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Design, Realization, and Implementatioﬁ of

. : <
2-D Circularag Symmetric Pseudo-Rotated Digital Filters

Gelson Vieira Mendonga, Ph.D.

Concordia University, 1984

The design, réalization, and implementaﬁion of 2~D

‘circularly symmetric digital filters are investigated.

o

A transformation that performs pseudo-rotation of the s;

and‘sz axes is obtained by combinimg two known transforma-.

tions, and is then used in the design of 2-D digital
filters. This transformation leads to stable filters which

are free of non-essential singularities of the second kind.

Two methods for the design of 'pseudo—;otated' lowpass
filters are describgd. In the first method the désign
starts from a 1-D anald®filter or a 1-D iﬁfinite-impulse-
response digital filter, and in the second method the design
starts from a 1-D finite-impulse-respoqse filter. The firs£
method le&dé to ldwe:-ordér filters for given specifica-
tions, and the need‘for guard filters is eliminated. The
second on the other hand leads to fewer data manipulatfons

of the input data but guard filters are necesséry.
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A/new configuration is proposed which can be used for the
éesign of 2-D circularly symmetric highpass digital filte:;.
Either rotated’or pseudo-rotaéed filtgr sect;ons can be used
in the desiég. In addition, the design of 2-D circularly

symmetric bandpass and bandstop filters is considered.

Methods and procedures for the design of 2-D circularly
symmetric filters satisf}Lng prescribed specifications are
described, and are then applied for the design qf a diverse
range of lowpass, highpass,\bandpass, bandstop} Butterworth,
Chebyshev, and eliiptic filters. The resu}ﬁéfshdw that pre-
scribed band edges, maximum passband ripplé,ﬂ'pinimum stop~-

band loss, and degree of circularity can‘éaéily‘be achieved.

An attempt 1is made to check ‘if ‘&mpiévgments can be
N
brought about in pseudo-rotated designs th?gﬁéhftbg use of

KRy <

an optimization method. The improvéments sbbghﬁ are reduced
filter order and passband ripple, and ipéreasedx stopband
loss and degree of circularity. Thi results show that the
degree of circularity is usually improved bﬁt the remaining

specifications are degraded.

The qﬁélization of pseudo-rotated filters in terﬁs of'
direct and wave structures is examined. In the direct
realization, the transfer function is realized by connecting
in cascade first- and second-order filter sections with real
multiplier constants. In the wave realization, on the other

hand, the 2-D digital structure is deduced from a
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corresponding 1-D analog structqre by app1§ing impedance

transformations. The two types of realizations are cbmpared °

[ —

to some extent, and the effect of coefficient quantizaﬁion

i8 considered.

-

Finally, several issues pertaining to the software imple-

mentation of pseudo-rotated filters are studied to some

extent.
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CHAPTER 1

INTRODUCTION

l.1l General

Two-dimensional (2-D) digital filters have been used
extensively in recent years for the processing, enhancement,
and restoration of imége . Their application encompasses
many fields and igcludes tomography, seismic record
processing, geophysical exploration, oil prospecting, radar,
and radio astronomy, to % name just‘ a few [1]1~[5]. Two~-
dimensional processing of an image 1is accomplished by
scanning the 1image and then digitizing it by means of an
analog-to-digital converter. The discrete data generated
are then stored in  the memory of a computer and,
subsenquently, they are processed by using a 2-D digital
filter. It is possible to process such signals by means of
1-D techniques such as Fast Fourier Transforms or 1-D
digital filters. Howevér, it is preferable to use 2-D
techniques, because of some important inherent advantages in
these techniques. ’On the one hand, computation time can be
reduced and on the other 2-D systems have many more degrees
of freedom which give & system designer a flexibility not
encoyntered in one-dimensional techniques [6]-[8]. In

addition, in~2-D techniques the rate at which a bandlimited
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signal is sampled can be adjusted and also the scanning of o

-

an image can be performed in several directions, whereas in

1}
1

1-D techniques only the sampling rate can be adjusted. \

Two classes of/ digital filters can be identified
depending on the nature of their impulse respbnse, namely,
.infinite-impulse-response (IIR) and finite-impulse-response
(FIRi filters. IIR filters are, in general, implemented
recursively while FIR filters are, in general, implemented

nonrecursively. S N

FIR filters are always stable and can easily be
designed to have constant group delay. However, in order to
obtain high selectivity, the order of an FIR filter has to

be much larger relative to that of an IIR £filter having

© e

similar characteristics.

IIR filters, on tﬁe other hand, cannot be designed to \
have constant group delay and, consequently, their design
entails the solution of a difficult approximation Pfoblem
whereby amplitude and group-delay specifications must be
satisfied simultaneously. A solution of this problem is to
eqgualize the phase by using an allpass filter in cascade
with a filter which has the desired amplitude response. A
second problem associated with IIR filters |is that their 1
stability is' not always assured as in the case of FIR ° b
filters and hence their design must often inhcorporate

stability tests in order to ensure that the filters obtained

9
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in the solution of the approximation problem are stable.

Much more attention has been devoted to IIR digital

filters' than to FIR filters due to their potential

" advantages and efficiency in processing large amounts of,

data. However, several problems remain unsclved and are
currently under investigation. Before proceeding further,
we shall discuss ' some of the outstanding problens

encountered ip the design of 2-D filters.

1.2 Problems encountered in the design

In 2-D digital filters, the first probléﬁ we face is
the absence of tﬁe fundamental theorem of algebra [9]. That
is, polynomials in two wvariables are not, in general,
factorizable into products of polynomial factors of first
degree., More general, a polynomial of any degrge whose
coefficients 1lie in a domain of rationality R is not always
reducible to a product of two nontrivial polynomials whose
coefficients also lie in this domain. In view of the above,
parallel or cascade realization of a given 2-D filter is not
always possible [10]. Nevertheless, these realizations have
been explored)in the past [11l]. The approach Qsed is to
apply transformations to an analog-filter structure in ‘order

to obtain a corresponding 2-D digital-filter structure.
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) A problem encountered in the design 1is that ’somei
two-variable transfer fuhctions_ possessing denominators
which are strictly Hurwité polynomials {12] " in the analog
domain,1 upon applicatiom of the double bilinear
transformation result in discrete transfer functions
possessing non-essential singularities of the second kind on
the distinguished boundary’ in the unit bidisc of the z, and
z, ‘complex planes [13]. These singularities afe
‘ | characterized by the fact that in' the 'analng domain, the
evén and odd parts i%fl the numerator jand denominator of
transfer functions can individually” and simultaneously
become zefo at a set of points (WIO’WZO) of the frequency
plane. Such singularities would in theory render a - 2-D

digital filter unstable. .

s

The approximation pr&blem in'2-D digital filters has
received considerable attention in recent years and several
solutions have been 'proposed\‘(l4] - [21]. Most of these
methods are based on optimization té&hhiques and are almost
, always focussed towards the golution of the approximation

’ problem for lowpass filters. The solution of the .
approximation problem for the case where prescribed
~ circularly-symmetric filter specifzzé}ions afe :é&uired has
not been solved, although it is sometimes possible to obtain

a solution through extensive trial and error.

Gt el e

OREILPY,

4"’.I'I;te distinguished bounda;y of the unit bidisc is defined as
T = | (29025) & |23 =1, |z, =1 b

L RS o

.
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In the past, ifficulties with polynomial
factorization | and sfabxlity checking in 2-D digital filters
led to designl methods whereby the 2-D filter is designed in
separable form [14] or in terms of 1-D digital filters [15].
Filters designed by these methods have the following

. |
disadvantages :

1) Filters in separable form cannot achieve circularly sym-
] \

metric amplitude response

’

2) The approximation problem in terms of 1-D IIR filters is

a very difficul‘t‘ task.

1

Once a suiﬁable approximation is obtained, the
realization of the 2-D transfer function may be required.
This is the process of converting the transfer function into
a digital—-filter network. The realization .has been

considered by several authors [11], [16]-[17].

The 'implementation of 2-D digital filters which is the
embodiment of the digital-filter network by means" of
software or hardware has been considered in [1] - [6], [15].
Most of the time the complete set of data to be processed is
available and, consequently, the proces_sing can be carriéd
out off~line by means of a software implementation.
Occasionally, howe\.rer, real-time processing is required in

hich case a hardware implementation would be preferable.
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Like‘l-D digital £filters, 2-D digital filters are o
implemented by using finite arithmetic. Conseguently, the ‘/m~
effects of quantizing «coefficients and products must be
considered. Thé quantization of coefficients tends to
change the frequency response and sometimes may render a
filter unstable. On the other hand, the quantizatign of
préducts causes roundoff noise to appear at the output of
the filter, and it ‘may sometimes cause granularity and

overflow pscillations.

o \ N

1.3 Different methods of designing 2-D IIR filters .

Basically'there are three general approaches for the
solution of the approximation problem in 2-D IIR digital

filters, as follows :

1) By .applying transformations to analog or digital 1-D

filters

2) By applying optimization methods .

3) By applying transformations to analog or digital filters

in conjunction with optimization methads.

B TS -

)

The first’ approach makes  use of spectral

yF
o
g
%
&

trénsfcrmations which aré also widely used in the design of




1+D digital filters, -Shanks et al [18] introduced - the
technique of rotated filters which entails the
transformat;on of variable s into variables $1 and -
.transfofmation is used to rotate the frequency response of a

This

1-D analog filter and results in a 2-D analog filter. After
the transformation is applied, it is necessary to transform
the 2;D analog filter into a 2-D digital filter, by making
use of the double bilinear transformation. Filters so
'obtained are said to be rotated [filters. Costa and
Venetsanopoulos [19] have used this design methcd to obtain
good approximations for circularly symmetric filters. The
disadvantages of the method are that extensive trial and
error is needed to achieve the desired cutoff frequency ' of
the filter and, in addition, singqularities of the second
kind can appear in the transfer function. Chang and
Aggarwal ([20] proposed a method for rotating filters in the
2-D digital domain rather than the analog domain. Rotation
in the =z-plane 1is not generally possible because the
resulting transfer functions may turn ou£ to be irrational,
and the frequency response may not have periodicity with
respect to the Nyquist frequency in both Wy and wo fr;quency
;xes. Chang and Aggarwal Qere able to éesign only lowpass,
highpass, and bandpass filters and their method requires
interpolation of the input signal. Ahmadi et al [21] have
employed a 2-D reactance function as a spectral
transformation from the 1-D to the 2-D domain in conjunction

with the bilinear transformation. Their transformation is

B

-
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such thatait is necesséry to use a gquard filter in ordér t6
avoid spikes in the stopband region. The technique 1is
appiicable to the design of 2-D lowpass filters.
Pendergrass et al ([22] deVeloped a procedure through which a
given. stable 2-D filter can be transformed into 2-D filters
with many other amplitude reséonse shapes. In their
procedure, \it is necessary to find an, approériate
transformation in the form of a 2-D stable allpass function
that maps the frequency response of a ﬁrototype filter int;
that of a desired filter. The approach of using a
transformation from the 2-D t& the 2-D domain is a very
useful one. Techniqués developed so far in this direction,
however, lack the generality that would allow the design of
2-D filters satisfyiné d?sire& specifications. Chakrabarti
et. al [23], [24] have shown that there are two strategies
based on spectral transformation, namely, transformation
from a 1-D to a 2-D transfer' function and transformation
from a 2-D to another’ 2-D gransfer function. These two
strategies have their advantages and limitations and are
discussed in [23]-[24]. In the approach of applying a
transformation to the transfer function oﬁ an analog filter,

only the direct form realization can be guaranteed, if the

realization is needed.

The second approach to the design of 2-D IIR filters

corresponds to the direct approximation of amplitude or
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phase shift characteristics by a ratio of polynomials. Thié
technique was first used by Maria and Fahmﬁ [25]. It
involves defining an error function which is, in general, a
sum of differences between the desired and the actual values
of the amplitude or.ph?se response raised to an even power
and taken on 4 dense grid of points in the 2-D frequency oo
plane. This error function, is- minimized by usiﬁq the
-well-known least-squares Eechnique. Sometimes mi;imum error '
is §btained by means of 'optiﬁization algorithms which
incorporate %tability contraints. 1In order tg fiake easier
the stability checking at each iteration in the miqimization
process, the filter 1is designed with low-order sections
which are cascaded. in order tdrfo:m,thé overall amplitude or
phase reéponse characteristics. Xarivaratharaian and Swamy
(26]), [27] have '  proposed techniques which simplify the
design when the goal is guadrantal symmetric £ilters. In
their work, the denominator of the transfer function is a

separable function of zy and Z,. Stability checking is

avoided except at the end when the minimum is reached.

Charalambous [28]. proposea an alternative design
method in which the desired amplituée fesponse is - obtained
by wusing a minimax teqhnique rather than the least-squares
technique: Although the minimax technigue leads to smaller o
error, more points are required in th% sampling grid, in %
order to reduce the 'chances of large "errors appearing ;

between the grid points [29].
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The realization of transfer functions obtained by
optimization methods is achieved by using the direct form as
a single section or as a cascade arrangement of direct-form

sections. B

W

The third approach for the design of 2-D IIR filters
involves transformation of a 2-D analog transfer function
into a 2-D ‘discrete transfer function by using Eﬁe double
bilinear transformation. Then An épéimization technique is
used. Ramamoorthy and Eruton {30] have shown how a 2-D
stablé analog filter can be designed by using the propertie§
of an immittanée functioﬁ of a lossless frequency-
independent N;pprt network. }However, their apbroach does
not eliminate nhon-essential singularities of the second kind
which c¢odld result in an , unstable filter.. Ahmadi and
Ramachandran f31] have moedified the technique in [30] so as
to obtain a denominator which is a very-strictly-Hurwitz
polynomial (VSHEP) [32] iﬂ order to avoid‘ non-essential
singularitiés. Thgs‘ is done by using constrained
optimization. The'method was improved later by the same
authors ([33] by generating denominators which ate VSHP
without using constraints in the minimization process. In
this approach, the generation of the 2-D analog denominator
polynomial for the general case is complicated since no
closed-form solation is available, The transfef-function

a

can be realized by using the direct form.

/




2 Bierrpg

11 .
‘ It is not always possible to obtain a 2-D. analog
structure from a given 2-D transfer function ‘since no

general method exists for the s§nthesis, of multivariable

analog

positive real functions (MPRF'S). so, one Qéyrto overcome
2-D transfer
The parameters of the

this diffilculty is to generate an

from a given

function structure,
structure are then obtained by an optimizatipn method 'such

amplitude response of the filter meets desired
synthesis of

that the
However, .some methods for

specifications.
certain classes of MPRF have been developed by several

authors, e.g., Raman [11], Rhmachéndran and Rao [1l6], Ahmad
With the parameters of the

can be

et al [17},-[35] and Kamp [34].
analog structure known, the digital realization
obtained iby using the direct form or by using the
@ethodology of Qa&e- digitalv filters. Di:ferent 'wgve'
digitalhfiltér regli;atioﬁs éan be used.l A wave digitai
filter approach éLe to Fettﬁeis is an extension of the
[36]. Two others due to
and

. well-known 1-D approach
Constantinides are known as the invariant-voltage-ratio
Another one,

the modified-transfer-admittance methods [2].
which permits certain alternative realizations, is due to
Swamy, Thyagarajan and Ramachadran [37],.[38]. .

*
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1.4 1-D to 2-D.reactance transformation

A t?aéitional problem in the design of 2#D; @igital
filters has been the generation of stable 2-D digital-
transfer functions whose amplitude and phase responses
éatisfy desired réquirements. A method'frequently used for
generating such a transfer function ié to apply the douplé
bilinear tragsformétion to .-a 2-D analog transfer function
which is stable. However, in ’some cases' this can cause

singulaiiti%s of “the second kind as it has been shown by

Goodman [16].

It has been shown by Karivaratharajan et al [32] tha£
in order to obtain a 2-D transfer function which i;hfree of
such singulaéities, the deqominator D(sl,sz) of the analog
transfer function has to be a very-strictly-Hurwitz (VSH)
polynomial in".él and s,, that is, D(s;,s,) should not

possess singularities in the region
{ (syss,) | Re(sy) » 0, Re(sy) » 0, |s;]| €=, |sy] s>}

A natural approach for obtaining a 2-D analog transfe
function is to apply a spectral transforma;ion to a 1
analog filﬁ%ﬂﬂwhose amplitude and; phase characterigtics are
known. The effect of suchva transformation is to convert a
stable 1-D analbg transfer function into a 2-D analog

transfer function exhibiting similar characteristics.

\
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...~In order to avoid singularities of the second kind ‘%m

the (zl,z2} plane, the spectral transformation itself has to
' L

. be free of such singularities as has been shown by

' Karivaratharajan et ‘al. In other words, the sum of the

numerator and denominator of the spectral transfofmation,
has ‘to be a VSH polynomial. For example, the spectral
transformation due to Shanks et al [18] given by

. .

’s = -5 sin(sj + s, cos}B) ' (1.1)

which represents s-plane rotation, introduces  such
singularities as has been noted by Goodman [39]. On the

other hand, the spectral transformation used by Ahmadi et al

fl

[21] given by
s = ( a s, +b 52 ) / (1 + ¢ s, S, ) (1.2)

does not cause such = singularities. However, the
transformation causes another problem. Spurious spikes are
introduced in the amplitude response at the points (Wsl/Z',

Wszfi), where Wsl and Wsz are the sampling frequencies [24].
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1.5 Scope of the thesis

In Chapter 2, a combination of the two spectral
transformations in Eqns.‘ 1.1 and 1.2 is used for the design
of 2-D stable filters. This transformation leads to(
pseudo~-rotation of the S and s, axes, but under certain
circunstances, the results achieved are very close to those
obtained by using true rotation of the axes. The approach
eliminates non-essential singularities of the seconé kind.
In addition, spikes in the amplitude response at the Nyquist
points (twsl/Z ' 3wsz/2) can usually be eliminated. The
approéch is first applied to the design of lowpass filters.
The design can start from a 1-D analog or 1-D IIR filter and
equations for obtaining the filter coefficients are derived

for both cases. The filters obtained will be referred to as

'pseudo-rotated' filters.

Conditions are derived which lead to a pseudo-rotated
filter with circularly symmetric amplitude response. Based
on these conditions, the required direction of recursion is.

deduced in order to obtain a stable filter.

In order to reduce the number of data transfo:mations,
a desién method is proposed whereby 2-D circularly symmetric
filters are obtained by starting from 1-D FIR filters. 1In
these filters, the wuse of guard’ filters 1is .needed to
‘eliminate spikes in the amplitude response at the Nyquist

points.
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The design of pseudo-rotatéd filters ié exj;nded to
ihclude the design of highpass 2-D digital filters. 1In this
case, a combination of series and parallel highpass filters
is used which implements highpass filtering. Transmission
zeros appear at (z, = 1, z, = t1) and could be a problem

in certain applications.

By wusing combinations of highpass and lowpass 2-D
digital filters in cascade or in parallel, the design method
is extended to the case of bandpass and bandstop 2-D
~ circularly symmetric filters. Examples are given for a-
diverse range of filters which illustrate the effectiveness

of the proposed design method.

. In Chapter 3, methods are considered for the solution
of the approximation problem for the case where circulérly

symmefric 2-D filters satisfying prescribed specifications

?

are required. The specifications of intérest include the
passband and stopband edges, the maximum passband ripple,
- and the minimum stopband attenuation. In addition,
specifications may also be prescribed for the degree of
circularity. The techniques considered are based on the
method of 2-D pseudo-rotated filters described in Chapter 2,
and can be wused to design lowpass, highpass, bandpass and
bandstop filters. These techniques are based on-— _empirical
prediction formulas which can be used to deduce the

necessary specifications for the 1-D prototype filter so as
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to satisfy the required 2-D specifications. This chapter
also deals with techniques by which the mimimum order for
the 1-D prototype filter can be determined. In addition,
consideration is given to the minimum number of rotations
that 1is necessary in order to achieve a specified degree of
circularity. The reliability of the design methods is

illustrated by several examples.

In Chapter 4, an optimization method 1is used in
conjunction with the method of pseudo-rotated filters for
the design of 2-D circularly symmetric filters meeting
desired specifications. This is done in order to check if
improvements can be brought about in pseudo-rotated filters
by wusing optimization techniques. The improvements of
interest are reduction in the number of cascade first-order
sections, reduction in the maximum passband ripple, increase
in the minimum stopband loss, aAd increase in the degree of

circularity of the filter.

The optimization method used is based on a sequential
minimization technique. A least-squares error function is
used which is defined in terms of the difference between the
actual and the required response. Thé starting values for
the variables of the optimization problem- are assumed to be
the coefficients of the 2-D pseudo-rotated filter as
designed by the method of Chapter 3. Th%ﬁ approach is
applied to elliptic lowpass filters. 1In o;der to check if

it is possible to decrease the order of the overall cascade
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filter without violating the required specifications,
optimizations are carried out with one or more of the filter

sections removed.

In Chapter 5, the realization of 2-D pseudo-rotated
filters is discussed. Direct and wave digital realizations
are considered. In direct realizations, the transfer
function is reaiized\by connecting in cascade or in parallel
first- and second-order filter sections. In wave
realizations, a ' 2-D structure is deduced from ‘a
corresponding 1-D analog filter by wusing impedance
transformations. Then by applying the wave characterization
the 2-D wave digital filter can be obtained. This chapter
concludes with an example which illustrates the realization
procedure. .This example provides also some idea about the

performance of the two types of realization when coefficient

guantization is applied.

Finally, the software implementation of pseudo-rotated
lowpass and highpass filters is considered and several

features of the implementation are studied.
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CHAPTER 2

DESIGN OF PSEUDQO-ROTATED DIGITAL FILTERS ,

s

2.1 Introduction

In this chapter a transformation is’ proposed which
combines the transformations in Eqns. 1l.1 and 1.2. This

transformation like that in Egn. 1.2 is- in terms of a

reactance function, and it can perform pseudo-rotation :in

the s-plane, ’

By using the proposed transformation, ’pnocedures are

developed far the desigﬁ of 2-D circularly symmetric lowpass '

filters. These procedures lead to IIR filters which are
free of non-essential singularities of the second kind, and
some of them render the use of guard filters unnecessary. A

new approach is then developed for the design of 2-D

ciréulariy symmetric highpass filters. Subsequently, the

design of 2-D circularly symmetric bandpass and bandstop
filters by means of corresponding lowpass and highpass

filters is considered.

&

3
2
i
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2.2 Design of 2=-D rotated lowpass filters

The problem we wish to address here is the following.
Given a 1-D filter with some frequency. response
characteristics, we need to obtain é corresponding 2-D
digital filter that exhibits similar fréquqncy respoﬁse
characteristics. The starting 1-D filter can be anaiog or

3

digital.

2.2.1 Design starting from a 1-D analog filter

The design technique described by Costa and

Venetsanopoulos in [19] consists of the following steps :

1) Consider a stable 1-D analog filter whose transfer
function is given by

Nal(s)

= E;IE)— {(2.1)

, Hal (S)

where Nal(s) and Dal(s) are mutually prime polynomials in

s with D,y(s) # 0 in the closed right-half s-plane.

2) Apply the transformation '
s = - s, cos(B) + s, sin(B) : (2.2%

L 1) Hal(s) in .Eqn. 2.1 to obtain the 2-D continuous

<
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_transfer function

Hoo(Sy,8,5) =(Hal( -slsin(.e)#szcos(.s) ) B (2.3)

~3) Appiy’thg double bilinear transfofmation

(2.4)

to Haz(sl,sz) in Egn. 2.3 to obtain the 2-D discrete.

. transfer function

-1 ; zz~1‘

4
2 1 2
Hap(2102p) = Hyy 0§ a1 sin(®) * g, 737 ©os(B))
, B 2 %2
: . (2.5)

'(Ti and T, are the sampling intervals).

4) Cascade several rotaféd»filters with different values of

B to obtain a 2~D circularly symmetric discrete transfer

function.

5) Calculate the actual cutoff frequency and if it is not in

the desired 'range, réplace s by s/ak in Eqn. 2.1 and“

continue until the required cutoff frequency is achieved.
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2.2.2 Design starting from a 1-D digital filter

)

The previous section has shown how a rotated .filter
can be obtained from a 1-D analog filter. 1In this section a
procedure due to Goodman [39] is described ‘whereby a 2-D

rotated digital filter can be obtained from a 1-D digital’

?

" filter.’ The design steps involved are as follows :

1) Consider a 1-D digital filter whose transfer function is
given by |

Ndl‘z’

H a Sxo .
°
2) Apply the transformation
ctbz,+az,+z,2
z = 1+§zl+b 2 *1% (2.7
17P227C21 2, =

to the . .transfer' function in Egn.\_.2.6 to obtain a 2-D

discrete transfer function B

e e Ay L et Ar’bm‘”‘«’wﬂb -
v ‘e
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g o H' c+bzl+a22+zlz2
. (z4y,2,) = H ( g )
//////' ‘ d2°"1’"2 dl' l+az;+bz,+cz,z,
/ \' ' .p

If . -

' ' ) ‘
Haz (21023) = Hgy(21,2))
o wheré H4,(2;,2,) is given by Egn.’ 2.5, then coefficients

v
a, b, -and ¢ in Egn. 2.7 can be expressed in terms of

sin(B), cos(8), and Qe '
. ' ' . . h
3) Cascade distinct rotated filters.. corresponding to,
different values .of B, to obtain a 2-D é}réular{y
symmetric digital filterf' -
4) Compute fhe actual dutoff frequepcf and if it is not as
required, use an optimization techhiqﬁe to édju;t the
transfer function coefficients. '

~

As can be seen in the above procedures, trial and'
error 1is needed in the firét method to obtgin‘the,desired
speé}fications, while'an optimization ﬁechnique is necessaryf'
in the second apﬁfoach "to bachieve the Qesirea cutoff

g frequeﬁcy. In! addition, the 2-Dj transfer function can
posse;s pole and . zero cancellatidns on the distinguished

boundary.of the unit hidisc of the zy and z, cdmpiex plane.

;F . ' This might  render the 2-D digital filter unstable due to

! S f rounding of the filter coeffic@entsa

e ek g e g wiR
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2.3 Pfoppsed transformatioh

N v o

° Q I3

In this section an alternative transformation is
proposed which combines the t;ansformaiiods due to Shanks et

al (18], and Ahmadi et al (21] given in E 1.1 and 1.2,

~ This will be  used in Sec. 2.4 tp-'develop a procedure for

the design of 2-D lowpass filters.

Al '

2.3.1 The transformation ¢

v
«
-

The proposed transformation is given by
‘ ‘

- ° - ~

s cos;(3)+s sin(8) . T,
2 z (2.8)

$ = 9(51:8)) * T¥ < s s,

” -
. ®

and like the transformation of Eqn. 1.2 it is a reactance

funetion. * We shall refer to this transformation as

v

pseudo-rotation of the'sl and 5, axes by analogy with the

.true rotation of ‘the axes when ¢ = 0. 2-D filters designed,

through this transformation will be referred to as

pseudo—rotaied‘filters. , -

P
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2.3.2 Stability of the designed filters .~

a

2

- The filters designed using the spectral ‘transformation

in Eqn. 2.8 will be stable if the transformation itself is
~

free of any singularity [32]. -

. The necessary condition for g(sl,sé)'to transform a

1-D stable analog filter into‘a 2-D stable analog filter is

that'g(sl,sz) be a strictly—Hurwitz'polynomial (SHP) . Since

A

g(sl,sz) is a 2-D reactance function, it is hecessary that 1

‘ ' 3

. 3

. P L L ﬁ;’ o X . E
-~ ' ' " #‘QJ‘ ; 7 :
cos(B) > 0 , sin(g) >0 ,”c > 0 ? 4

i o Fo.

or, alternatively

"y

R
> .
A A SR ek

AL B gt

0 <8 <s ' . (2.9)

c> 0 . - : (2.10)

t
L

i . The necessary and sufficient conditions “to ensure that
the filter iS//;;;;—\}roﬁ any non-essential singularity: of o
<+ second kind is that - g(si,sz) be -a 'qerf-stricﬁly-ﬁurwiﬁz
F polynomial kVSHP). Sufficienc§ can be tested by applying

the relations [ 32]

s e
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@ Dlasy # § for Relsy) =0, |s,| < @
By Q(%l,m).#'%.for Re(sy) = 0, Isy| < w
g ) . . DEer#d. -

ce

: : : P ' . {
where D(sl,szj is equal to the sum of , the .numerator and.

denominator of‘g(sl,éé). | ~

- gt

'We can see that these conditigns'hbldjif

L cos(B) #0 , sin(B) 40, ¢ # 0
¢ and 'since .the constraints in Egps; 2.9 and 2.10 are a’
subset of ‘the above éﬁnditions, we conclude ‘that d4f the
conditions in Egns. 2.9 and 2.10 hold, then the resulting’
‘transfer function will be free-og any 'singularities, and the

designed filter will thus be stable.

. - 2.3.3 Type preservation

We. shall now determine conditions under which the

spectral transformation in Eqn. 2.8 will gonﬁert a . I=D

¥

w
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analog filter into a 2~D analog filter such that the
ampiitude response is preserved,‘ahd that the inequali:ies'
Jin Eqns: "2.9 and 2.10 hold in order to ensure a stable.z-ﬁ
analog filter, Th;t is, we wish Eo determine the mapping

(propértiés of the transformation.

It has been shown in [23] that if H(s) represents a :

particular filter type over fO,wo), wg > 0 then

Hfg(sl,sz)) represents a filter of the same type (local type

preservation)onér a region QI' which is a subset of
. n‘; { (wl;wz)yl Wy 2 0, w, >0}

if and only if

a) T(®) is continuous in @

b) P(Q,O)\- 0 and [b,wo)"5 Pan) —

" ¢) T(Q) is positive monotonically ‘ihcreésing " function - in

each variable in 0, L : _ ‘ S

where L 1
g (3w, 3w,)  wycos(B)+wysin(8) . 7 :
r(wl:WZ) = h"ﬁj— = T=cwW. W. P +(2.11)
‘ 172 S N
o ) = yavy) | ey €8
» (}’ i

5

. . . . » arzad . N
.'“,,v"_vv!ﬂ"' aliainid ' * . . . b el AR AR S MR > Ly



ST

27 -

In effeét, the t;ansfdrmation in Egn. 2.8 will lead

to local type preservation in the region

Q=

Qp = { (wy,wy) | ww, <2, w20, w20} (2.12)

In order‘to understand the behaviour of g(sl,sz), we
note ﬁhat I'(Q;) has. a ,discohtinuity at cww, = 1 which
defines a hyperbolic functioh. We can see that for a £ixed

. value of Wy = Ws, (or equivalently for Wy =W w

10’ lfw2)
"is- a piepewise increasing funétipn‘in bhe.inter?ai ;O,WEO) u
,(WIO'+Q) where Wig l/cw20 and the éqperécripts (-)1§nd‘k+)
1cf Wig” indicate immediately to the iéft\and éo the vfight:ﬁ‘“

respectively.

1

»Consequently, we have to Choose_the value of ¢ small
in order to ensure type preservation in the filter.  Since
we are interested in designing 2-D circularly symmetric

N . S . -

. lowpass filters with stopband edgevwa, we' should have’

a2 - L
" o << gz N c £ ] R
a ¥
-
',

This .condition ensures type preservation over.. a large

fraction of the Nyquist frequency.
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2.4 New desigh procedure based on a 1l-D analog filter.

\

Consider the 1-D continuous transfer function

N(s)
Hal(s) - D(s)

.) .

s-
( z,

, o i :
=x £ — (2.14)
ig:.) ($7Pas) )

N\ 3
where Z,4 and Pair i=1,2,... ‘are the zeros and poles of the
4 L3
janalog filter and K is a constant representing the gain
factor of the filter. To ensure stability, the poles are

assumed to lie in the open left-half s-plane.

Applying the transformation in Egn. 2.8 to the

transfer function in Egn. 2.14 , we get a 2-D analog
. 3

o

transfer function

%h slcés(B)+szsin(81-zai(l+cs152)

B i;; .
211 slcosiﬁjfi?SIH(3)-Pai({+cslsz)
(2.15)
vheré e |
T = (Ltcs s ) o ‘ (2.16)
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The digital filter is obtained by using the double:

bilinear transformation
’

2 23-1 2 %

‘8. = £ - S. = (2.17)
1 Ty z;+1 ' 2 Ty z71

‘; If Tl - T2 =‘T,.the 2-D transfer function of the digital

filter is obtained from Egns. 2.15 and 2.17 as

L 311i%3311%1%72121%2%3221%1 %2

- L i=1
B.,(2y,2,) =K, T
d2%y:2; 1 “z.z, M
172 1P b13i*Pyyi21¥Py2i%2%R22i%1 %2
i=1 ' (2.18)
where
s e, T MMy :
K} =K (3) . (2.19)
»
4c 4c 4c 4c Mo =M
T = ((L+—)+(l-—) 2, +(1l-—) 2+ (l+—) 2z, 2,) D (2.20)
2,2, s ! S 22 2 “1%2
e T T
and

" .
. L.

L. T2
ajyy = - o8(8) - sin(B) =z, (3 ¥ £ -

. .
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C e
SRR s

> asq; = cos(f) - 'sin(B; -z ( %'\ %g:_)
2153 = = cOs(B) + sin(B) = z,; (F - £9)
ay3; = COS(B) * sin(B) = z,; (7 +59)
= . (2.21)
blli == éos(B) - sin(8) - Pa; (‘% + %g)
byyi = cos(B) - sin(B) - Py | % _q%g)
by, = = cos(B) + sin(B) - Py % _‘%g) '
b221 = COS(Bf + sin(B) - Pai ¢ % + %E)

The behaviour of the transfer function in Egn. 2.18
v - .
at some Specific points of the (z,2,) plane is of interest.

Let us consider the points 2z, =t 1, =+ 1. o

Zz‘

a) At z, = 1, z, = 1l

(Hgp(1,1) = (-1) K ;ﬁo'
’ P
fm1 21
b) At z, = 1, z, = -1 ~ : ' .
0 for My > My
Hy,(1,-1) = " ;
K for Mp = My M

s - » o
° . . mwxwym
’ e,



c) Atzla-l,zz-l

0 for Mp > My
Hdz(-l'l) =

K for Mp = My

d) At z, a -1, z, = -1

[
L]
[

|
Hdz (-ll-l') = (- ";2) K

'%z
o
o

[
"
[

»

As can be seen, no singularities exist in the transfer
function and, in addition, there is no dependency on ¢ at
these points. In effect, <c can be decreased as much as

desired provided that ¢ remains machine representable,

Evidently, a very small value of ¢ can be rounded to =zero

when the transfer function coefficients are calculated and

?

then a non-essential singularity of the second kind would -

occur at z; = z, = -1, which would cause the filter to be

unstable.’

An observation is worthwhile at this point, The
transformat\ion in Eqnf 2.8 tends to shift the poles and
zeros by a small amount relative ' to the position‘ of the
poles and zeros for true rotation (i.e. ¢ = 0 ). This

eliminates non-essential singularities of the second kind

e Al R RS S ©
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but at the same time‘global type preservation is lost.

2.5 New design procedure based on 1-D digital filter

3

The design of pseudo-rotated filters can also start

from a 1-D digital filter. This approach provides the

flexibility whereby 2-D pseudo-rotated digital filters can

be obtained either from 1-D IIR or FIR filters.

Let us consider the analog transfer function given by

Egqn. 2.14. On applying the bilinear transformation to this

- transfer function, wé obtain the 1-D discrete transfer

function

ﬁN

I T
s (-3 2z, - (L+352z,
Hdl(z) = Kl Tz M (2.22)
R D _T - T
iTJl 2 (1=3 Py = (L+3 P,y
where
Tz = (z+1 )MD‘ MN i

Alternatively, we can write

T
f? 1+ FZai
(z - - )

i=] :
H = K, T_A T 2%ai
ar(® 17z M 1+ -'1-‘p .
,TP (z - 2 aH
i=] 1- Ep
2%¥ai

PRI e iR, o s




L R

-
[}
[rt

'FTV 1- 'zdi) .
- i=1 .
Kl T, A ﬁD (2.23)
(1 - pg.) ‘
i=] di
where
T . .
R :
A = N o (2.24)
T (1-3pay

and zdi and py; are =zeros and ,po%es of Hdl(z)‘in the
z-plane, These poles must be inside the unit circle in

order that the filter be stable.

Let the transformation from the 1-D digital domain to

the 2-D digital domain be the following allpass form

g+le+ezz+dzlz2

z = glz;,2z5) = dtez +iz,tgz (2.25)

1%

x

where d, e, f and g are constants to be determined.

-

Applying the transformation in Egn. 2.25 to the
transfer function in Egn. \2.23, we obtain the 2-D discrete

transfer function

- -~

f?; (g=dzq;)+(f-ez4;) 2, ]
i=l |+ (e~fz..)2z,+(d-g2,.) 2,2
di’ 2 cdi’ “1%2 (2.26)

. .

z2,2, 71D 8 (9'dpdi)+(f-epdi)zl\
=1 [+(e=fpg;) 2% (d=9pg;) 2; 2,

74T B e E A e oy By

——
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. ‘where

: 4M" .
K, =K ( %')_? "N (2.27)
‘ C . ' : MLy=My
T’lzz = ((dtg) + (etf) zy + (e+f) z, f (d+g) z,z,)
AN (2.28)

R

Now by equéting correéponding coefficients in Eqns,

2.18 and 2.26, we obtain after some manipulation, the

,foilowiqg relations

1 + cos(B) + sin(B) + ﬁ% T
. T
d = -~ 2
l - cos(B) + sin(B) - ig‘
L) N T
e = 2
) | (2.29)
1 + cos(B) - sin(B) - i%
T
. £ = 2
- 4
1 - cos(f) -~ Sin(B)‘+ ig
: - T .
g |
\d 1

- , —— . O T S * - R -‘&Jlnsl—il‘ﬁ:Mwmﬂwﬁm
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By using these relations, the design of a 2-D lowpass
Jigital filter can be obtained from a corresponding 1-D

digital filter.

The. stébili;y requirements follow from the actual
prgcedufe. It is known that if the transformation has no
singularities on or inside the unit bidisc, then the 1-D
stable filter will be transformed into a 2-D filter wi:‘
any singularities. [32], [40] on or inside the (zl,zz) uﬁit

bidisc.

The necessary and sufficient conditions for the

transformation in Egqn. 2.25 to be stable are

. ) (2.30)

-e+ £ +g< d

~-e~-f-g<xd ' .

o

+ .

If these inequalities are applied to the relations in Egn. - -

2.29, we get

cos(B) > 0 , s%n(B) >0 , c> 0

&

These inequalities are the same as in Egns. 2.9 ‘and 2.10.

.
Q
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+2.6 Design of circularly symmetric zero-phase lowpass

" Filters

2-D' transfer functions are often required . with

R W .

circular symmetry in the (wl,wz) plane. For examble, in
image précessing where both of the frequeficy axes should

receive the same treatment. Perfectly circularly symmetric .

R i

filters are impossiblef to achieve ‘in practice [6].
Nevertheless, it  is possible to design 2-D digital filters ,
that are 'approximatély circularly symmetric. In ' this, o
section, we use the techniques of Secs. 2.4 and 2.5 for the z

desgsign of circularly symmetric 2-D digital filters.

t

As shown in Eqn. 2.9, B must be in the range (0°,90°)

LEANE B S A S

@

in order to ensure stability in the resulting filter. We

A

LIRS Ny

can design a filter by pseudo-rotating the transfer function

e 4

M
<1

by several angles andithen cascading the filters obtained. -
Eventually an overall transfer function is obtaiqu which is

a product of several transfer functians each of'them'totateé

by a different value of B, that is,

[s]

. M . .
Hdz(zl'ZZ) = in Hypy (Zqr25) (2.31)

°
<

where H j,,4z,,2,) 1is the transfer function obtained by
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©~
rotating . the' 1-D transfer function by an angle B;. For the
sage of simplicity Hﬁz(z;,zj) and HdZi(zl’ZZ) will be

represented. by H(zl,zz) and Hi(zl,zz), respectively. .

In order to have approximately circular symmetry, we

need to design the .filters such that

"i) the coefficients of z, and z, in Eqns. 2.18 and 2.26

interchange, . )

ii} a rotation by an angle B, 0° < B < 90°, must be accom-
. <y F . ’

pénied by a‘rotation by an angle =8.

.

. The first condition will ensure that, the " coefficients
of’ z, and z, arensymmetriéal and that the variations in the

amplitude response are the same in the wy and w, directions.
ot

" The* second condition is related with the characteristics of

the transformation itself. When we apply the rotation of

the transfer fhnc;ién, we get a 2-D digital filter with a

"'lowpass amplitude response on line Wy oW, and a allpass

amplitude _response on line Wyem o= oW, Thus, if we cascade

N2 v 2

several' filters that have been designed with angles in the

range 0° < B < 90° and 270° < B < 360°, we get an overall

¥

_transfer function in which the amplitude response is

circularly symmetric in the (wl,wz) plane.

Unfortunately, the use of rotation angles in the range

(270° , 360°) results in filters which are unstable when the

recursion 1is carried out in the (+,+) direction. However,

according to Huang (12] , if a 2-D digital filter is stable

Poviomt st Gupangs

e

ARET S N
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-when the recursion is performed in at least one of .the i
(+,+), (¥,=), (-,+) and (-,-) directions, then the £ilter’ SR
can " be “made stable by properly transforming the input data - -

‘before £filtering. ‘ For examﬁler let Hl(zl'zz) be the

parhovi,

transfer function of a filter designed with a rotation angle

PREERTERCY,

By 0° < B < 90°, Designing a filter with -8, will yield a

L SN

transfer function Hl(zl,zz) which is unstable in the (+,+)

14

direction. However, by performing the recursion ‘in  the
(+,~) direction, s;;ﬁility is achieved.
. . ‘ ﬁ . ' '

I ra " *
In: image processing it is very important that the

-

grgup’delay'of the filter be constant. Otherwise, the

i

filtered image -will be distorted. As is well known the

double bilinear transformation does not preserve the phase

linearity of a two-variable linear-phase analog transfer

‘-
L b S ae - S el Db bt o G RS .

function. However,'giyen a 2~D transfer function H(zl,zz),

a zero-phase filter can be obtained by forming the transfer

function ' \
by
« 1 <1 .
’ G(zl,zz) = H(zl,z2) H(zl ,?} ) | (2.32)
, ) ] - r
Such a filter has an amplitude response ' ’
Y e g | ‘
. . jw Y : -0
) | G(e 1 e 2 ) | = | B(zy,2y) |2 (2.33)

J

> H

For example, if two filters which are recursing in the (+,+)

and (+,-) direction are to be cascaded to obtain a(“

1]
- !

‘)'( * -~ .
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c“o , Y n. 2 ’ M '
quasi-circular symmetric -amplitude reSponse,\in which case

\ . .

Hz(zl,zz)_= Hl(zl,zé)°Hl(zl,z;l) ."(2.34)

. \ . :
then a zero-phase filter, can'be obtained by forming the

’product

f3(21,2)) = Hy(zy,2)) By (270,25 0) | /

= By(zy,2,) B, (z),250) H(z]1,2,) By (270, 250)

. {2.35)

Al .
-

In this expression, transfer function Hl(il;,zz) and

1

Hl(zz ,z;l) represent stable filters in the (-,+) and (-,-)

directions, respectively.

Finally, if we design a pseudo-rotated filter with

0° - < 84 < 45° with corresponding transfer function

' H4izl,zz), vﬁhen we have to design a pseudo-rotated filter

with an angle Bs = 90°-—B4 with cor}ésponding transfer
function 85121,32) = H;(zz,zl) in order to have symmetry in
the coefficients, ,as required by condition (i) above.
‘Therefore, if the design requires - two different first
quadrant rotation angles, then an approximately circularly

symmetric zero-phase filter, will be obtained by forming the

transfer function

1

T e e b s TR T
T u

3
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- | -1 -1
H(?l,zz) H4(?l,zz) HS(ZI'ZZ) 34121,22 ) Hs(zl,z2 )

1 -1 11 -1
12,7) Hg(zy7,2,7)

H4(zil,zz) Hs(zzl,zz) H4(21

' " (2.36)
‘The direction of recursion can be changed by
traqsforming tﬁe.input data at each filtering stage. If the
Ynput array has many elements per row and/or column,
considerable amount of data manipulation is required. This

is one of the drawbacks of methods based on the use 6f

rotated or pseudo-rotated filters.

‘Exémgle 2.1

o

The method . described in this section was used to
design three lowpass zero-phase filters using a Butterworth,
a Chebyshev, and an elliptic analog filter as prototype.

The rotation angles were + 30°, + 60°, 180° + 30°, 180° +

60°. Design specifications for the passband edge (Wp), for .-
the stopband edge (wa),: for the maximum passband ripple
.(Ap)r and the minimum stopband attenuation (Aa) for the 2-D
digital filters are summarized in Table 2.1. The %ampling
frequency used was 21 rad/s. ‘A value for c in Egqn. 2.8
equal to 107° ' was used in all the examples. The

specifications of the analog prototype filters were assumed

to be the same as for the 2-D digital filters except that

~ - . ' © e e e ramd maas m e M R T e R o o
e
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the warping effect was taken into account in the calculation

of the edges of the analog filEer 4

© The amplitude response 2-D filters and the

H

corresponding contour plots are -shown in Figs. 2.1 te 2.3.

L]

In.ali examples, the computation time for the calculation of

‘the filter coefficients was less than 8 seconds. It can be

seen from the amplitude response of these filters, that no
spikes appear at the Nyquist points and so no guard filters

are necessary.

Table 2.2 shows the actual characterisﬁiés obtained
for the 2-D filters. As can be seen from Table 2.2, the
‘c;lculated passband and stopband attenuation differ from the
corresponding $pecified valuyes. However, this problem will
be eliminated in Chapter 3 where a design procedure is

13

described which yields filters satisfying prescribed

amplitude specifications.
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Table 2.2 AQtual Characteristics Cbtained for the
) Lowpass Filters '

I

Prototype A; (dB) A; (dﬁ) e
Filter ‘ -
Butterworth 2.6973 97.72
Chebyshev 0.6585 77.09
elliptic 0.6597 58.20
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2.7 New design procedure based on 1-D FIR filters

The problem we want to solve here is to design( a Z;D
IIR lowpass filter wusing’ a 1-D FIR‘filter such that the
pseudo~rotated filter section is stable in the (+,+)
direction, wh&n rotation angles outside the‘range (0°,90°%)

are used. If this can be achieved} the amount of data

/ ¢

/
manipulations between sections can be reduced.

Suppose that we have designed a ‘-D FIR filter ([40]

b

with a transfer fungéion \

1

' N x )
H(z) = h(n) z" (2.37
3, b oz | \ | )

\ 4
where N is the filter order., By obtaining the zeros of H(z)

[41] we can write ‘ ' T

N
H(z) = K ﬂl (z - 2z4{) (2.38)
1=

i

where K 1is the gain facﬁor and 244 for i=1,...,N are the

zeros of BH(z).

Now on applying the transformation of Egn. 2.25 to

the transfer function in Egqn. 2.38, we get

D KRR IPTESERF PV VI VEE QR TN
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N gi'dizdi+(fi'eizdi)zl+(ei'fizdi)zz+(di'gizdi)2122

H(z,,2z,)=K T[ -
2 .
1 i=1 di+eizl+fizz+gizlz2

(2.39)
~
where di'ei’fi and g; are given by Egn. 2.29. We:. can see

that Egqn. 2.39 has a denominator in which the variables zy

and z, have constant coefficients.

Now we ' wish to find out relationships among the
coefficients cos(B), sin(B) and c in Eqn. 2.29 in order to

render the denominatof in Egqn. 2.39 factorizable, i.e.}

D(zl.zz) = 3+ e z, + f zZo* g zp zé
= F1(z)) Fy(zy) | (2.40)
If this is possible, H(zl,iz) can be stabilized easily by
inverting the poles of Fl(zl) and/or Fz(zz) that are ocutside

the unit bidisc and then properly normalizing the transfer

function.

From Egn. 2.40 we note that factorization is possible
if |

ef=dg ‘ (2.41)

that is

) . .~ e e Bl et wM«nsw«mmM
. N N L
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(1 +-§é

‘ e
D(zl,zz) = d ( l'+ 321)

2!

-, [ . -
°

Now by using the relations in Eqn. '2.29 for d, e, .f .

‘ and g, we have

% o

l+cos(f)+sin(B)+C 1l-cos(B)-sin(B)+C
. . 2 : 2 )

d
: ll-cos(8)+sin(B)-C l1+cos(B)-s8in(B)~-C
e f = 2 3

where

-.ﬁg -
o 3 (2.43)

In effect, Eqn. 2.40 is satisfied

if - ‘ " o .

C = cos(B) sin(B) , (2.44)

Some implications of Egn. 2.44 are as follows. As

. was pointed out in Sec. 2.3.3, we should have c ., or

eqﬁivalently c, small in order to have local..type
pfeservation of the filter after tﬁe application of the
double bilinear transformation. Consequently, Eqn. 2.%4
suggests that the product cos(B)sip(B) or cos(B)‘and sin(B)

should be ~scaled down. However, cos(8) and "sin(g8) ‘can not

- be decreased separately by different: quantities since

B sk bsaasen - wd s




e A

el

s¢ - L

circularly symmetric filters would not be possible. It is
thus necessary to scale down both cos(B8) and sin(B8) by the
samé amount. One way for scaling down these quantities i§
to divide both of them by a positive number greater than or
equal to 1. If this is done, our 2-D digital filters will
have their passbands expanded in both frequ?ncy axes. So,
in designing tﬁe 1-D vprotoéype filter we would have to
compress the bandwidth by thekgamé amount. In gddition, we
should take the wa;ping effect into $ccount; However, if we
were to decrease cos(B) and~'sin(8) by. ; largé' amount ‘a.:
narrow-band FIR f%lter would be needed, which wouid
necessitate a high-order transfer furiction. Consequently;
tﬁe 2-D filter order would increase tremendously and thisg is

not desirable. : )

The filter can also be désigned without deéreasing
cos (B) and sin(B8) in Egn. 2.8. _However, since the
transformation does not present global type preser@#tion;
spikes will show up in the 2-D amplitude response at the
Nyquist points. Never;helesé, this problem can be overcome

by using a guard filter.

When we use rotation angles B, outside the rahge
(0°,90°) we end up with an udnstable °‘filter in the (+,+)
direction. Stabilization can be achieved by performing ‘the
recursion in one of directions (+,-), '(-,+;, ) (-,-)..
However, the denominator in Egn. 2.42 is’factorizable.

Stabilization in the (+,+) direction can be easily achieved

S
[

)
A

e
;
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by replacing the poles cutside of the unit bidisc by their

inverses, which will be located inside the unit bidisc.

re

I1f a zero-phase filter is not required, the 1-D filter

-.can be ro;atéd by angles in the range B ¢ (-90°,90°). For
. " ‘ B X '

v

each angle in the range (0°,90°), the 2-D filter is stable
.in_ the (+,+) direction and for éach angle in the range
(-90°,0°) the 2-D filter can be stabilized in the (+,+)

direction as described above. Hence a cascade filter can be

obtained which is stable in the (+,+)ldf;ection.
) \ o ‘
_ If a zetoiphaS? filter is requiked, the— l-? filter
should be rotated using angles § in each quadrant, i.e., B €
(03,566°); For ééch~angle in the range (-90°90° the 2-D
. §i§itél“‘filtgr can be stabilized in the (+,+) direction as
in tﬁe previous case, and for each addie in the range
(90°,270°) the '2-D digital filter can be stabilized in the
(=,=) direction by -ﬁsiﬁg the 'séme"technique. Hence “‘a
cascade filter -can be obtained which would require just two

data transformations.

1
? ,

The disadvantage of using an 1-D FIR filtei as " a
prototype in the' design is that the order of the fésulting
" 2-D filter is much ‘greatér than the order of a corresponding
2-D filter designed using % 1-D analog filter or a 1-D IIR
filter as a starting \filter. 1‘Howeve:, an advantage is
gained in that the amou§£ of data manipulations can be

o]

reduced.
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-Example 2.2

~ ‘ ‘

« The techniéue"described ‘inﬂfhis section Qés used to
design a lowpass noozero—phase filﬁer;' The resultind Z;D\
filter is causal and stable in the (+,+) direction. 'The
deeign specifications of the FIR filter ' and the reqdired
guard filter are shown in Table 2. ), For‘the guard filtef%'
a .2=D separable Buttezworth _transfer function was used. Thei
rotation angles were * .30° and + 60°. “The amplitude
2.4. . The amplitude response of the combined filter

"~ incorpofating the:gua:d filter is shown in PFigqg. 2.5(a).

_ The cor:espooding contour plot is shown in Fig. 2.5(b).

t2.8 Design of 2-D highpass filters
r .

3 B
\ .

" In this section a method is proposed for the design of

X, .y

2-D circularly symmetric highpass ,filters. N

¥ ’ % / g °

COnsider two rotated or'éseudo=rotated filters which
were obtained from an analog highpass filter using rotation
angles 8 and -8,  where 0° < B < 90°.° The idealized contour

. plots"or the two fil‘ters are shown  in Figs, 2.6(a) -and |

response of the filter wztﬁout guard filter, {s shown in Fig. ;

A oy ae on L
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2.6(b). If these two filters are cascaded, the amplitude
résponse of the combination is obt%ined by multiplying the
gains of the filters at corresponding points._ The composite
idealized contour plot is thus obtained as shown in Figi
2.6(¢c). 'As can be seen, the coqtour plot does not represent
a 2=-D circulardy symmetric highpass filter and, therefore,
the design .of these filters cannot be obtained by simply
cascading pseudo-rotated filters as'in the case of lowpass
filters. '~Neverthgless, the design. of such filters is
possible through the use of a combination of cascade and

parallel filters, as will be shown below. . -

If the above pseudo-rotated filters are connected in

'y

parallel, wé obtain a composite filter whose contour plot is
shown in Fig. 2.6(d). By subtracting the output of the’

cascade filter from the output of the para%&el filter, Awg‘
achieve an overalf filter whose contour plot is shown in
Fig. 2.6(e). Evidently, this plot reésembles the idealized
plot of a 2-D circula;ly "symmetric highpass filter. 1In
effect, a filter configuration is available for the design
of these. filters. Since each filter must have zero pha§é,
it is necessary to use in cascade: with each £filter its
counterpart filter whose recursion is taken in the opposite
" direction in both spacial dimensions. Therefore, a Z-b

highpass filter can be designed by forming the transfer

function




(2.45)

For two different rotation angles, we apply the .same
basic block implementation, that is
LS LS

H=H"+H*"-H

8 B
1l 322 (2.46)

" where B, is of the form given in Egn.. 2.45.

- — -— —— -3

For' ‘three or ‘mggg _rotation angles we keep applying = .
repetitively -thé basic block implementation —and we —obtair S
the/ block diagram of Fig. 2.7. It is worthwhile to point
out here that the coaffic}ents of each pseudo—rotatedvfiltef
have to wbe such that the output of two cascaded section

filters H'' 87~ anda #t~ g™t

have zero-phase shift, that is,
‘the coefficients have 'to be proberly adjusted after rounding
or truncation is- done. Also, since the number of data
manipulations is higher relative to that in lowpass filters,
it is desirabie to keep the number of pseudo-rotated filters

to a minimunm.

. 1

A problem associated witﬁ the above method is that
spurious transmission ' "zeros occur iﬁ the resulting 2-D
digital filter at points (tl}tl) of the (z,,z,) plane. To L
illustrate this problem, consider the first-order transfer

function ) , :
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H(s) = —— o (2.47) \ 3

1
where £ is a constant.

" On applying the transformation of Eqn. 2.8 to this f

transfer function, and after the double bilinear §

) transformation, we obtain 3
¥,

*

. . ;

[ 3 ' é

. (zl-l)(zz-l)cos(8)+(zl+1)(z2 1)sin(B8) §.

 HE1r29) = (g0 -1) (2,+1) cos(B) * (z,+1) (2,-11 s in(8) (2.48) 3
| L 4c .

+£5 [ (A¥z) (L+z,)+ (24-1) (2,-1) gl

As can be seen, for any of the points z, = +l and E

'zz = +1, the amplitude response ‘of the transfer function . g

. . . H

becomes zero. . 5

. ' ) : ) NP |

On the other hand, if the analog transfer function is §

o3 aen

of the form

s + g

H(z),z,) = (z,-1) (z2,71)cos (B) +(2,*1) (2,-1) sin(B)+

B(s) = - (2.49) . . |
- . . . ;
where £ and g are compla¥ or real constants then {
. | ’ b
f (27-1) (z,+1)cos(B)+ (2 +1) (2,~1) s in(8)
3 * 4Ccq
i +g§[(l+zl)(l+zz)+(zl-l)(52-1)<;§]
E (2.50)

Tro1ps 4
+E3[(1+2,) (1+2,)+(2)=1) (2,-1) ;%]

o i,

R
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‘ Although transmission - zeros at ,zl = tl and z, = £l
tend to distort the amplitude resﬁonsé of the £filter, they
do not pfesent serious difficulties if the <£frequency
spectrum of the 2-D signal does not contain components at
the Nygquist frequencies. 1In certain applications, however,

these zeros might be objectionable.

The number of data manipulations for the proposed 2-D
highpass filter structure 1is higher: relative to that in a
corresponding 2-D lowpass filter. It 1is possible to obtain
a i—D pseudo-rotated highpass filter with fewef
manipulations by starting the design %rom FIR filters in
conjunction with phase equalizers. In this case, we can
have for a single angle B, 0° < B < 30°, ' the following

configuration N

H(zy,2,) = H,(zy,2,) El(zlrzz)'+ Hy (2 ,2,) Ez(zL,zz)
- Hl(zl,zz).ﬂz(zl,zz) E3(zl,zz) {2.51)

& .7
where, Hl and H2 represent the transfer function of the
filter rotated by angles B and -8, respectively. The
filters whose transfer functions are El(zl,zz) and Ez(zl,zzz
represeht phase equalizers for the éﬁhnsfer functions Hl and
Hz, respectively. Since the design starts from an FIR

filter, the denominator of H(zl,zz) can be factorized and

hence by c&anging the poles outside of the unit bidisc by

v
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their inverses the recursion can be performed in the. (+,+)

e 5 s k'

direction. Phase equalizers characterized by El and E, also

should recurse in the (+,+) direction only.

Now for different angles . Bi" 0° < Bi < 90°,i

i-l,z, ..., Wwe can apply the above procedure to obtain the

configuration shown in Fig. 2.8. In ‘this way a 2-D

v

pseudo~rotated highpass @ 'filter | is obtained which is

[
T Rt & i O e mm o By dtha HE L Nns g%

recursing only in the (+,+) direction.

Example 2.3

Yl

The 2-D highpass configuration of Fig. 2.7 was used

AR FONF_ U Do

to design 3 highpass filters, namely, a . Butterworth, a
Chebyéhev and an eiliptic filter. The design specifications
for the passband edge (Wp),‘for the stopband edge (wa), for
the maximum passband ripple (Ap); and the minimum stopband
attenuation (Aa) are shown in Table 2.4. The'sampiing

frequency was 27 rad/s and the rotation éngles were '130°;

B e vt £ I o hirs el s Bkl 7 AT

+60°, 180° + 30° and 180° + 60° The specifications of the
analog prototype filters were assumed to be identical as for
the 2-D digitql filters except that the warping effect was

taken into account in the calculation the passband and

Batad e LR UM o it "o {1

. stopband edges of the analog filters.

LR R SR RN
.



.

kmﬂmrwﬂ.%j.@o L;er.n\nu L, Lo e, e e ‘.v... eV -
& X3et ks i » PR e RIS NI 1 e g G A e 7R T TP £ ST e e PO IGY I IY S
) A * N K k o s B B At A SR

T ‘ "UOTIONATA (+°4) : .
ay3y ut mcamuﬁomm .umu,:.m mmmmsmam a- Z mmmomoum mnu Jo wexberqg 3xoo1g g°z 9inbrg i
. o .
.. . - > . ) j ’ - -
e M
™M -
w . B
¢
+ - f -
=" is tu * ) Za n +)e 3 .
+ + .
_ o
h
x‘ ] R E

ity

- et Lt



64

. ”mmwuwwﬁ “wmw .m.c A m.w o.ww OFIdITT ) . ..w
”MMMHMNM ””WMM , *\”.o J m.,a o .c.N . >u:m».auao | 3
.“MMM.NMWMM ” “mmw €0 $ 1 0°z. .._uuow.,unwuurm , | .
sag8uy B ; . d g d T1937114 | : .A
. uorimoy # ( ap) <. C(ap) v Am\vmuvl M Am\vw.uv n ad£joijoag ] .,
- muwuafm auwa..ﬂmﬁ,z .nmu.ﬁ.w.n.a nLN...a:.u uw.u uchﬁ‘umb,_nuﬁ,umam .MN aTqel i
.. o _ ) R e . .:. ) w_

-

ST e T




¢

[ R,

i

65
‘The amplitude responses and the corresponding ¢ontour

plots of the ' filters obtained are shown in Figs. 5.9 to

“ 2,11. Table.2.5 shows the actual values for A  -and ‘Aa‘

. P

obtéined‘ for the designed filters. These values disagree’

{ -
with the corresponding specified values. However, improved

results can be obtained by using the method of Chapter 3.

v

2.9 Design of 2-D bandpassopsgudo—rotéted filters

Circula:ly symmetric bandpass filters can be obtained
by cascading lowpass and hlghpass filters havxng appropriate
spncificatlons. The design can be completed by designing

the lowpass and hlghpass filters using the methods descrlbed

_so far. c .

Example 2. 4

o

o~

The above approach is illustrated by designiﬁg a iZ-D
circularly symmetric pseudo;rqtated bandpass filter whose
specifications are shown 'in Table 2.6. The rotation angles
were + 30°, # 60°, 180° ; 30° and iaﬁfgt 60°. The émplitude
_fequnse and the contour plots‘are shown in Figs. 2.12 (a)

and 2.12(b), respectively. The actual passband ripple and

p

!

-

stopband dttenuation of the 2-D filter are A_ = 0.9125 d
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Table 2.5 Actual tharactéristics. Obtained for the:
Highpass Filters

4
Prototype A' (dB) A' (dB).
Filter P a
.
Butterworth 1.04 378.00 '
s
Chebyshev . 3.34 67.93
' ¢ .
elliptic 2.54 69.29 R
, b: " )
. . ¢ &
) Y .
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‘and highpdss filters in. parallel.

/" 72 « ' :

and Aa = 8§.76 dB, respectively.

-
]

.
3 ' '
’ . {
i i
,
| /
. »

L)

’2.10'De§ign of 2-D b;¥dstog:g§gudo~rotated filters /

Bandstop filters can be obtained gconnecting. lowpass

Example 2.5 , -

. B . . \ .
.S

The above approach is illustrated by designing a{PE;D

' circularl& symmetric bandstop filter having the.

specifications -shown in Table 2.%. Using rotation angles of
+ 30°, + 60°, 180° + 30° and 180° + 60°, we obtain the
amplitude shown in Fig. 2.13(a). The corresponding contour

plots are shown in Fig. 2,13(b). The actual maximum

‘passband ripple and the minimum  stopband Yattenuation are

5

AE.- 5.019 &8 and A, = 16.94 4B, respectively.
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\

2.il Conclusions

In this chapter a transformation has been obtained by

combining tdo‘known transformations, The new transformation

performs pseudo—rotatioh‘of the s, and s, axes which can be-

made to app:oachltrue rotation as closely as desired. The
ttansforma;ion leads to stable 2-D digital filters which are

free of non-essential singularities of the second kind.
. 17 ‘

Two methods for the design.,of 2-D circularly symmetric

pseudo-rotated lowpass filter§ have beem described. In -the

first method the design starts with a 1-D analog or a 1-D

IIR filter while.in the second method the design starts with
a 1-D EIR filter:. 1In th? first method, the péeﬁdo—rQEatioﬁ
of ;he axes is forced to approach true rotation élésely and,
conseqﬁently; the amplitude ;eSpAnsg of 'the érototype
filter, is preserved in the 2-D digital filter. 'Therefore,
ng. guard f;ltersuwere ?Qund to be necessary. On the other
hand, in the second method the pseudo-rotation 1is not

allowed to approach true rotation too closely, and the

transformation does not preserve the amplitude response of

qﬁle prototype filter at points‘in the neiéhborhoods of thé‘

Nyquist points. Therefore, guard filters are necessary in
this case. The first method leads to lower~&t§e} transfer
‘functions but two additional maniéula;ioﬁS'qf the input data

\
.
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are necessary in the implementation.

rd

i)

A new configuration has been proposed for the dbsign-
of 2-D .circulazly. symmetric rotated or pseudo-rotated
highpass filters. In _ﬁhe. désign four transmjission zeros
appegf'at z = +1 z, = +1l, which may cause difficulﬁies in
certain applications. A procedure for designiné 2-D
highpass filters which are recursing in just the (+,+)

direction has also been presented. This design starts with

a 1-D FIR filter.

Finally, the design of 2-D bandpass and 2-D bandstop
circulafly symmetric filters was investigated and appropiate -

design methods were developed. - o .

~f
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CHAPTER 3

4
- -

DESIGN OF PSEUDO-ROTATED EILTERS

SATISFYING PRESCRIBED AMPLITUDE SPECIfICATIONS

] > [%

3.1 Introduction _ ' L ~ T

The design of 2-D pseudo-rotated lowpass, highpas?,

etc., filters 1is accomplished in two steps. First, the

analog transfer function is transformed many times by the

Bt { ATee

method of pseudo-rotation in ordeq' to obtain a set of

-

S
=

casca@e pseudo-rotated filter sections. Then the double
bilinear transformation. is applied. ‘Theu specifications
achieved in the 2-D filter obtainéﬂ, namely, the resulting

maximum passband ‘ripﬁie, ninimum séopband‘losp, and band

T D I W OSSR SRRy *

edges differ significantly from those of the analog

prototfpe.‘ The maximum passband ripple and the minimum

ANse o

stopband loss depend not only on the corresponding
pafameters in the analog prototype but also on the number of
rotations. On the other hand, the band edges depend not

\

only on the band edges.oﬁ the analog prototype but also on

°

the sampling frequencies used owing to the warping effect. .
This chapter deals with the details'that are inherent in the

design of pseudo-rotated filters. .
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§

2

., In the previous chapter, several methods for de31gning

v

2-D- circularly symmetric pseudo—rotated fllters have been

E "studied. Though these methods lead to fast d351gns, exten-

~

sive _trial and error'is necessary if prescribed amplitude
(\\Eggzzgications are to ‘be achleved. It is thus of interest

to develop st:alghtforward hesxgn techniques which lead to

!

S ek a f « m Tl %

filters satisfying desired specifications.

Initially typical characteristics for practical
lowpass, highpass, bandpass and bandséop 2jD filters are
described. Then circularit§ measures are defined which can h i
be wused in the design process. Subsequently, the”design of 4
Butterworth, Chebyshev and eliiptic 2-D filters s ,
coneidered in detail. The design method consists of a set 3

"of techniques which yield predictions for the required

parameters of the analog prototype in order to meet tﬂe
required amplitude response specxflcatlons in the  2-D

digital filters.

[
S B WA e AV Rty st omiilibon § B

" 3.2 Typical characteristics of 2-D filters . .

A 2-D cireularly symﬁetrib filter is characterized by

. the followipg,paremegers :

;
b
i
!

5 - A ' “

3 . - L
Agn = maximum passband ripple in dB..

/ o . X
0 "

. .
PR i ¢ v . . REEE S
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'lgn minimum stopband loss in dB
) 2D _
- Wg passhand edge in rad/s A
Wip stopband edge in rad/s
, ' wgg- lower passband edge in rad/s. )
'wgg upper passband edge in rad/s 3 o
1 . .o ° ‘ a
) Wi? lower stopband edge in rad/s ‘
Wig upper stopband edge in rad/s
2D WZD o '
where Wp and a apply to lowpass and highpass filters and
2D . ..2D D . 2D -~
wpl’ p2’ wil’ and Wa2 apply tq bandpags and bandst?p4
filters. The sampling frequencies are assumed to be wsl and
. ~ .
Weo in rad/s.
The transfer function of a 2-D digital filter is of \;
the form N '
y Ma N & ; ‘
' ¢ z ’ z -k l-l . N
.- . k1 %1 %2 ‘ -
. kel 1l=1 ‘ -
’ H(z,,2z,) = . .(3.1) ‘
e 1' 2 M N , . » -1 =
it B ' b b s -
o ) > 2 by 4 zi-i zé-J L.
, " {m1 3. . -

' 1f ws“ - W

1 s2

interval, then the frequency  response| of

_frequencies\w, and w, is given by Eqn.

N

Wg where W, = 2%/T and T is the s&mpliné):

j=1

the: £iltér at 3

3.1 as

e




. 8
is obta@ned as

' (see Fig.

Fjwl‘m W, T
* H(e e

L

where M(wl,w ) 1sﬂthe amplitude response and e(wl,w ) is the

phase response of the fllter In

chapters T |js assumed to be 1,

~ w .

Assuming_ that the maximum of the amplitude response is

equal to 1 in the passband region,

v

') = M(yi,wi) e

.thls

i.e.( Wy

Je(wlwz)

= 27,

the loss"

L(wy,wy) = = 20°1log( M(wy,w,) )

Based on the

N
characteristic of ' a

¢

practical 2-D

A S

and \the

characteristic

parameters defined above,

circularly

f}lﬁer has to meet the following specifications

P

.i) Lowpass filteﬁs.

" ofor
L (wl r"wz) =
) ' for

wpefe'R = .y (wi +'y2)

/
3.1)

th

P

o

i}
i)
AN

(3)2)

hY

follow;ng

(3.3)

e loss

symmetric

A,

X
.

(3.4)
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R 0y
ii) Highpass filters

> Aﬁb
a

L(wl,wz)'a

(see Fig. - 3.2)
\
iii) Bandpass filters

X -

2D

< Ag

L(wy ,wy)) =4 2 a2P

a2h
a

(see Fig, 3.3)

iv) Bandstop filters

,2D
< A
~, - lp'
: . 52D
L(wy,W,) ={ < Ag :
2D
> a2

(see Fig. 3.4)

-t

82

fqr

for

for

for

for
for

for

. (3.5)

2D
p2’

=

o)
Ia
0
IA
=

: 2D
0.2R < W5 (3.6)

da

2D B
. P2

D 2D
wﬁl fRZ Waz

(3.7)
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Figure 3.2 Passband and Stopband Boundaries of 2 D
Circularly Symmetrn.c Highpass Filter
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'3.3 Prediction of the minimum number of pséudo-}Btated

filters required N .

It is often necessary to quantify _the degree of
gcirculartty ‘in 2-D .digital filters but unfsktunately
circularity measures have not been proposed or defined ih
thg past. In this section, such a measure will be developed
and used for the prediction of the minimum number of

rotations needed to achieve prescribed circularity in

lowp?ss and highpass 2-D filters.

It is of interest to define the circul¥rity of the

‘filter with respect to the passband edge. Le}t us consider a

typical contour plot for a loss of A2D dB, ‘as depicted in

Fig. 3.5. Such a contour is clearly not circular and a

. parameter that measures its degree of circularity with

2D

. NV
respect to the circle of radius'wp is needed. Fig., 3.6

shows the pattern obtained by plotting the actual radius

versus angle " for angles in the range 0° to 360°. For a

properly designed 2-D filter, the mean of the radius of “the
actual‘ passband boundary will be close to the radius ofxﬁhe
ideal passband boundary, namely, wgD. Therefore, _a
meaningful measure of circularity can be @efinedfin terms of

the variance

2ok 30
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where ij is the actual radius,‘ﬁp is the mean of the actual
radius, and k is the number 3} sample points on the actuai

éassband boundary.

»

v

2 (6rn standard deviation o) tends to.

The variance ¢
vary with the lype of filter, the number of rotations N, and
. the passband edge. In order to facilitate the prediction of
the number of rotations needed to ,achieve a prescribed
degree of circularity, an empirical formula was developed on
the basis of information provided by the actual passband
boundary of the‘EJD'filter. The variance was obtained for
‘many prototype filters as a function of the passband edge
for a fixed number of rotated filters N. This was then
repeated for values of N in’the range 1 to 15 for lowpass ,
and for N in the range 1 to 5 for highpass filters. This
procedure was carried out for Butterworth, Chebyshev, and
elliptic lowpass as well as highpass filters. Then by means

2

of regression, a prediction formula for ¢° was deduced as

3

62 = Ay + By x + Cy X + Dy X (3.8)
where
D
2w Wz .
X"-T—E- ) (3.9).
s

is the normalized passband edge. The values of coefficients

A B c and DN are given in Table 3.1 for lowpass

N’ N’ N/



J

90

\

s Filters ) o

Table 3.1 Coefficients of the Variance ( Lowpas
l Y
Filter| ’ B c D
Type Ay N » N N
1 -.21690E-01 .76883E-01 -.63682E-0" .156S4E-01
2 -.60397E~02 .24350E-01 -.27961E-01 .995TOE-02
3 -.57304E-02 .234T1E-01 -.28327E-01 .106828.01
i -.60396E-02 .23983E-01 ~.28905E.01 110872201
= 5 -.62773E-02 .24702E.01 -.29727E-01 L11809E-D1
" 6 -.60291E-02 23748E-01 -.28B69E.01 J11279E-01
2 7 - 61915E=02 .24336E-01 -.29552E-01 <11531E-01
g 8 -.62167€-02 L24819E.01 -.29648E-01 L11577E-01
. 8 9 -.62850E-02 .28665E-01 -.29943E-01 . 11708E~01
pri 10 ~.62534E-02 L24SHAE.OY’ -.29867E-01 .11783E-01
a 1 -.62147E-02 .24809E-01 -.29T28E-01 L 11698E-01
12 -.61910E-02 .24327E-01 -.29690E-01 < 117502-01
. 13 -.68754E-02 .25321E-01 -.30645E01 .11867€-01
14 | -.64663E-02 .25289E-01 -.30635E-01 +11996E-01
15 -.55431E-02 .25568E-01 -.30946E-01 L12117E-01
1 -.23866E-01 .87334E-01 ~.TH194E-01 -18548E-01
2 «.63659E-02 .26532E-01 "] ~.30565E-01 .10891E-01
3 -.68297E-02 .27529E-01 -.32234E-01 .11894E-01
u -.78380E-02 .30509E-01 -.35299E-01 .13009E-0)
5 5 -.63572E-02 .25088E-01 -.30149E01 <11682E-01
@ 6 -.72418E-02 .27928E-01 -.32863E-01 .12512E-01
s 7 -.T4757E-02 .28698E-01 -.33603E-01 C12787E-01
> 3 -.73504E-02 .28256E-01 -.33164E-01 . .12634E-01
i 9 -.73313E-02 .2816BE-0) -.33058E-01 < 12623E-01
£ 10 -.70043E-02 +26877E-01 -.31679E-01 .12259E-01
o 11 -.72796E-02 .27820E-01 -.32583E-01 - < 12504E-01
12 -.6798HE-02 .260K1E-01 -.30739E-01 <12012E-01
13 - 694U4EE-02 .26658E-01 -.31451E-01 J12195E-01
14 -.87038E-02 .25736E-01 -.30452E-01 .11914E-01
15 -.67375E-02 .25635E-01 -.30544E-01 .11955E-Q ¥
1 -.21329E-01 .78859E-01 -.66642E-01 +16530E-01
2 -.T1438E-02 .28966E-01 -.32891E-01 .11535E-01
3 -.65710E-02 .26288E-01 -.31326E-01 <11817E-01
3 -.56368BE-02 .25640E-01 -.30946E-~01 .11887E-01
5 -.68167E-02 .26712E-01 ~-.31889E-01 <12216E-01
s 6 -.69898E-02 «27214E-01 ~,32486E-01 .12478E-01
w 7 -.68678E-02 .26821E-01 -.32210E-01 .12456E-01
& e -.69186E-02 .27003E-01 -.3241TE-01 .12534E-01
) 9 } -.69991E-02 .27277E-0) -.32714E-01 «12653E-01
il BT -.69516E-02 .27099E-01 -.12562E-01 .12656E-01
1 -, 69248E-02 .27004E-01 -.32465E-01 .12626E=-01
12 ~.68942E-02 .26899E-01 -.32388E-01 <12687E-01
13 -.71624E-02 .27818E-01 -.33257E-01 .12858E-01
14 -.TV117E-02 .27636E-01 «.33084E-01 .12830E-01
15 ~.71945E-02 .27913E-01 ° -.33351E-01 .12921E-01

.

AR A B AR T




N \
filters and in T;ble 3.2 for highpass filters férl different
values of N. Note that in nonzero-phase filters N is the
number of pseudo-rotated\lowpass fi}ters' recursing in the
(+,+) directioﬂ whereas for zero;phase filters N is the
number of pseudo-rotated lowpass filters recprsing in the
(+,+) and the (~,~) directions. 1In the‘jhse of highpass

filters, N is the number of filters recursing on the (+,+)

direction since only zero-phase filters were considered.

2 for x < 0.5 in

Some care is needed when estimating o
lowpass filters and for x < 1.0 in highpass filters since no
designs were carried out for these values of x. In'order to
obtain ‘the minimum number of pseudo-rotated filters

necessary to achieve a given degree of circularity, we

' increase the value of N from.l until, the desired value oﬁ/

v

the variance is ngained. It is. worthwhile to point out
here that in the design of lowpass and highpass 2-D filters
with - passband edges greater than about 60 3% of the Nyquist
frequency, it is not possible to decrease the variance by
’increasing the value of N above unity and in actual fact the
circd&arity stagts to deteriorate when more than one
pseudo-rotated filtqr is used in the (+,+) direction. Thus,
a rotation with an angle of 45" is good enough for these

Lilters.

Tables 3.3 and 3.4 give the number of pseudo-rotated

filters N for specific values of x for which the variance of

2

the passband radii o is minimum in the case of lowpass and

-

PRI W UNUN PRSI
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Filter . i Ve D
Type N AN BN N N
~]
L -
P S -
5 1 -.13852E+00 .31320E+00 -+22245E+00 .S0495E-01
g 2 -.73838E-01 <1T172E+00 -.12855E+00 .31287E-01
@ 3 «.52157E-01 .12227E+00 ~+93370E-09 .23433E-01
- u -, 45852E-01 . 10693E+00 -.846USE-01 .2169F7E-01
5 5 -.49350E-01 L11499E+00 -.87592E-01 .22040E-01
A 3
|
)

> ( ’
¥ 1 «.98694L-01 .2U370E+00 -.17906E+00" .41128E-01
= 2 -.T7584E-01" L 17953E+00 -.13411E400 .32737E-01
> 3 - A5189E-01 .10927E+00 -.867T6E-01 .22917E-01
2 4 ~.50439E-01 .11889E+00 -.92121E-01, .23801E-01
.5 S - 55623E-01 .15157E+00 -.115T4E+00 .28872E-01

1 «. 1409 1E«0C .31130E+00 . 21346E400 .46692E-0"
Y 2 -.78221E-01 . 17884E+00 -. 132458400 ".32298E-01
O 3 -.53695E-01 . 12658E+00 ~.97778E~01 .25067E-01
& 4 -.52949E-01 .12422E+00 -.95581E-01 L28k3UESOY
— 5 -.60823E-01 .14106E«0Q0 = ,10740E«0Q0 L2T72UBE.01

3 - :
L

t
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Table 3.3 Value.of N for Minimum Variance in 2-D Lowpass e
" Filters : "o . :
0.5 1.0, 1.5 2.0 i
.Filter ‘ ' | ; ;
Type - . P
Butterworth 12 4 " 1 1 |
J .
Chebyshev 8 T4 "' 2 "1 T
- ' . :
elliptic 11 4 2 » 1. 1
. * 3 il ¥
. (&) +

Table 3.4 Value of N for Minimum Variance i 2-D Hjghpass

e s e bR b £ e TSI e T

Filters.
x 1.0 1.5 2.0 2.8
« Filter 4
Type ’ < . . .
' i
Butterworth |° 5§ - 2 1 1
A
Chebyshev Cs 2 B T 1 )
elliptic 5 3. ' 1 1
' ¢
Y
{
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highpass Butterworth, Chebyshev and elliptic filters. The

v N . o 4 s .
usefulness O6f our prediction formuTa will be demonstrated

4 v
later by means of examples. d

.
L

’

. 3.4 Prediction of 1-D lowpass digital filter specifications
) D T

o ST ' The prob;em which we want to solve here is to deduce
'the spedif{cations -of the 1-D digital f}lter ‘from the
specifications of the 2FD.digital filter. If this can be

done, ghe procedures given'iﬁ [42] can bé used to obtain the

< specifications of the desiréd prototype analog filter. This.
can then be transformed into a- 2—Du pseudo-~rotated digipal

[4

filter satisfying prescribed specifications.

Given the 2-D digital filter specifications defined in .
Sec. 3.2, we want ‘to deduce the 1-D aigital filter

specifications giw ‘below :

A;P maximum passband ripple in dB ' ;;/‘
" ' //AiD = minimum stopband loss in dB |
~ ' o

7 W;D =" passband edge in rad/s
W;P = gtopband edge in rad/s -
. \

- Imitially the rotation angles need to be determined.

If N different rotation angles are to be used we select the

K



angles 4 : ' ////

aiy -'ai' léoo - uiop J..SO° + ui; igl,N

where 0° < @, < 90°, To obtain a,, we dlvxde the first

' quadrant into N equally spaced sectors such that y

4

for i=2 N (3.10)

Thl@ procedPre leads to 'the same marlatlons of the 2-D
amplitudeé response with respect to botn the frequency

varlables wy and w,. N
1 2 R .

Extensive experimentation has shown that a filter

rotated by angles. in the range (0°,90°) has a lowpass

amplitude response on line'wl = W, and an allpass amplitude

response on line w, = -W, of the 2-D frequency plane..

1
Similarly, a filter rotated by angles in the - range

)

(- 90 0 ), has a lowpass amplitude response on line Wy = W, ;

and an allpass amplitude response on line Wy = Wa.

3.4.]1 Prediction of the minimum stopband attenuation

]
/" .

is rotated by angles in the range (-90°,90°) the following

., effects occur :

Exten51ve experimentation has shown that when a filter

- sadoxedluonan i dady

= ST A SR Wl O A AN e -k | s
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i) The stopband ° attenuation in sectors ‘(Q5,90°) and

(180°,270°)  is approximately dictated -by the number of

o, cascgdéa;filters N whose rotation angles are in the range

(0°,90°). These filters have 1little effect on the

stopband attenuation in sectors (90°,180°) and

(270°,360°). | o J\

ii) The N cascaded filters rotated by angles in the range
(-90°,0°) dominate the stopband atfenuat?on in sectors
(90°,180°) and (270°,360°). These filters also have
little effect in the stopband attenuation in sectors

(0°,90°) and (180°,270°).

Based on these observations, we can derive the minimum
stopband . attenuation }equired for the 1-D digital filter
which is equal to thé minimum stopband attenuation of the
prototype analog lowpass filter. For rotation angles4in the
range (-90°,90°), the minimum stopband attenuation in the

2-D digital filter is given by

N
2D ~ 1D
Al = 'igl Ay (3.11)

where Ai? is the minimum stopband attenuation in dB of the

prototype analog filter that has been rotated by an angle

ayr i=]1 N, If we assume that all pseudo-rotated filters

1D
Aal

~

contribute equally to the stopbané\attenuation, i.e.,
1D | 1D

‘Aaz = ... = A, then Egqn. 3.11 gives the minimum stopband

4
—

Sutoubbd e sde Wb T
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+ attenuation of the prototype analog filter as

97

alb o a2 . (3.12)
o

[}

If the analog fi;ter is rotated by angles in the range

(0°,360°) in order to obtain:.a zero-phase 2-D'pseudo-rotaked

filter, we have ‘ ‘ R
N
A = ~ A . (3.13)
a {=1 éi

since filters rotated by angles in the range (90°,270°) have
the same stopband attenuation as <filters rotated in the
range (-90°,90°). On assuming equal contributions, we get

the minimum stopband ajtenuation of the prototype . analog

fl

filter as
!
w - s : *
Aa N (3.14)
. o / .
3.4.2 Prediction of the maximum passband ripple
A . .

As in the previous'section; we have \here two basic
contributions, namely, coﬁtributions-by filters rotated by
angles in‘the taﬁdb (0°,§0°) and contributions by filters
rotated by angles in the rangé (~90° ,0°). However, here the

type of filter (e.g. Butterworth, ﬁessel, Chebyshev or

WCTM

[T NP

e s

e b e AR s i
.
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! ’ A
elliptic) should be taken into account. If the prototype
analog filter is a Butterworth or Bessel filter and the

rotation angles are in the range (-90°,90°), the followfhg

observations can be made :

; «
i) The N cascaded filters rotated by angles in the range
(0°,90°) dominate the passband attenuation in the sectors

(0°,90°) and (180°,270°)

iiy The N cascaded filters rotated by angles in the range
(-90°,0°) dominate the, passband attenuation in the
sectors (90°,180°) and (f4;°,360°)

-

As for the calculation of minimum stopband

5 .
attenuation, the maximum passband attenuation is given by

2D 1D :
A = AT, .
e " X Ppi (3.15)

.
-

1}

where alD is the contribution to the passband attenuation in -

pi
dB of the prototype analog lowpass fiiter that has been
totated by an angle @, , . i=1,N, Aésuming gquai
contributions for all pseudo-rotated filters, i.e., Aéﬁ =
AlD = .., = AlD, the maximum passband ripple of the

p2 P
prototype analog filter, can be deduced as

ald I B . (3.16)

..,
o

e el AN SR U T MR
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If the prototype filter is to be rotated by anglés in
the range (0°,360°) as in the case of zero-phase 2-D
filtgzs; then the maximum passband ripple of 1-D analog

filter is obtained as

22D |
1D ~ A B
. |

™~ . - e

\

In the vcase where the prototype analog filter has an

é&ﬁixipple passband respohse, as in Chebyshev and elliptic
filters, all cascaded pseudo-rotated filters contribute to
the passband attenuation. Consequently, the maximum

e—

passband ripple of the 2-D filtef:is given by

~ 2N : |
2D 1D .
A = 3 At .18
o 2 Ppi . N L (a8

o'

f and since at some frequency point all the pgegdo-rggateé
filters will contribute their maximum passband attenuaiion,
the maximum passband ripple for the pro;otypé analog fifter
is obtained as ' ‘
- a2 E o 3

A;D R A . (3.19)

In the caée where the filter is rotated by ahgles in

. / .
the ‘range (0°,360°), i.e., for zero-phase filters, the

Qo

3

T e e ety
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maximum passband ripple of the analog prototype filter is'

given by
S. AZD t
D - s
A = R , (3.20)

3

The above formulas for the prediction of the maximam
pasgbaaeﬂéttenuation and minimum stopband attenuation of the
filter are very general. If they _are- applied to any
prototype analog filter, the resulting characteristics turn
out to be very close to the desired values. However,
experience has shown that é small shift of the stopband edge
of the 1-D gigital filter is necessary in order to satisfy
prescribed amplitude specifications for any prototypeuanalog
filter used. Nevertheless, by makiﬂg use of linear

regression the formula

le
Al

+ 0.03

. D
\ ;D = TI75T : (3.21)

was deduced which gives the necessary correction in the

\
stfpbandn edge. This formula was deduced by computing WiD

for, many values of WiD and for many Butterworth, Chebyshev

and‘elliptic prototype filters.

i
<3

.
S R A
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. 3.5 Design of 1-D analog filter

Since the specifications of the 1-D digital filter can

be deduced as shown in Sec. 3.4, the specifications of the

\

- 1-D prototype analog filter can be deduced as described in

(42] by taking the warping effect into account.

S R ek s e o e AL b

3.6 Design Procedure
© / " ~
. . o '. L% Gs)
A 2-P gircularly symmetric pseudo-rotated lowpass st

digital filter that meets prescribed amplitude specifications

can be designed by usirig the following procedure :

o B A

Butterworth filters

¢
4
.

&

1) Choose the number of rotation éngles per quadrant N to .

/
achieve prescribed circularity using Eqn. 3.8.

+

AiD alb ,

P
respectively, for a nonzero-phase filter or Egns. 3.14

2) Use Egns. 3.12 Vand 3.16 to predict and

and 3.17, respectively, for a zero-phase filter.

2D
P

3) Predict wiD using *‘Egqn. 3.21 and assume that wlD'= W
a ' P

4) Design the analog lowpass filter as shown in [42]. !
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N ,
5) Rotate the analog filter by the- desiregd” angles using
| Egns. 2.19 = 2.21 1in order obtain the 2-D transfer
. L

!

“function of the cascaded filters given ih Egn., 2.18.

Chebyshev or elliptic filters L

:

1) Choose the number of rotation angies per quadrant N to

/25 achieve prescribed circularity using Egn. 3.8.
\ -

4

2) Use Eqns. 3.12 and 3.19 to predict AiD and AE;D,
respectively, for a nonzero-phase filter or Eqns. 3.14

»

and 3.20, respectively, for a zero-—phase filter.

1D

3) Predict Wa

using Eén. 3.21 and assume that w;D = W;D.

4) Design the analog filter as shown in [42].

-

. :
5) Rotate the prototype filter by the desired angles in
order to obtain the transfer function in Egn. 2.18 by

using the Egqns. 2.19 - 2.21.

The effectiveness of the above design procedures is

illustrated by the following example.

L]
g i

Example 3.1 (Al to AS5)

Several 2-D digital lowpass filters were designed
having circular symmetry and zero—phase. The desired 2-D

specifications are given in Table 3.5. For each

l

4
i
B
)
H
i
1
N
.




<

PUEIICIRGYALS ¥ o rera o e e e e PRk Ay ww tenem gm e o, - R R T N P
: ¢ 0T L1 01 0°0S 9°0 v :
- g _0TXS 9°1 0T 0°gY (] A/ L
¢ _0TXG 0°'¢ ST 0°0% v*0 €v .
' ’ * .
. ¢ 0T ST 0°1 0°0% %0 A ,
2 3\
(=] . -
l ) -
0T 0°1 S0 0°0Y %0 134 -
: v d v d N
A 8/pex) .0 [ sB/pEI) az™ Au\vmuv. azt (ap) az’ (€p) az’ a7duexy

BUOTIBITITOad§ 193TF4~-85edMOT] Q-7 '€ 9198y



PCN

104
specification Butterworth, Chebyshev and elliptic designs

/“‘~ue;e obtained. Uslng the prediction formulas, the 1-D

digital-filter specifications’ were obtained as shown in

. Tables 3.6 to 3.8. Making uée of these specifications, the
1-D analog. filters were designed using the method in [42].
Subsequently, on using the' proposed design procedure4 the
results shawn in Tables 3.9 to 3.11 were obtained for
Butterworth; Chebyshev and elliptic filters, respectively.
As can be éeen, the desired, specifications havé been met in
all examples. In addition, the “actual circularity measure
of each designed filter is very close to the specified

value. L >

3.7 Design of highpass filters

The design of pseudo-rotated highpass filtérs is
accomplished by £finding a prototype analog highpass filter
which after transformation gives rise ,tbo a 2-D digital
filter that meets desired specifications. As in the case of
lowpass filters, we are interested in deriving expressions

for tﬁe prediction of the 1-D highpass digital-filter

specifications. .

First, we divide the first quadrant into N equally-

spaced sectors as before in which case the rotation angles

7 ey talt Al g
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-

are given by Eqn. 3.10. After obtaining the specifications

1D ,1D 1D
Ap,Aa,Wp

as proposed in [42]. The 2-D digital filter 1is then

and WiD we design the analog prototype £filter

designed following the procedures in the previous chapter.

Extensive experimental results have shown that a

filter rotated by angles in the range (0°,90°) or (180°,270°)

has a highpass amplitiude response on linekwl = w, and an
allstop amplitude fesponse on line L Wl of the 2-D
f;equency plane. For filters whose rotation angles are in
the interval (90° ,180°) or (270°,360°), a highpass amplitude
response is obtained on linei L and an allstop

amplitude response is obtained on line Wy o= W,

Al
*

In the interconnection of pseudo-rotated highpass

filters given in Fig. : 2.7, there are combinations of

| .
filters in cascade and parallel. This unique way of

combining pseudo-rotated filters makes the stopband and
passband attenuations independent of the number of
rotations. Actually, the attenuation of the overall filter

is mostly dictated by the cascaded filters represented by

++

H and H-~ (or H'” and BV ) in Fig. 2.7. Therefore, -for

any type of filter

- 2 '
2D 1D .
A = A : : 3.22
2 LA | - @.22)
2

2D - 1D ‘
A = At (3.23)
&
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-

where Al? and Aig are specifigations of H'Y (or H+7),'A;g
: { - -
and Aig are specificatdons of H (or H +), and A;D and AiD

‘are specifications of the resulting 2-D highpaés digital

filter.

1 "

Now if the contributions of H'Y ana B™~ (or E'™ and

-+ . 1D 1D 1D 1D
H )' are equal, i.e., Apl = Apz and ‘ Aal = Aa2 we caq
write
A2D .
1D - o)
Ap = 5 (3.24)
. 22D
~ ATT
1D a ! .
Aa = 5 (3.25)

These' formulas give good predictions for the maximum

‘passband ripple and the minimum stopband attenuation of the

1-D digital filter in the case of Butterworth filters. 1In

'

:Chebyshev and ellip;ic filters, however, these formulas do

not give accurate predictions. Extensive experimental

results have shown that, in the case of Chebyshev

improved results can be obtained by wusing the formulas

/

T N B, g

L
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“ - - 4 .
a2D |
b - B
] Ap 3 . (3.26)
2D 5
-~ A
all - 2 @3.27)

On the other, in the case of elliptic filters improved

results can be obtained by using the formulas

- ! A2D .
i - %
Ap /b 3 (3.28)
’ al? . 2 AiD (3.29
a \ 3 -29)

These formulas give reasonable predictions for the

: maximum passband ripple and the minimum stopband

.attenuation of the 1-D digital filter. Since these formulas

are based on approximations, the 2-D digital £filters

obtained may violate the desired spécifications. In the

case of lowpass filters, it is possible to adjust the

1D

a through the

? stopband edge of the 1-D digital filter W use

of an empirical formula so as to ensure a better coincidence

.me;.a

B

R T S ol

R4 T T WS S

b e B e

h
H
!
H
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°

between the desired 2-D specifications and the actual

specifications achieved ( see Sec. 3.4 ). Similarly, in the

case of highpass filters, the paésband edge of the 1-D

>

digital filter W;D can be adjusted through the use of the |

following empirical formulas :

i) Butterworth filters :

¥
N
¥

5\ )
42D _ 0.09-0.175N+0.02N%
P 27 " "3 |
D =
wé 1.167+0.09N (3.30)

where N is the number of rotation angles in the first

quadrant ;

ii) Chebyshev filﬁers :

2

WzD - 0.083-0.15N+0.02N P
p 2T s
wéD - — (3.31)
1.26+0.0313N+0.005N )
iii), Elliptic filters :
42D _ 0.08-0.18N+0.022N°%,
P L s
Wil « — : (3.32)

P 1.26+0.04N-0.06N%

PR R TR

A
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These' formulas were deduced by first using linear

1D for individual wvalues of N.

regression between WgD and‘w
Then the coefficients of the linear model obtained were
interpolated by using multiple regression on the number of

pseudo-rotated filters employed.

At ° this point all the parameters of the 1-D digital
filter are known and hence the 1-D analog filter can be

designed using the method in [42].

A 2-D circularly symmetric /pseudo-rotated highpass
digital filter that meets prescribed amplitude specifications

can be designed by using the following procedure :

1) Determine the number of rotations per gquadrant N to ‘ o

achieve prescribed circularity using Egqn. 3.8.

1D 1D 1D
p ! Aa and wp

3.24, 3.25 and 3.30 for Butterworth filters, Eqns 3.26,

2) Predict specifications A by using " Eqgns.

3.27 and 3.31 for Chebyshev .filters, and Egns. 3.28,

3.29 and 3.32 for elliptic filters. In addition, assume

2D

1D _
that Wa Wa .

3) Design the 1-D analog highpass filter by the method in

1D

4 si A
[42] using P

1D D 1D
. a3°, w;,wa and W,.

4) Use Egns. 2.19 - 2.21 to deduce the 2-D transfer .

function in Eqn. 2.18.

5) Interconnect the cascaded filters as it is shown in Fig.
2.7. '




’/;i}ﬁ

Example 3.2 (Bl to B5)

The. above procedure was used to deéign several 2-D.

ciréulérly symmetric zero—-phase pseudo-rotated highpasé
digital filters. Table 3.12 gives‘ the desired set of

sﬁeciﬁications. Butterworth, Chebyshev and elliptic designs

were obtained for each set of specifications. The .1-D '

digital specifications for the various types of filters are
given in Tables 3.13 to 3.15. Tables 3.16 to 3.18 show the
) éesults obtained~{o: Butterworth, Chebyshev and elliptic
filters, respectively and, as can be  seen, the desired
specifications are met in all examples. ‘In addition, the

ciicularity measures are close to the specified values.

e

3.8 Design of bandpass and bandstop fiilters

The design of bandpass and bandstop filters, can be
accomplished by using a combination of lowpass and highpass
filters which are designed to ‘'satisfy appropriate

épecifications.

The design of a bandpass filter satisfying the
specifications of Sec. 3.2 (see Fig. 3.3) can be

accomplished by using the following procedure :

~

w PRy
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.1) Design a 2-D.-circularly symmetric * zero-phase lowpass .

.

h filté; with specifications given by’

-~ zAZD‘;
A.ZD‘ o= ——E— -
P = 2
' : - = 2D .
K o . R T R

¢

B T LRSI SO FRUU T SIS NP e
) B

. .20 _ . ,.2D .

“ R - N L
- ! R . ‘4 T i
D ' WZD" L ‘ ‘ - :
=-. . s . . = ® . < M

a ‘az .“‘,'o. N L §

2)':qﬁesign a 2-D circularly symmetrié highpass_filtér~ : 1.‘i'a
:Iwith\specifiCAtions given by .- Q' R . 3
. N . . . ) . . -, e * §
S o : . 24P %
h L . f, ’ - ~2D . ' E i
. Ap = 5"
o A . a2D 4 a2D o R }
" . Ta a , . .
. - Lo . / L v
o (3.34)° !
= w . - .. PR N . ) R
| P PL: . SR
J - : . i
2D 2D R
L e
3) Cascade the lowpass and highpass filfers; to‘,ob;aih
the desiied,z—D\c;rcularly symmetric bandpass filter.
3 ! . . * i o
pfne design of a z;b bandstop filter satisfying the
- specigications of ‘Sec. 3.2 (Fig. 3.4) can be
, ]

* A}
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N

2) Design a circularly .symmetric highpass 2-D filter with

3) Connect the lowpass and highpass filters

.‘ ' ‘ﬂ"lv"

T
, B

.

,
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accomplished by using the  following procedure :

-

1) Design a 2-D circularly symmetric lowpass filter with

specifications given by

specifications given by

i

. 2D
.wa-

«

.

2D
'Wbl

al

- 2D

a2 -

o (3.35)

(3.36)

in parallel to

‘obtain the desired circularly symmetric bandstop 2-D

filter.
: v

R T e L

°
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’

. Example 3.3 (Cl to C2)

~

" The abo%e procedure was used to design a bandpass and
a bandstop filter. The design specifications are given in
faﬁle 3.19. 'Agsuming ellibtic designs, the specifications
of the 1-D digital filters are obtained as shown in Table

3.20.

.

! - . .
Table '3.21 shows the results obtained. As can be

seen, the designs obtained meet the desired specifications.

3.9 Conclusions

3

.O In this chapter, the design of 2-D pseudo-rotated
digital filters satisfying prescribed amplitude
specifications was investigated. first, the characteristics
of 2-D digiﬁai'filters were defined. Then a «circularity
measure was defined and used for the prediction of the
ﬁinimum number of pseudo-rotated filters to achieve filters
with prescribed degree of circularity. Subsequently,

prediction formulas were ' deduced which give the

specifications of the 1-D- digital filter, if “prescribed

Bl ok e,

PRTERE.

i R

!
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Table 3.21 Results Obtained for Bandpass and Bandstop Filters

“ D,

Example Ap {dB} AiD (dB) - o? (rad/s)?
c1 0.3549 41,02 1.719x10~°
c2 0.4065 57.03 2.186x10""°

/
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amplitude specifications areé to be achieved in the 2-D
digital filter. Once the specifications of the 1~D diggtal
filter are known, those of the 1-D analog prototype filter
can readily be deduced as in [42] and, éonsequéntly, the

design of the 2-D filter can be carried out.

This chapter dealt with step-by-step design procedures
which can be used to design lowpass, highpass, bandpass, and
bandst;ETfilters. These procedures have been used to design
many filters of diffefent types. The results obtained show
that prescribed amplitude specifications can easily be
achieved in Butterworth, Chebyshev, and ellipéic filters.
These procedures can readily be used to construct a
computer—-aided filter-design .package which can be used for

the design of 2-D circularly symmetric pseudo-rotated

filters.
[}
¢
w "J".
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CHAPTER 4

OPTIMIZATION OF PSEUDO—ROTATED FILTERS

t

4.1 Introduction:

An alternative approach for the design of circularly
symmetric  2-D digital filters is through the use of
optimization techniques [25], [27] - [29], (31], [33]. This
approach is effective 1if tﬁe band edges are fixed and the
passband loss is to be minimized and/or the stopband loss is
to be maximized. The main disadvantage of the approach is
that the filter order needed to satisfy preécribed amplitude
specificatiohs is not known a priori and, therefore,
extensive trial and error is necessary before satisfactory
performance can be achieved. By contraét, the method of
pseudo—rdéated filters described in Chapter 3 leads readily

to filters satisfying prescribed amplitude specifications.

' In this chapter, a standard optimization method is

. applied in conjunction with the method of pseudo-rotated

filters for the design of 2-D circularly symmetric filters.
Our purpose is to investigate to what extent improvements
can be brought about in pseudo-rotated filters through the
use of optimization techniques. Desirable improvements are

a reduction in the number of cascaded sections, a reduction
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in the maximum passband ripple, an increase in the minimum

stopband loss, and an increase in the degree of circularity.

[

The procedure followed consists of two steps. First,
a pseudo-rotated filter satiéfying prescribed amplitude spec-
ifications is designed. Then by using the transfer function
coefficients obtained as initial values in an optimization
procedure, an alternative design is obtained. The
optimization. is carried out by using the sequential
unconstrained minimization technique (S%MT) due to Fiacco
and McCormick [43] - [44]. Stability of the .filter |is

maintained by using constraints.

[} R
In the optimization procedure the phase is- not

considered. Neverthelggs, zero-phase filters canneasily be

obtained by cascading the optimized 2-D filter which

recurses in the (+,+) and (+,-) directions with a filter
that recurses in the (-,-) and (-,+) directions. The
transfer function coefficients of the latter filter can be
deduced from the coefficients of the transfer functidn of

the optimized filter.

4.2 The design problem

A 2-D transfer function obtained by the rotation .

i

method of Chapter 3 can be written as

\
b

RO S




133

H(zyp42,) = H 'f& o gn(zl,zzj (4.1)

where ' . C . . T
N * N g
311n*221n%1%212n%2%222n%1 %2 -
B (z,,2,) = (4.2)
n 1’2 .
. S Pin*P21n%1*P12n%2* 2202172
Coefficients a)1pr v ’ béén ’ n=1,N are f

calculated by®using Eqn. 2.21. Such a transfer function

represents a stable filter if [18]

Cin ™ Ibygpl = Ibyanl 20

: n é
Can = Ibyan * Byl = Ibayn * Papq !
C3n = . Ibyan * byjul = ibyyp - ) .

These constraints ensure that the . fAlter is stable if -

4

recursion is carried out in the (+,+ direction. Since oo

.circular symmetry is of inﬁerest, the analog filter has to
be .rotated in the °(+,+) .and (+,~) \directions. The
of the transfer

¢

,~) direction

constraints ' imposed on the coefficients
. function for a filter that recurses in the

can be derived from Egn. 4.3 by iptérchanging by, and

blzﬂf The constrain;s in Eq

\

4.3 do not exclude

¥

i LIRN

T Gy



B o 134 <’
~ [A 'y B

]
)

’

/singuléritiés of the second kind. Nevertheless, the

existence of such sinéularfties can be detected by checking ’

'the trahsfer ‘. function at points (+1,+1), (+1,-1), (-1,+1)

' and g-l,-})’of the (zl,zz) pfane.

f
¥
e

I

e

4;2.1:The objective function

.

|
If D is' the desired amplitude response and-B° > 0 then

the error in the ‘amPLitudeF response at point (wy ,w,) is

given by' ' -
£, ='H (G_. - D) C ‘ ‘ (4.4)
.k o n-‘L n¢ . . .

where k = | (i,3) , i=1,I , J=1,0 } is the index assigned to
the grid point (;1'W25-°f the Ereﬁuency plané and

3 w
Vi g%

G, =-[8 (e ., ) | o (4.5)

o

Fdncti?n f, 1s dependent on the parameters { élln’ 8y e

¢+ Pyins e- v b22n }. These paramgters can be represented

by the vector

. . ’ T
=[x %y oo o2y ]

R I R I R - I T
= [ ay1; 2311 2311 3211 -+ Pyyp biyy -ee ]

. B P e
N T - " . e
.

>

FE




Ly

L%

/

4
.

where superscripts R and 1 denote tﬂe real and imagindry’
parts,‘respectiyely, of the cqefficients{ M is ‘the numbec

of optimization variables in the transfer function of Eqn.

“ - —
.'mlo : ’
.

~ - .

An obﬂective function can be defined as the sum of the

squares of the errors and is given by
>

K K -

- Hn

. 2, wt [ &
£ (xk kgl We 2 kzl ,k‘[ 0

-D Jz (4.6)

v ' s ‘.

-

where W Jds a weighting function for emphasizing errors of

importance in(éhe formulation of the problem.

AL ]

The optimization problem of interest is to obtain the

vector ' x which minimizes f(x) subject to the constraints in

\

Eqn. 4.3.

-

- -~
.4.2.2 The optimization method . . -

-

@

.

" the sequential gnconstrained fninin'\izatisn technique fSUMT)
due tg‘Fiacco and_McCormick [43.] - 644]. SUMT is based on

a variable metric method‘ whic?J.is a mo?ification of the
/ Fletcher—Powell optimization méﬁhod {44]. At each iteratfon

of the minimization, the vector x is updated by using the

*  The method used here for the minimization of "£(x) 1is

(

!

o

T e Rt A N o 0 L et bt e,

v it bt s B aiaon ]
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¢

v \ . ?
gradient and an estimation of the 'Hessian K matrix of the

objective function is deduced. 'A Fortran program based on
this method is given in [45]. The original method uses . ‘the
golden-section line search Put in order to speed up phé
oﬁhimization _process, the inexact line sgarch ‘dueJ. to

Fletcher _ [46] has been incorporated in the program.

Constraints can be incorporated in the SUMT method!b adding

_to the objective functids £(x), a function of the
constraints that acts as a penalty function. The penalty

‘function becomes very high if X is close to the nonfeasibl

1’ .
region and negligible if x is far from this region. The

4

modified objective function is

- P ' N
(%) = £0g) - £ I o) U )

£
where Cp(g) is a constraint (Cln' C2n and C3n); P is the

number of constraints and t® 15 a positive constant such
' ' 1

' that at each iteration k of the minimization procedure, r

2 had .

) 13
[

4.2.3 Derivatives of the objecti&e function

As was stated earlier,- SUMT uses the gradiént of the

objective function for the estimation of the Hessian matrix

and in thé minimization process itself. The gradiént 6£ the

-3

objective function can be deduced from'phe first derivatives

4,;5,? &

s

sond

S )
,.

)
3
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of the unconstrained objective function and the first

derivatives of the constraints, If x, belongs to the

first-order section n then from Eqn. 4.5

.

Y "
af(x) = K 2 . N l : N
- = 2 (H, | Tlaf{-p) H,IT\ B | F (4.8) -
i, i= k Olp=rnl ~ ° 0'gey PN ,
where ' T I
/N
n -
B -/—7; - (4.9)
4 ~ o ‘ '

and Fn is a real ‘number which can be obtainedas follows :

a

i) If X is a goefficient in the numerator polynomial Nn‘ h
.i'
aN ' .
1 n . .
Fn - Re[n-; s-x—'-‘ ] ' ) (4.10)

g - )

f

ii) 1f x, is a coefficient in Ehe denominator polynomial D,

»

F_ = Re[ = & —=2] . . (4.11)

T e S "

g 4 e e
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\ S
Multiplier constant H_ can be made an element of the

<8 ..

vector X. However, this ‘'tends to slow the optimization -
process. Alternatively, Ho can be fixed for each change of :
X. In this case, Ho can be calculated such that ’é
. & .32

B

2 £(x) . %

okl ' g

o F

' : 2

‘ 3

or o ‘ :
> wo| T 7‘

D ,“'\»Hl Ad ‘%

K k=1 < =l D - 3

Ho = - (4.12) é

K
Y w2 Ml = N 1
k=l n=1
The derivatlves of the constraints of Eqn. 4.3 which

PRSIl S e R st T - AL <u

are necessary for the SUMT algorithm can be deduced as
follows :
Cin ) Re(bl’l) af_z_g Yy 2 Im(b 1) : i
Re(byy) = Thy] 2TIm(by;) " 1T 11*‘*’12l - ;;
®in T___r_““bn’ i Nl P L
: 3
€in _ Re(byy) 9Con ) Im(b,,) g
aRe(blz) 12 aIm(blz) 1 [ ll+bi2 ‘
€y n _ Im(b,,) °C,n - Re(by;)
; aIm(b,,) 12 dRe(by,) 2 TBy +b,,|
aC Re(by,) . 3C In(b,y,) (4.13)
2n 11 2 .-y
2Re(by;) ™ "1 B11*B1a| ?Im(byy) 2 1 21“’22

BT,

b
-




2 (Re (by ;) +Re(b;5))

2(Re (by; ) +Re (b))

2

Re(b,,)

- X
2 Thyy*bosl,
. . j

v In(b,,) /
2 T@;}¥5§2|
Re (by,)

< .
1 ETRIPY

Im(bll)

b4
1 TBy;¥by,|

X
1 TBy1%by,l

(Re (b, ;) =Re (b, ,))

139

2C,, Im(b, ;)

— = Y

3Im(b 2) l\|b11+b12|

aSQE o < Re(b21)
-3Re(byy) . 3 Thy17Baal

aSiE ey Im(b,,) '
2Im(byy) " 73 Thy;=Byy|

aEQE . x3 Re(bzz)

9Re (byy) TB217B; |

3

-——. -Y
Im(by,) — 73 Thy;-by, |

r X

2 = 2(Im(b21+b22))

r Y3 = 2(Im(byy=by,))

4.3 Design of lowpass filters

re

In this section the MWeéthod of Se 4.2 is applied to

the design of/;ircularly symmetric lowpass filters. Let W
~2 , P

and Wa be the passband edge and stopband edde of the filter,

respectively,

equally spaced in the sector (=<90°,90°) such that

and let the required rotation " angles be

T A AN et 4

et R
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a__ = na , =2 N .

where N is the number of pseudo-rotated filters recursing in

the (+,+) direction ’ f

The error function must be evaluated over a relatively

T A N P T e, e AR B o

dense grid of ‘the frequency plane, and since a circularly
symmetric amplitude response is réquired, the grid points

can be chosen on circles centred at the origin. No

s a

particular symmetry in the coefficients is assumed and hence

PER RO, R T

the grid points can be distributed over  the region
0 < Wy < Ws/2 and -WS/Z <w, < Ws/2 where W_ is the sampling

frequency. The grid points can be chosen as |

W= Rk_cos(ek) ‘ ’
v (4.14) ,
Wy = 3k sin(ek)

- where Gk is taken over ten equally spaced sectors in the

range (-90°,90°) such that

8, = ~—+ (k=1) 75 , k=1,11 ~ ' (4.15)
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‘and . 3

W for / R<W ) ‘
p Y1k =P :
Ro=(W, + (W=W,) v, ~ for W, <R<W, (4.16) %
. : ' ‘ :
v g |
Wa + (T Wa) Yax for R > Wa ?
i

where YlkklliZk and Y3, assume the values 0.05, 0.1, 0.2,
. .

-«

0.4’ 0.6' 0.8' 009 and 1.0

The desired amplitude response is assumed to be

“ - . L
1 for | R<W
- P
D =(e~11l.5u for W_. < R<W (4.17) © )
. P a ;
0 for R2> W,

where u can assume values between 0 and 1.

4.3.1 Design examples and results

The above approach was used to design six fourth~order
elliptic lowpass filters. The rotation angles were 30°,
60°, -30° and -60°, that is, only recursion directions (+,+)

and (+,-) were used. In each case, the 2-D filter comprised

.

~
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16 first-order sections with complex coefficients. These
sections' were grouped into 8 second-order filter sections
having real coefficients (see Chapter 5). Four of these
filters recurse in the (+,+) direction and the remaining

four recurse in the (+,-) .direction.

Several optimized designs were obtained for each
pseudo-rotated elliptic filter in orfder to determine whether
improved designs can be obtained with reduced number of
cascaded sections. The various possibilities considered are

as follows :

I) 8 sections with Rl = 4 and R2 = 4

If) 7 sections with Rl = 4 and Rz = 3

III) 6 sections with R, = 3 \and R, = 3 '
;V) 5 seﬁtions with Ri =3 and R, = 2

V) 4 sections with Rl = 2 and R2 = 2

°

Parameters Rl and R2 are the numbers of sections recursing

in the (+,+) and (+,~) directions, respectively.

_TableA 4.1 shows the °specif1cations assumed for the

design of the 2-D pseudo-rotated filters (Examples 1 to 6).

By using the transfer function coefficients of the

pseudo-rotated designs as the initial values of X, optimized-

designs were obtained for the fiv filte@ configurations

/

W Rer e
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+
5
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A
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listed above. Figs. 4.1 to 4.6 show the amplitude
responses and contour plots obtained for the éseudo-rotated
filter and the five optimized configurations of Example 1.
Tables 4.2 ~ 4.7 show the actual maximum passband ripple and
the minimum stopband attenuation for the pseudo-rotated

filters and for the optimized designs.

As can be seen from these tables, all the optimize?
designs are violating the specifications in the passbadd
and/or the stopband region. However, these designs a%e
almost always more circularly symmetric than the origin%l

‘ |
pseudo-rotated filters. An exception to this rule occurs in

the Example 6 where the circularity of the pseudo-rotate&\

and optimized filters are similar. This is consistent with
some results in Chapter 3 where the circularity could not be
improved by increasing the number of sections, if'WéD was
greater than 60% of the Nyquist frequency.

These results show that the method of pseudo~rotated
filters described in Chapter 3 yields near optimal elliptic
designs. 1In addition, the amount of computation needed is

only a small fraction of that needed by the optimization

method.
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4.4 Conclusions s

In this chapter an attempt has been made to see if
improvements can be br‘ought about in pseudo-rotated designs
through the use of an ' optimization technique. The
optimization technique used was SUMT and a least-squares

objective function has been assumed.

Several elliptic lowpass filters were first designed
by using the method of pseudo-rotated filters described in

Chapter 3. Then several configurations of the

‘pseixdo—rotated filters, each with decreasing number of

sections were optimized to see if more econonmical and/or

improved designs can be obtained. The results have shown

that, in general, the maximum passband ripple is increased

and/or the minimum stopband loss is reduced. The degree of
circularity, however, is usually improved. In effect, the
method of Chapter } 'abpears to yield near~optimal
approximations for the required spec_j.fications. This is to
be expected, however, since the predictions of Chapter 3
lead to the lowest-order elliptic (or optimal) analog filter
which, when used as'prototype, will lead to the 2-D digital
filter that will just satisfy the required specificatio’ns.

.
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Unlike "optimizati’.on methods, ' the rﬁethod; of
pseudo-rotated filters entails an insignificant amcunt of
computation by comparison, and since it ‘readily yields
filters that satisfy the required specifications, it is to

be preferred in practice.
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CHAPTER 5

o

REALIZATION AND IMPLEMENTATION OF PSEUDO-ROTATED FILTERS

5.1 Introduction

In the previous chapters the solution of ‘the
approximation problem in 2-D pseudo-rotated digital filters
'has been considered; and several procedures have been
developed for the design of pséudo-rotated filters
satisfying prescribed amplitude specifications. These proce-

dures lead to the desired 2-D discrete transfer function.

In this chapter the realization of .the 2-D discrete
transfer function\is considered. Two types of realizations
are considered, namely, diréct apd wave realizations. In
direct realizations, the transfer function is realized by
means of first- and second-order sections connected in
cascade'or in parallel, and in wave realizations a 2-D

9 ! ! v
structure is deduced from a corresponding 1-D analog filter

by using the wave characterization [42]. .

In addition, the software implementation of
pseudo-rotated digital £ilters is considered and several

isgsues pertaining to the implementétiqn-are delineated.
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‘5.2 Direct realization

The 2-D discrete transfer functidn, obtained by Ithe
method of pseudo-rotation can be realized in terms of the
direct realiza;ion. This is accomplished v obtaining an
equivalent 2-D discrete transfer function having real

coefficients. Then a structure realizing the 2-D transfer

. function is chosen.

G TRt 1 ek
—— =

5.2.1 Rearrangement of the trapsfer function coefficilents

,

. The procedure’ described in Sec. 2.4 gives the ;

transfer function of a single pseudo-rotatea filter as

Mg 4. -1 1A
- a31i%221131%3121%2%2221%1%2
H(zy,2,) = H, i=1 ' (5.1)
ﬁ” by« 4Dy Zibby . Zitb s - A
L P11itPa1i®1™R12i%202i%1 %

The numerator and denominator coefficients of the transfer

‘function are wusually complex since they are functions of a

complex zeros and poles, respectively, of the 1-D analog
filter. Hence, in order to obtain realizations with real
multiplier constants it is necessary to express the transfer
function of Eqn. 5.1 in terms of real coefficients.

(s y

For a pseudo~-rotated filter section characterized by

14
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-1 ~1 -1 <1
a11i +a21 zl+a12122+a2212122 , F

11i7P21;%7%Py5325%b5532773 o

Bi(z3,2)) =

Qgere is ‘a pseudo-rotated filter section characterized by

Hence for each set of coefflcients

SN - S A S -1-1

5 . alli 211 z,+ 12122+a2212122
j(zlrzz) = w -1 =
it 211 1+b121 z*bzziz zZ;

{ 23347 25747 33247 25950 bByyyr bayyr byggs bygy |

\

M . @
there exists a corresponding set of coefficients o \\“}i
* »

»* * > * * %
{ ay14s a514s a1540 83550 byyfs Bajqr Bygjr bogy

and by combining the two first-order transfer functicns, a

second-order pransfér function can be obtained thch has

¢

real coefficiIts.' These transfer functions can be obtained

by using the

1)

2)

3)

Repeat (Zj'for the real zeros and poles.

pllowing procedure :

Obtain the poles and zeros of the l—D'analog filter and

arrange complex pairs of zeros and poles together.

Calculate the coefficients of the first-order

’ pseudo-rotated sections for the complex zeros and poles. .
S

Combine complex conjugate pairs of cofficients to obtain

second-order transfer functions with real cocefficients.

Vias
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‘ whe:; > .
mhese iy 5 y

function

If we let “;
C ' Nzﬁ = number of real zeros

Nyo = number of complex zeros

NPR = number of real poles

k]

Npe

number of. complex poles

theh from Egqn. 5.1, we have

o

Mg = Ny + Ny

‘MD = Npgp + Np¢ " ‘, (5.2)

) L . . Ll -
By combining’ the first-order transfer functions with

-4

complex coefficients, we obtaln the .2-D discrete transfer

14

2 -1, ° =1 -1.-1 -2

, Eji Br14*Bo143) *R1g4%p R0y 2y Ay, 2

H{(z,,z,) = H
1r"2 °.ﬁ9213

=1

-1 -1 =Dhol =2
115%7P214%1 *B124%; *Bzzi?1¥>>\*83112;

o 2 -2- - - _‘_ t
- *A134% +A3217-1 zten s, 2T an e, 0 27225 -
: -2 -1 -1 =2 -2 =2
131 2 +B32121 22 *B231%17 %3 *B3347) z2

3 ZR I -1 —l -1 P
331:3111*“21121 212i%2 "2221%1 %2 (5.3)
33 x '

TR -1 =L,y iel-1
: jZf P114*P215%1 7 *P125%2 "P221%1 %2

4 ke ]“b‘“n

a Ql+;§')+(l--;2-)z +(1-—7) +(1+-2-) 21 2

g

- T e e e e e o Aottty
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where cogfficiex'xt? f E& v Bgyrieees bll\.’ cee bzé } are
B given by ‘the relations in Eqn. 2.2, arnd - o
B ' ‘ A . ’
N N
Nzc - A 2 e .
Nza =7 v Npo™ 7 (5.4) N
Mg = laggyl® 0 Ralk
. . A , . . [ » ! ' :" o~ ” - s
- A1y T 2 Re(agy apyy) o g
¢, ,r v . ' : o @
« 4 B . - “ . 1
o Prag T2 Relagyy a3,y) ,
\ ) A ‘l . «a .. * + “ N *
. 229 ™ 2 Re(a;;4 a4 * 2155 2314 3 N
b 2 ‘ T (5.5)
oy 311 = lagyyl” » .
i ' ‘ . y ot
e o .
\ Ayag = 131241 ) .
hind " * o 2 Re(a,y anasi) ¢ \
" 320 7 elaz1y 222 y .
J“ . * /- . x . 21j ‘ 3! ) v
S . . ' ' »* !
AZ!{. = 2 Re(a,:,_2j a%zj). . . . :
) ” N - ) . . s
; 2 - y 4
A = \ N
¢ - 331 = lagz4l SR
( N E . ' K l‘h .‘ | \
. "‘\ﬂ\sor j-‘lr Nzcn i ll szl and ¢ & - .
. _ ' % Al e
. . : Cpl 2L % —_— o
- Biig = [Pyl /’ ;o , -
. / J ‘ | *. | =
> Ba1g = 2 Re(byyy byyy) (-
= 2] m I [ | * .'
2 hd ‘ B - . -
- f12i 72 Rffblzj B115), . ;
h ' . * »
,- l By2y ™ 2 Re(by;y bysy * blﬁj\bzigﬂ !
J - h - 4 2 ' s
= By1s = Iba14! ‘ o {5.6)
S : , \
. ’ \
N ~ i .
, . A\
o. ) . ) —,' ' . . - ‘ . N *
st rpe———r s, Eeeere o ~ PR
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-
2 . .
Byag = [byp4l -
.7 ~ /
SN, e, m *
Lo . B3zg ™ 2 Re(byyy byyy)
. C \‘ "
W g - R * "
W 231 ™ 2 Re(byy4 byyy)

. ) “
. .
C Ba3j lb%Zjl

for 3-1 NPC’ i'l,Fsz

L]

b
.~ The relationship betifen i and 3 is

,first and the second (i=1,2), the third and

etci set of coefficients !

q& . ' . ’
({all ".-o_’azz }“

will generate ‘the first (3i=1), secﬁad ‘(j-Z),
é&eff4c1ents '

’ .
{ By peee vAg b
4 . &

»

Similarly, _ the. denominator coeffi

4=

generated. * - I

Now by div;din%' a1l the coeffici

second-otder transfer functions in Eqn: 5.3
I

‘the coefficients of the,first—o:dez'&n Eqgn.

‘obtain . -t . T

-

; ' N . C N .

. ' R - P2
B(zyr20) = | |H1i(2vz) | |Hpq(3y02))

<
sueh that the

fourth (iga 4),

<

. etc. set of
W

{

.J LN

H

icients can %

ents of the
by Bll.and ell

5.3 by b we
JR P v

(5.7)
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. where

| ] 1
- -1,.' -1, ', =1.-1
« 21%ay12)7+a),2,7 48,0272,
*H—i“i‘( zi—rz 2’) =

L e . vl mlgt -1-1
(///’ L+by 31 +by,2; by 7 e
' .
- . ‘ AI ;A' -l+ l. '-l 1 "l -l ' ‘.2
11 21‘1 A1222 +A22z z) +A31"1

1
vo=2 -1 -1,-2, -2 =2
izt 32 z) z2 *Azazl 2 33‘1 zZq

B, . (2y,2,) =
21 ; -1 -1 l l 2 !
I+B21 1 +Bl2 2 +B

. -2 =2 -2 -1 -1,-2,
: 33’1 z, +B32"1 Z; +B23’1 2

In effect, pseudo-rotated filters can be rea;ized Lg?tqkms('

of a cascade and/or- a, parallel arrangement of 1ow—oraer\

?
filter sections. As it is well known [47],

realization leads. to reduced sensitivity tp coefficient )

(. ,
i, dcransfer fungtion as a . high-order single section.

i3

*»  Example 1 : . . . BT

As an- example, let us . consider an elliptic
3 ’ v

Y
analog filter chazaqterized by
. s~
4 . ' s * .
(. —z s-z ,
. H(s) =K £ Lo 1 ,.
. ’ o $‘pl . s—pz .

87Py

)

whére z, andyp1 are complex and p, is real. -

% S
[ o ' , ‘ PR

\ -/ BRI 4

quantization relative to a direct ‘realization,

22%1 2 31 31 13‘1%

(5.9)

such a

of the

R b St TP St
~
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indicated in PFig. 5.1. The delay operator z,
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Using B as .a rotation angle, the following 2-D digital

transfer function is obtained
2 ‘ | | .
. . l]i a;11“%11‘1*%21‘2*%2131”2
10%2) * K372 —
- Tl by1i*bayi21¥by2i25%bg5;2;12,

jm1
/ B
(1+——)+(l——§)zl+(l-——)22+(1+ 2)zlz2 (5.11)
T T T
by 13*P31321+P123227D523%1 2, .

5.2.2 Digital structures

" At this stage some differences between the shift
operators zzl and z;l will be pointed out. Let us suppose
that the input data is being scanned column by column as
S -1
1mp1emented by a single register as in 1-D digital filters.

However, since the scanning is performed one ‘column at a

PRy

"time, the values of each element of that column have 'to be

° 4

preserved in the delay Operator zll for the calculations of
elements of sucessive columns. - Consequently, this delay
'operiﬁor must be implemented in terms of .a memory ‘consisting

8f a number of registers equal to the number of elements of

a column. r

Y

4

'
”

‘, rIn\ the cese where. scanning is performed row by row,

zzl is implemented in terms of a single register and z;l "4
implemented in terms of a set of registers. "' f

'3
\ B " . -

will be .’

.
.
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‘\NBefore a 2-D digital structure is chosen, a decision

must be made as to whether the scanning will® be uperformed

row by row or column by .column. If the scanning is to be-

performed row by row, the number of delay operators z;l
should be minimized and if it is to be performed column by
column, the number of delay operators zzl should Dbe

-~

minimized.

The 2-D'diregt realizations- that minimize the numbers
of z;l are given in Figs. 5.2(5) and (b) for the
secondﬁordér‘ sections and in Figs."5.3(a) and (b) for the
first-order sections., The 2-D direct realizations that

minimize the number of delay operators gil can easily be
obtained f;om Figs. §12'and 5.3 by intercﬁanéing zzﬁlyind
zEI, Though these are ﬁot new structures,. they have been
included here just to point out the difference between the
delay operators and for comparison with the wave realization

of pseudo-rotated filters described below.

"
L)

. R ¢ "%e
5.3 Wave realization of pseudo-rotated filters

f \

The w;vé dharacterization has been used extensively in
the .past for the realization of low-sensitivity 1-D digiFal
filters. In this gection it |is shoﬁn that the wave

“ch;racierization can also be ;pplied for'the :ealizationhof

2xD pseudo-rotated digital filters.

bt b

3
!
1
1
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X(z,,2,) ' 1 Y(z,,
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(b)
Figure 5;2 (a)&ilowgraph Representation of a Second-Order-

Sec

(b) The Transpose Flowgraph

on for Scanning ‘the Input Data Row by Row,
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Figure 5.3 (a) Flod%iaph Representation of a First-order
Section for Scanning the Input Data Row by Row,
(b) The Transpose Flowgraph.
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Wave digital'filt%rs based on the transformation of

Shanks et al (18] have been reaiized on a minicomputer by

Lennarz and Hdofmann [48]. The approach used here is

similar. However, since the transformation used to obtain

pseudo~rotated filters is not  the same,

different .

realizations are obtained. The advantages gained are the .

advantageb assoclated with the transformation of Eqn. 2.8.

For examplé, stable realizations are always obtained which

are free of non-essential singularities of the second kindk

and the need of guard filters is usually eliminated.

/

‘.

5.3.1 Imbedance transformation

Giyen an LC structure which represents an analog 1-D

: i
filter, the corresponding 2-D pseudo-rotated wave digital

filter can be obtained by traasforming iﬁpedances in the s

domain to impedances in the_fsr,sz) domain. We can write

‘
I3

Zap(s1r83) = Z1p(s)]

/ 3

s = f(sl,szi

where

a

" 2 s, cos(B) + s, s%nkB))’

(5.12)

- -
. . .
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£ L - -
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. Por a c¢apacitor
R
, X
Z9p(s) = 5=

-{5.14)

where Rx is ahpositive constant and from Eqn. 5.13 we

obtain

R

X

 Zyp(sys8,) =

sy cos(B) + s, sin(B)

_ 1l +c sl s2
Rx (1l + ¢ sI 32) . .

, ‘ ’ = s, cos(B) + szusin(B) v, (St%S) ;

. 1 1

N cos (B) 'S, sin{B)

Ry T , T *

Z2p(81+82) ™ " 5T Cos(ET 5, SIA(H) (5.16)
R, c -, s, cos(B) s, sin(8)

sin(B) cos(g) s

cos(B)+ s, sin(R)

PR T2 VY
-

- S A et Lidarsbd i

In effect, ZZD(sl,sz) is the impedance of two capacitors in

parallel in series with:  two

illustrated in Pig. 5.4 (a)

where

'c;hh,c cos (B)

02 = C sin(B)

°

inductors. in parallel, as

]

- ‘”“."“*"“" has 2 i 4

-~

NP Pt RN o £k £

S IEA,
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Figure 5.4 Impedance Transformations, (a) Capacitor,
4 (b) Inductor o '
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. . -. c . e
y/ Ly =% cos (8) ) ‘
< For an inductor
. - o ‘o J 2N
!
&
‘ Z1p(s) = Ry's : (5.18)
where: Rx -is a positive constant and from Egqn. 5.13, we
obtain - ‘ H‘ )
» ' . ’
Rx (s1 cos{B) +‘s2 5}n(8))
Zaplsyrsy) = 1+cs 8,
- . ) ‘
" _ sin(8) 2 _
= R "cos(8) + R_ sin _
I ‘ l+c ) X 1l +c 81 S,
oo ‘ : o (5.19)
L] s - ' * a, o
) _or

- ' 1 1 1y
. R, cos(B) €3 3; R, sin(8) EI ¢ 9 % j
Zap(syr83) =7 ¢ cs, F L T < T ;
: L5 5. T ¢ 8 3
.2 1 ;
' |
; (5.20) i
i - ] - . .
‘,

In effect, 2D(s ,32) is the impedance of a capacitor, and an

inductor in parallel, in series with an inductor ind a

' 4 . ) ' N

1 l 3
; . I
; .
v ’ . .~ * .
) . . H B + .
; ]
. N . . !’
i N . s
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. . A 1N . . - ) . © e e i)
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capacitor in parallel, as illustrated in Figq. 's;qibi

¥ i

v
-
)

3

where : a

T

. .
, . \

.

L3 = I, C6é(B) . . 4“‘“;' ,
. R

—
3 L cos(B) .
) (5.21)
L4 = I, sin(B)

L sin(8)

- Ry

P

4,

b

-

xhe above impédance transformations Qill conyeréqa 1-D
LC anaiog filter into a 2-D LC analog filter. Then any one
"of the apprcaches dﬁe'to Fettwels [36], Constantinides [3],
ahd ‘Swamy and Thyagarajan [37], (38] canAzeadily be applied
to deduce‘a~wave realization for a pseudb-rotaﬁed digital
filter, The digital realization of capacitors and inductors

is illustrated in Fig. 5.5.

5;4GCompartson between direct and wave realizations

Let us consider the realization of a 2-D «circularly
- symmetric ' pseudo—-rotated Qowpas! digital filter by xﬁeans of

the.direct realization and the wave realization. -Consider - '

bo——

the 2-D specifications S e ‘ 7

' . N .n‘mmw
\ - . ' oo ) s
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. . o a2 = 28.0 @ ‘ "]1 o
w2l = 0.927 rad/s
— . i - - L P
- ‘(WzD = 1.48 rad/s-
: | ﬁ - [

. ' W, % 2T rad/s

4 ~

and assume that the rotation angles are +30' and #60°.

"

~

» . ' u L
According to Chapter 3, the corresponding 1-D

digital-filter specifications are s

\A;D = 0.098 dB

15 N
A’ = 14.0 B .

] o o W;D = 0.927 rad/s_ ) oL
3 “ ) ~ .
~W;'D = 1,282 rad/s

Ve
' 'ar‘x(d‘ the dorrespondiné 'l-D'analog-filte.r specifications can
lge o&ained a's [42] )

-+ *

A '='0.098 dB = o
14.0 4B

g e ‘// a
' L W_= 1.0 rad/s T : e

>
]

7

1.494 rad/s T
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where the warping effeéct has been taken into account in the

L4

cﬁléulation‘of wp and Wa.

By using filter-design tables 1like those found in

[49], we obtain the equally-terminated LC elliptid.lowpass . )

f£iltar shown in Fig.' 5.6. The filter oggerais 3 and the

component values are 3
-

R = 1Q ‘Cl = C2 = 0.7552 F C3 = 0.4847 F L4 = 0.7411 H

The' 1-D analog transfer funétion is given by

.
/]

. »*
+ H(s) & —{372) (52 ) (5.22)
o (S‘Pl) (S"Pl) (S'Pz) /

e
where o
2?""' j L ¢
.- JE4C3 . o
N “L+] ¢6§4nz(cl+zc3)-L4 ce (g -
‘1'7. ~ 2 .
2L4R(Cl+2c3)' ] .
- 1
P2 RC, '

—This transfer function can also be obtained by using the

above 1-D digital-filté@ specificétions in conjunction with

L]
b

the design procedures &iven in [42].
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5.4.1 Direct realization

On ”applying the technique of pseudo~rotation to the
'analogJEiitef transféi§ function in Eqgn. 5.22, the 2-D
discreéé transfer funcéion in Eén.' 5.3 ig obtained which.
has.real coefficients. The ampiitude resp;nse' as computed
by using the CDC Cyber 552/552 computer (L = w ) is

S

illuétrated‘in Fig. 5.7. ,In order to.assess to some extent

the effect of coefficient ‘quantization, the effbctive

wordlenétp'L was reduced to 14, 12, 10; and 8 bits, and the

corresponding  amplitude _responses = wete obtained.

Fixed-point arithmetic was assumed-and the quantization was

‘/

carried out by truncation. ‘The 3~D and contour plots

cbtained for L = 10 and 8 are illustrated in figs. 5.8-5.9.

5.4.2 Wave realization

1

]
'

Here a realization is obtained by using the approach

- due to Fettweis [50] - [53]. By using Egqns. 5.17 and 5.21{’

the 2-D wave digital filter can be obtained from the

corresponding analog LC filter shown in Fig. 5.6. The 2-D

pseudo-rotated wave digital filter is shown in Fig. 5.10.

1 4
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Frequency domain analysis can be carried out by applyind the

same technique as in 1-D digital filters [42].

The filter obtained was analysed assuming fixed-point
arithmetic  and qﬁantization was by truncation. The
amplitude f;sponses for L = m; L = 10 and L = 8 are shown in
Figs. 5.11(a) to 5.1l3(a). The contour plots at the

passband edge for L = @, L = 10 and L = 8 are shown in Figs.

' 5.11(b) to 5.13(b).

X

5.4.3 Comparison of direct and wave realizations

——
——

Table 5.1 shows the actual maximum passband ripple and

the minimum stopband attenuation for the direct and wave

_realizations for wordlengths equal to L = =, 14, 12, iO and

8. We can see from this table that for this specific
example, both re;ZIzations are[satisfying the specifications
for wordlengths larger than 8 bits. For a wordlength of 8
bits, both realizations violate the specified maximum
passband ripple: However, the amplitude ‘response in the
direct realization is more seriously affected by‘coefficient
quantization than that in the wave realization. Thi; can
plso bep seen by comparing the 3-D plots in Figs. 5.9 and
5.13. In effect, the wave realization is less sensitive to

coefficient gquantization than the direct realization, as

would be expected. !
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Figure 5.12 - Wave Realizat
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- 5.5 Software implémentatioh of pseudo~rotated filters

The software implementation of a 2-D pseudo-rotated

filter -can be obtained by programming the difference

equations of‘the filter. From Eqn. 5.3 the differerice

equation for a second-order section can be written as

41\'&'&’ *

y (m,n) -2 S A : x(m-k n--l) - Z B. -1 ned
2 Ml ' A JEO 13 ¥Y(m=1,n-3)
- : i+j¥0

) . . (5.24)
or for a first-order section as " ‘ ,

i 1
y(m,n) -E _Z‘ a , x(m-k,n-1) =~ -i.n-
k0 im0 T : 1?'0 Jzzo Bij ¥(m=i,n-3)

i+170 (5.25)

Egns. 5.24 and, 5.25 provide us with a.means forl

computing sample output y('m,n) . The process -of filtering
and the operations involved in the calculation of each

outpuf\‘aata' point are illustrated in Fig. 5.14. In this

.&igure, output y(6,7) is being calculated. The calculation

- \ s
requires the input val}ues x(6,7), x(5,7), x(4,7), x(6,6),

- x(S,G)I, x(4,6), ‘x(6,‘5-), x(5,5), x(4,5) and the output values

v(5,7), yl4,7), y(6,6), ¥(5,6), yl(4,6), ¥I(6,5, y(5,5)

y(4,5). The squares -arcund the 1input and output valug‘sh'

represent the input and the output masks, respectively.
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5.5.1 Implementation of lowpass filters

¢

A lowpass filtér is veryng}ﬁple to implement by means

of pseudo-rotatéd filters. ‘To obtain circular symmetry and
‘ AN

' zero—-phase, rotation angies in all four quadrants must be

used. For maximum efficiency, the filter sections should be
groﬁped accordingly to the ‘recursion direction, namely,
(Fo¥) (+;—), (=,+), and (-,-). With such an -arrangement.
only four dét; manipulations are needed and each is cgrried
out after the d:fa has passed through each group of filters.
The details of this procedure \follow.

vt vt ,

Consider the ith filter section, and let Xi(zl,zz) ;nd
YiCzl;zz) bg’the 2-D Z,2, t;ansforms of the input and output
arrays, respectively. Also let Hi(zl,zz) be the tragnsfer

™

function of the section. We can wriwee

‘e

Yi(2z),24) = Hi(27,25) Xy(29,25) ‘

where X, ,(2y,2;) is obtained from Y;(z,,2;) by applying an

appropriate transformation of the data elements.

The necessary data transformations for the input data
of the various groups of filters are illustrated in Figq.
5.15, where oqu four data elements are used for the sake of

iliustration.
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'

Figure 5.16 shows  -the block diagram for the
implementation ¢f a 2Z-D circularly symmetric zero-phase
filter anq incorporates the necessary data transformations.
In this figure, Hl(zl,zz), 32(21'22{' Ha(zl,zz) and
H4(zl,z2) correspond to the groups of filters recursing ‘in

the directions (+,+), (+,-), (-,+), and (-,-) respectively:

In Sec. 3.4 the rotation angles were chosen such that

the 2-D .transfer functions Hl(zl,zz), 32(21,22)1 H3(21'22)‘

and H4(zl,zi) of Fig. 5.16 can all be implemented by using
transfer function Hl(zl,zz) in conjunction with appropriate
‘data transformations. Hence it is sufficient to design only
the pseudo-rotated filters wﬁich age recursing in the (+,+)
direction. A corresponding implementation is illustrated in

Fig. 5.16 ([54]-[55].

The implementatisn shown in Figqg. 5.16 1is not
necessarily the most des;rable one. 'If the computer being
used does not have sufficient high-speed storage to hold all
:the data at once, then the data must be stored on a disc.
The transformations depicted in Fig. 5.15 require matrix

/

transposition and can be time consuming if data are to be

stored on* a disc. Discussions of high-~speed matrix

" transposition can be found in [56] and (57].

-a
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5.5.2 - Implementation of highpass filters

. '\
In the implementation of highpass filters, each
pseudo-rotated filter has to be interconnected as shown in

the block diagrém~of Fig. 2.7. Here it is not possible to

group all filter sections recursing in the same direction.,

Hence, a large number of filter sections’ is undesirable

since the filtering process would be slow.

As in case of lowpass filters only the coefficients of
the filters recursing in the (+,+) direction need to be
stored in the computer memory if data manipulations are to

be performed.

Inca scftware or hardware implementation, numbers are
-ultimately stored in finite wordlength registers. As a
;esult, the coefficients of the tranéfer fuﬁctions as well
as signal values must be quantized by rounding or truhcation
before they can be stored. Since H'" ™™ ana 8" 8% in
Figqg. 2.7 represent zero—phase filters the coefficients
obtained by using Egqn. 2.21 must be quantized before the

;ggl coefficients in "Egns. 5.5 and 5.6 are obtained.

Otherwise, a zero-phase filter might not be obtained.

For highpass filters, the filtering process becomes
more efficient if the filter sections recurse in just one

direction.

2 o See O S ERNTI e b ot
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It should be pointed out here that

" transformations can be avoided if necessary. Instead the

processing can be carried out by scanning the data array in
different directions. TN s possibility is illust&ated in
Fiés. 5.17 and ﬂ.l?. However, 1if data is to Bg sto;ed on a
disc, this approach 1is far more time cbﬁsuming'than the

approach based op data transformations.

5.6 Conclusions

In this chapter the realization of 2-D pseudo-rotated
filters‘ has been: considered. First, by expressing the
overall transfer function as a product of first- and
second-order ~transfer functions which have ‘real
coefficients,‘ a direct cascade realization of 2-D
pseudé-rotatéd filters has been obtained. Second, by
transforming a 1-D analog filter into a 2-D analog filter
and then applying the wave characterization, a wave

L

realization of 2-D pseudo-rotated filters has been obtained.

- 1]

The two types of realizations“fwere applied to a
specific loﬁbass filter, and the effect of coefficient
quantization was qxamined to some’ extent.. As would be
expected, the wave\“realization was found to be less

gsensitive to coefficient quantization.

data.
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The advantage of pseudo-fotated structures over

structures based on true rotation is that they are always
stable and are free of non-essential singularities of the
second kind. This property is inherent in the

transformation used.

In addition, the software implementation of 2-D
pseudo-rotated lowpass and highpass filters was considered
to some extent and some problems related to the

implementation of these filters were examined.
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CHAPTER 6

SUMMARY AND CONCLUS IONS

6.1 Conclusions

In this thesis the design, realization, and
implementation of 2-D circularly symmetric pseudo-rotated

digital filters have been investigated.

In Chapter 24 a transformation has been obtained by
combining two known transformations. The new transformation
performs pseudeo-rotation of the S and s, axes which can be
made to approach true rotation as closely as desired. The
transformation leads to stable 2-D digital filters which are

free of non-essential singqularities of the second kind.

Two methods for the design of 2-D circularly symmetric
pseudo—rotated iowpass filters have been described. 1In the
first method the design starts with a 1-D analog or a 1-D
IIR filter while in the second method the design starts with
a 1-D FIR filter. In the first methgd, the pseudo-rotation
of the axes is forced to approach true rotation closely and,
consequently, the amplitude response ‘'of the prototype
f;lter, is preserved in the 2-D digital filter. Therefore,
no 'guard filters were found to be necessary. On the other

hand, in the second method the pseudo-rotation 1is not
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allowed to approach true‘ rotation too closely, and the
transformation does not preserve the amplitude response of
the prototype filter at points in the neighborhoods of the
Nyquist points. Therefore, guard filters are necessary in
this case. | The first method leads to lower-order transfer

functions but two additional manipulations of the input data

are necessary in the implementation.
.

A new configuration comprising series and parallel
pseudo-rotated (or rotated) filters has been proposed which
can be used for the design of 2-D circularly symmetric
highpass digital filters. ' In the design, four spurious
transmission =zeros appear at the Nyquist points which may
cause difficulties in certain applications. A method for
designing 2-D highpass digital filters which ‘are recursing
in just on; direction has also been introduced. Further,
the design of 2-D circularly symmetric bandpass and bandstop
digital filters using combinations of 2-D lowpass and

highpass digital filtquuf; cascade or in parallel has been

.considered.

In Chapter 3, the design of 2-D pseudo-rotated,—
circularly symmetric, digital filters satisfying prescribed
amplitude specifications has been investigated. The required
specifications were defined in terms of the passband and
stopband edges, the maximum passbénd ripple, and the minimum
stopband loss. In addition, a circularity measure was

defined and used fpr the prediction of the minimum number of
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pseudo-rotated filters to obtain 2-D filters with prescribed
degree of circularity. , Then prediction formulas were
deduced which give the specifications of the 1-D digital
filter so as to satisfy the required specifications in the
2=D circularly symmetric digital filter. With the 1-D
digital-filter specifications known, those of the 1-D analog
prototype filter can readily be derived, and the des}gn of
the 2-D filter can be carried out. jéeveral procedures have
been developed which can be wused to design lowpass,
highpass, bandpass and bandstop filters. These procedures

have been used to design several digital filters of

different types. The results obtained have shown that

' prescribed specifications can easily be obtajined in the

design of Butterworth, Chebyshey and elliptic filters.
These procedures can be used to construct a computer-aided

filter-design package which cdn be used by filter designers.

In Chapter 4, an attemﬁt has been Tade to check , if
improvements can be obtained in pseudo-rotated filters
through the use of an optimization method. The improvements
of interest were reduction’' in the number of cascade

Y
sections, reduction in the maximum passband ripple, increase
in the minimum stopband loss, and increase in the degree of
circularity of the f%lter. The optimization method used was
SUMT and a least-squares error function was assumed. The

starting values for the variables of the optimization

problem were assumed to be the coefficients of the 2-D

2
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pseudo~rotated filter as designed by the methods of Chapter
3. The approach was applied to design several elliptic
lowpass filters. Then several configurations ' of the
pseudo-rotated filters, each with a reduced number of
sections, were optim#zed. The results have shown that
generally the maximum passband ripple is increased, and/or
the minimum stépband loss isv reduced. Nevertheless, the
degree of circularity is usually’improvéd. In effect, the
method ;f Chapter 3 appears  to, yield near-optiﬁal
approximations for the required specifications. This is to
be expected, however, since the predictions of Chapter 3
lead to the lowest-order elliptic (or optimal) analog filter
which, when used as prototype, will lead to the 2-D digital

filter that will just satisfy the required specifications.

Unlike optimization me thods, the me thod of
pseudo-rotated filters entails an insignificant amount of
computation by comparison, and since it readily yields
filters that satisfy the required specifications, it 1is to
be preferred in practice.

‘
In Chapter §, direct and wave realizations of

pseudo-rotated filters have been considered. In ‘a direct
realization, the transfer function is realized by connecting
first—- and second-order filter sections which have transfer

functions with real coefficients. In a wave digital

realization, on the other hand, the 2-D digital structure is

‘deduced from a corresponding 1-D analog filter by apply&pg ‘

{
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- impedance transformations. The direct and wave realizations

have been applied to a specific lowpass filter, - and the
effect of coefficient quantization has been ‘examined. The

wave realization was found to be less sensitive to

coefficient quantization.

Finally, the software implementation of 2-D circularly

symmetric‘ pseudo-~rotated lowpass and highpass filters-has

been considered to some extent and several features ofu the

implementation have been examined. . s

6.2 Scope for further work

As was stated earlier, two methods are possible for
the design of pseudo-rotated filters : a method starting
with 1-D analeg or 1-D IIR filter, and a method starting
with a 1-D FIR filter. The first method 1leads to a
iower-okdgr transfer function but more manipulations of the
input data are needed in the implementation. fherefore, it
would be useful to apply both methods to ima?e processing

and to compare the computational efficiency inherent in the

‘two types‘ of impleﬁentation. Thils investigation should be

carried out on a dedicated computer.

*

A disadvantage of the design method based on the wuse

of a 1-D FIR filter is that guard filters are needed, as was

//5\
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‘pointed out earlier. However, mechanisms probably exist for

the elimination of these filters, and this possibility

should be explored. '

1

An iﬁherent problem in the design of 2-D circularf&

symmetric highﬁhés filters is the presence of spurious

transmission zeros at thé Nyquist A points. Although these -

negg not cause- serious difficulties if the frequency
spectrum of the image is bandlimited, trouble can be
expected in certain other applicétions. Therefore, a way

3

must be found to circumvent this problem.

The prediction formulas of Chapter 3 were found to be

quite satisfactory for the limited range of filters

considered, -in this thesis. In certain demanding _

applications,’ however, whsre very selective narrow-band

filters are necessary, the 2-D filters obtained may violate

the prescribed specifications. This problem can be '

\

preiented by. refining ‘the prediction formulas further,

although this would necessitate much more computation.

The design of "2-D pseudo-rotated filters is carried

out throuéh step-by-step procedures in a deterministic
manne}, even though‘kthe forﬁulas used are empirical.
Consequently, the design process can easily be automated and
an appropriate computer-aided filter-design package can be
constructed. Iﬁis would q§'of great value to engineers and

filter designers, . : '

- . : ' B
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'The method of pseudo-rotaﬁed fi;ters ‘pé;ed on 1-D
analoé or 1-D IIR filteré appears to yield nea;—op;imai
lowpass dgsiggs for the given specifications. However,
further work would be needed - go determine' whether
near-optimal highpiss, bandpa;s, and bandstop designs can,be‘
obtained through the methods described. Specifically, - it
may be possible to identify)other codfigurations for these

firterg, in pqrticular }pf hé;hpass filterg, w‘hich~ iead to
more” efficient designs. o ' -

An attempt was made in this thesis to in&eétigaté to
some éxtent the effect of coefficient quantizaéion iA 2-D
pseudo-rotated filters but the results obtained are barely - - b
. copclusive. Much more effort is' needed in this area to
investié%te not only the effect of coeféicient quanti;gtion | Co
under fixed-point and fioatiqg point arithmetic, but a;so to
investigate the effects of product qdantization on the | ]
’outpuﬁ roundoff noise and the extent to which small scale
(granularity) or . large scale (overflow) parasitic
oscillations can be eliminated. All this would require a
considerable” amount of work, particularly if wave

realizations are also considered.
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