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4

Masses of all the low-lying mesons, with orbital
angular momentum < 2, in the uc, dc, sc, ub, sb, cb,
) o

and db systems are calculated using ai%onsistent gquark

phenomenological model with hyperfine/@nd spiﬁ-orbit
/

. . . 7
. lnteractions. Seven of these low-lying meson states

are experimentally verified. Two of these are input

. . + -
parameters, the other five, (the F, D*o, D* , B and
Bo.mesons), ére used to test the atcuracy of the model.

. The Tesults are' in excellent agreement with experiment.
. e + “ 13
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INTRODUCTION “
. € “ . ) ‘ . ¢
The universe is not a simple system. The great

diversity .of the forms which matter takes is self-

evident. An understa{nding of the structure of matter

-

- can orfly Be attained by constructing physical modéls.

At a first level, we find that we can organize matter

. 1

" into the various chemical elements, or equivalently,

dtoms. .
- N

The atoms, once thought to be indivisible, are
found to have an ir'x'te:‘:naf ;trqcture. All atoms are
combinations of the three particles: the ELECTRON, - - -
PROTON and NEUTRON. -The neutron and proton bind together
to f:orm the nucleus of the atom. The electrons then bind
wit:*.h the. nucle'u's to form the atom. A chemical reaction
is an 'interaction of the electrons of .two ‘ox; more atorﬁs.
Thus ,‘ the rules for the interaction o'f eiectror{s give |
the laws 6f cheyistry. A theory of interactions of
electrons exists; it is called quantum electrodynamics.
For a more completé ;.:icture of the atom we need an under-
standing of the nucleus. |

It is found that the é,rétons and neutrons which form
the nucleus are themselves made up «of more elementary parts’
called QUARKS. An understanding of the nucleus then . ‘
recjuires a theory pf ‘the interactions of quarks. Such a
theory is partially complete. It is "calvled guantum w

A

chromodynamics (QCD) and is similar in’ 'many xespects to
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quantum electrcdynamlcs (QED)

A\

There are 6 typeg of quarks (called fla rgTvea
the electron is a member of a famlly of 6 si
;particles called LEPTONS. Therefore, we ean thlnk of
matter as bé&ng formed of interacting quarks\and leptons.

It is necessary to consider what these interactions are.

There are four types of interactions known. They are the

GRAVITATIONAL,'ELECTRIC, WEAK and COLOR forces.

&

. ! [
-
.

) Corresponding to each force weflntroduce)one or more
"exchange;quanta". These exchange quanta are emiuted or
absorbed by the quarks and leptons. The absorption er

emission of exchahge quanta is the means by which a force

ig transmitted (Fig.l). For each emission or absorption

of exchange quanta, a quantity of momentum is transferred

‘between the particles. We—define force as the momentum

-

transfer per unit time.

A

TIME

' absorption X
emission ‘

particle 1 particle 2

FIG.1

Particle 1 exerts a farce on P?rticle 2'

N

r

A\



- In summary; there ar¢'particies and there‘afe ‘
exchange quanta. Particles exert forces (blndlng) on
each other ghrough emission and absorptlon of the;r
exchange quantg. Each force has its' own exchange

quanta ‘(Table 1).

)

: FORCE * .| EXCHANGE QUANTA
GRAVITATIONAL GRAVITON
ELECTRIC PHOTON
COLOR _ GLUON
WEAK w, w, 2z’

» P

Table 1. The four forces of nature.

b3

4

Quarks can interact via all four forces whereas the
leptons do not interaé¢t via the color force. For' each
'qhark and lepéon there are,confesppnding anti-matter
particles (or anciquarks and'antilepeons). Anti-matter
states are similar to the ordiﬂary particle states.'except -
that they are ;otated.in isospin space, hypercharge space
ﬂand baryon number space. The qaarks, lepfons, antiquarks,
antileptons and _their exchange gquanta ccnscitute all the
knowﬁ;matter; |
The subject of this thesis is guark - antiquark
bound states._ Before the material is presented the
subject of quarks will be preSented briefly. Table 2 .

shows Phe quarks, leptons and their quantum nugbers.
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- ’ 3 . .

| 3 . ..
Q?é.xs B & s° Q?
= - - ’
up (u){ - /3 0 o .2/3° '
Down (d) 1/3 0 0 -1/3
_ |Strange (s) | 1/3 = 0 -1 -1/3 )

Charm- {c) 1/3 1 0 2/3
Bottom  (b) 1/3 0 0 -1/3
Top (t) 13 0 0 2/3

LEPTONS
Electron (e”) 0 0 0 -1 )
€ neutrino "0 0 0 0
Muon (u) 0 .0 0 =1,
B neutrino °0 0 0 0
Tau (1) 0 o 0 -1
T neutrino 0 0 0 0

L}

hY . .

Table 2. Quafks, Leptons and their quantum humbef;

,Baryon number

Charm quantum number \

-

Strangeness gquantum number

Electric charge in fractions of' the electron charge.

o
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CHAPTER Y. .

1.1 Quarks . ! - ¢4
t ‘ / \

Particles formed thh quarks are stro gl interacting, .

that s, they interact through the color force. These

particles are called\HADRONS. Hadrons come in at least two

]

families, the. BARYONS, ahd the MESONS. Baryone are made of ’,

a

: three quarks and mesons are quark - anthuark palrs.

Because quarks are spin 5 particles the baryons are half-

integer spxn particles (fermions) and the mesons are

>

integer spln particles (bosons). The neutron and proton,

for‘example, are baryons. The néutron is a ddu combination

9 s

and the proton is a uud comblnatlon of quarks. Adding the'
quantum ndmbers.of these guarks from Table 2 gives the
quantum numbers of the nedtroﬁ and proton; except for spin
which must be combined by the quantum mechanical rulee

.

for addition of angular momenta. The pion (WOI) is an

EN

example of a meson. It is thought to be the exchange
guanta:of‘the "nuclear force"d(a residudl ‘color force)
between'pucleons (proton or neutroh). The nedtral pion
w?:’¥o§>example, is a ud combination.—

Quarks were originally a theoretical construction

used as a ﬁethod of classifying the large number of hadrons

being discovered in the debris of high-energy collisions.

17 . 18
and Ne'eman that it was

A}

It was noticed by, Gel}-Mann
possible to group all the hadrons into familiee. The mesQns

could form families of one and eight particles and the

’

/,.

L
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baryons’formsd families of one, eight and ten particles.

The particlest;fe classified according to their quantum -

L
at timeaall the hadrons fit ihto these

:families.‘ These families or groups of particles are

representations of the symme ¥ group SU(B). The basic

triplet or fundamental riepresentation of the SU(3) group

. was labelled.u,’d; and s (or quarks) ‘ By assigning the:

: //ggantum numbers shown in Table 2 to thlsvtrlplet %F was

possible to generate all the then known hadrons. Howemer,

the idea of quarks solely as theoretical objects began .to

5

change. ‘Quarks beGame more.than a classification scheme.

° r

13 . » f i3 ? ¢
In deep-inelastic scattering of leptons on nucleons it was

expected that the inelastic cross-sectidn would be -,

3

modulated by a form factor and would decrease .with increasing

7

o ’

momentum transfer. However, the cross—sections were much

larger and there was no scale- parameter. This indicated
the presence of small scattering centers w1thin the

.19
ucleon . These scattering centers are called partonSJ»

o e
3

a name coined by R.P.i?eynman), and may be identified

L3

with the quarks. , :

0

A possibie combination of quarks is three s quarks
(the Q” baryons) ' Since these quarks are 1dentical ‘their
quantum ers are identical. Then, these three s quarks

-~

in a relative S-wave orbital state constitutes a v1olation

of the Pauli excluSion principle for fermiens The way out

-~




. " of this diffieulty was either to modify the,Fermi-Dirac -

e , 'statisticenfér quarks or to medify the quarks themeeIVes
by.introéucing another quantum numher;wnich Qould differ ' .
for the three quarks in the baryon. - -

The method suggested by O.W. Greenberg is to assume
\j)that the quarks obey a para-fermi statistics of order 3.

That is, for' guarks we would allow three:identical

gy

fermions to be in the same state. The other approach A
suggested by M.Y. Han, Y. Nambu aﬂd 1ndependently by .
A. Tadihelldze and Y. Mlyamoto was to a351gn each quark
an additional quantum number which could assume three

possible values. If each quark in the baryoﬁ had a .

different one of these numbers,tﬁen,thé Pauli princip¥@ A 4£‘<m

was saved. A This additional quantum number is called

[

COLOR. The introduction of color has the effect of

ﬁripling the number of quarks and thus predicts the !
exietegce of new particles. These new baryons are not !

seen., However, if we)make the assumption that color

af

cannot .be observed then the number of baryons remain the, .

same. 3Also, the effect of colorless hadrons is to make
- R 4
the para-statistics and the color hypotheses -equivalent.

Each quark must have a different color withiﬁ~a

e

hadron. For copvenience, the colors can be referred to as
red, yellow and blue. The anti-colbre can then be
referred to as anti-red, anti—yeliow ané anti-blue. The-
baryons will have:-one quarﬁ of eacﬁ color and will there=-

fore be colorless or white. A meson,&ill have two quarks ..




one with some color and the; antiquark with the correspond-

ing anti-—color. The effect of color, however, was more

' than sav::.ng the Paudi pr1nc1p1e. The color quantum in

QCD is the analogy of the electric charge quantum in QED.

That is, color is ultimately :i:eéponsible for the force

-

which binds Quarks. In this sense we ca‘n understand why
leptons do not experience the color force - leptons do not

have a. color quantum.

In addition to the solution of ,the fermion statistics

problem, there, is other evidence for thetexistence of
B ']

color. The ratio of cross-sections: .

+ -
R = oc(e e -+hadrons)

+ - + -
d(ee+ HooR)

becomes larger b)(‘ a factor of ‘3 due to the introduction
of color, brlnglng it 1nto reasonably good agreement with
experiment. The lifet:.:pe of )ihe ‘neutral pion is calculeted
with color to be- 7.87 eV compared to ‘the experimental

£e hadronic production of

value of 7.85% 0.5 eV. Ia..

. lepton pairs v:.a the Dr}afl-Yan process, the predicted

=4 "“-q

cross section is .one- thlrd as large without color. Also,
the branch:.ng ratio for decay of the 1 lepton into
electionﬂs + neutrinos, muons + neutrinos or hadrons is

¥
This is in

1:1:1 without color and 1:1:3 with color
good agreement with experiment; Color“also provides an
explanat:.on of why states such as’‘qqqq (whlch would

exhlba.t color OVerall) have not been observed - since

all observed 'hadrons must/ be coIorless by hypothesis. A

-



T —

internal structure.

€
1&3 Confinement , . ) . o

Free quarks have never been observéd experimehtally.
Tﬁerg are three possible explanatiops. (1) QuarKs do not .-
e#ist, (53 quarks are permanently confined, (3) we have “
not yet reached energies.necessary to ionize them. The . .
first is unlikely as the proton and ﬂéuégon exhibit an
internal structure, ‘It is found that multiprong hadronic .

4

events have a "jet" structure, that is, at high center of
- e, . /

mass energy the fragments are emitted with small momentum

transverse to the direction in which the partons were -

*

produced. Also,. the form of qudrkonium'spectra indicates .

N . 2] %
the presence of constituents; quarkenium has energy levels

that are approx;maéelyégquaily spaced - indicative of an -
The second and third possibilities are likeiy

candidates. Any‘successful quark model.must therefore have

confinement implicit in its structure. The analytical {

derivation of confinement as a direct consequence of dCD

is mathematitally very difficult if at all possib%f. It

has not yet been accomplished. Numerical calculatfons,‘by ’ S
15 '

Rebbi , seem to.indicate that it is contained in the
theory . |

Since quarks come ih different colors, then,
postulating that only colorless states are observable /
immédiately conéines'thé quarks. Confining quarks using . o .
the colorless hypoghes%s implies that theée confining | oo

forces depend on color.

f
i L SRR LN IR ¥ 7 P -
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2+»1 Phenomenological Models

The geherhi‘structure.for phenoménological quark

-

‘models is based on quantum chromodynamics in regions of

¢

high energy probes -(short wavelength) where the strong

Iy

coupling constant'aS becomes very small. In this energy

regioﬁ the quark potential can be thought of as a Coulomb-

. like potential arising from one ~ gluon exchange at short

randge. The QCD Hamiltonian will be of the same form as
. ' _ , _
that in QED (De Rujula, Georgi, Glashow ) ."At long range,

a scalar confining potential is used. Thedon? - gluon

" exchange term introduces hyperfine and séin-orbi%

interactions similar to those of the one - photon exchange

term of QED. The scalar confining potential also causes

spin~orbit splitting. The Hamiltonian for a qgg or qg
- ; .
state is (De Rujula, Georgi, Glashow ):

i
A '

1

2 . -
H a,L(E,FZ,‘.:.) + ;(m,i + pil/zmi +o-a)
. ' 1 .o

’ 1

/
'+1§j(aQ1Qj + Kas)sij

/

Here, L(?i) is_the interaction responsible for long rangel

T . ' . 'y -
binding; Lir Pyr My and Q; are the position, momentum,

i
mass. and- charge of the ith quark. The factor K comes from
the averaging of the color vectors and is -4/3 for mesons

and -2/3 for baryons. The factor Sij is a two-body

—t



Coulombic interaction of the form:

1 1 E'i 'BJ F'(F'Ei )Fj ' -
Sy * T~ ¥ 3
— o 2m1mjy r r
cws(F) [V 1688 1 J¥xp. S,
- —2t —2t -
. 3 . .2
2 m, mj ‘ 3mimj 2r ms

> > - > > -+ '+ .

_ rij-§j . 1 ZrXpiq§j - 2rXpJ-§+ - 2§1-§ .
-2 K . .

- ;/ 3y by S -
Isgur and Karl ’have introduced a Hamiltonian using

a harmonic oscillatpr‘confining potential consistenttyith

the De Rujula, geqrgi, Glashow hamiltonian. They described o
the séectra aﬁd‘Aecay copplings of the low-iying baryon

states. However, a different\pafametér set was used for .

- ’ -

* the odd and even parity states: The Isgur-Karl

/

hamiltonian is

+

H = i:m,l Ho + thyp




.12,
where -~ o : ' S G

+ Z Vij

Hy = I pZ/2m
i i<j conf

o i.

énd

yid 2 B
vconf'i:*f%krﬁj + U(rfjﬂ

}J(rij

) is a non-harmonic part of the potential '
contaiqing~a‘Couiomb;like piece at short range and
deviations from the harmonic oscillator potential at

large distances. K is a color factor équgl ﬁo 4/3

for mesons and 2/3 for baryons. thp is a hyperfine
interaction. This Hamiltohian gives the correct magnitude
and sign of the A(5/2) - £(5/2) splitting. However, if

the parameters obtaineé from the fit to positive-parity
baryong are applied to these negative parity states the
splitting will be reduced from 50 MeV to is MeV. Isgur

and Ka;iuscalculate the contribution of the non—ﬁarmoniQ
term, U(rij),'in the Sq(é) 1imit:'ms= m, = mdl Kalman and
Hallf have shown that by modifying the calculation of this '
term and taking into account the mass difference between
‘the strange and up(down) quarks, it was possible to restore
the A(5/2) - £(5/2) splitting. Thus, Kalman and Hali and
Kalman have shown that a consistent parameter set can be
developed for all ﬁaryons. This consistent model was

11 , 20
applied by Kalman, Hall and Misra and Kalman and Misra
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ll3.
to baryoniu:p. . Kalman and Pfeffe:s.” legve applied the model
successfully to charmed and bottom baryons. Recently,
Kalman and Mukerjisapplied the'Isgur - Karl model to
mesons and calculatéd all the low-lying states of the

¥ and T systems. Also, recent' developmenilzzs:}as:g:am to
indi;:ate that the same forces occur in l;oth baryons and
mesons.

2.2 Spin-Oxbit Interactions N

. 2,34
In their baryon model, Isgur and Karl neglected the

spin-orbit force completely. They suggestqd that the

‘absence of the spin-orbit force in ‘baryons is due to a

cancellation of the part of this force arising from one -

. gluon exchange' by the Thomas precession term arising

. 8
from the harmonic confining potential. Schnitzer

considered this point .in detail arid notes that the total
« . ' i g
spin-orbit force depends on <IPa.daron® Therefore, this
force is absent for baryons, is weak for ordinary medons
and is stronger for charmonium. The spin-orbit inter-

~

action then must be included for mesons.
'
IS
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. : CHAPTER 3

3.1 The Meson Hamiltonia'n‘

The purpose of. this thesis is to calculate the masses

-

of\' mesons in low-=lying states containi.ng quarks of unequal |
niai;s (different flavors). Spin-orbit and hyperfine

st cturé are taken into account. Seven such states have
, /
mas ts experimentally known, two of which are input

paraﬁteters, leaving five states to verify the predictions

of th% model. )
1

v

For mesons, the Hamiltonian used is of the form:

A
1

) : 2 2 : 2 .o
H=my 4+ mo + pa/2my + pa/2mp - (p1+ p2)/2(mi+ my)

\

\ a* ’ °
‘ Vo (R )i el o (1)

\

where m; and m; are the quark ‘-masses and

\

* 2 .
\ V, = ik r + u(r) : (2)

\

\\ ’ 3 .
a 8m{$:-52)8(r) T [3(31-F)(§2.?)
thg;_- mim, \ 3 e r?

(3)

K : \\
S _g,.-sq} \




. o | 1s5.

- . > > <> > +> -
a gl'rxpl $2-Fxp2 Zgl'PxPz 2§z'rxp1
HSO"—T z - T + -
r m; ma mimg mimsg

§1°Fx3; gz'?xﬁz ) )
e k* s - 7 . " ' " (4)
my ma ~

r

where r. is the interquark distance and ;‘i' '§i and Ag are
the momenta, spins and color vectors of the quarks. Since
a harmonic oscillator confining potential is used, the

wave functions are (up to n=2): '

)

2 2 . .
Yooo = S exploxg ). (5a) -
000 1{'340 ‘
g 2 2 2 . :
i = (§) g exp (-us e )i (0.0) LS
m ‘ .
s -2 2 2 2 . )
Y200 = (%) —21;(%8 -r )exp(-ge r ) ’ ‘ (5¢)
- Tr . .
\\“'
E —LWI‘.?/Z “exp(-18°r0) Yam (0.9) BRI (54;
22M = r exp\- N 2m .
/15w — , :
V .‘ -
mexe 3 = [fiiEh] " « e

i

e




B

and

k = Zk» s (7
g .
This relateés the spring constant k* to the k used in

6
Kalman and Mukerji .

3

.
Y

2 Zero-order Eigenvalues and An-<Harmonic Perturbation

The harmonic oscillator energy eigenvalues are:

P . ..

‘Eo = (n +-3/2)mQ (8)
where -

2 2 ,

wQ =m, (m, + mz)wC/Zmlmz (9)

Here, m. and mQ are the mass and oscillator frequency

obtained by fitting to the charmonium sysﬁem, by

6
Kalman and Mukerji . They found m, = 2749.0 MeV and

we = “390.5 MeV. e

The an-harmonic part of the potential, U(r), is
not known analytically; its matrix elements are evaluated
by first order perturbation theory. It is necessary to "
evaluate the following integrals (Kalman, Hall and Misra) :

33/2

2 ’ .
§—$;; I dsr U(r)exp(-tB rz) (10a)

a(t) =
: ]

\



v

s s T ' ’

' ke ] 3 ., 2 2. 2 ‘
b(t) = ﬁ—tg";!—--.l‘ dr U(Ce)r exp(=-tg r ) . (10b)

. kL T,
a Zi. C3 . b - 2 2 )
~oe(t) = -@—%1— S dr U(r)r exp(-t r ) (10c)
where - '
¥

2mim e (11)

t = —T——HC R

Here t is hormalized so that £or the charmonium séctor
t=1. The integralé a(l), b(l) and c(l) are fit from

-]
experimental data. Kalman and Mukerji have found

a(l) = -3004.9 Mev, b(1) = -4430.3 MeV, and -
c(1) = -11349.9 MeV. The value of a(t), b(t), c(t)
for unequal mass guarkonium systems are obtained by

constructing quadratic a.ppz:g.:’cimattions1 of a(t), b(t),

c(t):
_ a(t) =A + Bt +cCt (12a)
‘b(t) = (3A + Bt - Ct?)/2 - (12
. e(t) =

(152 + 3Bt - Ct?) /4 (12¢)

The ‘}values A, B and C are fixed by the parametérs Co
a(l), b(1), c(1). The contribution to the.energy ignoring

mixing, hyperfine and spin-orbit interactions follows from

£




equations (1), (S5), (8), (10) and is as follows:

e

y v

Eo(S) ='m + my + Ju + alt) " (13a)
‘Eo(P) > 2 ' " .

0 =m; + my + waa + gb(t) . (13b)
EolS) = 7 3 ) 27,0

ob =my + my + 79 + 'z-a(t) ~2b(t) + -3-c(t) (13c)
Eo(D) = my + ma + Ju + pgc(t) S asa

. r
The non-harmonic. part of the potential, U(r), also

has non-zero off diagonal matrix elements:

~
Q

a

Ug= <S | U | S>=<S | U | S> s

-

@ -G e

3.3 PFine and Ifyperfine ‘Structure .

The one - gluon exchange terms give rise to color-
magnetic forces similar to magnetic forces arising due
to one - photon exchange. The hyperfine interaction.’
contains _two tenﬁs, a contact term operative only in
S-wave gstates, and, a tensor term which has no contri-
bution in S-wavé states but mixes states which differ
in aﬁgular momentum by 2 units.

Also introduced by the potential are spin-orbit
~ couplings. There is no contrilqution’f;onl these terms

for S-wave states. Thus, in S-wave states the only .
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contribution is from the fermi contact terms. The Fermi-
contact interaction gives the mixindg matrix:

B € 2 3/2 . ' 2 —-l
Eo(S) + 3 ﬁQ ) Uot 3 &Q
. (15)
Uo + 2 6 Eo(S) + /2 & !
73 "o _ Q
b a
‘ .- 3 3
for spin 1 particles, that is, S;, Sji states. With

Eo(S), Eo(S”), U, given by equations (13a), (13c), (14)
and -

o>

-

8 ° "
. § = e, 3 c (¥6)
k Q (my + my) mym, ‘ )

where §. is a parameter from the charmonium secfor fit
‘N .

. .
by Kalman and Mukerji , they get GC = 21,63 MeV.

For the spin 0 states, that is, 'S,, !S;, the mixing
. matrix has the form: R
\ . ) 3/2 g
. ‘ o Eo(S) - 2 éQ Uo - 2V3 GQ R
(17)
| Ue -2v3 5Q ., Eo(S ) -3/2 S, ]
- — u‘ . " —]

The Fermi contact term has no matrix elements for L=1 and
/ ) - .
L =2 angular momentum states.’

-

-

o
PR 3¢ USPRYAIFTHE 11 I VRS ‘ﬂujmﬁw Rl
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' The tensor ‘portion of the hyperfine irtegaction is
- o , (a4 k]

. 3,45
evaluated by usging ‘the identity (Isgur and Rarl = ):

. w
b
<
.
-

-3 CA AN . )J-l )
Lo<lsdfr . (385er T - §108,) LS9 @

i
.

- * '\(I
JoL-S e e e C
(-1) ((2L+1)(2S+1) )™ w(LL SS ;29): ' !
1 S NP - 1 ) . L W .
x <tfl5/3 r v r |lL> <S|| 5/3 Sy Sz ¢||s > (18)

Here, W is a Racah co-efficient and the last two factors

'+ are reduced matrix elements of the tensors whose elements '

dre "

<L| /3 r7v,r,l0> L ~ (19)
and - e .
. L. N ,

<S|E /3°51 S2_|s > o S 20

Q '
L3 6 ‘I
- o - s 8
\ L)

Therefore, by aﬁplying equationg (5p) and (5d4)- to

.equation *(18)“gives the following matrig elements: ’
"ll o , H .
\ .

Y

.
E e SED A



1
< Dzl tensor
3
r < Pol H/tensor
3
3
< Px‘ Htensor
U3 o
< sz .H tensor’
3
< 01| Htensoz
3
< 02| H tensor
<3p |

15

8v?2

= " 105

21. -

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

The tensor hyperfine inyeréction also mixes the. states

3 3 '3 -

Di, S: and Si. The mixed elements are found from

_eguations (5a), (5c) and (5d)into equation (18). These

are:




Ad

TN’

s
o/ ‘
/ e
| f " 22,
AT s> = A s | ' " (29
. 11 %tensor ! /15 °g :
PRI 'si> = 222 5 | (30)
= 11 %tensor 1 3 Q :

A sample éalqulatioﬁ of 3 tensor matrix element is found

in Appendix (A).

o~

&

The spin-orbit interaction has two terms. The first

I
term, Hso(lGE)' arises from the one - gluon exchange

color interaction. This term with chromo-magnetic

-interaction and Thomas precession gcorrection is:

4% §1-F&31 §2-?Xﬁ2 23,-¥xp,

H = 3 N Z - 4 +
so(1GE) - 3r M . M2 mpmz

B

"\235'?*31

(31)

miMms

This can be written as:

) 4as 1. 1 1 N
H = 3 z + + L. S, . (32)
so (1GE) 3r 4m, 4mz2 mim,

where 8= §,+ §, is the total quark intrinsiﬁ spin ‘and

'f is the relativé orbital angular momentum of the guarks.

&
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23.

The second term is due to the harmonic oscillatory

.confining potential and from Thomas preqeésion alone is:

2

dv (§l'?x31 gz'?xaz)
<

H

]
2 e -
r» r <

so(H.o) - m s

This can be wfitten as

. .1.’ 1 ' + -
Hso(Hio) = ~ k (_~7 ' ) t.3

my, . Ma

‘where 4 .
.y .» ’, L] ’: 2 .
mmmaw .
'k = ——2—7
2(my+mz) -

then, the total spin-orbit.interaction is:

¢ N

»

H + H

g0 Hso(lGE)
1

sé(H.o)v

Since the expectation value of L.8 is

<LSIM|L-S|LSIM> = F EJ(J+1)-L(L+1)-S(S+1)]

a

the spin-orbit contributions are as follows:

(33)

(34)

. (35)

(36)

88

’ ’
JJ- LL MM

(37)
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g L]
1p 1 ' S '
<'P | Hgy 7P > =0 ‘ . (38)
.:/ ! e
1 R - ‘
< Dzl Heo | Dz> 0 - (39)
8v2 ,' :
SRSUR T A eI (40)
3, 3 - . 4v2 ‘ ’
< P1| Heo | P>=- -—3—A1- Az ] (41)
4v/2
<‘3P2-| Hso |3P2> = 5= A+ Az , (42)
¢
o :
. 82 .
<3011 Hso \|3ﬁ1> i Ay - 3 iy} (43)
!
<Da] My, %025 = - %3/—2 - Bp (44)
<*Dy| H__ |*De> = 1872 y ,
sl Tso 3 5 41 + 242 (45)

where :

i)



«

2 4
mimaWw
T Tmi+m2)2 —l? * 'lr
(my+m, My s

4
S

(46)

(47)

25.
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“ RESULTS AND CONCLUSIONS

)

The parameters obtained by Kalman and Mukeriji

are-as follows: ' '
: m : 2749.0 MeV

c
m o 6188.6. MeV
6, ¢ 21.63 MeV
we ¢ 390.5 MeV
. ' a(l) : -3004.9 MeV
' b(1), : -4430.3 MeV
’ (1) :-11349.9 Mev

The masses for the u, d and s quarks were obtained by

16
fitting to the D°, D+ and ¢ mesons respectively. The

n

results are mu'= 1525.3 Mev, m 1530.7 Mev,

d

m, = 1606.5 MeV. The masses for the uc, dc, sc, ub, db,

sb and cb systems are calculated and are displayed in
1 ) ‘ l6
Tables I-VII. The only compdrisons with experiment

are the F, D*O, D*+, B~ and B°. It is seen that all the.

1)

results are iﬁ“very close agreemént with experiment.

) "
The states not yet observed may be searched for by
experimentalists in the energy- regions indicated in the

Tables I-VII, For the B~ and B’ mesons there is almost

no error. , -

In conclusion, the Isgur - Karl shell model using

-

a harmonic oscillator potential, fine and hyperfine.

interactions predicts the low-lying meson states

(especially the heavier, less relativistic mesons)very well.

- .
s

26.
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Masses of the uc system in GeV.
Input parameter is underlined.
?ﬁ
State Calculation ' Experiment
sy (D°) 1.8647 © 1.8647
15, 2.6388 ‘
s1 (D*°) 1.9981 2.0072 £ .002]
'S, 2.7883
lp, 2.4492
%Py 2.3286
’p, 2.4460
A ' . ,

P, 2.4753 ‘
D, 2.8552
°p,y 2.9141
’D; ‘ 2.8892
Dy 2.8067




g

TABLE

o

’l‘l‘;
. b

=y

II. Masses of the dc system in Gev.
Input parameter is underlined.

28,

-

State ‘ Calculation < ,Experiment
—= '

s, (0% 1.8694 w//'1.8694
s, 2.6427

35 - (0™ 2.0027 2.0101 £ .0007
'S, . ©°2.7914

'p, 2.4535

*p, 2.3327

S T " 2.4501 ’ :

3P, 2.4780

1p, ' 2.8588

*p, ©2.9171

’p. 2.8926

’Ds 2.8107




TABLE III. Mases of the sc system in GeV. ' L

29.

State Calculation Experiment
s, (%L 1.936 1.970t 5¢5
15, 2.692
’sy 2,067
N 2,836

. lp, 2.514
'y 2.392 ‘
'p, . 2,509 ”
’p, 2,541
p, 2,911 -
D, é.sso
D, 2.941
'Ds '2.869

wr

- | j
€ s ——.
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TABLE IV. Masses of the ub system in Gev.

State . Calculation - Expefimex;ﬁ
sy (B7) . 5.2728 5T2308+ .0023 + .002
15, _ 5.9244
¥s, © 5.3471
s, ' 5.9992

TNp, . 5.7849
3B, ' 5.7263
ip,y 5.7855 v »

P2, . 5.7962 ‘

‘D2 . 6.1320 | o
Dro—t -  6.1953 |

3D, , +6.1609 ) ‘ ;

D, ' 6.0844



TABLE V.

s prs A E £ e %

31.

Maqse‘s of the db sys'tem in Gev.
‘

Staté ‘ Calculation Experiment
s, () - 5.2772 5.2742¢.0019% .0021
is, 5.9274 .
Is,). -5.3515 [

’s; 6.0020

lp, 5.7890

’p, 5.7302

’p, 5,7895

’p, 5.8005 P

'p, 5.1354 °
’p, 6.1980

’p, ©6.1641

’Ds 6.0883




TABLE VI. Masses of the sb system in GeV.

State Calculation Experiment

' - 5.389

s, . 5.970

’s, 4 5.413

3sf 6.042

'p, . 5.848 .

’p, 5.787 .

i 2O 5.846

3p, ~ 5.862

’p,y 6.238

’p, 6.210

*Ds ' ] 6.144

1p, 6.185

Fed

2

i "
- !

P
e Nme 4
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‘33.

TABLE VII. Masses of the cb*system in GeV..

-

State ‘calculation Experiment i
15, 6.310
'Se ‘ 6.803 S .
sy ’ 6.835 -
lp, . 6.848
’p, 6.780
3 : * v
P, 6.837
’P, 6.867
'p, 7.085
' . l
3 ¢ .
« D, .y . 7.084 o '
p, : . 7.090
3p; ’ 7.081
A/'/ ‘ [y
...".:.‘f.ﬁza.‘..
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APPENDIX A

-
[

Sample Calculation of a Tensor Matrix Element

The following is a procedure for evaluating

307 . . , .
< P°lHtensorJ Po >. This is done easily by using equations
(3) and (18). \

The wave function needed is\Y111 (equation 5b).
This can be written as

giv 2 2 . E
Y111 = é;;— exp(-%B r ) r, ‘ (A-1)
n N

where

r, e - gl +ir) (a-2)

the reduced matrix elements in equatéon (18) are evaluated

using the Wigner-Eckart theorem. The results are

~

A A 23 . .
' <W111|i!% rorr H¥a> = - 7%§7; ' (A-3)
. :

(a-4)

.



Appendix A (continued)
3 Y
< > =
. PolHtensorl PD
N M _
‘where
) . ‘ 3\ .
s 4asB»
0 3/2m mim2
l )
e
.
A Y
»
o
14
y "i * ' :

3
4o v5 88
3mim. 2 V&5Vm

(A-5)
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