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. ® ABSTRACT ¥

! L4 ’
The kl-norm minimization problem is studied together with some of

-

its app)ications to approximation and sub-optimal multi-input-output control

systgg& deéign. The nondifferentiable unconifrained lliprob1em is trans- C
formed to a sequence of differentiable problems with a dynamﬂ?sca1{ng factor .
a]]ow%ng a reduction in the number 2f iterat{ons. ‘The existing gradient
methods can be used to solve eachof éhe heﬁ minimizations. It is shown
that, under mi{& conditions every Timit point of the}gequence of min{mums is’
a sdlqtion_g% the l]—pr9b1em. The numerical study:cdhducted has shoﬁn that
the proposed mét dis num;rically stable and robust,

A new method for ob@aining reduced order modelslfof mu]tj-input-x
loutﬁut stri¢tly proper and proper ]ine?r timeﬁinvariant systems using the
l]-norm minimization js thoroughly studied, This procedure,fof obtatning

order reduction ensures stable'meaningful reduced order models for stable

high-order systems. K It is shown that using the proposed method for. order

) :
reduction of’ﬁinear time invariant systems together with a dissagregation

scheme yields new procedures to obtain a sub-optimd] Wiener-Kalman Filter
. ' it
’ ’ " "
and the order reduction of a‘c1a$s of Tinear time variant systems.
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\ INTRADUCTION '

’ ) In this thosis we are-concerne with. the sfudy of the R.l-norm minimi-
zation problem, speciricaﬂy in“'context of 21‘~approximations and some of its
( applications to multivariable control system design. The raison d'etre of the
minimization of cost fuootions of the £y -norm type is based on _thekweﬂ knowo
[9 ] fact that the best z] -approximations are of;cen superior' to best zp-approxi-
mations where the observations contain wild po1:nts
. It s also. weH known (Sinha and Titli B6]) that the computatwna] .
methods of optimal contiol theory, for‘mmp‘l'e* for linear dynamlc systems which
use quadratic type cost functions run into numerical "difficulties when their
order is greater than about ten. This fact makes it attragtive to cons'id r in-
stead, the solution of the sub-optimal problem, i.e. where utfhe high dimensional ‘
Sys.tgm is replaced by one of lower dimensiopath and the optimal qontro]l policies
oa1cu1a‘ged for the lower order system are used by the higher order one. How-

ever since lower dimensional systems cannot be arbitrarily cho‘sen, a systematic

Y

‘.
procedure for their sﬂelection’ can be achieved tahrauygh approximation theory,

specifically "reduced order model]ing";", which is’a branch of approximation

analysis.

R

P

- ) c© 0 © '\ :
Since, as previously mentioned, 2.1-norm approximations yield bette\\

results than their zp-norm counterparts,the redUced order mode]l pro(m i

therefore studied from the 2,] ~norm minimization point of view. Due to its

. e

-

1mportance in control theory a major part of this thesis is devoted to a study

, I
eof the R.0.M..and its applications to control system design and estimatjon,

wmy the linear output requlator problem, filtering probiem and the °*

modelling of linear time varying systems. The R.0.M. problem can be formulated

r
y°

e e e
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as a nonlinear 9..( -norm minimizatidn problem agd theref/o're part of this thesis _

is dedicated to the study of an efficient computationé]“method for dealing
with it§ solution. . . ’
B < u .

1.1 ORGANIZATION OF THE THESIS ‘

.
N *

Chapter 1 contains the motivafg;ng factors for this research and the
outline of the thesis. In Chapter 2',\ " an ana]y‘s’is"‘of the JL] -noym mini-

mization and nonlinear SL]-norm minimization problems are presented. A brief.-

review O0f some existing techniques for the determination of the best 2,1-ap-

proximation is given together'with some remarks and comments. The transfor-

H .

mation of the unconstrained 4 -minimization problem into a sequence of pro-

blems, each involving the Sptimi zation of a con;cinuous <di {fferentiabl.e function,
du‘e to ET Attar et al. [21], is reviewed in some detail. Basgd on the adbove- ,
mentioned approach, an algorithm which deals with the .2, -minimization problem, .
is presented, and an iterative procedl_.lre yh'ichqimplements the ;;roposed aTgori-*
thm i's'thorougAhly discussed. Also it is shown _that,‘ under r‘nﬂd‘conpditii)ns,
this algorithm converges to the solution of uth'e hnconst'ra'ined 2. problem. -

The efficiency of the method is illustrated through several numerical examples.

-

A comparison between she S.U.M. algorithm and the pmpoé‘ed one, is éxhibited

when both are used in solving some L1-approximation problems.

e .

. . . & -
In’Chapter 3, the reduced order modelling problem is fdrmula'ted and

studied 253 minimization of.the induced norm of the input-output map #dr the
error System. Due to the fact that, in general, it is not possible to minimize
thg induced norm of this mapping, an a1ter~nét1’ve procedure is proposed for ’

obtaining K.0.M.'s for multi-input, multi-outpyt strictly proper, as well as -

proper systems. It.is shown that this method yields stable reduced order

s *

models’, whenever the original system is stable. Several numerical examples ‘

¢ - {

)‘o ;,

,,,,,,,
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illustrate the proposed technique. v S

Chapter 4 deals with the apphcatxon of -the reduced order model
in \o\fammg sub-optimal control policies for the output regulator pro?ﬂem.
With the use of .the d1saggregat1on scheme [2], a method is proposed for
obtaim:ng a s'ub-optimal Weiner Kalman Filter. #n exa'mplse is given which g
illustrates the performance of this method, and it is apparent that ité
numerical behaviour is comparable to that of the optimal ?/‘J.K.F. Finqﬂ.y,
b . prodedure is pf'esented whereby with the use of Wu [52] and Rao [37] trans-
'format'ions‘, and the methods presentede«in the previous chapter for obtaining
R 0.M. f for hnear time invariant systems, a reduced order model for a
\e’féss of hneaf‘tqme varymg systems is obtained. The iterative proceduren

~ for this techn1que,1s given in detail. -

-

The last chapter contains concluding remarks and possible areas

. t
~ for further investigation. Throughout this investigation, the digital com-

. . puter used to so]l\‘e all the numerical examples 1s a CDC Cyber 1'73, and all’
 programs were wii tten in Fortran IV. ‘ e
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'« for the sake of illustration the results obtained by using S.U.M. method

p
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) CHAPTER 2
£,-NORM MINIMIZATION AND NONLINEAR 2., -APPROXIMATION

2.0 IMTRODUCTION

" Although the problem of mim’mizing an £,-norm type of object;'ve
function is not new, efficient solution techniques are available Pnly in the
1inear case. On the other hand, 1itile has been done for the corresponding
nonlinear problém. Ih.is' chaptér is devotled to the study of the non]ine_:ar

/

problem. /

The first®wo Sections state the % -norm minimization problem and.
its well known équivalent nonlinear programming problem. In secti‘ons 2.4 and
2./5 the nonlinear 11-approximé{ion problem is stated and a brief review of |
some of the existfng algorithms used to tack‘1e it are pre’sented. Following
this the effi'cient algorithm proposed by El-Attar andaa;sbciates [22]y is pre-.
sented in some detail. In sections 2.7 the new algorithm termed “"Family of
Unconstrained Minimizations" based on the seguential unconstrained minimization
approach is 'proposed. Section 2.8 contains &e fterative procedure of the
algorithm Rrposéd in the preceding section. E}na11y section 2.9 and 2.10 con-
ta%n the nur;werical eximpfes that illustrate the computation performance of the
proposed method and tlhe conclusions of this.chapter respective]ty.,, Futhermorgi
¥

- [22] are compared with the results obtained using the pf-o%sed approach for

+ the same examples, e

-~
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2.1 THE 2 - _PRQBLEM ) ‘
v y Consider regﬂ valuéd functwns fos i=1,...,m, continuously
differentiable, with d\;mam D in R'. The zp—norm of the vector
f= {f],...,fm} is defined by _
: : 1 : o7
SOOI < 3 1500 1Py 2.1)
o Rlx) = lie = €I N :
where 1<p<e and x € D. Then the zp-norm minimization problem can be sta.ted
l as follows:
- , ‘
Probl®m 2.1 With the f. as defined above, for some. p in [1,»]
minimize / ’
! " : ©
ACRELETE . . (2.2)
First consider this problem for p > 1; then the vector gradient of Fp(% is
7 : p-1
m, [f;(x)] _
R EERPLEORIRNR, Ceyr s -V F(x) s sion (£,(x)), (23)
/ ~ ~ ey ) 9
or in alternative form for p > 2 o S A
- -
| p-2 -
om0 ]} ¢ .
) l v Fo(x) = 121 p1 * i (x) - Ty (2.4)
7 {Ilfi(f)ﬂp-’ , (

i , @Eaﬂy the ¥ Fp( x) exists ¥ x €D, Now as p approaches 1, F (x)

become nondi fferentiable in general Specifically, 1f f5 (x f 0, for

some 1 and some x €D then F()

xFpt does not exlsL

In general the

s RIS ot Sl s At AN age it B

Lo
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: . . 0 ‘ :
f,i's can bﬁéar or nonlinear functions of x. The first, case can be M

.

treated by Hnea} programming, the second, by nonlinear programming but for
p =1, méthods that do not use derivatives.are the suitable ones. However

it is a well known fact that methods using gradient techniques have better

computafiona] performance (see e.q. Avriel ' 77),

~

2.2 -PROB
o » THE 2,-PRO LlEM
~ The l]-problem can -be stated as o , - - !
} o ) e !
minimize F(x) = Z] [f;(x)] - . (2.5)

N
'

‘In order to overcome the nondifferentiability of (F](x)' it is known t[3;8] ;

that (2.5) can be reformulated as a general nonlinear programming problem

(NPP) as follows: //\\' . ' o, e .

Prablem 2.2 Minimize y:R"™™ +R

mn
L.
Y = z ¢_’ . ‘ (2.6)
i=1 !
subject to S
[ ’ 1. . . ) J
ey (x) + 05 20 Vi, C « (2.7)
C-I: “
Grge e 20 Vil L~ 7 (2.8)

V.

If XD &nd § solves problem 2.2 then we have E’i = ]fi(ﬂl ¥i.

~

>
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. 2.3 OPTIMALITY CONDITIONS
The optimality condition for problem 2.2 can be easily derived from
«,

the Karush-Kuhn-Tucker conditions, [31], [32]. The necessary conditions are

. Y.
enunciated in the following lemma: ¢

7/

Lemma 2.] (First order optimality conditions). If, xX€D isa

N ¢ 4 .
local minimizer of problem 2.2 and the following holds
v 4

! - q

© 2 (D) >0, WeEB, vzeR", 240,

~ ~ ~

(2.9)

-,

where, B = {i: C](Y)l = 0, ¥i}, then there exists constants a; € [-1,1],
~ \w ” n

Yie K(x) such that. l

-

»

L _aVf.(x) =0,

L _ sign £.(x) - VE (%) + (2.10) v
igk(x) a iek(x) l o
3 N SR » i T .
Where  K(x) = {i: f,(x) =0} ° ,
) ! -« %
’ < 2.4 NONLINEAR 9,1-APPROXIMATION) Y,
Consider the Ql-problem and define the fi's .as follows: . .
A flxy) - KAL), WG dellt - (2.1)
o ' s
where f(gi) are real valued functions defined on a discrete set
x: {xq...x, }and A:faj...a } is a set of real parameters. Then the %,-

s
approximation problem can be stated as follows:




-
-8 . f/ ‘ (
Probl®m 2.3
tg . ‘
Minimize F(A,x) = [ [f(x) - K(A,x) ], L~ (2.12)
n~ 4=l C - .
. AR s .

[} . - ’
-for a chosen “function K(A,x), where x, € x. Let A* minimize F(:) and

A€ A, then : ‘ °
t ) £ o ‘ ,
131 [#0g)k (A 5 T 1Fxg) - KlAxe) | (2.13)
= 1= B “

-~

+YAER so that K(A*,x) 1is the best %;-approximation of f(x); moreover
A K(A,x) 1s~a nonlinear function of the parameters A then K(A*,x) o is

the best ngnl inear 2,-approximation.
' -

EN &

Remark 1.1 The case of best linear z]-approximation,,wﬁere . K(A,\x)
is a linear function of A is well documented ig the iiterat‘ure where, for
example, the existence of the best approximation is guaranteed (Riice [40‘]).
On the uniqueness, Jackson [é] gives a proof, for the case oﬁ Cheb‘yschev
sets, but in gen‘era1 the uniqueness cannot be guaranteed, "However, several
algorithms are available to solve this problem, e.g. (471, (411, [ 8] among
others. On the existence.dnd uniqueness of best nonlinear approximations the
literature contains vi‘rt’uaﬂy no refe::ence to these problems. Rice (39 present-
ed a proof of the existence for a particular case of F(A,x), by assuming |
con“:eXity ofxs F.(A',f) ar:d proceeding 1n a similar manner ;s for the linear
case. However if K(A,x) s nonlinear, it cannot be established that, F(A,x)
is convex fof all f(§). There fore thesé problerps remain open. However by
using lemma 2.1 we can derive the necessary con;litions for K(A*,x)  to be

~

the best nonlinearl]-apprexoimation. From (2.11) if fi'=0’ then

.




-
e ~

i ; ‘gal. f(gi)'= K(A*,x;). Defining the set T(A*) = {i: f1‘=‘0} and’ taking the gradient
. of (2.11), we have that Vf %*K(A*,x Then if A* minimizes _(2.12), the
\\\ necessary conditions for K(A*,x) to be the best nonlinear &,-3pproximation
are: * . - 7 7 .

5

Val | 3 ' 9 °

; sign (K(A*,x ) - 1 (x ))e VA*K(ZK:xi) +

. TET(A*)
. ' : o - . -
r’: - 2 a.‘ i VA* K(A*xi) = 0 » " ’ ' - ' ‘ (2.]4)
| 1€TA%) Lo -
.o ' - |
o where - ‘ . X
o € [-1,11. .
2.5 ALGORITHMS FOR NONLINEAR £, -APPROXIMATION ' ¥
In spite of the importance of this problem very few algorithms are ’

]

: 4
available in the literature. However, in one of the existing methods due to
\ Barrodale-Ro rt‘and Hun't [O] , the best 21-approx1mation is computed by fun¢-

tions noﬂWﬁnear in one parameter in ths%follow1ng way:

? e — ’ '

Step I Search over a grid of values of nonlinear pa anptersvtq\
: . \
» ' '; 2find some interval” containing the minimum.

Al .
/ .’ = -

M -
L4 . .

Step II Locate the minimum in this igterval by using the Fibonacci

E

s search.

o

Clearly, Step I, is the well known separable programming problem e.g. 051,

B TR A R AT e S A Tyt Sy 3
N N
.
{

o
B

. d
011 among others, and Step II is the standard linear search over a closed
. bounded interval. While this\a]gorithm is highly efficient, the class of
practical problems with which it deals is restricted to a very gmaTl number.

1 ’ Y
o - n
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Another algorithm covering a wider range of functions, is due to Osborne and '

Watson [35]. In thi§ approach the best zl-nonlinear approgimation 1s'computed
by 1inearizatioﬁ around some point fo11owed by the solutign-of Yinear 2]-
approximation problem by 11near programm159 An analysis of this algorithm
can be found in [21], where 1t is shown that its numer1ca1 performance be]ongs

to the steepest descent type andk$u(§hermore, [21] reported some examples

where the algorithm failed to converge. In order to bvercomg the deficienciés

~

in thg previoué]y described algorithgﬁ and to accelerate the convergence of
the nonlinear 2;- inimization, E{—;Eifr [201 presents an algorithm which con-

verts the nonlinea

Q]-minimization problem into a sequence.of. unconstrained

»

) . . . ' .
minimizations. The advantage of this approach is that gradient techniques

such as quasi-Newton methods, may be used; thereby providing superlinear

\\convergence for any ﬁypersphere minimization. This technique s described-

§ N
\n the next section. ‘

\ ' )

b 3
4 .

2.6 SEQUENTIAL UNCONSTRAINED MINIMIZATION (S:U.M.) (1]

- Consider the following function g

o

\ - - - _ ,
\ P(x.e) = .§ [ff + s] » e>0 . (2.15)

where ;}k ) are continuous diffeventiable functions, for i=1,...,n. The

gradient ve\tor and hessian matr1x of F(x,e) are:

) (2.16)

vl




=

A0 + b v (£, 00 - PR+

2
. i=1 ~ : ~ .
. ,»‘r i R (
. 3 4 . N
'2'
v (x) - v f; (x)) fz(x ve) o ’ *
. / \
. L) // N -
(?fbg) . Vfi({l‘-'VTfi({))} y o (217
/ o | ‘@
. »~ t{ : / . ’ . '
The s.u. M approach can be restated in the form of the fb]lowing problem: o
i
Problem 2.4 L. -
. | -
" m 1 /' ’ l
Minimize P(x,e) = } (fz(x) +g)?, >0, (2.18)
~ i=1 KK?- i ' &
for decreaﬁing values of €. ‘
Suppose  x* minimizes P(x,e), then f* is also a solution of the
%,-problem (2.5). In order to justify this. claim, the following two lémmas, °
‘ ! - o *
taken from [21], are provided. -
) f ’." ~—J
Lemma 2.2 For every X5 e the following is true,
N
Vim § (fz(x ve)? s g |fi(x (2.19)
YE-0 =] =] '
i Ji~ /r i
Lemma 2.3 let gfs minimize P(x,.6 and {e;} be any sequence
converging to zero. Then every limitrpoint of the sequence (5:§ 1 odista
, ' . 1 .
solution of the &,-problem. f o R ) ’
{X* } » . .F‘\\

~€{

is a limit po1nt of the sequence

Proof: Sﬁppose x*
then there exists a subsequence which we ¢an renumber as {Gi} such that
I, 4 .
=, Llet ., be any element of R’ then .
/>

g; +0 and x* +x* as i+
. T Eq

_/\ . |
. ] \
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‘1‘,81.) < P()ﬁ,e.‘), ¥io —_ (2.20)
Letting: .1 + ~ gives
Fx) < Fx) ¥xef - (2.21)
. . . 4 '
N The iterative procedure of the S.U.M. approach is givenlgy the following
: steps ; '
‘ ' Step I Pick & € R, set - g, >0 and set K=l, selectl
where LER > 1, where €, can be computed as follows:
] ' ~ l‘»,
. ey =35 max  [f.(x.)] (2.22)
-1 10 i€ll,m 0 ,
\~\Z , or *
SR PR RTE ‘
e = Tom L .2 1510 . (2.23)
Step II Minimize P(;g,e‘), denote the solution by x*k v e
. Step II1 Set Ek'ﬂ \= E'N,/L.
- Step IV If g 4 <o and/or Vyo-x 4| <8, where 0,8 \are
: small numbers which etérmine«tﬁe accuracy desired, stop.
¥ 5 ‘ ~ . ‘
Step V If K=1, set gy+]‘2 X¢. If K>2 find and estimate

gk+1 to x.,q by Fiacco and McCormick extrapolation f

technique [23]. ‘

AL L AT,
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Step VI Set K = K+1, go to.Step II.

V] s

The justification oﬁtep V can be found in [?.3']',.[21] and it should be
noticed that the use of extrapolation in the S.U.M. algorithm.can be
associated with the S.U.M.T. [23] where it is used in grder to accelerate

the convergence. S.U.M. uses Step V for the same purpose and in addition
L ~ N

[ S

ST

it is used in order to improve its numerical stability, i.e. -as €5 0 /

P(x,e;) becomes i11 conditioned, then a good estimate of the minimum can be

i, :

. obtained (under mild conditions) through extrapolations of the previous

minima, Ao

.
» Remark 2.2 This algorithm is the most efficient and practical
1 \b

of all the algorithms available in the 1iterature. However, the approach

presents two basic drawbacks, i) a high number of iterations is required
in order to reach the minimum and consequently it is unsuitable for minimizing

functions of the penalty type [7 ] for the constrained problems, -ii) there

is no clear way to choose the parameter L, i.e. in examples 1,2; and 3,[21]

uses -L='1,0 and in example 4, L=16. An attempt was made however to solve

example 4 with L=10 but the minimum was not reached to full accurdcy and tMe

number of function evaluations at the end of the computation was greater than

that required for L=16. Moreover, [21] used the algorithm to obtain reduced
order moaels for the single input-output case where the typical values of
L were 10,16,22." A new method for i]-norm minimization and nonlinear 9,]-

approximation based on the sequential unconstrained minimization approach is

.presented in the following sections. ‘

P

Ao R
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"Given m continuous differentiable functions

D in Rn, define the following cost function

B

m -
I(x,9,8) = 121 [ff (x) + Bik¢ (fi(g)ﬂ%.

where A

B'l ER3>0’

1 alF (),

o yxes§-
2) o(f,(x)) <

3) olfi(x))

~

4) 1f ++f§>~(

Now we can state the approach in the following problem.

Problem 2.5 Minimize
A, m ‘
T(xy6,8) = 1-"~Z,1~‘[f$(

for decreasing values of By -

then define

{

!

k = {1,2,3,...} °

.

¢() as follows: <

&

fz(x), ¥i, VxeS-

L 4

3,

f;(x)

dol £, (x)) |
>0 -d—my— V1,V§ED'
then +4 ¢(fi(5)), ¥i, ¥ xe€s-

k

[\

048y ¢ (f, 01,

*

with domain

(2,24)

is a continuous differentiable function ¥i and

(2.25)
(2.26)
(2.27)

(2.28)

(2.29)

Suppose that X solves problem 2.5, then it is claimed that X

solves the l]-prolﬂem.

The following lemmas justify this claim.
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Lemma 2.4 The following is true
m : n .
)13
LR + 8 olF LT+ T 15 (0], (2.3)
i=] " (AN
/ \
as 8; +0 and furthermore independently of ¢(f1(>~<)). .
k i
Lemma 2.5 Let x be an interior point of D , then a necessary '
condition for x to solve pmb]em}Z.S is that ther:; exist constants ’
O
a; € [-1,1] Wi €(x) such that
m — ——
}  sign fi(x) « VF.(x) + ¥ a; ¢ Vi (x) =0 (2.31)
i€C(x) i€C(x)
P 7
k () -
where C(x) = {i: f, (g) = 0} - (2.41)
, L}
Proof: ﬁing the gradient 6f/\£2.29) we have v _
do(f,(x))
r(x,9,8) = J ; T ) (2.32)
=1 (F(x) +8; o(F;(x)) -
-~ k -
Let {xk} andl {81. } be two sequences converging to/ X and zero respec-
A K | X
tively ¥i. Then letting ks=- in (2.32) and 1 & C(x) we have
m o ’ , ,
vr(s) + § osign £,(x) ¢+ vF,(x)- (2.33)
=1 -7 ) ,
Furthermore if X minimizes problem'2:5 then /( ‘ .
m — —
1 osign fi(x) « vf.(x) = 0. (2.34)
F 48
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Now. consider that -i‘€ 6(7). We see that the sequence
Pl !

n

st (1) ﬂ .
0 +3 Bik FH \ S ¢
’ (é(x) + 8, ¢(fi(x))j5 . ’ (2.35)
T -k ~

4 . v )
does not have a definite limit in general. However, it is a bounded sequence

with values between -1, +1 then (2.33) becomes

and from (2.33) and (2.36) we get (2.31) where ai € [-1 1]
Tw
Le:nma 2.6 Let x sat1s@ff2 31) and let {8 } be any sequence
convexgmg to zero. Then every limit point of the sequence {xB }- is a

solution of Problem 2.5. K 'k

Proof If

x|

minimizes I‘(")' we have,

r(; :q)a B] )_<__ r(x:d?a 61_ ); ’h-
~ ik k - k -

Letting k »= gives

é

i

{8; 10 ¥, - (2.38)
k Y ,
Xg  TX ML (2.39)




and theﬁ the lemma holds.

Remark. 2.3 Until now nothiné has been said about the role played
by ¢(+). The convergence proof as demonstrated previously is independent of
¢(+). Therefore the justjfication' for its inc]u;ion ‘ii given in this remark.
In (2.24), ¢(+) can be regarded as a dynamic scaling factor. Let X €5
and if ff(;_) decfeiases for some 1, then‘ ¢(fi(§)) dec‘:reases. If ¢(+)

k
become very small in order to converge to x, due to the fact that

-~

decreases sufficiently, it is redsonable to expect that Bi does net\have to
as k-, Consequently it is expected that the use of the dynamic factor ¢y
under suitable tonditions, can lead to a reduction in the overall number
.of iterations. Furthermore, the parameter L (i.e. B, = 31. L L>1)

- k Y

i
k+1
becomes less critical in this algorithm than in S.U.M.

One way of decreasing the overall number of iterations, may be to
decrease Bik by a large,amount V¥i at each iteration. Then clearly there
exists one drawback (also shared by S.U.M.) 1in that, if the decrease is too
dr;gstic, it wilﬂ lead to numerical difficulties. Suppose there exist L,
L“>1 where L'-» L, and X is the vector point where [(:) attains its
minimu'm after km iterations when B, is reduced by a factor L. However, -

. k |
.if the decreasing factor is chosen to be L' with the intention of obtaining:

% in Kr iterations such that Kr < Km’ then the following two cases may

~

“appear. 1) If f Yi are nc/t close to zero, the minimum might not be
reached beaause T(-)" becomes nondifferentiable before 'g is found.
II) If any fs becomes zero then [VZI‘(-)]'] becomes singular, where

V() s given by ,

/

’ «'

PRV IENT R e W

o

Wikt B
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m .

W) = L AIR () + 8y a(f 0T LT () *

T(x) + V0T - TR + 8y a(F (] 2 -

A i‘e jrl k7 il

[£,(x) « 7H(x) + VT ()]} + .

3 y N
-3 Wt (),

(L (x) + B U000 ° - D38y g - ) ¢ |
- oty VF, (%) VTE (x)] - |
LY i Z() itX i12d -

(3 8; + V(+) V'f(x)]1} : (2.41)

k

" In order to avoid decreasing BJ. too quickly, the following ideas are
k

considered: ’ . ///

- Suppose that Bjk ¥j 1is computed as B

‘depend on the particular choice of ¢(<)) for the iteration K

1k=

and for the next iteration B; =B /L’? then the following
’ k+1 k+1
three cases are considered. :

i) If the ratio 1y = B; /B, fdr’any i 1is'equal to 1, then
kK Tk+1 :

B is recalculated as .
k1 , )
B; ‘ '
Coeoo R Vi ! o ) q(2 42)'
Tk+1 € ’ - o

where ¢ € R, 1<¢ « L.

N4
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ii) If B, < B. -‘then B is retained.

T I k+1 \
iii) If 8. < 81 i.e. r>r_ forsome 1 then B; is
Tk#1 k - T+
recalcugb\ated in the following form .
By = Bi ct, t>1 ) (2.43)
k+1 k+1 .
such that (ii) is satisfied.
] ~
Based on the above material, an algorithm for a particular choice
' \ ' .
of ¢() is presented in the next section. .
.
2.8 AN ALGORITHM FOR R". -NORM MINIMI ZATION AND
S NONLINEAR 9,1 ~APPROXIMATION
First define ¢(fi(5)) as follows: /
. -4
2 : . .
o(fi(x)) & ¢, (f;(x)) = Ln(F;(x) + ), ¥i,. (2.44)

J

where\ o=1+¢g, 0<g<1,

Then T(+) bq:omes

m. ' | .
Pap) = (R0 £y - i (F0) o) (2.45)
~ 1= ~ . R
and . . . /f .
3 ' ‘
m. [F(x) + (o +8; ) f(x)]
V() = ] 1 k * V() (2.46)

1’

1 (%(5) + Bik . Ln[fi(f) +g]) 3
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m .
() = b (3. 6(x) +0, + B ) * V() - vE(x) +

A RO A R R ORI A

RS

=
{(f3(x) + (o + B, ) . fi(x)) < Vf(x) - v f1(x)} TZ%E;Ei

(2.47)
where
3 .
rTi'— f;i(x) + (o + Bik) f; (x) | ' ) (2.48)~
) . y K
T, = fo(x) + R 1 R N X 1)
The parameter o *can be seen as a to avoid numerical probiems

due to the loge function (i.e. ddg to a fdét decrease of fi(f) in the -
early iterations). Clearly 9 (+)> satisfies the definitions (2.25-2.28),
i.e. if L = 0.1, the set of all x such that fﬁ(i).i 1, belongs-to

the set s. Then, problem 2.5 for ¢(+)  as defined above can be restated

.as follows: ‘ ”

Problem 2.6 Minimize

(fz(x) +8

() = 3

He~13
—

Coe L (F(x) + o)) T (2.50)
i L i< k
for decreasing values of B; and G-

Tx

The choice of the appropriate va]ues of the parameters B.
y ”x: k
cit,L _are related to the scaling of the particular problem ufider consider:

w7

:Uk ’

ation. In general, numer experience w1th the a]gorithm shows that the

following are good choices of these parameters.
! o

~
4
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tional characteristic. The following steps describe the proposed algorithm

[Pps— RS

we

B ..10']0} for 1<K <6, for

. P
2) L = 100, c=%,t=10,'r‘m=100. ' i
oo “
* 3) by = max Ifi'(x)] ¥i, and let LY .
'k ) . -
) z; be an integer variable di fferent than zero ¥i k.
k
IF b, > 1 then 1
1, —
k
Z,
i
-~ k
B: = —~—, z, +«+ b, -,
1k JL ik “1k

k
szi -
K o
B; = ———— z, +«b, 10
o ore0*T e e
e = {1,2,3,...}
o P
4) 81. can be expressed as Bi =4J 10 k here J and ag
k - k k
are positive or negative integer numbers/and r can be
computed as '

k-1
r= lga-k * , where r, <r Vi
i 10! ? 1—-"m

literature and among them is a guasi Newton algorithm that uses ireRqct
Tinear search due to Fletcher [24]. The Fletcher method is the technique

used in this thesis for the minimization of T(+) due to its good computa-




N ‘ .22 - : :
for the particular choice of ¢(-) = ¢L('): \ ( :
. } » #
. 1 - .
‘ Step I Pick the starting point Xq and set k=l

Sfep II Set c,t,C],L,, ™m

Step III  Compite b, =max [f(x)| Wi,
« k

if b, >1 then B, =2

/

‘ if b <1 then g, =z, JLe10%
k k Tk

e Step IV Using [24] minimize

f s 3 IR sy - () o))

a

and dengte the solution by gk - If k=% set o, =1

Step V‘ If Ib~(k-1 "fk” 29y or ]r(')‘F](‘)quz,
where g, and 9 prespeci fied small numbers, depend-

ing on the desired accuracy, stop.

4

Step VI  Set k =k+1 and compute B, as in Step III.

) k .

Step VI Compute oy = g-t, 1f g > 1077 then s g = 10712 i
! L4 ai . 4
| 10 KT i
Step VIII Compute ry = =% * 1 i
I 1 3

10 K |

If forany i r, = 1 and s 0, then

By =B /C Vi, ry = 1\ go to Step IV. If for any

A — kK k-l. Y
i, ry=1 and rp 1, StepAXI. Else, next step.
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kK k-l
) -

’ -23 - - :

. Step IX If ry < rn*‘.)h, then Bik + sik vi, rp=0, Step IV.
Else next step. [
Step X [f- ry >r, then 81k +_31k - t, Compf:te Fis 9010

-

Step Iv. : ;

. »

/¢ ¥i, to Step IV.

e

étep X1 Set ¢+ c)t, compute 'Bi = B,

In order'to illustrate the performance of this algorithm the same
examples used by [20] to test S.U.M. are solved with the proposed algorithm,

and a comparison with S,U.M. is made in the respective tables. These results

‘are presented in the following section. o v

2.9 Numerical Examples

Examgﬁe 2,1: Given the set of nonlinear Equations

2
= X-l +XZ']0

-
—
—~
>
—
|

~"

~—~~
>

—
|

-x]+x2-7
- 3
f3(§) -x]-xz-l

3
minimize F(x) = [ [f;(x)], ’
. i=1 )

' where xo' = [1,1].

13

* This problem was solved using the proposed a]gorithm. After 5

A

iterations the computation ended with the following values:
» ’ ,

F(x) = .470424

2o
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fz(g) = -.4704

The progress of the ccmpdtation is shown in Table 2.1. From Table

2.3 we can see that the value of F(§) coincides with the one reached by the

S.U.M. algorithm. But requires 7 iterations and 3 function evaluations less
reépectively. Furthermore at the point g the function F(?) is notdiffer-
entiable, Also it should be noticed tha}t the mifnimium {Ei-s} = 2x10°8 and
for S.U.M. 5‘14 5.8 x 105, Clearly Bik does not have to become very |
sgall in order to reach the minimum.

N . N -

Example 2.2: Given the following set of nonlinear equations

4

2 2 2

frlx) = xq %+ x5 -1

el o e |

falx) =%y + % = xq +1 @ i

3 2 2
fo(x) = 25y + 6 + 2 (5xy - % +1)
f.(x) = x2 - 9x ,
A 3 \’
: ‘ 6 :
minimize F(x) = [Fi(x)] , where x' = 01,1,10.
" ~ i=1 ~ s .

The mininum F(¥) found by the alorithm is F(X) = 7.89422 and

the progress of the computation is shown in Table 2/:2,- From Table 2.3 we

. see that the minimum found by the proposed algorithm is s1ightly lower than

that obtained by S.U.M. lMoreover 7 iterations and 17 function evaluations’

less were needed.

.
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N e v S Y e

N - 25 -
) A
XK i ¢ X Ll-noz:ms No. function
X : r 2
' i errar. evaluations
X X, ~ »
1 2.849503 1.924619 .591692 .500051 28
2 2.842554 1.920228 472734 470814 24
3 2.842501 .  1.920178 470952 | .470451 13
4 2.842503 1.920175 .470469 . 470425 13 , ?
5 2.842503  1.,920176  .470429 . 470424 7
85 . §
)
: F) B2 ’3 . oL o
; ) 3
1 . 0.080000 0.050000 ° - 0.050000
2 0.000400 0.004000 0,000900 )
3 0.000200 \. 0.002000  0.000450
4 "0.000020 0.000200 0.000045
5 210> %1007 4.5x107%
TABLE 2.1 LT




- 26 - /
h 49
. 4 A
' N ) 7
XK r Ll*noms No.funct~
K | X X, X3, error,  lion evalua-
. - tion
’ 1 .522176  .000142 .021178  8.18656 7.92120 22
2 - ,53%166  .000082  .031838  7.90620 7.89448 3
i 3 .3%111  .000045  .031927  7.899% 7.89424 15
4 .535985  .000004  .031919  7.89479 7.89423 24
5 .535985 0.0 ',031920  7.89428 7.89422 12 ¢
104
- ’.’D
ﬂ — z
‘K
81 “r f‘32 B3 B4 B5 86
}
. o N A
P 1 .02 .03 .02 .02, . &8 .08
: 2 .007 004 - .004 - L0¥ T .009. ,0008
3 .0035 002~ - .002 005 L0045 °.0004
'}\
f - 4 00035 0002 .a0a2 .0aos ,00045 00004
L | 5 35107 2.x107° 2107 5x10™ 45107 410™
H M A 2 e
1 TABLE 2.2 . ’
; \ _r‘

" g Tl MDVs miad e s o
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Examples 2.3: Given the following funttions

1) X - where x€ [0,1] .
N :
1) e*cos x where x € [0,2]

ii1)  sin x where x € [0,27], : »

find a rational approximation of the form

2
a, t ay x+ta, ‘X
K(A,x) = 0 ! 2 5 . y

such that | f(x) - K(A,g)lh is mininized.) These problems were solved by

discretizing every function into 51 uniformly spaced samples on the respec- :
tive interval. The results are presented in Table 2.4, For Part 1) a

slightly lower minimum was obtained than for S.U.M._ and 6 iterations and 71

LAY

function evaluations less were used. For i) the minimun reached was slightly

lower than that reached by S.U.M. and 6 1terat1’oﬁs Tess were required

€

o e

* while 5 more functions-evaluations were necessary. For case iii) the minimum

found was slightly higher than that found by S.U.M. but.3 iterations and 28 j

functions evaluations less were necessary.
[

Exampie 2.4 Given the %o]]owiﬁg impulse response corresponding to

a seventh order* single input-output system.

f(t) = %e't- e'2t+-]2-e +-]?:e +%e sin (7‘t) +
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e e v e i g e

% .
-30 - - ~
‘No. of fun- v
e X R L,-noms ction eval-
- ‘Error - uatim
1 2.260052 1.892936 6.813806, 2.856335 601162 45 - ‘
\ , .
-1.651138  .164252  .71267%

2 2.243663 1.863993 6.770822  .567899  .561006 - 27 p
-1.658208  .165820  .752047 h °
3 2.241031 1.85%987 6.769864  .560165  .559871 . 30 | i
-1.644800  .1657077 .740021 . .

L ; '
4 2.240758 1.857692 6.770026  .559827  .559815 46 \
1.644891  .165873  .942099 ‘
148 S
. . ,] - 3
-
- [ N : . ;
[ .
10 B % / g Bs % N
S.02 .03 .02/ .02 .58 - .08
N A [}
.007 .004 . .004 / ©.01 .009 .0008
.0035 002 | .002] .005 0045, .0004
I3
.00035  .0002. - .ooo}z 0005 .00045 .00004
‘ . | "
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’ find 2 third gyrder system with 1'mpu1s§ res‘ponse‘ of the form
v ' * '
 -at ~ -agt
K(a.‘t) = e cos (a3t + a4) ta e , ~

\

such that it is the best approximation in the sense of the & -norm i.e.
' 2

minimize [if(t) - K(A,t)]|, te€[0,5]. T~

¥
s

With starting point [2,2,7,0,-2,1]' the problem was diséretized into 51
{

. uniform samples in the respective interval and the progré‘s§ of the computa-
E N

tion is shown in Table 2.5. From Table 2.3 we can see that 7 iterations

and 18 function evaluatigns less than S.U.M. were necessary to reach the

minimum. rforeovemr thishmin'imum was‘slightl\yJo'wer than the one found by
SOU.M.

2.10 CONCLUSIONS i

A new and efficient algorithm for {y-norm nﬁnim;zation has been
presented. One 1nterest1ng feature of this approach is that the parameters
\ire robust in the sense that L,0,8, etc. are unchanged for all the examples

presented in this, thesis. ®

-

This algorithm was tested extensi\;elynon other problems and the
same numerical performance was found. In addition, the-al goritﬁm is both

numerically stable and converges to the %y=norm minimum for all examples

tried. The efficiency of the algorithm lies in the reduced number of 1ter(a

" -tions and functwn evaluations required, due to-the incorporation of the

dvnamic scaling factor ¢(+). 'Although the algorithm tends to sbecome

4

~, ?
. //
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ill-conditioned when B8¢(-) tends to zero, the algorithm still converges

to its minimum value. . - \ ' '
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, CHAPTER 3
% .ORDER_REDUCTION -

3.0 IRTRODYCTION

The main interest of this chapter is to study the reduced order
model problem for multi-input mul ti-oupu“t (M.I.M.0) linear time invariant
sysfems, i.e. given an m-input 2-output system S, find another systém . N

Sr -input. ,%-output , of lower dimension such that Sr approximates S in

some sense. In section 3.1.thisproblem is enunciated and some of the impor-
L tant approaches, which deal with r;che solution of -this problem, are reviewed.

An analysis of the optimal order reduction for the M.I.M.0. case is présented

in section 3. 2 by considering the minimization of the input-output mappmg, '

namely the impulse matr1x respanse whfch characterizes the system. In sec-

tion 3.3 a method is proposed for obtaining reduced order models for the
B ,
| M.I.M.0. case, based on the theory of the previous section. Several numerical j

2

examples are given in section 3.4 and the conclusions of this chapter are

contained in section 3.5. ‘ S

. {

) ' 3

. _ 3.1 REDUCED ORDER MODELS (R.0.M.) !
. : : i

{ Let us consider a linear time invariant system (L.T.I.) represented ¢

1 v g

. . as follows \ é
System S:

x(t) = AX(t) + BU(t), x (0) =0

.

- y(t) = Ci(a) + DU(t) T (3.1)

1}

Where A,B,C;D are constant matrices of dimeésion nxn, nxm, xn, lxm.ires-
pectively and X,Y,U, vectors of corresponding dimensions n,2, and m with
McMillan degree p[d?.'] (e.g. p<n) and withstransfer matrix H(s), impulse

response matrix H(t). The R.0.M. Problem can be stated in the following-




=

o e 1 . o T T

way:

Problem 3.1 Given the System S as above, find a system §. with

transfer matrix H}(s) and impulse response matrix

Hr(t) such that

" System S in represented as:

X(t) = A X (6) + BUL), x(0) =0
yp(t) = Cx (t) + DU(t) (3.2)

where Yr and X, are vectors of dimensions 2,r and Ar,Br,Cr,pr are -
constant #atrices of proper dimensions r<n- and Hr(t) approximates

H(t) in some sense.

-

' The follawing remark is appropriate at this point.

Remark 3.1 The R.0.M. problem is somefimes stated aS above but
without the condition ~p=n. However, this condition is releyant in the sense
that if p<n for 'S and an S, is found such that it is a good approxi-
mation to S then vr<n., But.if p<r theﬁ~the question to be answered

5 .

is whether or not it is more practical to find the minimal realization

o

which is an exact representation of sysfem S qF just an appfoximaned system

Sr.‘oHowever it is not assumed here that system S is controllable and
observable, Father, it is assumed that its Magmi]1an degree is known. Several
methods are preseniéd in the literature which deal with the R.O.M.“ﬁrob]em.

In general, dne Faﬁ c1a§sify these methods into the fgilfowing c;tegoriés:

i) Singular pe#?urgation iji) Continued fraction expansion iii) Power series
Expansion of H(s) iv) Error minimization. We presen} here a brief review

of these methods along with some comments.

o
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i) SinquN\ar Perturbatiecn Consider the system S where x is

.. expressed as

N

\ <w

.

X = Xo |o» u is.a scalar > 0. \ (3.3) . .

iva

~

4

 Then by partitioning the triple (A,B,C,) we have

k() = Appx () + Apz(t) + Bil(t), .~ (3.4) .

P

w2 = Ayyx (1) + Aypz(t) + B,U(t). (3.5)

Now if we set n=0 and solve (3.5) we have

Ca(t)e A Ay x (8] - A5} B,U(t). : (3.6)
2 - e
+ JThen - the reduced\quel S, is‘c1é%rﬂy
1 z |
B(6) = (R e) + Ay ) X (0 ¢ Cr
(8y-Ay 4538, ult) |
ya(8) = Gyx (1) _ 3 ENCR)

Two methoﬁ based on the singular perturbation approach for obtaining R.0.M.'s
are due to Davison [15] and Hutton [# ] .Davison's methods,known as the
"Dominaq; mode", neglects the high frequenéy modes and retains only the Tow
“frequency  tomporents, Two variations of these methods are due to
(18] [17]. While ?hese‘techniques preserve the stability and tﬁe states\

of the reduced systems are physigally meaningful, their chief drawbacks are:

1
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a) _When the system poles are not clearly distinguished, i.e. when the poles
",\ L s

aﬁg too close to ,efach other numerically, the method fails, b) .For systems

S

where n>10 this technique becomes both computatiénaﬂycost]y and numerically

inaccurate.

B

i1) Continued Fraction Expansion Consider the system S .as defined -

before and *H(s) as its transfer matrix. Assume th;at .p=n, then H(s) can

be expressed a$ fpl]ows:

H(s) = ngiA?
where TI(s) = adj (SI-A),

then (3.8) wan be rewritten as

~

. 0-1
BytBS +... Bp_]S

H(s) ‘=
. P
a0+a]S +.o. .+ aps

1 \ .
where 80 € szm and a; are scalar yi = (1.

-

or

H(s) = {H +s {H,+s{H <3~
(s) = ty+s Dpstyr. s w370 )

Now the R.0.M can be obtained from (3.10) for some specific j. This method

.-p)

141

}

-1

J

(3.8)

(3.9)

(3.10)

orginally developed for single input-output systems by Chen and Shieh [13]

wag later extended by Chen [14] (as shown above) to cover the M.1.M.0. case.

This technique guarantees the stability of the R.0.M. for the $.1.5.0 case

4

but not for the M.I.M.0. case even though the original dystem might be stable.

Some of its drawbacks are as follows: a) a zero eigenvalue often causes

_numerical failure b) the requirement that B0 be non-singular cannot be

met in general. A more detailed analysis and critique of this method can

T

A
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be found in Calfe [12] where he concludes that this method is totally unsuitable

°

for the ‘order reduction problem in the M.I1.M.0. case.

ii1) “Power Expansion of H(s) Again consider S with transfer matrix

S

H{s) . expanding H(s) around s=0 we have
His) = T cal~lgst! o (2am)
i=1 ) g

A}

then R.0.M.'s can be obtdined by applying an algorithm to‘\H(s) which’finds

the minimal realization usiné_the Hankel matrix approach. Shamash <(44) -
used the Silverman [45] algorithm gﬁ H(s) in order to,obtafn R.0.M. for

M.I.M.0. systems. However methods based 6n those ideas gkve R.0.M.'s that

are not optimal in any sense. Moreover, the& fail to reproduce the stea&y

state response.

iv) Error Minimization The underlying idea of these” methods is

to minimize the error function of the quadratic type, of the form:

J = J( Il y(t) -_yq,(t) |Ig B N (3.12)

for suitable input y € ™ and where b is a constant matrix € sz“. One

variation proposed by Galiana [25] 1is to minimize JI of the form

i j; o (H(E) - ML) QUH(E)-H (8 Wi (3.13)

for &>m and 3 for. m<d as follows

A= [0 G = (0 e nge) of e (3.14)
1]

where Q and w are constant diagonal'positive defiriite matrices and where "
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.

fmpulse functions are used as {nputs. R.0:M. were obtained Enyfison [50],

where he used the expectatien onerator E for stoqhéétic processes while

considering deterministic impuises as inputé.

minimized was then

The cost function to be

ML tn B y(0)-y, (03 or (3.15)
{9 . .

I = trace [ps], where (3.16).

ELU(t)] = 0, E[U(t) U5(T)] = No (t-1), (3.17)

. ¢
N 1is a positive definite symetric matrix.
of (3.16) implies the solutign of
}

F'P + PF = -B'Q B, ‘

FR + RF' = -§,

It can be shown that solution

(3.18;

(3.19)

where Q 1is as before, F = diag[A,Ar] , 0 is the Dirac function

G =(c, —Cr) and

BNB' 'BNB'
r

7]
1}

a ni
BrNB BrNu? .

. ' /

s (3.2§;/

furthermore the reduced system is assumed to be an aggregation form (see

section 4.1). Thggrefore the aggregation matrix and the R.0.M. has to be found

through the direct minimization of 'JIIr:

and consequently the large numbers of

variables to be minimized imply an increase in computational effort. The Hirzinger‘

and Kreissg]me}@r' [27] method minimizes
“» ' ! '
“ »

A

i .

e

PRI
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i

) ,
3% = I =gl | S an

where 5(0) is the inital state and P is the solution of the Liapunay
Eq.(3.18) for every input U(t) € g(t). Then the R.0.M. can be obtain;}“by
minimizing ‘ : /

A1V

o

W13
[
—

. (3.22)
i

[
The main disadvantages of these methods are the selection of the weighting

matrices W,Q,N [net®"that an optimum reduced model can be obtained for a
specific choise of W,Q,N but it may not necessarily be the global optimum
in tﬁe strict sense, due to the fact that optimum weighting matrices have

to be found first] and the fact that the numerical effort is considerably

. - ]
high even for small sized probF@%s (i.e. n<10) and these methods in general

" can not renrnduce the\steady-itgte response. Recently Wilson and Mishra {51]

presented an improved version of wiWSonﬂs method, by decomposiné the output
responseinto transieﬁi ard steady state portions. The transjent portion was
then reduced using [50] and the staady ;tate part matched exactly. However,
the drawbacks mentioned above still applies to this method with the &Xception

that now the staedy state of the original system is reproduced by—the R.0.M.

—

s
F
.

. vy
3.2 OPTIMAL ORDER REDUCTION

4

Consider the muiti-input , multi-gutput system (3.1)udescribed by

the convolution integral

.

t
y(t) = fo H(t-r)'U(T) o (3.23)

R Y et e o b Bt B L) ke f Mt 1

TR e 75, TR S Fel 2

AR

R

o N
P 23tk e




Tty

Vad

v

. =40 -

. . _ .
where yGRL, yeRm and HER xm-H(-) is known as the matrix impufse response

of the form . ‘
S&, H(@J“=/{ﬁ:/;t)] Viel, Vo6 T (3.24)
< J N
where fromnow on I = {1...2}, 6={ 1...m}. We assume that hid(t) is'of the |
3
form 6
he () = hE o) + nlE (t) (3.25)
id i ig AR

where h%}](t) is a measurable absolutely integrable function i.e.

t' - : L
( I, (t)|dt <= Vt<o yiel, vied (3.26)
J‘o iy

i
and o(t) 1s the unit impulse distribution. Now consider the system (3.2)

L

, described by its convolution integral

AN

{; , ) -
pdt) = [ H(e0 W) o (3.27)
~ o .10 -
' L 2xm . 4
where y €R”, H €R and U 1is the same as before. H_(t) and h = (t)
Y‘ r ~. . - . r K rid
are pf the form
@ *
Ho(t) = fh, (011, < _ (3.28)
W 1 T s
h. (t) = 1, olt) + hr (t) ¥eI, VJEO . (3.29) -
‘ i id i .
A and- hS_I (t) is a measufab]e, and absolutely integrable function. It i's
1J

-
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RIS

Skt




- wwnrﬂ‘pw‘mat“é."" R ATt T
[

P

“'41 -

desired to appriximate system S by system Sr, in other‘@ords,’to find

the quadruple [Ar’Br’cr'Dr] such that Sy s a good approximation to S.

If the same inbut vector is applied to both systems the output error is given

by
‘ |

e(t) = y(t) - y (1), S (3.30)

and the system error by

¢

e(t). = j: () W) dr, (3.31)
where . / .
. . Y :
Ho(t) = Thg, (1]. . ‘ (3.32)
o | . . ’ | | d
he, (8) = hg (8- by T8), Wiel, v (3.33)

Equation (3.31) can be rewritten in operator form as (HoU)(t) where

0He(~) i\the associated impulse response matrix of the operator H.

Clearly ﬁe(-) maps U onto_e for all inputs U {.e. e = Ha*U. Let’

U'EL;" and “de fine

1 1., '
t = |h . ° (3.34
he, (O = 1501+ I, [EXU

The induced L1 norm of ﬂe(t) is

&

s ot s e e 4 v ] - ? " *

r e e e ST
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Tr g e mamE e >

o Ly= omax  § b te) - . o (3.3)

N e e % ‘ .
The following facts concerning the systems . S,S_, S, are straight forwhrd": R
consequences of known results [53], t19], [4R]: - X Y

. Fact 1 The following four conditions are equivalent:

-

1)'. the system S, (Sr,Se) is , BIBO stable.or L stable

@
ii) the systenm S"(Sr‘se) is L_ stable for all pe[l,=].

P

i) the system S, (5.,S.) is L, stable,

. II II < 11

'lV) th (')€L~| (RESP. h‘.( ), he' ( ))-
' ®ij !

Basically this fact states, that an m-input %-ouput system with impulse

+

response matrix H(+) is [, II/ I1I, {f, and only if, each component of

I

<\
H(+) namely, hgd (+) EL].

N

SRR $i et o 173 St Hhe i s M PrN e 4

Fact 2 Llet H(+) be a stable impulse matrix then, whenever
) LT,‘ we have

.
"

KUl < o Ol - | (3.36)

where o = K|l 4 - (3.37)

and where [H|| ;; represents the ;-induced matrix nomm R and H s

the matrix whose 1Jth entry is as in (3.34). Then

sup i« ) (3.38) *
UELI' 1 J/ . ’

L3
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‘ In the next section.an approach to the R.0.M. problem is deve]opedfﬁased on 4
\ the material presented abave. ne
. - - - R N
3.3 M.1.M:0. REDUCED ORDER MODEL
, 5 Consider the systems é and Sr where it is q§sired that the system
Sr provide a uniformly good approximation over-all iﬁputs U(t). Clearly the
§ induced operator norm Iy as defined in the previous section is the cost
? funtion to be minimized but unfortunately in practice it is almost impossible
to do so. However an alternative procedure is as follows:
I First et L(He(t)) be a strictly proper matrix then (3.4) becomes
‘ LI
I he (t) fl=hg (t) : (3.39)
) id 14 . ' )
. , For BIBO stability we have :
' | .
H(t) || dt = ‘ 3.40 }
f [ He(t) [ dt = K <= ‘ y (3.40) j
t, ;
. where ) :
: ' ¥ ~
§ : ) < Ku<w o (3.41) ;
: Defining the || as ;
% : ‘.
\ Be(t)l = T 1 In, ()] - . C (3.42) ]
z\ i€l Je0 iJ ) :
s\\ .
by
i \i then frgm (3.40) we have
\\\ A -4 t . ¥ o ’
\ : Jy = J YooY gh, ()] dt = K {3.43)° .
T Jtoér e ey S :
. \ 4 \ .
| \ -
J \ v
\ \
\\ A AN ——
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In the case that [H,(t)} is & brogﬁF’matrix,~ ther h_ (t) is as

, , 4 &4
in (3.34). Define the matrix T , -
L () = Tz ()} & (3.44)
s .
whose entries are of the form ,
= Iul II ; . .
\z”\(t) = |he [ + h, ('c)||1 Viel, vJeo (3.45)
o id o 1J ’ Y
Letv,az be a cost function of the form
Lel . A
oY= YT ozt L " (3.46)
2 ) 1.62 ‘Eg 1\] 3 . - ' o
} ) ;‘L:i
then J, becomes z
- .
T T 1
Jy=dy+ I 1 gl - ‘ - (3.47)

i€l 0Eg G4y

~

In view'of the above, the reduced order model can be obtained by minimizing

31 and 32 . However for computational simplicity we are going to consider
the discretized form of 3] and 32. First lTet A be a,set'of real para-
meters A : {a1,...aq} and T be the discrete set T: {tj,... t.} where

te€R,. Defining the impulse matrix of the system Sr as follows
] N m‘:"

Holhit) = iy (A}, | (3.48) *

The discretized form of the L1 norm of hé (t) for the strictly proper case
. iU v
is denogpd by

-

1
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L y {
\ . 4
\ T Ih, (A )] . ‘ (3.49)
keT = &5 K
Clearly, 51 becomes : - .
Go= 11 I Ih, (A7) (3.50)

. kET i€l Jeb id : !

and it follows that reduced or@er models can.be obtained by minimizing 3]
for the strﬁctly proper case. Moreover, by minimizing 31 , We can also
obtain reduced order models for the proper case and, the following is a
justification of this claim. Let H(s) be a proper matrix in s. Itis

known that

Hy(s) = H(s) - H(s) (3.51). -
. S0 ’

)

where H](s) is the strictly proper matrivassociated with the.triple [A,B,C]
and H(s) is the matrix associated with the quadrupie [A,B,C,D]. Then,

finding a R.0.M. for the proper case implies finding the triple [A ,B ,C ]

r>r’’r
where D=D.. Now clearly by minimizing J], we can obtain reduced order
models S that are a good approximation to S for all 1hputs U(t). How- <
ever the minimization of 3] is accomplishied by using the algorithm fQ{wﬁl-
norm minimization proposed in Chapgpr II. At this point the\f611ow1ng r;m;rks'

are Spproptiate: . . Lo

\W N .
" Remark 3.2 Choosing the form of the triple (Ar’Bé’cr) is a dif-

ficult task esbecial]& for the contin?ous case. The ghoice of the étructure
clearly affects the computational effort (i.e. introducing more unknown -
parameters). However the difficulty is due to the fact that the structure of

a
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~ : . ‘ .

!

(Ar,Br,Cr)is not known a priori. Somé forms to circumvent this pr;oblcEm are

o

presented in the literature [27], [s l,i.e. [6] the triple (Ar’ Br’cr)

ris chosen. to have the pair (Ar’Br) in controllable canonical form. However,

in this thesis what has been chosen is (Ar B.»C,) where B ,C. are full '
matrices and Rr is in Jordan ca;mnical form. 'I\'h'is structure presents the .
advantage that the closec},form ;so1ution of the transition matrix can be easily
found by preséeci fying the na’ture of its eigenvalues namely real, complex

or imaginary. ) : .
. . *

Remark 3.3 Some cgre is required in treating the R.0.M. pmb1em‘i

for the M.1.M.0. casé. Consider the matrices Hr(s) "and Hr(t) associated .
with the triple (A ,B,,C,). Then we have that - /
on X /
h, (t) = ¥ ( Z b . . (3.52)
Tid R o’ .
N
where ¢y s the transition matrix, A, €A, b B, € €C  and )
3345 bpps Gy € Rr' However H _(t) can be rewritten in the form: . - .
p B eh t "
'i . . 3.53
ho (1) = 2 J,9°9 \ (3.53)
2 14 q=1 : ‘

:
!
EH
4
§

where hqeR Vq, where 8 is a positive integer ¥q Let us consider the .

case where A has distinguishable eigenvalues, then 3;‘ =-0 ¥q. Moreover,

Hr(S) can be rewritten in the following form:

3 M . ] c ! -
ORI (3.5
& Tsh |
, ' z Xt v
or Mt = Lo et | (3.55)
q= '




v
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M= {Y;j} Y;JE A,

=
L]

o 1im Hr(s) (s+>\q) vq. (3.56)_
S-’Aq .

[
n

' N L3
Suppose that the method proposed in this section is applied to system S and

Sr where Hr(t) is as in (3.53), then we obtain
*iJ

*e *
yq s y>‘q A\ and Mq

e .
. {Aq1d} - . < (3.57)

\ Y

. L 3 : *
By Gilbert [26] we know that if Rq is the rafk of Mq- then the Macmillan
1 !

0
degree p s given by . ) .
2 o : . , 1
p= 1) _R. ~ Lo * (3.58) :
QE}/ q ‘ : . . k
. . !
: . :
It is clear though that the ‘relationship n>0 need not hold.  Then (3,53) i
- {s\an unéuitable eipressio‘n ‘for the reduced gfyétem. However from (3.52) it
can easily be shown that n>r>p is always true. ) I
. In the next section we present several numercial examples which ;
. . . ) “ :
illustrate the method proposed in this chapter, ' S E
.3.4 NUMERICAL EYAMPLES .

Example 3.1 . Given the transfer matrix
l—\ 71

1 1 '
(s+1) (s:ﬂHs+2§ -

H(s) =

1 1
(s+1)(s+3) L (s+3)

bt v [
L]
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o

. ) ’ ) )
with Macmillan degree p=4 and eigenvalues Ay {-1, 1, -2, -3}, finda

¢
reduced order model of dimension 2. a) The Ar was choosen to be a diagonal

. . matrix and this brqblem was discretize in the interval [0,5] for 51 uniform.
samples. At the minimum the error was 3{ = 4.138910, and the reduced model
is given in Table 3.1. b) Now the ‘Ar was chosgn to have complex eigenvalues
namely Ao=at bJ R 'Az =3 - by. At the minfmum the error was “3{ = 5,1775260

o

and the reduced model 1s given in Table 3.2.° As an illustration, theplots of

hiJ(t)’ hr (t) are shown in Figs. 3:1-2 and 3.3-4 for part a,b respectively. ]
id '

Example 3.2 . Given the transfer matrix )

s s s 5 ' T

. o 100 .. So 0 100, S0 o

: sy = ) G-t g s ey .

( S0 100 , %o y | ]

570,2 s+ T sELT SH 4

e

\with 0=7. Find a reduced order model of dimension r=5, where A, isa

diagonal matrix. The minimum obtained by the proposed method is 3{ = ,482986
and the reduced order model is given in Table 3.3 and in Figures3.5 and

3.6 hygt) and h o (t) are plotted vs time: Vi,d. . ~

14J
Example 3.3 given H(s), transfer matrix corresponding to a M.I.M.0.

system with 4 1neuts and 3 outputs, H(s) 1is given in Table3.4. This,weil

known transfer matrix [29, has p=3 and the eigenvalues are

Ayt {-1,11,-1,-2,-é,;3,-3,-4,-5}. A reduced order model %f dimensi?n 7 was

found, using the proposed method, and at the minimum the error was; 31=5.144338,

where the matrix Ar was choosen to be diagonal. 'The R.0.M. is given in

Table 3.5 and the respective plots are given in figures-3.7-3.12. The following

bR
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comment is appropriate at this point: .
Itﬁis clear téaf the quality of the approximation depends on the

| dimension of the reduced model. However several of models for
different values of r were triéd and the ones shown in the above
examples were chosen for their satisfactory approximations. Frgm
the computational point of view the selection of the starting‘para-

. meters (Ag

. used). For S.I.S.O.’[21] uses Ai (eigenvalues of Ar) N 1...r}

R B:, Cg) are critical (e.g. increasing the computes timer

i
- \

- \to be A; C A, where = {1...n} and XJ, are the dominant eigenvalues

of A. We found that for the M.I1.M.0. case the choice of A;<k; -
Vi gives better numerical performance and a substantial saving,fﬁ///

v

CPU time.

-

o - 3.5 CONCLUSIONS

The procedure proposed in this chapter has the following advantages
over some of the existing methods: o
o 1 , 1. RO.M. is optimal, in the sense that 3] is minimi zed.
p ’ 2. R.0.M.'s'can be obtained without depending on a priori knowledge
;f the .nature of the inputs to the system.
3. For a stable system, it always yields a stable R.0.M.
4. The R.0.M. can have real, or complex eigenvalues or a combination
of both. '
5. The starting parameters (A&,@i,d&) need not be controllable
?.g."(Agﬂg), to ensure an optimal 2.0.M. at the end of the
computation. The ch?ice of Rea1'1i°l} < 0, where kori are
the eigenvalues or Ai is  the 'only requireégnt tobobtain

v ~ ' stable meaningful R.0.M.'s.

»

-
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CHAPTER 4 : .

E . APPLICATIONS OF ORDER REDUCTION

4.0 INTRODUCTION ©o9

\ .
In this chapter the method for obtaining sub-optimal control policies

for the state linear regulator problem using the aggregation scheme of Aoki

(1] is reviewed. In general the aggregat1on scheme cannot y1er an exact

solution and therefore the obvious approach 1s to find an approx1mate aggrega-

tion scheme. With the results of Acki and the approximate aggregation scheme,

a sub-optimal control policy, for the M.I1.M.0. case, using reduced order models,
is presented. By the use of the concept of disaggregation [2 ], in conjunction
with the proposed method for R.0.M.'s of Chapter III, a procedure for obtain-

ing a sub-optimal Wiener Kalman Filter. for M.I.M.O. stationery systems is pro- J

_poséd and the technique is illustrated with an example. In addition the de-

gradation in performance or loss factor for the sub-opt1ma1 filter, as com- ‘

pared to the opt1ma1 W1ener—Ka1man estimator, is der1ved Finally in section g

ot
i

4.4, using the NU [52] and Rao [46] sformations, the disaggregation

scheme presented in the previous sect1on and the method of Chapter III for

obtaining R.0.M's of L.T.T. systems, a procedure is proposed in order to obtain

\

R.Q:M. s for a class of linear time varying M.I.M.0. systems.

4.1 SUﬁ-OPTIMAL §TATE AND QUTPUT LINEAR REGULATORS
c Problem 4.1 - (State Regulatori
Consider e 1inear:time invariant system described by
-, e

x(t) = Ax(t) + BU(t) ) SR (R )
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£

where x, is a vector of dimension n .and A,B are constant matrices of v
appropriate dimensions. It is desired to find a control Eﬂt) that trans-
fers the original state 5(0) to the final state 5(w) = 0, such that the

following cost function is minimized

N
®© 9

‘J'z%fo{lb"((tms fluelp e S e

where Q,R are positive semi definite and positive definite constant matrices.
The golution of this problem is wé]] known [48] 'and invoives the solution of
the ma¥rikx Riccati equation of the form A /

1

A'P + PA - PBRTB'P= -Q . (4.3)

and the optimal control is diven by

U(t) = R8T Px(t). | ‘ ‘ f‘ (4.4)

~

A sub-optima) control can be obbained using aggregation methods. Following

Aoki's procedure, consider the system described by

x,(t) = Ax (t) +B U(t) a (4.5)

14

where Xp is a vector of dimensions r, Ar e R™*" Br € R and r <'n, and
moreover X, is an approximation to 'x. Suppose that it is desired to design

a state regulator for (4.5). "Then the cost function té/be minimized is

L3

ak
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R PO R MO THETE | (8.6)
0 r _

.and the Riccati Eq. and the optimal control are respectively

1

AP +PA -PBRBP =-Q, (4.7)
— _ -1 . . oo
U.(t) = RTBIP x (t) - (4.8)

Now-suppose that a matrix M€ R™ exists such that

x (t) = Mx(t) ’ ' (4.9)

Then clearly from (4.1) and (4.5) we have , \
. VAM-MA=O : ‘ (4.10)
B.-¥=0 - : S (4.11)

L)

1f an M does not ex&'st such that (4.10) and (4.(11) are satis;ﬁed namely
x.(t) ¥ Mx(t), then clearly M can be obtained by finding an appmximaﬂty:oi

. solution of (4.10) and (4.11). EV Attar [21] propos ed that ft»_can be ac-
complished with the use of the %,-norm algorithm for solving over determined

set of linear equations due to Barrodale and Roberts [11]. '

Choosing Qr as

A .
Q. = (W) N ('), (4.12)

. °
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b

minimizing the cost function (4.6) and using (4.10-4.11) we can obtain
a sub-optimum control of the .form
1

T(t) = &8, i (t) - - (8a3)

i

These results shall be di rectly extended to the output regulator.
Problem 3.2 (Output Regulator)

Consider the L.T.I. M.I.M.0. system described by

x(t) = Ax(t) +Bu(t),

y(t).= Cx(t) (A 1)

where X,y, are vectors of dimension n,% respectively and A€ Rnxn,

Be ™™, ce R¥™T | 1t is desired to find a control Tj(t) that transfers
the original state x(0) to the final state x(=) = 0" such that the follow-

ing cost function is minimized

RN I FOE O S RE

This involves $0lving the following Riclattj Eq.

1

TA+A'T + TBR B'T - C'RQC = 0 . - (4.16) °

Then the optimal control g is

Tty = Remeey -+ . cean
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Proceeding in a manner similar to prob\em 4.1, consider the lower order system

I

described by

£.() = A x (1) +BU(t),

y(t) = ¢ x (t), °‘ (4.18)

where Xp and y

y, are vectors of dimension r and & respectively and

Ar € Rrxn, Br € Rrxm, Cr € szr, 1;< n. It is desired to desion an output’

regulator for (4.18).The solution of the fb1lowjng equat{on§ yield the aptimal

control U}(t).

_ 2 2 -
e | s uene, e
- . [ -1 ! ' = B
TA. +AT+TBRIBT - CQC =0, (4.20)
= “lay -
Tt) = -RBIT () S @

Now suppose that a matrix M€ R exists such that

b

x(t) = M(t), » L (4.22)

then from (4.22), (4.14) and (4.18) we have

(4.23)

(4.24)

(#.25)

-

<&
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T,

then (4.20) becomes

1

Based 'gn the above results, we propose a procedure to obtain a sub-optimal

| - t [} = .
TrAr + Tr + TrBrR B Tt - CrQ c=0, 5(4.26)

. and a sub-optimal control U;(t) can be obtained as ‘ J
o : |
% \ 'U - -1 ¥ m ' o \\ " 2 RN l g
} ~S(t) = -R B.P. ~r(t) ‘ (4.27) S 3
‘ i
- AW 1
f

control Naw for the linear output regdlator problem as follows:

\ . Find aN.I.M.0. reduced order’ Model (4.18) of (4.14) by
' using/the method proposed in Chapter 2. . -
A

II Solve the overdetermined set 6f equations {4.23 = 4.25) sing

. . [10], call the solution M. . 8

g

III. Solve the lower dimensional Ricatti equation (4.26).

IV. Calculate the sub-optimal control g;(t) (4.27) using the
" results of II, III.

4.2 'SUB~OPTIMAL ESTIMATOR

Consider the following two systems

M i eBU, )

N O R TR C R NS ' (8.29)

. .
I B ~
1 PN o
“




Y

- r ' rxn . v S
. defined as in problem 3.1. Assume that a matrix M€ R exists such”that ,
¢ ' X, = 44;} as in the previous section, then ' ' "
*m=aM S o\ (4.30)
. -t ) ) - - ‘\
B = ?r . . (4.31)
. 4 ' i )v & A \\
: A. can be uniquely defined (foki [ 2])" by ’ \
to. L | o , !
. ) (: ' - -1 / ’ f 2
- A, = MAM' (MM') - , ) : , (4.32) :
that 1s (4.29) can be obtained by perfect aggregation of (4 28). Consider . A \
NOW- ‘the 1nverse probTem. Know‘fng the state of the aggregate systems, Xx (t) R ' i
W + é
- . . can we estimate or reconstruct the state b((t) of the system (4.27)? This o
N . [‘
. problem is known as disaggregaﬁon and was studied’ ‘by Aoki [ ], [3] and 3
Jother researchers. ‘Aoki shows that perfect disaggregation can be achieved 1f
. ;
‘- the matrixeA of (4.28) has a speéia] structure namely\ g
. 9 Q },
v A - ) - " |
- e A= ME - A : o (4.33), :
) g vw : . ) ’ Vg
AN T Let M be a disaggregation matrix such that ) S
3 . ) % - .' l . ' ' ’ * ‘.
L A = e (t) e (4.38)
If ‘M is defined to be’ - . :
. ‘ R S
»f ¢ ,\ 1 , S o ) : . ‘ s . B
| ; . . M= D(MD)"", < : “ - (4.35) |
‘ , ’\ t
' Y N .

' o b . ¥ L3
- ) : S
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. tinuous version offthe Aak1 Hudle filter was presented byqﬁzwman Eaij
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where 1 Co o z C - ) e K
AM = MA = MDEM, ' ) , o (4.36) ¢ -
and the matrix E is the unknown to be .determined, then x(t) can be recon- 3
structed from | ~',('l:) as follows:
r}x(t) (8) + L1 - 4] BU(t) - o (4.37)

4]

.
. . ' . F
. . /
'
*

The natural apBTication of the disaggregation scheme 1s in the filtering

problem specifically in the w1ener Kalman estimator. The computational bur- ﬂimj
4 . v

* den of the Hiener-Kalman filtér is well known and several methods are proposed

in the literature to alleviate the computationa1 effort. Aeki and Hudle //

[4 ] propose a procedure to obtain the weiner~Ka1man estimator from a low

order aggregated model, and use the disaggregation scheme to abtain higher order .

: estimates, in part1cu]ar for discrete time systems. Furthermore the high

i

dimensional system ' is assumed to_ have a special’ structure (4.33). The con-

s o

where he .concluded that the solution .of, this continuous f11ter 1mp11ed a for- -

m1dab1e effort even for the simplest problem In the riext section we propose v

a s:mple but efficient procedure to obtain a sub~opt1ma1 cnntinuous Hiener- Y

Kalman estimator for the stationary case. '

r -
4 ~ ' '

° - )
L ¥ v ¢ Y n

3

© 4.3 SUB-OPTIMAL WIENER-KALMAN FILTER ° .. B

.Consider the following process model .

YL

X(t) = Ax(t) + 8U(t), - . (4:38)"




n

4

4
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v
.

with measurements

e ylt) = cx(t) +, C
)

(4.39) ¢
Fe , s AN o !

xeR, ye ', ne R g e gAML g pRar

with noise characteristics

L) PO

. EU(E (0T £ Qo) ,
DRV VDT Reen), (4
v B[N V(D0 - u LT (4,42

where E 1is the expectation operator, Q, R are positive semi-definite

“and positive definite symmétric matrices }espectively, V is a white noise

process and o is the Dirac fuliction. s h X B _
First suppose that A B,C,Q,R are time varying natrices. . Then it

’

15 well known (katman [30]) that the opt1nw1 estimator x(t) of x(t) is
given by

. . %
A

| X = AR(E) + K(E) Ty(t) - CR(6)] - o, e

¢

%

o

o o«

The, eviror covariance propagation P(t) lis'the solution of thé.fo'l'lowing
Muuiwuﬁm‘ -

N R
ot B(E) = AR(E) + R(E) A' 4 BGB' - P(t) CURTICP(t), 1 (4.44).
and the Kalman gain K(t) 1is R - ~Q
o, B oS , I . . L ’ o ) - .,
\ . - * - ' A P\ &



o

CK(t) = P(t) R - " : (4.45)
a2 \ a ° . -

Now consider fhe stationary case namely where A,B,C,Q,R, are constant
. . - . /

matrices. . ﬂie“fﬂtering may reach a steady state whenever P s constant,

P=0 :and (4.44) becomes 0 ‘ c ' S e

AP-+ PA' +BQB' -PC'RCP = 0 - S (a.e)

#

The estimator and the Kalman gair dre respectively

0
»
°?

R(t) A ¢ KDy(E) - (8] . - (4.47)

. ok=PORTY ” L | (4.48)

-~

Consider the, following system

' 0 N ] o
. §r§.t) = Ax () + Bry(f)’ " V - (&49) '
with méasgrements ' Y - oo
i
“ Llt) = ey + v, L (4.50)
I ' . . .

where A/ € R, B.€ R™", crzxr > r<n, and with noise characteristics .

-

given by equations (4.40, 4.42).. Let us set V=0 in’(4.50) and suppose

that there existsa constant matrix (di_saggregation matrix) S such that




£y

NE

. . . ’ 3 12 )
" Premuitiplying (4.55) by S and post multiplying by’ S' we have

- 77 -
[§
./ ' )‘ J 4
ol sx,(t) = x(t) - | \ (4.51)
\ Then by -(4.38), (4.39) and (4.49), (4.50) we have \""r\‘ s
J ‘ ) LN ! ,n
A
~
“SA =AS =0, . ‘ (4.52)
8, -8 =0, = - | ' ©(4.53)
cs - Cr‘ = 0. ] | - (4.54)

-~ »

Solving these é,quatior%approximate]y, we arrive at an  § such that er LI S
o © / . , ~

~

Now Tet V # 0, then the error covariance matrix for system (4.49), (4.50) is

-~

1

' ] n~ - . ’
AP+ PAL+BOQBL - PCRICP =0 a _(4.55)

£ d
p "
] ‘s ’ s

@ . . ’

-1

¥

1 e o 1 (- :

SAP S+ 5P AIS ?% SPLCLRT CPS! = 0 o (as6) |
T S . C o o |
- e . . ’ (4.56) )
where Q=SB QBIS'~ v ) (4.57) y
. _ ‘}
B . . . 0 é
By comparison of (4.56) with (4.46) and using the relations (4.52-4.54) we . i
.find that solving (4.55) for an appropriate choice of Qr‘,‘in particu[arr 2
choosing 6 to be o L ¥,
L N

. G, = (5's)7" Bag's(s's)™, (4.58)

we can obtain a app'mmte solution to the high order Ricatti gquatibn (4.46), -

\
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where the relationship.between thﬂe Tower and the high order Ricatti .equartions .
is ” ' ’ _ ’
" \ , :
sps' =Rp P - “ (4.59)

Therefore the sub-optimal Wiener-Kalman' filter is

v
Ll

- (1) + Kyl - G(8)] - .60)

]
X le

s 3

From the above equations we .can seg that if P is a good approximation to P

' then K approximates K and in turn g(t) approximates x(t).

Remark 4.1 Kalman [30] s;mwed that. complete observabthy is a

su\fficient condition for the existence.of aﬁsteady state “so1ut10n'of (4,44) er(d / .
furthermore that complete contro]labﬂity will assn.;re the uniqueness of the | ‘
steady state solution. As a consequence the following question is proposed{\ /
given a system as in (4.38-4.39) with V=0, let ¥ be the set of reduced )
; - " models wh1ch approximate x in seme sense, e.g. all possible structures of " / '

the triple (A ;B ‘or), with a state vector of dimensfon r. Suppose that
: 35 €9, 1 A {i}, such that Si- X in €Y. Then, leteing the noise ]
' V 0 and {K } be the set of Kalman ga'ins correspondmg to Lvery Si, if : 4
A . {Ki} in (4.47) satisfies the complete observability cr'lter'ion Vi, is l?J,_
. <where J€ I, the best approximation to K (the optimal Kalman gaih) such

. " that (4.4ﬁ is absolutely controﬂa!ﬂe? »

. ' B It s well known that optimality of the Kalman filter does' not

guarantee its. s{camhty, i.e. the solution of (4. 44) leads to the optimum

; . fﬂter in the sense of minimum variance, but this filter can be unstable.

W
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The 1‘mpu1se res ponse matrices o% (4.47), (4.60) are clearly,

o(A-KO)(t-T) ; .

~

‘ Hl(t—'r) =

Hz(t-'c) = é(A'EC)G'T) K .

Then H,(+)} wildl be stable if R.{\ } < 0, where {AB} is the set of T

eigenvalues- of (A-KC). Therefore this introduces a constraint in the

determination of K and consequently in the selection of the reduced model.

To obtain the optimal gain K, (4.48) has to be solved which implies solving
nx2n+1) nonlinear coupled equations. But for the sub-dptimal gains only
_r_xér_{r_T_)_ equationshave to be solved, i.e. 1f n=9, r=7 then 28 nonlinear
equations nust be solved sinsltead of 45. Thig clearl& demonstrates the useful-
ness of the sub-optimal filter. The iterative procedure of the proposed method _

is sunmarized in the following steps:

Step I  Disregard ;L?no'ise i.e. set V=0 in (4.39)(4.50).
Step°II Find a reduced order model of the form
@ ) .
Xp = Ar)jp + Brg,‘ Y © Crxr by using the proposed method
of Chapter 3. ‘

1

Step IIT Compute ‘the disaggregation matrix s by solving Egs.
(4.52-4.54) Using [10]. o \LJ

\ o
Step IV Reintroduce the noise into the reduced model and solve the
" lower dimensionality Ricatti equation (ir(r+1) simultaneous

-quadratic ‘equations) for ar given by (4.58) and kc;aﬂ it
?r. ‘ ‘ .

. . - .
b9 ’ - . -
.

NURC

ozttt
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Step V. With Pr and (4.59) compute_thé approximate solution of

the high order Ricatti equation and l1abel it P

Step VI With P and (4.48),  (4.60) compute the sub-opghyal

Kalman gain and the sub-optimal estimator.

v

- 4.4 DEGRADATION IN PERFORMANCE

| S ~ :
Consjder the state x(t) corresponding to.the Wiener Kalman estima-
tor (4.47) and x(t) the state of the process to be estimatéd (4.38). As

mentioned in the preceeding section, by solving (4.46) we can cbtain the '~

optimal estimator.” Howeyer it is well known that in practice this is not true

due to the fact that errors can arise from modeltingor measurements in the -

d_\‘/“nami e system, i.e. an incorrect estimate of Q,R. Therefore the .
Wiener-Kaiman fijiter is no longer optimal.’ Of the several sourcés of érror,
we are interested in the error due to the use of a sub-optimal Kalman gain.

Let's define this error as fov'l‘lows;

o
o

e(t) = x(t) - x(t) - (4.61)

v

"It s known (Meditch, [33])that the covariance matrix of this error

Po = cov [e(t), e'(t)] s the solution of the following Ricatti equation

v
)

L}

"Pe = AP, + PAL+ K, L . (4.62)
‘whsfre Yoo .
Ag = A-KC - S (4.63)
. ) R - e | &
’ Ko = KRK' + BQB! ) - A , (4.64)

i NPT




Using (4.62) the degradation in performance may be determined in the following \)
way; it is known [43] that if K 1s the optimm Kalman gain then K minimizes,
the following cbst function, for évery time t, resulting in the minimum var-

ifance filter

|
At) = trlvar e(t)] = tr [pTt)] . (4.65)
This can be accomplished by minimizing
dd(t) . ' '
q(t) == = % I;Pe(t)] . (4.66)
L4 o
Now it s c]eqr that for the stationary case, namely t+, (4.66) becomes '
) .
J(w)= 0. Then the index of degradation in performance for the stationary
lfﬂter «Jp can be calculated as follows
o / - 1
. . , . LT _ ‘ R
Jp = Tr[Pe]’ Pe T-:O’ . (4.67) . j
o - %
where Jp >0 and P, “is the solution of (4.62). Suppose that a gain K
is used instead of K in orcier to _determine the.minimum variance filter,
" |~ . : ; ) . , . ) . !
and. K s the approximate Kalman gain obtained by'the procedure proposed in -4
¢
Section (4.3), then the degradation in performance is / . ‘ ;
f= [P 7. S (4.68)
TR =
where ‘JD > Jp and P, 1s the solution of the following linear matrix
Cr r & .
equations. < . ‘ !
. d \ |
. v
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\ .
Ry Pe TP AL *K, =0 ~ -"/ " (4.69)
* ®r ror ro

where
A, = A -K . 7 (4.70)
r ,
- Ker = KRK' +BQB" * / (4.71)

Now the degradation in pérforman‘ce Jp, " of the sub-optimal Wiener-Kaiman
N ' S to, 1
filter using K compared to the optimal estimator using K can therefore '

v v e T et

j be computed as follows

P . |
P JDr K ' N |
; JD = ———T——— . ]00% (4 '072) %

o S D . :
i ‘

-i \ In order to illustrate the proposed procedure, a numerical example is pre- . ;
- sented in the next section. 4 ]
P . ) 1

' y . \ 4.5 NUMERI CAL EXAMPLE : ;
. - Given the following M.I.M.0. system - 1
P ,
1. : k(t) = Ax(t) + BU(t), , J (4.73)
Cy(t) = Cox (t) 4 Y, : (4,74
ST ‘ , o’
A “with _noise characteristics Q,R, and V is a white noise process, where these

paraneters and system are given in Table 4.1.
> oo v

? . o ~ First, we find-a reduced order modei of the :form
‘ 58 = A (t) + B UL, | (4.75)
y(t) = ,C,.l(r(t),' , - (4.76).
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Using the procedure presented in Chapter 11 by setting v=0 in (4.50). The
barameters (Ar,Br,Cr) of this reduced model are given in Table 4.2, where

* . °
the error g = 4.139, The disagreggation matrix S and the solution of the

Tower order Ricatti eq. P_, are show in Table 4.3. With Pr and S we com-

r
pute the approximate solution of (4.59)73. In Table 4.4 it shows the matrix

~

P and for the sake of clarity the solution of (4.55) the matrix P is given-
in Table 4.5. Now_from (4.42) and (4.60) we can compute ‘the optimal Kalman

filter and the sub-optimal Kalman filter. Moreover, (4.47), (4.60) can be

A

"

rewriting as follows :

%(t) = Fx(t) +Ku(t) " . (4.77)

u ! and |

L,y v, N ¥

X(t) = FX(t) + ky(t), (4.78)
where F & A-KC, F=A-RC respectively. These-results are -shown in Tablés 4.6
and 4.7. The degradation in performance due to the use of the sub-optimal
Kalman gains respect to the optimal filter is

-

Jp =1.705% " (4.79)
3 N

Zaf npte st i ke e

In order to show graphically the performance of. the sub-optimal estimator the :

following steps wﬂ_l apply,

Step I Set 4= {1-6(t), i-c(t) ...} dn (4-.38)

Step II  y(t) obtaining from (4.39) wit v=0 was applied to the

:\ optimal and sub-op?:ima] estimator.
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Parameters of Sub-Oq;ima] Kalman Estimator
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. Step III (4.77), (4.78) were solved for x(t) and X(t).

w : . o
- - . . p
.

Similar procedure was used by Wilson [51] for a S.I'.S.OL.:Prob] ems in other

context. In Figwe“ 4.2, 4.3, 4.4 are show x(t), % % (t), R,(t), for

i=] to 4 respectively. From the value of .Jp, we can see that the perfor: h

S
mance of the sub- optimagd estimator is comparab’le to the optimal estimator and

Figs. 4 1 to 4.4 shaws @hat the approximate is sat1sfacfbry Moreover for
this examp]e and s_evera] others where this method was tested, yield always

* an stable estimator ¥ r. ’ ‘

(Y

‘ /’

4.6 REDUCED ORDER MODEL OF A CLASS OF TIME VARYING SYSTEMS

Consider the following multi input-output linear time varying sy;tem

-

of the form
x(t) - A(t) x(t) + B(t)U(t) . * (4.80)
y(t) = c(t)x(t) . (4.81)

where the state vector is of dimension A(t), B(t), €{(t) are matrices’ of
diménsions nxn, nxm, an_respectively: Recently Wu[52] - éhowed that 1.t.v.
autonomous sytems which are algebra'ical'(y invariable or ; algebraically

invariable can be explicity transformed into time invari ant systems without

[

using the full information contained in the transition matrix of the 1.T.v.
Vi o

’systems. Based on Wu's theory Rao [373 extended the results
for nonautonc?mous time varying systems (4.80-4.81) and also presented a
methpd for obtaining a refiuceq model for sing]e -input-output systg/ms by-L

- using a Routh approximation method due to Rao [ 36] on the transﬂ;rmed time

yaryingi system. With the use of the results from Wu and Mhd the

° bl

3
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disagéregation matrixe S 'bresented in section 4.30. We shall present a pro- :
L8

cedure for obtaining a reduced order model for a,cl a[ss of .time varying systems
of the m1t® input-output type. First f’ets@consider‘-' the Hu transformation of . -

the form

3 . {
' ' At

{ nxn

E(t), A-‘ €Y ’ (4-82)

' . ‘)‘(‘(t)=e’
. ' 3

Applying (4.82) to Eqs. (4.80-81) we have

ot
Z(t) = Az(t) +&(t) U(t)  (4.83)
ST h(t) = c(t)z(t) ' (a.) .
- - ‘ } ' '
Wehre A€ R"’ﬁm and the following eq. are satis‘fied
, : ‘ .
! X , ) }
CAACE) - ACE) Ay = ACE) Wt : (4.85) ’
A= AWD) = Ay ' - (4.86)
A A]t .
E B(t) =e ' B(t) . ; ) (4.87)
K ~ A'lt LI v '
c(t) =C{t) e " - - .(4.88)
< , )
t Now consider the Rao transformation as follows - 1
N z(t) = R(t) + y(t) . ~ | (4.89)
f Then Egn, (4.83) becomes '
| .
x(t) = Au(t) + Ay(t) + B(t)u(t) = y(t) ¢ o, (4.90) -
e - N , S

i " ' ;
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Defining’ ‘ A ] ‘
' ’ A , : ! N - “ ,
L R(t) = mp(e) + [B(t) - BT U(E), (4.91)
| A N ,

A -

. » v

where B 1is any matrix such that the pair (A,8) is controlable, B & AU
then from (3.77),'(3.82-3.84) (4.83-84) (4.90-91) we have the L.T.I. s_yste'm
¢ < ‘ -

o
5 ‘ -

L
.

() = AK(t) + BU(E), L - (4.92)
A(t) = c(t) [XCe) + (&)1 - (4.93)
Consider mow the following system ! '
" Y
X(t) = AX(t) +BU(t) o o (4.99)
£{t) = CLt) DX (8) + ()] o S (4.99)

i . - . -
Suppose the relationship between (4.92) and (4.94) is given by

* S, = x ' ~ (4.9)
Where S 1s the disaggregation matrix rxn. From (4.96), (4.92), (4.9!})

we have

)

5A

.= AS . (4.97)

"
[»<]

SB; (4.98)
. B

and the output equations (4.93) (4.95) are _ '

R

SR

f'
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A~ ~ c A % [ 4
= I .99) "
Q(t) C(t)5§r + C(t) g(t), ~. (4.99) ’
. Pyt = G+ (g (). : {4.100)
Then i - —
: C.(t) = c(t)s, _— \ (4.701)
t . ~ . . .
, G(t)\l’lt)l-'- Cr(t) w,.(t), . (4.102) ,
a where oy
. ., - Mﬁﬁ#\ﬁr(t) is defined as in (4.91), we then have o
P Lt) = ApL(t) + (B.(t) - B.JU(t)m . (4.103) .

¢ V4 R / ¢ ' -
premultiplying (4.003) by* S and comparing with (4.91) we arrive at - .

& . I Y L

f ar(t) = (sts)‘]sla('-(?) . ‘ - (4.104)

Clearly wp(t) can be obtained by solving (4.103) where Br(t) is given by
: o (4.108), o A ’
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Remark 4.2 Consider the systems given by (4.92),(4.94) and H(tY, Hr(&ze
the respective impulse matr‘ix.ﬂﬂ Suppose that the Reduced system (M?QA/))was
B N t

- obtained by use of the algorithm presented in Chapter 3, - then HU(t) dsa |
[ T god approximation to H(t) and théfefpre (4.94) 1s a good approximation ta
[} ¢ ’ (4.92.) for all inpufs g(t). However, %hig is not true for xgr(nti and y(t)
where 54.103) has to be solved ;’or every 1n;mt g_(t). But the computation
becomes éasy due to f:h;e fact that matrices A, Br‘, gr wefe obtained before o

Y J
the output equatioﬁ's were computed and therefore need not be recalculated.
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The following steps summarize the proposed method: N

~

L+

Step I. Using Wu and Rao- transformations, transforms the L.T.V.

, ., systems (3.74-5) (4.90) (4.81) in to‘an L.T.I. systen
AN S (8.92), (8.93). , S

- . . &.’ N 3 <
. . . Step II  Find a reduced order .model -namely
: ,gr(t) = ArZ(t) + Bry(t) that abproximates‘ﬁhe system. .
i ! x < ’
) . r x(t) = AR(t) + BU(t). .
: Y Step I1I1I- Compute the d1saggregat1on matrlx S by solving equations

(3.90-3" 91) (4.97-4.98) sng (10] — ' -
a - N } .
., T Step IV With s of Step I1T and (%.88) find yctt).
. ’ Step V. Solve (4.103) fbr_gr(t) where ék(t) is given>by

o o o TRy Y b T

[

Br(t) =~(S'S)']S'B(t), “for every input y(t).

e 4.7 CONCLUSIONS ’

Y . N
3
~Several methods for obtaining R.0.M's from the error minimization

I ", . A
approach exist but from applications and specific numerical examples are

)

availaﬁje in the literature. In this chapter therefore several applications ¢

and compufﬁtional procedures are proposed for multi input-output systems.that
: s . .

include, sub-oﬁtima1 control policies for the output linear regulator problem,

sub-optimal Wiener<Kalman filter for the stat1onary case. Furthermore, by
%

- using Wy an Rao Transfbrmations a method for order reduction of a class of

0 - 1inear time varying systems is proposed based on the R.0.M.'s techn1ques for
’ ~

%.T.I. systems of Chapter 3.

4

-~ Q
a

Yy Q *
.

)




4 [y
- - . e e e e e o o e e
r B R .
; : A _ *
“«. \ - v -
' CHAPTER & .
' CONCLUDING REMARKS  *  ~
. In this thesis we were concerned mainly with two related topics, -
;“ - - ‘ name:ly. the %y-norm minimization and the system order reduction problems.
! ) We established the following:
] . N -
, 1. A new procedure for the unconstraifled %y =norm minimization pro-
\/ . ‘ blem, which enables one to solve it efficiently using gradient )
. techniques. ‘ ' . I
Y 2. A new procedure for optimal order reduction for M.I.M.O. systems:
(proper or strictly proper H(s)) which ensures meaningful stable ) \
reduced-order, models for stable higher order systems. ) \/.>
~ 3. A new procedure for obtaining sub-optimal Kalman filters whose
© .
- . . performance is comparable to the optjmal K.W.F., by using reduced °
. , b 3
, . .order models. L - 4
: ' . 4 . {
4. A new procedure for obtaining reduced order models of linear ;
5 atime varying systems using the procedyre proposed for L.T.I.
. - systems.

. ‘ M ‘ 3
13 * } ' ’ k .
For the constrained Ly-norm minimi zation problem, irregardless of

.

the fact that t.he‘ numbér'of iterations is reduced by fifty percent over that of

Y L

the previously ava'i)ame algorithm, further study mi;st be done in order to
{ . render this £echn1que suitable, iie. make the number of function evaluations
reasoqable, for machine implementation. For the order reduction of multi-

variable systems, further effort must be made in'order to clari fy the struc- °

. » tural relationship between ‘the system and its reduced models, for example,
‘increasing the number of parameters in the matrix A. for the coptinuous L]

I
2
. oy i ﬁ
.

o~
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It is important also to remark that the techm'ques presented in

~ s

the prekus chapter can be apphed to the following prob1em‘

Let 5, ‘e a system L.T.I. associated with a triple (Ar,Br,Cr) _

A Y
‘whére the pa1rs (A B ) (A »C ) are weakly controllable or'uncontrollable

7 d weak]y observable or unobservab]e, respectwe]y This system can be

controllable and observab1e by increasing the dwmensmn of the system.
Namely[, find a triple (An,Bn,Cn) assoc1ate_d to the system Sn swhere n>r,
such as, Sn is a good approximéticm of S Then, clearly, the technigues
proposed to find reduced order models for L.T.I. 1n Chaf)ter,‘z caﬁ be used
in a s1mﬂar manner 1o f1nd a system of higher dimension that is a good -

approxnnatwn of the 1ower arder system. .

S % N
. Finally, an are? in which 1nvest1ggt1on can be initiated is the

¢ ﬁ‘yze

" combination of the Lq-norm minimization with the d1§aggregat1on scheme in

orderv to tackle the two-boundary value prob]em in opt1m¢aﬁ c6ntm], i.e. s
the sub-optimal time and sub-optimal guel control policies, etc.
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