plate. He
adopted complex variable techniques to arrive at the character-
istics of the blocked flow. The application of his results
to practical cases should be limited (lower limit) to cons-
trictions where u, equals the velocity uj at the section where
the wake is largest (i.e., at the vena contracta), Shaw
provided collaborating evidence to his theoretical predic-

tions using his test data which appear to be very convincing.

Abernathy17 Presented the solution to the constricted
flow problem related to flat Plates set at an angle of incidence.
He uses a modified form of the notched hodograph theory!®
related to unconfined flows and provides collaborating experimen-
tal evidence to show that the separation "b'" between the
vortex sheets for flow past a flat plate is 1.41 ¢ sin® over
a wide range of blockage ratios. Here ¢ is the chord length
and © is the angle of attack. Using the above value of b' as
the characteristic length which is said to be independent of
the flow constriction, a universal Strouhal number S* is formed
similar to Roshko's?® proposal. According to Abernathy's test
data, S* remains invariant for a wide range of plate inclina-

tion O and blockage. 8% itself 1is defined as:



f 1.41 ¢ sin®

g% =
1 -2¢ u
P
where,
*
Cp = the pressure coefficient behind the plate
f = the frequency of vortex shedding
0 = the angle of attack
u = the velocity far upstream

EXPERIMENTAL METHODS

Tozkas!® examined the effect of flow confinement on the
two dimensional cylinders and sharp edged plates on the Strouhal
number. He observed that the universal Strouhal number S¥*
based on the wake width b' and wake velocity u remains
invariant only in a limited blockage range. Chen'? extended
this investigation and included a 90° wedge aslthe test body
to check the validity of Roshko's universal Strouhal number!®
concept. The usual definition of the Strouhal number S is

related to S* as follows:

S' = _ v-(z)
u
fb' S b! ’

= 2 = 22— : s

S " x d (22)

s

u = undistributed velocity

u, = k u = velocity at the separation point .. (3)

b!'! = wake width, d = width of body, and

f = frequency of vortex shedding.



For the flow past a 90° wedge, Chen used the theoretical
contraction coefficients derived by Von Mises !5, In so doing,
one should keep in mind the physical limitation of the lower
bounds of C; in hydraulic flows. He concludes that the dominant
frequency of vortex shedding becomes weaker when the blockage
ratio b/B reaches a value of 0.6. As a matter of fact, when
the blockage is very high, the jet flow emerging from either
end of the body is unlikely to interact to form the common
Karman vortex trail in the wake. Vortex shedding can occur,
even in the absence of interaction among shear layers. For
instance, behind a partly closed sharp edged gate which con-
stricts the flow??, vorticies are formed and lead to gate

yvibration.

Lin2? has conducted an experimental investigation into
the effect of blockage on the drag coefficient of axisymmetric
bodies. He concludes that hemispheres set in constricted flows
possess drag coefficients CD which cannot be explained by a
simple increase in the velocity. Nevertheless, he does observe
that the predominant portion (98%) of the total drag on the
hemisphere is caused by the suction associated with the base
pressure. This conclusion demonstrates (see Appendix 1) that
CD/}c2 is nearly invariant. It upholds the fact that CD for
blocked flow is obtained when u is replaced by u in the steady
drag formula. The increased velocity ug is related to the
velocity u as in equatiom (3). Lin?? solved the problem of
confined flow past two dimensional wedges using complex variable
techniques related to triply connected domains and confirmed
his findings using smoke tunnel test data related to the length

of separated region and the circulation along the free streamline.

Achenback?3? investigated the effect of blockage on spheres
set in a tube. His tests covered a wide range of blockages and
Reynolds numbers. Cecin?* determined the drag coefficient of
an axisymmetric body, namely the circular cylinder, whose axis
was parallel to the direction of motion. He used the falling

body method to obtain the drag coefficients of the cylinders



for a range of blockages. Unfortunately, no attempt was made

to group the results and interpret them in terms of blockage
effects. The drag coefficient data is essentially linear

between the blockage ratios of 0.24 to 0.74, although a curve
seems to have been fitted to the data by the authors., McKeon?®
obtained CD for normal circular plates subject to varying degrees
of blockage. He remarks that Maskell's correction methods

failed to correlate his data.

Toebes!? has presented experimental data related to the
Strouhal frequency and hydrodynamic lift force for circular
cylinders and triangular prisms upto a blockage of 0.445. On
the basis of the.reported data, he demonstrated that the
1 (Fig.1)
were useful velocity scales to formulate the Strouhal number.

contracted jet velocity uj and the gap velocity u

uj and u; are readily obtained by continuity arguments. As
observed earlier, the replacement of u by uj to form the
velocity scale in the definition of the Strouhal number leads
to some difficulties in unconfined flows and weakly confined
flows. This criticism is valid even here. The use of uj to
normalise the dynamic 1ift by Toebes was not successful. This
is understandable as the contracted jet velocity uj was tied
to a quasi steady model which disregards the dynamics of the
near wake flow. If reasonable comparison of such dynamic
forces are to be made, the aspect ratio of the models must be
identical and the body dimensions should bear a proper scale
to the turbulence scales present in the approaching flow.

Toebes!!?

investigated the near wake flow field of a triangular
prism. He points out the discrepancy between the actual wake
bubble geometry and the generally assumed form of the quasi
steady wake bubble. Increased blockage is seen to displace the
vortex formation region further downstream behind the prism.
His tests also included exploratory studies related to hydro-
elastic vibrations of bluff bodies under blocked conditions.

9,[4

Recently Shaw has published considerable experimental

data on the characteristics of flow past a normal flat plate



and a gate type protrusion placed in the constricted flow
passage of a water tunnel. His results indicate that the
contraction coefficient CC as also the drag coefficient Cd
for the normal plate model and the gate model tend to approach
identical values at blockages which are at least moderate.

The discrepancy of the drag coefficient CD for the gate com-
pared to the CD of the plate at low blockages is attributed

to the deviations in the pressure distribution at the upstream
ends caused by the tunnel wall boundary layer. Since Cc is the
same for both models and also because the suction at the rear

of the body predominates over the pressure force on the front
side of the body at higher blockages, the value of ) for the
gate reaches that of the normal plate as the blockage increases.

For both cases(at higher blockages), he concludes that:

k = B/(chl),. .. (4)
using (4), one can write (3) as,

uS/u = B/(chl) . .. (5)
By continuity argument (Fig.l) it is easily infered that,

' = .. (6

uj/u B/(C b;) | (6)

and as such, this leads to the conclusion that (for higher

blockages),

j S ’ -'(7)

This result will be used in a subsequent section. Observe
that the theoretical value of Cc applies equally well to the

normal plate and the gate model.

Shaw!% has also presented the drag coefficients of flat

plates set at varying inclinations to the direction of flow.



His test data indicates that the upstream pressure coefficient
becomes negligibly small compared to the downstream Pressure
coefficient for higher blockages of the normal plate. This,
naturally leads to higher drag coefficients for confined flows
as compared to the unconfined case. His results for normal
Plates indicate that the measured value of uj denoting the
velocity of the contracted jet at the vena contracta agrees
well with the velocity u at the separating point for moderate

blockages and that CD varies as the square of (B/b).

Although there has been considerable discussion of the
validity of comparison between his tests on normal plates and
gates due to the nature of the afterbody configuration, the
drag coefficients reported by Shaw for higher blockages are
consistent when one notes that boundary layer effects are
negligible at larger gate protrusions and that the value of
uj (Fig.l),and hence C: the pressure coefficient at the base,
is the same for both cases. The latter is related to the con-
traction coefficient Cc which is the same (theory) for both

cases,.

When one considers the flow past the gate, purely from
the view point of wake dynamics, it is clear that we do not
have interacting shear layers which give rise to the Karmar
vortex trail as in the case of the normal plate. This does
not mean that vortex shedding is not present for flow past
gates?", Appe12F® Proyides a useful discussion about the
formation of wvortices due to sudden expansion associated with

flow past protruding objects.

Interference effects oﬁ vortex shedding from gates and
normal plates have been presented for a range of blockages by
Shaw?”?. He used towing tests and visual observations to arrive
at the Strouhal numbers for the models which were eccentrically
mounted. It was not clear how the wall end was sealed during
towing. Even a slight lead can Provide pressure communication
between the two sides of the model, which will invalidate true

gate action.



EXPERIMENTAL SET UP AND PROCEDURES

Tests were conducted in a 14" x 10" test section of the
wind tunnel. The models had a nominal height of 10 inches
and were made of styrofoam. A coaxial metal tube provided
adequate rigidity to the models, The model surfaces were
sanded to a smooth finish. Circular cylinders and equilateral
triangular prisms of varying widths (Fig.2) were chosen as
the basic shapes. They were cantilevered into the test sec-

tion as shown in Fig.3.

A displacement sensing transducer (Fig.3) was mounted on
a force gauge to which the models were attached. The force
gauge had a natural frequency of 130 cps and sensed the
dynamic forces acting on the bluff bodies subjected to wind
loading. For drag measurements the gauge was turned through
90° from the position shown in Fig.3. Steady drag and lift
forces were registered for the models only in the range of
wind speeds where excessiye vibration of the support stand or
the models did not occur. When the vortex shedding frequency
attained a higher values, the test body was lowered and held
rigid against the tunnel floor to avoid vibration. Under
these circumstances, vortex shedding was detected in the
earlywake of the body with the help of the hot wire anemometry

and force measurements were discontinued.

The associated instrumentation is sketched in Fig.4. After
filetering, the force signals were recorded on a D.C. digital
voltmeter during tests related to steady force coefficients.

The frequency of vortex shedding 'f' was generally obtained

by recording the unsteady 1ift force signal on a strip chart
recorder. When the frequency of vortex shedding was not quite
distinct or when the hot wire was in use, the signals were
stored on a Hewlitt-packard magnetic tape recorder and analysed

with the help of a B & K wave analyser-level recorder unit.



Other experimental procedures consisted of recording the
velocity at the entrance to the test section with the help of
a pitot tube-Betz monometer combination. This in turn yielded
the undisturbed (mean) velocity u at the plane of the test body.
Care was taken to center and align the model axis. The model
axis was always within 1/16 inch from the center line of the
test section. The orientation of the symmetric shapes were
confirmed by noting the absénce of any steady 1ift. This was
not possible for the unsymmetric shapes such as the triangular
prism set at 30° orientation. Unfortunately, for this orien-
tation of the triangular prism, the steady force and vortex
shedding frequency were very sensitive to minor changes in the
relative incidence of the air stream. As such, a more elaborate
experimental procedure is required to confirm the reported
results. Hence, the data for the 30° prism orientation should

be viewed as tentative results of an exploratory test program.

ANALYSIS OF RESULTS

Figs. 5 to 14 indicate the present test results related
to force coefficients and Figs.15 to 19 denote the test results
related to vortex shedding frequencies for flow past the two
models which were subjected to wall interference. The various
definitions related to data reduction are mentioned briefly in

Appendix 1,

A remark related to the use of the .gap velocity ug and

the contracted jet velocity (Fig.l) u, as scaling factors for

the modified steady force coefficientg and the Strouhal numbers,
is in order. The choice of ug and uj to form CDl’ CDj’ S1 and
Sj was based only on simple dimensional considerations.

Further, no attempt was made to unify the test results of all
the shapes. This is especially true of frequency data, since
the dynamics of the flow is more complex and is bound to elude

such simple propositions of exchanging velocity scales to



account for blockage effects. For instance, it will be shown
that Sj is no longer constant even for a single shape. Also,
the Strouhal number Sj for the triangle at 0°, is no longer

constant for b/B > 0.3, although CDj is constant for all the
blockages (Figs. 10 & 19),

Steady Force Coefficients:

The steady force coefficients namely CD and CL are defined
in the usual way using the undisturbed velocity u (Fig.l) for
the velocity scale. As expected, there was no detectable
Reynolds number effects on CD for the triangular prisms in
the range covered (Figs.5, 6 and 7). The drag coefficient data
is replotted in Figs.8, 9 and 10 according to the blockage
number. This is defined as the relative model width (b/B or

d/B) compared to the test section width B (see Fig.l and also
Appendix).

The values of the drag coefficient CD steadily increase
with blockage for all the three orientations of the triangular
prism. For CD’ the normalising velocity was the undisturbed
velocity u (Fig.l). Clearly, u did not normalise the values
of Ch and provide a constant value of the drag coefficient
for any of the orientations of the triangular prism for varying
1 (Fig.l) was

tried as a substitute in place of u to formulate a new drag

blockages. Therefore, the average gap velocity u

coefficient CDl' uy reflects the increased velocities in the

gap caused by the wall interference. Hence, it accounts in

part to the variations in the back pressure C*, which influ-
ences the drag force. The drag coefficient so formed by
substituting ug in place of u was helpful in normalising the

drag data and providing a nearly constant value of CDl for the
60° orientation of the triangular prisms for all blockages
(Fig.8). The highest blockage b/B was slightly in excess of

70 per cent. On the other hand, for 0° orientation of the prism,

Ch1 still maintained a rising trend with blockage (Fig.10).
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coefficient C: including the variability in the contraction
coefficient with blockage. In fact CDj Seems to be the logical
choice for the drag coefficient ag indicateqd in Fig.1o0, It
Was observed earlier that u, = uj for blockages which are at

least moderate, Also, under these circumstances, the suction

mining the effective Pressure drag of bluff objects, Since the
back Pressure ¢ = lﬁkz, it is not Surprising that u_(=ku) ang
hence uj effectively normalises the drag force, The Variations
in Cc for a normal plate computed by Shaw Were used ip arriving
at CDj for the go orientation, since the effect of the after-
body on CD in the case of the 0° Orientationp Was considered to
be only mBarginal,

The fact that the gap velocity uy (Fig.1) itself Provides
the suitapie velocity scale for the drag coefficient CDl of
the 6Q° orientatigp at alil blockages needs some further expla-
nation. Thig underscoreg the possibility that, Cc and hence
uj/ul is a tonstant op utmost g slowly varying function for
larger blockages. In fact indirectly, there ig Some qualji-
tative evidence to this effect, For instance the Variations

of Cc for g range of b/B from 0,2 to 1.0 for g2 30° contract-

The drag data for the 30° orientation, when Plotted ag
a functionp of blockage failed to maintain 4 ctonstant valye
when thn Dormalisatiogp of drag data Was performed using uy
(Fig.9), In the 3¢ orientation, the triangular Prism has 5
flow Contraction, only on one side. Qpe of the major causeg
of the Variation ip CDl could be due to the fact that the
drag force is eéxtremely Sensitive to the incidence of the

flow direction when'o = 30°. Thisg is immediately apparent
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9 related to the

from the data presented earlier by Toebes?
drag force coefficient's variation with prism orientation.
This is shown in Fig.ll. It was reported that the Strouhal
number too was very sensitive to changes in orientation when

© was set at 30°. It is proposed that these facts could be a
result of the shift in the location of one of the separation
points, which might move from the front end to the rear end

of the model (Fig.l), for a small variation of the flow
direction leading to considerable changes in the base pressure
and hence the drag force. Slight variations in the orienta-

tion of a model can occur due to slight variations in the

direction of the incident wind stream in the test section.

Fig.l2 indicates the variation of the steady 1lift co-
efficient CL with Reynolds number for the 30° orientation of
the triangular prism. As expected, once again there are mno
noticeable Reynolds number effects. CL steadily increases
with blockage in the grouped data (Fig.13). Replacing u by
u, to yield C

1 L1
in place and provide a nearly constant value of CLl for the

as in the drag term renders the data to fall

entire blockage range tested. It was not quite apparent why
‘the 1ift coefficient CLl for all blockages maintained a nearly
constant value, although the drag coefficient CDl was still

varying with b/B.

The values of CD for the circular cylinder for various
Reynolds numbers at fixed blockages display some sensitivity
to Reynolds number R only in the higher Reynolds number
range (Fig.l4). When the drag data is normalised with Uy
the resulting CDl - R curve maintains a reasonably constant
value till the flow around the cylinder attains the critical
Reynolds number RC for a given blockage. For a given blockage,
when the critical Reynolds number for the flow is reached, the
value of the drag seems to drop down as one would expect. The
exact value of Rc of course depends on the characteristics of

the free stream turbulence3®?, the roughness of the surface and



the blockage. The curves also imply that the critical Reynolds
number is reached much earlier when the flow is blocked more.
The collapse of the data related to CDl into a single line in
the subcritical range implies once again that the contraction
coefficient is very insensitive to blockage when the latter

is caused by a shape resembiing a circular cylinder. The
results of Toch?®°?3! i the context of determining Cc for sec-
tor taintor gates which had a range of exit angles suggests
that the contraction coefficient is a very weak function of

flow constriction. The trends of C shown beyond the critical

Reynolds number range for the blockgg cylinders in Fig.1l4
should be viewed only as tentative trends. The amount of
data collected in this range is inadequate to advance firm
conclusions. For the cylinder set in an unlimited flow?®
CD is plotted in both the sketches of Fig.l4 for comparison

with the blocked flow data.
Vortex Shedding Frequency:

The basic vortex shedding frequency f was normalised
using the lateral dimension (d or b) of the bodies for the
lenéth scale and u‘for the velocity scale. The resulting
Strouhal numbers S for différent blockage ratios of trian-
gular prisms and cylinders are plotted as functions of
Reynolds number R (Figs.l5 and 16). Although there was a
systematic increase in the Strouhal number with increased
flow constriction, no significant Reynolds number effects
were apparent. Unfortunately, the opportunity to collect
frequency data in the neighbourhood of RC was denied due to
equipment limitation. For instance, spectral analysis of the
low frequency data for larger bodies could not be processed
in the wave analyser which had a threshold value of 20 cps
at the low end of the spectra. The model mounting mechanism
limited the use of very high velocities in the test section

as the associated forces were estimated to be prohibitive.



Strouhal number data is regrouped in terms of blockage
in Figs.l17 and 18. The Strouhal number S continues to increase
with blockage for all the modeliéhapes. As before, u was
replaced by the gap velocity uy (Fig.l) to form a new Strouhal
number Sl' Fig.1l8 indicates that S1 is constant for a cylinder
in the range of blockages tested in the subcritical range.
Figs.19(b) and 19(c) indicate that uy provides a useful
velocity scale to form the Strouhal number Sl for the 30° and
60° orientations of the prism. It maintains a steady value
in the range of blockages tested. Once again, the contracted

jet velocity u, is used in place of u or uy to form another

3

Strouhal number S, for the vortex shedding frequency data of

3

the 0° orientation of the prism. Although S, is practically

3

constant upto about 277% blockage there is a rising trend

for higher blockages, as shown in Fig.19(a).



SUMMARY AND CONCLUSIONS

1. For flow past the two symmetrical triangular prisms
and the circular cylinders (subcritical), subjected to moderate
or high blockage, ekperimental evidence shows that the contracted
jet velocity uj (Zu;) and the mean gap velocity uy provide the
proper velocity scales to form the steady drag coefficients

D1
Cc does not depend strongly on the degree of blockage, the

CDj and C respectively. When the contraction coefficient

drag coefficient Ch1 (=CDj/Ci) will maintain a nearly constant

value for the specific model shape.

2. Invariance of CD/k2 (=CDj) for the three symmetrical
shapes implies that uj (:us=ku?,~which denotes a simple
increase in the undisturbed velocity u, provides the necessary
adjustment to account for the variations in the drag force due
to blockage effects. This upholds in part, Maskell's propo-
sition that a simple increase in ‘the velocity may account for
the increase of drag in blocked flows. However, based on
Shaw's test data it can be asserted that in blocked flows,
dynamic similarity cannot be achieved by a mere change in the
velocity scalé. The degree of accelerations along the fore-
bodies of bluff shapes near the.separation points depend on
blockage. This in turn, alters the pressure distribution and

hence, there is no scope for dynamic similarity.

3. The drag coéfficients for circular cylinders in the
critical Reynolds number range indicate that increased block-
age promotes early transition leading to lower drag forces.
This result further shows that Maskell's proposition regarding
dynamic similarity for blocked flows breaks down, when boundary

layer effects control the location of the separation point.

4, Tentatively, it can be stated that the steady 1lift
force for the unsymmetric triangle (§ = 30°) when normalised

by the gap velocity u, yields a neariy constant 1lift

1

coefficient, CLl'



5. The vortex shedding frequency and the body size
together with the gap velocity uy provide a nearly constant
values for the Strouhal numbers Sl for the circular cylinders
(subcritical flow) and the triangular prisms at the 30° and
60° orientations. Although the use of uj was effective in
yielding a proper velocity scale for the Strouhal number Sj
fcr the prism at 0° orientation upto blockages of 0.3, Sj
seems to increase beyond this blockage. This confirms the

earlier findings of ToebeslZ.

SCOPE FOR FURTHER STUDIES AND APPLICATIONS

It was observed that wall interference to flow past a
single body was qualitatively similar to the interference of
neighbouring cylinders on each other in multiple body configura-
tions, especially when the boundary layer effects are not
excessive and one restricts the attention to steady forces.

As such the use of uy and uj to normalise steady force co-
efficients of multiple bodies may be studied. These configura-
tions are of considerable interest in practicesa’au. In this
regard, partial groups of bodies (Fig.26) can be studied as
single bodies set eccentrically between bounding walls. The
force and frequency study can be extended to flexible struc-
tures, which are subject to blockages. Here hydroelastic
effectsss’aa’aj should be included.

The results of the studies reported and proposed have

practical applications in the following areas:

1. Forces on Single Buildings and Groups of Buildings due
to wind.

2. Vibration of Heat Exchanger tubes due to'gas stream.

3, Forces on ocean piles and bridge pilers.

4, Power computations of air ducts fitted with oversize
obstructions.

5, Transferring model data to prototype design information.
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APPENDIX 1
Some Definitions

The scales chosen for the length and velocity for pur-

poses of data reduction are included below.

Blockage is defined as the ratio of the largest lateral
model dimension (d for the circles and b for the prisms -

Fig.3) co the tunnel width B,

The Reynolds number R is formed using the same model

dimension. Thus,

for circles, R ud/v ..(8)

for triangles, R ub/v .. (9)
Three types of drag coefficients are defined namely

CD’ CDl and CDj' The only distinction between the three is

the choice of the velocity scale chosen for non-dimension-

alising the steady force.

Thus, Cj for the triangular prism denotes the usual

definition of the drag coefficient:

Cp = steady drag force/ % p u? bL .. (10)
where,
'p = the density of air, bL = area of any one of the

prism faces.

The velocity scales, uy and uj (Fig.3) are used to define

CDl and CDj:

C . Steady drag force

—_ — 2
Dl = ] ) = CD(u/ul) .. (1)
5 P ul bL
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steady drag force

= - 2
CDj = = CD(u/uj) .. (12)
;la— ) ug bL
where (from Fig.l), u, = uB/b1 .. (13)
uB uB
and u, = = .. (14)
- '
(B b') blCc A
Since, uj = u (velocity at sebaration) =ku, when blockage

exceeds a certain minimum value, one can write CDj= CD/kz.

Equations (13) and (14) follow from continuity arguments.

Similar relations hold good for the steady lift co-

efficients CL’ c and CLj and the Strouhal numbers S, S

L1 1
and §,.
' ]
Thus,
steady 1lift force
CL = .o(lS)
>32'~-pu2 bL
CLl = CL (u/ul)2 .. (16)
= 32 - o /2 .o
and CLj CL (u/uj, VL,k a7z

The Strouhal numbers are defined as:

S = fb/u .. (18)
S, = fb/u1 .. (19)
S. = fb/u. = S/k .. (20)

3 3
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The so-called universal Strouhal number defined by Roshkol®

is given by the expression:

fv'
.. (21)

u
]

For blockages, which are at least moderate, u, = uj and

B = b'+chl from Fig.l. Hence, S* can be expressed as:

f(B - C b.)
c 1 .. (22)

u,
J
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Fig.23 STRIP CiART RECORDS

Circular Cylinder: ' Run No.1304000003
d=4", £=25.6 cps
Recorder Speed: 125 mm/sec.

Triangle(prism): Run No.2306030005
b=6", 6=30°, f=36.35 cps
Recorder Speed: 125 mm/sec.
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(a) Force Gage

(b) Test Section

(c) Wind Tunnel &
Auxiliary Equipment

Fig.25 PHOTOGRAPH OF EQUIPMENT
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(b) Test Section

(c) Wind Tunnel &
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_ EXISTING STROUHAL NUMBER PROPOSITIONS

The normal form of the Strouhal number § = gﬂ adopts
the lateral dimension of the body d and the undisturbed
velocity u as the length and velocity scales. The value of
§ varies widely for different bodies?®, Fage3® defined a
Strouhal number based on the wake width b' (Fig.l) and the
velocity u and obtained a nearly constant value (20.275) for

a number of two dimensional bluff shapes.

Roshko!® proposed the notched hodograph model and this
yields the wake width b' for a given body shape and size.
Roshko used this wake width and the wake velocity ug to form
the so called universal Strouhal number. This was shown to
be a constant (=#0.16) in unconfined flows for all the bluff

shapes tested by him,

Abernathy!’? extended Roshko's notched hodograph theory
to flow past a flat plate set at varying inclinations in a
confined flow. He was able to show that the experimental
values of the Strouhal number (=0.15) based on the wake width
and the wake velocity was invariant for .a large number of

plate inclinations and flow confinements.

Tozkas!® and Chen!® ﬁsed the contracted jet velocity “j
(Fig.1l) and the wake width b' to form the Strouhal number for

bluff shapes set in a confined flow. This Strouhal number
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was found to be a constant (=0.20) for a limited range of

blockages.

Bearman3? proposed a universal Strouhal number, which
used u, as t%é velocity scale and the lateral distance between
the vortex street h as the length scale. This Strouhal number
had a constant value of about 0.18 for a variety of bluff shapes.

Some of these shapes included wake interference elements. How-

ever, this Chen!"® states that Bearman's Strouhal number is in-
variant only in the suberitical Reynolds number range. Yet
another dimensionless frequency number termed as the "waké
number" was proposed by Chen"*%., It is based on some character-
istics parameters of the vortex street. It is defined as

C =fh2/§, where f is the vortex shedding frequency, h 1is the
laterai distance between the vorticies and P is the circulation
associated with the vorticies. The wake number C is supposed
to maintain a constant value of 0.165 over the entire range of

Reynolds numbers spanning both subcritical and supercritical

flows.

Vickery”l‘has also tried to propose a correction for blocked
flows. -‘According to him, the increase in the value of the
Strouhal number in confined flow is a result of the increase

in the value of the separation velocities. Thus,

S -~ _¢ ‘ -
: N S D)

where,
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kc= corrected value of k,
S = Strouhal number,

S;: corrected value of S

Vickery's logic was developed on the basis of Maskell's
theory which is limited to very low blockages. However,
equation (5-1) seems to be logical from purely dimensional

arguments, even for large blockages.

Toebes!? proposed a strouhal number for blocked flows
based on diﬁensional considerations. No attempt was made to
provide a uniyersal number. However, for confined flows where
the contraction coefficient Cc varied with blockage, the con-
tracted jet velocity uj was shown to be the proper scaling
factor. For situations where CC was a weak function of block-
age, the gap velocity u, was shown to be the proper scaling
factor. The lateral body dimensions were used for the length
scale. The present data reduction procedure has adopted this
method and the test data has in general confirmed the earlier
findingé of Toebes?2, It is concievablé that one can obtain
the wake characteristics such as the lateral distance "h"
between the vorticies of the wake based on existing theoretical
models?®?. When these are used in place of the body dimension,
the contracted jet velocity may lead to strouhal numbers which

are constant for all blockages and all shapes. A simple pro-

gram (Tables 21 & 22) was developed to relate the vortex
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street parameters with the body dimensions using existing

approaches 39240,
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APPENDIX 5

Data Comparison

For comparison purposes the data from various sources
are compiled and tabulated in Tables 1 to 6. Generally,
the present data appears to compare favourably with data
reported by other investigators, where overlaps are present,
This is true for the data where the body shapes are compa-

rable (Ex: flat plate and triangular prism with ¢ = 0°),
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DATA COMPARISON

Table l: Drag Coefficients Ch, Cpy ~ Cylinder
b
SHAPE "B % CD CDl SOURCE REMARKS
‘ 9.5 1.30 1.06 Only averaged
+1b 15.8 1.40 .99 data in the
<:> 22.0 1.50 .91 MODIlo sub-critical range
B
28.5 1.85 .95 (steady) is
included.
l 13.9 1.13 .84 Open channel
)OO 27.9 1.57 .82 3 flow Multiple
3
Jok 41.7 2.25 .76 NECE body configu-
— 55.6 4.25 .84 ration.
‘ 7.1 1.255 1.083 Only averaged
b i -
-vIOF 14.1 1.460 1.077 PRESENT data in the sub
21.2 1.7]13 1.064 DATA critical range
8 28.2 1.978 1.020 (steady) is

included.
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Tab;e 2: Drag Coefficients, CD, CDl and CDj -
PLATE AND TRIANGLE(PRISM)
b
SHAPE 5% Cp Chy cDj SOURCE REMARKS
| 23.1 2.7 1.60 .83 Cpy deviates from
I
b 44.5 7.0 2.16 .95 SHAW9 steady value when
B 66.7 22.0 2.44 .97 blockage is low.
9.7 2.70 2.20 1.34 TOEBESll'lZEstimate from
graph.
] 7.1 2.380 2.056 1.234
(b 14.1 2.834 2.091 1.176
§§;7 21.2  3.628 2.256 1.169 PRESENT
28.2  4.342 2.239 1.114 DATA
42.3 7.502 2.498 1.104
56.4 14.463 2.751 1.i25
70.5 34.433 3.000 1.171
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Table 3: Drag & Lift Coefficients CD'ch’CL and CLl

- TRIANGLE(PRISM)
b
SHAPE g 2 CD ch CL CLl SOURCE REMARIKS
9.7 1.94 1.581 ToEBES 112
7.1 1.994 1.723
l 14.1 2.139 1.578
21.2 2.424 1.507
[%?\ 28.2 2.612 1.347 PRESENT
\B 42.3 4.058 1.352 DATA
56.4 6.901 1.313
70.5 11.801 1.028
9.7 1.40  1.141 ToEBES 12
7.1 1.438 1.242
| 14.1 1.590 1.173
21.2 1.977 1.229
ZZES 28.2 2.292 1.182 PRESENT
I'p ! 42.3 3.702 1.233 DATA
B 56.4 6.460 1.229
70.5 15.800 1.376
9.7 1.31  1.067 ToEBEstlr12
7.1 1.439  1.243
| 14.1 1.578  1.165
21.2 1.852 1.152 PRESENT
[:>\ 28.2 2.303 1.187  DATA
g 42.3 3.438  1.145
56.4 6.534 1.277

70.5 13.028 1.135
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Table 4: Strouhal Number S and Sl - CYLINDER
SHAPE b S S SOURCE REMARIKS
B % 1
6.0 210  .197 roEBEST /12
l - 11.0 .215 .191 Estimate from
16.3 .235 .197 graph.
(:) 22.0 .245  .191
ry 28.5 .255  .182
B 35.0 .278  .181
44.5 .330 .183
‘ 19.0 16 & .19 Estimate from
25.0 17 & .19 BORGESSY  graph.
OQOC 30.0 .17 '
ipl
, 38.0 16 & .18
B 77.0 18 & 7.3
l | 7.1 .205  .191
14.1 .221 .190 PRESENT
(:% 21.2  .235 .185 DATA
'g 28.2 .255  .183
42.3 .329  .190
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Table 5: Strouhal Number S and S1 - TRIANGLE(PRISM)

SHAPE g 3 S s, SOURCE REMARKS
| i . 9.7 .237 .214 TOEBESll’12 Estimate from
13.5 .237 .205 graph
g{}s 21,5 .256  .201
'g | 32.0 .285  .194
l 43.0 .345  .197
1 7.1 .233  .216
14.1 .241  .207
PRESENT
fé;ﬁ 21.2 .259  .204 RESE
: 28.2 .285  .205
42.3 .356  .205
7.1 .180  .170
| 14.1 .194  .167
PRESENT
2
. 21.2 ,205  .161 e
\g 28.2 .230  .165
42,3 .310  .179




-60~

Table 6: Strouhal Number S, Sl and Sj -
PLATE, GATE & TRIANGLE (PRISM)
SHAPE %% S 5, 5 SOURCE REMARKS
9.7  .155 .140  .l09 ToEsEs ' ’12 Estimate from
lé | 13.5 .167 .144 .109 graph
§<;7 21.5 .190 .149 .108
32.0 .243  .165 .114
8 43.0 .365 .208 .138
| 5.6  .154 .145  .145% SHAW Estimate from
"PLATE" .
_ 11.1 .176  .156 .120 graph.
'g' 16.7 .197  .164 .121
22.2 .210 .163 .118
|} 5.6  .160 .151  .151% SHAW Estimate £rom
o " GATE 1
| | 11.1 .188  .167 .129 graph
| b 16.7 .205  .171 .126 ‘
—B— 22.2 .216 .168 .121
| 7.1 .148  .137 .109
I b 14.1 .166 .143 .107 PRESENT
‘;;7 21.2 .185  .146 .105  DATA
B 28.2 .223  .160 .112
42.3 .371 .214 .142

*Blockage far too low - Procedure for data
reduction not applicable.
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APPENDIX ¢

VELOCITY DISTRIBUTION

The velocity distribution at the test-section was
reasonably uniform (Fig.20). In the range of test section
velocity (u) used,the velocity distribution did not appear to
change very much. For clarity, the distribution for only one

velocity is shown.

TRANSDUCER CALIBRATION

The force gauge had a large range of deflections in which
it was linear with iespect to loading. However, the LVDT
(Linear Voltage Differential Transformer) transducer had a
limited range of lihearity with respect to loading (Fig.2l).
This linear range is denoted by the limits of the line AA' in

Fig,21l.

FORCE GAUGE COMPUTATION

The experimental stiffness coefficient K=% denoting the

load (1b) per unit deflection (in.) was obtained by direct

calibration (Fig.22). The resulting value of K was 1146 1b/in.

For the effective masésof the gauge "m" from the point
of view of vibration, the mass of the lower bridging bracket,
the lower collar plates, the fastening screws and the lower

third of the side plates were included, in gauge frequency
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computation. The computation gave the value of .001676 1b.
sec?/inch for the effective gauge mass. The frequency "f"

of the gauge was estimated as follows:

f = 5% ’ % = 5% / 1lde . 131 cps
. .001676

The experiment value of the frequency and the damping co-

efficient are given below:

£f = 129.5 cps

™
il

0.042 1lb.sec/inch

o«
il

0.015 (logarithmic decrement) = %—
c



- 63 -

APPENDIX 7.
COMPUTER PROGRAMS AND OUTPUTS

A simple computer program was developed to facilitate
data reduction. One version of the program and reduced data

are shown in tables 7 to 22}
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