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. ABSTRACT
~ IMPROVED MATHEMATICAL MODELS AND DYNAMIC ANALYSIS .
. OF LIGHT ROTOR-BEARING SYSTEMS UNDER UNBALANCE AND
. STOCHASTIC EXCITATION, ' - y '

»

\

E. Hashish, Ph.D. .
Concordia University, 1981

'

-

Detailed stability analysis and accurate evaluation of
‘the responée of light rotor-bearing éystem§ are presented
, u§ing improved mathematical models for both the rigid and the
‘ fquible states of the rotor. Thevnonlineqr stiffness and '
damping of the finite bearing are specified through a nume- . .
rical approach maintaining a‘praqﬁidhl treatment for the .
‘cavitation boundaries and ieading to decoupled équationg of
motion from, the.hydrodynamic pressure equation. Using both
linear and nonlinear approaches, modified stability bounda-
- ries are defified and further details about the nonlinear

*

! behaviour are obtained.

' The equations of motion for the general case of flexi-
///7,ible rotoer-bearing afeﬂassemb;ed using the finite element -
method and taking into account the gyroscopic moments, the

. rotary inertia, the shear deformation, the internal damping
and the bearing support flexibility preserving the dimensions
‘ of the constructed system to a minimum. General modal ana-
lysis is aﬁplied on the nonsfmmetric dynamical systéms for
the evaluation of both the deterministic and stochastic .
responses. Error bounds for justification of ‘the linearized

™

rotor-bearing system are provided in a chart form and compa- '
risons with previous studies are made. An application of the

present analysis on a grinding machine spindlé wheel system

is carried out with a new emphasis on the definition of
rotor rigidity.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 General Objectives

b

Light rotor-bearing Systéms are distinguished with
small geometrical configuration ana light applied loads.'
When the operating speeds of such,syétems are high, they may be
located in a rather sensitive stability region where a precise
assessment of the stability parameters are vital‘to the design

procedure. In addition, appropriate mathematical modelling
and consequenély aécurate evaluatio¥ and coglro; of the
system response is-also important. hIn this sense, light
rotor-bearings can be seen as the most Qéneral case of rgtor-
bearing system as a whole.

« Generally, a rotor-bearing system is flexible and
possesses nonlinear characteristics. 'Special conditions may
exist when the rotor may'be assumed: to be r{gid or the non-
linear system can be linearized. These special cases may
be utilized to simplify the analyses and to obtain results
of general nature but with approriate justifications. The
applied loads in the csse of a light rotor are primarily
-the external'loads‘which ma§ lead to either even or‘opposite
suspension. Therefore, the-dynamic_anaiysis should be of a

general nature to accommodate such consequences, with the

knowledge that these loads contribute to the stiffness

N USSR — g
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and damping .of the fluid f£ilm bearings.

Sariaidhe 125 O BT Y
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' J
Hydrodynamic film bearings have always been recognized
< o)

.as appropriate suspension supports due to their damping ability.

A

P
Cra k)

To study the effectivness of these bearings, an accurate- g

modelling of the journal bearing that considers its finite
a

width and still preserves the simﬁli%ity of the known

>
Lo
&
%
X
K4
]
§
3
2

approximations for long and short bedring, must be carried

out. This is to be followed by a detailed stability analysis,

3

preferably using a nonlinear model, for appropriate emphasis

on the details of the regions of stability. e

v \ .
{

- A realistic representation of the rotor itself should

s
N el

include all the secondary effects such as the gyroscopic

moments, rotary inerita, shear deformation, internal viscous

w5t 2

damping and hysteretic damping, all of which play a signi-
af s ficant role particulafly at high opsratipg’speeds of the rotor.
‘ Another practical consideration is to include the flexi- |
'bility of the bearing support in the machine frame as is ’ '
.done in the present investigation.

An important application of light rotoi—bearing

analyses is on thé grinding machine spindle. Ap example of
surface grinding machine spindle is shown in Fig. l.l.'
grnmﬁngprocess.is a finish machining operation where the

output is a modified surface roughness and is directly

related to the machine dynamic performance. This, therefore,

AR - e
o

‘demands an accurate evaluation and control of the machine ¢

-
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: fespomse and stability which'in turn requires.appropriate
“mathematical modeiling oﬁ the grinding machine under
:Qperating conditions to replace the simple and‘approiimate

- . "mathematical models that have been used so far.v Two types'

_of input to ‘he grlndlng machine Splndlé system are of
.,.lnterest which are the unbalance and cuttlng forces. Cuttlng
‘-'forces in general are essentially random in nature and a
"solutlon for the.stochastlc response need to’ be established o . -
| ' o . with minimdm limitations on the statistical description of |

‘the random input. ) ' oy

)

It lS then the ob]ectlve of this lnvestlgailon to

N

'prov1de an accurate mathematlcal modelling for the partlcular SRR
case of light rotors under a general form of excitation that fu. . i
Q§ vlncludes all the abOVe mentloned detalls. It is also worth-

while to evolve an effectlve approach that utlllzes the

'spec1al cases of rotor rlgldlty and system llnear;ty when-' : .
ever they can be accommodated without loss of accuracy by
further modifying the mathematical modell;ng'techmlques and
the methods of dynamic analysis for such speciai'coadit;ons.
A literature survey, grouped in a sequence of deve}opi
ment of the major work directiy applicable to the present .

o . ~ investigation, is presented ln the next section followed by

a brlef 1ntroductlon on the scope of the present lnvestlgatlon.

.e
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1.2 ° Literature Review. _— ' g

w

. The general subject of discussion here is the dfnamice
of rotor-bearing systeérzn be¥h rigid.and flexible conditions.
The assumption of rotor rigidity intr::Lces grea} simplifica-
tions in the dynamic analysis and can be considered valid if
the rgtor running speed is well oelow its first bending

*, ’
critical speed. The literature Available on all different

"aspects of the present subject. is quite, numerous. A repre—

sentative but coverlng sufficiently the’ ijor contributions

. in the bibliography are discussed in sections 1.2.1 to 1 2.3,

The first‘subsection 1.2.1, deals with. the bearino'
element and the dynamic behaviour of rigid rotors. The
bearing treated‘is the plain journal bearing with incompress-
ible fluid film. The various approaches to the mathematical
modelllng of the hydrodynamlc film forces, the treatment of
the cav1tated film, sultable methods for solving the bearlng
equatlons and stability analysis are con51dered in these

publlcatlons. The second subsection, 1.2.2 is devoted to

_ the contributions in the area of ,flexible rotor modelling

and response calculations. The final subsection, 1.2.3,
covers .the literature dealing with the grinding machine

cutting forces and evaluation of the stochastic response of
_ . ‘ , e
the rotor system in such cases.

o

One main conclusion.of this thesis jis that the assumption of
rotor rlgldlty is also dependent on the type of input
excitation.

'
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‘é&uation in its general dynamic form is available so far in

S s
<6 -
. o ’
. 1.2.1 The Finite Journal Bearing.
v The hydrodynamic pressure 'in éilournal bearing is

‘generated due to the relative mot}on between the jéurnal and
»
bearing surfaces and iswgivén by the well known Reynolds'’
equation [1ll.. [4%No éﬁalytical solution for Ehé Reynolds"* . -
2
the literature. Most bearing dynamical analyses employ
approximipe'solutiohé to the Reynolds' equation by cbnsiderf
ing it in a simplified one-dimensional form. The two
approximations for such solutions are jpamely the assumpt@ons
of ihfinitely.long bearing known as the Sommerfeld solution;:
and the infinitely short bearing, Ocvirk solution [2-4].
Due ‘to their simplicity, these approximafions are suitable
for certain aspects of dynamic analysis, particularly, the

-

calculation of nonlinea; transient response. However, the

.

% ' s . .
range of validity of the results for both these approximations

is quite limited. The long bearing approximation is suit-

" able for L/d ratio. over 2 whereas ‘the short bearing is

applicable for L/d ratio less than 1/4. "Another épprpxima-

tion, later introduced, utilizes a weighted sum of both the

§ S

long and short bearing solutions [5].

There are a few anallytical solutions to the Reynolds'

-

" equation, for a full oil film and in the steady state condition

of the journal. Hays [6] formulated a solution to the °
Reynolds' equation ' in a series expansion form using the

variational approach. ‘Under similar assumptions Reynolds'
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) introguced another solution which is,essentially a correction

-a value of L/d=1.25. More recently the validity of C

" special cases of the shape of the film thicknessy, .

- 7 = : B
‘equatfon»wa§ also solved using~the method based 'on the sepa-

]

ration of variables [7—11].. All these solutions involve

minor numerical computations and series truncation.

Two of the approaches, using the method of separation
. ' »

of variables, are of particular interest in bearing dynamic .vqh

-

analysis, since they accommodate a general\journal motion

-{12,13]. The first is due to Warner [12] who introduced a
1

compensation to the long bearing approximation by an end

A}

leakage factor. Recently, Barrett, Allaire and Gunter [13]

e

to the short bearing solution extendidAg its validity up to

solutions based on the separation of variables were question-

[y

ed by Day [14] who found that such solutions are limited to

Another approach for evaluating £he hydrodynamic
pressure in a journal bearing, is through numetical splutions.
There is no difficulty in sblving the Reyﬁolds' eq?ation in
the,stean state condition for the purpose of bearing design
(151, ér around an equilibrium poi## for the évdgﬁation of
linearized stiffness and damping cpefficienﬁs [16,17]. The
finite difference method was used in,[l§{17] and the.finite
element method was applied to the lubrici}ion,problém [18~21].

gThrough.an éifective use of the variational principles, the

finite element approach has become an attractive method with:

'tge combination of ease and fast convergence towards an

. . .
— W,...-.,.. = I
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"accurate solution. For dynamic investigations, integrating
‘ v

{ thé.equation of motion of the journal while simultaneously

', solving the Reynolds' equation [22], is recognized to be
very heavy on computation time ([23,24]. Such an approach is’
.associated with a compromise on the integration step size or

on the réquired solution duratioﬁ, némely’the number of

cycles, which negates the advantages of a finite bearing

consideration.

In.pracﬁice, the oil film is cavitated due to its )
negligible tensile strength. Studies on cavitqtion in thin o .
0il film [25-38] present a well defined film boundary in ' B I ‘
tﬁe steady state condition and emphasized the kinematic
nature of tﬁe cavity. If such a detailed treatment is

extended to the dynamic¢ case, the whole process will then

be on an instantaneous basis and must have to be repeated ' q

for every time step which is quite impractical. However,

'experimenzal evaluations on the film extent in the general
-dynamic case is not as well defined as that in the steady
state. The observations on the nature ¢f cavitation [26]
" can étill serve as a base for developing app£;pfia£é mathe-

v

matical or analy}ical hypothesié.' ' o

Once thé equation of motion is constructed, the
analysis following it branches to a qgantitative'tgpe fof
response calculations and a &ualitative type f;: stabilityﬂ oo
analysis. The.quantitative analysis includes a variety of’

abproaches such as perturbation technique [39], analog:

integration (4, 40], numerical,integrat%on using various

. N . .
et b e , . oyyevmny e - B ———
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methods (22,24,40,51] and kinematics simulation in phase

space [4l1l]. Due to scaling difficulties in analog solutions

[4,40] and because of the advances in digital computing e

equipment, digital computations present the most-efficient

approach, whereas other approximate analytical solutions

such as in the vicinity of limit cycle region [39] are good

only for getting some general design results.

]

The qualitative aspéét of the dynamic &nalysis is

concerned with defining the stability characteristics of

the journal motion. Lipear stability analysis using Routh-

Hurwitz criterion provides general reéu;ts in the dynamic

range where the linear approximation for the system remains.

acceptable. " Using linear analysis, the full filmﬁbearing is

found unstable for all values of the bearing parameters

whereas the partial f£ilm (cavitated film) bearing %s associ-~

ated with a stable region [42~44]. These results were

obtained using the long bearing approximation by Reddi and
o

- Trumpl@r [42], extended for the finite bearing by Holmes [43]

and modified by Badgley and Booker [44] using short, long and

Warner's finite bearing. Badgley and Booker [44] included

nonlinear stability analysis in their study which is executed

by integrating the nonlinear equations of the journal numer-

 +ically. Stability boundary lines for different L/d ratios in

%43,44] intersected with each other in several places which

is an inappropriaée trend that can not be supported by physical

or mathematical reasons.

l

Nonlinear stability énalisis included, besides numerical
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integration of the equation of motion, examining approximate

analyt{S?l solution of the equation of motion using pertur-

’ I

bation methods ({39,45] and Liapunov direct method [46}.

Liapunov direct method is often regarded as the general method

for stability, but no such general results are evident in

[46] that are to be expected from such analysis. '

\

1.2.2 Flexible Rotor-Bearing System '

4

" Modelling methods for flexible rotor-bearing system’
is reviewed in a report by,Esﬁleman (47] mainly dealing on
critical speed and response calculations along Qith a his-
torical background that includéd the very early work in rotor
dynamics. However, a review’on the modelling approaches for

flexible rotor-bearing system is provided here with an

emphasis on the recent literature and as an extension of [47].

A first approxiﬁation to a rotor-bearing system is a
single mass rotor with‘hassless flexbile shafts. This simple
treatment allows the extraction éf cé;Eain‘general results
and.conclusions. Utilizing the ;bove simple approximation
Gunter [48,49], who also provided an excellent background
and discussion on the nonsynchronous whirl in rotor-bearing
systems, found that support flexibility and dampiﬂg improve
the rotor stability and demonstrated how two similar rotors:
that incorporate.shrink fits may vary in their onset speeds
of instability. Vance and Lee [50] extended the above study

by considering a different type of external damping such as

aif drag which is not necessarily pé:allel to the support
/) i °
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flex1b111ty and .defined the p0551b111ty of a rotor operatlng

above the significant critical speed Slmple flex1ble rotor-

2

bearing models lack the accuracy in response calculatlons
and are not versatlle enough for details other than just

general conclusions. L

A direct detailed treatment of a rotor-bearing system

is done by muitimass section modelling of the rotor beam

using the flexibility influence coefficients and including "’

‘the gyroscopic moments, rotary inertia, bearing nonlinear
Q * -

stiffness and damping [51,52]. Lund and Orcutt (53]

modified the Prohl-Myklestad method, which is a transfer

matrix approach for obtaining the natural frequencies, to
allow fef the distributed parameters in shaft'seceiqns. This
tfagsfer matrig method is then made to suit steady state
response calculations such as unbalance response end found

to produce results im good agreement with the experimeetal
observations [53]. The transfer matrix method has also been:
usea in modal analysis for calculating the damped natural
frequencies'and‘the assoeaated natural moaes [54-56]. This
pafticular method has the advantage of small computefﬂmemory
requirements, but the equations of motion using euch a
procedure are not EXplicitiy writﬁen‘aﬁd it was found in
[53] that accurate unbalance response,calcdiation using
transfer matrix method reeuires a number qf roto£ stations
that are 4 to 5 times the highest anticipated natural

frequency. Large numbers of such solutions are associated

with numerical instabilities [56] and therefore the cheice

[ 4
*
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~system [58-61) as applied specifically on rotor dynamic¢s by .

- ' - 12 -

~ ' * ¢

of the number of stations must be made with some compromise.
r > ' '

The finite\elemenﬁ methéd is a relatively recent
method to be applied on rotor—bgaring?systems. The output
of the finiteielement application on a rotor-bearing system
is an explicitly written general dynamic system indepéndent of
prespecifying the input excitation. Additional details such

as bearing support flexibility can be accourited for easily in

the finite element formulation. Puhl and Booker [%7] carried

a comparison between the finite element method and the.Prohl

method with a discrete system formulation. The lumped mass

statiofls in a discrete formulation must be many times the

number of elements in a finite element formulation to achieve

7
;* B
g
b

the same accuracy in response results and further the number

ST

of finite elements needed only to exceed the highest antici-

o e
28

ot

R

pated critical by just one [57]. The finite element for> ‘%

mulation can alsoc account for shear deformation in the

Rouch and Kao [62,63]. ' ' \\

Implementing shear déformation can be by either a
simple Timoshenko beam element [58,60,61l] in which only the
shape functions over the element are modified or through
incorporating add?ﬁiqnal variables to account for the shear
angie. As demonstrétedvby Thomas et al [59], a 'proper
representation for the simple Timoshenko beam [58,60,61]

3

produces results with negligible deviation as compared to

the more sophisticated 12 nodal variable element [59,62,63].
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The extra variables per elémgnt lead to a larger global
dynamic system and may demand the use of a reduction process

which requires the stiffness matrix to be syﬁmetric (63].

The reduction technique also increases the system potential

,

energy and congequently the estimate of critical speeds and
the system response. But the finite element procedure alrgady
generates an upper bound estimate to the exact solution

since the met@od approaches the solution from the high side
[57]. Therefore the advantage of incorporating a highene

order dynamical system is.countered by a loss in accuracy in

. the form of getting a higher estimate to the system output,

if a reduction technique is used.

Other finite element simulations of a rotor-bearing
system taking the rotéry inertia, axial load [64j and in-
ternal damping [65] into account besides the gyrostopic
moment, were considered in the previous\studies, but they
ignored the shear deformation. .Although the neglect of
shear deformation simplifies the finite element procedﬁEES
éignificantly[ this must be taken into account.for a thick
beam where the diameter to the length ratic of the element

is not negligible and when higher modes are encountered ([59].

1.2.3 The Grinding Machine and the Grinding Process

Grinding operation is correlated with various opera-
tional parameters [66] with the cutting forces being random
in nature (67,68]. Therefore the system has to be investi-

gated using probabilistic techniques. Dynamic analysis of .

-
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by Lund [72] 'using a transfer matrix techniqué. This

- 14 -

grinding machines still employ simple model for the Tachine

head where the spindle is considered essentially as a rigid

body [69]. This approach can only be considered ad a simple

first approximation.

Application of stochastic analysis to rotor-bearing' '
problems is scarce. Using a simple 3 mass model to represent
roto:, the beiring agd the housing, the bearings perfogmaéce
is studied for éxially applied random excitation in [70].
Sankar and Osman ([71] modelled a general machine tool spindle
into a simple one degree-of-freedom system in a study of the"
spindle response to the randomly varying cutting forces.

The response solution is determined using the Fékker—Planck
technique for stationary and nonstationary excitations.

éuch basic approaches a;e valuable for éxtrgcting rough
estimates of the machine dynamic behaviour under probabilistic
considerations and in these cases where solutions to the more
extensive and complex‘mathematical models are not possible
through available techniques. A comprehensive stochastic
analysis on ; flexible rotorébéaring system is carried out
approach is extended in the present analysis to a general

dynamic system which is the output of the finite element

formulation. ' . a

1.3 Scope of the Present Investigation

The objective of the present study is to provide

accurate, yet simple, mathematical models for rigid and

N
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giegibgg‘rotbr-bearinq gystems. Through such improved

modelling of the rotor;bearing system, it is attempted

. later to provide a reasonable accurate assessment of the:

system stability andgresponse when under deterministic and

stochastic input forces.

« a

In Chapter 2, improvéd mathematical models for finite
béaring with partial f£ilm profiles are developed. A sequence

of decomposition of the pressure equation into different

components, rearranging the equations in terms of dimension-

less préssure forms, description of an efficient solution #
using the finite element technique, curve fitting with a

proper polynomial form and finally an appropriate setting:

*

" of the partial film, are described. A comparison of the

present results with past experimental and recent theoretical

" work is also carried out. : !

¢

Chapter 3 commences with a comment on different num-

LY

ericdl intregration techniques followed by a comparison of
the present finite bearing with previous experimental results
for the full film case. Then a stability analysis is carried

out using both the linearized and nonlinear system of equations
¥ \ .

of motion aniﬁan appropriate numerical technigque.

v
\

In Chapter 4, the linearized equations for the finite

bearing is solved by modal analysis method. Fundamental

I3

. parameters, for a rigid symmetric rotor are yaluable in

R .design but never available befofe; such .ag the damped natural

frequencies and complex frequency response, are evaluated.

i

3 e
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The complex frequency response is particularly ‘important
fof later calculations of the system's stochastic response:
Error analysis on the deviation of the solution basedr on
linearized system from(thévcoggesponding solution of the
original nonlinear onéais discussed and charts for such
érror estimation are constrﬁgted and presented.

“d L In Chaptef 5, a flexible rotor-bearing syst;mgis
'simulated in detail using'the finite element technique.

The mathematical model takes into éccount the gyroscopic
moment, rotary inertia, éhear deformation; internal viscous
damping, hysteretic damping, linear as well as nonlinear stiff-

ness and nonlinear damping for the finite bearing and bear-

ing support flexibility. Modal analysis procedure for such -
x a general nonsymmetric system are emphasized. A comparison

/ with previous experimental and theoretical work is

presented. A comparison between two distinctive types of
.- support flexibility namely bearing support flexibility and

Hertzian contact flexibility is also carried out:

Chapter 6 is debofed to the applicatibn of this rotor

-

. . . dynamlc analysis on the grlndlng machine.. The random cutting
‘ L

i forces are represented as the stochastlc input. and a solution
N - L
: by modal analysis is outlined. At this point in Chapter 6,

v e the four mathematical models previously déveloped are
‘ 5 . . . . o

summarized. Depending on the spindle rigidity and-running
£,/ASp§ed, the ch?icg,of rigid or flexible rotor treatments of

: the problem can be made. Also the size of the joufral orbit

W

L a ; . v
' .
\‘ . L} .
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N in the hydrodynamic bearing determines which of the lineér
| « -

‘or the nonlinear analysis is appropriate (the nonllnear

behavxour, as considered here, is only due to the fllm

: bearing). However, a solution for the stochastic.problem‘

.

‘is provided for only the linearized system that is,riéié-

-
R S R S N R A

s 1

» or flexible. Aan application of flexible rotor wiﬁh‘rinife' roe

.

@
bearing is carried out on a grinding machine spindle and o

v . the response of the system to unbalance and random excitation

et

s epe

is determined. ‘ ’ . T I

Conclusions on the overall contributions of ‘this L ’

. 3 ° 3 ~‘

X . investigation, a summarlzed version of the. dlSCUSSlon of the

results and comparisons are presented in Chapter 7 2s well ) ' . 1

. . as recommendations for future work. This is followed by an ., R

-
[

extensmve bibliography thdt contributed to the development of
this work. Finally, the dlfferent detalls that are necessary
for the completion and understanding of gpe'preaenration are_~
. , separarely presented in Appendices at the end of the thesis. <

. : KS
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" CHAPTER 2 o

' EQUATIONS OF MOTION OF THE FULL AND THE -

PARTIAL FILM FINITE BEARING.

2.1

Background
"In thig part of the‘study, a s&moiéfbut‘en efficient
approach i§ followed to evaluate the hydrodynam;c forces of

a f1n1te bearlng ln a. form that comblnes the accuracy of

taking ;nto account the bearlng finite w1dth yet the-.

‘SlmpllClty of the short and long bearlng approx1mat10ns. The

‘hydrodynamlc pressure forces are generated 1n the fluld fllm

-

) -

between the surfaces of the journaI and the bearlng due o

LY

the relative motion between,surfaces. These hydrodynamlc

foéces are the outcome of lntegratlon of the shear and

normal pressure dlstrlbuthhs as glven by.the Reynolds‘

+ equation [1l]. - In reality the fluid film is bertially~ruprl

‘tured. ‘In the present study,‘the,evaluation of ‘the hydro-

-dynamic pressure forces for such a practical case, for any

general journal motion; begins with the evaluation of the
full film hydrodynamic forces. Later the full film forces

will be used, in part, for the evaluation of the partial

‘f;lm fofces. The hydrodynamic pressure‘equation; known as

the Reynolds"” equatlon, is derived from ‘the Navier-Stokes

equation under the assumption that;

<. i) ‘the flow is 1am1nar,

Vet

il) the body force of the oil fllm is negligible,

.?4 .
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direction is invariant,
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L

iii) the radius of curvature of the moving surfaces is

[

large as compared to the film thickness, : o

iv) the pressure across the .0il film in the radial

and for inpomﬁressible fluid film this equation can be written,

as [1,12] , .
/ . 4 .‘ . ) . \“
1 3 (h® 3p\,kd (h3 ap 1 3 :
= +— [— E£) = = — (U, h) -V 2.1
‘r? 38 ( ) "3z \12y az) 27 35 UgM 8 (2.1)

12y 38

where p is the o0il viscosity, Ue and Vg are the tangential

and normal velocities respectively of a point on the journal

N o a oW

at an angle 6 from the line of\centers Ojob as seen in Fig.

N
h

et

8 8
coordinates e,,e,  as can be seen from the diagram and are

N
- °

. ' tos
2.1. The velocitie§ U, and are viewed from the rotating )

given by the relations

" A e e el v

Uy = r@j + e& cos8 - ¢ sine@ b
[ I ) [] ’ . ’ (2'2) =
Ve = e{) sin® + € cosh , . , o
where § is the whirling speed. The film thickness h in L 1
. equation (2:1) is given by
h=c¢c- e cosg : . ’ (2.3 0

“.b
ﬁhich is an approximated relation obtained by assuming €/r to

be negligible [1]. ' : 3 : .

”

The radial -and tangential film forces F_ and F_ are

.t
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Fig. 2.1 Journal Bearing Coordinate System.
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"evaluated by integrating the pressure p and are

L 92 L
_ F;‘= -r j. .f p cosB 'dzqa .
i . 6 0 -
. ‘ (2.4).
‘ 8, 1L .
Ft = ~r .[’ /i 'p sin® dzds - -
: 81 o0

I R
where 6; and 6, define the pressure boundaries in the circum-
" ferential direction. In'general, the;gngles 6; and 6, are
functlons of the journal displacements and velocities. For

' the case of full film and 1ncL%g1ng the negative pressure,

the angles 8, and 6, take the values

9]=0 ez=2‘n: 'i,' ]

Once the hydrodynamic forces are evaluated, the journal

‘equations of motion in the x direction can be written as

v , v o v,

ma, = F. + W . (2.5)

where m is the journal mass, a, is the 'journal acceleration
in the x direction, Wk is the applied load and F is the.

hydrodynamic forcs given by

F, = F. cosy - F, siny , | (2.6)

°

Similarly the y directional equation can be written with

F, = F_ sinw + F_ cosy : = . (2.7

Y t

L4 ,
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The”ef@luation of the radial and taﬁgential Hydrodynamic
ua :!- "__. .

forces Fr and Ft' are, therefore, the basis for constructing

the journal egquations of motion. The evaluation of the in- ’
. - .
tegrals in equation (2.4) is the main aspect under study in

the followimg parts.

+

2.2 Rearrangement of Reynolds' Equation

For the blain journal bearing that if under consider-
ation, thg/Reynolds' equation is solved under the following

N “\,——/

assumptions:
i) The viscosity u'is invariant over “time and space.
" ii) The journal and bearing axes are parallel.

V

Aiii) The supply pressure is negliglble in comparlson

©

to the hydrodynamlc pressure. :
Introducing the nondimensional quantities
z=2/L - , )

H

h/c = 1 - e cosf .

L/d

into equation (2.1), substituting exprgssions for Ug and Vg
from equation (2. 2) into equation (2. l), expanding the right
hand 51de, neglecting terms of the order d/d less than other
terms’ and. using ﬁhe linearity of’Reynolds',bquation for thel
present incompressiple case, equation (2.1) can be shown.to

take the following decohposed form

2
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L et

3¢, 2 3¢; ~ '
9 fya 1 1\ 3 [y ZTLY ‘ o
2 (n e )‘+, (.2G) 2 (H az) = £.(0) . (2.8)
with | . . ' . B —
2 P b . ' ’ o '
o = (Sy 1 i =
"i <d> TR T r N 1.2
3
£,(8) =5e sind ,
' \
£,(0) = -3 cos8 -
gy = d’j -2y E
. . / o
gz = € ]

Here p, is the shear or wedge pressure compoﬁgn# and p; is

the squeeze pressure ‘component. It may also be noted that

¢; and ¢, are the nondimensional she;r and squeeze pressure &
componénts. The two nondimensional paramepefs G and e are

the only éuantities that are needed to be specified to deter-

mine the solution of equéti%ns (2.8).

2.3 . . The Boundary Conditions

° For a full film bearing the pressure distribﬁtion

' including the negatlvg pressure, is a continuous periodic
function along the circumferential coordlnate 9 w1th a period
27 and theféfore can be represented by a Fourier haxgmonic
series. Furthermore, replacing 6 by -6 on the right hand

side of equation (2.8) with i=1 gives

[}

% e sin (-9) = - % e sinf

whereas replacing 6 by -8 on the left hand side do?:)not

L]

8
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bhange the sign. This means that ¢; is an odd function in

-,

N
Sl

8. By a similar arguement it can pe shown that ¢, is an even

ok

functidn in 6. These properties of ¢:(z,6) and ¢,(z,8) allow

the introduction of the following boundary conditions:

'

LT G R

—

] ' ;' $:(0,2) =0 and . b1(m,2Z) =0

| . L (2.9a)
. T - 3m _\ _ .
. ‘ ¢2<-2-,Z) =0 and 4)2(3—,2) = 0

; . along with the axial boundary conditions

i $;(8,0) =0 and ¢,(8,1) =0 , i=1,2 . (2.9b)

CTeN
~

.t J . \
: .
B .

2.4 .Solution by the Finite Element Method,

e~

S e T

e eyl

Différent prbcedures may be used .in ‘applying the .

. . finite elemént method to a linear partial differential

+

equation [18]. The variational approach is the natural choice
&
if a variational integral can be found for the problem on

hand. The variational approach has the advantage of acteler-
. ating the convérgence of the numerical solution through
. ” . f . '
minimization of the deviation between the exact solution and

the approximating one as shown by Reddi [19].

The bearing, is developed in the dimensionless coor-’ C .
p ' v

L dinates 8 and z as shown in-Fig. 2.2 with élementg of ,

o triangular shape. Two types of elements represent an
.appropriate choice and these are the triangular and the rec-:

tangular elemgnts. While the rectangular element'hgé(aq
¢ . . Y r - ‘ . ' X
re v -+ .obvious gegmetrigsl fit with the rectangularly developed

. i T s
& \
tf o .
. . . ;
. ‘ -
. .
B It
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1 Fig. 2.2 The Bearing Developed in Nondimensional
5 ' Coordinates with Triangular Element Arrangement.




e o

L]

e 2 e R LI A

~e

et e BT, T R G

‘system of an order equal to the number of the element nodes,

‘ - 26 =
bearing, the triangqular element with minimum number of nodes,

némely 3, is associated with .a simple linear approxim?tiné

. function where in such a case the integrations over the

element can be evaluated from tabulated valuea‘[lsl. The_ :

arrangement with rectangular element rgsults in half the

number of elements compared to a triangulér element arrange-

" ment but in both cases the overall number of nodes, which

is also the order of the resulting global algebraic syétem, i
remains €he'samé. A comparison was madeubetween the results
obtained using a triangular-element with that using a rec-
tangular elemental arrangement and was found to be in close
agreemené. Based on this fact, the simpler triangular element

is employed in this finite element analysis.

The finite element method begins by assuming an
approximating function over the element, a linear function
in thi:Ttase, evaluating this polynomial at the element'ﬁodes‘
and expressing the resulting equations in terms of the fupc—
tion nodal values, substituting into the variational intregral, .
evaluating the resulting integr;tions over the element and
finally extremizing the variational integral with respect to

the function nodal values. This results in an algebraic

namely 3 [18,19]. The equations of all ‘elements are then

summed up into a single global system ‘which can be written

[

as follows:

[Ag] {¢g} = {fg} ‘ : ‘ (2.;0)

v
o v n
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]

with an ord‘er'no overall number of nodes

(N* +1) (M*+1) with referencé to Fig. 2.2.

The functional nodal values $g in/ turn are determined through
\

the solution of the above algebraic system.

25 The Finite Element Program '

7

The number of divisions N* and M* can be arranged to
\ .
be the only input to the prpgram, for a specified L/d and

eccentricity ratios, through automatic mesh generation.

.

employing a general element as shown in Fig. 2.2. The numer-

s

ical solution proceeds beginning with starting values for

M* and N* which are, then, progressively increased until no

significant improvement in the obtained solution is achieved.

The starting values in the present investigation were set as

N*=16 and M* =6 and the final values are N* =36 and M* =12,

\

The improvemeﬁt in the evaluated dimensionless pressure func-
tion ¢; at G=1, 6=90° and different eccentricity values is
2 to 7% which roughly indicates a fast convergence toward

the exact solution with a fewer number of elements.

A

. \
A straight forward construction and solut}on of the

.

algebraic system (2.10), which is of order n0==481 for the

final values of N* and M*, will require excessive computer

time and memory. However certain facts may be employed for

1

reducing the complexity of the problém. They are:

\

. i) ¢; is an odd function in 6, -
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ii) ¢, is an even function in 6, - ’ .
iii) ¢, and ¢, are symmetric around z==% for all @,
iv) [Ag] is a symmetric banded matrix,

v) all elements have the same area and every two

rows in the 8 or z direction are identical,

¢

vi) all nodes in the z direction for dertain values
of 6 other than those at z=0 and z=1 will be under Ehe'
same values of the film function H and under the same par-

ticipation from similar elements in number and shape.

; . From (i), (ii) and (iii) it is necessary to consider jus£ 5ﬁe ‘
quartér of the domain, which is essentiélly a process,of de-
coupling the system at the lines of symmetry. 1In fact, the
ébnéition (1ii) corresponds to exchangind\the boundary r

conditions (2.9b) by the new boundary conditions:

f

Co : 3‘¢i

— =0 ‘ ’ i= 1,2 [
3z Z=i, . .

e
From (iv) only the band of matrix Ag need to be st;réa.
Finally, from statemen£s (v) and (vi) only the first four )
rows, rows in the circumferential direction, of elements are
required to be constructed: Using this ;implifying p;océdure
v

the computer storage needed can be reduced to less than 2% -

of the originally required amount.

The Pyne-Iron method is used for introducing the

*y

s

o . boundary conditions‘into'the algebraic system (2.10) which in

bl A

¢
m. ﬁ, rﬁi% C
—
>
.
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turn is solved'employing the Gauss-Jordan technique. The

AN

dimensionless pressure functions can now be 1ntegrated for
thé ‘evaluation of hydrodynamic forces, : o b
. . ,

2.6 Evaluation of the Full Film Forces

[

-

The inte&ra}s in the‘tangential and radial‘hggro—‘

PR

dynamic force expressxons (2 4), -can be wrltten for the non-'

“"dimensional shear and squeeze pressure functlons ¢1 and ¢2 as

-
S

27 L . - . .
, d\? ) * . S
f p sin®-dzde = Lu (E) (91 I, + g, I,] O
0 o0 ' L
—
21T L : A
d\?. . .
f‘ f p cosp dzde = Ly (E) (g1 I3 + gz I4])
0 D - * + Io
where | . (2.11)
27 1 | .
I, =f [ ¢, sine dzas , i=1,2 |
0 0
2r 1 \
Ii+2 = f .[ ¢i cosf dzde ,, i = 1,2
S o '

and g1, g2 are defined ifi equation (2.8).
R “:.é “ - ‘
The'éhear and squeeze nondimensional functions $: and

»

-

" ¢z can be expanded in the 8 dlrectlon in terms of, Fourier

'sine and cosine series respectively

&'_*Valld for the present case with the integrations over the

axial céordinate 2 {s carried out using any of the Newton~ '
Cotes formulaes. .
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W

A¢2(9)l;;z.
. . J

+ where zj is a specified discrete value in the z-:direction.
Applying the expénsions (2.12) into the integrals Ii(i=1,2,§,

4) in equation (2.11) it can easily be shown that S

o

Bymw °

-]

2

@'

2

=1

" sinnbd
Bn‘Sl ,

An cos nfb

n=0

w

” 0

.. . Il(zj) =
- . ‘”- IZSZj) = (z.) =0 .
I,(z. = AT Lo y !
« (2] ! P
N v “"

L (2.12)

o { [
Hence the integrations in the @ direction only requires the

evaluatlon of the coefficients A; and B; of the fundamental \

, terms 1n the Fourier series.

4
s

° . fI(z)dz
A o o

v

J

¢

, i=1,2,3,4

The integrations,

a

are carried out using Newton-Cotes formulae {1s].

S

-

Here a check is made by using a large value of G,

say G=100, and comparin§ the solution obtainéd with the

infinitely long bearing solution. ,At an arbitrary chosen

eccentricity ratio eF=.5, the maximum obgerved error over

¢ and ¢, is 1eés than 1% verifying a reasonably good'

N

= ' -accuracy of the overall numerical procedure followed which

started by the fxnite element solutlon, folloyed by the ¢

. evaluat;on cf Fourier series coeffic1ents for ¢, and ¢, in ©




R ~ conclusion also means that the ‘curve fitting of the eccentric;

=31 T B I '

direction and finally the numerical integratibn'QVér z:lL

The-vé%nes of the integrals-Ii leadiid’bbméietg‘tﬁé
"evaluation of the hydrodynamic forces'of'thé full filﬁ

bearing. These values are still discrete over the ecqgntr1c1ty
e and‘L/d rat19 glven by G. ' The values of the nonvanlshlng- > - W

' - [
integrals If‘and\IAaover e and G will be referred to as, E;

and E§§£i:ﬁ;now on throughout this thesis. ’ ;o
2.7 Curve Fitting of Eccentricity, Ratio Functions

E; and E, for the Finite Bearing ,"’*

A
L

For infinitely long bearing, the exp;éssion§ for the

_eccentricity functions E; and E, are [1]:

. 1
:
E; = —

v (2+e) ¥V 1-e?

l Co L. ' . fe ’ '~. . ':
' 'Ez.=“_'—3'1—— C N—_——. 7 o = (2.l§) .

(l-e?) 2

-3Te’

'

&
Using these functlons as the base for normalizing the finite -

bearing eccentrlcmty functxons E; and E;, 1t is found that-

the finite bearing eccentrmcxty functions are not separableA

>

in e and G. That is,
u\\ ‘/
) . By(e,G) # B, (e) E (G) S .P, - E

.

. whicﬁ imposes”a'rettriction on the valfdity of those journal
bearing solutions which are of separable form [7~13]. This

!

funcfions Bi~ove;fe_and G, is_not‘pqssible by a function of
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.a. simple form. K Ingtead, of u51ng a. complicated form of a - T A

\

-« . fturve fittin fucntlon, the eccentr1c1ty functlons are curve
. o c

r(f;tted over \ the eccentrL01ty ratlo e only, which is a varlable
]

in the journal equatlon of motlon, for dlfferent L/d ratlos,,

>" . whlch Xf only a parameter for a glven journal bearlng case. ) .
- . .o J ' . .'
It would be convenient,if the‘form of the curve.fittihg73' o
' ' SR ' ' . . ®
ﬁunction possess the following advantages, namely: Co
i) simplicity in handling for the use of computer//t‘

v

programming; ‘ ‘ o o .

1i) accommodates the egcentricity functions E,, E,

@

as well as those eccentricity functions that will be presented

in the latter part of this chapter;
- . . - l . I 4 ‘. _ . i B

iii) flexibility in expansion that can provide various ~
. A . . ' . N ’ -

requirements -on accuracy and simplicity.

Recognlzlng that these eccentr1c1ty functlons tend to
- infinity at e-—l dlfferent forms that can exhlblt such a
-trend .are tested startlng by functions sxmxlar to those_of'
‘the infinitely long bearlng glven by equatlons (2 15) Among
the many tested forms, a polynomlal that satlsfaes all above ;

\-~\ _requirements is consldereqq and is found to be of- the form L ﬂc

.o.my i ‘ mp' -, s oL, .
. .+ B.,-e~+tanH= ¥ - B, et " (2.16)
3 jo &, TIA AR sk N .

i=1 ' i=m,+1 - g ="1,2 '

=)
N
w

» . )

The factor tan 1r-helps to accelerate the convergence at high

- " ,eccent§¢01ty values while the. second term increases the

L




| 'Fhe‘fittind accuracy at small éécentricity'.c Using propert&
(iii) presénted above, the choice of the éolynomidl,order |
fgiven by m; as well as m,, cén‘now be made based{i:h: re-

;' ' quiféd combination of accuracy and efficiency. AltMeugh the
P - polynomial (2.16) with nn==3'and m; =6 achieves satisfactory

accuracy, a final choice of m; =4 and m; =8 is made since a

¢ - . " higher accuracy is demanded in the.present inVestiga%ion. A

¢

' sample set of curve fitted eccentricity functions is presented
L& ' T
in Table A.l in Appendix A to show the adequacy of the curve
T ' o

( o * fitting polynomial'chosen. Also the poiynomial-coefficients

A

' Bj for eccentricity functions E, and E, are presented in

Tables A.2 and A.3 in Appendix A.

T gt Sy

Ly

, : S The plots of the eccentricity functions E, and E, are

P

>

presented in Figs. 2.3 and 2;4,,respeétively, along with the

5y

- ) . .
corresponding long and short bearing eccentricity functions.

44
N

The. infinitely long bearing ?an be seen as only an upper:

o

bound to the finite'bearihé‘curves whereas it is obvious that
‘the validity of the short bearing approximation'is ;imited' v
for small L/d ratios, say less than .25, .and small eccentricity

I

Yatio. - .

2.8 The Equation of Motion of the Full Film

Finite Bearing -

. With the eccentricity functions 'E, and E, defined in
. . . . equation (2.16), the tangential and radial film forces'Ft énd'»

F£ can be written as

\ - e

+ .
Yy J«» . s ”~
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Bearlng Results.
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. , R \ :
Ft - - i (w, -~ 2y) B4 ':;)o
2—c2 J - )
' ' (2.17)
F_ = - Ld” & By
. 2c?

¢

'The equations of motion of the journai bearing for a full film

can be expressed in a dimensionless form by dividing them by .

2 and further utilizing the nondimensional time 1 = tuw,

cmw .
J J
and are given by
00 - ° 8§ ° - : '
€ - ey? = -3e By W, cos (By — W)
(2.18)
- 00 o0 S 4 ‘ L
- e + 2pe = - > Y1 - 2y) Ey + W sin (8, - ¥)

Here § is the dimeesionless dynamic bearing'parameter'given
by

_ HL (g - Y

s = EL (9}, _ (2.18a)

dot above the varigbles indicate differentiation with respect
to 1, and the dimensionless appiied load Wn &'W/(cmmg) is ‘
spaced by an angle By with the Fo;igongal as can bg seen

in Fig. 2.1b. The static equilié&ium position for the finite

full film bearing is given, with reference to Fig. 2.1, by

the equations

- 3T \
Bp=Vv =7
\ (2.19)
_ S
Wn = - E'El

The equations of motion of the .finite bearihg with full film

along with its associated eccentricity functionﬁ“Ek and E.

’
\
-
—_— \

¥
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"are of limited practical value but serve as a base for .the : -

practical film models that are aeveloped later in this chapter, -

2.9 Cavitation in Thin 0il Film _ ‘ ”/ L
A v * ;,/ '

Under practical operating conditions negative pressure

values as may'be given by solving the Reynolds' equation are
' sufficiently large to cause a film rupture. Iﬁ the ste;dy

. state conﬁition, accurate determinationiof-the cavitation

.boundary is quite manageable in terms of computation even if

it requiXeé iterating the Reyfolds' equation along with the

flow continuity equation {25,30]. In the dynamic case, such
a treatment és practically impdssible and so a simpler treat-
ment’is usually adopted, say for example, by diéregafding ’
‘the negative pressure.ig tﬁe diveréent'zone of the film.
‘quever, the hypdthésis on the kinematics of the cavities
anéuthe effect of the cavitation region on the beariAg dyna-
mié performance\ﬁust be clearly defined to support theQEEgu-
‘menﬁs'inyolved in constructing a‘parfial film model in the .
4dynamic cage'of the beariné. For this’a few important facts

»

about the nature of 'cavitation in thin oil film are exXtracted

frbm,previous experimental studies [26] and may be briefly

S . .stated as follows: ' ) )

4 »
i) cavities in thin o0il*film, which are mostly

' gaseous or formed from the dissolved gases in the oil, are

-

. , either ventilated at ambient prgs%ure or partially ventilated

at a pressure due to the ambient'[27].,'Thereforqd the
' cavitation region can be assigned a zero pressure value for

' ' t

Y b 4

"




RPN
A

-,
R

e e
“ < L

B i [ T

omar

Cor L

=,

_practi

practical considerations,

L ii) the cavities stretch along the cavitation region
in'thQ direction of motioﬁ, leaving only o0il streamers with
narrow width [30] which can be thought of as very narrow

successive bearings,.and have negligible effect on the bear-

ing behaviour [32],

iii) the cavities can somtimes be moving but mbstly are

‘fixed cavities that have thé ability to fluctuate in length

with a high rati® between expanded and shrunk lengths at'q

high frequency [27,38},
iv) some experiments on the dynamically loaded
bearing (36] recorded a rotating cavitation region similar
. \ .
to the one in the steady state condition and a relative motion

between the cavity and surface was also. observed.

From (i) and (ii), the assumption of neglecting the

pressurg

4in the cavitation regioh is well supported as being
: kbt

\ ' [

i The last two points (iii) and (iv) make it

pé%sibL Jto assume that the cavitation region can move,

shrink d?loné side and expand at the other with high fréquency

|

th@t cangﬁolloW<a,general motionrof the journal in the

@se,( These facts are useful in supporting the

dynamic

.

thgbreti_ 1l partial film models presented in the following .

sections.ﬁ

|

2.10 . Dynamic Pressure Boundaries -

.An|extensive treatment that considers the pressure

| | | - m

P

P PSR o om,

PR
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" but from equation (2.8) ‘. Lo

- distribution is [4],

-~ 39 <

+

gradient at-the commencement of the cavitation zone as well

as the flow continuity in a procedure t

ard establishing a

'

very precise cavitation boundary similaf¥ to the treatment of

-

the steady state conditions [25,30] is Auite 'impractical ‘in

the dynamic case.. On the other hand, appropriate adjust- "

ment to the pressure components of th¢/ full film’Bearing as

done here, may lead to'an efficient/and practical dynamic

film podel. ( e

A superposition of the shehr and squeeze pressure

resultant pressure profile. Thé1dynam;d'bodndary angles

0, and 8, are given by the relation . .

/P, =1

R

then

é ?2 . ” | '/
Instggd‘of evaluating ¢:/¢, for a finiﬁevbear;ng, the upper

and lower bounds” corresponding to the short and long bearings .
! K PR 4

are:cdnéideted.j)For a short bearing the dynamic pressure

\
.

O ¢
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; - P = 3 (d/c‘)2 G?[z(z-1)] (L/H%) [2g,cos6 - eg, sihe]

1

from whic!
: ) p ‘ . - _ e .
. : Co- 51 =1 = 2 e oose or 6 = tan l———Z—e——T—'(Z.Zl)
. J 1 ‘e(mj-Zw)sin e(wj-2w)
oo , , : ‘ Lo

< . ‘'The long bhéaring pressure distribution [1] can be written as .

S . 3w (a g:e (2 e cosb) 51n6 g_ ( -
P 2()[ (2 + e?) u? * H? I)]

FL T T,

from.which 1 . ‘ (2.22)

_, &2+ e?) .
8 = tan e(m -2w> ‘

e R

- Then for short and long bearings4the boundary angles are 3

Pt i A

given by equations (2.21) and (2.22) and therefore the
4

corréspopding relation for the finite bearing, in general,.

will also be in the arc tangent‘form Consequently, if the

boundary angle e, is determined by any such arc tangent re-"

1atlons, then 82 1s glven by the" relatlon

82=91+'ﬂ' _-'-

Therefore, in the dynamic case, the posrtive pressure profile e

4 ' will always be extended over half. the circumfereﬁce and as B )
= " the quantltles e, & and ¥ change in sign and’ magnltude the B

tran91tlon between one pressure profile from the four

°
B S

; o ' possrbillties in Fig. 2.5, to anpther causes _the cav;tatlon

region to shrink on one 31de, along 9§ dlrectron, and to

v

expand on the other. The cavrty has the ability to follow

the motion with high frequency\as mentroneq earlier,
gue
U

k‘ ¥

. N v
. « ' - . ; ' ’ ' g
. B . ' . . »&
y .
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A The pressure profile is then constructed from the super-

" the location‘of~the pressure profile. These possibilities

the pressure dlstributlons cprrqspondlng to the respective

'fllm extends. In this film model’the negative pressuré is

- 42 ~

fhe partiawailm model bresentednstill maintain thoée
bouhdary angles that are dependent on the displacements Eﬁa;—“‘”—**~—~
velocities of the- journal which means that the journal
equation 6f motion will always be coupled with the Reynolds'
equation. Cénsequently, two partial film models afe considered
namely the 33/2 and the 7 film models. Both film models are
decoupled from the Reynolds' equation and are shown to be
upper and:iower bounds for the time dependent boundary model
presented above and will be rgferred to as the basic film

ﬁodel:

2.11 " The 37/2 Film Model

‘This model‘was first used for the short bearing case

[4T. The name implies the angle of the arc along which the

[}
'

‘dlsregarded in both the shear and squeeze pressure components.

@

position of the remaining positive pressure components, as
g 3,

shown in Fig. 2.6 which presents the four possibilities for

are determined by the sign of the velocity function g, and g,

given by equation (2.8). ’

' The evaluation of the hydrodynamic fofces for the 3n/2
film is illustrated by the dlagram 2.7. 1In Fig. 2.7, the

signs ‘of the quantltles e and (1~ ZW) are first. progected on

componenf.' Disregarding the negative pressure and evaluating

> %
1 ®
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the integrals in equations (i.ll) , but with the new limits, N

+

\ . ‘ yields “_ ‘_. . " .( /‘;.
\’ . ’ : .
1 ™ o 1 i -
I, =f f ¢y sing dedz f = By dz Lo d ‘ ’
L 0 0, o o b
1 ) t . o ' R f . 4 B
K ) fz = 0 .; . h'
\ - - \ n N
’ | : . -1 T . ) i ®© s - '
- ' Iy =[ [ o1 cose dedz = ( S B 220 ) dz ST
. ' . - 2 '
' ‘ 0 0 " . 5 1"1—-2‘ n“-1 .
. o . l ' T - N
[z (2 ' T ; v
In=/"2 /" ¢2 cosb dodz 2A tA ]| dz (2.23) -
- ., 0 0 s 0 . ‘" .
where A.. and B;1 "ar'e' the 'coefficients of the Fourier cosine
énd sine series in the expansions of the xio'ndimenéional
, pressure components $; and ¢, at- dlscrete axial locations. )
’ Two add1t10na1 eccentricity functlons, namely E; and E,, N
. . RN ‘.
ar:l.se' from the new boundary cond:.tlons as‘ can be seen in o
‘ . Figqg. 2.‘7: Finally returning the signs Qf the re,s_ul‘tlng, S |
} /\/ quantities back to the ve,l.ocitieé e and’ (1—2111) ' the radiai‘l o
. Sy
5 and tangent1al force components for the 31r/2 film can be .
) /. - : . A .
wr’tten as- ’ ‘ o L,
3 ' . T "
L Ft z - Lud [((L)j - ZW) El] ~ ’
. 4c2 . 7 '
. . . ¢ 4 \ i
A - 3 ‘ " ' B -
F_ = - d [e Es+ |w -2¢|E,] (2.24)
‘ r 2c2 '
1 R ﬂnd-' /’ . ‘0 ‘
B . 5 } " . . .
N :
) Es = E), ,for, e >0 . . . : . . .
"! ' e’ ) ' \’ ’/‘ '
‘ = E,y~'E, for @ < ¢ . . JL ‘
¢ B . ! 4 -~ . ‘




. : ' ‘ - 46 - .

%‘ . Thé eécentricity functions Ea and E“ arefburve‘fitted using

e Y \ ) . .

§ o the polynomial form (2.16) and corresponding coeff1c1ents L oo

'f»are presented in Tables A.S and A.5 in Appendlx A. The plots

‘of the eccentricity functlons Ea and E, are presented in “ : .
Figs. 2’8 and 2.9 for different L/d ratios. . The correspondlng

, » - - ..
eccentrlclty functlons for the short and long bearings are

evaluated and plotted in Figs. 2.8 and 2.9c for ready com-
_ parison. 'The conclusion, following a similar comparison for
. . ) B ‘ -
E; and E; in Figs. 2.3 and 2.4, can now be extended for all . ‘

o eccentricity functions in the sense that.the short bearing

B

£
L approximation shows inadaquate accyracy at. L/d > .25 and high,

P " eccentricity ratio values whereas the long bearing ‘curve is
) .. only an upper bound to the finite béaring*and otherwise a

.. rough approximation for L/d < 2.

t

2.12 The 7 Film Model

: o : "This film model is frequenctly used and is developed

b ' "here for the finite bearing by disregarding the full £film

pressure distribution in the divergent zone. The four

L ormy

pdsaibiiztiés for the location of the preésure profile are

presented in Fig. 2.10. A similar procedure as that described

'1n-Flg. 2 7 earlier can be used to 1dent1fy the new film

4 <

forces. In this case the ;ntegral I, of equation (g.ll)'doesA

. L4
e, B : . ' , - b .
f T not vanish as in the cases of the full film and 37/2 film
1 ‘models., }The integral I, can then bélﬁritten as * »
ST T 1
o . - ® 22\ C
[ ] o e 3 ’ A | . ! n o " .
o . qu - f f . ¢ sing dB(AiZJ = f ( z I_IT:I> d.’z Co
- | ) | ,“ , ' . 0 —‘" ) /“ OI n‘o 2 4 . ~1~ ‘ q

“"""".””&“WX T T N TR N S T
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This results in a new eccéntrici;y,function E¢ which

o is also curve fitted using polynomial (2.16) énﬁ the coeff-

e e e

: o 0o
[ S m“:wﬂwﬁ;ﬁ*ﬁ??}% -

icients of the polynomial are presented in Table A.6, Appendix
A. The new eccentricity functionDEs ls also plotted in Fig.

2.11 for different L/d ratios. Once ﬁhe inﬁeéralg Ii, I.,
. ) r ’
I; and I, are available, the radial and ‘tangential film force

1
f ’

~ can be written and are

~ a?l [ s Ep , °
§ F, = - . - 2 + e E
L \ L ’(wj i G]
i { . : . _ L. {2.25)
. - d’ - 20y : EA] -
Fr = - - Bwj 27) Ea + e > ]

¢ : ‘
2:13 Discussion on the 3w/2 and 7 Film Models

A simpleNgualitative,proce&ure is use@ to define the °
deviation of the 37/2 and T film models ffom the basic £ilm
moéel. fhe difference between any of the partial film models
é 1 o and the basic film model\is represented by regions that are
\ . ’ | denoteduby a andvb on the pressure profiles in Figs. 2.6 and

2510. The pressure profile of the basic film:is always con- '

R IR .

. tained entirely in the profile of the 37/2 film at all

:digziibution in zones a and b is always positive, so is the .
> ” [] ‘ v ,
difference (a-b). On the other hand, the zones a and b may.

also be of a negétive pressure distribution. In both figures

s

\Jland for all the possibilitieé shown, each area that is de-

1

'noted‘by a is bigger than~tha£ marked bfdge to their:individual

1
1Y

\ * possibilities as shown in’'Fig. 2.6. Consequently, the pressure o

\ ~ hot be included in the pressure profile of the m film and may .
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location wi respect to the eccentricity direction of the

journal'centér. These two zones are ‘consistently of opposite

nature and therefore the deviation from/thé basic.model is

oniy the difference (a-b) which then generates two minor

*

* ! .
forces Fr and F_ that are directed either along or opposite

ct
to the forces bf,the basic film.

Let a répresghtative force for the basic film profile
be located at any point on that quarter of the journal cir-
cumference which is completely occupied by that profile. Neit;
let the residual force be placed anywheré on the quarter where

-

the zone a is located. Then by analyzing these forces in:

“
[

terms of their radial and tangential componets, assessment of

the deviations of the 37/2 and the w £film models can be maae.

v RN ’ [« B [
_ Por example, considering the case with ¢ .< .5 and e >0 in

'Fig.‘z.q, the residual force due to (a-b) is located somewhere

on the first quadrant given by 6 =0 to m/2, and ;hé force for .,

the hasic film model should be located on the_fourfh quadrant

. : . J !
which is entirely contained in the basic f£ilm profile. - Then
: ) .
it ‘can be identified that F; is added to the radial component -
of the basic film force F. while F: is subtracted from the

tangential component F 'The conclusion for all possibilities

A
and for both partial film models is.summarized'ianable 2.1,

*

'As can be seen from Table 2.1 the effect of constructing

the 37/2 film gtarfing from the basic film model gives an

Bpéosite effect compared to that of the 7 film. Only the

- radial component F; in the lower two cases, with ¢ > .5, are
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&
3% Fim I FILM
s
f g ] 7 ;
o .
e >0 .
> - + + -
Y < .5
o e o
e < 0 .o
. + — ~ -+
¥ <.5
: °
e >0 .
'@ >.5 B -+‘ -F _F
'".é <0
a$:>.5 + - - —

Table 2.1 Signs of the Re51dual Porces for the
3n/2 and 7 Film Models.
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-7 ——similar. Then it can be stated that the opposite effects of
! ,
! )
i . the 31/2 and 7 £film model§ on the basic film, place these film °
E models as upper and lower®bounds for the basic film particularly .
o ' i
i for cases where y does not exceed .5 significantly.
7 2.14 The Equation of Motion and the Steady
{ State Equilibrium Locus’ | ? '
: Substituting the tangential and .radial film forces f
é into the equation of motion and utilizing a dimensionless o \
f E pattern as used previously for the full film bearing in X
‘j equation‘(2.185, the equation of motion in a nondimensional i
g form fq; all different film models can be written as
\ .
; o ° 3 ° s
é e-ep?=-5 [(1-29) E; +e Ej] +W_ cos (Blflb)
, (2.26)
w+2pe=-S [(1-2§) E +& E,1 +W_ sin (8,-p)
ey + 2ye = — [(1-2¢ k¥ ek, L Sin Bl-w
r , 4
; Here,Bl is the load angle as explained in Fig. 2.1 and S is the
. bearing dynamic parameter given by equation (2.18a). The
: eccentricgity functions Ey, Ej"Ek and E, are summarized in
Table 2.2 for all the different film models.
. The equilibrium position is then given by;
: S . . .
. 5By =W_cos (B,-9) S
SR 7 : » ’ - ' ' (2.27)
R | N .o -S_ . _ . . .
Yo . - . 4 El = wn 'ln (B.z 'P) .
-

- for both the ‘/2 and t film models.

[}

B i T ——
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: 3n
2T model . 3 model T model
(full £ilm) ~
E; ' 0 ) £ Fs E,
E; E, E, E,/2
Ex E, E,/2 E,/2
—_ ” i I' '
E, 0 0 E,
A\
/ . ’
* -]
=1 for ¢ 5 1/2
Q
U= -1 for Y'> 1/2
: v
Eq = E, for e > 0
. ' ,' . o )
o =E, -~-E, for e <0 .
Table 2.2 Eccentricity Functions for all Film
Models. .
-‘0 "' <
] :
\ . , il n‘ f". '
’ AN
* . “‘ ’ 4 ’
.
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Equation (2.27) can be written in terms of the well

known Sommérfeld number So as

<

r
s - ],l(JJde d 3 N 1 5 1 , g ‘ S
or = ———— g == _—— (2.28) _
: 87w : 2™ \/Ez + 4 33 . . . ‘
A 1

%

The attitude angle (w-Bz) which.}s the angle between the load

and the line of centers is then . ’ k

x

Y - 82' = tan E . (2.29)

Relations (2.28) and (2.29) are plotted in Figs. 3.12 and

2,13 respectively, for different L/d ratios. , - ' '

2.15 Comparison of the Present Results with

L]

Other Investigations

Ocvirk [2] reported an experimental'study on a bearing

with L/d ratio, G=1 and Sommerfeld number Sor==.1598. This

- {
value of Sor corresponds to a steady state eccentricity ratio

‘e=.41 and an attitude‘angle of 60°.- Ocvirk measured ex-
‘pgrimeﬁtally the attitude angle as 60° whereas thé steady ¢
state eccentricity ratio was ‘not' measured. Using the curves
for L/d=1 in Fig. 2.i2, the steady state eccentricity that

corresponds to S =.1598 is ,566. It is interesting to

notice that the two ecéentricity‘lines,e==.4l and e= ,566 in
Fig. 2.13 intersect the short bearing line and the L/d =1 line, -

respectively, to give nearly the same attitude angle of 60°
despite the significant difference between the two contour

o

levels., Perhaps this agreement may have not taken place if

\
15
. . .
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“

the loading on the bearing was different, i.e. different %or‘

r
n

Another comparison may be carrfied out with recent fe-,

RN

sults by Barrett, Allaire and Gunter [13] in which a modified
short Qeering theory is preéented extendiné the range of short
bearing appiication to L/d=1.25 using a Forrection factor.
The cases that are‘used for boﬁparison are the steady state
condition and the pure squeeze morion ané for both cases
analytical solutions that are based on variationel methods

are available [6,73]. The modified Sommerfeld number

4stér, G=L/d, is ploeted against the steady state eccen-

tricity ratio e, for L/d ratios .5 and 1.25 in Fig. 2.14.
P N N 4 ’

:Besides the short bearing and the cortrected short bearing
curves [13], the present and other analytlcal solutlons are
also. presented in Fig. 2.14. The corrected short bearlng is

in good agreement with the analytlcal solutlon partlcularly

at the smaller L/d ratio whereas the finite bearlng of the '

[

present analysxs is-in better agreement with the analyt;cal

solution lndependent of the 4/4 value. n o .

In Fig. 2.15 a comparison is made for a pure squeeze

condition which representg a case of a squeeze‘gilm damper.

v

Neglecting the cavitation region, the, film force due to st

°

squeeze velocity oﬂly can be determined from equation (2.24)
. . ' - -Q .

And is . .

‘ ‘ 3 . ..’
p F = - Lpd” e E, for e > 0

r ’ e = -

v 2c? o
This value, of F_is used in plotting the finite bearing curves

in Fig. 5.15, egain for L/d'ratios’.s and 1.25. As it can be

.
H
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seen from Fig. 2.15, the finite bearing‘burVes and the
corrected short bearlng curves are both in. good agreement
with the.analytical curves [73]. However, it must be éem-

phasized that the finite bearing results presenfed here have

the versatility in application for any L/d ratio with the

- simplicity of.the well known ‘long and short bearing apbroxi—

‘mations.

n

‘2,16 Discussion - . :

.The equation of motion of the finite journal Bearing'
is developed Wlth an appropriate treatment for the partlal

fllm case. The hydrodynamic forces derived are particularly

,adequate for nonlinear dynamlc analysis singe they are de-

,‘ can be used elther 1ndependently ar ]Olntly.‘ gpe 3n/2 fllmv gy

L5
coupled from the Reynolds' equation and therefore preserve

the simplicity of the short and long. beariig solutions but

with better accuracy.

Two partlal fllm models are developed for. the flnlte

bearlng, namely the 1 £ilm and the. 3w/2 fllm models Wthh e

can be used adequately for small eccentr101ty raflos when the‘

~

suppl pressure is significant compared to the hydrodynamlc‘;
AR 2 * s :
presaure and also for a pure squeeze film casa, otherwise'tne'

" film model is the one, to be used: Both film models are shown

to :be upper(and lower bounds for ‘the time dependent boundary

model which the basic film mddel, and’ consequently the

N -

éual;pati vxour of the latter £film model can be’ examined

- . e,
with certainty by evaluating the cprrespondinq sq\utions ‘of

- sat L} '
> ' ) '. ‘; A’ i \ ] , s . R

e .
k)
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both film ﬁbdels. Thg?compérison presented demonstrates the

. . . o \ ' ' -
. accuracylgf\the developed model independent of the L/d ratio. 4

{ . The next chapter is devoted to the solution and stability . . -

analysis of the finite bearing equations. o
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\ CHAPTER 3 o E .
N .

- ”

\ L
' " NUMERICAL SOLUTION AND STABILITY ANALYSIS . ‘

FOR LINEAR AND NONLINEAR EQﬁATIONS OF

MOTION OF THE FINITE JOURNAL BEARING

-\ .

3.1 Numerical Sclution of the Equation of Motion
>
and the Numerical Methods

Stability of a numerical infegration procedure is a

joint property between the differential equation under
-

1 " solution and the nuﬁerical technique empléyed whereas the

systeﬁ instability is a basic property of the sYstem itself

J . and ¢an nottbe altered by changing the numerical technique

3

chosen. However, in case an instability of the solution
2 .

e

o - procedure is observed, it is a fair bet to switch to a . , ,
. . ‘ ‘ ! B A ¢ 3
[ N different numerical technique. ‘ )

* The fourth order Runge-Kutta and the Hamming's pre- .

[ R . f R
\'ﬁ dictor-corrector methods_are beth used §lternatively in the

s . ' . ' f \ ’ ¢ - N
& : P ) . o ..

? , Jpresent analysis. Whereas Hamming's predictor-corrector

< . Ppres \

. was reported to exhibit numeri?al instability when applied
on a nonlinear fotor Systeq [51], it was QOund to be '
?uificiéntly acqﬁraté‘in‘sq;ving the‘short and long Eéaripg
" grequations [40]. A comp;fison w?s,made by app}ying both

- ] “ -
numerical techniques on the finite bearing equation (2.26) - .

— x.‘%g;:;;zg’am:wwi T
|

and for all the different examples investigated including

» C . ) ‘

the stable and the ungtable cases, the difference between
. N } . . 4 - ) x,

. the solutions obtained using the Runge-Kutta metbod and
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. An error bound of é:{lo'ato ex 10™" is used in this case:

. of motion (2.26) in-the cartesian form is L - .

. L
. ’ I}
VD A . L - . ‘ - i e rer———————— ‘

. . \ . N ! ,' I .. B ‘- . .D
: | - 64 - | T
Hamming's method were' so small that it tan not be disting-

uished on & 'computer plot. Since the”Hamming's predictor- . - T
corrector’me&h da requiges'considérably less computation
time than the Runge-Kutta method, the former method is used’ .y

in host cases whereas the latter method is used only as a

_check in those cases where instability is observed.

A one hundred step per journal revolution, namely 3
27 for the dimensionless' system (2.26), is used thfoughout
this investigation whereas the step size is automatically

reduced to half its value. if the set érror“hoqnd is violated. .

It should be noted ihat, besides the initial conditions,

the solution is completely* defined for specific L/d ratio . J i’
. ' .

by any two of the following three parameters: . o, R

S , the bearing dynamic parameter -
e, r steady state eccentricity ratio

" W, dimensionless load or alternatively the

AN

dimensionless speed Wy =/1/Wn v N

\ ‘ : .
aAn altei&ative,formulation'of the jourﬁpl bearing equatipn

4 ’

oo N ° ° ’
X + Cxx(x"”x + CX_Y(X,Y?Y + Fxx“,‘"‘)x + Kn(x,Y)Y = Dwnx

L)

. ° ° - .‘:rl’
b4 +‘CYX(X'Y)$_+,CYY(X,¥)X + FYX(X,Y)X *‘KYY(X,Y)X = wnY |
. . )

o ' R (3.1)
where the: equilibrium position is given by: =
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!
=

. ' ..g ,3 \ - ‘ )
v Byx(XorYo)Xp + Kyy(Xor¥p) ¥y = Wy g

Kyx ny

i

(X ,YO)X0 + KYY(XO,YO)YO =W

.

. Here Cyy, Kyoy ... are nonlinear func&‘ons in the displace-

ment X and Y only and are presented in Appendix B.

One direct advantage o} this formulation is thaé the |
linearized damping coefficients that correégond to an |
equilibrium gPint (XO,YO).arg obtained by the evaluation of
Cx%(X,Y), ... at (XO,YO) which can'alsé be utilized‘later

in the stabih?ty analysis.

3.2 . Comparison of the Numerical Results with Experimental

+ Results for the Full Film Case

e

The main reason for this comparison is not only to

investigdte the accuracy of the finite full film bearing

solutions, but also to.provide an additional support to all

the developed eccentricity functions .E;, E, ... which are .
devgloped jointly in the past Chapter. 'In an experimeng
reported by Mitchel;, Holmes and Byrne [40f, a bearing w;th .
a diameter, d =1.25in, length L=.75 in., and Aa circ':umferential
?xodﬁe@of'.ll in, was used. The experiment started with a

partial film with the journal being. stationary. Then the

© supply éressure was raised suddenly to A value just enpugh

to allow a full film formation; The journal, in turn,

climbed oﬁ an unstable spiral. The traces recorded for four '

different combinations of the dimen‘s_idnlesé load W o and the's

o t. v

i
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)

stepdy state eccentricaty ratio e, are reproduced in Fig. 3.1.°

\

-?Pe L/d ratio,’kaking the groove inpo account, is

- . . approximately calculated to yielé G=45." The comparative ..

: ‘éalﬁgioné using ghe present finite bearing equations for
/fhe same values of W and e, are presented in Fig. 3.2. _The

i FE ' numerical(soiutions inIF%g. 3.2 show a very good agreement

with- the correspodﬁing‘expefﬂhental records in Fig. 3.1.

The“hape and the number of loops are almost the same before
!

by -

‘% the journal orbit surrounds tAe origin. The{present R
%T ’ analytlcal solution shows the orbits growing faster to cir-
;, Q____cular shapes than the correspondlng‘experlmental results.

o Mltchell Homes and Byrne (401 also noticed that the journal.
§ never reaches the clearance c1rcle but rests in a c1rcular

limit cycle with a‘diametér little less®than the clearance
. ° ) ' , H .
circle diameter. This is in contradiction to the theoretical

solution which*shows a continual growth in the orbit. This,

point is discussed in detail in a separate section after the
. . \ . v , . . ) .
stability afialysis. . )

Lo * / PR ’ L

‘ o ' N

3.3 Comparison Between the Different Partial Film Models

1

The effect of the film extent on the jourqal transieng
behaviour may be demonstrated by a coﬁparat;ve a alysis . '
betweeﬂ the m and the %; film models. The joﬁrni} stability
status varies betWéen‘asymptotlc stablllty, orbital stabilféy
and instabllity depending on the steady state eccentr1c1ty
eo, the dimensionless speed Wy and the L/d ratio. In Fig. 3 3

. by

a case of asymptotic stabllity with L/d== 25, €™ - .75 a d

v
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o wﬁsgé;zﬂ ws==3,\are presented for the 3m/2 and the 7 film models.

-t

K Itlmay be seen that the qualitativg behiviour of both the

’ . paréial £ilm models is roughly the same. As can be seen

‘ fromughé figure, the uns&able transient solutions qf the

m model grows almost iﬁmediatgl} into larger loops close to

. ~ the éleafance cifcle whereas those unstable solutions tha£
correspond to the 3m/2 film progress closer to tﬁe clgarance

circle throuéh a few intermediate loops. In the stable

_cases shown, the solution corresponding to the 7 film:app- -
“» 4 , ’ ©

¢
roaches the equilibrium point faster than:that corresponding

. to the 3m/2 film model. It can also be concluded that the

transient sShlutions of  the 37/2 f£ilm, in both stable and

i

-unstable conditions behave more smoothly than those of the

-

[y

. m £ilm model. "A stronger conclusion would then be that thq )
journal must be %table for a case when both film mpdeis pre-.

dict stability and the same is valid for instability since
‘ y

it was previously verified”that the;3w/2 film and 7 film are
essentially the upper and lower bounds for the basic dynamic

. - £ilm extension with a time dependent boundéry, L

Fig. 3.4 presents a case of orbital stability for the,
b ‘3w/2 film model assoéiated with fhe corresponding solution
using the % film. The transient sq;utién of the = film‘in f
Fig. 3.4 decays asymptotically to the equilibrium point

whereas the solution corresponding to the 37/2 film model

<

';, ' reaches a definite limit cycle. These limit cyclés exist in
the vicinity of the.'stability boundary. Therefore the 31/2 '

‘ film extension provides a wider'range of ‘orbital stability . . -

!
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than the 7 film model. Specxflc and conclusive detalls
about the qualitative behaviour' of the journdl bearlng cane

only be deduced with an organlzed 1nvestiqat10n for a

stgbillty angly51s. o T Lo .

LS
I3 ~ -

3.4 Stability Analysis ; R .
Two equilibrium states are of intére§t. They are:
(i) the stationary equilibrium solution and. (ii) the orbital

I

equilibrium solution, which 'is esséntially-a peribdic
solution. Correspondingly, two well'Known stability defin-
itions are: (i) the stability in the sense of Liapu%ov /;

which defines the stability of a stationary équilibrium’

solution and (ii) 'the stability in the sense of Poincaxe

which defines the orbital stability [79]. The fe&lowing. 1
étatements correspond to both of the above stability theories
with thé\gepéral term equilibrium gtate referring to eithr.
a stationary equilibrium solution or an orgital'equiliﬁrium

; e .
solution. : v ‘ :

el

If he trajectorles of the perturbed motion tend to

b

remaln 1h ‘a bounded region’ in the nemghbourhood of the
equillbrxum state, the eqnmlibrlum state is said to be
stable. If- the trajectories approach the equillbrium state

1 2

asymptotlcally, the &quilibrium ,state is asymptotlcally

'Jstable; If the perturbed motion does not behave.ln accord-

ance to the abeve two cases, the eguilibrium etate is then
{

unstable. Stabllity in the large 1mplles stability under )

‘any,arbitrarly }arge'perturbation. In the present analysis,

adale et e 2T

o E



R o

~ . ]

it will be sufficient to defghe a case of Elosed jourﬁal

~orbit as an drbital stability Qase without involving'furgher

details on orbital stabiliﬁy. N

v

The stability analysis branches to linear and non-

linear approaches in the following sections. |

v

T e it L,

3.4.1 stability Investigation“Using a Linear Analysis

.

Stability using a ligear aﬁproac? is a process of
examining the roots of ‘the characteristic equation of the
dynamical system around an equilibrium point. Sucﬁ an
appro;ch is limited to cases of i;}initesimal perturbations

° - .

which is an assumption that qualifies the linear system it-

self but unfit in extracting detail features such as orbital

stability (79]. However, the linear analysi§;serves at least

as a base for detailed conclusions that only a nonlinear

/

analysis can provide. 1In some special cases the assumption

o“ﬁfinitesimal’perturbatibns is quite tolerable and ‘cop- ‘
sequently the results of the linear methods may be expecteéed
to represent those of the nonlinear system closely which is

the case observed here for.the m film model ‘as may be seen

later in this section. 4

v

Considering the equations of motion of the finite

bearing in the space variables and presented in the compact
fom ~ .

’

-0
') = (2°z),2),..0) (3.3)

4xl . 4x1 "
which is written in detail for both cartesian and polar

4

\
il

4
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G , T P — , s ac e )



Ea

P RPN
e e W
e M

. A

21 ane T dew

.
i

. - 74 -

-~

v

2 . . v ! 3 . -
coordinate systems, in equations (C.1) and (C.2) in Appendix

S* . . N . .
C. ‘Here Z° are deneral nonlinear functions in the phase
. il -

variables z* or z; with j=1,2,3,4. It is assumed that the
journallundergoes a small perturbed motion specified in the

phase space by the variables q from an initial equilibrium

X

position given by the coordinates ;8 which is determined from

) 1 ‘\' N
. .
{0} = {27(2%,.23,..--)}

the system of equation (3.3) with

Kl

Then expanding the nonlinear functions Z* around the
equilibrium point z¥, by the Taylor 'series and retaining
only the first order. terms in the expansion, yields the

homogenous linear system

0 ’ . . PN
@ = ., {a} . (3.4)
with’ '
: - 32 §
a, . = ¥ .
1) s BZ;. E* - 2\* o s
o J A i

The a's are listed in Appendix D. System (3.4) describes
the perturbed motion from an equilibrium position. The

Y
characteristic equation for the above system is determined

as ‘ .
" E "2 = ‘
A* 4 C AT+ CA% +#CA+C =0 : - (3.5)

wherg the coefficients C,, Cz, C, and C,  are given by

S

- I¥ em
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-real parts of the roots Aj(j= 1,2,3,4) of equation (3.5) be

‘negative real parts, to be that all the minor determinants

~.
. : ’
- 75 - "
.
Cl ="§‘ (Ej - ZEk/E)
\(
S R
C, = 55 [S(E;Eg ‘—‘EjEk) + E;_e + E.]
, (3.6)
C‘Ei[EE + E.E. + 2E'E 2E,E!] '
37 Fe "k 173 5 S N "k |
¥ g ) 3
82 ] T Y
! Co =75 IBE) ¥ BB -

and are evaluated at the equilibfidm point ES. The prime

‘
»

on the eccentricity function, namely E', indicates the total

derivative %g since Ei,Ej ... are functions of the eccen-

tricity functions E listed in Table 2.2, but are used

here with the édjustments, s =1 and E; = E, which are needed
in the present linearizatién procédure. The first restriction
is justified by the assumption of 'small pgrturbations while

the second considers a positive squeeze velocity from the

i
‘

two cases given in Table 2.2.

A necessary and sufficient condition for the equilib-

rium point ES to be asymptotically stable is that-.all the oL

-

negative. The Routh-Hurwitz criterion defines the necessary -

and’sufficient condition, for all the roots Aj to have

of the matrix

c, 1 0 0]

I N “C, c, 1]

0 ‘Cy Cs ~ C "

‘ | 0" ] 0\ C..J
. .
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be positive. There are then four such minor determinants

given by
Dl' = C\S1
Dz = C1C2 - Ca

D3 = C3D2 - CL;C!’
D, = ‘CuDg
Using the expression (3.6), and since Ei and Ej are always

positive and Ek is-always negative for all:possible values

of e and L/d and for all film models, referring to Table

2.2, it can be shown that

¢, >0 and ¢, >.0 .

P N R
ot

This means that D, is always positive and the condition
Dy > 0 is implicitly included in the condition D, > 0.

Thérefore only two conditions to be satisfied are

A

. S

D, > 0 ) . . r (3.7
and Dy > 0 . . ' (3.8)

By inspection, it '‘can be stated that condition (3.8) is
Stronger than (3.7). That is, if conditon (3.8) is satisfied
then condition (3.7) is automatically satisfied. Using

equation (3.6) in'condition (3.8) gives,

(3.9)

where




AY

[}

[

1

. Qz:Ejjﬂ-EkE'j .
Q. = E’E, + E.E- + 2E'E, ~ 2E.E'
1 1l

31 - Tkp k ki

Q, = E, - ZEk/e

; J
= E.E! + E, E/ ,
1 1

Q kP

H

and
\

S is the bearing dynamic parameter given by equation

(2.18a). . .

s

For the full filh bearing

Q, =Q, =0 ' y

q A

whereas Qé, Q, and Q, possess a definite value. This gives

@

the indefinite condition ., FA

S >w , for the full film case.. (3.10),

?

Condition (3.10) implies that a full film bearing is unstable
for all values of the governing paramefersﬂ The equality
"limit which can be obtained from thé ineduality (3.9)
describes the stability boundary for the paftial'film models.
The stability boundaries for‘the 3r/2 and 7 f£film models are
plotted in Figs. 3.5 and 3.6 rerectively, for different
values of the L/d ratios. The ordinate wg in these figures
are the dimensionless sgpeed, which is frequently called the

>

critical mass, expressed by ,

ws=l./¢wn‘ = ,mj Y cm/W .
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and it is introduced in relatioh (3.9) through the usexof

«

equation (2,28}, . - N

For both the partial film models, every stability
bodﬂﬂary line for a specific L/d ratio lies entirely between
the two lines of the next longer and next shorter bearlngs, ) é

that is next larger and next smaller L/d curves. This trend ;

is diffexent from some of the results reported by Holmes [43] .

as well as by Badgely and Booker [44]) where curves that

correspond to different L/d ratlos, such as the long bearlng

4
H
b
:
i

¢

and Warner's finite bearing in [44], intersect and crossover.
) [
There is no. physical or mathematical reason, other than the

use of perhaps lnappropriéte mathematical models, for such

o

a trend. The condltlon (3. 9) is built from the eccentr1c1ty
Y

functions Ej,Ej,«.. and thelr derivatives with respect to-the

eccentricity ratio e. As can be seen from the figures for

the eccentricity functioqs in Chapter 2, no iﬁtersection tagés
place betweén ahyiof the different finite bearing curves Qvér
the entire eccentrici7& range. Foﬁ\thrs parridular reason
the ;dterséctions in Fig. 3.5 between different curves take
.place at a single common point where ey = .77 and after which
all curves are reversed. Still, évery one of these curves
lies entirely between the two curves corresponding to thé
next shorter and longer bearings. However the stability
boundary line of the short bearing for small pertgrbation

[44) can be identified as the upper limit for the stability:

curves of the 7 model.
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Numerous transient solutions of the equation of motion

- o

,with'the 31/2 film have indicated the existence of a different

stability region than that shown in Fig. 3.5. A considerable
part of these solutions was fouhd to yield limit cycles. The
observed difference is due to two reasons: (i) the lineari;
zation procedure of the 371/2 film model included the assumption
that é >0 or Es = E,, with reference to Table 2.2, (ii) the
orbital stability cannot be assggsed using iinear models.

0
The assumption e > 0 is not that severe while the point (ii)

.is stronger since the nonlinear stability analysis actually

extends the stability region of the 37/2 film model but with
' i
an orbital stability subregion as will be seeh in the next

section. ) .
. <

3.4.2 sStability Behaviour Usinngonlinear Analysis

Further details 6n the stability and instability
fegions can now be investigated in the neighbourhood of the
stability bound@ry that is already presented. As menﬁioned
earlier, the linear approach for stability analysis is in-
capable of deducing the orbital stability information and
is limited to infinitesimal perturbations. ‘Therefore an
assessment on the stability deﬁails may require examining
the nonlinear system itself and is done by integrating the
equations of motion numerically. For this nonlinear study,

a bearing with a L/d ratio 1 is considered. The rate of

dec&y or growth of the journal loops defines the proximity

of the-investigated system status (eo,ws) from the limiting

B

A st D AL A Lt~ &

o e -




stability border line. The solution process in the vicinity

of the stability boundary may require a considerably large

A\

number of loops to distinguish between a stable orbit, in-~
4

stability or asymptotic stability as the case may be.’

LI ST E WU SR v

In this analysis, the 7 film model is found to be
most susceptible to slight changes in the dimensionless

speed W and to the initial velocity conditions. A relatively :

= erdind e bt e € D S St S

small change in the initial velocities is introdlced to check
the sensitivity of this model. For example, Fig. 3.7 pre-

sents two solutions fer the m film model with the parameters ’ :

.9 =.3, ws==2.4 and different initial conditions. Here a {
0 0 ‘
change in the initial velocities from eq = .2 and w0==.2 to
0 o .

e0==.3 and w0:=.3 changes the state of the system from
asymptotic stability to instability. The effect of the - -
change in dimensioﬁless speed wg on the stability status of

the 7 film model is represented by two solutions in Fig. 3.8.
As.shown in‘the figure, a reduction in the W from a value i
2.5 to 2.4, which is quite small, changes the state of . %
stability from an orbital stability state to an.asymptotically

stable condition.

The 3n/2 £film model has smoothe} characteristics than
the m film model. For the 3n/2 film model, an increase in »
the dimensionless speed W changes the stability state from N
asymptotic stability to orbital stability, which starts with
a Qery small orbit size and smoothly grows bigger with

increasing W As Wy is further increased, the size of the

-l orbit grows and takes a more circular shape. The diameter
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of the circular orbit, in turn, approéches the diameter of the
clearance circle asymptotically as wy, approaches iés‘critiéél
value at the instabiiity limit line. This process is
symbolized by two solutions in Fig. 3.9. The 3ﬂ/é film model
is also less sensitive to igitial perturbétions. The's prop-‘
erty can be demonstrated best in a region close to the ‘
stability boundary where the system is supposed to be mést

3

sensitive to the magnitude of.the applied periurbations.

A case of orbital stability.is presented in Fig. 3.10.
: 0

When the initial velocities are changed from e, = .1 and

0 0 [ -

Yg=.1 to e;=.5 and y,=.5, which is relatively a ‘large

difference, the final limit cycle 1is unaffected and only

the number of intermediate loops is decreased.

The adjustments arising from the nonlinear analysis
for the stability boundaries of the w\;nd 3n/2 fiim models
are presented in Figs. 3.11 andx3.12. The cases indicated
as stability in the large refer to cases of asymptotic
stability that remain unchanged despite the large initial
per?urbétion applied whereas tﬁbse indicated as‘stability in
the small refer to cases that can be destabilized Sy a
relétively largg initial pulse.' The magnitude of this dis-.
stébi}izing pulse depends on the p;oximity of the system to
the stability boundary. It turns out that a precise

determination of the stability in the large would require

several parallel curves each of which would define the mag-
- 3 M

s

nitude of the initial perturbation beyond whigh the s%stem

is unstable. This is found to be most tedious’ to achieve

- .
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since possible sets of combinations of different magnitudes

for the difféggnt initial conditions ‘are numerous. The

orbital stability subregion of the 1 film model is very

narrow and is also depeqdént on £he magnitude of the initial
conditions. 'Becagse of this,gthe points in'thé plot for

orbital stabilitylare not connected in Fig. 3.11. On the

. Other haﬁd, for the 37/2 film model a relative}y ldarge sub;\
region of orbital stability exists as seen in Fig. 3.12.
ﬁo&ever fo; small initial disturbances, the asymptotic

stability region of the 7 f£ilm bearing is larger than that |

. of the 37/2 film model. ' ‘ . A

-

As mentioned earlier, the state of inétability of
the 371/2 film model is reached rather smoothly ‘from large

orbits as W approaches its critical value. The instability

[N

‘ Boundary in Fig. 3.12 corresponds to a limit cycle with a
diameter greater than 95% of.the clearance circle diameter
where the search for the instability boundary is stopped
at that particular limit value. The orbital stability .
urégion shown ;n Fig. 3.12 is well defined and stands well

for relatively large range of values of the initial distur-

:
1

bances. . . .

3.5 New Explanation on the Full Film Model Instability )

‘The contradiction in the beﬁéviour of the full film

o . . '
bearing between the limit cycle that is often observed .

experimentally [40] with the correéponding fheoretical re-

Ty

rults of the present as well as previous [22,40] studies,

can’ be explained by a logiqai argument in view of a comparison:
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between the orbital stability subregions of both the partial

film models, namely the w and 3n/2 £ilm models presented in

Figs. 3.11 and 3.12. If the nonlinear analysis based ‘
stability plots in Figs. 3.11 and 3.12 are superimposed

over each/aéher, it will be evident'that not only is the . i
orbital stability subregion of the Qw/z film model larger

than that Qf the film model but also the.orbital stability

subregion of the.37m/2 film‘model extends above and below

that of the 7 f£film model.

By an inspection of Figs. 2.5 and 2.10 in Chapter 2,
it can be shown that the w7 film model has positive and ’
negative pressure profiles, same as thosé of the basic

- dynamic film profiies, but the difference is oni& in 4he

pressure magnitude and since it is shown in Chapter 2 that ' >

the 3§88 and 7 film models are upper and lower bounds for 4 ‘

dynamic -film model. Then .the basic dynamical film

#an be expected to have a slightly larger orbital

stability region than that of the m film. - Therefore, in the 4

presence of an effective pressure supply and/or in the case

* of lightly loaded bearing, the positive_pressﬁre profile may

be posted such that its extent will be, more or less, similar

IS

to that of the 3m/2 film model shown in Fig. 2.6 in Chapter 2.

Also the larger the extension of the positive pressure profile,

. ]
the wider the orbital stability subregion will be and

consequently the higher the possibility of occurrence of largée
®
circular limit cycles such as those shown in Fig. 3.9. It
P : v .
may be recognized that the circumstances of effective supply
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pressure and light loading, are typical to those cases for

which a full film exists. In the event of insﬁability,‘the‘

journal climbs on an orbit with a large eccentricity ratio

which means a higher hydrodynamic pressure magnitude, both

., positive and negative in sense. Then, to maintain a full

film case, it requires a posting of the-pressure supply
which consequently forms a positive pressure profile similar
to that of the 3m7/2 film model resulting in a case of

orbital stability that dominates the ﬁournal-behaviour. 3

o

k)

3.6 Alternative Methods ; : o |

-

For the sake of completion of the present stability
ussions using nonlinear analysis, applicable for bearings
with different L/d ratios without extensive integration.of
the equation:of motion, the Liapunov's method which is often
regaraed as the general method for stability- analysis, is
briefly presented. The Liapunov's direct method is reéuced
to one @f finding an "appropriate” Liépunoé,function Lp'
whigh is a scalar function in the space variables. If Lp
is positive def%ﬁite and .if the total time deriyative ip is
negative definite at the origin or at the équilibrium point
investigated,'thén the 'system is asymptétically stable. ’
‘ , B For the present problem, a Liapunov function was
ponstructed in the form of a total energy expressioh which
N ' ) ‘ ensures its positive definiteness but the total derivative
ip was found to provide %nappropri{te condition for the

analysis since the bearing dynamic parameter S can be

factbred out from ﬁp, which means that the condition for -
. o N




3
~ t \ v,‘l )

stability is only dependent on the applied perturbations.
‘ Another approach was also followed using the Lienard
\\ transformation [80,81] which starts by reformulating the

\ equations of motion using the Lienard's variables u,,v,

\ as : . y ' ° B 4 ..
. , . ‘ L M
. u, = x + f Cyx(n,y)dn + f Cyy (%,8)AE = x + Iy + Iyy
X - 0 0
(. x Yy P
v, = ff‘?"f Cyx(n-y)dn + f Cyy (%,8)dE = y + Iyy + Iyy T
1 I. o 0
’ | \‘ . C(3.11)
) . .. r - . - - - 1 I
w, &£ [KXX(X + Xo) + KXY (y + YO) wx], fx(x’y)

<
1

. " i I
. w0 =" [ (x + X4 ).+ KYY Fy + YO) —WY] = - fy(x,y) - '

v
& . . +

(X whe:e\Kxxc d}x, ... are the nonlinear stiffnesses and

©

damping given by equation (B.l) ip Appendix B .and x==X-X0f

y=Y-¥,.
v ' .
The Lierard function, which is also a Liapunov
. rd
function, is given for the presen?,problem, by B .

‘\\\ x Y
Lp = %\ (u:+v:') + ffx(n,y)dn + f _fy(x,E)dg (3.12)
0 0

A

Then the totéi\time derivative of (3.12) using equation (3.11)

\
is . ‘
Y

\
Ly 3.'(IXX xy) £ (x.y) (1

t

Ty ¥ Iyy) fyleiy) + 11+ T,

(3.13)

!

where T, and T, arg




e

[ .

[

To complete the check for asymptotic sﬁability of the 7/
equilibrium poidtl(XO,YO), the signs of Lé and Lp have to be
determined. But this ;ghuires,an analytical evaluation of

T

the integrals in equations.(3.12) and (3.13) which was found

n

too complicated to achieve.

3.7 Summary ) \\\\

A comparison between the results developed for the
finite bearing with the availabe éxperimental results for

the full film case shows a good agreement that notlonly

supports‘the suggested full film model but mainly establishes

the accuracy of all the eccentricity functions which are
derived in‘Chapter,Z. Modified stability boundaries, based
on both linear.and .nonlinear analysis, are constructed for an

accurate assessment of the \stability behaviour of a rigid
[} . .

- symmetric rotor: The 3m/2 film,model is found to be dis-

tinguished by a considerably largé orbital stability region

compared to the 7 film bearing model, This provides a logical,
explanation for the limit cycle often ohsgerved experiméntally“‘

'in the "behaviour of the full film bearing.

-

™~




CHAPTER ‘4

SOLUTION OF THE LINEAR EQUATION OF MOTION

OF THE FINITE BEARING THROUGH MODAL ANALYSIS

AND ERROR BOUNDS

4.1 General y

In cases where the assumptions of rotor rigidity-and
linearity'of Hydrodynamic forces are justifiable, a great
simplification in the dynamic analysis of the rotor-bearing
system can be accomplished. With such simplification,
general results can be obtained and the sysﬁém response to
complicated excitation such as stochastic forces can be

calculated easily and efficiently.

.Solutions that are.obtained using linear bearing

equations were found to be ip4"surprisingly" good agreement'
(53] with the corresponding sclutions of the nonlinear system
as long as the journal éccenfricity ?atio dqes'notlexceed a
value of .75. Different validity bounds for the linear

hydrodynamic stiffness and damping, that are based on eccen-

-

‘tricity ratio only can be found frequently in the literature.

Neither an all inclusive parameter that defines what can be Vi

called the range of valid linear approximation nor charts for
the specific determination of the error involved in utilizing

"the linear system,, are available. Such an objective is
. '

attempted in this chapter.

|

' Besides providing an error measure for the deviation
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/
6f the linearized bearing system from the nonlinear one, a

solution by modal analysis for the linearized equation of a

rigid symmetric rotor is obtained. Through a solution by

modal analysis, many basic and important dynamic characteristics

\
of the journal bearing system such as damped natural frequen-

cies, modal logarithmic decrement and the complex frequency
response are calculated and presented particularly the com-
plex frequency response is a basic gquantity necessary for the
e%aluation of the stochastic response of the system using the

spectral density approach.

-

4.2 Solution of the Linearized.Bearing System

by Modal Analysis

The linearized equations of motion of the finite
journal bearing are developed and presented in Appendix E.

K, ., ane for both partial film

Stiffness coefficients kxx" xy

models, namely the 37/2 and the w7 films, are the same whereas

the damping coefficients Cxx' C ‘... are different. All

xy’
Aﬂﬁhg stiffness and damping coefficients are presented in Fig.
4.1 for a bearing with a L/d.=1. Heré, the 7 film model is
used, along with the corresponding coefficients that are
‘developed,bQ\impedance.method [5] where the finite bearing
was trehted\és a weighted sﬁm of the short and long bearings.

For some of the stiffness and damping coefficients the

differences between the present finite bearing and those of

[5] are considerable over most of the range of the eccentricity

ratio e .
Q

R

e




L1
f&ﬂ%«uﬁ.ﬁxzv«ﬁlﬂ.@:ﬁi? G ae s den e e e ¥ B L U,

"suoryenby psztaesurt sy3z O S3USTOTIIO0
! ! I o1 J |{/Yy3
103 S3ITNSOY SNOTA®BIG IY] pue JU8SIA BY3 UsIM3Sg uostaedwod T°py “b1g

0ILVY ALIDIYINADIT DJIIVLS
%9 OILvd ALTOIBINIODE DTLVLS B : N

6 8 r 9 5 v £ z r 6 8 4 9° g P £

T’ [
SRR RN AR R AR AN NN A NS R AR R R R RN R RN ] L | | ¥ T ~ ﬁa _\~ T 4ﬂ_:‘_:‘ 1
- I N - ’
;a ' -
. \ N \ - ,
{ \ . 1 {S] '1e 38 ¥PYTYD ===
/r b \ .
/ ™ , Zo- ‘ , .,_ ,
. —
. B S e .\V\KN\.\! o ] - /A " syBATRuy JudEgaaqd
\\

1

b

-

d ~[ AS ——m = = \ . )
\\ -X\/\ ,\/\\4 - " ] \ -
oA S st | 5 . |
=<l || : ] }
. \A // E o nv_u% | xxx/ /r N ~
i [l\ / // 3 m s\ N LY
— . SR . A S = o 7 \ - :
; Y 2 ‘ N
r~ = N 4 - |
i o I\ - ||“_m m n/?/ \ ;v\‘\_\\‘ B A
' - \ E - [/ < - e ] L = m _,
- e xxm RS s - 3 -
v A//;V m ol s bl - < = 3 m *
| ,t\l\q. -J;x,\//, = 5 AT b’ APZ L R Bt Batr T o _
7 N - - 4 . ._,
ut\»\'ﬁ A . P ISR D /»a — L xr\a = o “
— T S R ] ol \ npengs SURIRIPERY Ry E m -
= “r~a 5 - »,
\ -4 l\n AR / g |
[/ - | | A -\ N ™
. , - /¥ R\N :
3 /7 £ R\N
: yav/d : Ly
—— Lf —_ _——_— ]
4 g0 f oL -
X ~ T \ =
E £ |
AlM B 3 - _
- i
N !
i
. |
- . e —




ing in the new coordinates

" equilibrium load W,- The stiffness and damping matrices

- 98 -

. "It should be noted that the curves piottéd iA Fig. 4.1
are ex;lusive to the particular 'load and the.rotational speed
direczion as specified at the top of the figure. If a
solution is carried oQt with a given load angle 82 ana }heﬂ
repeated with different load gngle 322, keeping the samF
bearing parameters and running speed direcpion, the new
solution will be identical to the first except that it will
be oriented with an angle (812’-821) from the first solution.
The stiffness and damping coefficients will be different in
both cases since they depend on the coordinates of the diff-

erent equilibrium points. This is demonstrated by the'two

solutions for an unbalance response and presented ¥n Fig. 4.2.

Shifting the axes to the equilibrium point (XO,YO),

the linearized equation of motion of the finite journal bear-

‘e

!

X = Xe= Xo andy y =Y - Yo

can be written in dimengsionless form as

Xe

1 0 X

Cxx Cxy kx¥ kxy (x Wy (T
+ i A+ ‘ : .
0 1 ? c c v) Lx k vyl fw_ (1)
yx  Syy- yx  “yy Y
or (1] (g 1+ fe] {q,} + k) {q ) = (w} [CI VI

where the excitation components w, (1) and,wy(r) are the re-~

mainder of -the applied load after excluding the static

;
E
7]
3
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[ks] ahd [c,] are nonsymmetric. Sysfémiof equations (4.1)

can be solved by modal analysis and for this the equations

are written in the first order form as

Py

. J ,
{q}° = (o] {4} + {w} - (4.2)
-4x1 Y 4x4 ,
where - ‘ d ,
, % |4 A TL[-legdl -ik] T
' g} =9 _ r {wl=q_ and (D ] = .
o lag {0 ¥ (1] (ol

The roots of the characteristic equation
b

det {[D_] - [I] =0 - i
¥ 4xq 4x4 A :
. SN - . cT v . ;»\
are generally complex. They then exist as’ the.complex con- 1
jugate pairs - T . ] ¢
“Aj = oy + i Bj e j o=1,2 : (4.3) ;
which are dimensionless in the present casé. Hére aj is the
. modal damping exponent‘and Bj is the daméed natural frequency °© ~ !
of the jth mode. Every pair of roots is called eigenvalue )
A, [54]. , Lo :
j {54] - L . .
. A duantity of significant practical iméorﬁance is the )
logarithmic decrement defined by -
L ~27a, . ‘. ‘ \( .
%y = _B;l oo AR
corresponding to the jth mode of the dxnaﬁibﬁsy;tem.

B ' é‘l"“ r
The damped natural freguencies and logarithmic decreménts‘

)

. . -
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" of the dynamic system (4.1) are calculated in a scanning

se&rch over mps& of the stable region and around the stability

.boundary line, with-reference to stability/Eigures in’ Chapter

3, .represented by the bounds .2 < e <48 and .5 < wy € 2.5

for L/d=1." The results obtained for these properties for
different e  and Qs values are presented in Tables 4.1 through
4.4, It if found that over almost all the stable ragion of
the journal, in the w, - e plane, only one elgenvalue exists as

a complex con]ugate palr whereas the other spllts into two

‘reél unequal roots. The real roots represent a nonoscillating
’

mode and in such a case only one damped natural f%gquency and

[
AN -

consequently the corresponding logarithmic"decréhent are

listed in Tables.4.l to 4.4. Only in the vicinity of the
RN N v ' ’

stability boundary both modes are oscillafing and if one, or
4 N

N 3
both, logarithmic.decrement is negative then it refers to a’

case of instablity of the system,

The magnltudes of the logarithmic decrements 1nd1cate
the proximity of the journal status to the stablllty boundary
A comblnatlon of the'lnformatlon in Table 4.2 and Fig. 3.5 in
Chapter .3, or that in Table 4.4 and Fig. 3.6, gives comé?ehen-
sxve details on the damplng ablllty of the finite bearing and

how this damping gradually decreases or increases in the

.€
<

"stable region. Therefore the logarithmic decrements obtained

completes the’ 11near stablllty analy51s presented in Chapter )

3 whlch only deflnes the journal condition of being stable,.

or unstable. The damped natural frequencies specify the

K

-

N

—

L

>
e et i o AT B+ 38 e gt By it 7
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NONDIMENSIONAL  SFEED' wg ,
e -
‘ '5! ]'5 1 2 2.5
.2 +422 424 .424 | ®m20 (408, 357
03 0399 0404 0406 0400 v384 ? ‘268
'4 ) 0386 0394 0398 '390 0369 ’ ‘115
] +380 ' 393 1401 + 390 353
vd » 382 +40Q3 415 397 w352
o7 1 394 +A431 e 444 411 . 385
+8 .429 499 495 432 + 373
Table 4.1 Damped Natural Frequencies of the Journal
‘ Bearing with 31/2 Film Model and L/d = 1.
W2 1,062 ,893 1606 234, , 35,400 1 -.175
1.3 1.518 1,370 978 »488 35.700 » -,008
+ 4 2,192 1.857 1,347 v 742 / 75,000 » .187
3 2.800 2.348 1.684 956 ¢ 3463
1+6 3,460 2.848 1.950 1.100 + 498
.7 4.200 | .3.323 2,060 1.134 + 570
+8 5.050 3,362 1.8%0 1.040 977
Table 4.2 Logarithmic Decrement of the Journal Bearing
‘ with 371/2 Film Model and L/a = 1.
02 -500 0510 0519' 0516 0‘396 r 0324
3 + 502 + 525 + 545 0532 +490 » ,338
.4 505 v 981 » 582 544 -+486 » L399
¢5 0513 0600 0624 -550 b4 0120 v480 1 4 ! 0392
+é ¢330 + 690 «538 540 ’0240 . WA73 + 440
+7 + 971 - +810 677 550 $ 257 +462 v L3146
08 0693 0900, 0683 0540 y 0510 0\548 v 0445
Table 4.3 Damped Natural Frequencies of the Journal .
Bearing-with 7 Film Model and L/d = 1.
2 1,783 1.520 |-1.07% + 500 32.300 » -,0%0
3 2.708 2,250 [ 1.478 1614 21,540 » -,100
+ 4 3.4674 2,920 1.4692 638 ¢ ;Q.?OO y =,070
'S 4,700 | 3,420 | 1.474 2618 ¢ 9,740 12,800 » ~.010
b 9.830 2,518 1.505 v 602 -4 28,400 10.300 » L0990
7 7.080 | 2.970 1,287 600 » 19,300 8,770 » L3227
» 3 8,230 2,220 1.080 avélq y 14.570 7,400 » 370
. Table 4.4 Logarithmic Decrement of thé Journal Bearing
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transient oscillaﬁing frequency of the journal and they are
a¥ound a value of .5 in the vicinity of qge stability

bggndary,'particularly for the m film model. This is in
contrast with the well known whirling speed ratio %==@/w.

J
of the oil whip [39]. However no assured conclusion about’
<

orbital stability can be deduced from a linear analysis.

1

The complex frequency response functiops'can easily
be evaluate%gusing modal analysis and they are of parﬁicular
interest for two reasons: (if tHey represent the éystem,tfans-
fer function and therefore contain all the syétem properties-
and indicate the frequencies at which the dynamical system is
most sensitive and (ii) they are basic elements in the
evaluation of the response of the system (4.1) particularly
under random excitation which will be presented later in this
thesis for .a grinding machipg application. For the present“
two-degrees-of~-freedom sysfém, the frequency response functions ,
are evaluated in the principal coordina£es and then transformed
back to the'goordinates of the phase space. Then for every
freéuency céﬁpoﬁent of the input forée, the input—output re-

!

lation is

’

x(ug)) 0 [E e H ()] (W, (e

xx' i Xy x i
. D . (4.3)
y(wi) ny(wi) Hyy(wi) wy(wi)
' v

Here wy is a dimensionless frequency given by mi==w/mj and

x(wi), w(mi), ... are the standard Fourier transform of the

quantities x(7), w(r), ... .

e
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%

1vThe.behaviour of the com%}exlfrequency résponse‘Hxx(wi),
Qith respect to changes in the steady state eccentricity ratio
e, the dimfnsionless speed ws\and the beéring L/d ratio, is
demonstrated by three samples in Figg. 4,3, 4.4 ana g.s as

P ' relations between IHxx(mi)lz and w;. It may be noted that
. the complex frequency response Hxx(wi) is also dimensionless.’

4 . As can be seen from Figs. 4.3 Fhrough 4.5, the system's

3 . ultimate sensitivity indicated by its resonance tendancy is
not at wi:=1, which'is the case for synchronous excitation
such as unbalance, but rather around wi==.5 particularly in

these cases close to instability. For example, the resonant

case in Fig. 4.4 with w_=2.5 occurs at w; = .48 which in this \
N c .

iéarticular resonant case(defines the onset speed of an oil

whip state. On the other hand tpg systeﬁ transfer fﬁnctioé

may be alﬁost flat for a journal statug that is located deep

in the stable region, such as the case in Fig.’4.4 with . ‘

ms=§.5, which defines that the system response is almost ‘

independent of the frequency of the input force.

An important purpose of the applicatidén of modglAan-
alysis.oh‘the bearing system (4.1) %ﬂ*the calculationjgf the
steady state response to unbalange excitation for use in
évaluating the acceptability region'of the bearing linear

béyséém (4.1) for such studies. ' Besides the agsprgcy available .
.- s in,defining the journal orbit, the modal analyéis provides a
- saving in‘computer‘time, as compared to numérical integ;ation,
Ifor a steady state solution in the order of 50 tiﬁes. The

“

unbalance excitation may be represented as,
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wx(zg~ : cosT o < ' .
r= UI )
.ono ' . Lo
w (r)’ ‘ sint
\y :
where-Un'is the dimensionless unbalance amplitwede. ;

The steady state responsé is then of the form '

x = c + b sin
X a, Cost x Sint

= a cosT + b, sint
Y =%y y

.

The parametric equations (4.5) may be rewritten in the

'cartesian system of coordinates as

]

g + i - 2%XY gin (e, -€1) = cos? (g2 -€;) (4.6)
p2 pl DIDZ' K . ,

.

where P,

i
V']

+
o

©
»
]

m
!
"
V]
=)

Equation (4.6)' is essentially the equation of an ellipse
with oblique axes. If the coordinates (x,y) are rotated to
-a new position (x,,y,) to coincide with the directions of the

major and minor axes of the ellipse, eqpation (3.6) will be

of the form o _ //
R ",1 . . ,
b, . .
az? 4,5z
1 N
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‘used in a comparative analysis with the nonlinear system to
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&

Here 24, and 2d; are the major anduminor axes of the"ellipsé_

given by the relations ' .. - %
1 ' ) ; 2 p !
—_— = —_ i . -2 2 -
dlz n, 5 sin®y, + 5 cos®y, = n,|,
b
2 S ‘19, 2 Py i 2 ©
dzz n, 3: cos Ye + 5, sin Yz + nz ’ \'
- (4.7)
with X = coszie -€1)
; T, 1P 2 1 .
E. sin(2y.) si;(ez ~-g1) . :
N2 e "

Ye is the orientation angle of. the new coordinates. system

»

(x;,y1) from the original system (x,y) and is expressed as

t

12 p,0 ‘
vy = L ian™? [-———L—i sin(sz-el)] - (4.7a)
e 2. 2 2

Py” =P,

The inclination angle Ye is invariant under any change
? . N

of the unbalance load U, for a specified system status

(ws,eo)‘and'L/d ratio. For L/d= i the inclination, angle is

Solution (4.5) and the orbit parameters d;, d, and Yo can be ’
determine the acceptable region of the steady state response - s
df the linear system under unbalance excitation. But first,

a discussion of a simple parameter for measurihg the error

that is associated with the linear system is carried out'in

the following section. .
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4.3 Simple Measures of Error Due to .

Linearization of the System

Theﬁsimple form of stating the nonlinear dampiné and
stiffness functions in the cartesian coordinates (3.1) may be
used for developing a comparison between the rééults for the
actual nonlinear and approximaped linearized bearing systems.

Nonlinear damping and stiffness.C ... and Rygpr o+ in (B-1)

XX’ by
Appendix B are functions of the displacements X and ¥ and the

bearing dynamic parameter S which is separable such that

'

*
Cyg (X,T) = Cpp(X,Y,8)/5

L

It is easy to define the residual nonlinearity as
/'J

* * *
ACXX = cXX e;é cxx o Whgre e, is an equilibrium point.
o ,
\

% in the neighbour-

hood of an equilibrium point 8o = -3 with L/d=1 in a n film

' *
The percentage error of the deviation ACX

is presented in Fig. 4.7 in a contour form. Similar graphs‘

may be constructed for, all Coyr vever and K +.-., and

XX/
different equilibrium points. Then a journal orbit ‘that has
beenr calculated, say the steady state response, is placed on
guch graphs for error'estimation of theldamping and stiffness
coefficients usea. However, this approach may be misleading .

in terms of the behaviour of the overall dynamic system and

will also be indepehdent of the system stability status which |

3 -

is given by the dimensionless speed wg besides the eccentricity

' ratio e. A comparison between the nonlinear and the

i




Fig. 4.7 Contour Lines of Percentage Deviation
o Erxror for Cygy.
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‘corresponding linear be;ring equations, that is based on
steady state response to unbalance excitation, shows much
closer agreement than'the larger percentage error which is
associated with the individual damping and stiffness compon-

ents as can be seen in Fig. 4.7.

4.4 - Evaluation of the Error Bounds for the

L]

Linearized System Using Numerical Integration

and Modal Analysis

The nonlinear equation of motion (3.1) is integrated
numerically for a wide range of parameters and undertdifferent
values of the unbalance ampliﬁude. The solution is continued
‘'until the steady state is attained. ‘An examplé of the

- solution obtained is presented in Fig. 4.8 for L/d=1, ms==.5
and an unbalance amplitude Un==.25Wn. Only the steady state
solution islpresented in Fig. 4.8. The major and minor axes
of the elliptical orbit of the corresponding linear sfstem
are also plotted in Fig. 4.8. Using similar data as those
for Fig. 4.8, th? error arising from the linearized approach
can be measured graphically. The major axes of the distorted
eliipses of the nonlinear solutions are assumed to be the h

distances between peaks. As can be noticed from the sample
solutions in Fig. 4.8,/with the minor axis as a base for
comparison, a closer matching betwegn the linear and nonlinear
solutions may be héticed. Consequently, if.the major axis is

used as a base} a conservative 'estimate will result.

The major Skis, which is also dimensiénlessa is plotted

s
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. Fig. 4.8 Sﬁeady Staté Response to Unbalance Excitation

‘of Both the Nonlinear and the Linearized

Beaping‘Eguations.
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.~ against the eccentricity ratic e in Fig. 4.9 for wg = .5,1,1.5

) and 2 aﬁé,er:tﬁe ﬁnbalgncé'ampiitudeS:Un==.25Wn,f5Wn and |
.75Wn'wﬁerexwﬁ:i§~ghg's;eédyiééate equilibrium load of the | o .
respecfive éqéeqtricity ratio,” for a bearing with L/d=1. | - oo

'The percentage error valﬁes-a&g‘written along -the éurveé at
different po;nts\and the"letter'"C"wdeﬁiﬁes "comp}icgted path” .
which is the case when the response of ﬁﬁe nonlinear system
becomes completely d;storted;from the eliiptical shape where,

_ in mgst of these caseg, a déuble.100p is formed. The cases of

'complicated‘path are observed close to the stability boundary, -

that-is for large values of w., as can also be seen from : ' i

Fig. 4.9. Thg‘chért'éan be used by first calculating the
dimensionlesérspeéd of the rotor-bearing system, which may be o

rigid or flexible, as well as the eccentricity ratio, say,

i

for example, ws==l.5 and eo:=.5. Now, (i) if an error bound

is specified to be, say 5%, then the major axis of the orbit

must not be allowed to exceed 30% of the radial clearance, -

° )

(ii) if the unbalance response is already obtained, say the

.

major axis of the orbit at the bearing center line is 60% of .

the radial clearance, then the error involved in using the

linear stiffness and damping of the bearing is 13%.

4.5 Conclusion . L : .

o

A solution by modal -analysis is .carried out for the

"linear equation of motion of the finite bearing, which is - .

¢ . ,
essentially a nonsymmetric dynamical system. The solution. ' \

.obtained is-most adequate for calculating the stochastio

[
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CHAPTER 5

FINITE ELEMENT REPRESENTATION OF ‘A ROTOR-BEARING

SYSTEM AND SOLUTION BY MODAL ANALYSIS °

. . . . s /

5.1 Objectives

. The flex1ble-rotor-bear1ng equations are solved by
" the finite element method with the gyroscopic moments; the
shear deformation, the rotary inertia, the -internal damping

£y
and the bearing: support flexlblllty all taken into account.
Prev;ous applications of the finite element method on the °
v .
. rotor-bearing problem inclpded the shear deformation by

°

introducing 4 additional degress-of-freedom per eleément to

S

account for the shear angles and thus 1ncrea51ng the size of
| the final dynamical system by SJ? (62,63]. .The present
“approach utilizes a simple Timoshenko element'which was
_shown by Thomas et al [59],'as applied on axsimple beam,a
- leading to practically negligible error in the calculated
nataral frequencies in comparisonyto the-more complicated
-element. Tﬁis therefore .avoids the unnecessary increase in
the size of the dynamical system which may require the use

of a reduction technique ([63] resultihg in'oohsiderable

. disadvantages and limitations as mentioned in Chapter 1.

Prev10us approaches [62, 64 65] utlllzed a uanled
spatial rotatlonal dlrectxon whlch 1ntroduces unnecessarf
complexltles in the procedure for developlng the element
equations. Instead, in the! present analysxs,_an analogous

treatment of both the planes of motion is used. The

e
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‘nonconservatlve moments. due to the hysteretlc damplng are

also approprlately 1ntroduced 1nto the element equatlons.

Since modal analysis of a general dynamical system with

monsymmetric characteristics are not well known or clearly

stated for nonstandard applications, a standard proof as =8

well as the necessary relations for the modal analysis are
briefly indicated for direct use in calculating the system

response under any deterministic excitation.
, o '
ey ) The final part: of this section is devoted to a check

on the pfbcedure through a comparison with previous theoret-« ‘
Lcal and experimental results as well as a detailed compar- .
ison with the dlfferent effects og!th two types of support ¢

’

'flex1b111ty is presented. The various igterpretations of -

N e A SR A o,

the results are discussed.and later used(in an example to’

¢
bring out their application. %,

'

5.2 . The Equation of Motion of a Rotating Beam -

o s W KR 2 20

.

The equation of motion for a rotating Timoshepko beam,
with shear deformation included, in two perpendicular~planes
of motlon XZ and Yz and as described by Flg. 5. l can be

) ertten as follows [53]

\ 3 IX ' . 3%
o i . . 'ﬁ [pAGs(a—E-a)] +px(zlt) =mz at2

Y ‘ 3ty
37 (P3G, (37 = B) 1+ By (2,8) =m, &3

t2
e \ . \, ' Y ) a . ax { . 2 . ' 7\’/:—*‘.
T 3 2%y + 4 _ 32 C
3% (EX az) + 'DAGS (ﬁ a) = JT at2 +wd

J ’ 3 ‘ ) son Y | 1 32 Ja .
S (BT $8173 eac_ (3% - 8) =3 dB-ug 2,

P
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Fig. 5.1 A Beam Segment and the Analogous
Motion Planes.

‘sa-("



'~_ 119 -

Here the relations

' \'4
L 9X . _ X ,°
@ = = + ¢sx (with thev shear angle ¢sx = 3@) (5.2)
“ ! - \
- 3o .
and , MY = EI EYA . (5.32\

LI -y

in the XZ plane and the correspg§ging relations in the YZ
plane are eﬁployéd. Further P, andrpy are the distributed
external fbrces with respect to the XZ and Yﬁ planes respec-
tivelY}\pviéxthé shear form factor (=.75 for circular beam

section [551], mz,JT and JZ‘are the mass and lateral and
L]

o

axial mass moments of inertia, all specified per unit length
of the. beam; v, and My are the shear and moment in the XZ

plane.

The kingtic and potential energies T and P for the

beam segment with a length & are

3

1}
N

=]

N
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0
* w d, (s N gs)i az (5.4a)
P = % /ﬂ‘{EI [(_8_%)2 + (a‘i‘)z] + pAG [(%)z}-a)z .
. N
o v (8- s)z} az " (5. 4b)

As can be seen from Fig. 5.1, the moments and the

rotational displacements are in different direction in both

XZ ‘and Y2 planes. However, the rotations a and B as well as

s

5¥t
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the shear angles in both planes. retain a similarity such

n

‘ that.the relation (5.3) is similar for both plahes. This’

o

. convention will be refe;rea to as-thé aﬁalogous pianés |
treatment. Another @reaﬁﬁent'tﬁat will be discussed in thé'
dévelopment of this‘investigation is one that considers a
consistent rotational direc£ioﬁ in both planes of motion
.{62,64,65]'which will be referred to as the ﬁnified sign
treatmerit. The effect of the unified sign treatment on the

equations of motion (5.1) is represented by a sign change

day .
Z 3t"’

and consequenfly affecting the sign of the gyroscopic term

for the gyroscopic moment terms, (mr J, %%) and’(m; J
in the kinetic energy expression. (5.4a). This can be easily
distinguished by examining the relation

‘ '

where Tg is the gyroscopic momdnt, ﬁp is the precessional

speed and ﬁr is the spinning speed.

5.3 The Finite .Element Solution

The solution by tHe finite'element tethnique of the
partial differential equatioﬂs (5.1) is carried out over the
¢ .
space dimension 2 rendering a set of ordinary differengzal

,équatiohs,‘with respect to time only. Thgn the output of
the finite element.sblution is a dynamical system independent
of the rotor-bearing configuration. This represents an

’ ¢

advantage of the finite element method over the transfer

matrix methods. ' ;)

“

- . B ’ a
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Tﬁe solution of equations (5.1) is achieved through
the process of dividing the beam inté a number of elements
which are assumed to have uniform érOperties in the context
of thé“present‘analysis. An element of the beam is described
‘in Fig. 5.2 in the XZ plane. The displacement X(Z,t) is
assumed to be exp;essed in terms of the nodal variabies

X,, ,, ¥, and a,, Or qi, i=1,2,3,4, using the weighted sum

relationship
N ) 4 e f
. X(zZ,t) = _Zi N, (2) g (t) (5.5)
N . l= '

whefe'Ni(Z) are called the shape functions which must ;;:;ffy
the’baundary conditions of the element and otherwise

arbitrary.

‘The natural aﬁproach for deducing the shape functions
is thrdugh“the use of the ‘static equilibrium condition Qf
the beam. The static quilibrium equations are derived from
equations {5.1) Ey letting all éhe'time derivative; and the
applied load be zero. Then usin&sequations (5.2) and ﬂ5w3),

the static equilibrium equations are

L 4

av
X =0 "
dz \ ‘
.- . ! ' , ‘ (5_06)
aM, ‘ . )
3z = Vx
, - Further, u’si‘n? equation (5.2) in (5.3) gives
azx é ' -
2‘ _SX _ o' : , (5.7)
e . - 4z & EX . : . '
. e ’ :
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Fig. 5.2

Primary Arrangements of the Element
Nodal Coordinates.
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' The displacement Y(Z,t) in the YZ plane can be derived by an

exact "analogous”
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Integratlng equat:.ons (5 6) aidd_(5.7) gives the expression
for static deflection as ' ‘ ‘ ‘ 7o

1oL B, 2

X = g5 (a, < t 2 1r + a; 2+ a,) .

where a, a,, ..., are constants to be determined from the

boundary conditions., For N, (Z), the boundary conditions are

dN dN
N,(0) =1; N,(2) =0; (dz1+¢ )Z_O=O; (-a—+ ¢SX)Z='£=07 i

and similarly for ﬁz, N, and N,. Evalﬁating,the constants .

a; for every set of boundary conditions, the shape functions

7

scan now be derived and written as [58]
N, = 7r5y (L# Y- v, - 3g% +2g7)
1T {T+yY e e e

9‘ L
N':L= STIET (29e + Y9 ~ 492 - Y94+ 295) |
‘ ' (5.8)
1
- Ny = Ry (Yge+ 392 - 292)

2 'z',z 3
i“= Ty ("Y9e — 29+ Y9g + 29,)

>

whére Y = _lEEEi -
DGSAE
and .
9e = %‘

procedure. The rotational displacement

h




a{Z,t) can be described in a similar fashion as

S ,
«Z,t) = ¥ - N () qlt) o (5.9)
i1 ¥ S

and analogously for R(Z,t).

}
| | ! i

The shape functions Nri(z) are not presented in any of
the previous work [58-63]}but different'procedurés are used }
to develop the stiffness and mass matrigces. The evaluation 'i
of such shape‘functions is.impd:tant for ‘including the effects .
such as hysteresis Qhere the rotational disglacemeﬁts mﬁst
be dgfihed; Conséru@tion of the stiffness and mass matrices . ' : \
are also simplified by the explicit definition of the \
rotational displacments. The shape functions N for the
rotational displacements are developed simuitaneously wiéﬁ
the shape functions N, in equation (5.8), and can be

written as -

= 1 - 2
Npy = 2 (1+y) ( 6g, * Fgé)

-
e
-

-
[

1 2 \ ‘
£, = (YT (1+Y-4ge-*{ge+3ge) )
o . (5.10)
- 1 P . : -
Ve, = TrFy (89 - 69) g !

)

. TR | _ ‘a2
o ' /Nr., = 1y (de+Yge +3gé)

4

o

‘ . - Substituting the displacements X,¥,a and B along with

ti;ﬁf derivatives in the kinetic and potential energy

“w

-

-

. -y 7, g .
B ﬂt“"i—’}‘%ﬁ"""“’;‘-ﬁ :.-,-;3::,' l-m‘ g - . . B ) T ek b
R SRR iyt SRR I i

S L

i
s sam
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expressions (5.4) and carrying out the integrations over

the element, the Lagrange's equations may be develoﬁed in

the form ' ‘ . 4

d /ar AT B e .
ar <a.e> - ; = + : s = Ql s, i=1,2,....,8
i q; q3

whepe,Q? are the nonconsérvative forces which are introduced
into the syséem'throagh the virtual work expressién
C | ) ' o '
- 8W, "= / p, (Z,£) 6X(2,t) dz

and since »

: 4
t e
8X(z2,t) = N. 8q: ) ,

it i=l 1 1 ~ j
‘ . a A t
! ‘. which yields - ' \ , ,
i B L \ - .

© Q? = / P (Z,t) N, dz  , i=1,2,....,4 (5.11)

% -0
b
Y »
!
¥

Similar expressions can be derijved for the Y2 plane.

The element equations of motion in a matrix form can be |

, g written as ' ’ o ‘

(01 (M, 1 0] M, ] -(c, ] [0}
1 R ! Y

- ‘ [k,] (o0} |
e e
. e + = . 5.12
5 t | {0] [kll {q} {Q } . ( )
 Here_the subscript t refers to translation and the subscript

r refers to :ogat;on. All submatricgs [M£1]'[Mr1]'[Gy] and -

(k,] are symmetric and are of the order 4. Submatrices [Mtllq

] ] X i

st




'spec1flc angular direction for both planes [64,65]. In the

N - [ 2 T T T I 2 e
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i

[Mr1]~and'1k1] are presented in Appendix F. [Gy] is given

by o .

[Gy] 'TM I

i
A
. ._]‘—fi NCI
‘ £
)

5.4 Comparison Between the Present Finite E;S?ent

v, . 1

Procedure and the Unified Rotational Sign Treatment

The unified rotational sign procedure con51ders a ;
. ®

unified sign treatment, the slope of the beam centre ‘line

in the YZ plane 1is altered to keep the angular. displacement

B in a positive direction; that is,

Y

R -

. (ﬁ ='- 37 : ’ ‘ ’ . s
Here the shear deformatlonlls not considered whlch was also

the case with the studles [64 65] The dlsplqcemenQS X,Y,

a and 8 in turn: w1ll be .. - _ ;

s )

X(2,t) = ), N, qi
: Si=1

40 il e
Y(2,t) Yy, (-1) N 95,4
T = | -

. 4 - J S __—
alZ,t) > N, q° L S

]

4 : .
. i v e - .
B(Z,t) i§=:l,(-,1) N af,, -
and - the equations. of motion of the element will be

)
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?

e, 10017y [ yf[ol L 101 16*1] .
[:)'-]1 I'['.Mtz'] { e}k.{- [;; iMrz] {qe}v + -[G*]T (0] {qe} | |
\ . [;ﬁ];i?] {qe} - {Qe} . | (5.15)

A ! r ) o
Submatrftes‘{Mtll,[Mrl] and [k}l are t?g same as those of
' system (5.12) with the shear factor y = 0 and the new matrices
[Mtz],[Mrz],[kzl and [G"] are presented in Appéndig'F. also,

the first 4 elements in the vector {Qe} are similar to those

zin (5.11), but the last 4 are defined by

41 97 | i=5,6,7,8  (5.16)

Py 2
Q; = f P, (2, ) Ny, (-1)
0 .

It is clear from eqﬁations (5.15)‘and (5.16) that

the‘unified rbtatiopal sign system ({62,64,65] is asségiated
. with a\complicated procedure. Thesé éomplications will éven‘

be maénified when thé stage is reached to add further details
to the system such ;s internal dampinq and bearing's stiff-
nesé,fdampinq and pedestal flexibility. The final solutiens
for a rotor bearing‘systeh using either of tpeée two conven-
tions are exactly the same inatérms of the eigenvalues, ﬁhe
precessional direction‘of the modes and the dynamic response
with the exceétion that the sign 6f the angular response 8
will be diffgrent.' fdr these reasons and because of the
procedural simgiicity,;tpe analoéous motion plane method is

adépted in this analysis.

o

Py
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.

5.5 Internal Damping

v

Internal damping can be d1v1ded 1nto tWO dlstlnctlve

A

parts, namely, viscous damping component and a hysteretlc

component. Viscous dampimg is 1nduced in a rotaplng beam

due tp its internal resistance to strain. The viscous

damping forces pres%Fted by anterA[48] for a single mass
L E )

»

- rotor are ’ . .

'ﬂﬁ;.;&(x+mY) "

S (5.17)
d=-C(Y-mX) s

FY

and caj_be .introduced to the elemgnt{e@dations as distributed

i

forces through the virtual work expression as

1. 5 = ) l ’ ’. ‘ /

Q? = ./’ €4 (X4-w Y) N, 4z ~(XZ plane) o
R s e e (5.18)
- f d(y 6.X) N, az (zz plane). [
with the Veloc1t1es X and Y glven'by'“f =~ ) )
8. ‘ 4 C R e
. - _ ) e -
X = X N Y =) LA  (5.19)

i=1 i=1

s
N

fD T to the system {(5.12) which is exactly sxmllar to the
translatlon matrlx [M ] but w1th Cd in’ the place of m,. That

is -

N

1

.',.'

-The velocity terms in équation'(S 18) add a new matrix .

.;[Dv] ‘{ée} _ §9 {r:o]luioll {éé}i ﬂ""\(ké,.'z'o)v""

- - - R
N N




R multlply;ng the stiffness matrix by cos?h

B N v
= 129 - : '
> , Ny . - .
‘ .

skew syﬁﬁetrib‘matrix [Dg] such that - ./// T
o g w101 MO0 L
" [pal{ b= g.,r ik S B Gl (5.21)
; ezt [M ] (a1 : ‘
P l

Hysteretic éamping'is the-seoond form of intermal

, damp;ng %nd is induced in a v1brat1ng beam under the actloa

of cycllc stresses. Hystere51s, is’ a materlal property ‘and

is lndependent of ‘the frequenCy of . the cycllc stress The

lag angle Yh of the neutral stress llne ‘induces a coup

between the flexural bendlng moments such that [54] /

)

}My ‘: coszb‘f srnfh ‘qjl.ﬂ o E
lMx = EI -siny,  cosy, .lB"{IZ- 7‘?’23)'
where Yh is cailed the losslengie and-is gireh oy
. ’ —' ' 'I' " / -
- siny =':———:El—— (5.23)
h /iﬁnh* L

and mn, is the logarithmic decrenent of the damping in the

. beam  [54].

J‘Ihtroduction of the‘primary moments, represented by

12

the dlagonal terms in equatlon (5. 22), lnto the potentlal

‘énergy expre551on is stralght forward and is accomplished by

The components

. of the.nonconservatlve moments which are the off diagonal

terms in e@uat&on {5. 22), should be introduced in a similar

manner as the nonconservatlve forces of expre551on (5 ll)

\

‘The .moment equations ‘of the system (5.1) may be rewrltten as’




PRPSEE
a
.

“where ; M*z.z 3_ (EI siny, BB)

. 5% 38 ‘ ( ax) 3 ( o da

Iy — + W T =— + pAG - - EI —_—

. T 342 rz 3¢ P X a3z / 23Z 'cosyh az)
Y a8 | |
=3z (EI‘SlF‘Yh 37) ‘

o \ (5.24)
a2g" da Y\ 8 g\
B g, () (e, )
- _29 | . oa .
= -7 (EI siny, Ef) ‘ L

1

. The coupling moments can then be introduced through the

pr{pciéle'of virtual work'ji§ffiiained below.
',‘ ) e N “r 1: .

GWXZJ= Jr MXZ Sa Az with.respect to the XZ plane
0 ) ’ .

)

» ! !
.

" and the analcgods moment equatlon with respect to the Y7

plane can 'be ¥etermined 51mllarly
1 - .

Then, - A 2, .
sy, = [ 2 (Ex sinyy 28)sa 4z, for the xz plane
X2 3%, : Yhﬁ . ’ P
D . ' § .
L | (5.25)
= : 38 BB L ‘
=|EI siny, 3% Ga EI siny, =5 6a' dZ

, . , .
The first term forms the hatural boundary conditions

and vanishes for, at least, a free-free beam, The second

term iﬁ%roduces a skew symmetric matrix [Dh]‘to be added to -

"the stlffness matrix of the element equation system (5. 12)

The matrix [Dh] is developed in Appendix G.

> -~

— , , N P
J L




~"g:hen_int:roduced E?to the element equations (5.12) xhrdﬁgﬁ

advantage due to the simplicity in the adaptation of the non-

A

St =131 -

-

5.6 The Bearing Element and the Flexibility

of the Bearing Suspensipnii

1 ’ —_

The bearings represent a flexible restraint on the
rigid body motion of the rotating‘béam. 'As can be seen from
. ‘ f «

Fig. 5.3, the bearing hydrodynamic forces FX and FY are

assuﬁed to be located at a distance‘zc from oneyend of

element, say the left node, such that

Fy = Fy(X_ ¥ ,X_,Y) j

»

and'similarly for Fy. The hydrodynémic forces Fx and FY are

\ ' :
the prihciple of virtual work given by‘, P

W, = Fy 8K ‘

and similarly for the Y direction. ‘ L ;

The finite element modelling of a rotating beam as an

explicitly written set of equations of motion'repreéents an,

linear hydrodynamic forees Fy and F For added convenience

v
a particular adjustment by conéidering Zc==0 or Zc==2 is ~

proposed, which will allbw the nonlinear stiffnesses and
damping .expressions, given in (B.1l) of Appendix B, fo be

introduced 'into the dynamical system directly as they are . ~

-stated.

PR . N s

. Por linearized hydrodynamic forces, the.coordinates

3

are moved to the static equilibrium location of the journal

0; and can. be .seen from the axial view of Fig. 5.3h@_which

. e L T W ey
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Fig.

N

XZ Plane

Fig. 5.3 Bearing—Eleme'nt Coordinates System.

. ]
y 2

. ‘ ﬂ‘h
5.4 Sketch of .the ¥
Journal, Bearing . E(

and Support. S - ’

| ij |

LE; "i(x_-y'-"‘»')

XZ P!'éine“ :

X = )(J..Xh )
y=Y-Y,..

3




ﬁhere xb,Yb_are the bearing displécements.
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corresponds to a specific load, spinding speed w. and

bearfﬁg parameters. Expanding the nonlinear hydrodynamic

forces ar?und the equilibrium point, using Taylor series

““L

and retaining dnly the first order derivatives, tﬁé hydro-

dynamic forces can be written in the form \

F_ = =k x - k Y = Cpp X = cxy y

'

and similarly for Fy' Here, ;t is understood that the

displacements in the above expression are such that

x = x(zZ,t) Z=7%c - and - y = v(2,t) 7=7c
v .
The interaction between the bearing and the supporting

structure represents a positive step towards a realistic
\ .

simulation of a rotor bearing system. This barticular step

starts with an approach that can be further extended to ‘in-., -

clude a complete machlne structure into a one general dynamlc

system. 'A simplified model for the journal, the bearing and
the bearing support is presented in Fig. 5.4. The bearing
mass m, represents a moving‘geference. The displacements,
X. aHﬁ’Yj will be the rotor coordinates in terms of & new

]
séétionary reference. The linearized hydrodynamic forces

‘make it easy to introduce the support effect. ‘In this case,

the hydrodynamic,force F is given by

g
0

P, (%,¥,%,¥)

4 N
FRR TS - Soamataan a0 g et Fo]

¢
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Details of the arraﬁgémenfs of the Eeaning element .

and the bearing support with stiffness and.dampi:? coefficients

are presented in Appendix H. , . . / ' o

5.7 Global Assembly of the Rotor Elements

The element equations (5.12) with the internal

damping may be expressed in the form - !

[[Mt] + [Mr]] {qe} +, [[G] + [DV]] {ée} + [cosyh [k] +

+[D,] + [D ] {qe} = {de} | ‘ (5.26) |
— [d] [h] . ' -
‘which is of order 8. The éoordinaées qe are arranged sucﬁ

[

] that '

1,2,3,4 with respect ot X2z plane
. . B
5,6,7,8 with respect to Y2 glane'

.qi take: i

q? take i

.
.

Befé;e,arranging the elements into a global assembly, a local

coordinate arrangement is first made, as can be‘seen from

Fig. 5.5, with
. e . <
é? take 1 =:1,2,3,4 for left hand side node

. qf take i = %,6}7h8 for right hand side node.
The asseémbly of all the elements into.one global
system‘ig then stréight forwa?d sinpe the eléments are ail e
=aligned in a one-dimensional space. All'simi;a; coordiﬁates
from the adjacent eiements‘are;théq simply added together.
The bearing'coefficients are ipcluded in the element equations

as presénted inxAppendik H. However, the bearing support ,
. . t - AN

¢

\

.
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A 4
coefficients and the béﬁf&ng equations are to be added into
» the global assémbly of the elements. The final global

system will tHen be
SImgl{agl + fed{a)l + kgila l = {og) (5.27)

. which is a dynamical system with N degrees—of—freedom where

, (/J N is given by

N = 4(n+l) + 2(b)

with n = number.of elements

b = number of beafing-flexible sﬁpports

' Matrices [csl and [ks], with the addition of the bearing
N - stiffness and damping'coéfficients—are honéymmetric in

: character. )

v
1 -

5.8 .Solution of the Rotdr System by Modal Analysis

*". The second order differential equations (5.27) form

a linear system.with gnéymmetric damping ahd'stiffneSs“

o maricesi A proper approach to the solution of this prob;eﬁl‘
is to transform theesystem into its natural or prinﬁipal |
‘coorainates in which the. equations will Be decoupled  for an
easy'solution. The decoupling of‘phe equations of motion can
be, carried out utilizing a similarity %ransforﬁation (88]

. "———-—-which is—applicable to a general dynamic system such as (5.27).
o S

4 . . IR .
-4 However this technigue involves the inversion of two matrices
% o of order{ZN where-¥.is the nhmber of degrees-of-freedom of
i

the dynamical &ystem. Further, one of ‘the matrices to be
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inverted is-the modal matrix which is made up of complex

elements.’

b 1 ——

A simpler approach would be to ‘determine the solution |
by a modal analysis. Due to. the linear. independence of the

4

eigenvectors, the.system response at a given time can be

calculated ;s a weighted sum of the natural modes of the -

. ‘ system. This weighted sum signifies the contribution due
to each independent mode. Since the significance of the
higﬁer modes in Fhe calculation of the response decreases‘

as compared to the contriubtion of these modes in\ the

- neighbourbood of the excitation frequencies, only a finite >

number of eiéenvalues and eigenvectors need to be calculated.

. ’ (
Modal analysis for undamped systems and for damped
. ) .
symmetric systems with the damping matrix proportional to
any or both of the mass and stiffness matrices, is known in

tﬂé.iiterature (75,88]. 1In case of'a general damped symmetric

system there exists a modal analysis [76]) which starts by

” -

“rewriting the system in its first order form to provide a

square modal matrix which is necessary for the linear

transformation to the principle coordinates. The system is

/ rewritten as a set of first order equations as follows:

1 {a} + K] {a} = {9} : o (5.28)

where

Lo ‘ ) jo1- m,] (-m.1 (0]
‘ . [M] K] =
2NX2N [m ] [c ] 2NX2N [0] [ks]

-y e
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Very little information is available on the modal analysis

« -
of a general nonsymmetric system.. However, there is a

general modal ahalysié treatment [77] which was aéplied to

the rotor dynamic‘problem by Lund (55] through a transfer '
matrix technique.’ Neither the statements and proofs of £ﬁe
orﬁhogonality relations given by Lancaster‘[77]'are in a

standard form [75,76,88] nor the procedu;e due to Lugd [55] '
is suitable for a general dynamical system. Therefére, a

-

standard proof as well as the necessary relations for modél.

analysis of a general dynamical system are breifly presented . K

'

" below. . . ﬂ‘
p .

o

Along with the eigenvalue problem

AMI (6} + [K]{¢} = {0} - - (5.29)

consider the“complementary eigenvalue problem of the trans-

[y

pose'of the dynamic system (5.28)

AT gy + k1T ) = () o (5.30)

The eigenvalues Aj(j=l,2,....,2N) of both of the above prob-

lems are identical.. However, for a general ?onsymmetric

system, the corresponding eigeﬁvectors zj and mj are different.
Here the roots of the characteristic equations Aj are re-

ferred .to as the eigenvalues! where it is understood [75] - . -
that they are the eigenv;lues of the dyﬁamic matrix fM]-l[K].

The vectors $j and Ej are called the jth eigenvéctor and the

jth complementary eigenvector respectivelf) or the jth right

eigenvectér and the jth left eigenvector [75].

\ IIn some dynamical analysis the term éigenvalue is used to
define a pair of complex conjigate roots [55]. )

e

\
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For an,éigenvalue Aj and a right eigenvector 514 the

" relation

(5.31)

Kj [M]{¢j} + [K]{?i} = {0}

is satisfied. Similarly for an eigenvalue Ak and a left

o

T T T _—
A {wk} M] + {\pk} (K] = {0} (5.32)

is also satisfied.

Premultiplying (5.31) by EkT and postmultiplying

(5.32) by $j and then subtracting (5.32) from (5.31) gives

, - -
(A, - Al Loy = {0} (5.33?
" which' leads to the relation o
T mte} = 03, 3k (5.34)
/ ,
.Assuming that all the eigenvalues to be distinct and summing /

up all similar relations (5.34), gives, the following ortho- .

gonality relation:

(5.35)

1T (M1 (o) = (MM
similarly, it can be shown that
T *
(¥1" (K] [®] = [K'] (5.36)
where M* and X" are diagonal‘matripes. The orthogonality *

relations (5.35) .and (5.36) are general and hold true for any

dynamical system.

T
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e wxfﬁ’:' ’f“ﬁl .

Introducing the'linear transformation .

s ' .

L g} = (o] (w) ' ‘ (5.37)

in equation (5:28) and multiplying throughout by [WfT yields-

T 1 (@) + (0TI (o] fud = 1v17%10) _— )

. which is in the form’
(41 {3} + [(K"1{u} = {v) - (5.38)
System (5.38) is a set of decoupled first order _ ‘ -

ordinary differential equations that can be 5dlved in a

closed form.

Using the orthogonality relations, it can be shown . -
‘ o co '
that e T e
A, M. = =K,

. u 3 j

which can be used in equation (5.38) and results in a simpler . .

1

et S i 9 e e O A VT B

‘form for the decoupled first order equation. This, ‘in a

scalar form, is - ’ :

- UL v j=1‘l.21'.."‘12N ‘ (5,'39) :

1

[ SN, SN SN
. . 4
- .
.
.

-5.9 ,The Transient and Forced Response of thé‘Rotor‘Systeﬁ

The solution of the global equation.of motion (5.27)
is now'redﬁceg to finding the golutio§ of eguation (5.39). .
A general solution of equation (5.39) can be shown to take ‘ EEA

‘the form [75,88]

e

. ! t .

' ‘ l \-: ; ) ’ -l (‘ ) T - N ”: . .

O - .“j- aj exp(kjt)-rm* -f.Uj(c)‘exp[Ajft g)ldg . 3 1,2,...,2N‘1 ‘
- . : . . j\ 0 , - . (5o40)4 -

“ . . -

\‘L o
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‘The first part of the solution represenpé the transient
response whére the constants aj ; j=1,2,...,2N are to be

evalliated from the initial conditions which are given in the

principle coordinates u byi’ - - . S
{u(0)} = Real (&1 '{q(0)} - " (5.41)

The steady stagg respdnse,'in turn, can also be cal- o
culated through the evaluation of the integral in equation
(5.40) for a specified excitation a(t)L An example of the

steady state response of an unbalance excitation is presented

in Appendix I. .

The linear transformation (5.37) can, alternatively,

be written as

a

»

) ) 2N . ,
v % = J‘::l ¢kj Yy oo k=‘_1,]......2N . (5.42)

" ‘which'can now be used té calculate the rgsponse'at any single

4
- »

point on the roto? beam.

1

vt . . *

5.10 . Comparison-of Results and Further Analysis A -

H -

The objectives of this sectioﬁfare

’ 3

i) To perforﬁ‘a comparigon of the obtained results

with previous experimental and theoretical results essentially

the well known results of 'Lund and Orcutt (53], ihAorder to

s

examine the validity of the present finite elémeqﬁ apprgéch

combined with a modal énalféié in evaluating a rotor-bearing

¢ \ v

. re&sponse. ' . -

-
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I '11) .To introduce a comparison between the different

‘NG Cross coupling terms which result in citrcular response

'~ at a load of 100lb by Lund and Orcutt and found to be

: o A .\.
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. o ' N

effects of the bearing lining ﬂiex1b111ty and the bearlng

support flexxblllty *

A

- : . ' ’ ’ } '
.iii) To discuss the proper choice of the suitable number

of elementS‘for a typical application and finaily, ) ’ o

’

!%)_To provide and to discuss the"variods ways of S

interpreting better the s%ability and ‘dynamic respohse rasults

of a rotor-hearing.

“ R L . . o ‘

One of the rotor—beariﬂg configurations that were

used by Lund andZOrgutt [53] and chosen here for comparison ) |

is presented in Fig. 5.6. Tilting pad bearings'were utilized

and were positioned symmetrically‘wffh respect.to the load < ‘

such that their characteristics are symmetric and there are'
orbits. A Hertzian surface-contact stiffness was calculated

5::1051b/in (8.756 x 10 “N/mm) . Also, the unbalance weights . ;
were in phase and were posxtloned on two locatlons of the

rotor beam as shown 1n Flg 5.6, 1In the present procednre

.

the bggm is divided into 5 elements w1th the 6 nodes 1nd1cated 8’

L

_in Fig. 5.6 whlle in the event of uslng only 3 elements the

e’ -
second and fifth nodes are to be excluded..

. )

. v ¢ .. ’ .o ! It
Usiﬁg the surface contact stiffness in geries with -

the bearing stiffness, as adopted by Lund’ And Orcutt, a

'solution by flnxte,glement followed by modal analy51s 13

carried out aﬁd presented in Fxg. $.7.” Also the theoret;pal
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e Fig: 5.6 a) 'Lay-out-of the.Rotor Bearifly Sysiem
Lo -7 Used for the Comparative Study. .

¢ b) Nodes and Elements Arranyement.
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‘results due to Lund and Orcutt (53], whith was. obtained-using
a transfer matrix method incorporating continuous shaft ‘ !
o segments, are reproduced in Flg 5.7. As cdn ne seen from

the figure, the present results provide a closer agreement

-

1 ' with the experimental results than the transfer matrix method,

_over most of the speed range when only 3 elements are used.

ThlS provxdes a’ good check on the present procedure and ex-

r

tends the conclusion on the accuracy of the flnlte element i
method by Ruhl and Booker [57] who used a simple finite : :
{ ° ) ) .
S \f element. model. o S ‘

C L e .W - S

Tﬁe fast convergence of the finite element analysis

\ B

towards the actual solutlon is also demonstrated by two sets

‘e ; o of results for two separate arrangements, one with 3 elements

" and the othen using 5 elements. The results presented-ln

%

- Fig. 5.8 show a little improvement resulting from replacing

a.3 element arrangementgby a. 5 element one, over the entire
S : range. Therefore dividing the beamvinto 3 elements may be
a more suitable ch01ce 51nce -this partlcular arrangement flts

L . the geometrlcal shape of the rot§r-beam. Obv10usly, the

dynamical system (5.27) constructed with 3 e;ements, w1ll also
oo ) , ' t
possess a smaller number of degrees-of-freedom. :

... The results presented in\Fig. 5.8 are arrived at using ’
a bearing support stiffness in place of, and equal in mag-
-~ T .+ ¢ nitude, to, the surface contact flexibility. ‘This specific
N ' o M N

.o study 1s carried out for the sake of bringing out addltlonal : ‘%m»

.7 . .%.  features in thé finite element procedure. It is interesting
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to notice the stabilizing effect of the bearing support
flexibility in comparison to the effect of the surface con-

tact flexibility, particularly in the range 12000 - 18000 RPM.

This stabilizing effect is due, to the gdded degrees}of—f?eedom :
to the bearing. This can be explained by the point view-phase .
diagram (5.9) which shows that the bearing stéys aFmost in
phase(with the middle nodes, where most of the rotor mass and
also the unbalance weights arellocated, through the speed

range specified'above, namely lZQbO-—l8000 RPM, and therefore -

allowing the soft mounting of the bearing to stabilize the B

2

»

. rotor motion. . - L
. ,\ ‘
The end positions in Fig. 5.8 shows a distinct peak

¢ . '
at a speed of approximately 20500 RPM where the-peaks at the
., other two,positiongican hardly be recognized. This can be'.
explained through Fig. 5.9 at a speed of 20000 RPM the end

node 1 is almost out of phase by an angle of 90° with the

bearing position and therefore remains unaffected by the

bearing soft mounting. In such cases where a critical speed
can not be -easily recognized, a better interpretation of the

results can be made. These are achieved by

i) using poinﬁ-view phase diagram similar to Fig.-

-WEZQ and, \

”
ii) by plotting the dinclination angles o and 8 which

L}

are-found to be more sensitive than the translational dis-
- . ” 4
placements. Ah example is presented in Fig. 5.10 correspond-
.'ing to the results of Fig. 5.8, but with the angular’displace-

A} o
ment d{orB) in place of the orbit radius which clearly shows

,/ . e

Y




2
<L ' 12000 RPM _* T 14000 RPM

o

! : o " 18000 RPM

24000 RPM

. % - o
) U.P. = Unbalance Plane ,
o ' ‘ 1,2,3and B are nodes 1,2,3 and bearing
‘ . , Fig. 5.9 Point View Phase Piagram of_ the instantaneous

i o - , 'Location of the Rotor’ Nodes. ’ N
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—bgaks.at all positions,

iii) £inally, the damped natural frequency ghérts
‘combined with'the modal logafithmicndecrément, as given by’
Lund [54], provides comprehehsive details about the stability

behaviour of a flexible rotor-bearing.

A dambed natural frequency chart is presented in
Fig. 5.11 for the case with surface contact flexibility shown
in Fig. 5.7. The first rotor mode?, which is an even mode,

is heavily?® damped and has frequencies below the minimum

frequency of the chart. The damped critical speeds are de-
]

fined by the'iptersections between the synchronous excitation

o +

curve under different modes and will only be effective if .
they are associated with small logarithmic decrements. Aas
can be seen from Fig. 5.11, there are only two damped critical

- r

speeds at 14000 and 14200 RPM and both are efféctive. These.

. results are in good agreement with the ekperimental observa-
tions, within a difference of 500 to 600 RPM, compared’ to the
IR L . L ¢ . . .
, results of Lund and Orcutt (53] which are within approximately

" 2000 RPM difference.

Two damped natural frequency charts are presented in
Figs. 5.12 and 5.13 for the case of bearing support flexibility

element arrangements, respec-

'

uging the 3 elements and the 5
tively. The two rotor modes in both the cases are heavily

damped and have very small frequencies. The next 4 rotor.'
¥

A rotor mode may be composed of two modes, one with backward
precession and the other with forward precession.

Sassociated with large logarithmic decrements.

1
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modes, that is 3¥%'ts 6", are almost identical in both

the plots. 'In the higher frequency range a new rotor mode, N

‘namely the 7¢h in Fig. 5.13, is generated with the use of
5 elements while thé highesg modés in-both éraéhs show a
slight difference in-frquencyf Since the loﬁer mnodes,
which are closer £o the running speeds, control the rotbdr
bearing more significantly, it can he céncluded again that

the 3 element arrangehenﬁ is sufficient for practical con-

ksiderations. o .

As can be seen from Fig. 5.12 anﬁ/or Fig. 5.13, the

damped critical speeds and their characteristics are described

B

, by the following:

Speed Logarithmic Mode Precession
RPM . Decrement Nature Direction
9000 2.32 evern "synchéonous‘
18200  1.61 . odd backward .
18600 1.47 . odd forward
20200 o -118 even backward
- 20600 | LIS . even ‘ forward

¢

——

1

.-

Here the synchronous precession refers to a case of mode

«

°

cross over from backward to forward as -carl be seen from Figs.
5.12 and 5.13. ‘Only the last two.criticals are effective
and correspond to the peaks in the unbalance response in /

+

in Fig. 5.8. It it also interesting to notice the effect of

- bearing support flexibility on the rotor-bedring characteristics.

.This is demonstrated by the‘chart in Pig. 5.14 which cbr?esponés

#

. .
Y . -

[ P
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: ﬁfbeering system is accomplished in-this Chapter. 4ll the

o

I : . -
y ! .
'& -3

h;arlng support stiffness of 10° Lb/ln, or double the b %

. . g .
Y. - 1567~ \ - . ¢

\
preV1ously used value. ‘For this, the shape of the rotor

[

modes ‘become more ccmpllcated The fourth xotor mode, which
! . . !
is an odd mode, 15 partlcularly affected in' terms of its

-,

shape and logarithmic decrement values? This odd mode may . 3.

, : K . :
affect the rotor,requnse under input excltations if such . i

-

excitations on the rotor are unsy@hetric,in application. =
%. ‘ . '_‘/ ) “‘n . . . ‘ ]
.. 5.11 Conclusions and Discussioh . oo L
. 3 Rl / .;‘ . ‘ ‘
A comprehensxve and yet simple modellmﬁg of a rotor
B

v ¢

effects that arelabebciated with ‘the rotor motion are taken
) : - Tenoy

L

into account, The beafings are considered to be-euppgrted

/' flexibly in the machine structure which'cen'further’be modelled

’and 1ncluded into the rotor-bearing system without much

I~

dlfflculty. The basig-element used is the sgmplP‘T1moshenko- A

element which helos‘in,retaining-the order of the‘dynamical
A

.
system and was previously shown to - produce accurate results.
The\development of the analy81s-procedu;$ 1tself lS greatly

31mp11fied by such natural treatment, because of dlrect
g .
physical 1nterpretat10n\ of the ‘motion planes whlch are ‘con-

sidered analogoug. The prev;dus study by Zor21 et al [65],

who SMnitially 1ntroduced the hysteretic daqplng 1nto the \’
\6\

rotor-bearing system through a finite element procedure did
: \4
. not outline the implementatlon of the nonconservatlve moments \

» into the element equatlons in con%ﬁast to the analy%xs pre-

¢

sented here which also employ shape functions ‘that inglude the .



shear deformation effect.

+

- K The:solution of the dynamical system is carried out

P ‘ - uSLng the general modal analysis and a standard proof of the
K orthogonallty propertles along w1th the necessary relatlons BN

for the analysis are presented for the sake of clarity. The

\

present approach with a fewer number of elements is found to

~

be more accu;ate~¥hhn the ttangfer matrix method which also
conshdered the shaft segments to possess continuous properties.
The angular displecehents are found to be more,sensitive in e
'showing peaknresponsee than the translational displacements,

- R . at least for the example presented, and therefore plotting
. ;

» » 2 i . -t

- these angular responses along with sthe translatlonal dlsplace-

*

ments can provxde a better interpretation to the over all

PR

‘ } system response. Also in’the comparison between the surface j
‘contact flex1b111ty ahd the bearlng ezggbrt flexlblllty,
the latt r is found to 1ntroduce ‘a stab11121ng effecggto the . A:
'1system be avxour whlch is related to the added degrees-of-x
freedom to e.bearlng mass. , ’ L |
N . .. 4 9 , ] . o

The results for the flexible as well’as rigid rotor-

s
2 s S o




CHAPTER 6

-

ANALYSIS OF A GRINDING MACHINE SPINDLE SYSTEM

UNDER ACTUAL CUTTING CONDITIONS -

6.1 General ;.7

In this part of the investigation, the resylts based

.

on rotor dynamic considerations are applied on-a grinding

. . machine-spindle-wheel system under actual machining conditions\.
] ‘ B
The cutting forces in machining operations in general, and

1 ' o in‘grinding in particular, have been. showr to be basically
random in nature [67,68]. Therefore, the eéuations of .motion
1 ) ‘ ‘ -

. ‘ . + form a stochastic system and consequently the spindle re-

sponse: is a stochastic process which is to be'prescribed in . -

'\} Yor . f8rms of different statistical averages rather than deter-'
? , ‘ministic expressions. Anothér type.of"inpUt under which the
) o s . ) . .

by .system has to be invéstigated is the disturbance due to

oo residual unbalance which may play an important role in ﬁhe,

; v e qualification of the grlnding process itself. @
I o . " ‘ e . ¢ 1
‘i - o .. - 'Ag discussed in prev1ous chapters generally the rotor«
4“,‘ bearlng system i's flex1ble and posSesses nonllnear charac—.

terlstlcs, at least due to preper censideration of hydro-
dynamic film forces. However under certain circumstances’

< v ~
the assumptlons of rotor rigidity and/or system llnearzty

‘.«_ . oL ,are quite aeceptab;e.l To ulilize the-simplic1ty of such S

_ - . . cases to, practj problems with the contrlbutions elaborated
" S »'fh the pres estigqﬁAon, particularly the mathematlcal v,
b . models discussed for the dlfferene‘rotbr-bearlng co”uitions, .
. 4. ) ~ . v . P. 4 L ’¢~ . . ) A :‘, 3.
a - -' 4-4 - “w ’ " ! - ? r .
\ . "i. / '\‘ . o -
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are summarized in the following parégraphs indicating éppro-
X o - 3
priate selection strategies for representing the overall .

system.

i} The analysis of the problem can begin by. con~ -

sidering the rotor-bearing system as flexible and linear.

L

For th%s.case a conclusive mathematical model and method of

solution is-outlided in Chapter 5 while a solution to the

stachastic syé%é% is provided in this.Chapter. Once thé
system critical sPeeds'and the dyna@ic respoﬁses are defined
the rotor may be assumed as rigid if the running'speeES’are
well below the first critical. Also,vby examining the retor

.

response at the bearing centre line, the error involved in

[4

-

using the linear stififness and damping forces can be checked -

. & , . ’ . .
/ through error charts such as those presented in Chaptér 4.

‘. ’ :
i

ii) If the erorehearing system is established as
yf-lexible but posséssing'noniinear characteristics,! the non-
. hY

"linear stiffness and damp;hg givén by (B.l) .in Appendix B.

can be infroduced directly in to the equations. of otion as

-described in Chapter 5. However, no éolution has been

established for this case in the context of Qhe present in-

A .

vestiéation. \ . ®
N N . [
. .

1ii) If the assumpfion of rigid rotor is.acceptable’
but the linear variation of the film force is.not valid, the

» results of Chdpﬁgrs 2 and 3 can be employed providing“%n

accurate aﬁélysis enhanced by the use of the improved -non<

#

linear stiffnegs and damping of thé|finite'bearing.ﬂ1Here-

4 . ‘

e




~ 160 -
the solution is provided through numerical integration for
N 4

H L

a deterministic input only. ' o

D B . o .

iv) ‘If the assumptions on'rigidity as well as
linearity apply, a rather general‘dimensionless fofm of
olution by modal aﬁalysis is established for deterministic
'.puts in Chapter 4 an§ i? extended to stochastic inputé in

the present Chapter.

-

Before elaborating on the above approach for the

problemlof the grinding machine, some discuss%on is devoted
{

' j‘l for appropriate modelling‘of the random cutting forces in

o

g;indihg and %?ter followed by a solution for the stochastic
systen developel. |
/
2
6.2 Forces in a Grinding Process

. . , ‘ A
" The grinding.process in machining is associated with

a large number of participating parameters {66]. The most

influential parameters are the‘Speed, feedn?nd depth of cut

. which are established to be in linear relationship with the

y - \ -~
cutting forces [91,92]. In recent work by Banerijee [82],

the cutting forces were showh expressed by ths relation

+

<deévc
.[Vh

where Kc is a constant of a -specific wheél-workpiege cOmhipa-

tion, dc is the.depth of cut and VarVe and vﬁ.are the:work,

cféssfeeé and wheel veldcities as explained in Fig. 6.la.y
—~t ‘

4
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The relation between tS@‘tangentlal and the ndrmal cutting
. e
components Fct and Fc are also found to.be [82 91, 92]

2, for no crossfeed [391] ' ; ’
(6.1a)

[N

L Fa/Fa

-2, with crossfeed and higher

ne

settings [92].. - )

 Since it was shown bynPeklenik and Kwiatkowski [68]
that the metal cutting processes are generally random in
nature, the ‘above force specifications given by (6.1a)

can be seen, at least in principle, as the mean or the aver-
age cutting force. Consequently, the total éuttihg forces

ean be treated as the sum F;hbfc(t) where fc is a zeYo mean
ras@pm dynamic force that represents the stochastic excitation
to the spindle-wheel system. The actual pattefn of the ran-

dom cutting force fc has not been established experimentally

so far. However, an analytical definition of the‘stephastic '

model of £ can, however, be madé based on the following

observations:

¢
g

t

i) It was established By Rakhit et al [67] that the t

cdttlng forcesﬂln fine. turnlng is a random pracess w1th a
'w1de band power spectral density and a probablllty den51ty ;o

.patteérn’ that is approxlmately GauSSLan. .

?

ii) In a turning process the tool is a single point

cuttlng tool, Whllé in grinding the cutter, is of infinite,

¢

(very large) numer ochuttlng ‘points. These cutting points
(p§§abrasrve gralns) are randomlyxplaced in ‘the bonding .

material.
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~¢) A Possible Spectral Density Sample of
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iii) The single point-toqi may have certain desigﬁed

angles @, Bt and Y. @s can be seen from Fig. 6.1b. 1In

grinding the tool boints (grains) are spaced randopmly and -

with random angles, also shown in Fig. 6.1b..

%rom tﬁe above ogservations, if the random force
that is asgsociated with a single point cutting tool is x(t),
',th_e.random"cutting ‘t:orc‘:égivn grinding will be a random
taribalekf (t) which is the conttibution of eacH single

p01nt tool X, (t)(l l 2,...,n) TQe pattern ok the random
varlable £, (t) can be extracted from the central 11m1t
theorm {83] which can be stated in the fpllow1ng: If a random

variable fc(t) is a product qf a large numer of contributing

_random variables xi(t) that are statistically indeéendent,

whatever the pattern of its probability distribution, and,
) ,

none of theée rahaom-variables x; (t) is of particular sig- ' N

nificance on the wpole, the probability density pattern of

theé output random varlable f (t) w1f§ be Gau$51an if the

) )
number of the random variables xi(t) is large enough.
Thereforé;'if the force that is dssOciatéd with every single ~
grain in the contact area of cut is considered to“be a random

variable xi(t), and if these random variables are statistically

¢ .

‘ independent, ‘then the total random cutting force f(t\xmust be
' Gaussian. - -

The cutting force spectral dénsity pattern in fine PO

turning is found to be a wide band process (671, and a ) | AR

possible spectral den31ty sample of cutting forces in fine ) .

"
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turning is shown in Fig. 6.lc., The high degree of random-

v

ness in the tool points spacing and the grinding angles can .

N , ‘ .
be expected to produce random.forces with wider frequency

‘ " range in the spectral density pattern, thus establishing a }

nearly white noise type of process.

-

If the steady state cutting capdition is only con-

+ sidered, then®the random process fc can be taken to be

.stationary. Thus, the definition of the fluctuating random

.cutting force fc can be summarized as (i) of zerd mean,
(i1), stationary and (iii) Gaussian, or with a probability ° T E |

: ;o
density pattern pf(fc) that can be written in the form « ’

*
i . v

A . : -£ 2 . e
- pelf) =. S exp < ’ ©(6.2)
. A A /iwo% . Zof2 '

where .0, is the standard of’'deviation of fo- ‘It can also Be
. t cm ~

12 N .
suggested that £ is also essentially a wide band process.

-

T 6.3 Solution of the Stochastic Equations of Motion

of the System

i * ‘ ' [}

’ ’ J?&m © ‘6.3.1 Review Of Available Technigques and Procedures ’

." ¢ n: . g . N ) ; )

R The linear dymamic system on hand can be written in
Lo v N

1 the form . . Co . “ .

>

' T o’ ' )
o fmg (g} + e lla ) + [kl {qs}.? {g,} - £6.3)
ny : NXN. - : NXN ‘ NX1
o L ‘ / ) -, o .
?’é ., where Qs'represents the vector of/applied random excita®ion. ,
;@fgﬁ, -System (6.3) can’ﬁé £he linear‘equation of the rigid syﬁmetr}c

W{gu “"rotor (4.1) or the output.of the:finite element simulation ~\ .
* .
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for flexible rotor (5.27), as the case may be.

A few appranhes-oan be used for evaluating the
‘stochastic response of the system (6.3) . Thase are, namely,
the Fokker Plank agproach; the impulse response approach and-
the spectral densityvapproach which .are all reviewed by
Yang [78] along with an intrpduction of a matrix algebra
approach. all these approaches can be used todgetermlne the
correlation matrix [R (t)] of the response foﬂ.a stationary
Gaussian process except the \patrlx algebra method which ,
cdn only determine Ehe instantaneous correlation mahrlx

qu(O)i where [Rq(T{] is gi¥en by

M o

°© -

(R, (1')] E ({qs(t)}{q (tm}T]' S ()

. .
v « v
r

L ) For a ‘general multidegree-of-freedom system, the |

4
.

Fokker-Plank approach requires the excitation to be stationary,
ugaussian and white nolse or filtered white noise, in which
Vcase the system is cémbined.hith a linéar‘daﬁpéd4efsteh,
'dsually a linear filter. This particular abproach is effec-
' tlve pa;tlcularly for nonllnear system. The 1mpulse re5ponse
!!approach, 1nvolves many compllcated integrals to be evaluated .
analytically espec1ally when the degrees-of-freedom of the
N sYeéem is large: The spectral denSLty approach is just the
reciprocal of the impulse response approach and follows the

0
. same procedure in the frequency domain.- This starts by

P

evaluating the coﬁplpx frequency response matrix [H(m)] which
, can be construptéé hhﬁaugh—the.substitution of [78 83] the

V¢ JRE
C . L""' ‘L ' -
R )

.

v - .




: - 166 -
) expressions z ' : \ Co
: - i iwt . - '
l {QS} - {QO} e ‘ N ?
* » and . p ' i t . :
' woo o odagl = (HY) {oy) e @ .
into system (6.3), where 50 is & constant vector. Then '

tﬁ(m)] is given by
o (H(w)] = {;mzlms] + %m[cs] + [ks)]_l T (6.5)

and the ‘spectral Wensity matrix, in turn, is given as o
. ' ®

[Sg(@)1 = @5, @1 E* w1 (6.8

A} . -
L)

i

wheré'TSf(w)] is th? spectral densitx matrix ofgthe input .
, .. -‘excitation and [H¥(w)] is the, complex conjugate of [H(m)]:
<. @hewééectral dénsity\mat;ik and the correlation matrix form .
> . aFourier trﬁhﬁform,pair.(excepé for the adjugtment factor -

of 2w); then the correlation matrix can ‘be e&aluated’frbm

o
1

the integrél ! v B

o g = s T e
. a , . . i - OO -
. ‘ - s s
) However, the matrix to be inverted in equation (6.5)
is a.complex matrix'and'contains‘the frequency w. Therefbre,
- the inversion must be done analytfcally or. be evaluated
© numerically for differeht values of‘m which is possible only,
for systems with a few dégfees—of-freedom.viIf this compieg;
. " ' ‘\- ' N
ity is removed, the spectral density approach can be consider-. g

LN LJ \ .
d as the general approach for a stochastic linear system with.

! [ . P . . 1 B | .
. , N . . il .
. . . . % / ‘ -
, Y e .
. L . . .
- ! -«

v
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{dﬁlating the complex. frequency response in the principle
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the only restrictions that the .input be stationary and be

.
Gaussian distributed.

& . -

6.3.2 A Modified Spectral Density Approach

9

A method that utilizes the modal analysis in the,
spectral density,epproach has been used by Lund [72] in the
b ]
éase(of a rotor dynamic appllcatlon that.incorporates the

transfer matrix method This approach is extended here for

a general dynamic system. The procedure is based on cal-_

coaggina;es and going back, the complex frequency matrix

[H{w) ] igreetablished‘an the phase space.

Consider the decoupled'first order eguation (5.39),

GJ - Ay uj = ﬁ: Uj ' j=1,2,....,2N ,
3 ' _
- (6.8)
’ ith U, = - .
wit 3 Zigil ¢k] fg

N .

Here Y, . is the " element in the 3 left elgenvector wj

. %3
Y
and fg is the zt element in the force vector Q.

*

Further,\using the broperty of superposition, equation
(6.8) can be decomposed into N equatlons, where N is the

number of degrees—of—freedom of the dynamical system (6.3),

and are J
Gy, Ay vy, = f? bygfy (©) T
SN ’ 16.9)
where uj = 2=N+1 ujz : ) ‘
; K i R

e —
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The complex frequency function Hj%éw) that corresponds to

’

t

equation (6.9) can be shown to be

+

by - . ‘ .
H,, (w) = —;.-———2-'—]-—— ] R (6,10)
J , Mj. (i({’- Aj) ,‘ . o A .

3

. The above formulation of Hyg(w) does not carry the

conventional properties that sz(—w) is the complex conjﬁgate

of‘Hjl(w), but rather a mathemdtical convention. Upon pro-. .
‘jecting the system back into the phase space, ‘the complex
frequency function wil%ﬁgaﬁn,the,above property phfough

2
summation of the complex conjugate pairs.

For every frequency in-fz(w), tﬁe»ihpﬁt—ou@put s
frequency relation is [83]

» . .

co g () = Hyp o) £y ta)

(ahere ujz(m) and f,(w) are the standard Fourier transform
kY *,
af ujz(t) and f,(t), respectively. Then

‘ b 2N . .
u(w = Y Hy (w) £,(w : (6.11)
] PR 7S B LA ' ST

e
e . i

Using the linear';ransformaﬁion (5.42); which is

¢

N . . Y
2N » : ~
‘ qk = 2 . ¢kj uj ! 14 ' k’ = lﬂz,.. o ’ZN .
Al jgl L ‘o ! . ‘ '
. t
’J/'it can be shown that, R, L ’
" ’ . - . * E,) = . & »
M [ It - N 4 -
w,‘\ e . '
O ‘_‘ i - . v \ ? ¢ I :
e N . [} v
A. Iy . .‘. 1 ; ' ! :& , ‘_* ' '}',‘ '.'\‘ :h- -
i x b iy ) ! h R\ht ’

- 4{‘, . Y e
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r - ZZN . A . . ' ’
- g (W) = H ,(w) £f,(w) °, k=1,2,...,2N (6.12)
g ) k' L1 k4 L ,' o ; . -
[ : . ’ b ° LN < )
. v 2N , T ,
where sz(w) = j2=:1 szﬁm) cbkj ) o : ) ,
. - ‘ o &
‘ The spectral density in turn is defined as [84] ’
N | T ‘
, ‘ qk(m) = ’]I:u_r:l::a 55 Elq, (w) qk(-;w).] . ) (6.13) .
—¥ X where 2T is the time duration of the sampe q; and E] 1.is the A
3 : — .
expectation operator for ensemble averaging. But Co
|
1 ~ /
\ , “ T l‘hzzN o ' . 'ZZN . X A P ' a
g (W) qp (-w) "= £, (w)H _ (w) N £, (=0l , (~u) oy
_ Lk k P R’ 13 el X k2 ! o
i S S S VI
K T N\ .
= {Hk(w)i [;st(w) {Qs(-yw) ] °{Hk(--uu) :
- NXN ‘
' Then by taking the expectation of expression (6.14) /antf‘ 3
utilizing the. definition (6.13) , the s;;ectral, density of the_
.. . response component Q) can be shown to be
5, (W) }Hk(w), [5pt]” fuy o) (6.15)
'qk l’ " ’ a s’
. 7NXN _
..., where the transpose of the input -gpectral density matrix is
a consequence of ‘the, deflm.tlon of the cross spectral density ’
’ ' 4 : \ .
o [84] ' - N - ‘ . ',
- . 1 . . o .
“ S (w) = limit' E[f, (~a)f,(w)] ’ S . !
£.£, - 4 : o . ,‘ N
] ’ R ’ .
. . Q N \ '::‘ , N ,,"J i - ¥
. 2 ' } ' EA v o
- ‘ ', P »'". ""‘, R {
IS ‘:4 . } ' ‘\" f “”\‘{'i
///. “\l‘; ! .~I\,.\ a3
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ThE‘flhal EXPIESSlon for the spectral den51ty (6. 15)

shows that the approach presented is capable of calculatlng

T -
the spectraI density for ;ndlyidual response components, if |
0 N

6.3.3 A Check on the Modified Spectral Density

v Procedure ’ ) -
. _—

Con51der the example of sectlon 5.10 in_ Chapter 5 !

3

whlch 1s concerned with the unbalance reSpgpse calculatlons

[ N

for the rotor. The steady state response at any point on

the rotor is harmonic, as discussed befere, and id in the
+ .

form

q = Py cc:s(mr-t - ek)

-

2

where p, is the radius of ‘the circular orbit representing
- k

s .

the resggase of a point k on the, rotor 'and Ok is the phase -
<o ' 3 .

angle. The mean square value of the response component i

b
is given by

T .
E[qi] = limit 7— Jf p; cosz(wrt-ek{ dt
T > ~T ”\
\\- 2 \ ] _
N \- pk
=7 , :

Two input unbélance forceg are acting onAthé rotor,
each with‘an X and Y component yiglding a force vector of
order 4. Then'the input specﬁral density matrix [Sf&w)] is
also of Qréer 4, this is explicitly written in Abpeﬁdix J. 

The mean .square value, in turn, is as

— e e mem s v——— g -y




[ caana
'

®

m».
~

— ' | .

Ez"=fs d -
[qk] = qk(w) w o

pd ‘ I »

. Using .the above procedure, the orbit radii Py at

different locations on the rotor are checked with those

evaluated earlier in Chapter 5. The check is carried out at.

a single running speed, say 11000 RPM chosen arbitrarly and‘
used here, and the results confirm the procedure explained

in the previoué section.
. - 4§

.6.4 Input Data and Associated Information for the

.

" _Grinding Machine Spindle System )

-

-

\‘ The grinding machine head shown in Fig. 1.1 is used
as the illustrative example for application of rotor-bearing
concepts developed previouély.\ Input data and other infor-

~

mation are listed below in three parts.

6.4.1 Geometrical Data

The spindle-wheel system is#shown in a schématic form
in Fig. 6.2 with the grinding whee} and its clamping parts
lumped into one single element which willlbe referred éo as
the wheel element. Also the pully at the left end is
assumed to be one piece along with ﬁhe spindle end. The
rotor beam is divided into 4 'elements with lengths and dia-
meters—-as shown in F;g{ 6.2. The modulus of.elasticity in

A .
tension and shear E and Gs for the material are taken as

~

E = 20.6843x 10" N/mm® (30x10° 1b/in®) )

Gg= 8.2737x10" N/mm® (12x10° 1b/in?)

- - ' \_ ' Fjﬂr’/‘

ol el bt
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f=—100 -~

= 60

& NODE
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90 -

Fig. 6.2 Lumped Spindle~Wheel Systems with Element
Arrdngement.

Fig. 6.3 Applied Forces &Q
Fc=300 N FC = 500N
R 8 R 8,
LEFT BEARING 882 183 955 185
. RIGHT BEARING | 600 15 825 18

Table 6.1 Bearing Reactions and Inclination Angles.

8;v)
So
;
g ‘ -
T i W
; - Fig. 6.4 Spectral Density Pattern of the

Input Force f,.

o
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6.4.2 Applied Forces

Some appropriate values areg chosen from a recent work
] \ b . » . .
on cutting forces in grinding by Banerjee [82] which are

presented as corresponding values of the group parameters

deéfsgvh. These are

il

2.19x10"° m3/m for F 300N

VdeVe Vs c

]

=3.8x10"° m¥/m for F.

1l
]

500N

These values correspond to medium machine settings. The

random cutting force fc is estimated at 20-30% of the average
) \

‘value [67,68]. Since £, is Gaussian, then the probability

that the random variable‘fc is between 30f and -3df is

£ is the standard deviation of the

random force fc. Using this information an approximate

almost unity, where a

value of the standard of deviation o. can be estimated as

~ £
follows ‘
6df =..}Fc (30% Qf the nominal cutting force F)
_Then, cf = 15 N for Fc = 300 N .
= 25 N for FC = éOO &

v

'The force acting on the wheel-element is assumed to be con-~

centrated at the element middle point. The tangential and
radial cutting force component can be approximated to,
horizontal and vertical force components [82]. Then the
cutting forces Fc4-fc are oriented from the X direction by
an angle Bc’ as can be seen from Fig. 6.3, which is giwen

by
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1

1 1

oy
1aQ

Y = tan” -, using relation (6.la)
cX ) \

)

|

Bc = tap

ey

The tensile force in the driving belt is.adjustable and a

/
T it Y bl i s Kk

. value for the tension'Tg:=SOON is assumed. With these
assumptions, the bearing reacticons are calculated for the
two nominal cutting forces Fé= 300N and 500N. The bearing . p ‘

" reactions are shown as inverted and projected on the spindle ' ot

ko

in Fig. 6.3 and listed in Table 6.1. The spectral density
pattern of the random variab}e fc is a wide band type. How-
ever, a general practical shape of the input spectral density

.

in terms of finite band can be used and it is seen sufficient

to use a simple pattern indicating a band limited or clipped

> white noise, as the one shown in Fig. 6.4 for the present

0 is the constant value of the in-

put spectral denéity and Wq is the cutoff frequency. The

example. In the figure S

spectral density SQ is related to the variggggﬁg%ﬁbyﬁ_ . 4—~»~~—»—%w4~

.
' . ]

[x]

2 ! o [
Og = f S¢(w)dw -2SOwc

-0

The value of W is taken as mc/2n = 20 KHZ.

The random force components act on the wheel element
on nodes 4 and 5, as can be seen from Fig. 6:2, in the X and

’ Y direction and are

= =+
foqg mfs =37 f

. - where the subscript refers to the 'nodes.

Then, 501 = S02 =T

.

i
t ‘ . - e
— . - v e Iy SR



‘range for a surface grinding

These values, at leasﬁ, illustrate the trend for an optimal
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L4

where SOl' 802 are the spectral density of the components ¢

fc4 and ch' The development of the input spectral density

matrix

presented in Appendix K.

Ce e e e
-

earing Design Parameters

A speed"raqgé £ 20-200 rps is used, which is'a typical

ine. Corresponding to this
speed range, an applied load of(lll2N (2501b) and a 50mm

(l.97%n) bearing diameter, the optimal design parameters as
determined by éeireg and Ezzat [85] are shown apéroximately

-

to be .
e * - |

average viscosity = 1 x‘lo‘7Reyns (#.6896 centipoises, cp)

1

radial clearance .003 in (.076mm) 4

L/d = .25 - ' ]

" efficients can be carried out as follows:

selection.—Heowever;—as can be seen from Fig. 1.1 in Chapte{ 1,

the bearings are designed such that L/d = 1.5 which is also

used here. According to the above optimal trend a \Now visco-= ——
sity oil is chosen which is ASTM60.with a viscosity value

W= 9.5 x 107" Reyns (6,55 cp) at 120°F (=49°C) which is

assumed to be the inlet o0il temperature.

Assuming all the generated heat to be carried ‘away by

the o0il the calculation of the stiffness and damping co- B

i) assume a temperature rise,
¢
ii) *calculate the average viscosity from standard

graphs,
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iii) then, calculate the Sommerfeld number and
;

subsequently t?e eccentricity ratio.
: r
. ) .
Corresponding to the Sommerfeld number and the eccentricity

ratio, the temperature rise can then be evaldated [1,15]._5 ?
Repeating the iterating procedure until convergence, the
eccentricity ratio is subsequehtly determined along with the

average ciscosity value. Using the eccentricity ratio, the

linearized stiffness and damping coefficientslk;x,k;y,...,
* * ' ‘
Cxx’cxy"' etc can be calculated, yhere
2kxx
* =
kxx S

is a function of the eccentricity ratio e bnly so are

* * i : ]
kxy""’cxx"' and kxx’kxy""'cxx'cxy"‘ are given in
Appendix E. The dimensional stiffness and damping coefficients,

» r
in turn, are

given - by

— &
kxx - kxx Wy Pg
-— *
Cxx = Pg Cxx v
_ 1 a\?
whére Pg = 5 M L (E)

Repeating t
Spee&, all

and listed

The

assumption

his procédure for every bearing load and running
stiffness and'damping coefficients are calculated

in Table 6.2. L R

above calculations are based on a laminar regime

L
for the oil film. A check on Reynold's number
. Ré

14

[93] is‘given by

\\ Re.

ke

L e o,




177 ~ .
! .
VA : .
7 N Nesec/mm
speed
Ir);s ke Ry | oRyx | okyy ] oexx °xy | Syx Cyy
Iéft bearing, F. = 300 N:
20 29346. | 39179, ~1761. | 24468. 529. 304, 234, EOOJJr
40 15374, | 33300.|-14431. | 21256, 238. 124, ?4., 197.
60 .11997. | 35810, -23476. | 20034, 176. 73, S6. 165,
80 10483. 1 40492,{~-31791, | 1912¢4. 153, 32, 39, 150.
100 10346 | 47085,|-39745., | 19555, 144, 42, 32,7 143,
120 10047, | 53637.|-47631. | 19444, 1383. 35. 26, 138.
140 9779. ] 40419.(-55442. ] 19208, 134, | .29, 224 135.
140 10000. | 677138,|-63172., | 19776, 132, 26, 20, 133.
200 9475, |481379,1-78221. | 18947, 127, 20, 15, 129,
Right bearing, Fe = 300 N:
20 9661, | 21513, -7099. ] 17845, 251, 1817 139, 293.
40 7028. | 23272.1-17092., | 15573, 185. 76, 57 195,
- 460 61465. | 27982.1~-25389. 13744;/ 133. 44, 2. 163,
80 6052, 1 34538, |-33397. 1 13203 127, 32, 23. 151,
100 6043, | 41557.}1-41262, | 12901. 124, 25, i8. 144,
140 6123, | 56188.1-568588., | 12632, 122. i7. 13, 137.
160 6185. | 63582.,]1-64557. | 12592, 122. 15, 11, 135.
180 . 6229. 1 71054.|-72278. | 12534, 122, 13. 10. 133,
200 6219. | 78272.|-79697. | 12381, 121. 24 9. 132,
Left bearing, Fe =.500 N:
20 1 36843, | 47462, 1044, | 30521, 610. 3467, 287. 347,
40 18275. | 37512,|-13840, | 25303. 258. 144, 111, 218,
60 13914. | 38675, [~-23410. | 23477, 1835. 87. b4 178,
80 12214, | 42825, 1-31874, | 22547, 158, 61, 46 . 159.
100 113446, | 48301, |-39999. | 21941", 145, 47, 35. 149,
120 10927. | S54496.{-47900, | 21584, 138. 38. 29. 143,
140 10680. | 41092, |-55487. | 21345, 134. 2. 24, 138,
160 10817. | 67956, |-63458. | 21193, 131, 28, 21, 136,
180 10446. | 74928.1-71101. | 21135, 129. 25 i9. 134,
200 10334, | 81747.1-78508. | 20955, 127, 22, 14, 131,
Right bearing, F, = 500 N: “
20 17347, ] 34227, ~4147. | 30910, 350, 295, 231, 420,
40 10033. | 28692.|~17270. | 23248, 173, 109. 81. 241,
40 8682+ | 31670, |-26206. | 20559, 140, 43, 44, 191,
80 8390. ], 37083, {-34387. |'19347, 129, 44, 32. 169,
100 B290. | 43339.[-42290. | 18556, 124, 34, 24, 157,
120 8334. | 50170,[~-50147, | 18165, 122, 27. 20. 150,
140 8360. ] 57152.1-57871. | 17807, 121, 23, 16, 145,
1460 8412, 1 64273.)-65340, | 17573, 120. 20, 14. 142,
180 | B487.| 71473,]-73162. | 17447, 120. 18. 13, 139.
200 8528, 78523.}-80551. | 17283, 119, 16, 11, 136,
Table 6.2 Stiffness and Damping Coefficients for Both
. Bearings with the Two Cutting Force Cases.
K,
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. where v is the kinematic viscosity, d is the shaft diameter

and h is the film thickness, isAmade for the maximum speed

reaction 955N for which the temperature rise is 6°F. 1In

. ;

such a case, the maximum Reynold's number calculated is 323
which defiﬁes essentially a laminar operating regime.
/“ .

6.5 Results and Discussion

6.5.1 Unbalance Response

As a primary step, the rotor response to unbalance
force is calculated. An unbalance weicht is considered here
at the wheel element which is the most significant part of
the grinding machine spindle. The major and minor axes of
the elliptical response orbit, divided by the bearing radial
clearance, per Kg.mm unbalgnce %Emg}otted in Fig. 6.5 versus

the running speed. No effective critical speed can be dis-

tinguished from this unbalance.response graph: )

The middle node (3) moves along the smallest .ellipse
which, primarily prediéts that the rotor runs through a
conical mode. To emphasize this the linstantaneous mode
shape of the rotor shaft under unbalance fgrce is presented
in Fig. 6.6 for speeds 20,100 and 200 rps. Results show
that the rotor shaft moves in conical mode through all speed
range with the deflection taking place' in tﬁf unbalance

plane only. It can therefore, be concluded that the rotor

‘hotion is dominated by rigid body modes and the deflection

in the rotor shaft is only due to the applied unbalance force

without participation from the shaft flexural bending modes.

P N
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A confirmation on this cqgéTﬁsjon requires a qualitative {

analysis which is presented in a lattéy part. ~

ﬂk 6.5.2 Stochastic Response

Since the input cutt{ﬁg force fc {g the grinding
spindle~wheel system is-a Gaussian random variable, the
System response is also Gaussian. Here the random response

is completely defined by the variance only since the mean

value of the input is zero. The variance of the stochastic

o g i+ e %

responsé at a particular point on the rotor, say node S5 and

s

X direction denoted by (5X), is evaluated by integrating

-

' ~ the spectral density of the random output, SSX(w), which in

turn is evaluated using, the complex frequenby response

RSSO PRI S

functions.

. The four complex frequency functions, whose magnitude
actually H5X;i(g)2 with i=4X,4Y,5X and 5Y, are necessary to
evaluaté’ssx(w) are blotted in Fig. 6.7, for 2 ruhning speeds.
The system critical freguencies, &hich are the effective
damped ‘natural frequencies at the respective running speed,

[

N .
can directly be read from such plots. Two kritical frequencies

, are of special significance in bbth the cases presented in
Fig. 6.7. The first occurs at one—haif the running épeed,
and becomes more sharp with the higher speed case while the
second is fixed at approximaéely 400HZ. Beyond these twé
critical frequences, roughly beyond 1000Hz, the complex

frequency response drops considerably.
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Spéctrql densities are plotted for that effective
frequency range in Fig. 6.8 for the case of Fc==SOON and
speeds of 80 and 180 rps. The pattern of these spectral

densities is a one of a narrow band process particularly

at the higher funning speed value. This indicates a. growing

. tendency toward resonance, or instability, as the speed
1_” i f
increases. The estimation. of the band width Aw of a spectral
. ° R . "

density may rely on some assﬁmptiqn such as considering the

» frequency range outside which the spectral density is a

small percentage of the' maximum value. For example, consider

'the spectral density of the response‘in the f£ifth node and
X dlrectlonal Sg (m) at a speed of 180 rps in Fig. 6.8. The
band w1dth Aw beyond which tﬂé spectral density drops below
1%¢of ,the maxxmum value is Aw=600HZ, as demonstrated in

\

Flg.'§.8.

- Before calculating Ehe vatiances, the participatioq
Pf‘the higher modes in?the stochastic response is studied
through plotting one variance component, say o;%, versus
unchanged, as shown \q

0
in Fig. 6.9. For both rotor speeds used, the value of the.

. the cut off frequency W kee?ingxs

varlance ol remains statiomary beyond a.(conservative set)

sx
& K '
frequency of 1000HZ. This means that the effective modes on

o

, .8
the'r%for random response are those of frequencies below

1000HZ. . | ;

.\ A direct result of this fact is that the calculated

response will still be applied for.difﬁerent values of the

e
‘e
“
2 %

¢

o
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cut off ffequency w, of thé input force, anywhere over

. 'IOOOHZ, exéept for a mgltiplication factor. This muiti-' | ' )
plication factor is = original cut off frequency (20KHZ) \
divided by the new cut off frequency. -The variances .of the
fesponse at the wheel element nodes 4 and 5 in botﬁ X and

Y directions are presented in Fig. 6.10 and Fig. 6.1l for

the cutting force cases F_=300N and F_ = 300N respectively.

. For a Gaussian random process, the probability that

the amplitude has a value be;ween —Zcq and Zcq is 95.44%

and that it is Between -30q and 30q is 99.74% [84] where - ‘ \

o is the standard deviation of the amplitude. As an \ Lo !
. . aE example of such an interpretation, .consider the value of
. . ]

2 =
Ocx at 180 rps and for Fo 500N

2 - -8 2 = -4 .
Ogx = 9.3x10 mm Osx 3.05x10 mm j
The probability that the response amplitude at node 5 in °

4
and

the R direction has a value between -9.15x 10,
9.15x 107" mm i5:99.74%. This pérticular reponse component

X5, is of interest, since it is at the end of the wheel

element and in a direction perpendicular to the surface
under grinding and therefofe will affect the output surface

roughness. ¢

, A conservative esﬁﬁmation that the input spectral
density is limited by the cut off fr%guency Wa = 2KHZ (giving
'Sg‘about 10 times the prévg?us va;ue)\IEéas to 10 times the
preﬁiﬁus;yfcalpulated variance.: For the above, the value
will:be‘ |
\
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. of = 93x%x10"° mm? = 9.6 x10 " mm

5X O5x

diving most of the confidence, about 99.74%, that the

plitude will be between -2.89 x 10”° and 2.89 x 10~ ° mm.

Finali&, it may be noted that the radial clearance
is .076 mm and then without any check on the error involved
in the linearization of the bearing hydrodynamic forces, it
is directly obvious that such an assumption is quite accept-
able. If the amplitudes of the rotor motion aré not small
endugh, still a check on the acceptability of the linearized
stiffness and damping of the bearing can be made on an
approximate basis by using the results of Chapter 4. 1In
this case, the stochastic response is to be calculated at
the bearing cen£re line and then the probabilities o®ethe
résponse in the X and Y directions, at the bearing centre
line, is used to construct a rectangle around the equilibrium
point. The sides of the rectangle are Goc .

and GUC where

X Y
Oax and UEY are the ?tandard of deviation of the response-’in
.the X and Y directions at the bearing centre line. Then the
rotor motion ét the bearing centre line will most probably
exist inside’ such enveloping rectangleg}/%Using the size of

this rectangle and the deviation error plots of Chapter 4,

£h¢ error in the linearity assumption can be roughly obtained.

N 6.5.3 Qualitative Analysis

In the presentation of the unbalance response, calcula-

tions, it was noted that the rotor does not run through any

-

critical speeds in the specified speed range, namely 20-200rps
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and that the beam deflection is mostly due to the unbalance
force and dtherwise behaves more like a rigid body. It is
. B . ol
also noted, from the complex frequency response functions,®

v

that the first critical frequengy of the system occurs at

g i o A o e

dne-half the running speed which resembles the behaviour

s

of the complex frequency response functions of a rigid N
rotor presented in Chapter 4.. To elaborate on the behaviour o
of the rotor bearing on hand, the damped natural frequency

yl- charts for both cutting force cases Fc==3OON and FC==500N,

are presented in Figs. 6.12 and 6.13 respectively.

i .- - '
)
‘

»
As can be seen from the damped natural frequency

¢ Na i Sl

charts, the rotor runs free from intersection with any of

-

1

the rotor modes which explains why no critical épeeds are

endé:;te;ed in the unbalance response curves. The first

:
: !
two nodes are over damped, tgat is nonoscillatory modes or — -

i

with zero frequency, in both of the cutting force cases and
therefore not presented on the charts, in Figs. 6.12 and
t

6.13, whereas the next two modes, third and fourth, are both

odd and with forward precession. The third and fourth modes
are of frequencies egqual to ong—half the running speed +1%

approximately. 1In this case, éhe rotor mode is composed of
a single mode unlike the hi§her modes Sth,Gth,...,etc which

split into two components, one with backward precession and

the other with forward precessioh. ) .

-

v Since the rotor runs at speeds that are closer to the
frequency of the third and fourth mode compared to any other

modes, these two modes are the most iafluential in affecting

1 Yo
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4

the behaviour of the rotor under synchronous excitation. ’ ?‘

The frequency of the fifth mode is also important and as

e e msn

. 2 . .
seen from the complex frequency response functions Fig. 6.7,

it is associated with significant magnitude for such trans-

1) et s

fer functions. It is interesting to note the change in the

magnitude of the transfer functions in Fig. 6.7, at the

A #

first two peaks relative to each other. The second peak,
at 400HZ, is more significant for the low speed case while

" the first, at half the running speed, becomes more effective

!
i

at the higher speed.

The first two modes appear to be dominated by the
rigid body motion and consequentl? due to the effect of the
hydrodynamic forces in the bearings. Therefore, the grow-
ing significance 'of the third and fourth modes at higher
speeds signals that the rotor is approaching a state of in-
stébility in oil whip. 1In fact, this is determined precisely
by extrapolating the logarithmic decrement curve for the
fourth mode until it reaches a value of zero which defines
the onset of instability in oil whip and found to occur at
212 rps for the Fc==300N case, presented in Fig. 6.12, and
at 230 rps for tpe Fc==500N case, shown in Fig. 6.13. The
onset of instability in oi} whip occurs at a running speed
that is twice the frequency of the third and fourth mode
which are the first and second rotor modes, excluding the
overdamped modes. This is also recognized by Lund [54] to -
be the case other than the oécurance of oil whip at twice

the first bending critical.

o ey,
IS R - D e s -
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To furtﬁer elaborate oﬂ the nature of the rotor -
motion, the first and second modes, again excluding the
overdamped modes, are plotted in Fig. 6.14 forcdifferent
speeds. Here, the real parts of the eigenvectors are

plotted. As can be seen from tﬁe graph, only when higher
speéds are reached that some deflection, however negliélble, '
starts to take place. Otherwise these modes can be recog-
nized as mainly dominated by rigid body motion. The reason
that these modes are odd is because of the Opposité reaction
of the two bearings which consequently leads to oppositely
acting hydrodynamic forces at both bearings. This results

in an unsymmetrical overall configuration despite the almost
geometrical symmetry of the rotor-bearing. The first bending
critical should take place at a speed of 400 rps (24000 RPM)
which can be seen by extrapolating tﬁg fifth mode and ex-
tending the synchronous excitation curves in either of

Figs. 6.12 or 6.13. However, this speed will never be

reached due to o0il whip.

6.5.4 Further Analysis

»
Two important points remain for additional discussion.

These are reported below.

a) The effect of intludigg further details to the
rotor-bearing system on hand is investigated considering
bearing support flexibility. The damped natural frequency
graph in Fig. 6.15 corresponds to a case of including a

flexible support to the %faring with Kb==3.53<105N7mm (2x10°1b/in) .
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\

As can be seen from the graph, only two modes are added in
‘the frequency range above 400HZ, otherwise the picture Fe-
i . ?% .

mains almost identical to that in Fig. 6.12. The onséet

s speed of instability in oil whip occurs at exactly the' same

previous value, that is 212 rps. Once the hydrbdynamic;

G . . ,
/bearing effect is recognized as the most dominant factor
on the rotgr behaviour, other effects such as hystersis,are

of minor significance and are needless tb be investigated.

~
b) A rotor-beaging system, that is recognized as
being rigid, which is the case on h;nd,'may have critical
frequencies @hich‘are“much‘highermthan the running speeds
‘but.are still included in tﬂe frequency band of. the input .
;speétral‘density. éhis will necessitate the inclusion of
these frequencies into the céﬁculation‘of the stochastic
response which directly requires the rotor to/ be treated as
flegible. This is démonstrated in Fig\ 6.10 where a case
is presented for the varidnces calculated using only the
first two modes. (next to the ovérdamped modes) which implieé
consideration of the rotor to be rigid.‘ as can be seen'from
the ‘figure the results with this treatment is well off the
oriéinally reporﬁéd results. This is a consequence pf
neglecting the effect of the criticqy frequency at 400H3Z.
In such cases'as this, a’simple flexible rotor treatment may
Se fecommended, say, by modelling the whole rotor beam as

¥

one element.

¢

It can then be concluded that under certain circum-

stances the assumption of rotor beam rigidity may be quite




is shown to greatly simplify the approach which is derived
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apprOpriate, rans well below its first critical, for unbal-

'ance and transient response calculatlon, but can not alzayg’

be treated as belng rigid for some cases that require a —
N -
stochastic analysis. .

6.6 Conclusions

el

¥, .
; . The modal analysis procedure along with the conven-

ticnal‘spectra% density approach for stochastic problems,
¢

with the necessary relations for calculating thé stochastic -

respoﬁﬁe of the grinding machine rotor system. A check for

the procedure is alsg pfésented. The séectral pattern of

3

the random cutting force in grinﬁing is specified in view
of the pré%ﬁous experimental measurements and using*the
facts about random variables as specified by the central

limit theorm.

4

With the different mathematical models developed . 'Y
earlier for flexible:and rigid fotors; an oétimum seleétion
of a model to be employed is discussed. An analysis is then
c;rried out on a given grinding machinglspindle. In this ‘

example; the spindle responses under both the unbalance and

the random inputs are calculated and analyzed. The charac- ,

g

“tefistic; df the rotor bearing in this example is distinguished

/
by .a small size and opposite bearing reactions. Such a

"special case has not been discussed in previous investigations,

These characteristics enférce a spindle motion that features
an odd shape while sustaining a rigid body motion. Therefore
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g

rigid rotor. so that results of a more general

e deduced employing simpler calculatio%§9

the fsystem decides the flexibility criterion for the rotor-
bearing system_ .For a stoghastic input with a wide band
ﬁype of spectral density which contains the fregﬁency‘
corresponding’ to one of the effective dambed nature modes %
of the rotor-bearing system, the .rotor beam~must be treated
as flexible even though ité runﬁing speeds may be fgr below

\

the frequency of first bending critical.

seem appropriate to reduce the analysis to. the simpie

L
is found that the type of 'input excitation on

.

/

/

o
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

-

7.1 Highlights of the Investigation

&
Comprehensive\mathematical models are constructed and.

1

preséntea_for‘light rotor bearing systems with an elaborate
emphasis on their stability characteristics. The dynamical
systéms presented are not ongz versatile as to rgpresgnt
acéu;ate{y the various states of the rotor-bearing §ystems
but alsq a special care has been taken to maintain an ove;all
simplicity for these modeis in-terms‘of the developed proce-
dures, formulated expressions and dimensional cénsiderations.
With such a combination of both accuracy and simplicity,

the dynamical systems presented are quite attractive for
practical app%}cations. General.methods aré developed with.
minimum limitations for calculating the system':esppnse to
deterministic and stochastic inputs. The procedure can
accomodate speéial requirements.for a rigid body treatment

as well as linear considerations in an organized manner with

appropriate Jjustifications.

. 4

An application of the results of the bearing dynamic

analysis is carried out on a grinding machine rotor system,
. et :

‘and the study is developed in a form for a general practical

use since the dynamical systems constructed account for all

thé effects that may not alwéys be encountered for the range

of operating conditions which are normally used in the

A

[
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" as future designs for a better understanding and design of
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\

design of such machines. Therefore the results of this’

€
thesis should serve as an improved tool for present as well |

- such precision machines as well as other systems. @

* . M . C P

7.2 Major Conclusions

v * ‘ °
The contributions made in this investigation may be

¢
-

categorized inés two majér areas. One part of the analysis
coﬂsidersﬁghe rigid body motion of the rotor and thé othfr

is extended to flexible rotors. The conclusions drawn ffom

these are first listed under two categories below and in a !
AN
i
later part the method of solutions used and their justifi- f
- 4 [
cations are explained prior to implementation of the analysis '

to special conditions of the rotor bearing system. - ‘ ‘

- l

7.2.1 Rigid Rotor BearinqﬁSyétem.

A ' - -

The nonlinear sti'ffness and daﬁping are evaluated

using a rather general procedure that makes it possible to 3

\

carry out a numerical solution in a relatively general form,

which requires"pfésgecification of only a few dimigﬁionless
paramefer§ with known bounds. Beginning with ? decomposition ///
of the Reynolds' equation into appropriate components in a
'diﬁepsioﬁless form,‘the-equatioﬁs are solved by the finite v
element method, integrating ;or the film forces, using app;@-
priate curve fitting funétions and finaliy taking the

b

cavit;tion'efféct into account.

L
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The pressure profile of thei dynamic film is identified .

e -

and is seen as the practical and basic dynamic film model in
® .

view of the previous experimental observations. 1In the

place of the basic film model which has a time dependené

film profile, two partial £film models, namely the m and the

e [ mea Msa e

3n/2 fiim, are developed for a finite bearing and are shown
to be the upper.and lower bounds for the basic dynamic film.
The hydrodynamic forces in these partial film models aré
decoupléd from the Reynolds' equation and thus pféserving

the simplicity of the known approximateﬁéolutions, ‘the long

and short bearing approximations; but with an improved
accuracy. The 37/2 film model can be used for the case of , ?
light loading in the presence of sighificant supply pressure
and can be reduced quite succEssfully to the case of squeéze‘
film damper since it Eontains no distortion in the squeeze

-
pressure component. For other cases, the m film model may

be used.

Comparisons with previous work are carried out in ( )
. detail for the purpose of verification and for bringing out
the special nature of° the mathematical models. They are

.

listed below in a proper order. ¥ =+ .
' ) :

.

i) A comparison between-the developed eccentricity -
' functions and the corresponding functions for tﬁe short and
thé long bearings shows that there exists narrow acieptap;-
liﬁy limits of such approximations; namely L/d > 2 for the

long bearing and L/d < .25 for the short bearing case.

N
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ii) A comparison with the corrected short bearing

25 has '
b

also been carried out for the stationary state and squeeze

_theory [13] that extends its validity up to L/d < 1

. ‘ motion. When compared with the analytical solutions that
exist for such special cases using variational methods, the

results of the present analysis show a better agreement inde-~

“\

pendent of the L/d ratio.

iii) A comparison with the measured experimental .

o

- .results for the short<%earing [2j shows tHdt an approximate

solution as given previously can yield correct results for
. 7

some parameters (in this case, the attitude angle) while

introducing considerable error for others and this can only

’

be clarified if other bearing parameters were also measured
) .
f N\ .
§ (in this case, the eccentricity). P
: ‘ ) -iv) A comparison with the available experimental work

for the full £film case [40] is also carried out and this

\ -~ ) .
- clearly demonstrates the‘ﬁccuracy of the present approach

.and the results. Since all-the eccentricity functions for
all the different film models are developed through a common

procedure, it can be stated that such-conclusion can also be

extended to the partial film models presented.

A v) A comparison of the linearized stiffness and damping
(5] which employed a weighted sum of the long and short

bearing, with the present results showed good agreement for

some stiffness and damping coefficients..
AN
7. . : '

+

|
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The stability behaviour of the f{nite‘bearing is inves-. .
tigatéd using both linear and nonlinear methods and give the

following results: Q\

« i ‘
i) Linear stability analysis yields a modified stabi-

lity boundary that are distinct with a simple trend over the
L/d ratios without arbitrary crossovers that were previously

reported [43,44].

» ¥

ii) Through a numerical integration of the noﬁlinear
equations of a bearing with L/4d = i, it is found that the ¢
T film is more’ liable to be destabilized by input distur- \
bahces and possesses a smaller orbital stability subregion
in comparison to the 3n/2 film model. The large orbital
stability subregion of the 37/2 film model is distinct with
a gradual growth in the size of the limit cycle across tbe i : !
orbital stability subregion until the instability boundary
is reached wheré‘a iarge cirgular limit cycle is manifested.

This may be used as a logic explanation for the often observed

limit cycle for a full film bearing which essentirally requires
similar circumstances for its formation as those of the 3w/2

film model.

idi) Further extension of the stability results, in

‘the region of stability, is carried out through, and as a by

product of, a modal analysis. The logarithmic decrements

are calculated as a part of the study of the stable behaviour

.

of 'the finite bearing.,I ~_ .
/

Pe, Co ke
Toaem vt
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The solution of the system through modal analysis
enabled a focus on the following important statements on

the bearing behaviour:
7
/ ) <4
i) The evaluated damped natural frequencies of the

—

.

system over most of the stable region of the bearing show

that one of the two natural frequencies is always overdamped.

ar

ii) The complex ffequency response functions are

0

plotted for a rigid symmetric rotor against variations in
L/d ratio , dimensionless speed and static eccentricity ratio

e The important effect of the unbalance excitation can

o*

clearly be seen to be outside the most sensitive frequency

‘region which is located around a frequency equal to one half

the running speﬁg. X

N

7.2.2 Flexible Rotor Bearing System,

Employing a finite element techﬂique a conclusive
dynamical model is built taking into accéuntvthe gyrdécopic
moments, rotary inertia, shear deformation, internal viscous

+ damping, hysteretic aamping, finite bearing stiffness and
damping coefficients as well as the Bearing supportlflexibif
lity. Two main points used in this analysi; which greatly
simplified the procedure for developing the dynamical system
while maintaining its dimensions and éccuracy may be stated

as following: K *

. S - - — . , N
T T , T L e R e R e
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- 1) In all the previous applications of the finite ’ ]
:eiement method on the rotor dynamic préblem that took into b
account the gyroscopic moments and rotary iner£ia {63-65],
a unified spatial system for the angular.direction was uti-

lized. Since such a treatment does not solve any existing

‘problem but rather introduces a great deal of complexity,

0

part‘gularly when further details are to be added to the

finite element model, the motion planes are treated in an

e

analogous manner in the piesent investigation. Only matrices
of order 4 (instead of usually 8) are needed to be construc-
ted. Further addition of details, particularly .shear defor-

métion, is greatly simplified in the present approach.

ii) A simple Timoshenko beam element is utilized here

W i ¢ bt oD
w—

.which was previously recognized as to provide accurate
‘results when applied to simple beam problems [59] and requires
no change in the dimensions of the dynamic system. This is

&

found "to replace elegantly the more detailea element that

results in an additional 50% increase in the number of degrees
of freedom for the system of eieq’nﬁ equations and was very
recently used in tbe only application-of the finite eleméﬂt

_on rotor. dynamics that accounts for shear deformation [62,63].

The difference in the calculated results between the two

type of element arrangement was also shown to be negligible

{59].

In addition to the ébove, the following contributions

are worth mentioning. They are;
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iii) The shape functions that correspond to the angu-
lar displacements of the beam ére derived ‘and presented.

This makes the development of the finite element procedure

rd

more programmable.’
» /’

- ’4’-—-\,—7

iv) The derivation of the nonconsefvative moments due

to the hysteretic damping in the finite element development '

!

are also presented.

/

v) A comparison with previous experimental and theo-
retircal results due to Lﬁnd and Orcutt [53] shows that the
present finite element model, using only 3 elements, is in
betté%:aqreement with the experimental observationé tﬁan

the transfer matrix method employed in [53].

vi) An examination of the two different flexiblity
effects,/namely the surface contact flexibility and the
bearing suﬁport flexibility, reveals that the latter stabi-
lizes the rotor motion considerably. This is related to the

specified degrees of freedom of the bearing and is explained

using a point view phase diagram.”

vii) It is also found that the plotting of the angu-
lar displacements may help to identify the system criticals

that may be hard to distinguish using the translational

response only. These are essentially preliminary studies

on the system criticals and can lead to comprehensive studies

»

using the.damped natural frequency charts due to Lund [54].

o~ —— 4
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7.2.3 Methods of Solution Employed and Special Cases

The method of modal anélysis is used in solving the
linear systems representihg both the rigid and the flexible.
rotér. A standard éroof that is not previously available
in the litegsture is provided. This method is then extended
for use in the development of the spectral density approach

for the calculation of the stochastic response. A simple

«heck is provided to verify the procedure and to check the

program, for the calculation of the stochastic response.

For easy use of the results when the system can be
considered linear, the error involved in the calculated
response to unbalance exeitation is evaluated in detail and
a demonstration of how these results can be employed is also

outlined.

’ An application of the regults of rotor dynamic study

on a grinding machine spindle is carried out. The random
o .

cutting force is modeled in view of previous experimental

observation on other metal cutting processes and uFing.the
properties of random variables as defined by the central

limit theorem. The. investigation involves: ‘i) the system
response to a unit unbalance located at the grinding wheel;

ii) the variance of the stochastic response to the input

‘cuttiné forces; and iii) the bandwidth of spectral density

. of the random.response. The system stability is investigated

using different damped natural frequency charts and the

[N
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systeﬁ onset speed of instability in o0il whip is calculated.

An interesting conclusion arises from the examination

of the results of the study on the grinding machine rotor

.and may pg stated as follows: A rotor bearing system that

may be recognized as undergoing a rigid body motion can be
considered-as such only for calculations such as the unba-
lance response. But the system must be treat;d as a flexible
rotor for a random input with é séectral density that includes
in its Band a frequency thatvcorresponds to an effective

damped naturdl frequency of the rotor-bearing system.

7.3 Recommendations for Future Work

The present treatment of thé finite journal bearing
\ 0
can be expanded, without much complications, to handle bearings

with different film geometry in the incompressible state of

the film and pérhaps for the compressible film as well. 1In
fact, the present approach is general enough that it can be
of immense use in the nonlinear dynamic problem of the jour-
nal bearing. A few possible future developments are listed

.

below:

i) A reasonable .combination of the m and 37/2 film
models, preserving their simplicity, will certainly pfovide
a better alternative and perhaps an excellent overall model
for the general journél bearing problem. It is suggested
here that an implementation of the boundary angles (6,,6,)

v

of the dynamic film for the short and long bearing presented

o a7 ST
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in Chapter 2, into the general procedure, may produce much -

improved results.

-~

ii) The case of skewed journal bearing c handled
with ease by using the present approach. Onfly\two parameters
will have to be added, namely the two incljnation angles in

both planes.

Extensive nonlinear analysis for the'stability beha-
viour of the finite bearing is suggested as future work for
different L/d ratios. The search for an appropriate Liapunov's
function may also be continued for a classical stability

analysis.

The errors involved in the calculated response using
a linearized system which is construéted here in a chart
form is a very valuable tool for the design of rotor bearing
systems. It m8y be attempted in future to generate rather

extensive charts and tables to cover the entire range of

L/d ratios and dimensionless speeds.

One of the highligﬁts of this thesis is the study of
a grinding machine spindle system employing the present and
previously available results in the field of rotor bearing
dynamics. The input stochastic¢ cutting forées are modelled
through;an appropriate spectral density fupction and are
based on a study of previously reported cutting ‘prce measure-
ments in df?%erent machining processes which have to be
experimentally verified for a grinding opergtion. The resulgs

of this analysis and the procedures used may be useful in

\ |

ot bt s i s
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3
-

%extending such studies for the design and performance opti-
. . ' \ )

mization of diff%;ent machine-tool system in manufacturing.

Another follow up of this is the correlation of the rotor - )

-

work piece -ﬁcutting tool system response to the surfqée

roughness parameters of the resulting produét. Perhaps the
optimal or desired roughness quality can be achieved through - ’
the cdoptrol .of the machining conditions dictated by the :

spindle response in the cutting directions.

“ ' o




1
"

P TP Y

> : - 212 -~

-

REFERENCES

l. | Trumpler, P.R., "Design of Film Bearings”, MacMillan,

' New York, 1966,

5

W,

2. Ocvirk, F.W., "Short Bearing Apprbximation for Full

Journal Bearing", NACA, /TN 2808, 1951. o ' i

3. + DuBois, G.B. and Ocwvirk, F.W., ?Short Bearing

Approximation for Full Joyrnal Bearing", ‘Trane. ASME, = -«

vol. 77, 1953, p. 1173.

4. Jennings, V.D. and Ocvirk, F.W., "The Simulation of
Bearing Whirl on an Analog Computer", Journal of

Basic Engineering, Trans. ASME, Series D, Vol. 84,

- N e

1962, p. 503.

. { .
5. Childs, D., Moes, H. and Leeuwen, H., "Journal .

Bearing Impedence Descriptions for Rdtordynamic
Applications", Journal of Lubrication Technology,

Trans. ASME, Vol. 99, No. .2, 1977,.p. 198,

6. Hays, D.F., "A Variational Approach to Lubrication '

.

Problems and the Solution of Finite Journal Bearing",'

. \_ Journal of Basic Engineering, Trans. ASME, Seriges D,
\

[

~\¥?1. 81, No. 1, 1959, p. 13.
N , . o
7. Habata, K., "Theoretical Pressure Distribution in

| |

* ' Journal Bearings", Journal of Applied Mechanics,

* “Trans. ASME, Series E, Vol. 83, 1961, p. 497.

8. -Ram&chandra, 8., "A Solution of Reyncld's Equation

for Full Finite Journal Bearing", Journal of Basic . ,

Engineering, Trans. ASME, Séries D, Vol. 83, 1961, p. 589.




PR

9.

10.

11.

12.

13.

14.

15.

- 213 -~

Tao, L.N., "Journal Bearing of Finite Length with
Variable Viscosity", Journal of Applied Mechanics,

Vol. 26, Trans. ASME, Series"E, Vol. 81, 1959, p. 179,

Tao, L.N., "General Solution of Reynolds' Equation
for Journal Bearing of Finite Width", Quarterly

Journal of Applied Mathematics, Vol. 17, 1959, p. 129.

4

Donaldson, R.R., "A General Solution of Reynolds'
Equation for a Full Finite Journal'Bearing", Journal
of Lubrication, Trans. ASME, Series F, Vol. 89, No.

¢

2, 1967, p. 203. . , :

Warner, P., "Static and Dynamic Properties. of Partial
Journal Bearings”, Journal of Basic EngiSZering,

Trans. ASME, Series D, Vol. 85, No. 2, 1963, p. 247.

Barrett, L:E., Allajire, P.E. and Gunter, E.J., "The
Dynamic Andlysis of Journal Bearing Using a Finite
Length Correction for Short Bearing Theory", "Topics
in Fluiéd Film Bearing and Rotor Bearing Sy;tem Design

¥

and Optimization", ASME, New York, 1978.

Day, L., "The Validity of Some Approximate Solutions
to the Reynolds' Equation", Journal of Lubrication
Téchnology, Trans., ASME, Series F, Veol. 101, No. 3,

July 1979, p. 385.

Raimondi, A.A. and Boyd, J.,. "A Solution for the
_Pinite Journal Bearing and its Application to Analysis
and Design - Part I, .II and III", Trans. ASLE, Vol. 1,

No. 1, 1958.

T Ty R TN N Y N T

T e e ey




M

16,

17..

.18,

19,

20.

21.

{ r

.

- 214 -

Sternlicht, B., "Elastic and Damping Prdperties of
Cylindrical Journal Bearings", Journal of Basic
Engineering, Trans, ASME, Series D, Vol. 18, 1959,
p. l0l.

Lund, J.W. and Sternlicht, B., "Rotor Dynamic with

Emphasis on Attenuation"; Journal of Basic Engineering,

Trans. ASME, Serieiap, Vol. 84, 1962, p. 491.

Huebner, K.H., "The Finite Element Method for Engineers", /

John Wiley and Sons, New York, 1975,

[

Reddi, M.M. and Chu, T.Y., “F}pite Element Solutjion
Fasd

of the Steady State Coipressible Lubrication Probiem",

Journal of Lubrication Technology, Series F, Vol. %2,
o o

No. 3, 1970, p. 495. ' o

Reddi, M.M., "Finite Element Solution of the In-
compressible Problem", Journal of Lubrication Tech-

nology, Trans. ASME, Series F, Vol. 91, No. 3, 1969,

p. 524.

‘\ ™, \

Booker, J.F. and Huebner, K.H., "Application of

Finite\Element Method of Lubrication: An Engineering
| .

Apbroach“, Journal of Lubrication Technology, Trans.

" ASME, Series F, Vol. 94, No. 4, 1372, p. 313.

Akers, A., Michaelson, S. and Cameron, A., "Stability
. Contours for a Whirling Finite Journal Bearing",
,Jourhal of Lubrication Technology, Trans. ASME,

Series F, Vol. 93, 1971, p. 177.

|
|

1

\ E

E




- ' - 215 -~

=

Kirk, R.G. and Gunter, E.J., Disqussion on "Stability
Contours for a Whirling Finite Journal Bearing",
Journal of Lubrication Technology, Trans. ASME, Series

F, Vol. 93, 1971, p. 186. '

Singh, D.V., Sinhasan, R. and Tayal, 5.P., "Theoretical
Prediction of Journal Centre Motion Trajectory",
Journal of Lubrication Technology, Trans. ASME, Series

F, Vol. 98, No. 4, 1976, p. 620.
L 4

Etsion, I. and Pinkus, 0., "Solution of Finite Jour-
nal Bearings with Incompregfible Rilm", J%grnal of
" Lubrication Technology, Trans. ASME, Series F, Vol.

97, No. 4, 1975, p. 89.

Dawson, D., Gddét, M. and Taylor, C.M., "Cavitation
and Related Phenomena in Lubrication", Proceedings of -
the 1lst Leeds—Lyoﬂ Symposium on Tribology, University

of Leeds, England, September 1974.

Swales,.P.D., "A Review of Cavitation Phenomena in

Engineering Situations", Ibid, pp. 3-9.

re

Temperley, H.N.V., "The Tensile Strength of Liquids",

Tbid, pp. 11-13.

Dawson, D. and Taylor, C.M., "Fundamental Aspects of

Cavitation in Bearings", Ibid, pp. 15-25.

Flpberg, L., "Cav1tatlon Boundary Condltlons with =
Regard to the Number of Streamers and Tensile Strength

of the Liquid", Ibid, pp. 31-35.




—

31.

32.

33.

34.

35.

37.

- 216 -

N

Marsh, H., “Cavitation in Dynamically Loaded Journal

Bearings", Ibid, pp. 91-95.

- . 4
Thomsen, K.K. and Lund, J.W., "Consideration of Film
>
Rupture in the Inlet Zone of a Journal Bearing",

Ibid, pp. 163-167.

Milne, A.A., "Variations of Film Extent in Dynaﬂically , #

Loaded Bearings", Ibid, ,pp. 79-90.

Coyne, J.C. and Elrod, H.G., "Conditions for Rupture
of Lubricating Film - Part I Theoretical'Model",

Journal of Lubrication Technology, Trans. ASME, |

~ , !
Series F, Vol. 93, No. 3, 1970, p. 451. S
i

Parkins, D.W., "Theoretical and Experimental Deter-
mination of the Dynamic Ch;racterisfics,of a Hyé}o-_ , i
dynamic Journal Bearing", Journal of Lubrication

Technology, Trans. ASME, Series.F,‘Vol. 101, 1979,

p. 129.

i
Extent in Dynamically Loaded Complete Journal Bearings",

Cole, J.A. and Huges, C.J., "Visual Study of Film

Proceedings of the Institution of Mechanical Engineé&s,

hhubrication and Wear Conference, 1957, p. 147.

Taylor, C.M., "Research Note : Separation Cavitation,’///

P |

e

Solution for the Infinite Width Cylinder-~Plane o
N . /‘
Journal Bearing Configuration", Journal of Méchanical

Engineering Science, Vol. 15, No. 3, 1973, p. 237.

e




..2]_:7..

'38, Wade, R.B. and Acosta, A.J., "Experimental Observation )
o on Flow Past a Plano Convex Hydrofoil", Journal of
Basic Engineering, Trans. ASME,'Series D, Vol, 88,

No. 2, 1966, p. 273.

39. Lund, J.W. and.Saibel, E., "0il Whip ﬁhirl Orbits of
a Rotor in Sleevé Eearing“, Journal of Engineering ¥
. . for Industry, Traﬁs. ASME, Series B, Vol. 89, 1967, - %,
’ o. 813, , ’

\ | .

,/ 40.  Mitchell, J.R., Holmes, R. and Byrne, J., "0il Whirl

PTCTen

' A of a Rigid Rotor in 360° Journal Bearings : Further

o ' ’ Characteristics", Proceedings of the Institution of

T T

Méchanical Engineers, Vol. 180, Part 1, No. 25,

1965-1966, p. 593.

\
\

41, Seireg, A. and Dandage, S., "A Phase-Plane Simulation
L}
. . for Investigating the Effect of Unbalance Magnitude

e s e R B0 e e S S

of the Whirl of Rotors Supporfed on Hydrodynamic

Bearings", Journal of Lubrication Technology, Trans.

‘ /;////// . ASME, Series F, Vol. 97, No. 4, 1975, p. 605. C
g |

/j// 42, Reddi, M.M. and Trumpler; P.R., "Stability of the

H "

% ' ‘ High Speed Journal Bearing Under Steady Load : I -~
The Incompressible Film", Journal of %pgineering for

Industry, Trans. ASME, Series B, Vol. 84, 1962, p. 351.
~f 43, Holmes, R., "Instability Phenomena Due to Circular
Bearing 0il Films", Journal of Mechanical Engineering

Science, Vol. 8, No. 4, 1966, p. 419.




J—

[

45.

- 46,

47,

48.

49.

50.

- 218 -

Badgley, R. and Booker, J.F., "Turborotor Instébility

Effect of Initial Transient on Plane Motion", Journal.

of Lubrication Technology, Trans. ASME, Series F,

Vol. 91, No. 2, 1969, p. 625.
—~

Sweet, J. and Genin, J., "Nonlinear Rotor Bearing
Behaviour", Journal of Nonlinear Mechanics, Vol. 7,

Pergamon Press, England, 1972, p. 407.

Singh, D.V. and Sinhasan, R., "Stability and Relative

Stability of Porous Journal Bearing System with Axes

 Skewed", Journal of Lubrication Technology, Trans.

ASME, Series F, Vol. 96, 1974, p. 621. T

Eshleman, R.L., "Flexible Rotor-Bearing System
Dynamics - I Critical Speeds and Response of Flexible

Rotor Systems", ASME Report, New York, 1972.

i3

Gunter, E.J., "The Influence of Internal Friction on
the Stability of High Speed Rotors", Journal of

Engineering for Industry, Trans. ASME; Series B, Vol.

>

89, 1967, p. 683.

Gunter, E.J., "Dynamic Stability of Rotor-Bearing
g ,

Sysfems", NASA SpP-113, 1966. ‘ ' /

Vance,” J.M, and Lee, J., "Stability of High Speed

PUEN ‘
Rotors with Internal FrZ:tion", Journal of Engineering
for Industry, Trans.“*s ; Series B, Vol. 96, No. 1,

1974, p. 960.




J N

51.

52.

53.

54.

55.

56.

|

"\r

- 219 -

/

Kirk, R.G..and Gunter, E.J., "Transient Response of
Rotor Bearing Systems", Journal of Engineering for

Industry, Trans. ASME, Series B, Vol. 96, No. I,

*

1974, p. 682.
4

Klrk R.G., "Nonllnear Transient Analysis of Mulkl-

Mass Flexible Rotors", Ph.D. Dlssertatlon, Unlver51qg

A

of Virginia, June 1972.

Lund, J.W. and Orcutt, F.K., "Calculations and S

Experiments on the Unbalance of a Flexible Rotor",
Journal of Engineering for Industry, Trans. ASME,

Series B, Vol. 89, No. 4, 1967, p. 785.

Luné, J.W., "Stébility and Damped Critical Speeds pf
a Flexible Rotor jin Fluid Film Bearings", Journal of
Engineering for Industry, Trans. ASME, Series B,

Vol. 96, No. 1, 1974, p. 509.

Lund, J.W., "Modal Response of a Flexible Rotor in

'Fluid Film Bearings", Journal of Engineering for

Industry, Trans. ASME, Series B, Vol. 96, No. 1,

1974, p. 525.

Bansal, R.N. and Kirk, R. G.,&“Stablllty and Damped
Critical Speeds of Rotor Bearing Systems", Journal
of Engineering for Industry, Trans. ASME, Series B,

vol..97, No. 1, 1975,.p. 1325.

-

I
i
i
!




- 220 -~

~

57. Ruhl, R. and §90ker, q.F., "A Finite Elemeht Model y

( for Distributed Parameter Turborotor Systems", Jour-

+ nal of Engineering for Industry, Trans. ASME, Series
. B, vol. 94, 1572, p. 126. |

v

58 Archer, J.S8., "Consistent Mass ‘Matrix of Distributed

Mass Systems", Journal of the Structural Division,’

" Proceedings of the ASCE, Vol, 89, ST4, 1963, p. l6l.

59. Thomas, D.L., Wiléon, J.M. and Wilson, R.R., "Timosh-
enko Beam Finite Elements", Journal of Sound and

Vibration, 1973, Vol. 31, No. 3, p. 315.

60. Przemiehieéki, J.S., "Theory. of Matrix Structural

Analysis", McGraw Hill, New York, 1968. !

6l. bavis, R., Henshell, R.D. and Warburton, G.B., "A . 4
Timoshenko Beam Eleaant", Journal of Sound and

Vibration, Vol. 22, No. 4, 1972, p. 475.

62. Rouch, K.E. and Kao, J.S., "A Tapered Beam Finite

Element for Rotor Dynamic Analysis", Journal of

Sound and Vibration, Vol. 66, No. 1, 1979, p. 119.

63. Rouch, K.E. and Kao, J.S., "Dynamic Reduction in
Rotor Dynamics by the Finite Element Method"”, Journal

of Mechanical Engineering Design, Trans. ASME, Vol.

L)

102, 1980, p. 360.

64. Nelson, H.D. and McVaugh, J.M., "The Dynamics of
Rotor-Bearing Systems Using Finite Elements”, Journal
of Engineering for .Industry, Trans. ASME, Series B,

Vol, 98, No. 2, 1976, p. 593. ‘ /




65. .

66b.

67.
\ 68.

69.

66a. -

- 221 -

Zorzi, E.S. and Nelson, H.D., "Finite Element Simula~
tion of Rotor-Bearing Systems with Internal Damping",

Journal of Engineering for Power, Trans. ASME, Series,

A, Vol. 99, No. 1, 1977, p. 71.

Framer, A., Becker, J.N. and Shaw, M.C., "Study of the
v

Finish Produced in Surface Grinding : Part 1 - Experi-

mental", Proceedings of the Institution of Mechanical

Engineers, Oxford, April 1968, p. 171.

Nakayama, K. and Shaw, M.C., "Study of the Finish
Produced in Surface Grinding : Part 2 - Analytical,

Ibid.

Rakhit, A.K., Sankar, T.S. and quan, M.0.M., "The
Influence of Metal Cutting Forces on the Formation of
.Surface Texture in Turning", International Journal of

Machine Tool, Vol. 16, Pergamon Press, 1976, p. 281..

-

‘ Peklenik, J. and Kwiatkowski, A.W., "New Concepts in

Investigating the Manufacturing Systems by Means of
Random(Process Analysis", Proceedings of the 7th
‘International M.T.D.R. Conference, University of

Birmingham, September 1966, p. 683.

Klaiszer, H. and Sindwani, A.D., "The Effect of
Grinding Wheel Unbalance on Workpiece Waviness",

Proceedings of the 10th International M.T.D.R. Con-

s

ference, University of Manchester, Septémber 1969,

p. 395.

\




g e o sae s me

o T————y

Vo e m Eres T e

- - 222 -

70. Tessarzik, J.M., Chiang, T. and Badgley, R.H., "The
Response of Rotating Machinery to External Random
vibration®", Journal of Engineering for Industry,

Trans. ASME, Series B, Vol, 96, N6, 1, 1974, p. 477.

7i. Sankar, T.S. and Osman, M.O.M., "Flexgral Stabi}ity
of Machine Tool Spindles Under Randomly Fluctuating
Cutting Forces", Proceedings of the 3rd World Congress
hfor the Theory of Machines and Mechanisms, Kupari,

Yugolsavia, September 1971, Vol. G, Paper G-19,

p. 269.

72, Lund, J.W., "Response Characteristics of a Rotor
with Flexible Damped Supports", Broceedings of IUTAM

Syﬁposium, Lyngby, Denmark, August 1974, p. 319.

73. Allaire, R.E., Barrett, L.E. and Gunter, E.J.,
“Variational Method for Finite Length Squeeze Film
Damper Dynamics with Applications", Wear, Vol. 42,

. No. 1, 1977, p. 9.,

74. Dimarogonas, A.D., "A General Method for Stability
Analysis of Rotating Shafts", Ingenieur Archiv,

Vol. 41, 1975, p. 9.

75. Meirovitch, L., "Analytical Methods-in Vibration",

MacMillan Book Co., New York, 1967.

76. Foés, K.A., "Co-ordinates Which Uncouple the Equations
of Motion of Damped Linear Dynamic Systems”, Journal

of Applied Mdchanics, Vol. 25, 1958, p. 361.

i e Yoo

-




- 223 -

y

Lancaster, P., "Lambda-Matrices .and Vibrating Systems",

Pérgamon Press Inc., Oxford, 1966,

1
3 !

\
Yang, I.M., "Stationary Random Response of Multidegree
of Freedom Systems”, Califorpnia Institute of Technology,

Ph.D. Thesis, 1970. .
: $

\

Meirovitch, L., "Elements qf Vibratfion Aﬁglysis",

McGraw Hill, New York, 1975.

LaSalle, J. and Lefschetz, S., "Stability by Liapunov's

Direct Method with Applications”, Acgdemic Press,

|
i

New York, 1961.

Barbashin, E.A., "Introduction to the Theory of

. \
Stability", Translated from Russian by Transcripta
. Service, London, Ed. by Likes, T., Wolters-Noordhoff,
1970. .

‘ 1

Banerjee, K.K,, "Some Aspects of Flat Surface Grinding
with Intermittent Cross-Feed", Journal ﬁf Engineering
for Industry, Trans. ASME, Series B, Vol. 101, No. 2,

Crandall, S.H. and Mark, W.D., "Random Vibrations in

1979, p. 135.

Ny “

Mechanical Sysféms", Academic Press, New | York, 1973,

Cooper, G. and McGillon, C., "Probabilistic Methods
. of Signal and Systems Analysis", Holt, Rinehart and

Winston Inc., New York, 1971.

e e




- 224 - '

Seireg, A. and Ezzat, H., "Optimum Design of Hydro-,
dynamic Journal Bearings", Journal of Lubrication

Technology, Trans. ASME, Series F, Vol. 91, No. 2,

1969, p. 516. o

’
/

Kirk, R.G., DecﬂbudhuryV”P. and Gunter, E.J., "The
'/ ‘ .
Effect of Support Flexibility on the Stability of

/ :
Rotors Mounted in Plain Cylindrical Journal Bearing”,

IUTAM Symposium, Lyngby, Denmark, 1974.

Y

Parszewski, 2., "Dynamic Interaction Between Machine

and Support", First World Conference in Industrial {

Tribology, New Delhi, Paper E5, 1972.

Thomson, W., "Théory of Vibration with Applications",

~Prentice Hall, New Jersey, 1972, L )

\

Rohde, S.M., "Bounds for thg,solﬁgidn of Reynolds' Coe

-

Equation”, Journal of Lubrication Technology, Trans.

ASME, Series F, Vol. 95, 1973, p. 102.

Hori, Y., "A Theory of/éii Whip", Journal of Applied

Mechanigs, Trans. Aiﬂé, Vol. 81,.1959, p. 189,

Grinding", ASME, Vol. 74, 1952, p. 51. ,

Banerjee, MNK. and Hillier, M.T., “Forces in Surface
Grinding wifh Intermittent Cross-Feed" Journal of

/ . :
Tool and Manufacturing Engineers, ASTME, 1969, p. 63.




vy

1

fad 9 31.

\

.

o - 225 =~ .

King, K.F. and Taylor, C.M., "A Theoretical Estimation

Cof the Performance of Journal Bearings Operating in :

s ! e
the Turbulenf\ll_.llbrication Regime" p Journal of .. s
Mechanical Engineering Science, I.Mech.E., Vol. 17, \
< - ) ) ~ R
No. 2, 1975, p. 52. ‘ N A . . .

. , N : t




‘ ' <.226 - g
! ] , 4 ! '

. : ‘ SN
‘ APPENDIX A A

TABLES OF COEFFiCIENTS/é? THE ECCENTRICITY FUNCTIONS 1

s A

. The eccentricity functions are curve fitted using \\~

.
the polynomial form (2.16Y in Chapter 2. The curve fitting g

accuracy is demonstrated in Table A.l for chosen 10 values o

* the eccéntricity ratio in the range 0 < e € .9 in terms of

" ; s e s
the perfentage error. The ceefficient Bi for the eccertricit
functions E;, E;, Es, E, and E¢ are listed in Tables A.2

through A.6.
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. Q ORIGINAL FUNCTION CURVE FIITED FUNCTION PERCENT, ERROR
- — mmassissanemmsuasasmsnpEmE=
SETS OF FUNCTION El 1Gsl/D= .23
0.0 " 0.0000000 0,0000000 0.0000000
.1 =.0094627 -.0094629 ,0018348
2 - ~.0201478 =-+0201472 +0030032
.3 -.0325737 =.0325749 0036489
A " -.0484887 -.0484872 .po30832
-] =.0707599 ~,07074811 +0012723°
. Y] -. 1053000 =.,1031994 +0006119
.7 * -+1439110 -, 1659112 +0001243
B =-.2948480 ~,294B480 0000114
9 t=e 71946600 ~17196600 +0000003
SETS OF FUNCTION [E1 ,0=L/D~ .50 i
o 0.0 0,0000000 0.0000000 0,0000000
o1 -.03359420 =.0359436 0044845
'2 =+074%730 =.074%475 0073878
+3  =»1191900 =:1192009 10091242
- .4 "1 =, 1746030 =,174%094 0077937
. ] ~.2489120 =.2489234 Q0445647
] -.3377110 -.3577051 0016384
o7 - 5341140 -.3361189 »0003%03
.8 =.8833340 -.8835337 +0000336
.9 ‘ ~1,8328200 ~1,8328200 0000010
- L AMMUNEPANASEE S EEASEN
\ SETS OF FUNCTION El 1GaL/D= . 1,00
.
0.0000000 0.0000000 0.0000000
-.1125900 -.1125926 .0023290
, —+2308080 ~.2308790 .003881°9
-.3616300 «:3616677 10048921
~+5142020 ~.5141799 .- +00430%3
~.2032470 -.7032451 40023722
- 9551770 C =i 9951679 10009983
, -1.3231900 ~1,3251931 0002306
=1.9573700 ' -1,957349% 10000262
~-3.4225000 ~3,4225000 10000008
UETS 'oF FuncTion Bt sosLsp= 1,350 : ) .
0.0° ! 0.0000000 ~ 0.0000000 0.0000000 .
o3 -.1846870 =11844901 +00146548
o2 -.3798800 =.3798674 +0027817
.3 =-.5872640 -.5872848 0035503
o4 -.8193950 -,8193489 20031828
.3 =1.,0927800 -1.0928013 +0019492
. X ~1,4368000 ~1.4347688 10007813
~ 7 ~1.9122000 -1,9122036 +0001880
+B -2.4734700 =2.47346494 . 0000223
9 ~4,3377000 ‘ ~4,3377000 0000008
SETS DF FUNCTION El 1G=L/D= 2,00
0.0 0.,0000000 0.0000000 0.0000000
o1 . =-+2433300 -.2433323% 40010335
.2 i -,4922700 =: 4927414 20017478
. ¥ -¢7557300 -.7557470 .0022537
o4 ~1.0426400 -1.0426187 10020477
IE) v =1,3702800 ~1.3702978 0012731
] -1.,7689000 -1.7488%08 200035215
o7 =-2,3015700 «2.3013730 »0001284
) ~¥,1305900 -3.130%895 »0000139
9 -4,8833800 -4,8653800 10000004
* SETS OF FUNCTION Ei »Qel./D= . INIFINITY
0.0 0. 0000\000 0,0000000 0.0000000
o1 ~. 4712500 ~14712933 +0007049
2 -, 9430500 =-+9430384 0012076
3 -1.4181300 =1,4181723 .0013853
o4 =-1.,9043000 «1.7042719 20014774
) 3] =~2.4103800 =2.4184030 »0009303
é ~2,9951200 -2.99%1079 20004044
4 ~3,7099800 ~3,7099839 10001047
.8 -4,7396200 -4,7394193 +0000137
«? =é+,%234000 ~$49234000 + 0000003
0 > * I3
Y ‘Table A.1 Percentage Error in the Curve Fitting

of Eccentricity Function E,.

A
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[
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o~ BEARING L/D RATIO
.25 .5 1 1.5 2 @
EO 0. 00000 0.90000 0.00000 0.00000 0,30009 0.00000
B1i -, 09345 -.33842 -1.12211 ~1.,86271 =2.429783 -4,71822
B2- +0Q745 067983 +11481 .+ 13373 2132569 L2567
B3 -.18403 ~s92793 ~1.74019 -2.00334 .=1,92157 -.?0418
B4 + 12334 1.36243 2.25340 2.51440 2.546392 2.349262
EBS -.21544 =46.95496 -11.74742 ~13.51001 -13.34758 -15.03429
Bé 1.946661 15.,8%9081 28.70699 32.94091 33.04329 35.92761
B7 ~1.78748 ~146,10134 ~27.57506 =31.96737 -31.78730 -34.01355
K3 .59917 5.933515 10.34210)  11.82467 11.97340 12,71939
Table A.2 Coefficients of Polynomial E,.
BO + 19039 + 71025 2.2334% 3.71279 1.,94492 ?,42177
El ~+ 25231 ~.30819 -.27815 =+ 26938 -, 26862 ~. 42277
B2 6.20143 ?.43272 13.193474 15.56370 15.71547 231146348
B3 -32.20965 -48,04302 -43.37047 -42,082%4 ~41,87024 =-463,986200
. B4 112,91920 141.89000 134.45390 133.17810 133,35290 205.,444830
BS| -472,54540] -580.98650| -520.40300| -505.58440] -500.85080] -791,843%0
B6| 1213.98300| 150G.72100] 1341.783800) 1327.80100] 1314.30900 ] 2067.27200
B71-1165.92000|-1453.,925600]-1315,45100 |-1263,97300{-1071.,75800 [~1991., 48100
B8] 433.93480] S46,41820] 495.93480] 484.73740] 430.13210 746%34?00
O AY B .
Table A.3 ocefficients of Polynomial E,.
BO 0.00009, 0.00000 0.00090 0.,00000 Q.00000 0.00000
Bl -.003915‘/1 -.00179 00048 .00111 . 00157 +00030
B2 * L129%0 « 23150 48343 .70131 »85215 1.,49311
B3 -, 52849 -.28371 046998 +17014 « 24721 04206
B4 1.#&384 1.13274 143172 « 26624 09713 1646386
BS -6441528 ¢ -3.39210 1,15620 2.51344 3.39954 +80779
~ B& 16.81220 ?.58445 -1.69247 -5,07512 -7.23332 02144
B7 -16.33940 -9.51671 1.44842 4.80998 5.88289 -.30171
BS ' , 21282 3.7%020 -.35185 -1.463174 -2.39318 25817
© ' Table A.4 Coefficients of Polynomial E,.
BO 09529 «393513 1.11423 1.85639 242344 4.71240
B1 ~-.01352 v 35028 2,13399 13.33374 4.02379 3.67184
B2 5.78537.| 8, 01758 ?.92150 10.77046 11.29338 14,22412
B3 -38.460322 ~44.16279 -41,29381|. -37.10107 ~346+15049 -45.91631
Bﬂ 112,29220 140.13390 136.75310 129.971%0 129.20090 168.20140
ES| -471.58010| ~578.535450| -537.86190| ~504.74540) -497.96180 ~887,34420_
‘B&| 1212,058001 1500.88100| 1404,18200| 1327.92900) 1312.17400 | 1337.71000
B7 |-1164.51600 {~1450.41800 |~1352,99600 [~128%.45100 -1270,30200 |-1809.40600
. BS 433.49070 54%5,44850 508.24760 485.25920 479.70400 689.43740
Table A.5 Coefficients of Polynomial E,.
BO 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
B1 -.11183 ~. 44957 -1.,31206 -1.93841 -2.28532 -2.997%0
B2 ~.21720 '~.07283 .09183 10771 + 13548 ~,03979
N B3 1.335643 — 26044 -2,54052 -3.,11200 -3.40436 =-2,37227
B4 -4,57891 -1.78989 1.48548 1.92694 2.28336 =1.,31044
BS 1877970 5417605 -11,83398 -14,635571 ~186.,19597 ~2,70561
BS “49,17344 -16,42022 25,54869 32,47599 35.14543 80592
A B7 47.76571 17.034657 ~23,6014% ~30.41079 -33.93311 -.175987
B8 -18.092644 ~7.13342 8.25442 - 10.87173 12,22121 -, 25370

. Table A.6

.t
'

Coefficients of Polynomia E..

s,

st D & W b
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APPENDIX B’ .
®

/) NONLINEAR STIFFNESS AND DAMPING PARAMETERS

QF THE FINITE BEARING

¥ s

. The journal equation of motion in the cartesian
coordinates (3.1) can be derived from the polar form with »

¢

the transformations ' - .

' X = e cosy - , Y = e siny S )

-

and their derivatives. T?e nonlinear damping and stiffness
N .. . \

functions, C « C and K K

xx’” Cxyr v xx' Fxy’r - cgn then be
written as )
{c ‘ [2xY  x%e -2v? -xve] |E
1 XX V ; i
Cyy -2X? Xve 2XY -Y%e E.
\ o > = 5o 2Y?  ‘Xye  2XY X%e <;k>
X 29 \ . .k
- ) 2 - 2 '
Cyy 2XY . Yle 2X XYe E |
/ - . -l )
and ) (B.1)
- < )
» Kyx = 2e B = Kyy
s . y 2
Kyy = - 38 B = “%yx

Here the eccentricity functions E.,;Ej,

9

and EZ are listed

in Table 2.2 for all film bearlngs, nagely, the full film,

-

the 3m/2 film and the 7 film cases, and S is the bearing i

dynamic parameter given by-equation (2.18a).

>
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APPENDIX C

i I THE EQUATIONS OF MOTION OF THE .
- FINITE BEARING IN THE PHASE SPACE
The equations of motion of the journal bearing can
. <k ‘

be written in terms of the phase variables z and in the
general dimensionless form

jox x, k% ] ,

(Z = {2 (zllzzl --o)! . —

4x1 ’

which can be written explicitly in the cartesian coordinates

‘ L 4
as .

zt [0 -1 0 o 1(z1\ / o

' .
23 X c K,, C z W
Z3 2 .
{ S XX XX XY XY N nx> (c.1)
. r

2% 0 0 o -1 |23 0

0 4 ]

\ Zu/ Fyx o Sex By Cyy A\ "ny
Here CXX' ooy KXX’ ... are the nonlinear damping and stiff-
ness terms,ggiven by expressions (B.l) in Appendix B. The
corresponding set in the polar coordinates for equations
(C.1) can be written as

\
0% *
zl = 2,
0% _ _x_%, S * * S _x *
z, = zz, ~3 (1-22z)) Ei(zl) -5 2, Ej(z‘x)
*
+ wn °°5(za"3£’
0% * ’
2y = 2,
Ow _ 1 x_% © S * » S *
2z, =5 [—2222,. - (L -2z) Ek,(,zl)*"f zzEz(zl)
1
- i * e {C.2
wn sin(z] 32)] .__(C )
i ’
‘.\ \\ \
y ‘. :

1

v * v
. - .
o Eie - - T T I TSN M orovs.
id Sk L P IR O B T A L N A N SRR ™ T DI 2 S T4 L 1, <




) .' - 231 - ' ' o
where the eccentricity gunctigks E., Ej Ex and E, are listed
[4 .
: - in Table 2.2 for all the different film models and By s the J '
/- . : ‘

load angle as seen from Fig. 2.1. . ’ o




- 232 -
b ‘ APPENDIX D

THE COEFFICIENTS OF THE MATRIX [AZ]

OF THE LINEARIZED SYSTEM (3.4) -

.Expanding the nonlinear functions in equation (3.4)
by a Taylor series, retaining the first ‘order derivatives
; and using the equilibrium state relations, the matrix [AZ]

' . is constructed as ' ’
B \ ) ' { N\ -~

, - 0 1 0 -0 7 \\\\\\
1 ] . ,
: eEi eEj —eEk‘ —2eEi

v

Here all the terms are evaluated. at the eguilibrium point.

and the eccentricity functions listed in Table 2.2 are used’

.

with the adjustments
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( L APPENDIX E

STIFFNESS AND DAMPING COEFFICIENTS IN THE

"LINEARIZED EQUATION FOR-THE FINITE BEARING

'

The damping and stiffness coefficients of the
1i éarized/ﬁearing system is‘obtained byxegpanding the non-
/{j:ear hydrodynamic forcgs around an équilibrium point
(XO,Y0,§0F=O,§0==O) using Taylor series and keeping only the
first order derivatives. Using equation (3.1) of Chapter 3,
it direétly.folléws that the damping coefficients of the

linear system Cox? cxy' ..., are exactly those nonlinear
ey - \

damping functions CXX’ ny, ..., given by equation (B.l).in‘

Appendix B, evaluated at the respective equilibrium points.

The stiffness\coefficients kxx' kxy' ey Ehough, are to be
evaluated by expanding the terms (Kxxx-rKXYY) in Fy and
similarly in Fy and can be shown to be
k X%e Y2 -X¥e XY E,
XX . i
k “|xve -xy -v?e -x? E;
’ k RE P e -x  xe v < E (e
yx € ‘ k
k Y?e x? XYe  -XY E '
¥y ) L LY

N

Here, the primes denote the derivative é% and all the

R
quantities are evaluated at the equilibrium point (XO,YO);

P
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APPENDIX F

THE SUBMATRICES OF THE EQUATIONS OF A FINITE ELEMENT

~

The submatrices [MtI],I[MrIJ.ahd [k,] of the

equations system (S5.12) for the simple Tim?shenko element

are evaluated, as explained in Chapter 5, and can be

written explicity as

. .
al‘.l I T
Symmetric
m_4R az as .
M, ] = 2= 2
\ t1 220(1+7) as -a. a,
\I | ay asg -2 ‘a’s
36 =
Symmetric
« J . a; ¥ ag
M) = T
R (1+Y)°30% -36 | -as 36
ar asg -a7 as |
L 12 s
v / > . Symmetric
R st aro
RIS -12 =62 .12
N 62 'a” \-65?.. aiag
_J - \ o
\
- where \
a, = 156 + 294y + 140y2’ a, = (22+38.5§\+' 10v%) 2
- . Y
a, = 54+ 126y + 70Y? a, = -(13+31.5y\+ 10v*) 2
‘ a, = (4+7y+3.5y%)8? . a, = =(3+ Ty+3.5y) et

[




——
e v

A P

. .
e m oWhar M S W TR Sy Y

I R ST e

a, = (3-157)4%

a, = (=1=-5y+5y2)Q?

o
I

1 22(2 - v)

(4+5y+10y2)e?

22 (4 +vy)

Submatrices [Mi 1, M. 1, [k,] and [G"] Of system
2 r, 2

(5.15) may be constructed as given below

m_ 2
M, ) = 555
k,) = 55
1 =

156
-224
54

132

12
~-62

~-62

36

3L
-36

K}

-12

Symmetric
442

-134 156

~322 229 427 |

Symmetric
4472
3L 36
-3? 3% 422
Symmetric
422
62 12
29 62 422

Skew Symmetric
-422

5}? . 36

22 -34 ~422
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APPENDIX G

HYSTERETIC DAMPING MATRIX [Dh] OF THE

* COUPLING TERMS IN EQUATIONS (5.22)

Equation (5.25) is expanded-in terms of the shape.
functions of the angular displacement o and 8 to give the

hysteretic matrix [Dh] such that

[01 [k

(D, ] {a®} = EI siny [ 1 {q®} |
h'gxs h|-Tky] [,°]8x8

' The entry (i,j) of the submatrix [k, ] is given by

L

s ] - 1] ]
kh(l,)) = f N Nrj dz
0

and the submatrix [Kh], in turn, is constructed as follows:

-

12 Symmetric
62 RZ(4+2Y+Y%)
[kl = _?_l___; ’ ,
23 (1+Y) -12 -64 12

6L A%(2-2v-v%) -62 2 (4427477 |
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APPENDIX H

CONSTRUCTION OF MATRICES FOR THE BEARING ELEMENT

AND THE BEARING SUSPENSION

L

The linearized hydrodynamic forces F,_ can be written

as

Py = - (kxxx + kxy y.+ cxx,x * cxy y)

and similarly for Fy where Fx and Fy are dimen§ional in the
t

present case. The forces Fx and Fy are assumed acting at a

distance Z, from the bearing left end. Then all the dis-

placements and the velocities at Z==Zc are evaluated in terms

of the shape functions Ni such that

-

N, = N, (2) , i=1,2,3,4
R |

But since the coordinate x and y are given by '
7 0
. X =X.~-X

, J

b and y==Yj-Yb' with reference to Fig. 5.4

then F, = ij T Fep and similarly for Fy. ‘

Using the virtual work expressions (5.11) and dis-
placing the resulting expressions to the left hand side of
the element equations, one gets the stiffness term in the
equation as ‘

K]  + [K,] ]f{qe}‘ (H.1)

[ j8x8 Kb8x2 : '

and similarly for the damﬁing term.

£ .
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The above expressions are composed of submatrices

»

[kj] and [kb] such that

, n,m =1,2,3,4

(k.1 (rown, columnxm = NN [ak]
32x2 2%2 .
. (k] (rown) = -N_{a,] ; n=1,2,3,8 - ’
- , . 2x2 2x2 oy .
. Where ‘ |
k.. k
(a, ] = | X* XY
k® - k : “
- A ¥YX vy v

The equations for the bearing mass are given by
: /

mbx oo Xy = kb b = (ij-Fxb) , on the XZ plane

and éimilarly for the YZ plane. . : i \

-

Again, using the virtual work expressions (5.11)

for the forces on the Eight‘hand side and moving the resulting

elements to the left hand side, one gets the term

‘Xbl
[K %xa * [ak lY s P Toey

and similarly for the damping term.

{ . It should be noted that the matrix [Ry1 is as given
A 5
in expression (H.1l), on the element side, whereas the trans-.
pose applies on the submatrices rather than on the individual
‘elements. Also.tﬁe column locations refer to the bearing

element coordinates in the aﬁobal agsembly of the rotor-

bearing system. The column locations of the submatrix [a, ]

above are also xb and Y- .
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‘rotor., The unbalance: forc",components in the X and Y -

. sg§tgm (er,et), which are\Unr and Unt' as

.in terms of the unbalance components in the coordinate
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APPENDIX I

ROTOR RESPONSE TO UNBALANCE EXCITATION .

. AN

Consider a coordinate systéﬁ (ér,et) fixed to the\"

d;rect&ﬂn, namely ph and Un respectively, can be specified

X Y

v
' ' s

sin w

.

<« Ynx = Uy €08 0 - Upy rt
. co \
/UnY = Upp 810 wpp + Upyp wpg .

»

This transformation allows a simple introduction of °the

phase angle between mass unbalance at different axial

<

v

locations.

The forces in the principal coordinates are

which bives the individual relations

“toer ) = 1740}

N

,Uj = A;.: cos wi‘%f ,A:sjlgin ©rp v j.;—. 1,2,...,‘2N
where A?\and Ag are generally complex. ‘

Carrying out the integration (5.40), the steady

response is

1

4

rt

Y

1

c

~

. uj-

*.52 2
Mj(xj«ur )

i

ket

‘

' c
,[(}j.aj +erj‘) cct»s w

LY

-

+(-wri\j

+ )

]

A

s

3

<
state

}sin “’rt]’

‘j“ 1’2’ .'l, ZNL

The response in £he phaéi spacé“goor&inateé & can then
7. ..

obtaiﬁéd’usihg edhatibn‘gs.dz). y .
& . : .

be

~
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APPENDIX J . C

L , EVALUATION OF THE SPECTRAL DENSITY - .

. \ ' OF THE INPUT UNBALANCE FORCES SR

The input force is a unit unbalance®distributed over

two nodes. Then considering the X and Y dlrectlon, the

1nput force vector can be wx{tltten as

’

‘ . ’
t . b . - . T »
H = e’ o w w

‘ | f 5 {cos-w., sin v, ‘cos w . sin w )

The spectral density matrix [Sf(w)] can be evaluated from

« - the Fourier transform of the correlation matrix [Rf(T) 1.

.

. ) For exampl? , '

' g ' 2 T
‘ - U P
) - _( b) limit 1 ‘
. Re £ (T) sE[f ()£ (t+‘l') l1=\> Tae I cos w., cos w , (t+7)dt
, I , '

o . 12
-Ub cos w_T
8 r

Then the spectral density sf £ (w) is given by the Fourier
. - l 1 .

ooUZ
\ f f1(w) -T / ——-‘coszexp( -iwt) dw

Uz,_m - ,
E [5(“’-“’ ) + S(wtw )] ‘ e

~ whexe 6(°) refers to the Dirac delta function.

n

It can then be shown that the spectral dens:.ty

matrix of the input force vector f ig".given by-

g ' . 40
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- rsl i62 61
\
A . u2 i6, 61 ié,
IS, ()] =12 |
s L 61 "'idz ‘6]
id. 61 id,
where
61=6(w-mr) +6(m+mr)
¢ A
§, = d(m—wr) - 6(m+mr)v*sg
and: i = /=1 ‘
3 * o
\L ‘ \ «
\\ ,
L ﬂ
L ] ¢ '
* . »
~_ , /
h - . ‘ %

v
-i8, | '
o, o
-id,

$1

-
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APPENDIX K .

‘\7 ) EVALUATION OF THE INPUT SPECTRAL DENSITY MATRIX ’ ’

OF THE GRINDING SPINDLE-WHEEL SYSTEM

.

£ . The input force vector is (fcX4 ch4 fcxs chS)T where

X{Y\refer to the direction and 4,5 are the boundary nodes of

°

*  the wheel element with rgference to Fig. 6.2.

{ 5
The spectral densitf matrix is evaluated starting

from the correlation matrix [Rf(r)]. Consider the element

; (” Rys Y4(T) in the correlation matrix which can be written as
’ v ”

Ryg yq (T) = Elfy, (£) £y, (t+7)]

\ N

where E is the expectation or ensemble averaging operator.

» ) Then, _ ; )
N _ 1 . ,
ot RX4,Y4(T) = g cosA8, sin B, EI[f_(t) fc(t+T)]
1
B sin 2 B
= __.______c. Rf (’[) .\ . .
/ 8 N s [o »

5;1'5&

: where Bc is the ané&e of the cutting force fc with the X- °

; direction and R (1) is the autocorrelation of the random
) o Tc
cutting force fcm The spectral density element Sx4)y4(m)'

«

in turn, is . . —
' . \: X R - - -
- ’L v a
’ ;  8in 2 B8 » sin 2 B
P = - ¢ A
Sxavs = 3 Sfc(w) Sy 5 ?
For 8 = tan-r(%), the spectral density matrix (Sg(w)] can .

LY '\
f v

be shown to be,

S RET, 5o T R 1 R s
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