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ABSTRACT
- A

Coding for l-}:'equency Hopﬁed Spread Spectrum
3 Channel with Fading and Jamming

v

Binh Dac Nguyen:

tf

?his thesis deals with reliable communications over
channels for which the primary additivé noise is the partial\
band jamming . In addition to the noise, the transmitted
signal may be subjected to non-selective Rician or Rayleigh
fading. The communication system considered wutilizes
frquency hopping with orthogonal signalling and non-

coherent detection.

Smart partial band jammer can cause severe deteriora-
tion to the frequency hopping channel. Coding reduces the
bit error rate 1n antijam communication systems. Prev{qus
works on the use of coding in the channel considered are
summarized. The performance evaluations are based on the

/

cut off rate of the channel.

This thesis provides performance analysis of quasi-
cyclic codes and convolutional codes .under the worst case
partial band jamming and fading. The bounds on the bit-
error rate are general enough to be applied to any other
linear block codes or convolutional codes with known minimum
or free distances. The performange curves demonstrate the
advantages of coding for spread spectrum systems operating

either with hard or soft decision decoding.
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«CHAPTER 1

\ INTRODUCTION -

.
x

1.1. GENERAL OVERVIEW

“
!

In many codmmunication systems the transmitted signal
encounters not only the thermal noise but also noise from
other sources. For reliable communication these systems must

be designed to function acceptably even in the presence of

interferences. The interference 1is either intentional
(hostile) or unintentional. If the noise source 1is an
intentional one it is called a jammer. The only purpose of

a Jammer 1is to make the system function as unreliable as
possible. This is where spread spectrum modulation applies.

This type of modulation uses much more bandwidth than is
N ,

neccessary for reliable communication in the presence of
thermal noise only. If a jammer has only a finite jam power
then it cannot cover the entire spread bandwidth, thus the

’

effect on the output of the receiver is less severe.

There are many different types of spread spectrum
modulation but thé two commonly used are the direct seguence
(DS) and the frequency hopped (FH# spread spectrum. The
idea behind these forms of modulation is to continuously
change the carrier phase of the DS form or to continuously

change the carrier frequency of the FH form. Different
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formé of spread’ spectrum give different characteristics.
One form might be good for a certain type of jamming but it
could be'vulnerable.to another type of Jjamming. Beside the
intentional Jammer a signal can be corrupted by its own
faded component. The use of spread spectrum might avoid

this type of fading.

Originally spread spectrum was developed for military
use but evehtually became a hot topic in commercial communi-
cations because of its antijam characteristic. Mobile radio
telephone services to a large number of customers 1is an
ultimate goal to telephone companies nowadays. Many stan-
damel modulation techniques have been proposed for 1land

mobile communication systems but none have achieved the

privacy of the conversataion. Privacy 1s an 1inherent
characteristic of‘spread spectrum modulation technigue. In
addltloh, with vehicles movihg in a city there is a fading

v

phenomena resulting from shadowing due to buildings and
terrain features. Also with all users accessing the same
bandwidth, one link might receive partial band burst noise
from the other links. All these features hightlight the use

of‘spread spectrum in commercial markets.

. Frequency hopping and frequency shift keying with non
coherent detection is a primary choice for the mobile radio
telephone system. Phase shift keying and coherent detection

is not favorable due to the slowness of phase locking

process. In a hostile environment the ~ signal is also
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subject to a jammer. A smart jammer never tries to Jjam the
whole bandwidh unless this choice gives the maximum error
rate. Instead it «concentrates all its power only on a
fraction of the available band. Then in a jammed band the
noise power density 1s larger than the‘noise level 1in the
rest of 'the banq. As a result the signal-to-noise ratz:io
(SNR) 1s reduced by a factor corresponding the jammed band.
The rest of the bandwidth is assumed to 'be noise free thus
the SNR 1s very.large. With smart jammer spread spectrum is
insufficient to provide acdequate performance. The loss due
to smart jJamming may be restored 1f a suitable coding

technique 1s used in addition to spectrum spreading.

1.2. SCOPE OF THE THESIS

In this thesis we will consider the case of M-ary
or)hogonal signalling with noncoherent detection with
fregquency hopped modulation. If the phase shift keying is
applied there 1s no gain in'using higher signal alphabet

with coherent detection [4]. In Chapter 2 we start with
concepts of spread spectrum techn?ques. Direct sequence is

summarized as well as the frequency hopped modulation. The
N 5

.optimal strategy of jammer is elaborated. We will also show

that if we use direct sequence modulation with partial time
jammer then the performance is the same as that of frequency

hopped modulation with paftial band jamming.

In Chapter 3 we consider a channel with a particular

- A ——. sz
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form of modulation. That is frequency hopping in a Rician
fading channel ‘with noncoherent detection with Rayleigh
fading channel a speci;l case. The bounds on the bit error
rate of these types of channel are determined. The channel
analyzed is considered a worst case because the signal fades
while the jammer signal unfades. In Chapter 4 we summarize
previous works on the performance of coded spread spectrum
systems. No specific codeé are proposed but low code rates
are seen to be superior to higher rates. Chapter 5 concen-
trates on our work showing how some selected cyclic codes
and convolutional codes function in fading and Jjamming

channel. Chapter 6 summarizes the thesis and suggest ideas

for further work.

1.3. MAIN CONTRIBUTION OF THE WORK

Previous work on the performance of coded spread

'spectrum systems were based on the cut off rate of the

channel. This appreach, however, does not reflect the
effectiveness of a particular code on a channel. In this
thesis. wea propose the wuse of quasi-cyclic codes and
convolutionai codes in jamming and fading channel. The

union bounds on the bit error rate are formulated for both
hard and soft decision decoding. The performance curves of
some selected codes are plotted. For a required bit error
rate and a degr%s,of hardware complexity one can refer to
the performance curves and choose an appropriate code for

the system.
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CHAPTER 2. .

SPREAD SPECTRUM fECHNlQUES FOR DIGITAL COMMUNICATIONS

1

2.1 INTRODUCTION -

Spread spectrum communication systems were first
developed for military uses but eventually became important
in c¢ivillian appliéations as well, A rough definition of

spread spectrum is as follow [1,2]):

"Spread spectrum is a means of transmissjon in which
a random auxiliary modulation waveform is employed in order
to spread the signal energy over a bandwidth muth greater

than the minimum necessary information bandwidth."

The randomness of the auxiliary modulation waveform

'is an important factor in this technique because it causes

the original signal ,appear similar to the random noise.
Thus spread spectrum makes fhe signal insusceptible to the
unintended receivers. There are many reasons for spreading
the spectrum of the signal, the most important reasen is td
reject the intentional interference signals. Other reasons
would be to reject self-interference and multi-user inter-
ference (1,2]. In our work we concentrate mainly on the
protection against in-band interference, especially., the

intentional jammer and self—interfergpce due to fading.
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There are many types of spread spectrum techniques

but we can categorize them into three distinct classes. The

first is called direct sequeﬁce (DS) or pseudo-noise (PN)
modulation in which the spreading is achieved by changing
the phase 1in the carrier containing data according to al

pseudo randomly generated sequence. The second class 1is

. )
frequency hopping in which the the carrier is caused to

shift frequency in a pseudo random way. The last class is

!

PR

the time hopping technique wherein burst of signals are

initiated at pseudo random time.

In this thesis we will briefly introduce both the

direct sequence and frequency hop ﬁodulatioh techniques.

However, in our analysis we emphasize on the {requency hop

technique. The analysis of FH in noise interference pro-

vides analogous results for DS system.

2.2 BASIC CONCEPTS 3

*

The bloc} diagram shown in F}Fure 2.1 illustrates the
basic elements of a spread spectrum (SS) system. Multi-
plication to unrelated signal produces a- signal whose spec-
trum is the convolution.of‘the spectra of‘ the component
3ignals. The transmitter mul;iblies the data bit d(t) by a
’binary +1 "chipping" sequence p(t). Thus if the data d(t)
is narrow-band compared to the spreading signal p(t) thén

their product d(t)p(t) will have nearly the spectrum of the
/
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i . wider signal, i.e.p(t). Suppose that the data bit duration
Tb is much larger than the duration 'I‘C of a random bit. The

bandwidth expansion can be expressed as [(1,3]

B = —L (2.1)

The gquantity Be determines the number of chips per

< . information bit. The power spectra of the data signal d(t)

and its spread version p(t).d(t) are depicted in Figure 2.2

“‘)

A

d(t)

d(t).p(t)

_f = '_ f =1/T
fc—l/Tb fb—l/Tb c c

Figure 2.2: Power spectrum of data and of spread signal

The received signal is
/ :
r(t) = d(t).p(t) + J(t) +nw(t) (0<t<Tb) (2,2)

and the input to the data demodulator is

‘r(t),p(t) = a(t).p?(t) + J(t).p(t) + n_(t).p(t)

=dn)+.ﬂﬂ.wt)+nﬂthpﬁ) (2.3)
R In (22) and (2.3) J(t) and n(t) represent the .
b 'f‘f}w jamming signal and the additive white Gaussian noise,
. CoLoa : bl
- SO S S ————— T o - et 1 e el —— S
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respectively. The first term of (2.3) may be extracted

virtually intact with a filter of bandwidth 1/T_. The

b

second term will be spread over at least fc Hz as shown in
Figure 2.2. The third term is white noise so the multipli-
cation with p(t) still gives wﬁite noise. The rule is then
followed: multipliktion ONCE by the spread signal spreads
the bandwicth, multiblication TWICLE followed by filtering
recovers the signal bandwidth (4]. Thus the random signal‘

must have very good correlation property to make the desired

signal peak up during the demodulation process.

The channel or the propagating medium of Figure 2.1
can be characterized as additive white Gaussiﬁn noise (AWGN)
vwith or without Rician or Rayleigh fading. In our analysis
we consider the AWGH and Rician fading with RAyleigh fading
as a special case. Thi's type of interference is introduced

in detail in Chapter 3.

2.2.1 PROCESSING GAIN, dAMMING MARGIN [1,3,6]

A fundamental issue of spread spectrum is how this

_technique can protect against interfering signals of

finite power.: The'principle is to force the jammer with a
figed amount of total power to éither spread its power over
the entire bandwidth(or place all its power into a small
fraction of the bana hence leaving the remainder inter-

ference free [1]. In the former case jammer fnduces just a

3

. .
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little interference in “each sub-band of the bandwidth.
while in the later case only a fraction of the band is
highly corrupted and the rest is error free. It is worth
mentioning that against white noise which has "infinite"
’power‘[1] and constant energy the use.of spreading offers no
help at all. However, with a fixed finite power jammér
spreading bandwidth will make the jammer uncertain as to
where the signal would exist in the large space. If the
lgammer transmits noise signal at freguency er the relation-
ship between signal spectrum and jammer spectrum is shown in

" Figure 2.3.

' To measure the amount of interference rejection we
introduce  the term progessing gain Gp' This quantity
represents the advantage gained over the jammer. This gain
is obtained by expanding the bandwidth of the transmitted
signal, If \we define Rb=1/Tb as the information rate and

Rc=1/T»c=fC is the chip rate then the processing gain is

s determined as

“(2.4)

Actually Gp was mentioned before as the number of
chips per information bit Be. Typical processind gain for
spread spectrum systems run from 20dB to 60dB ([7]. In the
des;gn of practical system the proceséing gain is not, by
itself, a measure of how well the system is capable of

performing in a jamming environment [7]. p Therefore we

D T T .
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L4

usually introduce another quantity called jamﬁing margin Mj'

Jamming margin is .defined as the degree of intgrference

"

which a spread spectrum (SS) system can withstand while
Yeceiving a deéired signal and delivering a minimum signal-
to-noise ratio (SNR) at its output [3,5,7]. Jamming margin
is defined in deciBels as

E 1 ]

s P o} .
) - L (2.5)
. . - P N .
X / ‘

0J
where, Eb/NoJ‘;epresents the SNR with Ey the energy -of the

information bit, NOJ is the power spectral density of the

’ P, w0
AWGN and L is the system loss due to other causé;. Typical

system losses - are in the range of 1dB to 3dB [7]. ““Phe

jamming margin can be increased by reducing the SKR through

.the use of coding.. The use of coding in SS system will be

L4

discussed in Chapter 4.

o -
A

~2.2,2. PSEUDO RANDOM SEQUENCEdGENERATOR {1,2,71]

From the definition of the technique .an auxiliary

random seqﬁence is required in order to spread the bandwidth
of the data signal. Unfoftunately,to despread the received

signal the demodulator must have the replica of ,the spread
2 > ! o

sequence in time synchronism. Usually, 1in practice we use
~ ‘
L]

pseudo random or pseudo noise (PN) sequences which satisfy
the following pfoperties f1]

o

» &
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1) easy to operate -
" "2) randomness properties .
3) long period ‘ .

4) difficult to regenerate from a short segment

‘ . -

. The 1linear feedbéck\shiit regigter (LFSR) "shows pro-
perties (1), (5) and’mosg of (2) bhut j%t (4{. Figure 2.4
éhows a LFSR generator, the seguence is formed by taking the
binary 'output from some stages of the shift regi;ters,
moéulo—Z : aading i the oatput in a connection A‘vector
(hg,hy,e.oyh ) and feeding the result back tg the input 'of
the.iregister.‘ -The sequence of bit flowing out of the LFSR
depends on the connecﬁién vector Q\and the initial staf®e

(xd,x1,. .,xmf1) of the registers. The sequence satisfies

the recugrence relation R

i g

| X o= mZhjxi_j - Tgism) (2.6)
.o 31
J ! %01 o= Xm-2 - *m-3 s ERY! '
h, | ‘\
,. j o / ;
/ . - Z mod 2 -
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a

The period N éf the sequence is at most 2f ‘For
spread spectrum, it is desirable to have ma#imhm«perioa {all
binary ﬁ—tuples except the all-zero). To achieve fhe
, m;ximum pe;iod the éenerator depends on the connection
vector h. Let the connection polynomial coresspondipg toh
be given by

m

h(x) = hy + hx + h2x2 boot hox (2.7)4

-u" . If h(x) is a primi;ive polynomial of degree m then

B . ¢ s
the sequences generated by h(x) will have maximuﬁ per}od.

These sequences are called maximal length LFSR (MLLFSR) and

have the following properties: ° !

°

1) Balance property: there are exactly Zm'1—1 Zeros

2m-1

’ A\
" and ones in one period of a maximum length seguence

2) Randomness property: maximum length sequencé has a

well defined satistical distribution for the runs of ones

'

and zeros. In any period, half of the run of consecutive

zeros or ones are of length one, omé-fourth of length two,
. oy

(]

one-eighth of length three, etc.

3) Shift and add property: the modulo-2 adding of an
m-sequence and any of its shifted versions yields another
shifted vervion éf the original sequence. The property is

°

best illustrated by Figure 2.5.
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If we define the +1 sequence x { = 1—2xi, x, = 0,1

1

then the autocorrelation function of x'i is given by [1]°

‘ Z % Xk Xkat
- k=l ¢
(2.8)
) 1 T =0,N,2N,...
Rx'(f) ) {— % otherwise \

If we associate sequence x'(t) to

-sequence p(t) and if we define -

AS

our spreading

1 !

otherwise

' S 1-1tlf Tl + :
q(1) = { ¢ fe (2.9) /
0 i '

with N»>1, then
R (1) jz:q(r - ——J

-

!

(2.10)

Because of the mapplng of (0,1) to (1, —1) we have the

1somorphlsm
[(0,1),+4]) - [(1,“1)13(]

L] 1)
therefore Ck + Ck”<--———> C”k.C k4t

By the shift and add ﬁroperty if Ck

length LFSR sequence so is C Thus by

k k+1"
k.C KT is also a° max1ma1 length sequence.

(2.11)
N §

is a maximal

(2.11) sequence
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Fiqure 2.5: shift and add property of an m sequence.
c, is the original sequence, Ci;k is
a“k-th shifted version of Cy -

(a)

' _ [ |

0 0 0 1 flow out of
1 0 0 0 the generator
1 1 0 0
1 1 1 0

‘ 1 1 1 1
0 1 1 1
1 0 1 "
0 1 0 1
1 0 1 0
1 1 0 n
0 1 1 0
0 0 1 1
1 0 0 |
0 1 0 0
0 0 1 0

c R Ve S :
|
e}
(b)

3

Figure 2:6: (a) Examplefof a four-stage. MLLFSR qenerator,
‘ (b) and its state cycle
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'

Leg us take a simple example of a fouf—stage ﬁFSR
with the connection vector h = (10011). The initial states
of the registers are 0{000) as shown in Figure 2.,6a. The
seguence output is 1000111101... as depicted in Figuren 2.6b.
After doing the mappiﬂg to generate the pseudo noise (PN)
sequence pl(t) and applying (2.10), the autocorrelation
function 1s shown graphically in Figure 2.7a. Ye observe
that Rp(r) is periodic with period (2m-3)/f;. The power

spectrum of p{(t) is [1]

« _ sinnf/f )2
5,(£) = {Zc(f-mfo>} e 3 77 °€ + 326 (6) (2.12)
m=-« ¢
m*0
4

-

where fo = fc/(2m—1). This line spectrum is shown in Figure

2.7b.

If N is large the spectral lines get close together

- .. . - L 1
and it can be viewed as being .continuous and similar to that

of a random binary waveform. Unfortunately, intended jammer )

can observe only 2m-1 consecutive bits in a sequence to be
able to solve for the (m-1) middle coefficients of h and the
initial bits of the registers using Berlekamp-Massey algo-
rithm ([1,7). To further enhance security, the output
sequence from the maximum length (ML) LFSR is not ° used
directly. ~1Instead, the ohtput of two sequences can be
modulo-2 added to give a new sequence. The new sequences,

however, are not maximal. There exists other pseudorandom
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Figure 2.7: (a) Auto-correlation of p(t)

(b) Power spectral density of (pt)
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‘codes such as nonlinear shift register' sequences, composite
‘'sequences and JPL (Jet Propulsion Lab) sequences. 8 FOr the
sake of éimplicityrwe assume that the pseudo;andom sequences
are generated by maximal length LFSR or pseudonoise (PN)

generator.

Y

2.2.3. DIRECT SEQUENCE (DS) OR PSEUDONOISE (PN) MODULATION

A block diagram of a DS spread sprectrum system is
depicted in Figure 2.8. The data modulator could be any one
of a number of standard techniques sudh as PSK, FSK, DPSK
etc.. One of the advantages of DS spread spectrum system is
that coherent demodulation can be applied, thus PSK (phasé-

shift keying) is preferablé,

Data

d(t)

PN Gen.

PN Gen, - - ccccmccscerccccncnnaan

Figure 2.8: Cénceptual block diagram of a DS spread
spectrum system '

-

. :
If binary PSK is used the modulated biphase waveform

‘¢

s



~20-

can be expressed as

§

x(t) = V2P d(t) p(t) cos (w,t+6) (2.13)
where o '
P is thelsignal power
d(t) is the data sequénce (+1,-1)
p(t) is the PN code signal (+1,-1)
wy is the carrier frequency (rad/sec)

® is the carrier phase (rad)

Normally the chip time Tc=1/fC is small compared to
the data bit duration Tb and this difference produces the
sprectral spreading. The optimum receiver may be impleﬁen—
ted either as a filter matched to the waveform x(t) or as a

correlator as illustrated in Figure 2.9 [3]

Matched Samol '
™1 filter [ ™ °ampler
r(t) d(t)
Clock PPN Gen.
e«
Tc' \
— - ﬁ‘)dt ——————=| Sampler je— o0~
rit) 0 d(t)
’ PN | o Clock
Gen.

Figure 2.9: Possible demodulator structures for DS spread
spectrum signal
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Usually each symbol is received in the presence of an
intentional jamming J(t) signal plus additive white Gaussian
noise n (t) of two sided spectral density “NO/Z. The

received signal can be represented as
" %)
. ’ Y

w
0

T(t) = /2P A(E) p(t) cos(ug+d) + J(t) +'n (t) >, (2.14)

o, ’ ¥

[

4

Assume ;he ujammer has an average power JaQ‘ in the
signalqvbandwidth W;fc.u The efféct of despreading is to
tvﬁbtain: the original signal and to multiply the jamming
“signal by the PN code. If the average power pf the jammer‘

‘is J_ then the equivalent broadband noise spectral density

av
iS “ o ~0 ™
»
’ Jav ‘
N s (2.‘15)
< OJ w . R
Yo ‘U( 6 o 'é
N If %he‘ signal has the average power P  then the
'energydper bit will be Eb= p =Ty The effactive SKNR is
5 _ P W
Noo  Bp Yav
.W/Rb ‘ {2.16)
L Javr:P ' ®

~In (2.16) w/Rb is ihe processing gain ané Jav/P is
the jamming margin. In fact the jammer can transmit pulses
of flat noise for a fraction of the time. This tactic can
deteriorate ‘the DS link beéausg it reduces the processing

gain. The jammer strategy will be discussed in Section 2.3.
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. If the processing gain is large we can makegn optimistic

aésumpﬁion that the noise is Gaussian [3,5].

@

o

& 3

2.2.4 FREQUENCY HOPPED SPREAD SPECTRUM SYSTEM

1%
<

Another important sp;ead spectrum modulation techni-
que is frequency hopping. In this system the available
channel bandwidth is subdivided in to a  large number of
contiguous frequency, slots. The selection of freguency of a
synthesizer »is made according to the output from a PN gene-
rator. * The hopping operation may occur séberal times per
symbol (fast hop) or at the symbol rate (slow hop). A block
diagram of an uncoded frequency hopped system and its parti-
cular hop pattern in the time-frequency plane are shown in
Figure 2.10. The data modulation format may be any of a

number of standard techniques but it is usually either

binary or M-ary FSK,

Suppose we have a slow freguency hopped spread
spectrum system, the data signal d(t) is a squence of -1 or

+1 rectangular pulses of duration T This déta signal is

b.
the input to an MFSK modulator and the corresponding output

is

b(t) = cos{2n| f0+d(t)A]t + ¢(t)) (2.17)

where 4 is one-mth the spacing between the M-ary FSK tones.

[ESEUCURISIRRPIRP S T —
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The phase ¢(t) |is introduced to the equation by the FSK
modulator. The MFSK is then frequency hoppeé according to.
the hopping pattern derived from a frequency synthesizer.

The signal from the synthesizer is

g(t) = cos{2nfct + es(t)} (2.18)

) , 95 is generated by the synthesizer, the hopping signai is

s(t) = g(t).b(t)

= cos{2r[ £ + d(t)alt + ¢(t)} cos{2mf _t + es(;)} (2.19)

; - The band pass filter (BPF) in Figure 2.10a removes
unwvanted components present at the output of the multiplier.

" The signal at the output of the filter is [13]

s(t) = V3P cos{2rf(t)t - @(t)} (2.20)

where

f(t) fo + d(t)a + fc

p(t) p(t) + Bs(t)

©

in (2.20) P is the power of the°si§ial at the receiver in
" the ab®ence of fading. In fact, s(t) represented by (2.20)

is an element of the set {si(t)} , i=1,2,...,M, of signals

’ ~ used for conveying information to the receiver. Ve assuhg

N

that all the signals are narrow band waveforms, which are \\

i

limited in‘“the interval 0 < t < Tc . The energy of each
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B

e,

signal is-

b 1 [Te 2 | | '(2 21)
E; =3 A Isi(t)l dt - .

thus the power is ' p

, T :
1 c 2 1
P, = 35 J[ |s. (t) |“dt = =E, (2.22)
i 22: 0 i ’ Tc.l

~The cross-correlation: coefficient between any two

signals is defined as

L3

1 Te * N ‘ .
R = B s,(t)s.(t)dt (i%3) (2.23)
{ 1 ] . f
iJ0
for orthogonal signalling we have R=0. )L,

. € V
The effective SNR ‘may be expressed as

Ey I /R, b “
/P

= 2.24
NoJ ( )

Jav/w Jav

as in the case of direct sequence system. The processing

- gain for a frequency hopped system is W/Rb and the jamming

margin is Jav/P‘ Again, instead of'jamminq continuously the
‘jammer can concentrate all its power only in a fraction of
the band. This sfrategy will ‘be further discussed in

Section 2.3. . N

) 2

In practice, it is very difficult to maintain phase

coherence in the synthegis of the frequencies used. in. the
'ﬁobping pattern and also in the propagation of the signal as

‘it hops over a wide bandwidth. Consequedtly noncoherent

-

S AR, S M e ar e 8 B - ’ n o
Ao s '. ————p——-
[ESUIISRVP N 5 e SRS,

-t
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”

detection is employed in this case. The receiver model for
M-ary orthogonal signal is depiéted in Figure ,2ﬂ11.v The
receiveé signal can be represented as

l w

r(t) = s(t)+n_(£)+J(t)

i

. =/ Acos [27£ (£) +(£) +0(£) ] 4n_(£/43(£)  (2.25)

&

where A 'is the' envelope of the received signal and O (t) is

the phase shift due to propagation. These two- quantities

‘ will“be used in the analysis of the fading medium. J(t) and:

nw(t) are the jamming and noise signais, raspectively.

q 4, \

. ) o«
The - first bandpass filter (BPF) of Figure 2.11 has

~. center frequency approximately fc and’ the baqdwidth
approximatély W, the bandwidth of the transmitted signal.

This is followed by the dehopper which is synchr&hized in

frequency and time to the frequency hopping signal g(t) of

H

(2.18). The second BPF removes unwanted frequencies after
dehopping. The unwanted frequencies could be the double-

frequencdy components and the thermal noise that is outsiae/

the frequency band occupied'bylthe“information signal. The

output of the dehopper is demoduldted using an ordinary MFSK
. X

»

demodulator.

/ ~
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2.3. JAMMING STRATEGY: PARTIAL JAMMER

!

The DS technique can produce highly unstructured
) ’

w

waveform but still there exists a weak 'point. The
transmitted symbols all have equal length in time and occur
with no guard space [5]. A smart jammer can take advantage
of this ,weakness. to efficiently use its 1limited power.

Thus, instead of transmitting continously the jammer can
' X

transmit pulses at a power Jav/A (k<1i, for X percent of
- the time, i.e. the probability that the jammer is
transmitting at a given instant is X ., Now if the jammer

¢ B ' o
has total average power Jav in a signal bandwidth W, the

L

value of the power spectral density for the jamming signal

may be expressed as

N o= 2 (2.26)

-

For partial time jamming with duty cydle A , the
§ . ’
' power spectral density is

]
-

J
_ N . = 2¥ ‘ (2.27)

The effective SNR is

o MRy W (2.28)

NoJ Jav/xw Jav/P

14
A

.

o

j>d
From (2.28) we observe that the processing gain in
N
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4 . ,
partial time Jjamming -equal X percent of the in case of
. continous jamping. The bit error probability can be written

as [%6]

T : B, Ep o
' Ppo= AP ( gy )+ (-0 PO ) (2.29)
oJ o© (o]

’

where Nw is the power spectral density of the white Gaussian
noise. Assuming that when the jammer is active, the

contribution of Nw is negligible, we have

E )\W/Rb
b
Py = AP( g— ) = AP( 55 ) p (2.30)
b Nog . Jav/? .
. N R
, “

~We assume that when the jammer is on, the demodula-

tion output statistic ié Gaussian, the errorcprobability is

given by [3,5]

>

1
/By VR 2
P( ) = QI 2 =—= 7]
Jav7P ' JaV/P
* Thus
. 1
B— MW/Ry 2 (2.31)

. Pb=)\Q[(23-a—‘;7§'—)]

~

Pb of (2.31) is shown graphically in Figure 2.12 for
several values of. A . We observe thét smaller the fraction
becomes the more signal energy we have to put in to get a
desired bit error ratg. In fact, the jammer can sglect A to

maximize Pb in (2.31). This is found to be (5]

‘0‘0083Jav

P = (2.32)

b,wcC w/Rb

The worst cése (wc) is shown in dotted line of Figure 2.12.
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¢
. N In case of freguency hopping technique the weak point

lies in term of frequency., So instead of jamming the whole

I 03
band the jammer gathers all its energy within the fraction A

of the available bandwidth as illustrated in Figure 2.13.
i Thus the signal will be jammed with probabilty X and will
,a be free of error with probability (1-A). If the modulation
3b1 is binary FSK with noncoherent detection and under the same
;3“, ' condition as in the DS case,the average bit error rate is
s Q y .
o, I R Sy | (2.33)
) . D 2 FOJ
) " where E P W
e . Ng B Tay
\Lm} . W/R,
< ' Uﬁder partial band jammer we have N03 = JaV/Aw, therefore
i b‘ o , ?
k P = % exp[-(AW/Rb)/(Jav/Pn (2.34)
?ﬁ’ . f &
r ) .The curves of P with different values of X are
) shoﬁﬁiin Figsre 2.14, The dotted line indicates the worst
case ‘when the j;mmer is able to find a value of X that
mafimizes Pb of (2.34). The average bit error rate of the
s worst case is found as [3,5]
. | ) - ‘ » p = Tay/" (2.35)
. ‘ b,wc TW7§ET€ .

- ‘ / As“indicated before, for each type of spread spectrum'

techniques there is a type of jammer that can severely

P 4

e e ——— vy} S e St s o o
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damage the detection performance. The performance can be
restored if error correcting codes are employedf This will
be shown in Chapter 4. ‘The analysis can be carried out for
each type separately. Fortunately, the analysis is based on
the SNR and from (2.28) and (2.34) we observe that the
effective SNR of a DS system is the same as that of a FH
system. However the coherent detection used in a DS-PS3K
will give at least 3dB advantage over a FH-FSK noncoherent
system [4]. So we can do the analysis for either type of
modulation and the results can be applied as well to the
other type [4]. As aforementioned,we will concentrate on
the frequency hopped FSK technique with noncoherent

detection.

2.4, COMPARISION BETWEEN Dé AND FH SPREAD SPECTRUM SYSTEMS

g
/

Both technigues have advantage over the jammer
because of‘the processing gain which depends directly on the
spread bandwidth. With respect to the processing gain the

advantage 1is in favor of the frequency hop approach. For
4

the DS sytem the spread bandwidth is limited to the rate of -

the PN seguence., This in turn, is limiteqﬂby the coherent

bandwidth, as determined by the particular mode of transmis-

sion and system components. On the other hané, FH system
.

has no such restrictions [10].

Partial band jammer for FH/SS is analogous to partial

A g a—— o —— iV v
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time jammer for DS/SS. The pulse jammer trades off peak
power versus duty cycle in an analogous way to a partial

band jammer. However, the design of a pulse jammer encoun-

. ters more restrictions than a partial band jammer does.

Therefore, a: partial band jammer corrupting the Fil system
represents a greater vulnerability because of the relative

ease with which it can be implemented [5,16].

Another basis for comparing the two techniques is the.
SNR neq?ssary to maintain é'given bit error rate. Typically,
PSK/coherent’ is wused in DS system while FSK/noncoherent
detection is uéed in FH system. The performance of coherent
PSK 1is known to be better than the noncoherent FSK, about
3dB at a 10~4 error rate (4,10]. The loss in FH/MFSK is due
to combining loss. Therefore, with respect to the SKR

performance, DS has an advantage over FH systen.
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CHAPTER 3 ' ‘

v

ERROR '‘PROBABILITIES FOR SLOW FREQUENCY HOPPED SPREAD-
) 5.
'SPECTRUM COMMUNICATIONS OVER NON-SEL[U:E.CTIVE FADING CHANNEL

v <

3.1. INTRODUCTION

b

The use of natural medium for communications implies
unavoidable involveégnt-with the random changeability which
often accompanie;‘the natural phenomena. Because of this
natural phgnomena for:some channels neither the amplitude

«

nor the 'phase can be assumed to remain constant over a
significant number of bit traqsmissions. In AQr analysis we
assume that the transmitted signal passes through a linear
medium which fades in a frequency-nonselective way. That
is, the whole band of fregquencies occupied by the signals is
acted on uniformly by the medium. There is no probability of
simultaneous contructive interference at one frequency and
destructive interference at another,. In other words, if
there is more than one transmission path , the difference of

delays of any pair of paths must be less than the reciprocal

of the bandwidth of the signal [1,2,6,11,12].

In . this chapter we will determine the system

%

performance based on the evaluation of the system error
probability. The modulation 1is frequency hopped M-ary

fréquency shift keying (FH-MFSK). The channel considered is
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-«
modelled as Rician fading channel consisting of a direct

path and a random path. The jammer is partial band additive
white Gaussian noise Jjammer. The graphical results
presented in Section 3.4 show a serious penalty in signal-

to-noise ratio as a consequence of fading and jamming. *

3.2. CHANNEL CHARACTERISTIC

v The characteristic of a fading channel can be best
described by indicating what happens to a signal that passes
thf%ugh it. From Chépter 2 tﬁe transmitted signal given by
(2.19) is

s(t) = /2P cos{2mf(t)t -e(t)}

L
1

which can be rewritten in exponential form as

s(t) = Re [/ﬁ exp{jl2mrf(t)t -e(t)] }] (3.1)

and the received signal can be represented as

3(t) = Re [/ﬁ\A exp{jl2mE(t)t - o(t) - O(t) }] (3.2)

-

.which is the exponential form of (2.23). Quantity A in
(3.2) 1is the envelope and O is the phase shift due to
fading; Thus the non-selective fading "medium is

characterized by‘two guantities: A, the strength and O, the
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phase shift. ’'These quantities are random and consequently
must be described by the probability densjty functions. If
we assume that the amount of fading does not éhange

appreciably for the duration of the transmitted .signal, we

can describe it by the joint distribution £(A,8) [11,12,14])

Let Q be the result of the addition modulo-2m of ©(t)
and ¢. If Of(t) ané ¢ are uniformly distributed over [0,27]
then under a general condition @ is also uniformly
distributed over the interval [0,27]. We assume that the
propagation moaes are mutually and statistically independent
’io the additive white Gaussian noise nw(t). The output of

the fading channel may be broken up into two components:

a fixed component and a random component. That is

!

s{(t) = /2P [a exp(-38) + B exp(-3e)] - exp(j2rf(t)t) (3.3)

a and & are strength and phase shift of the fixed component
respectively while B and € are the same guantities for the
random components. Fiqure 3.1 depicts vectorially the

relationship among the quantities A,Q ,a ,46 ,8 and ¢ [11].

We postulate

B B2 o <
2 exp R -
f(B,C) = 2”0 [ 20 :] {O‘C‘E < 21‘} (3.4)
0 : otherwise

B and ¢ are independent random variables, the first obeys
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Figure 3.1: Relationship among strengths and phase shifts
of a fading channel . '

the ' Rayleigh density distributioh with . zero mean .3nd
variance . 2¢° ? The second obeys thé,uniform distrihution
over the interval [O,ER]. The joint distribution of the
strength and phase of the sum of the fixed component (e, &)

and the random component (8,e) is [11,13,14, Appendix Aa]

A A2+a2-2Aacos(Q-6)4
. 2wl exp [- 20¢ - :
£(a,Q) = ‘ “{0 <A } (3.5)
. 0 ¢ Q-6 ¢ 2=
0 e otherwise

The marginal distribution of strength A is

2
0

A A2 442 aA o -
a7 e (- To7) I,(G7) (Ochdm)

£(A) = p(A,0)de

0 . . otherwise {3.6)
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where IO is the Bessel function of the first kind of order

© '

In summary, A 1is the strength of the fixed or
specilar component and 20° is the r.m.s. strength of~the‘
random or scatter component,, . If the average péﬁer P is
transmitted then the average power received is (o’ + 20%)P
[14). For convenience we define Y’= a?/20° as the ratio of
th; average power received vié the fixed component to the
average power received via the random component. As speci;i”
cases, we obtain a nonfading:channel when a° = 0 or y?

approachinfinity 0.1_' a Rayleigh fading channel when al= 0

or y° approaches zero (see Appendix B).

3.3. ERROR PROBABILITY FOR FH/MFSK IN THE PRESENCE OF
\PARTIAL BAND JAMMER AND FADING

& -

First we will determine the probability of error in a
2
conventional MFSK system and based on this knowledge we will

find the probability of error for FH/MFSK in the presencé of

partial band jammer and fading.

\

Recall the block diagram of the conventional MFSK
shown in the second part of the éiagram of Figure 2.11.
Matched filters are located at each of the M frequencies.

- .
The output of the filters are fed to the envelope detectors

and all M envelopes are sampled at the end of the symbol N

¢

N
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9

.period. Without loss of generality, let us assume that the

4 . .
symbol is transmitted on frequency f1. The instantenous SNR

g ’ at the peak of the filter is denoted as c. The pdf of'tﬁe
¥ normalized enve;ope sample belonging ton frequency f1 is
- 0,21 ’
. at + 2c . ) :
. f(a;) = a; exp (- ———————)I (a1/2c) (3.7)

.
(A

the output of the other (M-1) filter has the‘distributioq

- a; a; > 0% (3.8)
) . f(ai) = a, exp (- —7) i1 N
since aj i=2,3,...,M, are statistically independent and

identically distributed, the joint prob:bility conditioned

on a, is . .

. 1 b . < . ] ~
Pr(a <;h a,<a a,.<a, | a = [Pr(a ca, | a,) M-1 (3 ;7'
284183 @ rererdy [ 2g = 221 1 2 .
but _ -
M .
' al 52»
Pr(azéallal) i/ﬂ 2 exp ( -5 ) da
o % A ' .
' a? | (3.10)
\ ' , 1
- ' = 1 - expl -TFu)
<

Hence the correct signal-is selected w1th,bhe probability

e - f; [1-exp(- ——)JM 1 play) aa,
w  MTL jaz ag+2c ,
= jb ,Z (-1)3 (M )exp(- 1)'aI-exp(— % )
j=0 2

Io(alli_c-) da,

(3.11)

F.4
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P
.

Using (6.631-4) of [9] we get

M-1 .
= . j M-1, ex (-c . )
Pe = L, 07NN SEES expigin (3.12)

\ R ~ - .
+, The probability of selecting a wrong signal will be
* "

“ - PM=1-P ‘

. c
? ¥
' . M-1 3 1
“ =l - Jz (-1) ( ) Ff exp[( _J_j‘f'l)CJ
. after some manipulation we get . ..
. M.\ : .
) : l 3 M .
S : =§ £ (—l)J(j)exp[ (J+l)c] . (3.13)

* A ,
L J ' . ( . o
' ) Equation (3.13) represents the probability for M-ary

orthbgonal signals “in an AWGﬁ'channel Qiﬁh non qnherént
* °g , R ' o ° .
detection. In case the signal also experiences fading the

. frequency h&bped signal can be expressed as

-
\ .

L .E(t)/= /2P A exp{jlfv?ik_t)t - p(t) - 0l } (3.14)
, ' ‘ )

where A is the envelope of the signal that fades ‘acegrding

to the Rice distribution. In addition, the signal is

degfaaed by éhe noise jammér with average power *Jav' As

mentioned .in Chapter 2, the noise jammer concéntrates his

4

, ~ . . . ,
’ %hérgy within a fraction X of the available frequency slots.

. That

.

ig, Wwith probability A a symbol is received in the

L]

*

‘1
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presence of ‘white Gaussian noise of one sided spectral

_density NOJ'

with AWGN of one sided spéctral density N Thus when the

00

jammer is on we get i

E Vo
T N_ - iz N———Eb-'-N ~ (3-15)
oleff oJ o

. N \ .
assuming the power of jammer is much higher than NO we can .

rewrite (3.15) as
. .
T

o

eff NoJ © //

Since the detection is noncoherent the phase in the
signal of (3.14) can be ignored in the analysis. With A
being the sum of the fixed and random componehts, A2 is the’

output of the square;law_envelope detector. Let p be the

normalized bit ernergy to noise density,fatio so that A%J is

the actual received energy to_noi;e density ratio [13]. We

define:

A = E[A%p| interference is present]

E E

N g T/ ¥

-

.as the ratio of average energy per symbol Es to the noise

7

depsify. We have already stated
1 .}“J

, 2 2.2
fA(a) = 2-exp(-a 21 (2%

. ag? 202 9 g2

With probability (1-) ) a symbol is received

-8 .S o O (3an

s
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Thus
. / N
t E ’
= S _ = 2 2 (3.18)
A )\m ( a“+20 )O
av
-

for a Rician fading channel.
. i

The conditional probability that A=a given that the

interference is present is

v .

-] w M ' N < '
PI =j PM(a) fA(a) da = (z: PI_(a)) da (3.19)
0 0

j=1 j

where fA(a) and PN(a) are given by (3.6) and (3.13)
respectively; with ¢ of (3,13) being replaced by a% .
The integration of (3.19) can be evaluated by using

term by term integration with each term being represented by

- ] . 2 2 2
P =[ exp(-lﬂ'— a?p)d-exp(-2 ta )Io(ﬂ) (3.20)
Ij 0 J o? 202 g?

again we use (6.631-4) of.[9]) and after some nanipulation we

obtain
M 3
U -371)6
1l M 3 1 [- (1 ]
= 3 Y (-1) exp —
1T H j£2 FJ 1+(1-371)8 1+(1-3 lyg~ (3.21)
Qhere .
B = 20%p
6 = uzp - 3

-
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i

a’
20

average ' energy received via fixed component to the average

Ffnally, for convenience we define Y= ;as the ratio of the

energy received via random ccmponent. The average of a
\

symbol error is Pszsz which can be represented in term of

I
2

y* and A, we get
M . )
p, =& 1 (03 2 .
1=2 T2+ (1370 (3.22)
. 2(1-3-1
exp[- Y1=3—)A ]

(y241)+(1-371)a
For M=2, we get the probability of bit error for BPSK as

given in (1), {13] and [14].

Let o0%=0,i.e.qs ‘there is no random component in the

received signal. Then' Y’ = = and A=a’p . The resulting

proQability of error is

i

= A
Ps M

Ui 4

(=103 Myexpl(~ 132 a2 )3 (3.23)
=2 J J

J
which, in fact, is the expression for an AWGN channel with
partial band jamming and no fading. 1If a=0 we get A = 2070

and

M
_ ) RS I A 1
Ps ™ W :Z: (=107 (3 -1 (3.24)
j=2 : [1+(1-3 7)20%p)

"

which is the probability of error for a channel with partial

band noise and Rayleigh fading.

* If we wish to show the existence of the spread

spectrum parameters in the above expressions, we just have




.

to replace A ‘by

¢ -
a . W
A= /Rb 1 (?.25)
. JaV/P logzM

since
E
- s
v o= 3 = =, Plo M F
E, = bit energy Tog M { g,M)/ Y
Fof binary case, we havérfb ; ES.
N : ) .

%

A smart ja;mqr can select A such“that Ps of (3.22),
(3.23) and (3.24) é;e maximized. In case of Rayle{;h
fading, vthe first and second order differentiations - show
that the optimal value of X that maximize i3.24) is unity.
That is for Rayleigh fading channel uniform jamming (A=1) is
the best strategy. = 1In case qf Rician fading, for the sake
of simplicity, we let M=2. Doing the mathematical analyses
we found that the optimal value of in this case is

2(y?+1)

A = ) B
(-1 s , " (3.26)
od o
provided o < Eg C 20y%41) ‘ (3.27)
—~— N —-— !

. ' oJ (y2-1)

Substituting of (3.26) into (3.22) with M=2 we get

_ (YZH)e"1

. s T ., (3.28)

NoJ

The mathematical manipulation for higher signal

alphabet (M>2) is not always feasible. However, this can be

¥

Sthan s e
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done graphically as we will demonstrate in the next section.
14
Optimum Jjamming is also known as worst case Jjamming 1in o

literature.

3.4 GRAPHICAL ANALYSES

In this section we show some curves of - the
probability of error in both cases éf fading. Figures 3.2 to
3.4 show the curves of ‘Rayleigh fading channel for M=2,4,16
respectively. Different curves are obtained in each figure

according to different values of X . We note that as the

+

signal alphabet increases the signal to noise ratio (SIR)
¢

regquired to achieve a given bit error rate decreases as

erxplained by (3.25). However, to get a 1073

8

bit error rate
we must have more than 40dB in SHR if FH/BFSK is usea. The
situation does not improve very much if the number of the
availaéle transmitted frequency is increased. The improve-

ment 1s in the order of 5dB if 4-ary FSK is used, if 16-ary

SMFSY¥ is employed the improvement is about 104B. Even though

the increasing of the available frequency gives some power
gain the wuse of M-ary FSK with frequency hopping in a
Rayleigh fading and partial band jamming channel does not
look very attractive. There exists a platform in b{t error

such that increasing in SNR does not further improve ' the

performance. Furthermore, by looking at the curves, the
‘Jammer causes worst performance when A=1 (uniforw jamumer).
This agrees with the mathematical result shown before. So

{
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'with Rayleigh fading 3jammer does not have to build
complicated jamming devices to make the channel performs

poorly.

Figures 3.5 to 3.9 show the performance of FH/MFSK
in a Rician fading channel with partial band 3jamming. The
advantage of this channel is the parameter v? which 1is. the
ratio of the fixed signal component over the random

component. As Y?increases the performance of FH/MFSK gets

/
r

better because the fixed signal component becomes a dominant
term, making the channel more reliable. 1In this type of
fading, the platform on the bit error rate does exist with
low value of 2 . For large v? the platform aisappears but
if the jammer interferes with only a small fraction of the
band, the transmitter still has to pay higher cost in SHNR.to
have a reliable link. If the jammer is smart, it can find
a value of )} that can maximize the error rate. It is shown
by {(3.26) that this value is a function of v? and the SNR.
The bit error rate for the worst case jamming is given by
(3.28) as long as the SNR satisfies the condition of (3.27).
If (3.27) no longer hold, uniform interference will cause
worst case jamming., The worst case performance for FH/BFSK
is depicted in Figure 3.5 by a dotted line. This line is
tangential to the other curves of different values of X .
So the worst case performance for higher signal alphabet
(M>2) can be found graéhically. In chapter 4. and 5, we will
show how the use of error control coding can entirely

eliminate the loss in SNR in fading and jamming channel.
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Figure 3.4: Performance of FH/16-ary FSK in partial band
jamming and Rayleigh fading
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jamming and Rician fading,, v2=24dB
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worst case
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CHAPTER 4

PERFO‘RMANCE OF CODED SPREAD SPECTRUM
SYSTEM BASED. ON THE CUT OFF RATE Ro

N

4.1 INTRODUCTION

In 1948 Claude Shannon wrote [45] :

»

"The fundamental problem of communication is that of
reproducing at one point either exactly or approximately a

message selected at another point."

‘To solve the problem Shannon created a new branch of
‘applied mathematics called information theory and coding.
‘The information theory formulates the bésic problem of re-
liable transmission in statisical terms‘using probabilistic
model forl;nformation sources and channe}s. The source is
modelled as a random generator of data or stochastic signal
to be transmitted. The éourcé encoder showﬁ in Figure 4.1
converts analog signal into a seguence of binary digits. If
the source 1is digital in nature, there is no need for a
source encoder. The second block of Figure 4.1 1is the
channel encoder and is of interest to us. Shannon proved
that in order to reduce errors‘one must find how to code the

information signal rather than increasing the signal-to-

fnoise ratio {SNR). That is one should code long seguences

-

%
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”
-

of bits into a channel, input sequence so that each bit of

!

information is spread thinly over the channel used ' [45].

«

Source Source Channel \ , Channel Source
= -] — e 1 - o] :
—#>1 Encode Encoder Channel Decoder Decoder
1
a .
Input Output
digital digital
sequence sequence

!

’

Figure 4.1: Basic model of a digital communication system
The idea was releJtionary'at the time the paper was
publisﬁed and nét everybody agreed with Shannon. As tech-
nology ' progressed, thi‘idea became obvious-énd t’:he problem:
was to Afind ways to code information sequences. Tﬁe
encoding scheme would give minimum error rate and should be
i&;iementable. There are different ways to encode informa-
tion signals but we can group them into block codes and

convolutional codes. The error performance of specific

coded signals can be evaluated using the uypper bounds.

" a

However, these bounds cannotgbe calculated easily unless one

W

has a powerful computer. Thus one relies on a so called
random coding gouﬁd. The basis of this technique is:‘given
tﬁat the calculation of the error probabilities for a parti-
cular set of Zk code words of lengtB n is not feasible,
consider instead the average er;or probability -over the

ensemble of all possible sets of Zk signals of code rate r.-

This turns out‘to be amazingly simple to calculate [46].

¥

Receiver #
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In. this chaptef we will, define some fundamental

terms used in coding theory; ¢+ The concepts of block coding
‘-

and convolutional coding will be introduced next. Finally,'

the .performance of coded FH/MFSK based on _the average
ensemble performance analysis will presented. Recent

research works will also be summarized in this chapter.

o

o

4.2 FUNDAMENTAL DEFINITIONS

‘Let C.be an (n,k) code then the Hamming weight of a
[} w

codeword yéiq , denoted wH(g) defined to be the number of
. st A
nonzero components of v. Let A Dbe the number of codewords

of‘height»i in C. The number A0,1A1, Az,“:., An are called

weight distribution of C [7,8,18].

The Hamming distance, dH'

and v - is the number of'éositions in which they differ,

clearly ‘ ' [

dH(E'X) = WHCE+KX, (4:1)

* .

. That is, the ,Hamming distance between u and v equals

the Hamming weight of the sum of u+v. The minimum distance

d_ is defined as - -
m . ¢ . & &

o .
d, = min{d,(u,v); uw,v€C, uwhv} . N

- 9

AN

between two codewords u

\

T e
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3 d;n = min{wé(g_;!‘);’ E,XCC,“B}‘X) :
v' ) N N ‘

-
v
o

' 0

Stnce yand v are codewords of a linear code, then

the sum x=u+v is also a codéword in the same set.. Thus the

p .
minimum distance of -a linear block code is equal to the

-
o

ﬂinimum weight of its non zero codeword {7,8,18].

. . Usuaily after .a message sequence 1is encoded, its
&

biﬁary ‘‘digits from .the encoder are fed into a modulator,

which maps each bit into an elementary signal waveform. At

q@ the réceivipg%end the modulator may be viewed as a filter

¢

matched to the signal waveform corresponding to each trans-
. .

mitted bit. Tné sampled output of the demodulator may or

may hot be quan%iied. If binary gquantization is used, we

©

say that a hard decision has been made on each bit (19].
- b )

The sequence ‘detected begome input to the decoder, which

takes the detected. bits and attempts to recover the informa-

’ ) *

tion sequence. Sinte the decoder operates on phe' hard

1
L

decisions made by the demodulator, the decodinq'process is

*

called hard-decision decoding [3,19].

<
' -
' - " s . N}

Te
b 3

. . R
.
. o

With coding, ¥t is desirable tg keep an indication

" of how reliable théfdecision‘is.ﬂ A soft-aegision decoder

takes the analgg’ (unquantized) outputs from the Wemodulator
B N . . (i ‘ . >

‘and computes'a “@onfidence" number [19] which specifies how

far, from “the’ declsiant_th;eshold“ the , demodulator is.

4 . : . e

kN
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, However, jt is gquite ,complex tojoperate with the ungquantized

values. ‘Most  ‘tommonly the three-bit gquantization -is
- ' employed_in a.soft-decision decoder.. .
l‘ - )
. , .
) . o .

4.3 CODING TECHNIQUES

3

4.3.17 LINEAR BLOCK CODES ..
- —

*

D

. 4+ . _ .
I% block coding scheme, the binary information bit

- w»

segueﬁcg is p-rtioned into block of k bits. Each such'blogk‘

n . is’ mapped into an n—bft codeword (n>k}~ \Ehhs every n-bit
. “« transmitted coﬁtains»dnly,k information bit;. The code rate
is defined as r=k/é1 (7,181]. . - f | :
| B . | . .
. ' Let u, a k-tuple, represent information bit and v, a
* n-tuple;‘ représent a codeword.. '1The relationship between u
and v is . \ ' : . /.

N b
-(:& ‘ T
- < N t

s ‘. ~_ v ="u.G S /| (4.3) /

I3
N -

. . [
; . N " . —

,where G 1is ‘the (n x k) generator matrix and is° represented

. as ) ¢
Y ot )' _ - ’/' r
! - e ie
‘ G F 1% 912 9313 - 9
. 9, 921 922 923 - 9p ‘
: “ (4:4)
. G = 231 = | 931 932 933 - Yin '
. L ' v : L. . . . d
. / : 1. 0 o
A , N ' . "
+ ° ./ - y g Jg g .. g[ "
. : " k1 Sk2, 93 kn v
. . L L J r
¢ ri
. »
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The number of information bit is k, thus the total

number of distindt codewords is 2k. The requirement to get

k codewords 1s equivalent to the requirement that k rows of

G be linear independent [7,18]%

'

. .
~

An 1important subclass of linear codes 1s the class
.- A

B «

N ~ » .
of cyclict codes. They are attractive because the encoding

part can be implemented easily by,emp}oyingfshift .registers .

with fégdbaCK connections [33,34]. Secondly, because they

q?ve good algebraic structure 1t 1s p0551ble to find prac-

tical decoding method.® An (n,k) linear code C1s called a

. cyclic code 1f every cyclic shift of a codeword in C is

® L}

also a codeword in C‘f§,18].

s

.

"It 1s shown elsewhere [(7,18) "that the .generator
polynomial g(x) of an (n,k) c§cl{c code is a polynomial of

degree (n-k) and 1s a factor of '(x"+1).: The éenerator|matr1x
) [

G' of an (n,k) cyclic code C generated by é(x)=go+g1x¢..q+
n-k ‘ ' ‘ '

-
9.-kX can be expressed as ] ﬂ
- . . -
9% 91 92 93" % -k 0o - 0 0 0 0 O
‘ 0o 0 0
0 95 9 92 -+ %kl Fnx 00
0 0 '9; 9; 9 -+ 9p-k-1 %n-k0 0O O O
. e e - . . .
N . . oo - . .
- - . - - lc -
0 @ 0 0 0 gy - . S
I 5 “ ' : e

o ’ . I /
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The encoding circuit is shown in‘Figure 4.2. All
register contents are initiated to zero and the gate is a
switch which is open (OFF) when parity bits are shifting bbt
from the encoder.
|

ate

message inputr Kt
‘ coded

o sequence

Figure 4.2: Encoder circuit for an (n,k) cyclic code

n-kxn-k

with generator g(x)=1+g1x+...+g
< ° A
' Let 'a be the codeword sent and r be the received

wora. The received word r can be represented in the form of

a bolynomial of degree (n-1) or less

Al

r(x):= Tyo+ LX 4 rzx%c...+rn_1xn-1' ' 54.6)

\ -

Dividing ri(x) by the generator polynomial g(x), we

obtain B}
‘rix) = a(x) g(x) + s(x) (4.7)
"
Thus s(x) 1is the remainder of degree (n-k-1) or
.
less. s(x) is identical to zero only if the received

polynomial ri{(x) is the code polynomial or r 1s a codeworc.

{
\

»
\ 4
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s(x) 1is better known as the syndrome polynomial and has .an

important position in the decoding process.

Let v(x) be the code polynomial and e(x) be the
error polynomial of degree (n-1) or less. The received

polynomial r(x) is
r(x) = vix) + e(x) ' (4.8)

from (4.7), we have

r(x)= v(x) + e(x) = alx) g(x) + s(x)
Thus - e(x)= [a(x)+b(x)]lg(x) + s(x) (4.9)
where b(x)g(x) = W(x). This shows that s(x) is the remain-
der 1in dividing e{(x) by g(x).’ The syndrome, can be

calculated from the reEelved word by using (4.7), the error
e{x) 1s unknown to the decoder. Therefore, e(x) must be

estimated based on the syndrome. 6 Syndrome computation is

>

well documented in [18].

Some commonly used codes are cyclic codes. They
include the Hamming codes, the Bose-Chaudhuri-Hocquenghem
(BCH) codes, the Golay codes and the Reed-Solomon (RS) codes
{7,18,191]. Their algebraic structures are well defined and

v

can be found in any book on coding theory [(7,8,32].

. ¢

TN



4,3.2 COMVOLUTIONAL CODES

Unlike bléck codes, the convolutional coces do not
break the info;mation into blocks and handle thgm
independently . The convolutional code associates a cgde

equence with an information seduence (32). The encoding
rocess is as follows: the givenlinformation sequence. is
onen into k-symbol blpcks, the blocks are then wused to

pecify the paths in a tree as shown in Figure 4.3

L

00

|

11 . ,

|

. 00

|

11

|

0l [

11

0l
branch 10 A

[+]
—d NOde

1 00

00 —

11

Vo 11

10

10

Figure 4.3: A section of a binary tree of a
" convolutional cocde ¥

\ -
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The first block_of the information sequence is used -

to specify one of the b;;nches of the first node according
to some prearranged convention., Tge Fecond block Qill
choose the branch at the second node and so on. In this way
a single path is traced through the tree. The n;tuples‘
associated with each branch in the path form the code. As
in case of block codes, encoder for convolutional codes can
be 1mplemented using shift registers. In general, the shift
register consists of L(k-bit) stages and n linear algebraic
functio~ generators as shown in Figure 4.4. The binary data
is shifted into and along the shift register k bits at a
time and the output is a sequence of n bits. The code rate

1s defined as r=k/n and L is called the cbnstrainp length of

the code. : : ‘
wt

} L (k-bit) shift register |

—_—)

info.
sequence

N
w
.
L ]
L]
x
b
~

L n=bit code

Figure 4.4: A general convolutional encoder

# ~

Unlike block coddes several distance measures have

£
been proposed for convolutional codes. Let u=(u,,u,,...)

. L Y
and x=(v1,v2,...) be two input information sequences, and
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let x and y be the corresponding codewords. The Hamming
distance d(u'v)(n3 between two codewords of length n, x and
§

Yy , 1is equal to the nuhber of positions where x and y

differ [7). That 1is

' (u,v) _ ; - (4.;0)
d (n) dHTXn’l ) o= owx Ly )
@
where !dH and Wi denote the Hamming distance and weight,
respectively. |

\
- !

The n-th order column distance function dc(n)ié

¢

defined as the minimum Hamming distance between all pairs of

- codewords of length n branches which differ in their first

branch of the code tree [7]. It is given by \

dc(n) = min dH(En,y_n) )_c_l#y_l (4.11)
u, #v
-1"-1
Two particuliar values of dc(n) of special

’
interest are the minimum distance dm and the free distance df

which are defined as

dm = dc(L) . L: coqftraint length (4.12)
d. = lim-d _(n) . . (4.13)
£ n+0 °©

In general, dm<df but for many codes we have df=dm.

The minimum distance and the free distance are the

" parameters used in determining. the performance of"
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convolutional codes.

The optimal decoding operation for convelutional
codes requires a memory that séores a function of the entire
paét history of the received bit stream. The performance of
a cogvolutional coding system improves as the memory for the
decoder 1s 1ncreased. Several methods of decoding
convolutional codes have been developed. The optimal scheme
1s generally known as the Viterbi algorithnm. Other
. approaches are the sequential decoding and the threshold
decoding. In this thesis we consider only Viterbi algorithm
because the constraint length of the analyzed codes are
reasonably short. Detail description of the above de;oding

algorlthm may Se found in (5,7,18,32,46].

4.4 ENSEMBLE AVERAGE ERROé PROBABILITY

4.4.1 - SOME BACKGROUND

Usually when choosing a code for a communication
link we face the problem of choosing code iength,‘ code rate
and various different parameters. It would be time
consuming. if we take evefy,single existing code and then
apply to the system to g%t the minimum bit error fate. Thu%
it would be a "good idea go investigate the ) minimum

achievable probability of decoding error as a function of

the code rate r of an ensemble of codes rather than just one
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1

good code. Each code in the ensemble has its own Qrobabili—
ty of decoding error. Since at least one <code in the
Iensemble must have an error probability as small as the
ensembie average, this will give us an upper bound on the
‘ /probability of error for the bgst code, 1i.e., the code with

minimum Pé (8,47].

L4
L4

Consider a ldiscrete'memoryless cﬁannel (DMC) with
transition probability p(y|x) and an ensemble of (n,k,d)
block codes in which each bit of each codewo;d is
independently lselected with probabiliﬁy assignment Q(x).
The ensemble average probability o%)}decodipg error 1is

bounded by

B < 2lMlEg(e.) - 0t 1) (4.14)

e

. where

' 1 1
g (@) * -log, ) Z‘“i’wzlzs)“pf Lo
p x€d

¢ is arbitrary and 0<p{1 [47]. 4 and A.are input and ocutput
alphabets respectively. Since p and Q are arbitrary in
(4.14) we get the tightest bound by choosing p and Q to
maximize EO(Q,Q)—pr. This leads us to define the random

[

coding exponent ER(r)by

4

ER(r) = max max|[E (p,Q) ~ pr] (4.15)
0ol @ °
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c) Of special ipterest is the cut off rate, Ry, which

1s defined as

R_ = max [E_(1,Q) ' (4.16)
0 o :
Q )
R is the largest rate at which practical "'coding

0

system can be implemented. Thus the upper bound of the .

average ensemble probability of efror in term of RO is

o< 2-{n(Ro-r)} ) } (4.17)
, € =
Following the same argument as Gallger's Viterbi
¢ +
(4,46) derived the average ensemble probability of error for

convolutional code as

_LBO
P 2 _* (4.18)
P < - .
e = -~ _(Ro_q )12
- ey :

The performance\of"codgd systems depend strongly on
the value of Ro which is the function of the symbol energy
to noise ratio. For the’ DMC with equally likely inputs the

calculation is straight forward. In particular, for the BSC

with transition probability p and Q(1)=Q(0)=1/2, (4.16)

yields.

o

Ro =1 - 1092[1 + 2/ p(1-p) ) (4.19)

So, 'in general, cut off rate can be expressed as

t
f

N
R, = 1092M - logzll + (M-1)D) (4.20)

ra)




" .an intentional jammer. The jammer interferes for only a
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6

where M is the signal alphabet and D is a parameter which is

determined by the channel .used. In the next section we will
show that the performanCe of a spread spectrum system can be

improved by using coding. The performance is based on the

cut off rate Ro and frbm the curves of the cut. off rate

versus signal-to-noise ratio we can see what code rate we

should use to obtain best communication ‘link.

-

"4.4.2- PERFORMANCE OF CODED SPREAD SPECTRUM BASED ON THE CUT

OFF RATE Ro ' o

Let x be the transmitted signal and y be the
receivea signal, then
y =X +n

J <
where n’is the Gaussian noise introduced .to the channel by

~

fraction X of the time. During this time the jammer one

sided noise density level is No If the decoder operates

I

on the quantized output from the demodulator and has infor-

matiofi on the jamming state, the cut off rate is given as

(4]

R, =1- log,[1l + exp{- XEC/NO}] (4.21)

\

provided DS-BPSK is applied.at the transmitted end and

E_czr_EE:rw/lzb
‘N N J__]P <

o

o .
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Rewriting (4.21) in term of E/N_; we have:

E 1- . )
b _ e g2 =2t ~Ro- 1 : (4.22)
No © AR A
o
where
7 R
a= -2 < 1
r

The aim of the jammer is to maximize (4.22). Usinb

the differentation method the optimal. duty ' factor A s

found as

. A= (2 %lje - o (4,23)

provided 0<A<1, hence Ro>1-logz(1+e'1)=0,548. If Ro<0.548 '

)

A=1 is the optimal duty factor. Thus

...l ®
A ae
. g R > 0.584
Ey _ R (217Ro-1) ° '
ﬁ— = o) R . O] (4.24)
0 max e 1-R '
o ' - R In(2 o -l) < 0.548 ‘

o
The ‘quantity [10longb/N 1gioga] is plotted in

Figufe 4.5 as a function of 1/RO. Thus for a given zode

-

rate, r we need to select a value of a to guarantee the

required bit .error rate acéording to- (4.17) and (4.18).

This establishes R 'according to @ = Ré/r.' finally, we

- obtain Eb/NoJ-by adding 10logea to the ordinate. of Figure 4.5

B e N PPRUR

»

for the given Rye

It is shown in [S5] that for DS/BPSK the loss due to
worst case partial time jammef i; around 33dB at 10‘5 BER.

As seen in Figure 4.5 coding recévers all the lass and with
A}
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Figure 4.5: E,/N_; requirement in}woiisrcase
e y
partial band jamming , - ' »
r ‘ ~

A

Ro<0.548 codiné makes the jam%er appéars as uniform noise.

Now if the channel also experiences fading or séecially the

signal is faded while the jammer is unfaded. The received

o

§ignal is . i ’ . '

y =ax +a " (4.25)

If " both sigﬁaj and noise are fading and fading "is
happering independently, then .
I # "‘ ) . . “\. ) s
y = ax + bn. e (4.26)

I

e

- Al
.

where a and b are 1ndependently distributed random varlableo

© . 3 -

having a Raylelgh dlstrlbutlon

- @ fla) = L exp{* ~—} (@ > 0) (4.27)
o? 202

The cut off. rate R, for the case of faded signal and

unfdded jammer is given as [28) >

ad
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o N happens AE\\ )\-21. E‘Lgu)ke 4.6.is the pI

t
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< 4 ® o A 4 ] +
. s )
~ t\ » r v .‘ ' PN ¢ ) ' - A o '
. R =1 - 1log (L4—2—)  §'20 . (4.28) |
2 Y, +1/A 2T

e A . 5 ¢> *

waere N -E[cx Eb/NOJ] is the average 51\g§al noige ragio.

From (4 28) the optlmum jammer ‘duty fac\or is " A=1,

oadband jamming. The operatlon at cug: off " raté
. 4 '

optimal”jamming yields [28) L L . .
N » - " '
\ ~ N . » \ R
. / ) i-—R ' ’ . R - ¢
- . - 1 2-2 2 |y ! /> R
\ ., - = .y . .
' > o "™ TR TR . 14.29)
v . -+ ¢ o 2 0_1' 3 'a
In case pf faded signal. and faded jammer the cut off ;
~ p
e 4 . / , . . ‘
rate is given (28} +.. -~ . . ..
, . ot o ) ’ 7 . ".
. Y . !
* “7 L _ _ r . \‘ . . fa
R, = 1 - logzl 2 + fybef(xp{‘i,ryb}\E(:Yb)]‘, ¥y, > 0)(4,30)
Coor sl
where ‘ Lo v "

+
' [

. . X ‘e‘E A :
| E(x.{j S IV (x<0)

pe of channel

The worst c‘asi +jamming for- this
AN . .
o'f' the required

%

average received bit energy to noise ratio foyj opdkation at

° \' A . - 4 ’- r ’ L

‘the, cut off rate R and worst case jamming. ﬁ"lmisgglot, in T

. 2> ) .
conl\bAination with Figure 4.5, shows that fadiné'in .jamming
signal improves the ;pér‘fi:prmancﬁe. of codegd syste)m,- with a -

\‘ @
larger 1mprovement\at lower. rates: In 'all cases, the faded .
‘§1gnal with unfaded jammer case give worst performance whlch_' }

1

is as expected. However, . at lower rate (less than *0.5

.

%, v - : _— *
N i b . . b . N ) 3
! bit/sym¥ol) ~ there is . noticeable impgovement as@ seen in ' .
. ’ ‘ \‘ ’ * A : N
Figure “4.%. n .
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. rate for DS/BPSK with partial time jammer| 2€]
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. t
a If." frequency hoppin is d 'instead ‘of direct
) \ ‘ z . ,
'sequence‘ spread spectrum ‘then wdlcan use higher signal
1 : \ .,
alphabets. There Is. nothlng to galn by using multiple

51gnal alg_ sPets for COherent, direct

seguence systemjbf]
%he*bg&\off rate- in general form is as given befOfe ’k‘ '“\y

L4 " e .
& . ) . B Lo

RO = 1092M - lOg?[ 1- (M'l)bl

. - ) -\ o
{ . . - .

1

1 L

where M

a4 2 ¢

channe] of interest. Again we cons;%;r three ‘types f

channel :as in the case_of DS/BPSK.
difféerent cases as'Shpwn below - - - . N

(4
N 7

1
&
. ‘, w

a)a ‘%nfaded 51gna1 and unfaded jammer [4]

L)

ol - p ‘ rEB Eb
= exp{- (—=) lo M} 2 )
l+ 1+O o ' gz ; rN < BCP .
D = -1 d . . (4.31¢
de . .
’ . -
= SRR
(rﬁ— \ogZM . o \ .
» N ¢ ’,

: .
/ T

is the 51gn&l alphabet and D is determlned by , Ehe

Parameter D is found for -

v
M :
« )
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’ [ 20
b) Faded sighal with an unfaded jammer [28]
D " exp{- (- Ay2+1)) 2— aa (4.32)
) (1-0°) . e . ec “ T
c)  Faded signal with a faded jammer [28]
DR o >
« - ’ . — ; .- ,bz . .
D = ab . expi- Pa Yo - 2 ,- } da db (4.33)
o' (1-p71 ¢ (14p%)b? .o? T
, . . . ’ N A v' . ¢
. For all the cases, we have
. . ~
' oo o
S po= [ -(148) + /{I¥8)7+4E)/2-, (4.34)
. , o :
] [y 1 . h
with E 1 Eb
C 6= ﬁE /2 = 5 &= log,M © (4.35)
o . oJ . . 0J S )
! -, " '
- - T ' .
for case (a). Fofcase (b), we have - ,
[ . .o
) : I / \
w“ 0. a‘-Y , Y N
¢ 6 = A c ’-’ " L (4036)
. - 2 N ' [y
g o '
ang for qasé (c) we have .
A . . . ‘
{ — .
‘ L ’ PR § .
. ' a‘ 'c
B L= == ] (4.37)
. b? 2 ‘ L
R ) . \
‘ ) 4, o 'Y

.. /
where 7
¥C

"of DS/ERSK.

.

‘jahming in\

=r Vb log,M and ﬁg

. '

The worst-case partial band jamming is the uniform

the two latter caées."fn case there %F(no fading
¢ | ‘ -
) hat ' VLN

¢
, P . “t 4 . \

’

, ' . ) -
were defined before in case

¢
-
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{

the optimal A is A =1 when E_/N_; ¢3dB while if E_/N,;>3dB.

the optimal XA is X=3/(4ECIN The operation at cut off

oJ)'

rate r=RO of Eb/NOJ versus the cut off rate are plotted 1in

Ff?uﬁgs 4.7 to 4.9. 'From these figures we can see that when

"both the signal and jammer are faded the pérformahpe no

longer 1increases with increasing M, This in fact happens
L )

for FH/MFSK over an AWGN channel. As in the case of DS/BPSK

1

a . system wiph faded signal and an unfaded jdmmer perform
veryﬂpcorly compared to other cases., However at low rates
the syste“ ;5 acceptable for cases (b) and (c}. If both the
sngnal and jammer 3;9\\hfadec, the SNR increases at both
very low rate and high rate. The 1ncreases‘at h;gh rates is
due to the lack of coding redundancy [4]. The increases at

“

low rate is due to higher %oss i noncohere‘t combining

(4,28]. .
v ‘ ’ . .
( i 3
. ) 10 '
)
’ ‘ 8
i _Y_|b\\ 6
‘ (déﬂ
4 ’
. L L ' }
J 2 T S W S A )
~
. 1 3 5/ 7 9 1/R

Figure.4.7: SNR requirement for operation at cut off

rate. Unfaded FH/MFSK signal and unfaded [28]

\ optimal 3ammer



-73-

We have demonstrated that‘coding'is critical to
. . ! A& .
adequatle performance of spread spectrum system. Once the
curves of the inversé of RO versus SNR are established we

. 'can faind the ayeréée}%nsemble probability ofuerfar based on

equations (4.17) and (4.18). For MFSK the value 2 1n (4.17)

’ M=2 ]
— ‘l!:!
'b M=8 -
—
(dB) T M=32 ‘
' -
1° 1 _
"9 1/R

. ' o)
¥ ’ \ N
.Figure 4.8: SHR requirement for operation at cut off rate

Faded FH/WMFSK signal and.unfaded jammer [28)
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Figure 4.9: SNR requirement for eperation at cut off rate.
.Faded FH/MFSK signal and faded jammer (28) -
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and (4.18) must be replaced bi M. Thus for different values

of A we can find the corresponding Fb/N and then establish

ot

. 4
the performance curves. . %b
\ \

CA

From the average ensemble probability of error we

can determine at what code rate we should operate for

dufferent channels. If we wish to find the performance of

+

the, specific code for the determined rate r, we have to do .

some * transformations as proposed by Omura et al [27].

“Instead of considering the whole system as depicted in
-

/- .

Figure 4.1 in their analyéls Omura et al decouple the system
’ e

into two parts as shown in Figure 4.10.

gt ".‘.baer . Interleaver Gata Spreader
Ceta nod
an

Jefjrar state information

Channa}

Deinterleaver Despreader

Data
out

FXgure 4.10: Decouplgd communication link [27]

»

L A

: If we do noft consider the coder and the decoder, we

do not have to bother about the git energy'and. the code

rate. Instead we use coded symbol ehergy Ec=rE5 in the’

analysis. For‘ clarity we will take an éxample to
. ) , ' - ’
demonstrate the approach, the same steps will be applied to

' -
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. any other cases.

Let us assume that BPSK is used in an additive white

-

Gaussian noise channel.. At the receivaing end the output of
the demodulator will pass through ; quantizer.  If the
qguantizer forces a decision on each transmitted code $ymbol
into either of the two levels then we‘ have a Dbinary
symmetric channel' (BSC). This results in a hard - decision
channel. If the decoder opérates on the actual demodulated

voltage (converted into digital form) we called it a scft

decision channel. For the BSC channel the cut off rate is
t .

; R 1 - 1092]1 + 2/p(1-p))

(o]} -

/o ’ _ .
where p is the transition’error probability ."°

\

: If soft decision is assumed, the parameter D in the

f

ekpression for RO ié given as [27] ”
-E /N
D - e c OJ ’ (4.38)‘
N . , -
Thus ' k
-E_/N
R, ={1 - log,[l + e ¢ o (4.39) -

Figure 4.11 shows R_ versus EC/No for the soft and

'[\ 0 J
. » hard decision detector. o
, >
- + ’)
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Figure 4.11: R0 for hard and soft decision detections|27]

)
\
L] ’

The cut off rate given by (4.19) and (4.39) aref for
the channel which has uniform (broadband) white Gaussian
‘ . .
noise and® modulator does not use spread spectrum. If the
transmitter decides to use DS/BPSK, the cut off raté must bé'
recalcilated. Also assume that there is a, pulse jammer with

average power Jav/ » for fraction of the time and zero

power of (1-A) fraction of time,

If the receiver can detect the jammer sighal wher it

is on we say thai the channel has side information. The
s

-parameter.is ‘found for the channel with side information as

. . '

: E. . ‘ -
D= lexpl-) (5} T 044.40)
o] o

.If the ' receiver has no side information then D is
4

3

. -76-

o

4

ofa



s -77-‘ }3

given as [48])

o

D = min{exp(-2pE_)[ Aexp(p?E N /A) + 1 - A]} (4.41)
O>d C. c o .

Both (4.40) and (4.41) correspond to soft decision

detectors. The cut off rates R =1-log2(1+D).with D given by

o]
. . L]
(4.40) and (4.41) are shown in Figures 4.12 -and 4.13,

respectively.

For hard decision channels we have the results [48]

’

wheg the receiver has jammer state information and [48®

4

\Y

-
~

D = /AXp(1-1p) T (4.43)
‘ ’ ]
' : i

when the receiver has no side information. For both cases,

we have : ' 1

P = QN <) : (4.44)
4 ) - . ~
‘ . ~

ow we aré in a posiéidn to find the upper bound of
the bit errér rate %or DS/BPSK channel. Suppose we want to
use the rate\1/2 convolutional code with constrain£ length
L=7 -in 'a DS/BPSK antijam system where there« is a pulse
jammér with A = 0.05. Before going fﬁrther, we need the

coded bit error bounds for this specific code over the

© g .

&
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Figure 4.12: Soft decision with side information | 27]
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Figure 4.13: Soft decision with no side informftipn[27]
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Gaussian noise channel. . This curve is avai;ablc in

textbooks and is replot%gd in Figure 4.14.

Suppose the detector use¢ was a soft decision

detector and no side information is available. Te obtain

10'6 bit error probability the constraint length 7 and rate'

_1/2 %equires'SdB in SNR (obtainec from Figurc 4.14) thus

o

tr

b‘ = 54B - ‘ (4.45)
o lo : ~ !
since Ec=Fnb'f°r r=1/2 weiget
E -
. == .= 2aB (4.46)
) N
o lo

for this choice of EC/:O from Ficure 4.11 the cut
i

off rate reguired is

¢

R, = 0.74 bit/symbol (4.47)

For the new coded channel we determine from Figure

’ 4.13 for R_= 0.74 and A =0.05

(4.48)

or

(4.49)
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SNR to achieve 10~ coded.bit error probability with a given

code. By continuing this process we can obtain the cgmplete

cu;vefof Pb

for the channel of interest.

~, Thus if we have another coding channel with\::e same
value of the cut off rate Ro theﬂ the bit error bound is

also the same [27]. We have shown an example for a DS/BPSK

o

channel with rate 1/2 convolutional coding. The translation

!

of standard coded. bit error bounds to obtain corresponding

bit error bounds of df&ferent coding channel applies to all

KN

coding channel. The application can galso be

I

generalized to FH/MFSK codedqchannél.

The technique is very attractive but it requires a

lot " of calculations and dlso requires the curve of the bit

error rate performance.in AWGN channel. However the cut off

rate Ro tells‘ us at what rate we would minimize the bit

error rate. The probability of error can be diréqtly

calculated as we will demonstrate in thei next chapter.
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“transformation as in the last part of Chepter 4! However

L o . 82~

CHAPTER § R
PERFORMANCE 'OF CODED SPREAD SPECTRUM’ SYSTEM '
‘ ] BASED ON THE UNION BOUND '

%
4

5.1. INTRODUCTION ' _ .

s Chapter’. 4 we have brieflyvsummarized the kvalua-

°

tion ‘of a coded spread spectrum system. These evaluations

Ll

R .
are based on the cut off rate R which 1is the maximum

practically achlevable rate of a coded system. The curves

of “SNR versus the cut off* rate do show ‘the improvement of

systems using codes. - However -they ‘do not show how* a

specific code perfdrms iﬁ these systems. -Low code rates are.
. P i
;equ1red to glve gaod résults but how long a code should be,~
B ‘ -
how many errors it can correct. These guestions cannot be
4

-

anstred using the average ensemble probabllrtytgf error.

Upper bound on the error rate can be obtained by doing the

this technique is tedious and requires the kndwledgp of some .
existing qerformance curves. Therefore - there is an urge to .

denerate‘ curves on the bounds of the bit .error rate for

' ’ . L3

‘different codes usea in faded spread spectfumichahnelh o

*

R D» P . .
i . v T '
The ° minimum distdhces of. - block: codes - and
H Y . 3 . » 2’ o
convolutional codes were already defined in Chapter 4. In ‘"

case.of block céaes, it is showq/eisewhere [7,18,32] that a..

LY

\ ..
) .
,

e LR - N
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t-error correcting code must have , oo
i [ . R » , “ ’ . “
’ . .
(8> 2t + 1 ¢ . (5.1)
m Voo
' N ) Wl -~ A
- s Thus for a‘givea block cbd% yith minimum distance drp
v . * \ f HU
A\ ¢
any number of error up to - .

, or L .

' ( .
. Jé.-1 )

r A \

. 2

are always correctable, |[|x] denotes the largest integer

5.2)
\(

J »

contained in X. So it is desirable to haVe codes with large

¢

- !
minimum distance dm‘ Ig‘%eneral, we wouﬂd reguire (a) long .

‘

codes to average the effect of noise over a large number of
symbols, -~ (b) 1low code rates to satisfy the conditions we
found in° Chapter 4, {c) practical method of encoding. and

decoding, and (d) practical method of making decision at thne

receiver [27,28,32]).

Among different classes of hlock codes, cycli¢ codes
and its subclass, the ‘Bose-Chaudhuri-Hocquenghem (BCH)
codes, , stand out because they satisfy"most of the
requirements. BCH codes of moderate length are rather
pOwérful random-error correcting codes and can be implemen-
ted with a "modest amount of ' eguipment. However the
efficieécy,of the code, k/n, approaches zero as n approaches
infinity. The code rate k/n is boundgg» b; the minimum
distance and block length n and the distance is small when n
is large. So, léng BCH éahnot be useg in our analysis.

[32,33,34]

e e R AN Bt o ety M i o S - v /

-
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< One alternative is the ‘qdési—cyclic (Q.C.) codég.
i) N .
w ¢ It has been shown that these cddes have a righ mathematical
. structure, and are easxato encode and to decodé [33]). In
. i i ’ ﬁ .
®+ ' - * this thesls we emphsize on the quasi-gyclic codes and use

them in our proposed channel. The code rates used are 1/3,

\

1/2 and 2/3. The convolutidhal codes of the same code rate
apd compatible minimum‘dist;nces are a¥So evaluated. The
cg;nnel is a Rician or Rayleigh fading channel. The jammer
is partial band noise jammer and oniy.tﬁe worst case partial
band jammer is‘consideged. ‘ o
, ( ,

Before going to the evajuation of the coded spread

spectrum channel it is worth mentioning that coaed systems

requires more bandwidth than the non coded one. Vitergi has

shown that coding does not reduce the effective processing

Al

gain in a spread spectrum system [4]. The statement is true
if and only if the bandwidth of the coded system is expanded

in a coded system. This is depicted in Figure 5.1.

-

. . : l_____ Spread Bandwidth ____,{"

—{ |}=— Symbol bandwidth

- P P
e

uncoded

1
]
[}
)
Al
.
.
L]
1
]
’
]
(]
1

Py
-+ o

—  |— Symbol bandwidth coded

. -

Figure 5.1: Symbol bandwidth in an uncoded and coded
. system . ’
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- . ' So if we keep the spread bandwidth the same

coded one wfll have less slots to hop to.

4

-
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’

in both

the uncoded and coded sys;emg, the frqu;ncy hopper in the

<

Thus the proces-

sing gain is decreased in coded system unless the bandwidth

‘- ts expanded to give ‘more space.

effective SNR at 10~

technology the

hopping is

5

achievable

implementable.

The

use of

Although ®poded

BER justifies the cost.

bandspreading with

coding

systems

feéuire a larger bandwidth, thei}mpressive éaving in the

With present
frequency

offers a

nonrefusable benefit in combating intefligent jammers.

./

5.2. QUASI-CYCLIC CODES

, . An . (mno,mkc) linear code is said to be
with basic block length n

n, symbols yields ancother codeword.

guagi-cyclic codes has the form [33}.

. where each gij

]

0

€1 &2 Q3 Sing
€21 S22 S23vc- Song
C,b 1€ G 2e0.C

| Tkl <kg2 Sk 3 koho

is a circulant matrix of order

B )
% ©1 2 Sma
°m-1 %o €1 -+ “m-2
Cl C2 C3 soe Co

quasicyclic

o if every shift of a codeword by

The generator matrix of

(5.3)

s

m of the form

(5.4)




@:,W"

! -B6-

1 1 . A

,‘_ l r‘/ 3 - A
with ¢, € @F(2) (GF(q) is a Galois field of g “elements

with g a primgsower).

.
!

)

‘ 4

» 4  'Note that each row is the previous row shifted once

and, the matrix C of (4.4) is‘completely specified by the

elements of the' first row which associates with the

: '
polynomial
. »

2 . m-1 m §
x+c2x +eeatCo X {mod X -1) (5.5)

.

I C({xY = ?_Q+C1

Thus the algebra of polynomials modulo x"-1 over GF(q) is
. o -
isomophic to algebra of all (mxmM circulant matrices over

GF(q). The code ' generated by (5.3) is not in systematic
form, that is,” any particular code does not consist of mk

information bits followed by (lnno—mko) parity bits. We can

rearrange 5.3) to obtain the generator matrix

G = [1 2c] (5.6)
« ~s ~.~
. . B ' ‘.\
' 1 0...0 ¢C . C
g 1...0 ¢ <
2'ko+1 2'no
g = . : (5.7)
9 0 I ¢ eees C
koko+1 "konod .

where I and O refer to the identity and all zero matrices of

order m, respectiveély. The rate rsko/qo=1/2 quasi-cyclic

-

‘codes have been well studied and in some sense can be

regarded as the building blocks for higher rate quasi-cyclic

JE O — - R
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codes [35). For ‘ate 1/2 we have k°=no—k°=1, thus

}.

where I and C1 2

/ '
s, = [Lig,o]

’

are mxm matrices.

(5.8)

Let i be the message to

be encoded, theh the corresponding codeword is

in polynomial form,

is

‘.

" v =16
v=106_

Let i(x) represent t®e m-tuple of information

{

vix) = [i(x), i(x)C(x)] &od x™-1

thus parity digits generated by Es are i(x)C(x).
: [}

For rate r=2/3

we

have

k =2; n
o o

génerator matrix Es will have the form

where 1 is the (2mx2m) identity matrix and C

#

H{n)]
]
I

circulant matrices over GF(2) of

the

~

form

codeword generated by gs is of the form {36]

1 ';Cvz a;‘.\e
(5.7).

vix) = [4,(x), 1 (x), p(x)])(mod x"-1)

LS

(5.9)

bit§

then the polynomial v(x) associated to v

(5.10) °

=3, then the

(5.11)

(mxm)

Each

(5.12)

where p(x)-i1(x)C1(x)+i2(x)é;Tx)(mod xT-\) are the parity

. digits.

In case of rate 1/3 codes the generator matrix can

-
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)
' )
be represenggd in the form A
o | V- -
» ‘ s [l: ,2! ~1,%] ‘
'. -
therefore (36]) . .

\

vix) = (i(x), 1(X)C, ,(x), i(X)C; 3(x)] (mod x"-1) (5.14)
Ny AL J ’

-

\ It is possible to encode quasicyclic code with a° k-

/
stage shift register in a manner exactly analogous to that

for the encoding of «cyclic codes explained in Chapter

3

4 [32,33,34). The decoding process, however, shows some
levels of difficulties. The decoding dé rate 1/2 codes has

been examined in detail by Karlin and decoding procedure for
o [}

codes of rate (n0—1)/nO has been proposed by Shiva and
Tavares, these two algorithms can be found in (33} or [35].
- .

I y

o

The weight distribution of a code contains useful’ bl

{
information about the code such as its minimum distance and

the probability of undetected error. The weight distriphf.'gg

tions of some quasi-cyclic codes of rate 1/3, 1/2 andk?/3
are listed in [35-40). In the next following two sections
we will dgtefmine the bounds on the probability of bit5érror_
for spread spectrum systems which employ quasi-cyclic codes

and hard or soft decision decoding. A

.St{"f‘
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5.2.7. HARD DECISION DECODING OF'QUASI-C?CLIC CODES

n

As discussed previously the decoder decodes
correctly if the number of errorsgin a codeword is less than

half the minimum distance of the code. That is any number ,

Since the source is binary and the received signél

of errors up to

is quéhtized into two levels, the channel is called . the
binary symmetric channel (BSC). The BSC is a memoryless
channel, so the bit errors ocdur independently. Hence the

probability of i errors in a block of n bits is

n

P(i,n) = (-

i q-pyn-i © (5.15
1) p- (1-p) ( )

Al

In a t-error correcting code the probability of

block error is given by [5,32])

IR Y e Sk (5.16)
i=t+l

where in (5.15) and (5.16) p reprsents the symbolaerror rate
in the channel of interest. If an all zero codeword. is
sent, the detector - will select a codeword which 1is
different in dm positions to the all zero code word if and
only if (2t+1) errors have occured. If the number of errors
is greater than (2t+1) then the decoder will select any code
worq in the set. In general, if i errors occur (i>t) then

“o
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{
the frgction of (i+t)/n of k information symbols, will be

decoded errornously [5). The averége bit error rate is

#

n
(i+t) n, i _yn-i
P2 :E: ——— ) p (-p) (5.17)
. i=t+l

Equation (5.17), 1in fact, is the bit error rate for
binary codes. For non binary ‘codes, a code symbol
represents m information bits. We assume that an
incorrectly decodeg symbol is equally likely to be any of

the remaining symbols in the alphabet. Among 2" equally

likely 'symbols, a given bit is a one in 2m-1 cases and a

2m-1

zero in cases. When there are Zm'1 equally likely

*

incorrect symbols, we have [31)]

n

2 2 : (i+t) i n-i
- P T ol A l.r
2M-1 . n Pg (17Pg) (5.18)
i=t+l

; \

”

where the symbol error is‘ps and bounded by

pg ¢ (2"-1)p ' (5.19)

L <
In our analysis all codes are binary codes and the

probability of error p is given by (3.22) for Rician fading
channel with partial band jamming. “In case of Rayleigh

fading and partial band jamming p is given by (3.24)

Performance of some selected quasi-cyclic codes of

3
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respectively. We will analyze their Jperformance in section
5.2.3 after discussing the soft decision decoding for quasi-

cyclic codes.,

/ X

5.2.2 8034/;ECISION DECODING OF QUASI-CYCLIC CODES

In this section, a codeword Ci, i=1,2,...,2k, having
bit ;3 y J=1,2,...,n, 1s‘mapped into BFSK signal waveforms
in such a‘way that If ci}=0,frequency f0j~is transmitted and
if cij=1, frequency f1j is transmitted. Actually, foj and

f1j will be further modulated according to a hopping pattern

in (2.,19). Let y r=1,2, 3=1,2,...,n represent the square

rj'
‘root of n sampled output of the enveloped detector. If the
decoder is a soft decisionadecoder, it will form the Zk
decision variables [3]
n
U, = -, L2 . 2
i Zl(l ciy) lyoyl® # cljlyljl ]
i=1
n i .
- ' ' + 2_ 2 (5.20)
Zlilyojl €3y glt-lygy 170
J:

Without loss of generality, let us assume that the
all zero codeword//is transmifted. Thus ‘the decision

variable U1 is/qiven by (4.16) with Clj=0 for all 3. The

decoder wi}l/decode incorrectly if one of the other decison

]

P .
variable’Ui is larger than U1, thus the probability of error

is _the one,in choosing the m-th codeword.

i

" rate 1/3, 1/2, and 2/3 are plotted ifi Figures 5.2 to S.Vf\ﬁ

\

Ny
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P.= Pr(y > Uy) = Pr(U-U < 0)

n . _
Pri 3 Mygy!® - Iyljlf - coj(|y1j|2 = lygylPn < 0}

i=1

n
2
Pr{ ;éi e54lygyl® = lyy4l%) <0} . (5.21)

. I,
the sum of all the bits in one codeword yields its weight,

hence (4.17) becomes

. w l
- = 2 _ 2
: P = Pr{ E (ygs!? = lyyylh < 0 (5.22)
3=1 ,
where, v represents the weight of the m-th code. The

: . 2 2 3 1]
inequality ( Zlyojl < z Iylj] ) represents the deciding
factor ° of the square-law combining method for a diversity

channel. The probability is

t

! 2
) 2 W w_Y
P(w ) = 3__m_____§ m exp{— __‘_!'n__—_ } .
m 2(14y2) +A 2(14y2)+A
w-1 m “ : (5.23)
L m+wmrl ; 1+y " +A i _}5&
22 ) Bt 1
m=0 f=0 ' ,
where '
. 2
X = m Y

(1+y240) 1 2(1+y?)+A)

All the parameters in (5.23) are already defined in
Chapter 8. The proof of (5.23) in shown in Appendix B. 1In

the case of Rayleigh fading channel *(5.23) reduces to




’ ’ wm-l
w -1 w_~-l-m m
P(w ) =|-L_\™ 2: m 1*_") (5.24)
m 24+A m 2+A
‘ L] m-o

Let n, be the number of codewords of weight i. _ The
total probability of the all-zero codeword Lrecéived as a

codeword of weight i is

Ptotal = niP(ni) (5.25)

\

Therefore, the average probabilty of error using

soft decision decoding in partial band jammiﬁq is

1 . i :
Pb - ; ing A P(ni) (5.26)

i=d | rﬁaag
where P(ni) is given either by (5.23) or (5.24). A good
approximation can be made by considering ?niy the largest n&
teﬁmscnithe equation (5.26). This apptbximation is based on
using . only the largest R4 terms in the union bound which
'éorresppnding to the n; codewords of miﬁimunfﬁistance d and

neclecting ‘the probability of an error for the other code-

words (22). We get “ )
Pb = % Xd ng P (d-order of diversity) (5.27)

fquation (5.27) is of great help if the :computation
is carried out in a small computer such as the PDP11/45./
The worst case jamming, when soft decision detector 1is

employed,is not very easy to derive. However, graphical




¢

-100-

14

analyses shows tha® the optimal value of Ais A =1. Figure
5.2 to 5.13 show the performance of guasi-cyclic codes used
in FH/MFSK with soft decision ?ecoding and worst case

—
jamming. AN

5.2.3. DISCUSSION ON GRAPHIC RESULTS

We have chosen some rates 1/3, '1/2;and 2/3 quasi;
cyclic codes which have known weight distributions
(35,36,37,38,39]. The rate 2/3 codes chosen have the
largest possible minimﬁm distance and the rate 1/3 .codes are
their duals (36]. The codes are selected to have compatible
length and minimum distance. Among the‘selected codes, theﬂ
(8,4) code 1is equivalent to the Hamming (7,4) code, the
(24,12) code is equivalent to the Golay (23,12) code [371.
The modulation is binary frequency shift keying with slow
frequency hopping. The channel experiences Rayleigh -or
Rician fadiﬁg and worst case partial band jamming.

»

As an example we tabulate the -required effective
signal-to-noise ratio at Pb-10—5 and the gain of the eﬁerng
ratio when coding is applied. The gain is the difference in
the effective SNR's at a given bit error rate between coded
and non coded systems. From Figures 5.2 to 5.13 and from
Tables S.1 and 5.2, we observe that low rate codes give
better results than higher rate codes. This Agrees with the

¢
prediction. using Figure 4.7. Also as predicted, long
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codes pe?form better than shorter codes §ue to the reduction
of noise over a large number of syﬁbols. The coding gain
between hard and soft decision decoding 'is from 104B to
12dB. This is a significanﬁ difference compared to the 3dB

difference in a nonfading AWGN-éhannel.

In Table 5.2 we compare the performance of hard. and
soft decision decoding in a Rician fading channel with
partial bané jamminé. The ratio y2 is selected to be 2dB.
This ratio varies for different propagation medium, but it
acts in favor to users of a Rician fading channel. % The
iarger the value of +v?2 the more reliable link we can
establish. However, this gain is not very profound in worst
case partial band jamming because, from the graphs, the
increase of 2dB ‘in results in only in 1dB gain in SNR.  If

y%is very small, we can estimate the performance of the

system using Rayleigh fading model.

The soft decision decoding for quasi-cyclic has not

been implemented yet due to its complexity. However, the

performance of soft decision is evaluated using the

diversity combining technique. Hence it would be easjer to

build a diversity channel than a soft decision decoder.
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“Table 5.1: Performance of some quasi-cyclic codes with
worst case partig% band jamming and Rayleigh
fading at Pb= 10
Hard decision ~ Soft decision
decoding decoding
code rate SNR Gain SNR Gain
(dB) (dB) (dB) (dB)
(n ,k,d)
(12,4,6) 1/3 28 20 18.5 29.5
(24.8,8) 1/3 25.8 22.2 15.3 32.9
(48,16,13) 1/3 21.8 ‘26.2 12.9 35.1
(8,4,4) 1/2 33 15 21.5 26.5
(24,12,8) 1/2 24 24 16.5 ‘31,5
(48,24,12) 1/2 21.6 26.4 14.6 . 33.4
(15,10,4) 2/3 33 15 22 26
(33,22,6) | <2/3 28 20 18.2 29.8
Table 5.2: Performance of some quasi—cyclic codes with ,
worst case partig% band jamming and Rician
s - fading at P, = 1077, y2=2dB
b Y .
Hard decision Soft decision
decoding decoding
code rate SNR Gain SNR Gain
. (dB) (dB) -_448) (dB)
(n ,k,d) i -
(12,4,6) 1/3 25.8 16,2 16.5 25.5
(24.8,8) 1/3 23.6 18.4 14 28
(48,16,13) 1/3 19.7 22.3 12 30
(8,4,4) /2 31 11 20 12
(24,12,8) 1/2 22 20 14.8 27.2
(48,24,12) 1/2 19.5 22.5 13.1 28.9
(15,10,4) 2/3 30 12 20 22.
i(33,22,6) 2/3 25.9 16.1 16.1 25.9

o
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5.3 CONVOLUTIONAL CODES ‘ . s

ﬁ . 533.1 HARD DECISION DECODING OF CONVOLUTIONAL CODES

-

' )
We observe that the tree of Figure 4.3 repeats

;itself after ' the third stage. There are two nodes with
hid “state "OO",“two nodes with state ﬁ11", twa nodes wikh state
f "O0", and two state with state "61“. In other words, the
‘code tree ‘"contain: gédundant information which c&n be
"eli@inated by me;ging ‘branches of the same state. The
resulting gtructure has been called a trellis by Forney [19]

and the trellis for the tree of Figure 4.3 is illustrated in

Figure 5.14

\00

Figure 5.14: Trellis for a constraint length 3
convolutional code

-

=
. L)

. The convention is that an input.0 corfesponds to the
selection Pf the Epper braéch and an input 1 corresponds to
the selectioﬂhaf the .lower brqnch. It is well kno;n that
the convolutional codes are group code, thus we may assume
that the ail zero pAth was transmitted without loss of
generality [41]. Then a first event error ig made at the j-

o

th step if the a;l zero path is,éliminated at this point by

-’

.
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5

another path ﬁerging with(ﬁz. Suppose that the path being
compared with tﬁe all-zero path at some node A has distance
d *frém £he all-zero path. If 4 is_odd) the all-zero path
wi%l be 6orrectly selected if the number of errgrs in the
received sequence is less than (dg1)/2. The probability of

-

error in selecting an incorrect path is

* - (4) d-k |
P\ = 2 (k) p- (1-p) . (doedd)  (5.28)

s

2 -

where p is the channgl bit error rate [5]. If the distance
is even, the correct pathois selected when the number of
errors is less thén d/2. I% the number of errors equéls a/2

then thére Nﬁs a tie which, if resolved by coin flipping,

[}
-

will result-in an error only half the time [41]. The error

7
s

probability is

T
o,

d
d 5 d -
1 2 e d-e .
Pj(d) =51 alsP (1-p) + E (é) p (l-p) ", (d even}
2 d
e=3+l. | (5.29)

2
The probability, chd), of the all-zero path being
eliminated by a 'path of weight Jj merging with it is

dependent only on the weight of that path. Therefore, a

union bound on the first event error, Pe' can be calculated

f

» by summing the error probabilities Pj(d) over all the

possible paths which mérgé to the dll-zero path at a given

node [3,5,7;41]. Thus : '

& P ns Pj(d) ' (5.30)
1 d=d ’
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where n, is the number of possible paths of weight d merging

d
with the all zero path. Let the total information weight of
these paths be Wy then the union bound on -the probability
of bit error, Pb' may be obtained from (5.30) py weighting

each term by corresponding number of bit  ,errors (the

information weight of each path) 0
. @ , s
. 1 4 .
) . Pb < -E- E wd A Pj (d) (5. 3.1. ) ‘:
« s d=df )
- . Figures 5.16 to 5. 20 plot the performche curves of

some of the rate 1/3, 1/2 and 2/3 convolutional codes. Again

Y "

' . : . _ s
we . will analyze ‘these curves after discussing * the soft

décision décoding. T

‘5.3.2 SOFT‘DECISION DECODING OF CONVOLUTIONAL CODES
\ . ’

Assume that an information sequence u is encoded
into a codeword v and that the receiver receives a codeword
r. Then the Vitérbi deeoder has to compute a‘ parameter -
called the metric associated with the path v. The metric
can be coarsely defined as the distancg from the received

‘sequence. The metric is defined as (3,18)

X
‘l

uf = [vE 5.22)
u3 1092P(XJILJ) ’ (

where P(y | v} is ‘the joint probability of the output

\ sequence of the demodulator coﬁaitioned on the transmitted

-
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codeword. The index j indicates the j-th branch and the

index r indicates the r-th path throdﬁh the trellis. A

metric for the r-th path'coﬁsisting‘of B branphes through

the trellis is

n B \‘ ) ) ¢ '
= r . ’ o e, » '
:Z: “j S ‘ v(5.33)

I ]

uj:l» .

If soft decision decoding is used with Viterbi algo-

rithm, we define“thé metric for the j-th branch as

i n

r _ . 2 .2 2 2 .
Ky = Z Y1 gml* Vip * (1-V5 )lyojml (5.34)

m=1

)

where n is the number of bits ;ransmitteg for every k input

'

bits. ly. ]2 denotes the sguare-law detected output from
ijm b

the demodulator, 1=0,1 denotes the transmitted frequency and

jm denotes’ the m-th bit of the j-th branch.

rd

[
[

&

Again we assume that the all zero code is transmit-
ted. * The path metric for the all-zero path at node B is

2,
. ‘ —ZZ Yosml® : ' (5.35)

j=1 m=l

" A firet-event error occurs when the decoder excludes the all
zero path and takes another path at distance d from the all
zero path. Hence {3)

0

P, (@ = Pr(v"2v°) = pr(vi-v’ 2 o)

7
o ¢

v



2]

.7 =119=

’ B n ‘

o r ‘ 4 r

. = Pr( 2 ;z ;lyljmlz‘vjm - lyojml2 Vim ) (5.36)
j=l m=1l \ .

s
f

Since - the code bits in the two paths differ only‘ in 4

v

positions, (5.36) can be written .n a simpler form (3]

y d N .
© 4 2 .
Pj(d) = Pr(;z;ly1i|_> lYOi‘ ) (5.37)
v 1:

¢

where the index runs over the set of 4 bits in which. the
.

“two path differ and the set iyiilz represents the output of

the square-law detector for these d bits (3]. Pj(d) is, in

fact, the probability of error for BFSK Jith square-law

detection and d-th order diversity. Thus Pj(d) has the form

>

of (5.23) for block codes. The bound on the bit error rate

has the form of (5.31) but P, (d) is replaced by (5.23).

3

5.3.3 DISCUSSION ON GRAPHICAL RESULTS

As in the case of block coding we éeleqt some rate
1/3, 1/2 and 2/3 convolutional codes to show that coding
can exceptionally improve the performance of a spread spec-
trum system\\\ The rate 1/3 ‘and 1/2 convolutional codes and
their distance parameters are taken from (31]. For ’these
codes the constraint 1length is‘ known for each codes.
However, for rate 2/3 convolutional codes, their parameters

were calculated using "brute force technique" ([42].

r
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1

Aéﬁin we tabulate the performance of a coded system

at Pb=1o'5

for Rayleigh and Rician fading_vghannel undcer
worst case partial band jamming. From TableL 5.3 and 5.4 we
note that convolutional codes give comparable results to
those of guasi-cyclic codes of compatible distance.
Conwvolutional codes gi;e and a;erage of 28-30dB gain in SNR
over a noncoded system. In case of Rician fading, as we can
expect from the results of guasicyclic codes, the quantity
v? does not give much improvement to the performance of a
coded system under worst case jamming. ‘ We also note thit
rate 1/3 codes perform better than rate 1/2 and 2/3 codes.
"But rate 1/2 codes do not give superior result compared to
those of rate 2/3. This is due to the free distances of
these selected codes.
. Thus we have shown that coding completely ‘recovers
the loss dﬁe to fading and worst case jamming. In fact,
coding almost eliminates the effects of fading in "the
channel, In the next section, we ;ill summarize some
previous works on the exact or bound on probability of

errors in FH/MFSK on additive white_Gaussian channel and

worst case partial band jamming.

!
5.4 DISCUSSION ON PREVIOUS RESEARCH WORKS

Error-correcting coding is an antijam technigue in

spread spectrum systems in AWGN channel and partial band
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,Table 5.3: Performance " of some convolutional codes with
- worst case parggal band jamming and Rayleigh
fading at Pb= 10 ~.
Hard decision Soft decision
decoding decoding
code rate SNR. Gain SNR Gain
‘ (dB) (dB) (dBR) (dB)
(L=3,d.=8) 173 22.5 25.5 15.6 32.4
(5,12) 1/3 19.1 28.9 13.8 . 34,2
(7,14) 1/3 17.2 30.8 » 12.5 35.5
Al
(3,5) 1/2 25.5 22.5 17.2 30.8
(6,8) 1/2 21.2 26.8 14.5 33.5
(9,12) 1/2 18.8 29.2 12.7 35.3
(-,5) 2/3 23.8 24.2 15.4 - 32.6,
(-,8) 2/3 21.8 . 26.2 14.1 33.9 .
(-,9) 2/3 20,2 27.8 13.2 34,8
Table 5.4: Performance of some convolutional codes with
worst case parggal band jamming and Rician®
fading at P_= 10 °, Y? =2dB. .
b
Hard decision Soft decision
decoding decoding
' code rate SNR Gain SNR Gain
M _(dB) (dB) (dB) (dB)
(L=3,df=8) 1/3 20.4 21.6 14.3 27.7
(5,12) 1/3 17.2 24.8 12.6 . . 29.4
(7,14) 1/3 15.4 26.6 11.5 30.5
(3,5) 1/2 21.3 20.7 15.4 26.6
(6,8) 1/2 19.2 22.8 13.2 . 28.8°
(9,12) 1/2 16.7 25.3 11.6 30.4
{(-,5) 2/3 21.6 20.4 13.6 28.4
{(-.,8) 2/3 19.8 22.2 12.5 29.5
(-,9) 2/3 18.1 23.9 11.8 30.2

fo

¥
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N
jamming. But only a few analy;is have treated fading
channel with partial band jamming. Thus this section is
included to show that coding almost neut;alize the effeqt of
fading on the spread spectrum system in addition to

, antdijamming. Mést of the previous. papers considered the
complete knowledge of jamming state in soft decision
decoding. In realistic communication network application,
the geographically dispersed signal sources, jammer and
channel fading, and variations in the received signal energy
complicate the jamming state determination [48]. . So it is

»Jreasonable not to - consider side information in a fading

. hannel
Y Y < c’b ‘
v \:’ o ’
“ In fact, the additive white Gaussian noise channel

~

iét\a épecial case 06f the channel considered in Chapter 3.

Y
‘It is known from (26],[30] and [48) that the .bit error rate
for FH/MFSK in partial band jamming is given as
N ' l‘ ’ | M . E .
R S N — Z (-1)% (’i") exp{-kN—Q\(l—il)} (5.38)
' B ’ 2(M-1) i=2 (o}
Thus .a° symbol error P_ is found by multiplying (5.38) with
%1y /(251
M
A i M By 1
. P () = M (-1)" () exp{-k ﬁ—(l‘v)} . (5.39)
i=2 o o .

Equatiéd (5.39) is exactly (3.23) with g2p being
replaced p§
' - E

b
azp = log M _._!). = —
2 NoJ NoJ (5.40)
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" If an (n,k) block code is used, then a?p will be

replaced by KrEb/NoJ. For the worst case; we obtain [30]
N !

(o (2%-1) (rf_ . o)
K N = )
s i
» ' :
E , E
1 :?: ioM b . 1 Ep
5 (=17 () expl-krg= (1 i)} (rg<c)
; o) ‘ 0
N\ i=2

and are enumerated in Table 5.5 [30,48]

14

Table 5.5: Performance parameters of codes FH/MFSK
in worst case partial band jamming

M=5¥ a €
2' e 1=0.3679 2
4 0.2329 1.192
8 0.1954 0.927
16 0.1813 0.798
32 0.1764 0.723

The coded bit error rate is approximated by

n n ) .
P, < % :E: i (.) p; (1-p)" (5.41)

i=t+l 't

_ which is different from (5.17) because (5.41) considers only
errors that cause the decoder to incorrectly select a code-
word which is different from a particular transmitted code-

word. However, in (§TT7) all possible transmitted codewords
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are accounted.

The performance of some binary codes such as Hamming’
code, Golay code and BCH codes are depicted in Figure 5.27.
Cod;s which are equivalent to quasi-cyclic codes give same
c;;ve shapes of quasi-cyclic codes used in fading channel but
a 5dB penalty is paid due to fading. However, ‘'the gain
compared to uncoded system is more on fading channel which
proves that coding functions better as an antifading,
antijamming technique. - If the code used is not in binary
form then M-ary signalling is preferred. ¥or Reed Solomon
codes, k-bits are sent as a symbol. In this case, the bit
error rate is given by (5.18) and symbol error réte is given
by (5.40). | '

For rate 1/2, constraint length 7 binary
conQolutional, code used on the binary channel (M=2), it is

known that {30,27]

/
12

0, 211D

P. < 0.5(36D 14

b + 1404D

+eoa) (5.42)

for rate 1/3, constraint length 5, we get

16 18

p, < 0.5(0'% + 200'% 4 530"% 4L (5.43)
» ‘

where D is the same parameter used in the computational cut

off rate Ro in Chapter 4. For BSC, AVGHN with hard

quantization, we ’get D= 2\,p(1-p) as in (4.19) but p is

/7
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given .by (5.40). Equations (5.42) and (5.43) are derived
;rom the transfer functions of convolutional codes. Plots
of the above mentioned convolutional codes are also shown in

Figure 5.27.

.It 1is well known that diversity alone can provide a
large improvement -in performance by adding redundancy
analogous to the redundancy in a codeword. It is of
interest to see how diversity can be applied in FH/MFSK.
With diversity, each M-ary symbol is divided into m equal
subsymbol each of which is sent on a different frequency hop
with energy KES/m. This give us m independent chances,leach
with probability (1-A) of receiving error free M-ary data.
Diversity éan be achieved in hop rate equals to the symbol
rate bu£ this approach is not always feasible because of
hardware lipitation {48]1. Interleaving provides an alterna-
tive way to produce redundéncy.

4

Assuming perfect knowledge of jamming state, an

error can occur if all the diversity chips are jammed, the
M-ary symboi is determined by the largest of the metric

{48]. .
. m
Ay = Z Xi3 _ (5.44)
i=1

where Xij is the output of the i-th energy detector (1<¢i<}M)
on the j-th diversity transmission. If the metric of (5.44)

is used then' the bit error rate is bounded as [27]




) AKE m 9
Py < 2k=2 min|{ exp{ - (=) ( b)}] (5.45)
g <p< (1-p?) 1+p ' mN_
where p is the Chernoff parameter. ’
. o o
For optimum jamming,® the duty cycle is [27]
A= oM (5.46)
| D KE_/N, :
for which
)
<1 m
K-2 4me
P, < 2 ( KE;7§; ) (5.47)
provided ) «<1. For Eb/NOJ < 3m/k, broad band jamming is '
optimum. The opt;g;m,@iversity occurs at
KE, -
Mopt ~ 4N ‘ ' (5.48)
which gives
KE ~
K-2 b
\ P, < 2 exp{- oz~ } (5.49)
o]
énd 3 L 4
A= T - (5.50)
<A
So optimum diversity restores the exponential
relationship between Pb and Eb/NoJ. The upper bound on

Eb/NoJ requ;red
5.28.

case partial band

extended to convolutionai codes.

jamming.

to achieve Pb=10_5 is depicted

The analysis

The only difference

above

in Figure

So diversity alone can restore the loss due to worst °

may Dbe

is
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that diversity is specified in terms of diversity per f bit
Enstead of the diversity per M-ary symbol m. For the metric

defined in (5.44) we have [27]

opt 4N | (5.51)

for all cases. The amount of interleaving would be

.

d = (5.52)

where Rb and Rc are data rate and hop rate, " respectively.
Without showing the mathematics involved, the upper bound of

the constraint length 7, rate 1/2 code is

P, < 18 exp{- SE /4N } (5.53)

Equatior (5.52) shows that the performance of this
code 'in BFSK is exponentionally egquivalent to the uncoded
32-ary FSK systen. In generég, more the partial band
jamming protection provided by the coded redundancy lesser
the diversity th&t is required. Usually, the soft decision
decoding metric with perfect jamming state is not feasible
in most of the system, A hard decision metric without side
information can perform acceptably in worst case part@al band

jamming {27].

/]
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o, " ' CHAPTER 6

SUMMARY AND CONCLUSION

r

1

€.1. SUMMARY AND CONCLUSION

In this thesis we have examined the performancg of
cod%s an spread spectrum channel with jamming and fading.
The ubasic concepts of spread spectrum techniques were
presented in Chapter 2. Twé types of spread spectrum modu-
létion are brieﬁly stated. Partial jammer, i.e. a jammer
which feeds noise into the channel‘fér only a fraction 'of
the time or only a fraction.of the bandwidth, can cause
severe damaées to the channel. The perfg;mances of DS and

FH in partial jammer environment are analogous in term of

the effective signal tofﬁoise ratio.

In Chapter 3, bounds on the raw bit error of
frequency hopping, multiple fféqgency-shift-keying system
were presented. The received signal experiences either
Rayleigh fading or Rician fading in addition with non fading
partial band noise. The detection is carried out noncohe-
rently. We made an assumption that there was no background

noise 1in the channel. Since the amplitude of the received

signal fades according to Rayleigh or Rice distributions, we .

derived the expressions of bit error rates based on the
received amplitudes and their distributions. Performance of
FH under partial band jammihg were plotted for binary, 4-ary

and 16-ary FSK. The increase in the signal alphabet does
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curves showed that the system is much improved by the use

of —coding.. The codes in the analyses were selected rate

1/3, 2/3, and 1/2 codes. Rate 1/3 and 1/2 gave similiar

values of SNR at Pb.—-105 wﬂen‘hard decoding is employed. If:

soft decision decoder was used, rate 1/3 codes with compa;

tible code length and minimum distance showed‘betﬁer curves
) o

than the other two code rates. Siqilar results were

obtained when convolutional codes were used.

In the case of Rician fading channel the ratio Y°

plays an important role in the decoding performance. Since

Yz=%;2denotes the received energy via fixed component over the

rece;ved energy via random component. Larger y? results in
the 'fixed coﬁ%onent becoming a dominant .term. Thus with
large Y? we can approximate the bit error rate using the )
results of a AWGN channel. This is true if the. jammer is
not an optimal one. If the jammer is a worst Ease jammer
increasiné in Yz gave little improvement in the SNR.

We also showed that in order’'to maitain the proces-
sing gain as in the case of non coding system we must expand
the bandwidth according to the code and its rate. We:
conclude that good coding schemes exist for channels with "

partial band interference and fading and are essentjial for

reliable communications. , However, all the curves shown in

@
3

Chapter 4 and Chapter 5 represent a relative performance of
how' well the proposed coding /decoding system will function,

against a variable level of average channel noise. More




o . . S N
not offer much improvement in the performances. °
> ~ : Vi

Linear block codes and convolutional codes have been

hl

s%udied for possibae application in sg;ead specfrum‘cnannel:
But at what code rate one should use or’how long a code .is
required? Tnose guestions were answered in‘Qhapter 4./’In-
steadarof finding one good code which is a long process, wé
considered the ensemble of codas of rate, say, 1/2 and
" evaluated the average ensemble probability of‘error on a
particular channel.” This average error depends on the ~eut
offg-rate Ro which is a function of the) SNR and“channel
parameters. Curves of the cut off rate W versus E_/N_,
provide guidelines in choosing code rates for different
channels. A transformation process was proposed to convert
the blt error rateebf any specific code in- the AWGN channel

"to the bit ggror rate for any type of channels provxded the

performance curves of the AWGN channel are avallable.

wIn-Chapter 5 we tried to éind the beunds on the oit
\error rate for specific codes. A bound Qas derived f£or any
code with unknown or known weight distributions. Also the
bounds depend on the minimum distance, so larger the minimum
distance the better the code will perfor;. BCH codes are
among the common codes used Qut»a low code rate (r= k/n) BcH
codesgtend to deter;orate quickly. So we proposed the use of
quasi—cyclic'rEodes ~in the fading channel. Quasi—c?clic
" codes gepresent linear block codes and their pefformance

.
3

i
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compulational work is required for a complete study because
the channel §aries £rom timé to time depending on various-

factors such as weather or teﬁporafy obstacles that can

defect the communication link.

Ly

A PO

’ ‘ | ¢ [4
6.2. SUGGESTION FOR FUTURE ‘ggﬂ .

13
?
L

As we mentioned 'in Chapter 4 the information in the
presence of the jammer can be adqufbed by monitoring the
frequency slots. If this side information is availag;e, i?, .
can‘ be .used to help the soft decision decoder make more
religble decisions. It is of interest to find the bounds or

. error probability for the chanpel that we have considered.

»

Also, QE would be helful.to determine thé sensitivity of a
R . .

- U system to the accuracy of the side information.»;i )
. _ ) 3
+ \-’ L ‘ .
. . .
¥ , .
* < ¥
1] ' .
. 7 S 4
o !
. ; .
Y - \ . 4
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APPENDIX A

RICE AND RAYLEIGH DISTRIBUTIONS

In this appendix we derive the Rice and Rayleigh

distributions used in Chapter 3. First we will show that the

' pdf of a random variable has a Rayleigh density ' if it equals

\ .
the square root of the sum of two squared normal, independent
random variables. Then we use this result to prove Equation
(3.5).

Let X and Y be two random variables and g(x,y) b€ the

function of the real variables x and y. We define

z = g(X,Y) (A.1)

\

The distribution Fz(z) is determined as
] .

]

Fz(z) Pr{Z <€ z} . (AL2)

and the pdf is

Q

£, (2) %th(z) . (A.3)

L3

Tﬁu¥ we must find the probability of event {Z<z} . Let

|

)]
D, be a region in the xy plane such that

glx,y) € z (r.4)
then

{(z<z2zi = {(x,Y) €D,}
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and

F,(z) = Pr{z<z} = Pr{(X,¥)€D,}

z

' '=~17}Xy(x,y)dxdy_ ) (A.5)
DZ —

* <

where fyy(x,y) is the joint density of X and Y.

The pdf can be found by using (A.3) or by determining

the region ADZ such that

AN -~

e

z <g(x,y) £z dz

From Figure A.l1 we have [43]

{z < Z.< z+dz} = {(X,Y)€:ADZ}

thus
fz(z)dz = Pr{z < 2 < z dz}

=f[ fXY(x,y)dxdy (A.6)
AD .
z :

g
z+dz

2
ADz

N

Figure A.l: Regions in xy plane used to determine
: Fz(z) and fz(z)

k)
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Now iet x and y be two normal, independent random

variablesawith zero mean and egual variance. Thus their joint
density is

f,,(x,y) = exp{ -(x%+ y2?)/20% } (A.7)
XY 2mo?

~and define

BN

z ='g(x,y) =yx? + y?

(2>0)
- .

Using (A.5) we get

F,(z) =j[/' 1 exp{~(x?+y?)/20%} dxdy -
210?

D (A.8)
: z |
S

/

which is equal the mass in the circle z > ¢x%+y?
Let x = rcos6., and y = rsinb then
%2 + y? = r? \

and

‘ dxdy = rdrdé
(A.8) becomes

2n z

! ] F,(z) = 1 / exp{- r?/20%}rdrds
i , 2n0? '
| _ 00 o

=1 - exp{-22/20%}

o

i‘
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and £,(2) = & F,(2) = - exp{-z?/20%}  (2>0)

dz o .
. . (A.9)

K]
Equation (A.9) is also known as Rayleigh density [43].
Néw if (A.7) is replaced by -

W B
¢

exp{-l(x-a) 2+ y?] /20%}

foo(x,y)
XY 210

7

’, . —
-/ then fz(z) can be determined using (A.6). The region'ADz, shown

in Figure A.2, is

z <yYx*+ y? < z+dz _ (z>0)

dz ‘
f(x,y)=constant

zd¢

SO , Figure A.2

' B .
. o .o Id
L6

L By letting x =fzcose y ¥ = zéiné we have dxdy = zdzdsb.

Te

2

e 2R

ey
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Then applying {A.6) gives [43,44]

<

. 'fzle),'dz =/:/‘fx-Yﬂ(x,y) dxdy

.ADz |

N 27T . i -

. . n 2n0f
Thus ; 0

™

£,(z) = 2 exp{-(z2+x?)/20%) exp{zucose/02}°ae

“ ‘ 2ng? n
Byt ’ o .
‘ 27 -

o ¢ - xzn ' N

’ Iy(x) = exp{xcosfl}ds = E' X r—

21 n=0 22%(n!)?
Hence
= Z (2240t /26211 (2%
£,(z) = = exp{-(z°+af)/20%}14(=7) (2>0)
c o @
. (A.11)

Bquation (A.11l) was first ‘derived by $.0. Rice {44] so
it is also  known as Rice distribution. The Rayleigh distribution

(A.9) is a special case of (A.ll) witha =0

!

Now recall Figure 3.1 Y’

= 1 j;x;{-ﬂzcose-a)2+(zsin6)]/202}zdzd6




¥ bt et s <

. K . o
! ‘We rotate xy plane by an angle ¢ to have the new
coordinate x'§' with x' coinciding with;the fixed vector a.
The pdf of vector S is postulated as Rayleigh distribution.
Thus by (A.9)ls"and S; are nofmaliy distributed with zero
mean and.eqhal Qarianée 02.__Since §' is normilly distributed

SO 18 S;°= (a+S'). In this case we return to the distribution

"of (A.10) and the distribution of vector a is given by (A.1ll). -
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APPENDIX B,

DIVERSITY COMBINING' IN MULTIPLE FREQUENCY SHIFT KEYING

.

B.1 INTRODUCTION

In this section we d@termine the performance of M—ary‘
orthogonél signals transmitted err a Rician fading channel.
The MFSK signal on the several diversity éhannéls are preéuﬁedq
to be perturbed independently: by Rician fading and additive
white Gaussian noise. The diversity combining mgthbd is chosen
SO tha£ the receiver. performs a maximum likelihood test to
decide which one of the M frequencies was actually transmitted.

. | :
The optimum compining method is to square and add the detected

_ outputs of the correspondihg filters from each.diversity

channel and-then make a decision as to which one of .the frequen-

cies was’  sent.
»~ b
. ) ;] . X 2

7

4
B.2. ERROR PROBABILITY, FOR THE M-ary NON-COHERENT DETECTION

Without loss of generality we assume that signal one
' »
was transmitted. Let'xl bé the normalized aquared envelope

detected by the detector. °*The pdf of x, is
1 e T )
P1(x1) = —— expl (x1¥61) /1+6) I, V46:1x/(148) 7} ¢
B ‘ .

< - ‘ \
, a,
for x>0 (B.1)

- 1 .
=0 . . -elsewher
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‘where &, ip and B = 2020 as defined in-Chapter 3. If the
. order of dlver51ty is L then the other L (M-1) channel outputs

are noise samplef-yi-, i=1,2, 3,...,L with the pdf giver as

-

-

2
- L

14
s

)
o
x

o
=<

: . Pl = S S

')
otherwise

18
o

where k#i. Equation (B.1) and (B.2) c¢an be obtained by
P v .

transforming (3.22) and (3;15) respectively to a squaxed/;f

- ’ .

variable. Since the order is L, the decision variales are

>

\ £ n .
L . p
o X = Z »xj -t
: : 3=1 .
and’ '. ) e . . i :
LN (B.3)
Y= 2y ) .
=1 "’
. . - .
“and.,their pdf's are ) ' ;,“ s
; L-1 .
. O v
p ) = (148) 7 (x/58) 2 expl- xlfg} 1, ‘SBX ¥
: ' B.4
. YL_l ! ~' ( w )
pk(Y) = — exp(-Y) . 4
r(L) - | : A ‘

v‘ . '~ ~ " . r‘ ’ / I, 3 .

where - , s =1 2 at}/20? =" Y;
' * e . : i . l‘=l
'd ) ‘
- o S .
’ R Y = o?/20® = signalgto-scatter ratio
- ] % ' Y .
; L. R
: ' '

f
. v



and k 1,2,...,Mand T{L) is the Gamma function.
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The probability '-\ /

of correct detection is (14]-

P_(M,L) =/Ay',"(x){[ pk(Y)c_iY}M"ldx (B.5) .

0 . - 0
. ' : v -
Substitution of (B.4) into (B.5) gives N ) . ‘
@ » *
P_(M,L) ﬁ}r ~p1(x){jr YL_}/T(L)exp(-Y)dY}M-ldX
0 : y - 0. & .
oo ) p
which becomes . .
e L X n ‘
.PCI(M,L) .=/ P: (X){l-z (Xf/f!)exp(—x),}M-ldx T _ *
o . -0 Z:o . I)
M m M-I ' ' [
=Z(—1) { m ) pl(X) {[Z (XL/4¢ )exp(-x)} (B.6) }
. m=0 0 .|
but, [‘ m(L-1) | .
.o {Z (T-) exp?-—X)} = exp(mx') Z 3 Xy (B.7) °
. ‘ k=1 ’ °
. : . ' , ) N { ; . R ". .
by using multinomial theorem to expand the integrand. ! ck is [ .

the k~th coefficient in tﬁe expan31on of the summatlon in the

1 &

LHS[14,21] .
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Thus

m(L 1)

P_(M,L) ‘2: (= ll~(u- ./’xk exp{-mx}pl(X)dX (B.8)

Substitution of (B.4) intq_(B.?) gives (after rearranging)

' N-l
P:TM,L)'= &ss)l'L/2/<1+e)}exp{ se/1+s} > -n™.Mh.
(o] i / " ‘ ‘
c.Z;L/Z*k expl~ (X (L+m+mg) / (1+8) }1,_, {( fif;;z){’f}ax

(B.9)

Let X = 2%, (B.9) becomes

’

T M-l m(L-1) . ‘
(M,L) = M M1 ‘/C L+ 2k
P (M,L) = a &éé =" C Ty 2 2, |2

: exp{-i’(1+m+mh)((1+s)}'1 {(T%gﬁ%,) Vijdz  (B.10)
Where i .
1-L/2 I
A = 881 exp{-se/(1+e)}
(1+8) «

If we use the following result

v utv
™ re—=")
2 VP p o

<«

) o u—l" 0 .
. exp(-a’x?)x" " I_(bx)dx =
0

>

El

exp(b?/4a®)F(v+u/2+1,v+1;-b?/4a?) -
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J ¢
‘ = (a) n
where F(a,c;z) = Z; n,2
] n= (c)n n!
bn I' (b+n) -
I'(b) )
If we use (B.1l) in (B.10) and let’
: i
. a? = 1+m(1+B8) L
148 . .
b = 458
. (1+B‘)2
and ’ /
W+l = L42k
v = L-1
then the integration becomes -
e : { 4S8 }L‘-l p (L2141
/?U-l %xp(-azzz)l_\’(bz)dz'= 2\ (I+8) 2 .
o . pLmIHL LH2KF ML pp gy -
t " "SB -‘—‘—(458 2 "
(1+B) ° L-1-L+2k~1 . (1+8)
exp {4( 1 mimB )}F; 3 4*‘1,1104( 1+m+mg :
1+B 1*+8
[}
" (B.11)"

TR R S5 4T Ay
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\
1

IR RPN £ % s8 . T (L+k)
;g%(-l) ) 2;% k 14g =P T
" T(;ES)Z}L‘A _-s8 F(-k ,Lj——28
; b1 (s 2Lk exp{(1+a)(1+mfme)} o

ﬁ(L-l)

M-1
-1 I (L+k) mSg
= -n™ M LYK expd- .
ég% m E;% k* TH(L) { (1+s)(1+m+me{z
(1+8) ir , SB :
F(~k,L;- )
3 (l+m+mB)L+k

(1+8) (1+m+mB)

Now the probability of error is obtained as
A 5
Pe(M—L) =1 - PC(M—L)
by letting m=0 in (B.8) we have
B Po(ML)| _, = J[ py(x)dx "= 1
A
¢ - Thus . - ‘
M-1 '
P_(M,L)= 0™ Moy 1L _mSB
€ m= (=1 m ) {l+m+mB : fx%{ T+m+mpB }e
m{L-1)
- I' (L+k) 1+8 L \
' ! M . r‘LT. {l+m+m8 - F( L
' k=0 .

'<1+s)11+m+ms)’

. (B.13) '

(1+8) (1+m+mB)

After simplifying and substitﬁting (B.12) into (B\ll) we get

)

(B.12)
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Special cases
: A Led 1=1, i.e. no divjeréit /.j, (B.13) gives
-1.
. M-1 ( ) 2
U p ) = ¥ (D" P expf- B (B.14)
e 1+m+mB

m=0 ; 1+m+mf
/ ,/

If we wish to represent (B.}4) -in term of the average SNR, we

have to rewrite

|

E 2 2 -
Nb - (GN+20 ) Eb = (1+Y2)B
od od . )
B = 1 N___b . (B.15)
1+y? “oJd : '

. Substituting (B.15) into (A.14) gives back (3.31) and (3.32)

A

with A=1l. . , .

' 2
P



