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ABSTRACT

Dyhamié Behavior of Rotor Systems with a Comprehensive Model for the N

Hydrodynamic Bearing Supports Using Modal Analysis and Test{jisms
v ’ - TNe—
Rajagopal Subbiah, Ph.D. \ . ’

Concordia University, 1985

Rotors in many applications are mounted on fluid film bearing
supports. Their dynamic characteristics such as the critical speeds,
unbalance response, instability threshold épeeds and the change ofﬁﬁhirl
direction must be known in order to design a rotor system for safe
operation. In order to understand completely the dynamic behavior of
complex rotor systems, appropriate analytical and experimental studies
are carried out and the results are reported and discussed in this
thésis. The rotor syster is modeled using the finite elemerit formulation
and the modal analysis techniqug is used for analysis. ' Since the fluid
film bearing propefties are nonsymmetrical, biorthogonality relations
are used to uncouple the equations of motion. Modal reduz}+6; techniques
are adopted to reduge the size of system matrices. The effect of dis-
similar bearing clearances on the dynamic behavior of simple rotors ¢
mounted on two fluid film bearings is studied. The conditions for back-
ward whirl in such rotors are derived and verified experimentally.

" Rotational stiffness énd damping coefficients in f]ui& films when the
jéurnal is operating under misaligned conditions aré computed by solving
the appropriate Reynolds equatiohs using a finite difference approach. '
The behavior of rotor systeﬁs under randomly varying pedestal-base
excitation is also investigated. Modal testing is carried out on rotor
systems to identify the left and the right eigenvectors as well as other

relevanf parameters and the results agree in a qualitative sense with the

o
¥

‘iii" a'

-




PRSI R T RTINS TR ITERTT AR ey -2y o

/

a

Suggestions for future wérzg( are given, ‘

/

e x e,

Tt

i
3




P e - ERIPPUY S e s " e S T S u.,h.u.u.,i.,im&% .unz.w O T Hv.q_.muwm..wwum.ﬁ.ﬂ.%«} z&%%m%ﬁ%‘nﬂ“‘
R ~ s - - 4 - K e .
- , . R ¢
. - “
B - R 3
1 - - . * 1
. N - i
. Vs - - -
. - ‘e . - - X .
B 4 ) " - - - - . i
_ - ~
N - . .
- . . - ‘ - -
- a M
. % . . :
- - i . . R -
» , ° 3
. N A -
P
e -
" . . . : e :
B .. ’
- . - s -
' . s
.8 . e ~
W . . .
. S
, - ’ . : < . Ty - 's
. - [¥] , S
-
{ «
_ E
B - (=]
N . . . v B
[~ 4
, . <]
—
B =
T g
: .
. &
r . , © m
- B . o
. S
- o
. M » . - m
‘ B
-~ .
. . 14 o
. = =
- . . ‘ . Q
ks . - m
- <
(=]
—
(=)
. Ll -
- . = ) . . A
P , . ,
- - *
- N A ) - -~ - s
. B - - 3
ey, . g " . . £
= T ——
- - .
. y - . - .
. S -k
. R . i
. . - pre F.
- . - . ) b
> <
: - - . - B
N . . , « '
. - .
2 . - ’ : ., . \
- Kl a -
. - - N ? . * f
T ’
- , s i N n-
. [ . R . : .
- - P |




 ACKNOWLEDGEMENTS

The authdér expréesses his indgbtedness to his thesis_supérvisor
Dr. R.B. Bhat for“his excellent guidance, help énd encouragement during
the development of this thesis. His patience, understanding naturg and
technical excellence were the constant‘source of inspiration to the '
éuthor throughout the course of the2work: 'The author, also expresses his‘
sense of gratitude to the thesis co-supervisor Br. T.S. Sankar wh;
exposed the author to various'technicé1 problems in the\ggeld. Also,

the discussions and the support provided by himare deeply appreciated.

Helpful review and fruitful‘discusskons of the work by Dr. B.S.
Prabhu is gratefully appreciated. The valuable asgistance rendered by
Mr. P. Canzano in the author's expgrimeﬁfa] work,ithe impeccable typing
of the manuscript by Ilana Crawford-and Patricia Stewart, and the excellent

dra#ings by Messrs. Victor Woo and C. Voisard are acknowledged with gratitude.

JThe financial support provided by the department of Mechanical t
Engineering of Concordia University and the Natural Sciences and Engin-

eering Research Council of Canada is acknbwledged.

Sincerest thanks are due to my friends for their valuable help and

emotional support. ' -

This work would not have been possible but for the abundant
emotional support'and understanding of the author's wife Kala and
daughter Suki, throughout the course of this investigation. They were a

" constant source of strength and the author is grateful to them. »

-

-vi- -




ABSTRACT .~ . . - Rt

ACKNOWLEDGEMENTS L - "
TABLE OF CONTENTS | : ST

LIST OF FIGURES . C i

LIST OF TABLES . R ‘ xvi

NOMENCLATURE : | xvii

, CHAPTER 1 | -
"~ OBJECTIVES AND LITERATURE REVIEW

1.1 General Objectives ' - . o i

1.2)’ Literatyre Review ' . 3
"1.2.1 Rotors on Flexible Supports 4
1.2.2 Experimental Work on Rotor Systems 11 .

1.2.3 Response due to Base Excitations | ‘ o 12

1.3  Scope of the Present InveStigation o ~ :' ‘//13

TABLE OF CONTENTS

CHAPTER 2

DYNAMIC. BEHAVIOR OF A SIMPLE ROTOR SUPPORTED ON HYDRODYNAMIC BEARINGS
AND CONDITIONS FOR BACKWARD WHIRL IN ROTORS - THEORY AND EXPERIMENTS

2.] Mathematical Model and Analysis ’ jf.‘18
. . - B

2.2 Dynamic Characteristics ‘ - 29

2.2.1 Dissimilar Bearings by Variation (of Clearances 31

© 2.2.2 ‘Dissimilar Bearings byIVariation of Disk Positions , 36

2.3 Orbital Diagrams 39
"~ [ . A ’ ’

2.4 _kxpe mental ‘Work. . ' 46

) 2.4.1 Comparison of Experimental and Analytical Results 48

2.4.2 Analytical and Experlmenta1 0rb1§ Diagrams 51

2.5 Conditions of Backward Whirl for the Given Rotor " 56
! \ .

R 2.5.1 Backward Whirl in the Laboratory Rotor 61

-vii-

e oATH e T



2.6 Conclusions S 64

. CHAPTER 3 ° N .

DYNAMIC BEHAVIOR OF SIMPLE ROTOR BEARING SYSTEM BY MODAL ANA YSIS AND
MODAL TESTING TECHNIQUES

' 0 ‘ . . ‘

3.1 Undamped Systems . 66

3.2 Damped Systems . \ Co o 69
3.2.1 Proportioﬁa]ly Damped'Systems, ) 69
3.2.2 Non-Proportionally Damped Systems 69

3.3 Non-Symmetrical Systems Al

3.4 Dynamic Response of Rotor Systems Using Modal Analysi? 72

3.5 Dynamic Responses 79

3.6 Experimental Modal Analysis ' 87 y sy ’

N . "‘ y‘

3.7 Frequency Response Functions © C - 91 '
3.7.1 Damped Symmetric Systems \ i 91 -
3.7.2 Damped Nonsymmetric Systems ‘ .93

3.8 Modal Testing of Rotor Systems > “ ' 94
3.8.1 Experimental Scheme ‘ 95°
3.8.2 Numerical Methods : . 99
3.8.3 The Peak-Pick SDOF Method. . - ] 100 ‘
3.8.4 Circle Fit SDOF Method * 102 .
3.8.5 Configuration 1: Equal Bearing C1earances 107 .

(c, = ¢ = 0.0000533m) o
3.8.6 Configuration 2: 01551m11ar Bearing Clearances 110
(c, = 0.0000533m , c2 = 0.000188m) .
3.8.7 Conﬁguratmn 3: Equal Bearing Clearances 114 - ‘
(c, = = 0.000188m)
'3.9  System Stability . 4 ‘ ' ' 129 ' \)
- 3.10 Conclusions . « 134
CHAPTER 4

FINITE ELEMENT MODEL OF THE ROTOR SYSTEM AND STUDY OF SYSTEM STABILITY
4.1 Analysis ' . 136 -
~4.2 Rigid Disk Element ' 137 “
S eviite |




k

1

4.3 Shaft Element :
4.4 F]uig F{lm”BeariﬁES

4.5 Modal Co-ordinate Reduction

4.5.1 Rotor with Equal Bearing Clearances
(cy = ¢, = 0.0000533m)
4.5.2 Rotor with Equal Bearing Clearances
(C] =Cz = 0000188‘“) .
4.6 Stability Analysis
4.7- Conclusions

CHAPTER 5

FLUID FILM PROPERTIES DUE TO MISALIGNED JOURNAL IN FINITE CYLINDRICAL

BEARING *
5.1 Analysis
5.2 Finite Difference Method
5.3 Boundary Conditions -
5.4 Colum Method
5.5 Static Load-Displacements
5.6 Fluid-Film Dynamic Coefficients
5.7 Dynamic Response of Rotor
5.7.1 Case I: Equal Bearing Clearances
(c1 = ¢2 = 0.0000533m) °
5.7.2 Case II: Equal Bearing Clearances
(¢y = ¢z = 0.000188m)
5.7.3 Case III: Unequal Bearing.Clearances
(c, = 0.0000533m, c, = 0.000188m)
5.8 Conclusions

CHAPTER 6 C

EXCITATIONS
6.1~““T13e'History Response
L\
6.2 Response Spectrum Method

-fx-

Page

140
1‘44
145
155
155

158
165

166
171
173

174

175

181

189

198

201
201

204

THE STUDY OF THE ‘RESPONSE OF ROTOR SYSTEMS SUBJECTED TQ RANDOM SUPPORT

208

209

EERTE
P iy



© e R o R T

sz oo bl

-~ N ° »
6.3 .Spectral Density Method a . ; 21 . v
6.4 Mnalysis © U a3,
6.5 System Response . x | o E , 218\
6.6 - Conclusions. ~ c ) 8 T
CHAPTER 7. | . |
CONCLUSIONS AND RECOMMENDAT}ONi )
?'] Conclusions ‘ _ N ; ?40
7.2 Recommendations for Future Work ' i . 282 /
REFERENCES - L | 244,
' APPENDIX A ' o
BEAM ELEMENT MATRICES : 'B J 2%
APPENDIX B
REYNOLDS EQUATIONS FOR FLUID FILM b ,' '253r
—_ | APPENDIX €
STIFFNESS AND DAMPING MATRICES OF THE' FLUID FILM IN FINITE BEARING 261 .
APPENDIX D e ’
SUPPORT MASS AND STIFFNESS,MATRICES OF A ROTOR SYSTEM | 263
. ) w
~ - "
. .
-
N
b Y
-Xe g




2

2

2

2

2

2

2

2

2

2.10

2.1
S2.12

2.13

2.14

2.15

2.16

2.17(a)

2.17(b)

2.18(a)

2.18(b)

2.19(a)
2.19¢b)
3.1
3.2

~

LIST OF FIGURES

4 . .
v - - - o

- .
A Single Mass Rotor on Fluid-Film .Beam'nq
NormaTiéed Unbalance Résponse of Rotor -
Normalized Unbalance Response of Rotor /,
Variation of Peak Response of Rotor
Vartiation of Critical Speeds o%~R0£or -
Unbalance Response of Rotor
,Norma]ized Orbital Diagram at 1700 RPM

“Normalized Orbital Diagram at 2100 RPM ¢
Normalized Orbital Diagram at 2700 RPM ¢’,,/—”
Normalized Orbital Diagram at 2300, RPM

?

" Normalized Orbital Diagram at 4000 RPM  ©

~

Schematic Diagram of the Experimental Facility

Unbalance Response of Rotor , S ;,/,‘r"<
Unbalance Response of Rotor J
Unbalance Response of Rotor
Unbalance. Response of Rotor
Experimental Orbital Diagram
Theoretical Orbital Diagram at 2350 RPM
Experimental Orbital Diagram with Dissimilaf Bearing

s Normalized Orbital Diagram with Diss%milaf Bearings
at 2475 RPM
£ N

Theoretical Orbital Diagram of Rotor at 2500 RPM
Experimental Orbital Diagram of Rotor at 2500 RPM
Unbalance Response of Rotor in the Individual Modes

Normalized Orbital Diagram at 1700 RPM .

-Xi-

- +34

35
18 -
40

41 |

43

44
45

47
29
50
52

- 53
54
55

58 -

62
63
81,

83




Figure - 3 Page
- q 'Y

3.3 Normalézed Orbital Diagram at 1700 RPM (Modes - 84

Correspond to the Complex Conjugate of the ¢ °
Eigenvalue in Figure 3.2)

3.4 Normalized Orbital Diagram at 2100 RPM . 85
'3.97 Normalized Orbital Diag¥am at 2700 RPM / 86
3.6 Normalized Orbital Diagram with Dissimilar Bearings ’ 88

at 1800 RPM . -~

3.7 Normalized Orbital Diagram with Dissimilar Bearings 89
‘ _..at-2300 RPM ~

3.8 Normalized Orbital Diagram with D1ss1m1]ar Bearings 90
: "at 2700 RPM
3.9 Exper1menta1 Set-up of a Rotor-Bearing System ' 96
3.10 Test P01Kbts of the Rotor Bearing System " ' “ 97

3.1 = Frequency Response Matrix ' ‘ 98

7 ’ v

3.12 FRF Curve for a Second Order Simple Linear System 101
0313 Circle Fit Method 105
3.14  Measured Frequency Response Plot of the Rotor Along 108

Y-direction, w = 0
3.15 Measured Frequency Response Plot of the Rotor Along 108
Z-direction, w = 0
3.16 Measured Frequency Response Plot of the Rotor Along 109
Y-direction, w = 33.3Hz
3.17 asureéuFrequency Response Plot of the Rotor A]ong . 109
- Z-di rectwm, w = 33.3Hz
'- 4

3.18 Unbalance Response of Rotor . 1
319 ) Measared Frequency Response of Rotor in Y-direction : 112
3.20 P'eq§ured Frequency Response of Rotor;in Z-d1rect1on “ 2.

’ " 4 , .
3.21 Unbalance Response of Rotor 113
% 3.22 Comparison Plots of/Ge;erated and Measured Frequency 115

Response Function

’

%y

-xii- K



L YT N

.~

(5,

(3 I Y . T T - T ~ S -

.25
.26
.27

.28
.29
.30

.31
.32
.33

.34

S ow N

W

“
A
[

First Mode Shape of the Rotor Corresponding to the
Y-X Plane (obtained from left eigen vector)

First Mode Shape of the-~Rotor Co'respondin to the
Z-Y Plane (obtained from left eige vector?

‘-.
.

4

Mode Shapes Shown in OrtﬁogonaT P1drEs -(Y-X Plane)

" Mode Shapes Shown in Orthogonal Planes (Z-Y Plane)

First Mode Shape of the Rotor Corresponding to
the Y-X Plane (right eigen vector)

First Mode Shape of the Rotor Corresponding to
the Z-X Plane (right eigen vector)

Mode Shapes Shown in Different Orthogonal Planes
(Y-X Ptane)

Mode Shapes Shown in Different Orthogona{ Planes
(Z-X Plane)

?
Analytical Unbalance Response of Rotor
Stability of the Rotor System '

Orbital Diagram of the Shaft Location Obtained for
a Rotor Speed of 4100 RPM .

Sgability of the Rotor(System '

Schematic Diagram of Rotor Rotational Angles

and Velocities 0

Beam ;inite Element,

Component Discretization of a Single Rotor System
Unbalance Response Plots of a Single Disk Rotor
hnbalance Response Plots of a SingTEJDisk Rotor
Unb%lance Response Plots of a Single Disk Rotor
Flexible Rotor on 0il Film Béarings ®
Cross Section of the Journal

Inclined Journal in Bearing

Finite Difference Grid Mesh

-Xiji-

Pag

116

117

118
119
120

121

122

123

128
130
132

133
138

141
146
156
157
159
160
168
168
172




Figure .
‘5.4

5.16
5.17
5.18
5.19

*5.20
5.21
I 5.22

Measured Bearing Clearance and Static Equilibrium -
Curves' of the Circular-Cylindrical Bearing:
Comparison with Theoretical Values

Relationship Between Sommerfeld Number and Eccentricity

Ratio (for 4" dia. bearing)

Translational Fluid Film Stiffness Co-efficients
(collinear) ’

Translational Fluid Film Stiffness Co-efficients
(cross=coupled) p

Translational Fluid Film Damping Co-efficients
(collinear)

TransTational Fluid Film Damping Co-efficients
(cross-coupled).

Non-dimensional Stiffness_ﬁo-efficients
Non-dimensional Damping Co-efficients

Rotational Fluid Film Stiffness Co-efficients
(collinear) /

¢

Rotational Fluid Film Stiffness Co-efficients
{cross-coupled)

Rotational ?1uid Film Damping Co-efficients
(collinear)

Rotational Fluid Film Damping Co-efficients
(cross-coupled) )

Non-dimensional RotFtiona] Stiffness VS Eccentricity
Ratio :

Non-dimensonal Rotational'Stiffness VS Eccentricity
Ratio

Non-dimensional Rotational Stiffness Vs Eccentricity
Ratio P

Non-dimensional Rotational Stiffness VS Eccentricity
Ratio o

Coupled Stiffness (F/6) Co-efficients
Coupted Stiffness (M/x) co-efficients

Unbalance Response of the Rotor

_xjv-

a

183
184
185
186
187
188
190

191

192

193

194
194
195

195

196
197

200

A R A s ...



6.3
6.4
6.5
6.6
6.7

6.8
6.9

6.10

T e
g
- .

‘éamplitude Spectral Density Distribution due to.

Unbalance Response of the Rotor

Unbalance Résponse of the Rotor

* Unbalance Response of the Rotor Mddel-1 of [14]

Support Model

Amplitude Spectral .Density Distribuf%on due to
Support Excitations (Z-direction) at the Bearings

&of Rotor 1

Amplitude Spectral Density Distribution due te
Support Excitations (Y-directijon) at the Bearings -
of Rotor 1

Amplitude Spectral Density Distribution due to
Support Excitations (both Z and Y directions)
‘at the Bearings of Rotor 1

otational Support Excitations (@-direction)

Jat the Bearings of Rotor 1

123
Amplitude Spectral Demsity Distribution due to
Rotational Support Excitations (6-direction)
at the Bearings of Rotor 1
Normalized Unbalance Response of Rotor 1
Two Disk Rotor-Bearing System (Rotor 2)

Amp]itude\Spectral Density Distribution due to
Support Excitations (Z-direction) at Bearing 1

v 4
Amplitude Spectral Density Distribution due to .
Support Excitations (Z-direction) at Bearing 2

Amplitude Spectral Density Distribution due to
Support Excitations (Y-direction) aﬁ Bearing 1
P .

Amplitude Spectral Density Distributiion due to
Support Excitations (Y-direction) aT*Bearing 2

: | |

(

-XyY~-

223

224~

- 226

227

229
232
234

235

(\\-

. v A Mo | ..



3
5 »

ey oz’
*

o A RS

——

% .

e g T YT Am»x.’-:?%ﬁ'{.g‘g

v A ¥

Table

2.1
2.2
3.1

3.2
3.3
3.4

5.1
6.1

6.2

LIST OF TABLES

Details of Rotor
Details of Rotor

Modal Parameters of the Rotor System
(Original System) .

Modal Parameters of the Rotor Sysiém‘

(Original System)

Modal Parameters of the Rotor System
(Transposed System)

Modal Parameters of the Rotor System
(Transposed System)

‘Rotbr Configurations

Details of Rotor 1
Details of Rotor 2

124

125

PN
PERR 1 (VN

t
E
.




N

a

(c]

Cps €,

Ca, ‘ CB. 'CY
S

rr rr rr rr
“yy, S22 Fyz* “ay

tr tr tr tr

Cyy € zy

rt .rt _rt rt
ny' ¢ 7’ cyz czy

22’ Cyz' ¢

Cyy* Cz2°Cyz*Czy

-

(k]

tt tt tt Lt
Ky
Kyt Kz v kg

NOMENCLATURE

disk eécentricity
system damping matrix
clearances at the left and right end bearings

shaft damping at the disk locations

collinegr end cross coupled fluid film damping
coefficients due to translational velocity of the
Jjournal

col]inear and crosscoupled fluid film damping
coefficients due to rotational velocity of the
journal

coupled damping coefficients of the fluid film

nondimensional fluid film damping co-efficients

damping of the pedestal structure

eccgntricity of the journal o :
excitjn§ force vector

gyroscopic matrix of the element 

resultant oil film thickness

o1l film thickness due fo static displacement of
the journal .

=T

Ssystem stiffness matrix

coi}inear and cross coupled fluid film stiffness
coefficients due to translational displacement of
the journal

4 -xvif-



PR A,

ktr. ktr' ktr’ ktr

rt rt rt
k kyz k

¢
coupled stiffness coefficients of the fluid film

?
"

nondimensional fluid film stiffness coefficients

* [4
bending stiffness of the element

stiffness of the pedestal structure

total length of the rotor shaft

distances to the disk from the left and right ends

of the bearings

system massomatr1x

rotary and trans]ationa]iinertia mairiﬁes
mass of the disk

mass of the pedestal structure

oil film pressure

static ﬁressure of the fluid

~

fluid film pressures due to the displacement of t}g_,

Jjournal .

«

fluid film pressures due to the velocity of the
Journal

nondimensional pressures. -

L]
generalized displacement vector
geﬁera]ized support displacements

generalized displacement at the bearing supports

‘generalized relative displacements

fluid film presssures due to the bending of the
Jjournal at Y and Z axes

fluid presSures due to velocity of the journa1
in bending about Yand Z axes - i

maximum unbalance response‘of‘rotbi,

-xvifi-

#



'

-t

X

yo?‘?o

Yis Yas» Iy 2,
»

yp' yb’ zp’* ;b

Aoi» Aoi

g

>
5.

E
‘Ep
RIANE
- {F}
. FYy’ Fz
’ Fyo’“on
H ' S,
H(jw) -~
[
IO 5
Id’ Las<
E ?p’ Ips
/ «
1,1
Pxx  Pyy
[K]

. axial coordinate of the journal .

‘idéntity square matrix

unbalance response at the disk location

‘time N

.deflections of the rotor at the disk locations
d(§51qcement of the rotor at the bearing locations

‘ﬁedestal and base displacements

j-th forward and backward modal displacement
vectors i :

overa}l system.damping matrix

bearing diame

"dissipation function

Young's'hodulus

error function

‘§-th forward and backward modal force vectors

overall exciting force vector
bearing oil .fiIm forces along Y and Z directions

fluid film forces along Y and Z directions under:
static equilibrium conditions

nondimensional fluid film thickness

comple‘x.frequency response fuﬁétion i :

1

- M.I..of the cross section of the shaft .

transverse mass mdment‘of'inertfa of disk and
shaft elements

polar mass moment of inertia of disk'and
shaft elements .~ N L

" -pedestal mass moment” of inertia about Xand Y’

directions

overall system stiffness matrix .
N , .

’ -xix- . - 3

' 4 k .
R . .
" AN . .
o . - N N . .

2
%
¥

e,




e o

B e e B e e

w"'\mg;/’

L bearing length

L - . Lagrangian ' - )

[M] ' overall system mass matrix

My, MZ béaring fluid film moments about Y and Z axes - -
N | . speed of the rotor . g
N, and N, - shape functions I

Q - ~ .overall displacement vector

R » radius of the bearing

Re radius of the cross section of the elemen;

3 Sommerfeld number = (aNoL/W) (%)

SF ‘ . input po;er spec;ral density

SR - output power spegtral density

Te transpose of

T kinetic energy -~

U translational displacement of the é]ement of the

rotor shaft in Y direction G
V. translational displacement. of the element of the
rotor shaft in Z direction

v potential energy | _
W B static load at the bearing \\L;

X,Y,Z . | ‘ coordinates of the rotor system

a By Y ' shaft stiéfnesses at the disk location

@ ) -, force per uﬁit displacement

a¥*- ' K::cha

B . nt per unit displacement

B angular coordin&te of the journal
B, ' attitude angle of the journal |

8, (8- 8,) i

- XX ’ 14

fwge . f

Fom

SRR A T an nF 2V

.
*:.:‘ . “‘h“‘}i&é’*ﬂ&;ﬁ’i@%ﬁﬁﬁ N -



t
.- )M/Mw.‘ 2,

vy

ET LT i BT T AT

s RN O

|

A e

-

force per unit angular displacement

. .
whirl ratio "y v

%-, eccentricity ratio

i~-th modal displacement

angular disp]acément of the shaft about Y
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local devi;tional anglesyat the disk

i-th eigenvalue
- (1 - g
i-th generalized mass

mass of the uniform beam element/unit length
i-th complex eigenvector of the transposed system

i-th generalized force vector of the nonsymmetric’
system

angular displacement of the shaft about Z
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j-th complex eigenvector of the original system
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co-efficient of viscosity of ol
1-th generalized damping ‘;
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CHAPTER 1

OBJECTIVES AND L RE REVIEW

1.1 General Objectives f///,

Rotors are used in a1 mach1nery, whenever power is trangm1tted

AY

from one point to another., Rotors are rotating shafts with c0ncentrated.
masses such as disks, {;;e11ers etc., supported on stationéry structures

called bearings. Thgse bearings can be either rolling element type such

~

as ball or roller beq#ihgs or journal bearings with a fluid film sep-

_arating the annular area between the jourpal and the bearing surfaces.

~ The rotor $ystems are mainly classified as (i).light rotors and (ii)

heavy rotors depending upon the applied loads and the type of operation

they are subjected to. Again, on the basis of the geometrical config-

" urations, they are further classified as simple Systems and large rotor

systems. .Heavy rotor systems such as generator rotors are generally
supported on fluid film Bearings. _With the increasing trend towarq;¢
the concept of lighter we%ght‘compongnts in structures, tﬁe weighé?of
the rotor can be reduced either by resorting to differen; geometrical
configurations or by adopéing different matérials.- ghen all other .
geometrical parameters of a rotor remain the same, réduction in weight
of a rotor will make it flexible and thereby brings down the critical

speed of the system. a

The design of a rotor system must consider several aspects such
as critical speeds, peak unbalance response, regions of change of whirl

directions and 1nstab111£y. The hydrodynamic bearings, on which the

rotors are supported, exhibit asymmetric cross-coypleﬂﬂ?tiffness and
. s [ “

damping properties which vary with the speed of operation. Such
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properties infﬁuénce the dynamic behavior of rotors significantly.
Even though, other aspects of rotors such as rotating inertia, shear
deformation and hysteresis damping etc., influence the dynamic behavior
of high speed rotors, the majordesign parameters are in fact, control-
led by the support suspension and hence play ‘a dominant role in
€

the design of rdtor systems irrespective of thei; classificationg.

Because the fluid film bearings influence the dynamic behavior
of the rotor system, it iswhighl& essential to have a realistic rotor- )
bearing support model for analysis. Fluid film bearings, in fact are
nonlinear in nature and the resulting noniinear model 15 most involved.
However, the nonlinear model‘is meaningful if the dynamic behaxior %pﬁ
the rotor systems is required at or near the critical regdons. Most-;¥\
the practical rotors operate well beyond these critical regions and the
response. behavior in these regions can be predicted using a linear model.

Hence, it is reasonable to proceed with the linear model of the bearing

support to analyze the rotor systéﬁ*behavior. -

The response analysis by most of the researcﬁ;>§_was carried out’

assuming the linear bearing model with fluid film translational stiffness

) and damping co-efficients. When the rotor is flexible or when the

support span’ is large, the tilted or inclined journal provides rotational
stiffness and damping efféctf in the fluid film about transverse axes of
thefrotor. Hence, it is important to include %he rotational springs and
dampers along wfth translational springs and dampers in prder to repre-

sent an accurate bearing support model.

The fluid film bearings which support the rotor, are in turn

mounted on support structures such as pedestals which possess definite

o N
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stiffness and damping properties. A support model is complete if it
includes the pedestal properties aiso. The responsq’oﬁ\rotérs arising
out of unbalance excitations éﬁn be predicted using a deterministic
analysis. In some situations, the excitations to the system come
through the supports and they may not always be detemministic. Under’

9

such circumstances, thg deterministic method of evaluation of response
h

is not sufficient and hence statistical methods muéi be employed. - .

The objective of the present investigation is to obtain a compre-
hensive model for the fluid film bearing supports so as to include it %n the
finite element model of rotor system to study its dynamic Sehaviori For a
large rotor system, the size of the system matrices become very large
and hence they are reduced using a modal reduction technique. The re-
sulting equations are solved by a ﬁbdal ana]ysis\brocedure which provides
all the relevant system parameters. : . ;

ra

1.2 Literature Review %

Several studies on the dynamic behavior of rotors supported on
fluid film b@%rings are reported in literature. Those contributions .
which are pertinent to the present investigation are discussed in

SR

Sections 1.2.1 to 1.2.3. .

Section 1.2.1 deals with the different modelling and solution
methodoloéies aLopted to predict the dynamic behavior of rotors supported
on identical an# dissimilar hydrodynamic bearings, the 1nvestigat1ons
about backward whirl, different procedures involved on the evaluation
of dynamic fluid film co-efficients in inc]fned—journai bearigas and the
;;;bility analysis of rotor systems. The sectian 1.2.2 covers the

various experimental contributions in the area of rotor dynamics. It
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deals with the conventional methods as well ag the modal testing tech- ‘
niques in order to determine the dynamic parameters of the rotor-bearing

systems. The sgction-].2.3 is devoted to the stochastic response of

¥

rotors subjected to random base excitations.

\

1.2.1 Rotors on Flexible Supports
&

The rotor system consists of several subsystems such as bearings,

mechénipal couplings, imp§1lers, detachable rigid or.flexible disks and
support pedestals etc. Each subsystem has a definite influence on the
dynamic behavior of rotor systems. Hence, accurate modelling and probeﬁr
articulation of subsystems are essential to achieve better results.
Accordingly, there are quite a few modelling methods available depending
upon the type of rotor systems, such as (i) Jeffcott rotor model which
is essentially a single hass mounted on a'shaft supported on bearings®
(i) lumped parameter mode!lSnd (iii) finite eleﬁgnt model with dis-
tributed system proberties. Similarly, there«are’ different so]ut%on
procedures available to solve the resulting equations obtained by

different models. The solution procedures ares (i) direct method, fii)

4
" transfer ma{iix method and (iii) modal analysis. The review covers

variouys model1ing methods and the solution procedures.

! . One o{?}bg earlier works on the prediction of critical speeds of
rotors in?roducing“ﬁ simple model was by Jeffcott [1]. In ‘his work,
the rator system was modelled as a-single mass mounted on a shaft suppor- «
ted’on identical bearings and the resulting equations of motion were

solved by the direct method. Prohl[ 2] extended this method to calculate

' tﬁé critical speeds in flexible rotors based on a technique developed by

Myklestaa [3) ta calculate the torsional natural frequencies of airplane

A
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wings. Bishop and Gladwell [4] studied the behavior of simple rot;rs

using a lumped mode. This rotor model was improved upon by Green [5 to in-
clude the gyroscopic effects on the critical speeds of simple rotor:
systems. Eshleman and Eubanks [6] studied the effect of shaft phenomena
such as axial torque, gyroscopic moments and transverse shear on critical
speeds of rotor systems. Their coqsribution is basically an extension

t

of work carried out by Tondl [7].

- Unbalance response of rotors was studied by several researchers.
Yamamoto, Ota and Kono [8] obtained the unbalance -response and critical
speeds using 'a simple rotor with unsymmetrical mass properties at the
az;x. An asymmetrically mounted rotor on dissimilar fluid film bearings
was investigated by Ardayfio and Frohrib [9]. However, the cross-
coupled stiffnesssand damping of the fluid film were not included in
the bearing model. Rao [10], Rao, Bﬁat and Sankar [11] employed the
Jeffcott rotor model to obtain simple expressions for the unbalance
response and critical speeds of rotors mounted on fluid film bearings

and solved them by the direct method.

e

The earliest work using transfer matrix method on the rotor system was

by Myklestad [3] for findiﬁg out the unbalance response and critical
speeds. He used cantilever ?eam theory in his apbroach to formulate the
point and field transfer matrices. L?ter, Kramer [12] used this ;tch-
niqLe to study the dynamic response of rotor systems. Lund (13].also‘
followed this approach to determine the dynamic parameters of flexible
rotor system. Kikuchi [14] solved a multi disk ro;or problgm resorting

to sthe transfer matrix technique. Rgéently. Ra# [15] has analyzed the rotor

systems using time marching transfer matrix technique.

\
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Modal analysis is another solution procedure which is widely used
by several investigators to study the behavior of rotor systems. Gunter,
\ Choyﬁapd AHaire [16] used the planar modes of the undamped ro,tor.
systems ignoring the effects of disk gyroscopics and cross-coupled bear-
ing properties. Also, Berthier, Ferraris and Lalanne [17] employed
modes of the rotor at rest to study the behavior of rotors ’usanga finite
\. element model. Due to the presence of significant damping in bearings, .
the modes are not planar and due to the nonsymmetry in stiffness and
damping matrices of rotors supported on Flyid film bearings, the mc;des
" are not orthogonal to each other. Hen‘ce, horthogonah’ty relation
Letween the modes of‘ the originad system and those of a transposed
system is essential to uncouple the eguations (of motion. Lund [18],
Saito and Azuma [19] used this technique to study dynamic
behavior of flexigle ‘rotor systems. Childs [20,21] developed a modal
simulation model for flexible asymmetric rotors in order to evaluate the
dynamic characteristics of rotor systems. Glasgow and Nelson [22]
adopted. a component mode method in conjunction with complex mode analy-
sis. Bhat [23] employed the modal analysis: technique for simple rotor
systems ‘with ndb damping.. He showed that even in the absence of physical
_ damping, the rotor exhibits a pseudo damping when one of the cross-
“coupled bearing stiffnesses becomes negative. Bhat, Subbiah and gdnkar
[24] developed a rotor model @\nd emp]oyed moddl analysis in order to get

o

" the dynamic responses of a rotor supported on dissimilar hydrodynamic
bearings. TheB d1ssmﬂar1ty was obtained by having different clearances
and by hav1ng dlfferent luads at the bearings. They also obtained rotor
whirl response at the bearings and showed that it is important to see .

. " that the rotor response at the bearing must be much smaller than the

%
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bearing clearance in order to validate the analytical predictions obtain-
ed using a linear model. If not, the nonlinear fluid film co-efficients

must be employed in the study of the rotor dynamic behavior.

Finite element techniques are ¢onvenient to model complex rotar
systems consisting of several disks, imbeﬂers or mechanical couplings
etc. Ruhl and Booker‘[25] and Nelson and McVaugh [26] used finite
element methods to evaluate the dynamic characteristics of rotors. In

+.. their approach, the rotor was discretized into rigid disk elements,

shaft elements and bearing elements. The resulting equations are

solved by a direct method. Subsequent studies [17,27,28,29] included the
effects of internal d;mping, axial torque and hysteresis damping etc. '
of the rotor in mofelling the rotor systems using finite elements. The
.resulting equations obtained from the model, form.large size matrices énd
“are difficult to handle in digital computers. Nelson and McVaugh [26],
Craig and Bampton [30] and Rouch and Kao [ 31] employed reduction techniqﬁes
to reduce the matrix sizes as proposed by Guyan [32]. More recently,
Ookuma and Nagamatsu [33] developed a multiple mode synthesis method to
reduce large matrices of a symmetric structure with less menbry size
than used . in,a component mode synthesis. However‘,l the system damping

+ is not included in their approach. In the present investigat(on. the
method of Qokuma and Nagamatsd is extended to reduce large rotor-bearing

system matrices by means of modal reduction procedure.

YN The industrial rotorg 3t’ﬁé"t are mostly supported on hydrod}namic
bearings, sometimes exh-‘ibit:‘; c_hange of rotor whirl direction depending
on the variable bearing‘parameaters and the operating conditions.
Consequently, the“direction of whirl changes from a forward vwhir]

t0 a backward whirl. This change of whirl in the
r

- ol b i s et ————
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6perating speed range is not desirable for safe operation of rotor
systems. Hence, a proper design of the rotor systems should take this
factor into account in order that the operating range do not fall

in the region of whirl change. Earlier work on this aspect was by

Green [5]. Yamamoto [34] presented a major contribution to the study of
critical "speeds in which the phenomena of forward and backward whirl

due to gyroscopic effect was reported. Other excellent contributiops
[35-37] on the whirl aspects were due to shear deformation and disk
flexibility etc., of the rotor systems. For a simple rotor supported

on hydrodynamic bearings, Glifnicke [38] experimentally proved that

the critical speed‘of the rotor in the synchronous whirl reégion is often
split up into two critical speeds. Kellenberger [39] also developed an
;na]ysis_to corroborate Glienicke's results and found that in certain
cgnfigurations‘of the rotor, the backward synchronous whirl mode was
excited in between the split criticals. Rao [40] derived the.coﬁditions
for a forward or a backward whirl in a simple rotor supported on fluid
filp bearings. waever, conditions for the occurrence of backward whirl
are.not clear and such a study has not been carried out exclusively.
Hence, in th?ébresent investigation, the conditions of occurrence of back-
ward whirl are developed apalytically to observe backward whirl in

specific configurations of practical rotor systems.

/
Another important parameter to be analyzed in rotors supported on

hydrodynamic bearings is the self-excited instabilities. The literature

contains numerous work carried out on this aspect of instability of
rotors arising from various causes. A few of them which are relevant

to the present work is referred to in [41]. In the earlier reports, Newkirk

[425’?pund the shaft disturbances due to fluid film in journal bearings.

N
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He expTained the cause of half-frequency wﬁirl in fo?y?s. Morrison and
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Patterson [43] presented an approach to describe the/stability threshold
of symmetrical two-bearing flexible rotors. Othec/éotable publications

on instability of rotors due to oil film are by/ﬂégg (44], afid Robertson
[45]. The above works were frequently referredxto and the various effects
that lead to rotor 1nstability were presente7/;y Gunter [46].

Rao [47], Reiger (48] and Lund [49] adoptjg/different methodologies to
arrive at the threshold speed of fnstabi}ity in rotaors. More recently,

a series of works by Iwatsubo and Kawaj/[SO] is reported on stability
evaluation of a multi rotor system sdéported by oil film beariégs usin§
energy concepts. In the present work, an instability study is carried out

for a simple rotor on hydrodynamﬁc‘bearings along the lines of Rao [47]

and Reiger [48] in order to vérify the threshold speed of instability

obtained pefore by the moQéﬁ analysis method.
: /

In rotor dynamics; most of the andlyses were carried out assuming

/

aligned conditions and considering only the linear force stiffness and
damping co-efficients in the hydrodynamic bearings [51-53]. These dyn:
amic co-efficients are obtained by solving the appropriate Reynolds
equations [54,55]. When the rotor shaft is flexible or when the support
span is lqrge, Jjournal tilt at the bearing supports is inevitable and
hence 1t is essential to include the moment stiffness and dampind
co-efficients about transverée axes at the bearing locations due to the
time vary?@g inclination of the journal at the bearings. This leads to

/

an improyéd model of the rotor system by includin
/

rotational springs

) )
and dgmpers together with the translational spring$ and dampers at the

beaxﬁng supports. Kikuchi [14] evaluated the rotational fluidr film

~

/ .
9b-efficients of the plain cylindrical bearings using a“shart bear}

¢

(e ¢
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approximation. Bannister [56] calculated 28 fluid film co-efficients
mak ing use‘of the experimentally determined tilt ratios for 120°

partial arc journal bearings. He studied the influence of nonlinearity
of the oil film on the response of the rotor system by iqtroducing the
misalignment only in the vertical plane. Hashish [57] developed a non-
linear bearing model using finite efements in order to evaluate the
bearing dynamic co-efficients. The response behavior of flexible rotor
systems with nonlinear stiffness characteristics had been investigated
by Black and Brown [58]. They found that the effect of nonlinear hydro-
dynamic forces fs to reduce only the peak mid-span response to 30%
compared with linear predictions. At all other regions, except the
critical region, the responses obtained by both Tinear and.nonlinear
models are almost the same. Hence, in rotor-bearing analysis, it is
essentiél to identify the critical regions and avoid them. A linear
analysis is good enough to provide this information with simple analyti-
cal proceddres.~ Mukhérjee and Rao [59] evaluated the stiffness and
damping film co-efficients due to the inclined journal by so]Qing the
appropriate Reynolds equations using Fedor's proportionality hypothesis.
A Eomparison of their results with those by Capriz [60] obtained for

a finite bearing showed considerable discrepancy for higher eccentrici-
ties. Pafelias [61] evaluated 32 fTuid film stiffness and damping cé-

efficients for misaligned partial arc journal bearing.

In the present investigation, a simplified approach is carried out
in order to evaluate the collinear and cross-coupled transiational and
rotationat fluid_film co-efficients for small perturbations around the

mean position of the journal using a finite bearing model. The resulting

equations are formulated using finite difference mesh [55] and solved by the

i
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column method [62,63]. The linearized model for the bearing is thus
improved by including the properties of rotational springs and dampers

along with the translational springs and dampers:

-

1.2.2 Experimental Work on Rotor Systems

Compared to the several anaiytica] studies availablé for the rotor-
bearing system in the 1ite}ature, very few exper%menta] 1nvestigatjons are
reported. VOne of the earlier reports on the response of rotors using
both ana]yticé] and experimental methods was by Yamamoto [34]. He

‘ \ﬂ\\\g\//fgtudied the vibrations of a rotor system supported on ball bearings.
Downham [64] verified experimentally that there were two critical
épeeds in asymmetrically supported rotor systems. He found that the lubri-
cant had a stiffness effect with a consequent increase in critical whirl-
ing speed. Hull [65] investigated whirls of round and flattened shafts
whereas Lund and Orcutt [66] conducted a combined analytical and experi-
mental study of the test rotor, a uniform flexible shaft with disks,
supported in two silicone fluid-lubricated tilted pad bearings. They
found that peak vibration response did not always occur at the calculated
damped critical speed. Cunningham [67]§bresented the experimental data
for the unbalance response of a flexible, ball bearing supported rotor.
He compared the values of squeeze film damping co-efficients obtained
from measured data to those of theoretical values. In the present
investigation, tbe unbalance response and critical speeds of a simple
rotor obtained by the analytical method compare very well with the corr-
esponding experipental results obtained for a laboratory model rotor

supported on hydrodynamic bearings. ‘ , .

@
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Recent developments in the measurement techniques and computing
technology make the evaluation of dynamic parameters simple by resorting
to modal testing methods and turn the conventional experimental methods
obsotete. The modal testing of a structure is carried out by measuring

the relevant gross parameters of the structure by experiments and using

ot

" them ig’a different mathematical model called "modal model”. This

method provides reliable characteristics of the structure. Even thaugh
numerous studies have been carried out on symmetrical stationary struc-
tures using modal testing procedure, very 1ittle work has been reported
regarding non-symmetric or rotating structures. Klosterman [68] iden-
tified the modal parameters of stationary beam structures. More re-

cently, Nordmann [69,70] identified the modal parameters of an elastic

~shaft supported on fluid film bearings. In the present work, a compar-

ative study is carried out between the analytically obtained natural
frequencies of the system and those obtained by modal testing procedures

for a simple rotor supported on identical as well as dissimilar bearings.

1.2.3 Response due to Base Excitations

When the excitation considered in the rotor syStems is due to mass
unbalance, it is a single frequency excitation and the response is
large in the vicinity of critical speeds. However, when the excitation
is from outside sources, such a§ in the case of support excitations, it
can be a single frequency type or random, involving several freqdencies.
If it happens to be raridom with considerable power distributed at several
frequencies, the system will also respond at those frequencies. Partic-
ularly, if one 6f the system natural frequeﬁcies of the rotor coincides
with the excitation frequencies, the resulting response may be quite

significant and of concern. Ruhl, Conry and Steger [71] developed an
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elastic half space soil model of the rotor-pedestal-foundation system
and analyzed the deterministic characteristics of the rotor. Bhat [23]
7 »
used modal analysis to study the response of an undamped simple rotor

mounted on fluid film bearings and subjected to deterministic excita-

tions at the supports. Some other notable works of support motions are

reported in [72,73]. But, base motions occuring in nature are not always

deterministic. For exampie, structures installed in regions of Tow or -
moderate seismological activity are subjected to base/ground excitations
which are random in nature [74,75]. Hence, the response of rotors
subjected to random base motions is of considerable importance. Boyce,
Kozik and Parzen [76] developed probabilistic design criteria for a
class of unbalanced rotors subjected to foundation forces. Lund [77]
carried out response spectral density analysis of rotor systems due to
stationary.random excitations of the base, considering excitations only
in the vertical direction. Further, Tessarzik, Chiang and Badgley [78]
conducted experiments on turbo-rotor system subjected to support random
excitations. When base excitations are random in nature, statistical
methods must be used to evaluate the response of such rotor systems.

In the present work, the power spectral densities of rotor response are
obtained when random support excitations in various degrees of freedom

of support structure are input to the rotor system.

Some of the work€ reported in this investigation are published

and they are reported in References [79-81].
™

1.3 Scope of the Present Investigation

The objectives of the present investigation are:
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(i) To develop a comprehensive support model for rotor-bearing-
pédesta] systems by introducing the rotational springs and gampers in

the hydrodynamic bearing model.

(i1) To obtain the unbalance response and the response due to

random base excitations using the finite element model of the rotor.

(iii) To.carry out modal testing of the rotor mountd® on fluid .
film bearings, and compare the resulting modal parameters wifh those of

the analytical results.
AN '
(iv) To study the stability aspects of rotor mounted on fluid

film bearings. by ;

L

In Chapter 2, a mathematical model of a simple rotor system is
developed as a Jeffcott rotor wit211inear bearing fluid film stiffness
and damping co-efficients. The system of equations is solved by a //,///’//M
direct method and the unbalance response and critical speeds of the
rotor are obtained. The orbital di?grams aré used to study the whirl
pattern of the rotor and also, to verify the jg»rna%‘amplitude at the
bearing location not to exceed the bearing c]e;rance values. The exper-
imentally obtained unbalance résponse and critical speeds of a simple
laboratory rotor are compared with those obtained through theoretical
analysis. The experimental results show a good qualitative agreement with
‘theoretical results validating the mathematical model of the rotor system.
Also, equations are developed to predict the conditions of the occurrence

of backward whirl and are verified by experiments.

Chapter 3 deals with the modal analysis technique used to study the

0
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!«’using a simple analytical procedure.
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. .
dynamic behavior of rotor’sx§tems. The procedure provides stability in-

formation of the#eotor system in addition to the unbalance response and

~

critical speeds. Moreover, modal testing is performed on the simple

e

rotor system to extract the modal parameters. For a particular config-

uration of thg rotor, the threshold speed of instability condition is
’

obtained. \

The mathematical model is developed for simple rotor-bearing
systems in Chapter 4,using the finite element method and the resulting’
equations are solved by modal analysis. The response plots obtained
earlier usiﬁﬁ;ﬁhe Jeffcott model of the rotor are compared with those
obtainéa\hsigé a finite element model. They bear goodnqualitat{ve agree~
ment. However, the finite element model provides a higher value
of the response. Since, the finite element modelwlqus to large size
systems matrices, they are reduced using a modal reduction procedure.

Also, threshold speed of instability of the rotor system is determined

The bearing fluid film properties thgs far used in the analysis
of rotor systems, were eight 1inearized‘:T1m stiffness and damping co-
efficients. When the shaft is flexible or the support span is large,
the inclined journal produces moments in addition to forces in the fluid
film. Consequently, the moment effects in the fluid film can be modelled
by including the rotational springs and dampers in the béarings. Chapter
5 deals with the evaluation of these rotapiona] fluid film properties
and their associated coupled properties by solving the apbropriate

Reynolds equations for the fluid film. These rotational fluid film

stiffness and damping co-efficients of the finite c&]indrica1 bearing are

compared with those obtaind using a short bearing theory. An excellent

qualitative agreement is seen between the two. In general, it is ?bserved
Nt
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N “§
that the effect of rotational fluid film properties on thﬂ;ﬁég@iction of the

dynamic behavior of rotors is more pronounced in the case of large rotor

systems compared with the simple systems. .
Ef/ In Chapter 6, excitation of the rotor through the bearing support

'structure is considered. The rotor bearing structure supported on board

vehicles or installed at places of seismological activity, are subjected

to excitations of the bearing supports also. These excitations are in gen-

eral random in nature. Hence, a statistical method is necessary to

analyze the dynamic behavior of such systems. The base excitations are
assumed to be a Gaussian and a stationary process and ¢ower spectral density
approach is used to evaluate the response power spectral densities of the
system.' The influence of excitations due to the rotational degrees of
freedom on the response of‘rotors in the translational degrees of frEedom

is also studied. o

The results of the work so far achieved in all ‘the previous

chaptérs are summarized 1in Chapter 7. Also, thé discussions of results

, are presented along with the recommendations for future work.
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: CHAPTER 2

DYNAMIC BEHAVIOR OF A SIMPLE ROTOR SUPPORTED ON !

HYDRO-DYNAMIC BEARINGS AND CONDITIONS FOR N

f
BACKWARD WHIRL IN ROTORS - THEQRY AND EXPERIMENTS

1 L3

An extensive 1i%erature review has been pregehted in the previous
chapter about the quantum of work carried out by various researcher§ to
evaluate the dynamic characteristics of rotor-bearing systems. The
important design parameters of any rotor-bearing system are (i) unbalance

rresponse and (ii) critical speeds. In the vicinity of the critica)‘
speeds of the rotor, the response is quite large and hence, the normal
steady-state operating speeds of the rotor must be away fraﬁ these gpeeds.
When the rotors are meunted on hydrodynamic Bearings, the evaluation of
damped critical speeds and the unbalance response\igifgre involved due to
the asymmetry in the direct and cross-coupled stiffness and damping co-
efficients in the Horﬁsgntal and vertical directions. Moreover, these

co-efficients are dependent on the operating speed of the rotor.

0
While designing a rotor-bearing system, for a specific operating
range, it is customary to evaluate the dynamic responses at a location
of heavy disk, impeller or mechanical coupling etc., in order to ensure
that the unbalance response and critical speeds at these locations do
not fall in the critica? regions; whereas theﬁresponses”at tte bearing
Iocations are not generally taken\inio consideration. In the event of
the rotor respanse exceeding the bearing clearances, the rotor cannot
oSerate satisfactorily. And hence, it is essential to consider the

responses at the bearing loéations also as one of the prime factors of

-design of rotor ‘systems in order 'to achieve a more reliable operating
'
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condition. ' : , '
In this chapter, an analytical procedure is discussed fo obtain

dynamic responses of a simple rotor to specified residual unbalance.
‘I

o The rotor-bearing system is modelled as a Jeffcott rotor and the system
v B

’equat?onshare derived using energy method and are solved by direct method

' . The dynamic responses of the rotor are obtained at thé disk and at the

bearing Tocations as well, with different clearances and loads at the
bgarings. The whirl pattern of the rotor is 6Qtained through orbit
diagrams for different speeds of the rotor at the disk and the.bearing
iocations. The responses and critical speeds of the rotor obtained
fﬁrough analysis are verified with experiments. Also, a simple analysis
is used to derive the conditions for the occurrefce of backward whirl in

-

rotor sysﬁfTs.

2.1 Mathematica] Model and Analysis

. A typical single disk Fotor supported on hydrodynamic bearings at
its two extreme ends is shown in Fig. 2.1. The disk is Jocated at the

jenter of tHé shaft and the residual unbalance is specified at this

1ocation.d/;ye kinetic and potential energies for the given rotor system
are set u

and using Lagrange's methpd, equations of motion are derived.
{

.

The details of energy expressions are given a wn,

The kinetic energy of the rotor shown in Fig. 2.1 is
. - ] - . 12 ' 2 [ - .
o TEmm(zy+y)+ I, [w'+uwle,e, -60,)] (2.1)

The potential energy is,

]

-
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,”;(' ~ The virtual work‘expression for the forces due to constraints
present in the systemoénd are not derfvable from a potential function <
§ can be written as,’
i - N .
oW r Q. 49

' = i i 'i l (ZvZ%
i~ 1}ktt 2ttt tt'yz]

- 3 Z . . 2
2 | T2z 4 zz," Lt kyy] y; ¢ kyy2 (kg;l y,) 2,

tt '
Z\‘yl k ’ Zz) Y, (2.23) ’ .

Non-conservative forces present ared1ss1pat1ve

+(k§§, y,) 2, + ktt

type and the

4
virtual work expression is given by,
- - N - N -'ﬂ
SW=1 Q.6 .=- 1 3D éq,
j=1 1 41 i=13. ' (2.3)
| QQ1 2 ') ') \
c R, L ¥
. _=_m i -_]_0 -_io . --'—}_‘I —_%-u ]
D= Bza TZ, -7 i) r Y- YY) .
\\gv ' R} L 7, - Z % L
o’ 1 e 2 e * 2 " --_Pl_‘ —_2_' .
'Y [(ZO'TZZ'Tzl)(ez' ) - Y, - )
' . 5,2_ j1]+CB (' Z’2'2.124.(’ 92-‘91)2]
- (ey T2 ) ¥ [ - 73 ) ey )
v 1ttt .2, tt 2 tt .2 tt -2]
- +2[221 2t Gz, T Ny Nt Gy, Yo
. .
o f
tt . tt . . tt sy e tt P
(Czyl =¥,z (czyz - ¥,) 2, (Cyzl ENE A (fyzz - 1) Y, '
‘ ;
- (2.3) :
Y
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=21~
where
3EI & ',
@ = 2 2 auv J
R’l 22 v
. 3EI°2
(0,24 0,7 - 000,)
N &
EI ¢
y = 0

2122(81 - 1)

t

' b
_ T
I,= g1 % (diameter of the shaft) .

~

)

”
Lagrange's equation of motion is given by,
o) e B .0
5 - = - 2 2.4
dt (3q1) -BT]T 3q1 1 )
where L=T-V ‘
and ™ [917 = [z, ¥ 6,0 80 2 0¥ s 2,0 Y]
o’ Yo zn yi 1! 1 2 Y,
This results in four dynamical equatfons and four constraint
equatigns and the details ‘of these equations are as-shewn,
The dynamical equations are:
L L, 1,-2
d? 1 2 2 51
mzt— (z,+a cosut) +°‘(,Zo'T7‘2 'Tzl) +v(e, - —5—)
j . .
SR T L . . 2,77,
tCy (ZO'TZZ' TZI) ¥ Cy (ez‘ L ) =0 (2.5)
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1 2 2 1 1
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2“1 tt tt - I SRR R
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c z -2
- Bs .21y L At tt - )
7 (ez 7 ) czzz z, Czyz y 0 (2.19 ‘
2, 2 L 2, Y, ¥,
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2 2 1 tt tt %
+ 2 - + .
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+ _ 2 U2 1 _l_ L1 2
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y
¢ o Y,V ‘
- 8 - 2 1 tt . * f tt R . =
.T( y ) ) Yy, Yt °yz, z, =0

(2.12)

Then, these equations of motion of the rotor system can be written in

matrix form as,

N

L]

[m]{a} + [c]{4} + [k1{q} = {f}

where matrices [m], [c] and [k] are given belaw:

Mass matrix [m]

my 0 0 0
0 md -0 0 ,
| » 0 0 I 0 |~
* d
4 . ' 0 0 0 Id'

fhy

(2.13)

(2.14) -



N

IR VL AT VLS

(st°2)

zv

-n

e pue

d+ Tyhzg 4+ 1y

AK€

(1 ®)

N; . z
33

L Tyo

z¥

[

-

122 .
1
oL e)

aJdaym

o .




e
L]
p »
e . , )
(91°2) , 8
. .
( v « ¢ ’ v wn . z Aa ssoun
. = q pue Ca— = : X D_ -
nu + T\.um + N:au uu - (Ty-Y) h.u - Tyly o uu +2y0z2 - %Yo
. \ . \ :
4 T ' )
¢ TAA ¢ zK
o 5 q . 0 ( )- 0 ( )- 0
(397 @) 11 : Torta’s , LS
LR N g s
2 24 Eq 0 q 0 ( )- 0 -
n 1 ) R _\ ) e Ty No o1y’
K - T L Y
z LY VI rd s
. 3+ q 2 B - s -) 0 (—=) 0
' ¢ - 0 B ) 3 ( 2+ZY o 242773
(Vo] .
Y t T ¥ ¥
' A Kz ZZ
0 q > ( 372 +19) 0 G—or) .. © —)
. H 3 - 542y o- © Ta 42yl
. U .
Ajuq ) Jll..nnq ) 0 . 9 (w w ) o) ]
- D . -
TR the) 4%y o- .
¥ 7 d d i
0 (F—)- 0 { ) (m"1) ) 0 5
H1yd c T8y Bk
4 ¥ : A » )
—)- 0 ) 0 . 0 ) 0
Iy o . 342y o- .
L § . T : N u
0 =" 0 =) 0 > 0 2
247 0 | Tty o , .
. -~ ) ) . [2] xiJ43ew Huiduweqg
. ' i
» » ) _#

.. - . Meand m - Lun ey s e
BRI 2 el wvd b T R - o .

R e he e b 4



-27-

Assuming a solution of the form,

/

- . )
q=q, e (2.17)
\ ,
the undamped homogenous case of equation (2.13) becomes,
det |[k] - wm]|= 0 ‘ - (2.18)

This is an eigenva1ue'prqbﬁem and the uﬁdamped eigenvalues andthe ﬁ)
corzesponding eigenvectors are obtained from equation (2.18). When oné
of the eigenvalues coincide with the rotor Speéd, th;t eigenvalue becomes
the critical speed of the rotor. However, since dampiqg is significant
in fluid film bearings, critical speeds obtained by this method will not
be exact. Damped critical speeds can be found from the unbalance re-

sponse plots by locating the speed corresponding to the peak response.

The vector of unbalance force f can be written as,

() = {f ) + {f ) . (2.19)

n

where {fc}T [f0 cosut, 0, 0, 0, 0, 0, 0, 0]

n

{fS}T [0, f, sinat, 0, 0, 0, 0, 0, 0]

and fO = maw?

where a is the eccentricity of the disk.
The steady state solution of equation (2.13) may be written as, -

{q} ={q_} + {ag} . ~ (2.20)
" where {q .} = 1q} cosut R
and {qs} = {q} sinwt : - i \

- T
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Substitution of equations#(2.19) and (2.20) in equation (2.13)
yields

0. ) | (K] - wimd) wlel | (f

= A (2.21)
Qg +wlc] ([k] - 26D} {f

The out of balance response is the vector sum of responses in Z

and Y directions and is expressed non-dimensionally as,
' : X

r= ({z} + jl{yll/a (2.22)
where .
EOLI [z, 0,5 2,5 2,] o
and l{y}T = [y‘, Bs ¥.» ¥,]
o® y’> 7172

“
a

The response at the disk location along Z and Y directions can

be expressed as follows:

Jut -jwt jwt =jut . -
.., . € + e e - e )t
Zy = 2, — + 2o — | a§§23)
\\ Py -- \ -'-
y o=y eJmt te jut vy ejun -e J@t (2.24)
o 7Yoc 2. 0s 2j )

r

Therefore, whirl amplitude of the rotor at the disk location can be

written as,

PR

———.
Why
k

e

.
e



’ direction. L

[ *

rg= 2o+ Y, (2.25)
=1 _ Jwt 1 -jwt
, 7 (Zoe =3 255) & + 7 (25 +J Zos) @
1 Jut |1 '
+ [g (Yoe = Yos) &% + 5 (¥ *+ 3 ¥, ) e J“’t] (2.26)
\ . -
- Jut | - -jet 3
ra¢=Tq © tryg e J (2.27)
where\ S (z. -dz._)+( + 3 ) is the forward
> 'd 72 ‘Coc 0s Yos Yoc
. . -.1 . ) . .
whirl amplitude and rqi= 7 (zOC + j zos) + ( Yos * yoc) is the
backward whirl amplitude at the disk location. Similar expressions

can be obtained for bearing locations also. These quantities together .

-

with the respective bhase angles are useful in determining the whirl

2.2 Dynamic Characteristic s

)

The above analysis is used to obtain the damped Eritical speeds
and the normalized unbalance response of a single disk rotor, the de-
tails of which are given in Tab]e-Z.f. The dynamic responses are
obtained at the disk as well as at the two bearings. In hydrodynamic
bearings, variations of bearing cfearances and bearing loads alter the
Sommerfeld number which in turn 1nf1uencés the bear?ng film stiffness

and damping values.



e e . .

TABLE 2.1: Details of Rotor

-
, N
Disk Mass ” 11 kg
Type of bearings . Plain cylindrical
Bearing dlameter . : 0.0254 m
Bearing L/D ratio - | : 1 0
Viscosity of oil at 25,5°C : / 0.0241'N. sec/m
Total length of rotor IR 0.5105 m
Modulus of elasticity of % -
the material of shaft oo 2,145 x 101 N/m?
Shaft q1ameter' ~ g '.0.022 m
Disk djameter /f S (: 0.2032 m
Disk eccentricity "' . i, 1,084 x 10 kgum °
Y \
< Y
‘ ! N [}
ot '
IREUIN .
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2.2.1 Dissimilar Bearings by Variation of Clearances

v
The variation of unbalance response for a specified unbalance at
the disk is shown in Fig. 2.2 when the disk is at the center of the
shaft. The bearing clearance value c, at the left end is kept constant
at 0.0000533m and the clearance value ¢, at the right end is varied as
shown in Fig. 2.2. The rotor exhibits single peakgin the .response for
different c, values except for one c, value of 0.000188m where the rotor -
exhibits a double peak in the response. Mofégver, the peak amplitude of

the response drops down considerably while the peaks themselves shift

. »
towards lower rotor speeds as the c, values are increased.

The unbalance responses of the central disk, when the bearing
clearance.value ¢, at the left end is kept at a constant value of .
0.000188m and clearance value c, at the right end is varied, are as
shown in Fig., 2.3 for a specified unbalance at the dis&. For such ¢onfig-
urations of the rotor, the response exhibits do&BiAMSééls for different
c, values. The peak amplitude values are smaller and the crit%ca] speeds
are lower when compared with those values obtained for different rotor

configuratibns diséésged before. , /

In general, when the bearing clearances are increased, the Sommer-
feld number lowers, thereby lowering the fluid film stiffness values; how-
éver, their démﬁing counterparts are on the increase. This effect not
only lowers the rotor critical speeds, but also the peak amplitude values

of the rotor ;)stem.‘ This trend is observed in both Figs. 2.2 and 2.3.
17 * -

The above results.are consolidated and the effect of various bear-
ing clearance values on the unbalance response and critical speeds are

:

|

. l

shown in Figs. 2.4 and 2.5 respectively. It is seen that%gafre is a J

con
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range of bearing cleazﬁnces where the rotor has split criticals and
double peak responses and out of this range, the split critical and

double peak responses.%oa]esced into one.
i

1

2.2.2 Dissimilar Bearings by Variation of Disk Positions

Dissimilarity in the béarings can be introduced by repositioning
the disk alonq the rotor shaft. The noncentral disk exerts different
loads onlthe“two bearings and hence the Sommerfeld numbers¥for the two
bearipgs will be differenﬁ. The details of,tﬁis rotor configurations
are given in Table 2.2. The unbalance response of the.Potor is shown
in Fig. 2.6 when the bearing clearances at the two ends are kept at a
constant value of 0.0000533m for different positions of thé disk along
the rotor shaft. As the disk is moved away from the center, the response -
decreases. There is a small peak in each of the response curves, how-

ever the response goes on increasing with speed beyond this peak.

So far, the unbalance responses and critical speeds of a single
disk rotor system Were studied for various combinations of bearing clear-
ances and bearing loads. The peak responses WQre obtained at the disk
locations. Based on the response plots, a designer can choose an
operating speed range of the rotor arbitrarily, by avoiding the‘critical
regions in the response. However, it’1s not certain that the bearings
may operate satisfactorily at this chosen operating range. Hence, it is
recommended that for a more viable and reliable design of rotor systems,
the response information at the bearings should also be taken into '

o

consideration.
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* TABLE 2.2:. Detadls of Rotor

Disk Mass

Type of bearings

Bearing diameter
Bearing L/D ratio
Viscosity of oil at 25.5°C
Total lengtn of.rotor

Modulus of elasticity of
the material of shaft

Shaft diameter
Disk diameter

Disk eccentricity

2.2 Ky
Plain cylindrical-
0.0254 m_

1
0.0241 N. sec/m
0.5105 m

2.145 x 101! N/m?
0.022 m '

' 0.0958 'm

1,084 x 10** kg.m
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2.3 Orbital Diagrams

Orbital diagrams provide the amplitude and direction of whirl
path at any particular 16cation of a rotor-bearing system. Due to non-
symmetric nature of fluid film properties of the bearings, the rotor
whirl path\}§\QgP circular, but it is elliptic for all stable conditions
of the rotor. However, for unstable conditions of the rotor, the
orbital diagram shows a deviation from this elliptic path and the

behaviour of the orbit also changes. Hence, the orbital diagram pro-

vides more information regarding the dynamic behaviour of the system. ”

Orbital diagrams for the rotor system with central disk and eqha]
bearing clearance values of 0.000188m at both ends are studied because ——
this configuration of the rotor exhibits sp]if‘critica]s and hence the
whirl patterns of the system at different rotor spegd; are of interest.
The rotor exhibits split criticals, one occurs at a rotor speed of
1865 RPM and the other occurs at a rotor speed of 2500 RPM. The orbital
diagrams are obtained at the disk and at the bearing locatiens for three
different rotor speeds viz, (i) 1700 RPM which lies below the first
cr%tical, (i1) 2100 RPM which lies between the two criticals and
(iii) 2700 RPM wpich is above the second critical ‘and they are shown in
Figs. 2.7 through 2.9.‘Figure 2.7 shows that the rotor executes a forward
whirl both at the disk and bearing locations with their relative phase
angles. Figure 2.8 shows the orbital diagram for a rotor speed in be-
tween the tw6 criticals. The rotor experiences forward wbigj only. The
ropor motion tends towards the backward whirl in between the criticals.
The rotor motion at the bearing locations is similar to that of the ”

disk, however, it has different amplitude and phase. , The orbital

ey Ve e s S -
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diagram, when the rotor is running above the second critical is shown <

BN

in Fig. 2.9. This shows that the rotor is executing’a forward whirl. \ X

Orbital diagram for the roto} system with central disk and dis-
similar bearing clearance values of ¢, = 0.0000533m and ¢, = 0.000188m
is shown in Fig. 2.10 for a rotor speed of 2300 RPM, which lies in

between the criticals. The rotor whirl is forward and whirl directiey
does not changé in between the criticals. Here, the whirl is ]
synchronous, however, the motion at the two bearing locations have
different amplitudes and they are not in phase with each other and with
the disk motion. This is due to different stiffness and damping values

at the two bearings.

The orbital diagrams at the disk and bearing locations are shown
fn 'Fig. 2.11 when 2 = 0.3105m and 2, = 0.2m and equal bearing clearances
*  of 0.0000533m for rotor speed of 4000 RPM. This shows that the rotor

~

motion is dominated by forward whirl,

) -
It is generally noted from these orbital diagrams that there are

speeds at which the response at the bearing location is more than the
bearing clearance. The present investigation considers only linear
sti-ffness and damping co-efficients for the f]&id film in the bearings.
When the response at the bearing locations are 6; the order of the
bearing clearance, a linear analysis is not enough to study the rotor

behavior. However, on the basis of linear analysis, it seems that the

rotor cannot operate satisfactorily under such conditions.

b e ———— oo i et e v e s PR S P— v - .
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There are different.analytical procedures available to predict the

2.4 ”\ggperinental Work

dynamic behavior of a rotor system; however, very few experimental works
have been reported to support the-theoretical analysis. Particularly so

’is the occurrence of backward whirl which is not reported in experi¥

\menta1 work so far, b

1
A}

To\verlfy the theoretical analysis'described in section 2.1, an
expaxunenta] facility was estab]xshed It consisted of a disk at the
center of a shaft of circular éross-section, supported at its two ends
on two plain cylindrical fluid film bearings. The oil for the bearings
was gravity fed through polythene tube;. The rotor-bearing s;sfem is
-supported by heavy cast-iron pedestals.at the two ends. The entire
rotor jjstem is mounted on a heavy steel frame which in turn is fastened
to the floor. The details of the test rotor aro the same as those given
in Table 2.1 and the schematic diagram of the éxperimental facility is

shorn in Fig: 2.12.

The test rotor is driven by a vanrablé ;peed motor and the rotor

-

. o . <« ° B .
.speed is measured using a photo-sensitive meter.” Two d1sp1acement

measuring shielded sensors which operate on the eddy current pr1nc1p1e are

used to measure the unba]ance response of the rotor in both Z and Y
_ directions at a point along the rotor shaft and closer to the d1sk. The
sensors _are qnounted ® two m1crometer heads to enable precise adJustment

of‘fﬁe gap between the sensors and the shaft surface.

o~ -
The unbalance response or the whirl amplitude signals from the

- sensors, located a]ong land Y d1rect1ons are amp11f1ed and fed to a

FFT analyzer. The orb1t diagrams are obta1ned on the screen of the

-

‘!; s -
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“analyzer by combin1ng the Z and Y s1gnals The orbital pattern at any
stead;t;tate speed of the rotor can be obtained by pushing the hold
button on the FFT The correspanding orb1ta1 diagram of the rotor is

'p]otted by 1nterfad1ng the 7 and Y signals of the FFT analyzer to the
correspond1ng plotter p]ane of the X-Y" plotter. The unbalance response

15 measured from the orbit diagram plots.

- 2.4.1 Comparison of Experimental and Analytical Resudts

The unbalance response and critical speeds of a single disk rotor

supported on hydrodynamic bearings are measured. Three different clear- -

ance values are used in the bearings. They are:
(i) 0.533 x 10™'m
(11) 0.6858 x 10™'m

(iii) 1.88 x 10™'m

The corresponding analytical results are compared. One set of
bearing is made diss1mi1%r by having different clearance values at theh

_ two bearings. g

Thenvhriation of unbalance response of'the rotor with the rotor
speed in RPM i3 shown‘in Fig. 2.13. The c1earancés‘at.bdth»the bearings’
are kept ah 0.533 x IO”“m. Theoretical as well as expehdmental response
‘plots exh1bit single peak only. | The eXper1menta1 value of the response
peak is 11 76 and the rotor critical speed correspond1ng to this’ peak
‘occurs at 2550 RPM whereas, peak response value pred1cted by theoretical

ane]ysis is 16.0 at the corresponding critical speed of 2610 RPM,

The uhbalahce response of the rotqr with the two end bearing clear-

-ance values kept at 0.6858 x 10™"m is shown in Fig. 2.14. In" this pldt,
' ! . - . . - ,

[
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. .
the theoreti;a1 response shows only a single peak. The experimentally

measured response peak is 8.94 at a rotor critical speed of 2550 RPM
and the theoretical prediction shows a peak response value of 11.5 at a

rotor speed of 2600 RPM. : L

Figure 2.15 shows the reéponsé of the rotor for the, bearing cléar-
ance of 1.88 x 10™'m at‘both the ends. Theoretical analysis exhibits
two distinct peaks whereas the experimentally measured response shows
on]y'a_single peak. The secoqd&peak amplitude values are B.1 and 5.53
for theoretical and experimental studies respectively. The critical
speeds of the rbtor corresponding to this peak response occurs at

2500 RPM for both theoretical and experimentﬁl cases.

The variation of critical speeds against the rotor speed is shown
in Fig. 2.16 for the .bearing clearances of 1.88 x 10'“m at the left end
and 0.533 x 10™"m at the right end of the bearings. Both theory and
experiment show two distinct peaks. The magnitude of first peak pre-
dicted By theory is 6.3 corresponding to the rotor speed of 2168 RPM
whereas the same for the experimental case is 3.4 at 2250 RPM. The
magnitudes at the second peak are 7.93 and 10.82 and correspond to the
rotor speeds of 2500 RPM and 2550 RPM respectively, for the‘igperiménta1

and theoretical studies.

2.4.2 Analytical and Experimental Orbit Diagrams
* ¢

Experimentally obtained orbit diagrams at the.disk are shown in

Figs. 2.17(a) and 2.18(a) along with the respective orbit diagrams ob-

-y

tained by theoretical analysis for two different bearing configurations
of the rotor system. Figure 2.17(a) shows the orbit diagrms for the

central disk and identical bearing clearance values of 0.00006858m at

L
4

A
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** - “both ends, for the rotor speed of 2350 RPM. Both theoretical and experi-
mental diagrams show forward whirl only. Figure 2.18(a) shows the orbit
diagrams for the cential disk and dissimilar bearing clearance values of
¢, = 0.0000533m and c, = 0.000188m, at the rotor speed of 2475 RP&. The
theoretical and experimental diagrams show that the forward whirl compon-

ent is predominant and hence rotor has a forward whirl.

2.5 Conditions of Backward Whirl for the Given Rotor

In the previous sections, it was seen that single or double peak
responses were exhibited by the rotor system depending upon éhe bearing
configurations. It was also observed that for the configuration of the
rotor, which exhibited double peaks in the response and hence split
criticals in the synchronous whirl mode, had predominant backward whirl
component in between the criticals. In this section, therefore, the
conditions for split criticals and thus the occurrence of backward whirl

in between them, are derived for the rotor system already described in

Fig. 2.1, using a very simple analysis.

« For the rotor-bearing system shown in Fig. 2.1, when 2, = 2, = 2/2,'
2,72, =z, and y, =y, = Yoo the equations of motionlare as shown
below: w

R d? . . -
my ;;; (zo + a ;oswt) + ca(zo - ze) + a(zo - ze) 0 (2.28)
42 EEN .
"4 o7 (yo + astnut) + ¢ (y, - ¥o) + aly, - y,) =0 (2.29) o
and the constraint equations are,
‘ /
. . tt tt tt
ca(z0 - ze) + a(zo - ze) 2k ,tze v 2 ¢, 02, 2 kzy'ié
tt.;
+ 2 czy Yo (2.30)
. S

. -
A AR . e A g st e ——- 2 L
4 r o - e
. . .
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’

. . _ - o\ tt. tt, s tt, : >
ca(y0 y;§;:‘a(yo Vo) = 2 kyz fe +2 Coz'Ze * 2 kyy Yo ] =
tt.: /
+ .
2 Sy Ve (2.31)
From equations (2.23) and (2.24), the total amplitude of the rotor <:;
at the disk location can be written as shown: ~
z =w e‘jmt +)ﬁ* e"j“’t u ‘ s
0 0 0 -
. (2.32)
- jut | =* -Jut
and Yo=Yy © ty, e ) K
where w_ = l-(z -jz ) ; Q* = l-(z +jz..)
o 2 '‘“oc os’" > "o 2 ‘“oc . 0s
' 1
v o= i . v = l.
and v, = E'(yoc - yos) » Vo T 7 (yoc * yos)

>

similar relations can be written for the bearing locations also, as

o

shown:
ejmt =% e-jwt

s o (2.33)
ert + ;* e-Jwt -

Substituting equations (2.32) and (2.33) in equations (2.30) and e -

(2.31), a relation between the motion at -the bearing and disk Tocations

f.
can be obtained as, '

* + g* *' - AR

(2 k,, +a*) 2 kgy W, Wo

*
, : = a (2.34)
* L ) * - > -
2 kyz VA(Z kyy +ta ) v, VO



e,
.

;
- . /
, .
) .
. .

S

k = + Jw e
Yy yy Y)’_
k* - tt

= ke
zy zy

- * :
k 1=;;kt'c + Jju -
yz z yz
* .
and .0 = a+ jwu ¢
‘ o /

Equation (2.34) is solved to obtain w and v'

¢

Vo and substituting these values

5dssible to obtainétng equations

i*

) (k, "Jf'd‘”z) 90 tkyy W

in terms of wo and
in equations (2.28) and (2 29), it is

of motion in the following form,

2 [ )
(12 (2-35)
1
mdam2 t
=y d— (2.36)

Two more equations are obtained Simi]ar‘to equations (2 35) and

o ®

(2 36) for the comp1ex conjugates, where the r1ght hand s1de§)are

changed to corresp ndlng complex

P
n

a[Zk

”

'k* + *
o 2 vy %

* ”*
=q . [2 kyy (2 kzz + a

-

Yoyt
n
)

k= 2 Zy,h\(a )2 / ot

- %k
ky, =72 Ky, (abﬁf / DET

+ a*) (2 ky

- *
_and DET = (Z k,

conjygates. In equations (2. 35)~and
\ .
4Kk« K]/ DET ﬁ \
) /2yt yz] / .
k K ‘
i T 1\_‘/‘1 _ o
-"M&h - Mf\
i: ; J i
+a)-4k gz. , -

fad

3l

i
¥

o1



g~ *
£4

%
3

The complex_eigenvalues are obtained from the equation, .

(k, - mw?) (k, - m?) - Kz fkpy =0 ' ‘ (2.37)

/

This g1ves two sets of comp1ex conjugate e1genva1ues, and -their

real parts correspond to ‘rotational frequenc1es An appréslmate 1dea "

about the critical speeds can be obtained by neg]ect1ng/damp1ng terms

in equation (2.37). The roots of the resulting equatiqh are given by ..

' p2 by (le(z) . [(kxsz')z (kl'kz'}klz 'kzl] (2' 3). ’
1,2 - . m - Zm o - / :
d d my J .

/

The critical speed of the rotor corresponds to the speed that

'matches approximately one of the roqts of equation (2. 38). When-

(the quantity within the rectangular brackets in equation (2.38) 1s ¢

posit1ve, the rotor will have two distinct cr1t1ca1 speeds and when it

is negative, the two critical speeds will be .corplex conjugates and hence 4

A the response will show oh1y a single peak.

"+ 2.5.1 Backward MAirl in the Laboratory Rotor

The phenomenon of backward whirl has not been observed experf- )
mentally so.far. -According to'the theoretical study presented ear]ier,
a single disk rotor-bearing systeh with equal bearing clearance values .
of 0.000188m at both ends, exhibits double peak in the response. The
orbit d1agram $hows that in between these two peaks the backward whirl
componéht 1ncreases The laboratory rotor designed using the conditions

given in equqtion (2.38) exhibits backward whirl in between the criticals

obtained for this rotor by theoretical and experimental methods

for a small range.* F%ghres 2.19(a) antr 2.19(b) show the orb%t djagrijs

v t /

i
RS
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-respectively at a rotdr speed of 2500 RPM. Both of them show that the —\

rotor executes a backward whirl at this speed.

- (
2.6 “Conclusions wi,af

The unbalance response and critical speeds of a single disk rotgp
supported on hydrodynamic bearings are studied using the energy method for
di}ferent combinations of bearing clearances. Based on the results
presented, it is.observed that the rotdr exhibits synchronous whirl
only in the oﬁerating speeds of concern. The dissimilarity 1ﬁ the bear-
jngs introduced in the analysis by having different bearing clearances
and bearing loads at the two ends, influences the unba]ancg response and

criticalxspeeds significantly. A study of the response at the bearing

locations is very ihportant for a reliable design of any rotor system.

¢

Some of the theoretical results are compared with those obtained
- by experiments and the comparison shows a very good qua11tat1ve agree-
ment. Backward whirl was observed exper1menta11§;€or a rotor conf1gura—

tion -with equal bearing clearance values of 0.000188m at both bearinns.

_.~> The ahglysis presented in ‘'this chapter predicts the cesion para-
meters, like the unbalance responsé and critical speeds of the rotor
system whereas the ve?y 1mport§nt system information sucﬁ;as stébility is
not available. Unlike the unbalance response and critical speeds wn?EE‘~
are affedted by:the physical parameters of the rotor system, the
stability is not affected by these baraneters because it is inherént in

0




-f5-

S
..

the system.. Since the analysis presented here does not provide the
complete information of the system, a comprehens*ive study of ‘the systém
behavior will be undertaken in the ‘xt chapter using modal analys1s.

. The modal analysis of the rotor system provwdes the behavior of the

system in jits individual moMes and the stability of fhe system as well,

1

-

-
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CHAPTER 3

DYNAMIC BEHAVIOR OF SIMPLE ROTOR-BEARING SYSTEM BY

MODAL ANALYSIS AND MODAL TESTING TECHNIQUES

In Chapter 2, a direct approach was used to evaluate the dynamic
response of a single disk rotor supported én hydrodynamic bearings at’
its two ends. The direct method p}ovided the unbalance response and
critical speeds, however, stability information was absent. Modal

analysis provides all the relevant information of the rotor system
concerning its dynaqgégbehavior including stability and this technique

s used 1n this Chapter to analyze*the simple rotor-bearing system.

Since the rotor supported on hydrodynamic bearings is a non-
conservative and also a non-symmetricé] system, modal analysis is much
involved and therefore, a methodical review of the modal analysis pro-

cedures with increasing complexity will be introduced and discussed.

3:1 Undamped System

Here, awmulti-degree of freedom system fdealized by several
massg? connected by springs is considered. For N number of masses, it
is necessary to have N coordinates to describe the system. This is a.

symmetric system and can be written in matrix form as, -

The homogenous form of eqn. (3.1) is written as,

[m] {§) + [k] {q} = {0} ~ " (3.2)
The solution for egn. (3.2) is assuméE*Tﬁ>;he form,

{q} = {qo}~exp (jéti - (3.3)

e v

UL
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L]

This solution satisfies the differential equation (3.2) if

[k - @*m] {q.} = {0} (3.4)
~ Equation (3.4) is a system of N simultaneous equations and for a
' ' §
nontrivial solution we must have,:
det [k - am] = 0 . (3.5)

where A = w?. This is a gblynomial in A of order N and there will
be exactly N roots of A.‘for which egn. (3.5) is satisfied. The
assumed solution.in eqn. (3.3) is a harmonic solution and the roots

for X suggests that the systgm will perform harmonic motion at N number
of frequeqc%es. Thése are the natural frequencies of the system and
substituting any one of these natural frequencies into eqn: (3.4),

¥ . )
provides the system configuration at that natural fregquency. System

" configurations corresponding to each of the natural frequencies are

called normal modes. ‘ x ' 6’
Y .

The complete solution for the vibration of the.ﬁulti-degree of
freedom system can be expressed in terms of'the mq%ion in each mode of
the system. A modal co-ordinate ﬁi, is asseciatg& with each mode of the
system, and the relation between the physical co;ordinates q and the

modal co-ordinates n is

] - 3.6
{q} = [¢]in} ////71,(’ (3.6)

where [¢] is called the modal mg}rix wﬂéch is a NXN matrix obtained
: ( _ , .

by concatenating the N modal vectors.

. Substitution of eqn. (3.6) in egn. £3.1) yields,

[ml{elii + [k1[en = {F}

I

AV
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Premultiplying eqn’. (3.7) by [¢]T gives,

() [m)[eJii + [#1'[k1eIn = [2]7 {F) | (3.8)

Employing the orthogonality relation for the normal modes, eqn. (3.8)
becomes, -
(3.9)

[uddi + [kdn = {g7(t)) \ ,

Q{‘u~] = [¢]T[m][Q] and [“k.] = [¢]T[k][¢] are diagonal matrices and
A} =‘[¢]T{f} and they provide N number of uncoupled equations of the
' v

form, ' .

By byt i=1,2,..N . (3.10)

»
The eqn.(3.10)can be treated as N number of indepeqdent single
degree of freedom systems.The complete response of the system (3.10)con-
sists of a transient response and a steady-stat% response. Real systems .
‘possess damping which dampé out transient response after a while, hence

only the steady-state response(of the system is considered here.

The steady-state'solution of eqn.(3.10)can be obtained by assuming

a solution of the form £
- Jut
Fi=Hiet | . ,
: (3.11)
;= Ny plut
Substitution of eqn. (3.11) in egn. (3.10) yields,
o Jut Jut _ Jut o .
Wiy ngg €0 +iy mgg e = T (3.12) |
, . x//
Equation (3.12) can Be written as e
T T T \ LT
— T e T
—T e \
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2
ny = oo——— (3.13)
w? My ¥ K

)

Substituting eqn. (3.13) in eqn. (3.6), the responses of the system

b *are obtained.

£.2 Damped Systems

<

In generg], the damping matrix of the system cannot be diagonalized
by the operation [¢]' [c] [6]. If the damping is small, it is still
pdféib1e to use the previous approach by neglecting the non-diagonal
terms in the matrix,¢T c . However, if the damping is significant

"~ v other methods should be used for damped systehs.

3:2.1 Proportionally Damped Systems
/

/” If the damping matrix [c] can be expressed as a linear combination
of mass and stiffness matrices ‘as ‘ ! N~
// ’ [c] = & [m) +6§[k] (3.14)

\ where & and § are .proportionality constants.

it is possgible to diagonalize the damping matrix since,
(637 [c] [o] = £Lw] + 601 = (€] (3.15)
It is seen from egn.(3.11), that the modal matrix will be abTe ‘to

uncouple the equations completely and the system can be solved by normé]

mode ana]ys%s described in Section 3.7.

{ 3.2.2 Non Proportionaliy Damped Systems
\ When the damping in the system is significant and inladdition it
,,is,nbt proportional to either mass or stiffness matrices, a normal mode

analysis based on the modes of the undamped system is tedious, [97].

-
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[ 4
However, it is possible to obtain the system eigenvalues and normal modes
which will be complex in nature. This is accomplished by converting the
N num?er of second order differential equations into 2N number of first

order equations as follows:

Mooy (@ + [KDppeoy @ = {F) (3.16)
where [M] = [g '2] , [K] = ['g' 2] /\

7
' {F} = {'g'} and {Q} = {-g-}
| 2NX1 ~ 2NX1 ~

In the gqn.(3.]6), the first N equations express the identity,

[m] @} -.Im] @} = {0} : © (337)

Al

Transforming the gh'ysical co-ordinates {Q} into modal co-ordinates

1

{n} gives .
@ = [0] {n} . B N | (3.18)

X

o S C
where [¢] is the modal matrix. Substituting eqn.(3.18)in eqn. (3.16)

-,

and premultiplying throughout by [<I>]T. the eqn.(3.18) becomes, - <

[o1TIMI81(R ) + [o1TIKILeIin} = [e1'{F) | (3.19)

-

. The complex eigen vectors [¢] are orthogoﬁal. to each other and

hence the 2N number of uncoupled system equations aré as follows:
e,

R ] i=1,2,0.2N (3.20)

»

Considering the steady-state response of the system, : R :

'
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i ,
Ny = —————— - . (3.21)
K. + 3 uiw

Py i
Substityting egn. (3.21) into eqn. (3.18), the system response is

' obtained.

3.3 Non-S trical Systems
!

In the last section, it was seen that N number qf second order

system equations are converted to 2N number of first order equations as

shown from eqn. (3.16),

o M @K@= " (3.22)

where the mass [M] and .stiffness [K] matrices are symmetric about
the diagonal and the comp]éx normal mode ana1ysis‘wa§ used to uncouple
the system eduations. In the case of systems whose ﬁass [M] and stiff-
nesg (x] matricés are not symmetric, it is not possible to uncouple the
system equations using normal mode analysis. However, it is possible to
uncouple such nonsymmetric system equations by considering the biortho-
géna]ity relation between the modes of the orig{nal system and those of
_the transposed system which are called the right and left qigenveétors,
respectively. The 1ef£ eigenvectors are obtained by solving the homo-

l \
genous equation involving the transposed [M] and [K] matrices given by

Ty + KT Q) = {0} oo (3.23)

-
{

The eigenvector .matrix consisting of all the modes of the trans-
(:;5, posed system is obtained in the Same manner as the right eigenvectors

were obtained. S N
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Hence, the system eqns. (3.22) are unéoup1ed as shown:

(o1TtMle 1) + [o1T Ko Tt} = [o1TF) | (3.20)

—

Equation (3.24) is 2N number of first orderﬂindependent equations .

and can be written as

My Ny + King = 04 g (3.25)

The steady-state response of the system can be obtained from

eqn. (3.25) converting the modal co-ordinates to physical co-ordinates as

previously discussed in Section 3.2.

3.4 - Dynamic Response of Rotor Systems Usijg Modal Analysis

A rotor supported on hydrodynamic beamngsx\:s a2 nonsymmetric ) R
system This is because of asynmetry in the cross coupled fluid film
stiffness and damping co-efﬁciem;s which in turn are dependent on ‘rotor A
speeds. Moreover, when the rotor has several disks, the gyrqscopjc
moments contriéu‘te to the nonsymetry of the rotor system. Because '

c;f this general nonsymmetric nature of the problem, a conventional normal

mode ‘analysis is not possible and it is nécessa’Fb to use the biortho- ;

B

the transposed system to- decoup]e the system equations. The system

response can' be obtai‘néd as the su;n {)f» the responses of individual modes.

Later, the system stafility will be studied from the ;W'l

obtained in the present analysis.

-~

.ﬁ
In this section, a sinLe disk rotor supported on hydrodynamic
bearings at the two ends, which is already shown in Fig. 2.1 is studied

for its dynamic behavior using modal ana1ysis techmques The kinetic \_“
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and potential energy expressions are developed as shown in eqns. (2.1),
(2.2) and (2.3) of éhapter 2 and using the Lagragian approach, the system
equations of motion are obtained. They are the same as shown in eqns.
(2.5) through (2.12) of Chapter 2. The resulting folr dynamical equa-

tions and four constraint equations are arranged in the ?o]]owing ﬁanner;
[m }{G} + [d,]4a} + [k, ]} + [d,]{q,} + [k, Ma,} = {f}  (3.26) =~
[d,}4a) + [k,]{q} + [d,146,} + [k ]{a,} = {0} (3.27)

where {q}T = (zo, Yo 8, Qy] and {q,}I = [z,, 9,5 2,5 ¥,]

andgmll. (4,1, [d,1, [d,1, [d,], [k, [k, 1, [k,] and [k,] are-

4x4 matrices which are as shown below: . .
b [
mw: 0,
0 ny o 0 |
[m]) = _ ,
0 A . /
0 0 0 Id
paree o
o i, z
¢, 0 ¢, 0 7
0 “ﬁ L3
o o Y .
{ 0 Cu Y \" ¢
. dl = ) )
. 0 c [ w ; ’
“y B . P .
0 ¢, -l ew _%#ﬁ” -
b Y CB "+
. ) : \ $ »
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7
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e X 0
l <
€
' "ZI 3.2 2
. £
-C 12+C * .
( —7————-&) X o
N ¢ X ,
~C fotC
0 (ot )
Prnaren. . x
[~ /- ¢ 2ptc ’
3 ] i)
-c'a£2+c
0 | 21
- 2
c 1,1:*C
Y S A 0
2

yy,)

tt tt
(bl_ ! czz!) “2y)
tt
c by +¢
y21 (b1
-+ by 0
P
0 by
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. where: b, =
A3
b *
and b, =
> e
a
0
[ky] =~
Y
| 0
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.

!- A
catz 2cY i2,2+cB

c, L*2g-c (2 - 22')
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T fa Lty ‘ Y 4148
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v a R +y\. - (f 11*&)
0 . - 0 - )
| , 2 “ L ] ’
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B tt tt .. ’ o - ]
(ap + kzzl ) Ky, . ay. 0
L tt tt
* Kk +
y2, (a1 kyyl) 0 a,
' . tt . '
a 0 ' az/ + k k
2 (a3 27-2) Xy, ¥
et | tt
© _~ n A L vz (33 + ky,)
a -2y +8 - :
- where . a) *
12
a 24z ~ y(14;-22) - B .
a; = - .
12 ~ i
a2+ 2y + B b .
az = ’ - . 3
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and (fl}T = [md a u? cosut, my a w? sinut, 0, 0]

Equations (3.26) and (3.27) can be written as ‘twelve first order differ-

. ential equations as follows: .

B o . .
oM+ k@=L (3.28)
: wﬁéré“““‘\. ‘
A\
{ -
i

T 0] (o]
oo e wd w)

o] k] k]

o Ll
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. \ ‘
The homogenous form of eqn. (3.28) is solved to obtain the eigen-

values and the right eigenvectors of the system. Subsequently, the

left eigenvectors are obtained as explained in 3.3. ' f
D ~—

Making use of the right and left eigenvéctors eqn. (3.28) is un-
coupled to obt} n

g ny(t) + kg ng(t) = {oy(2)} | - (3.29)

where

[p1" [M] [0] = [*w.]
(e17 K] [0] = [*«.]
and {0} = [p]T (F)

This results in twelve first order independent equations and can

be solved by assuming steady-state solution of the form,

ni(,t) 1Am- exp(jwt) + l-\ﬁ exp(-jut)

: (3.30)
o;(t) = Eps exp(juwt) + By exp(-Jut)
Substitution of eqn. (3.30) in eqn. (3.29) leads to
o ! : ' ‘ ‘,
(K‘I + Jw Ui) Aﬁ exP,(JWt) + (Ki - qu-{») AW exp(-jut) : :
3.3

= l-fﬁ'exp(Jwt) + Ed{i exp(-jut)

S

Equating the co-efficients of the forward and backward rotation

terms, résu?t in, , ;o
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A, = —8
¢11 (k; + Ju )
i . Eoi
i .
~ (Ki - Jw U.i)

(3:32)

The response of the rotor can be determined from eqns. (3.29),

(3.30) and (3.31). The unbalancé response of the rotor can be obtained

. non-dimensionally as

r=(z+jy)a

(3.33)

where z and y are the respofise compoﬁents along the Z and Y directions

respectively and a is the disk eccentricity.

Even though the analysis procedure discussed so far is confined to

a single disk rotor system, the same treatment is equally applicable for

a rotor with several disks and bearings. Such a large system can be

modelled by the finite element method.

is quite large, it is possible to reduce the size of the matrices using a

modal reduction procedure which will be discusséq‘in Chapter 4.

3.5 Dynamic Responses

If the order of matrices involved

The above analysis is used to determine the dynamic responses of a

single disk rotor suppdrted on hydrodynamic bearings at 1ts two ends

whose details are given in Table 2.1. Dissimilar bearings are considered

\ .
and the dissimilarity is achieved with different bearing clearances at

the two ends.

. The 12x12 overall system hatrjces provide twelve eigenvalues, out

-

v
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of which four correspond to synchronous whirl and another four to con-

cal whi%] and thése eight appear as cemplex conjugate pairs. The

eigenvalués corresponding to conical whirl are quite high and hence are not
1

-discussed. Remaining fbur eigenvalues have their imaginary parts zero

in general and negative real parts, implying that the corresponding !

/
motion is monotonically decreasing and not oscillatory. Sometimes, two
of these eigenvalues appear as a complex conjugate pair, however, 'they

never correspond to the rotor speed. Al1l the twelve eigenvalue§’had

" their real parts negative, indicating that the rotor motion'iS/gtab\e,

/
in the operat1ng range under consideration. However, in certéin con-

figurat1ons of the rotor due to different bearing c1earances the real
&9
part of the eigenvalue becomes positive thereby the responée increaseés

monotonically mak1ng the system unstable for a certain r9nge of rotor

 speed whxch 1ies much beyond this operating range. S1npe the unbalance
. / 0

response and critical speeds of rotors for different configurations of

/
bearings are studied earlier, it is not repeated hefe and hepce only the

’ individual modal responses are studied for the fol}owing'beering clear-

. One,
ances and their combinetions. _// : .
’ ' /
(i) 0.0000533 m !
(1) 0.000188 m. //
/

The individual modal responses of the:rotor are shown in Fig. 3.1,
for the clearance values of ¢, and cz’bejég b.OOO]BB m at both ends.
This system has‘two peaks in its responée. At a particular critical
speed, thereJare two modes with the eé;responding eigenvalues being a

. 14
complex conjugate pair. In Showing/the modal response, only one mode in

" the pair is considered here, The/hode corresponding to the first of the

/ ‘ -

/ N~
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split criticals is predominént near the first peak. Similarly, the mode
corresponding to the second of the split criticals is predominant near

the second peak.

The orbital diagrams are shown in Figs. 3.2 through 3.5 for the

central disk rotor with the bearing clearances ¢, and c, being at

0.000188 m. Figure 3.2 shows the orbital diagram at the disk and bearing -

Tocatiens for the rotor speed of 1700 RPM which lies below the first
critical speed of 1865 RPM. It is seen that the rotor is,executiﬁé a
forward whirl. It was mentioned earlier that a éomp1ex conjugate pair
of eigenvalues exist at a critical $peed and moda] response is shown
~corresponding to only one of these eigenvalues. .However, at the Fotor
speed of 1700 RPM, the orbital diagrém for ;he mode corresponding to the
complex conjugate of the eigeﬁuaTue consfdered in Fig. 3.2 is shown in
Fig. 3.3 for comparison. It is seen that this orbital diagram differs
~in magnitude and phase from that of Fig. 3.2. Figure 3.4 shows the
orbital diagram for a rotor speed of 2100 RPM which lies in between the
two criticals. The total and the modal responses at the disk and bear-
ing locations are shown. Eventhough the modal response seems to ,be larg-
er in the horizontal direction, the sum of the responses of all modes
with due consideration for their phases wﬂl] be equal to the total
re§ponsef ' ‘ |

The orbital digé:;m when the rotor is running at 2700 RPM which
is gggxqgfgz'second‘of the split criticals is shown in Fig. 3.5. This
shows tha;‘the rotor 1s executing forward whirl. The orbital diagrams
for the mo&es also follow a similar trend. The change from fordard to
backward whirl does not take ptace at the first of the split criticals

unlike in the case of undamped rotor. The rotor motion tends towards

o
[ J

a =
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ﬁd§;k, howevér, it has different amplitudes.

957_

.

the cbackward whirl in between the criticals.

- S

i
The shaft motion at the bearing locations,is similar to that of the

-

3

Orbital diagrams for the case of central disk and dissimilar bear-

~

ing clearbnces ¢, = 0.0000533 m and ¢, = 0.000188 m at the two ends, are

_shown in Figs. 3.6 through 3.8. Orbital diagrams for the rotor at the

~

disk ‘and bear'ing 1ocations‘are shown along with those for the two modes
corresponding to 'the sp]it:ﬁ;itica]s. Figure 3.6 corresponds to a rotor
speed of 1800 RPM which lies below }he first of the split critical at
2168 RPM." Figure 3.7 shows the orbital diagramr@% this rotor at the
speed of 5300 RPM which Tigs in between the criticals and Fig. 3.é‘is

the orbital diagram obtained at the rotor speed of 2700 RPM which is

‘ above the second of the split criticals at 2500 RPM. For this configura-

tion of the rotor the whirl direction does not change in between the
criticals because the second critical approaches before that could

habpen, the rotor continues to whirl in the forward dfrectjon.

3.6 Experimental Modal Analysis

. v . \ 3 '
Analytical investigations of dynamic behavior of structures in
general do not match %éfh experimental measurements. One of the reasons
for this discrepancy is the approximations involved in the mathematical

‘.
model of the structure among various other factors such as material

propeftieg and 'the analysis techniques. Al these/approximations make

1 .
the analytical results vary considerably from the experimental results.
. J .

Under "this circumstance, one approach is to base the mathematical mode]
- . [,
onh§ simplified geometrical model of the structurg, and use standard

material properties in the analysis. An alternafjive approach is to
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~

measure some relevant gross,parameters of the structure and using them

in a different mathematical model. Recent developments in the measure-
. . P ’

ment techniques enable the second method quite convenient where the

~

\;:?h!matical model is the modal representation of the structure.

This experimental modal analysis techniques, usually termed as
modal testing, is a process of testing the structure in, order to obtgin
a mathematical.model calTed modal model. There are three basic steps
associated with the modal testing. They are: (i) measurement of transfer -
functions - Experimental‘stage (ii) curve-fitting of measured transfer
functions and-extraction of mddal parameters like natural frequencies
damping ratio, modal vectors, modal mass and modal stiffnes$ of the-sys-

tem - Numerical Analysis stage ‘(111) establishinent of modal model -

Modelling stage. They will be discussed later. ¢

3.7 Frequency Response Functions

Frequency response function aF a pafficu]ar frequency is the ratio
of response and the force applied at fhat.point.' Depending upon the
type of the response measured, it is called receptance, mobility or
inertance of the systeé. The determination of frequency response func-
tions is important because based on these functions; the modal parameters

are later extracted using a curve fitting hrocedure. Hence, the analyt-

1‘ica1 evaluation of frequency response functions for different types of

%

systems are derived as shown.

3.7.1 Damped Symmetric Systems

The uncoupled equations of'aAsymmetfié system can be written as
2, '

follows:
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2N
Mgty g = E A

37 F, : (3.34)

%

where modal mass u and modal stiffness x were already defined in
Section 3.2.2. '

In the case of harmonic excitation at a point r of the shaft,
N | N .

1= 0,0,..... f 0,0} elut , , . (3.39)

where w is the frequency .of excitation.

For steady-state solution of the form
4 ¢

n = n el . S (3.36)

the eqn. (3.34) becomes,

j w u.i F].i + K1 ;:]i = (Pr_i fr ; . . (3.37)\

o

Now.’the response at point s gives,’

(9 0. f A 0 ' |
Q,(t) ={ S} = % —r {‘ ‘} . (3.38)
S G =1 kg tdew U8y .

1

Knowing “the relation,

'Aiz-.u—; s ) ° (3.39) ;

'q*s can be obtained.by substitgﬁing.eqn. (3.39) in eqn. (3.38),

~ _fzi_féi_fn_ : “ (3.40) -
=1y (Ju-2g) |

e
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Hence, the frequency response function He (jw) can be written as,

2N '

q i ¢

e (du) =45 = —risi (3.41)
r

=1 b (Ju-dy)

Since the system equations are converted into 2N number of first

order equatipns, eqn. (3.41) can be written as,

. *
[XED) 1 ®ri %1 Yri¥si

o Hop(Juw) = ?*(3“7 2:

: _ ) (2.02)
i=1 u,- )\1' ZJ(jw‘Pf) ZJ(jw-Pi)

whére bi = -;id + jw (1-C?)é

Pi* and ¢1* are complex conjugates of Py and o4 respectively and

. s .
RS L . ‘
. | Z:L ,
, . /
Equation (3.42) represents the frequency response function(FRF) for a ’
r Y
For a non-proportionally damped system, the tra?sfer function

equation becomes,

' * %
2N ¢ @ O O .
R A f(Ju) o wUer) g Qe-py)

o

where u; is the complex conjugate of My

i
i
i
4
%

3.7.2 Damped Nonsymmetric Systems ~

The decoupled system equations can be written as,




“the systém a nonsymmetric one. Consequently, the left and the right
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. - B \ ‘
BNy vy s P {Di} Fi (3-44) :

' i=] ‘ .

. /f”'J :

i

Proceeding in the same‘way as discussed in Section 3.7.1, the fre- \

quency response function HS;(f:; can be written as

/{“ ' * ¥ —
' ) q (Jw) 2N i %si o, %riPsi
Hsr(JM) i W\ o i=1 U.i (Juw- Pi ) Ui*(jw' P;)
- } .
Whe”efﬂgﬁﬁ”d p: are complex conjugatgs)of B and Py - (3.45)

e el

3.8 Modal Testing of Rotor System

Experimental determination of the modal parameters was most{y re-
hported for non-rotating structures with symmetric properties. These
techniques can be extended for ro?ating symme;;?tfstructures provided
appropriate excitation or measurement iechniques are adopted. However,
the method is more involved when applied to'a nonsymmefric sfructure such

as a rotor system éupported on fluid film bearings because the asymmetric

fluid film properties along the vertical and the horizontal axes make

\ 1

l eigenveétors of the system need to be evaluated in order to satisfy the

biorthonality re]atjonship between them to uncouplg the system ‘FRFs .
measured along the rotor system by exciting at all ;hé test points gnd
measuring -only at one fixed point provide tHe left g1genvectors. By
medsuring the responses at all the points yhile eicitfng only at. one

fixed point provides the ¥1ght‘eigenvectors. These FRFs ére curve-fi;ted‘
With a suitable curve-fit method and then the modal model is developed. In

the present work, the modal testing is performed on a'single disk . P

) Y

opat




3

-

rotor supported on hydrodynamic bearings, which was analyzed using modal

)

analysis in Section 3.4.

3.8.1 Experimental Scheme

MR
«. 7 Y

The experiﬁental set up consists of a,single disk rotor mounted -
centrally on an‘uniform steel shaft w;;%h in turn is supported on fluid
film bearings at its two ends whose details were already given in Table
2.2. Figure 3.9 shows the experimental set up of the rotor-bearing
system which is subjected to modal testing. Sig test points are
prescribed viz, two at the Bearing locations, two at either side of the
disk and the remaining two poiﬁts along the length of the shaft. A
schematic 6f the rotor with specified test points are shown in Fig. 3.10.
The measurement at the disk location is a%pided due to the signal impair-
ment arising out of the high surface velocity of the diskqghich throws
the hammer without absorbing impact energy. Thé measurements
are made both along the vertical and horizontal directions, using sensors
mounted on a sliding mount which facilitates measurement at any Rosition
along the rotor shaft. Test forces are applied systematically at the
stipulated test points using an instrumented hammer. This.response and
force ttme signals are fed into a FFT analyzér in order to obtain the
FRFs, This method provides a matrix of NXN frequency response functions
as shown in Fig. 3.11 of which any one cofumn provides al] the right
eigenveétors of the sy?Sem whereas either é row or a column pro&ides all

the eigenvalues of thelsystem.

It is important to note that the frequency content is influenced
by the selection of the hammer mass and the flexibility of the tip of the ~

impact cap. Since the frequency response functions are measured for the
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»

.rotating shaft sys£em, the impact cap should be soft in order to avoid
damage to the rotor shaft and to get a clear spectrum as well. The impact
hammer excitbs all the possible frequencies of the sysfem under consider-

\ation. ‘ .

- A - 2
s Different techniques are available to estimate modal parameters
from frequency response data. ﬂowever. depending upon the degree of
modal coupling, a method most suited to the system is used. At any =
given frequency, the frequency’response represents the sum of all the
modes which have been excited as seen from eqn. (3.45). -Because the )

’rotor-beafing system has heavy modal coupling, ‘a multi-degree of freeddﬁl\
curve fit based on eqn. (3.45) is used. This is an iterati;e method and
‘hence the starting values can be obtained from the si;ple single degree

of freedom curve fit methods. Accordingly, two such methods are dis-

cussed in the next section.

3.8.2 Numerical Methods:

-

In this section, some numerical methods to analyze t?e measured
data will be discussed. Curve-fitting provide; analytical expressions for
" ) thé measured transfer functions. The purpose of thiS~stage'is to minimize
the error betweép the expe¥imenta1‘data and the ana1;tica1 expressionsh
at each data sample and the ﬁoda] parameters are identified. Different

a]gori?hms are available depending upon the specific nature of the prob-

lem. The different approaches are:

(i)  frequency domain or time domain methods,
(i) single degree of freedom or multi-degree of %reedom methods,
(ii1) direct curve fitting procedures or least squares fit.

L4
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[
Most of the curve-fitting algorithms are based qp Qbé frequency

domain analysis. There are methods which utilize the 1mpulse‘respon§e

functions instead Gf frequency response functions. However, the time

domain Feprésentation gives no real indication as to tgg number of natural

’ . . ' . 3 .
frequencies, as can be seen readily in the frequency domain analysis.
.

¥

Moreover, FFT a]gorithﬁ; are very well developed and'together with thevw

receht measurement techniques, make the frequency doméin methods easiar
and faster than the time domain measurements. For small perturbaiions,
most of the structures behave 1inearly and therefore frequency domain

analysis is found convenient and accurate.

Moreover, depending upon the complexity of the structure and the

intensity of modal coupling, the curve fitting procedures are chosen.

A single degree of freedom method is chosen when the modes of the

.

«Structure are widely spaced and modd1 interactions are small. However,
%
if the modal coupling is heavy, a multi-degree of freedom curve fit

procedure is opted. With the following assumption, two single degree of

freedom (SDOF)) curve-fit procedures are discussed.

1) The structure's modes of vibration are undepdﬁﬁﬁéa:“~\

T

2) For each mode, the frequency and damping are assumed to be con-

. stant over the enttre structure, or in other words there exists only one

mode shape for each natural freqdency. ‘
v ‘ | ¥
3.8.3 The Peak-Pick SDOF Method

Figure 3.12 shows a typical FRF curve plotted adainst freaaency
for a system whose off resonance modes are vgﬁy well separated and
hence the contribution of other modes are almost ﬁeg]igib]e. The first

piece of information that can be extracted from an amplitude response

. &

N
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curve is the natural frequencies of the system, which are usua]]f iden-
tified as the frequencies whose peaks are attained - and thus the name
peak-pick method. The second piece of information that can be extracted

from the response, curve is the amount of damping at that particular mode

EAR. -
under consideration. Damping is determined from the sharpness of
resonance and is given by 1

4 T *
-
W, - ) :
~ ZC = —-—-———---—-2 ! : (3.46)
wo ¢ . .

where ¢ = él- v C. is the critical damping of the structure and
c * o

w, & d w, are the frequencies on either side of the natural frequency4»0

where the peak amplitude is reduced by a factor of /2.

To determine the mode shape, the structure is exc}ted.a; a natural
frequency and the ratios of.the amplitudes at various points on the
structure are determined. There are certain disadvantages involved in
this method. For example, the damping ratid z is evaluated from a
single peak, but the mode shape is detefpined from the ratio of amﬁTi-l
tudes at various points. Thus if’a& error is made in the estimation of
a peak due to the contribution from other modes, the-inaccuracies in-
volved in evaluating the principal modes will be greéter than those

involved in the determination of damping. ) i

/

3.8.4 Circle Fit SDOF Method

The circle fit method is based on the curve fitting of FRF data
plotted in the complex Argand (Nyquist) plane. This method is by
Kennedy and Pancu [82]. For weak modal coupling, the frequency response

. function Hi(jm) can be written from eqn. (3.42) neglecting complex part,

I
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Hi(Jw) = , — . (3.47)
My A‘i ZJ(Jw"pi) : s
where Ri = 0p 04
R I R
let R, =U" %]V . g (3.48)
. ‘ i i | o
Hi(jw) = L A - | (3.49)

L2 (o - py) | \

Now,

1. ] - | (3.50)
2 (Ju-py) 2 (jmu;m-jxi)

CECEECIN s

‘2[(x'i-w)3 + (tim)zl‘

" Letting gow = g, L IR (3.52)
o . ‘+vie-39‘ "
equation (3.49) becomes, DA (3.53)

. >
¢ -

. ‘ s -1 gi
where ei 5 tan -
(X.i‘w)
, .
\ . Y
\ ‘ o 'mka_w ’
. < Real part aa = . * (3.54)
2[(A]-0)2 + g,2] |
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9

Imaginary part bb = - (3.55)

2[(Aj-w)?2 + g,2]

bb + '= t—_— (3.56)

M [} 7/
49‘1 2[()\1'“’)2 + g-izj 4

: i . (357

) 2 [N, - w)?+g.2]? :
D aa?+ (bb +,-L) A S (3.58)
NS (ag [-w)? ¢ 9,20)2
| 1 \2 1 '
aaz + (bb+ —— = (3.59)
491 [491] 2 . :

Equation (3.59).is the equation of a circle with the center dis-
placed on the "bb" or imaginary axis downward a distance 1/4g, ahd a

radius of 1/491. . The diagram shown in Fig. 3.13(a) represents a plot
of

R

]

- “ S
2A(0w)? + 9421 R ”

-~ "

R [ T
Now, the complex value of Ri'_-e 1 expands the diameter of the
circle by counterc]oskwise angle‘ei

shown 'in\Fig. 3.13(b). The circle fit algorithm calculates the modal

away from the .imaginary axis as
5 .

k4

T
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residues Ri by fifting the equatidn of a circle, using a least square

error procedure, to a number of measured transfer function data points
‘ b

in the vicinity of a modes natural frequency." The magnitude of Ri is

" calculated from the diameter of the circle using

IIRiH = 4 g; x diameter , (3.60)

If the measured'response,is in ;he vicinity of a resonance domin-
ated by ;he‘contribution of single mode of the structure,Jthen‘a SDOF
curve f{t method will be adequate to estimate the modal parameters of °

" that mode. Otherwfsé, a more sophisticated aTQOrithm based on a MDOF

_model is.necessary.

The complex modal parameters are identified by fitting a best
curve fit between the measured response plot and the generated plot from
the analytical expression based on eqn.\}3.45). The Teast square pro-
cedurefis used‘and the criterion for minimization of the errOﬁ'is

M
sr

A

o (0) + E (3.61)

H p

(wy, X,

i’ ¢?) = H

-

where Hﬁr is the generated frequency response function and H?r is

the measured frequency response function at a particular frequency. Ep

¥s the error between them, so

£ IR (0 a,0) - WYL ()] (3.62)

—— P . .

Summing up the error squared over "N" %requencies to obtain,

N .
N 2

_ A M (3.63)
Z] E, = p}_:] [HS, (w, 2y, 85) - HQ ()12
p= N

e
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Following along similar lines, the left eigenvectors P, are also

obtained from the rows of frequency response functions of the H-matrix.

Differentiating eqn. (3.63) with respect to each unknown in turn

and setting the result to zero, gives a number of equations for the

unknown modal parameters. The experimentally obtained frequency re-
sponse functions are bode plotted and this plot provides the natural
frequencies of the system corresponding £o the peaks in the amplitude
plot and the respective phase plot changing from 0° to 180°. Since the
operating speed range from the rotor is only 4200 RPM, discussions are
restricted to the first natural frequency and the first mode only. The
bearing configurations arising out of di%ferent clearance va]ueg are
used to compare rotor system natural frequencies wifh those obtained by
analytical methods earlier. The experimental frequency response plots
are obtained for the excitation at the test point number 5,and measure-
ment at point number 2 pf the rotor. The plots are shown in Figs. 3.14

through 3.21.

A

3.8.5 Configuration 1: Equal Bearing Clearances (c, = c, = 0.0000533m)
s B

The frequency response plots obtained for the stationary rotor
along Y and Z directions, respectively are shown in Figs. 3.14 and 3.15.
From the plots, the rigid bedring natural frequencies when w = 0 along
Y and Z directions are found to be 51.75 Hz and 47.75 Hz respectively.
Figures 3.16 and 3.17 show the corresponding frequency response plots
when the rotor speed is 33.3 Hz, where the rotor natural frequencies are
found to be 39.75 Hz and 46 Hz respectively along Y and Z directions.
When the rotor speed coincides with one of the natural frequencies, that

speed corresponds to the critical speed of the rotor.
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Figure 3.18 shows the plots of unbalance response at the disk
location along Y and Z directions against the rotor spee&t These are
the ana]xtica] plots obtained, following the analysis'discussed in
Section 3.4. Since the measured and analytical frequency responses
correspond to different locations and for different type of excitations,
a direct comparison between them is not meaningful. However, the system
natural frequencies from these two methods can be compared. It is
observed that the amplitude peaks in the analytical frequency responée
plbts occur at the frequency 43.5 Hz for both Y and Z d%rections. The
analytical natural frequeﬁcy along Y direction is 1arge: than the

measured frequency in Y direction.

3.8.6 Configuration 2: Dissimilar Bearing Clearances (¢, = 0.0000533m,

¢, = 0.000188m

For this configuration, the measured frequency response plots,
obtained at a rotor speed of 33.3 Hz show the natural frequencies to be
39 Hz and 44 Hz along Y and Z directions and they are shown respectively

in Figs. 3.19 and 3.20.

The analytical amplitude response values against the running
frequencies of the rotor is shown in Fig. 3.21. This shows two distinct
peaks in the amp]itude/:g;ppnse plots. The first peak occurs around
35 Hz along Y-direction ;nd the second one occurs at 43.5 Hz along Z-
Qirection. Jit s obsgrv@d that the analytical and measured natural’

frequencies agree well. ™~

The frequency response plots of the rotor in all the above three
bearing configurations show.that the natural frequencies of the rigidly

supported shaft is a1w§ys larger than the shaft supported by flexible

59
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hydrodynamic film. Also, it is observed that under dynamic gondt%ions"

ul ) . ’/
of the rotor, the experimental frequency responig has a small QEEEE,?t‘

f
the speed of the rotor. /

3.8.7 Configuration 3: Equal Bearing C]ea;ances (c,’= ¢, = 0:b00188m)

Complete modal information is obtained only for a r&)r supported

on fluid film bearings with identical clearance values of 0.000188 m at

ﬁ both ends. The comparison p]ét of the measured frequency response with
the generated analytical exﬁ?essions based on the multi-degree of free-‘
dom curve. fit method is shown in Fig. 3.22. The complete mode shape
plots corresponding to first mode for this configuration a]oég Y and,Z
directions respec¢tively are shown in Figs. 3.23 and 3.24 and they rep-
regsnt the left eigenvector of the system. Figures 3*25\:Pd 3.26 show

- the' above mentioned results in different planes. Similar mode shape
plots of the right eigénvgstor of the system are shown in Figs. 3.27,
3.28, 3.29 and 3.30. These mode shapes are similar to the first.mode
Sf a simply supported b&am. However, at the two ends, a small displace-
ment of the shaft is seen. Tﬁe modal parameters of this configuration
of the roto; are given in Tables 3.1 through 3.4. It is observed é?&ﬁ -
the experimental plots that the left aﬁd the right eigénva]ues obtained
for ZX anq YX plane of the rotor differ approximately by 1 Hz. This is

because of the approximation invo]Vedﬁin the curv:-fitting ﬁrocedures

over all the test points.

[

For this configuration, the analytical response piots show two
distinct peaks and they are shown in Figs. 3.31. The first peak occurs
approximately at 31Hz in Y-dfrection and the "second one occurs at

*42.66 Hz in I-direction.

e
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TABLE 3.1: MODAL PARAMETERS OF THE ROTOR (ORIGINAL SYSTEM)

Right Eigenvectors

Modal Hass

ClL = €2 1 7.41

RPM = 2000

-

Mode 1  Res. Freq. Vis. Damp. Modal Stiffness
4.127€-01 4.,078E-02 1.02E-05 V.69
Measuremept Oriving Real Imaginary Mag. Phase
Point Point ’
1 x 2 .423 -1.192E-02 0.423 1.6
”'{ g .128 -0.161 206 - | -51.7
2 X 2 .642 -1.342€-02 .642 -1.2
/ g .357 -.791E .868 -65.7
3 X 2 .958 6.965E-02 .961 4.2
y g .429 -.677 .802 577
4 X 2 1.0 4.983E-08 1.00 0.0
; g _ 411 -.0809 908 -63.0 .
5 X2 .888 4.74£-02 0.889 3.1
’ g .7é9 -0.717 763 1| -70.2
6 X2 /%56 -1.698E-02 556 | -1.7
) g .2 -0.458 0.517 -62.4
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TABLE 3.2: MODAL PARAMETERS OF THE ROTOR (ORIGINAL SYSTEM)

cL = ¢z =741

RPM = 2000
o
Left Eigenvectors
Res. Freq: Vis. Damp. ' Modal Mass Modal Stiffness
45,85 4.055E-02 2.145E-05 1.78
Driving Measurement Real [mag. Mag. Phase
Pq%nt Point 4
1 x 2 5.368E-02 | -0.136 .146 -68.5
{ g 0.532 1.312€E-02 ’ 532 -1.4
2 x 2 -0.409 -7.242E-02 | .415 -170.0
{ g 0.977 " -4,958E-02 0.978 ‘l -2.9
3 X 2 -0.614 3.603E-02 0.615 176.6
i % 0.897 U,.121 0.905 - 717
4 x 2 671 | v 0.683 169.7
{ g B 1.0 1.019E-10 1.00 | 00
5 x 2 -.537 276 0.604 152.8
i %. .726 L1597 .743 . 12.3
6 x 2 -.124 3.158€E-02 .128 . 165.8
{ % 435 -0,121E00 452 -15.5
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TABLE 3.3: MODAL PARAMETERS OF THE ROTOR (TRANSPOSED SYSTEM)

c1 = ¢c2 = 7.4¢

RPM = 2000
Left Eigenvectors
Res, Freq. Vis, Damp, Modal Mass Modal Stiffness
40.94 Hz 4,117£-02 1.28E-05 0.815
Driving | Measurement Real Imag, May. Phase
Point Point
1 X 2 0.578 1.806E-02 0.578 1.8
g g 2.308£-02 | -1.12E-03 2.31E-02 -2.8
2 X 2 0.641 0.138 0.656 12.1
)3 0.137 1.273€02 0.137 | 5.3
3 x 2 1.00 -1.304E-08 1.00 0.0
. i % . 0.157 4,737E-02 0.164, 16.8
4 x 2 0.876 V.1U6 U 882 6.9
i g 0.157 1.594£-02 0.157 . 5.8
5 X 2 0.791 0.158 0.807 11.3
i é .153 1.622E-02 0.153 b.1
6 x 2 0.389 9.9583E-02 0.401 14.4
i g 1.202é—02 4.294€-03 1.277€-02f 19.7
.
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TABLE 3.4: MODAL PARAMETERS OF THE BOTOR (TRANSPOSED SYSTEM)
c1 =c2=7.41
RPM = 2000
Right Eigenvectors e
Mode 1 Res. Freq, Vis. Damp. Modal Mass Modal Stiffness
44,81 Hz 0.U3186 1.49E-05 672E-04
Measurement Driving Real Imaginary Mag. Phase
= Point ®point
. ' _ e,
1 x 2 | 2.033E-02 | -6.665£-02 ' | 6.968E-02 | -73.0
) g 0.374 -.133 0.397 -19.6
2 x 2 §.804E-02 | -5.909€-2 7.616E-02 | -50.9
| J { g 0.611 -7.403E-02 | 0.615 -6.9
3 X 2 .102 -7.818€-02 128 -37.6
i S .875 -.168 .891. -10:9
3 X 2 |-6.955E-02 | *4.344E-02 BE-02 | -148.0
6 75 troo | -6.si008 | Lo 0.0
5 x 2 |-1.124€-02 | -7.593E-02 | 7.767E-02 | -98.4
Y% | o.zseon | -7.513602 | 0730 5.9
S x 2 | 4.183E-03 | -6.733E-03 | 7.925E-03 | -58.2
Z g .355 1.756E-02 | 0.355 2.8
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In general, the different stiffnesses of the support along Z and
Y directions, make the rotor system natural frequencies alseo differ

°

slightly along.these directfons. ~

3.9 System Stability .

It was mentioned already th 'the direc§ approach did not provide
the stability infgrmation of the systém and hence a mbdal analysis proce-
ﬂ;ure was resorted tonget all the relevant system infdrmatiqn. These
modal amalysis procedures are disqgssed in Section 3.4 for a simple
rotor system and it is observed that th& system eigenvalues
consist of real and imaginary parts where the }ea11part of the eigen-
value is the system damping and the {ﬁaginary part represents the whirl
frequency of the rotor system. The va]ue(of the real part of the eigen;
value which represents the system damping 'remains négative for a stable
s&stem. If this value changes tp a positive value, the system response
increases monotonically thereby pushing the system to the unstable
regions. Therefore, the ”Ehresﬁ%ld speed" of inStabi]{ty of the rotor
| system covresﬁgnds to a sgeéﬁ at which thé real part of the eigenvalues
changes sign, i.e. negative value to a positive value. The imaginary
part of the complex eigenvalue Eorrésponding to this’threshold speed of
instability is thé whirl speed of the rotor. In rotors supported on
f1u1d film bear1ngs, the whirl _ratio which is the ratio between the whirl
speed of the rotor to the spin speed of the rotor normally varies between

0.45 and 0.5.

-

Figur§ 3.32 shows the analytically obtained instability regions
* for a centrdl disk rotor supported on o0il film bearings whose clearances

1
c, and ¢, are constant at 0.000188 m at both ends. The real part of the
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bvé eigenvalues aré plotted against the rotor spin speed in RPM. This shows
that the system enters the unstable reg1on at the rotor speed of 4950 RPM
and this corresponds to the rea] part of the first eigenvalue changing
sign from negative value to the positive value. Hence, by analysis,

the region of instdBTTiEy for this configuration of the rotor lies be-
yond the. rotor spin speed of 4950 RPM. The threshold speed of instabil-
ity is 4950 RPM and whirl ratio is about 0.5. ’

To compare this theoretically obtained threshold speed of insta-
bility of the rotor, theuexperimental value of the threghold speed of
instabjlity is obtained only for this configuration. The instability in
the rotor system can be obtained from the shape and™behavior of orbital
diagram. Far this configuration of the rotor, the experimentally ob-
tained orbital diagram for a speed of 4100 RPM is shqﬁn in Fig. 3.33.
The criticdl diagramllooks like the shaﬁe ofﬁa hgart which is different
from the conventional shape of the ellipse aﬁg this corresponds to the
position of journal rub in the bearings and'a%pears similar to that ob-'
tained by Beatty [83]. Moreover, uader sQeadA-gtate cond\tions of the
rotor, the shape itself js not stationary,-but\revolves ;t every instant
around a central posit%on. This clearly shows|that the instability is
just set into the system. Becau§e‘the maximum Jheréting spééd of the

rotor is limited to 4200 RPM, the complete details of the rotor behavior
are not possible to obtain beyond the réﬁor spyed of 4200 EFN.

The unstable reg1on'pfor the rotor suppo ted on d1ss1m1]ar bearings
at ¢, = 0.0000533m and c, = 0.000188m are shown in Fig. 3. 34 The plot
.shows that the real part of‘the‘first eigenvalue does not change sign

and hence the corresponding {?%%?iibn of the ragtor does not,devé1op in-
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stability in the system. Whereas the real part of the second eigenvalue,
which corresponds to Z motion of the rotor, changes from a negative value
to a positive value at the rotor speed of 5250 RPM. Threshold speed of

instability, therefore, is approximately 5250 RPM for this configuration

of the rotor.and the whirl ratio is again equal te 0.5.

3.10 Conclusions

Modal analysis procedure is usad to evaluate the dynamic responses
of a single disk rotor supported on hydrodynamic bearings at its two
ends. This method provides system information such as stability and
modal responses in addition to the gpba]ance response and critical
speeds obtained®using a direct approach discussed in Chapter 2. Total
system responses and the individual modal responses are obtained both at

the disk and bearing locations for different bearing configurations

<
through orbit4l diagrams.

In general, the dynamic information obtained by experiments do not
match exactly with theoretical results because of the approximgtions in-
volved in several stages of thé analysis. Such, approximations are
drastically reduced by resorting to a modal testing procedure which uses
the experimentally measured gross parameters to curve fit with the
ana]ytica1.expressions in order to extract the modal parameters of the
system: Using the modal testing procedures, the modal parameters of the

sing]é disk system are identified for a particular’bearing configuration.

Phe simple rotor system is modelled using a discrete Jeffcott rotor
assuming that the support conditions are rigid. Even though such a model is
sufficient for a simp]g\rotor system, larger systems which consist of

varying shaft sections, several disks and bearings cannot be modelled very.
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accurately using the Jeffcott model. Such continuous systems can be mod-

efled in a more elegant way by finite elements using consistent represen-

tation of system properties. But

the computational effort in handling

the large size matrices is higH; however, it is possible to reduce the

size of the system matrices dsing a modal reduction progegure.

The finite element modelling and the subsequent reductidﬁ Procedures,

applicable to a rotorZbearing system, will be discussed in 6hapter 4,

_/
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CHAPTER 4

r

FINITE ELEMENT MODEL OF THE ROTOi SYSTEM AND

STUDY OF SYSTEM STABILITY

In the prevnQ:i\::apters, a lumped mass model was used for the

rotor system in the form of a Jeffcott rotor and the resulting equations
of motion were splved using modal analysis. For a simple rotor system,
such a model will provide satisfactory results; however, it is not suf-
ficient to represent large systems and therefore results obtained based
to model the large rotor system accurately. Finite element method has

been used to model the rotor systems,

*,

In this chapter, a simple rotor system is modelied by finite ele-
ments and the resulting equations are solved using modal analysis tech-
niques. Because the system is simple, a few elements represent it very
well, Howé&er, for large rotor systems with several disks and bearings,
the system matrices are larger and the associated computational effort
is exhorbitant. In order to reduce the time involved in computational
effort and handle small size matrices, a modal co-ordinate reduction

procedure is discussed, Further, a stability ana]ysié for the simple

rotor on fluid film bearings is carried out.

4.1 Analysis

The typical flexible rotor-bearing system consists of a rotaor
o3y
composed of symmetric rigid &1sk, symmetrical rotor segments .with dis-
tributed mass and elasticity properties and the bearings at the two

ends, as illustrated in Fig. 2.1

A typical cross-section of the rotor

in a deformed state is defined relative to a fixed frame of reference

"

AN
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XYZ "the translations U{s,t) and V{s,t) along the Y and‘f directions
respectively with respect to the elastic centre line andlfhe small angle
rotations o(s,t) and ¢(s,t) about Y and Z respectively to orient the

plane of cross-section with spin axis X. This is shown in Fig. 4.1.

The equations of motion for the rotor-bearing system obtained from

Lagrange's equations are as follows:

d faL ) _ 3 , W g ooy (4.1)

3d, aq, 8,

dt

where L is Lagrangian,

=7 - V, and q,, F. are respectively the i-th generalized co-
i* i

1

‘ordinates and forces. Now, relating the rotations (6, ¢) to the trans-

\ N

lations (U,V), the equations can be written as follows:

g=- . ¢ W and ¢ = wt (4.2)
0s ds :
The disc and the rotor element are fixed in the yz plane of the
'?otating frame xyz or the principal axes of the rotor systems. The -

successive rotational velocities about %, Z and X axes, can be related to

the respective angular co-ordinates using Euler angles as,

Wy 1 0 " -sind $
9y = 0 0S¢ cos 6 sing ]
W, 0 -sing cos8.sing b (4.3)
4,2 Rigid Disk Element
In this section, equations of motion for a rigid disk are devel - N

oped using Lagrangian formulation. Accordingly, the kinetic energy of a

f
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Figure 4.)

Schematic Diagram of Rotor Rotational Angles and Velocities.
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*

typical rigid disk with mass centre coincident with the centre of the ' ///f

rotor shaft is derived as follows:

228 g2 vl (Lo 24 L 2+ L 2 (44
) | PX d%y d“z '

with Id = diametral mass moment of inertia

and Ip ~ 2 Id for a thin pisk.

Equation (4.4) can be written in the matrix form as shown:

"

o ;U}T ["‘d 0 ] ku} + {wy}T [1d 0] )wy)
2 lV 0 my v w, 0 Id lwz‘
ez (4.5)

2 P X

where (4:3) w,? can be obtained from equation (4.3) as ¢ - 2440

by neglecting the higher order angular velocity terms and their

products. This is shown in equation (4.6). ~

AR R A

©e

TR
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‘ ¢
With constant spin speed of the rotor w = &, the equations of
motion for the rigid disk can be-formu\gied using Lagrangian and they
are written as,
d dq|,.d dy jed d e eaga )
01 + [ 81]16%) - w () @ - 1) e
h /
- -
md U + v 0 0 ”»
J m ] 0
[mtd] = d -
0 0 0o, 0
0 9 o 0 ' R
b
0 0 & 0 0
U 0 0 0 .
d
[m%] = *
0 0 l U .
d
I 0 0 0 Idd‘
" 0 0 0 0] ¥
and [gd] 0 0 0 0
. 0 ’0 0 -Ip
S 0 0 I 0 :
AN L P -

‘4.3 Shaft Element : ‘ \kxf=3;:)

Typical rotor shaft element is illustrated in Fig. 4.2. The time
dependent displacements (U,V,0,¢) are also functions of position s

along the axis of the element. The generalized co-ordinates

wﬁ' o Y e e e 207 €
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(qxe, qze, cees qee) are the time dependent end point displacements

"(both translations and rotations) of the element of the symmetric rotor )

-

V' shaft) h -
0 The translation of the uniform shaft element is Ehosen-to
obey the relation, . .‘ - Vo , N
. /) b
’ ‘U(S ol ) [Nl(s)] %f(t)i (4.8)
o .

lV(s t)

L‘ ‘
»

where [Nj]

Ny is a matrix of displacement shape functions only. Thé
) functions nj, ..., Ny reprgggat the static displacement .mudes assoc1ated
with a unit displacement of the one of the end point cu-ordindtes with

all others constrained to zerb="These functions can be Writtegoas shown

below:

(4.9)
. ) - )
- o= = (2.1 (d)
- TR | A
,&, |
From equation {4.2), the rotations can be expresiij/jg}khe farm,
£ 6 ““ ‘
- {} (Na(s)] et (.10
o . .

o




-

'Nz(e) 0 -nj Qlﬁg 0 0 =-n; ny O
where [N;] = = ‘ ,

N2(¢)

Hence Ny and Nz represent the translation and rotation shape func-

tions reﬁpectively for the uniform shaft element,

t
3

| ) x
For a point on the shaft located at a distance s from the fixed
co-ordinate systiw, the elastic bending and kinetic energy expressions
p :
L]

o~
are as shown:——-

‘Strain energy = -ldr

-
-

. I .
) . T" ' . :
and  Kinetic eg;rgy = l;JA ? } w0 9 ds +
’ 2 0 V 01‘ 1 V . !

TN I,.. 0 s 2
2 é} [ds He} s+ o & s
1 .20¢ 0 I ] l¢ 2 3
iy ¢
) o & [} y
- : Ip99 ¢ 0 ds (4.12)

° . i . - ¢
where EIo is the bending rigid%ty of the shaft ‘material.
The energy equation of the shafguglement is obtained by integra-

ting equatiqﬂsf(ﬁ:11) and®4.12) over the length & of the element to

get, -

_g‘ '



- ey ————— B~

. danping co-efficients as ‘shown.

-144- .

!
1 .. o 0. T '
. +;1m¢ff¢mﬂ,wﬂ{f} (4.13)
) A N :
- e ' T
t . where [m."] = fom [Ny]'[Ny] ds
0

—

-

e t F i MafDr] os

[$°]. = [ 1 [Na(e)] [Nale)] s

O Yy 3o

- :
[kB.e] =[I Elo [Nl"]T[NIHJ ds e
©0

;
,'These individual matrices for the uﬁ%form cross section element
are included in Appendix A and the axial load is maintained constant.

The aone mass and stiffness matrices are called consistant hass and

4

stiffness matrices respectively. ;

Equation (4.13) has td be written with displaceménts expreésed in

the fixed frame XYZ in order to have a set of genéralized co-ordinates

. as shm;n in Ref, [26]. , S

4,4 Fluid Film Bearings ’

The rotor system .is$ §upported by fluid film bearings., The fluid

‘film bearing forces can be éduated'tp lineériged film sfiffneﬁs and

1

3 R I N TR )

»
1

S

8
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tt . -tt o tt tt
f;z : Czy K] = ‘kzz ’kzy

tt - tt , 1ottt
“yio Sy | “yz' Ky

wheie [C] =L

{q} = su P and FB~isfthe\beéring film force.
The Bearing propeétieé aEe ﬁntroducéd at the apprqpriafe bearing

nodes., . . . .

.

4,5 Modal Co-ordinate Reduction

This reduction process is based oﬁ the "Multiple Camponent Mode
Méthod" proposed by Masaaki Qokuma and A. NﬁQamatsu 1331, In this
ﬁethod, a structure is divided in£o-few “first divided" components,
tach first divided component is subdivided into some “second divided"
ones. Repeating this process n times, the structure is divided into
n diyided“ components. The natural mode of (n-1)th divided compon-
ent is analyzed using the natural modes of the n-th divided ones by the

. , .
technique of ordinary component mode synthesis megﬂod. This is repeated

"for all other components and the vibration of a total stﬁucture is anal-

yzed, However, the authors proposed this method for a general symmetrig

structure. Moreover, damping is not included in their épgpoach”
. ' \d -

. The above method, when applied to a rotor-bearing syétem, §1mp11-
fies the handling of large size matrices at the beginning of the process

as compared to the method dévelbped by Glasgow and Nelson'[22]a Also,:

the size of the final system matrices are comparatively small. .

Figure'4.3(a)xshows the schematic diagram of a:simple rotor-

beariny system under considerﬁtion. This rotor has uniform circular

- . _ | ~

[
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shaft section with a rigid disk mounted at the centre. As explained )
before, this rotor system is discretized into two first divided compon-
ents namely A and B. Then, these ffrét divided components are again

,

divided into two second divided components, namely A; and A, of compon-

ent A and B; and B, of component B as shown in Fig. 4.3(b).

The component A is an§lyzed with the discretized seyments A} and
A, and this results in three nodal points with four degreeg of freedom
{two translations in XZ and XY planes and the corresponding rotations)
at each nqde point, The interface node 2 is fixed and it is assumed
that the modes at this jnterface point 2 is expressed as a linear com-
bination of naturSJ modes obtained by solving the equation for eigen- .
value problem with the reduced mass and reduced stiffnesé matrices of

component A} and component Aj.

¢
For component A;, the static displacement equation can be written

as,
AL AL ]
ki) k1z q1 {0
= (4.15)
P A 92 Fi
21 22
A -1
= - K1) 18 faab = (1] {azl (4.16)

The co-ordinates are reduced as shown,

. . ' ) ‘
q T1
= {q2} (4.17)
d2 I :
where 1 is the identity sahaﬂehmatrix.

s

TR, . P
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Now, the mass and stiffness matrices of the component A are

reduced to the matrices of interface node 2 as shown below:

lix ‘ A A ‘ ‘
m = T 1 1 , 1 T I . 8 .
[n"] [1 ] "y M 1 ) ) “HA
mfl M L
21 22
e Ay Ay -
and [kA‘] =1 1] |*n k1 N (4.19)
Ay Ay I
Ko Koy

In the same way, the static displacement equation can be written
for component A; as shown,

f
~

'kAz A2 \\
22

23 q2 -Fi
- (4.20)
Az A,
kaz K33 % 0

Again, reduced mass and stiffness matrices are written as,

. o S
Ay Aj '
[mAz] = [1 T,) 2 M3 I
) (4.21)
. Az Az T &
‘ M2 M33 2
. . 5 -
and ‘ : ' )

- %a&fwﬁ;ﬂﬂwww ki



%

A2 Aé ‘
[VAZ] = (1 T) kzz Kas 1
(4.22)
.
Bz A ‘
32 33

where T2 = - [k33] [k32].

Now, the natural modes {&;} for the mid point 2 are obtained by

solving the eigenva]ye problem,

a *

([kAl rifa] - wg? [t 4 mAZ]) laz} = {0} (4.23)
and heqce {q2} = [®2] {n2} (4.24)

The displacements of node points 1 and 3 are assumed to be
expressed as a linear combination of constrained modes and the

natural modes obtained by fixing node point 2.

Now, when the node 2 is fixed, the natural modes at point 1 can be

obtained by solving,
N A A ' ‘ ’
' [[kli] -w 2 [m,I]] {ar} = {0} - (4.25)

The modal matrix obtained by solving'the eiyenvalue problem of -

(4.25) 1§7{01] and hence the displacement of point 1 is given by

&

{ar} = [T1] faz} + [81] {ni} ' (4.26)

Substituting for {qz} from equation (4.24), equation (4.26)

pecomes,
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I

{au} = [T1) [®2] {n2} + [81] {ni}

(4.27)

Similarly, the displacement at node point 3 can be expressed in the same

way.

(a5} = [T2] [92] {na} + m;’ (s}

»

/

]

f

-

(4.28)

The displacements at pointé 1, 2 and 3 can be written using'

equations (4.24), (4.26) and (4%28)

{43}
{Q2}
{q3}

0 ¢,
0 1%,

—

0

The equation of motion for component A is written as,

[ A,
11

kA
21

kM
12

AL
(k22+k

0
Az K Az
22) 23
kA2
33

-

[ A
."n1
11

21

A
M2

Ay Ay
(M224"22)

A
m 2
<32

ni
[TA] n2 (4'29)
'ﬂ3/ D
0 /{Q1l\
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Substituting equation (4.29) 1nto«Equation (4.30) and premultiply-

N
ing the resulting matrices- by [IA]T, the homogenous form of equation

can be written as,

_kAl kAl ‘} 0 ] s
il 12
A A A A ‘
T 1 1 2 2 T
' | *a (K22t %2) k23 [14] -w2[1,]" X
Az Az,
0 kaz K3
oA nPl ] \
Ll 12 0 ny
A Y Ay |-
X 21 (M2 " M2 Mas | [Ta] n2 > = {U}
] mh2 mA2
0 32 33 N3 (4.31)

The natural modes [@A] are obtained by solving the eigenvalue
problem of equation (4.31). The component degrees of freedom can bpe

reduced by truncating the number of modes due to higher frequencies of

‘the system with little effect on the important lower modes of the

system,

With truncation of modes in mind; the modes [°A] can be written as
one consisting of retained modes [®,;] and truncated modes [o47] as

shown: -

[¢A] = [¢AR ¢AT] - (4.32)

-



R

-152-

Hence, the displacement vector is writténvin terms of truncated
modes of component A,

({a) :
< {‘12} > = [TA]NXR [(pAR}RXl‘ (4.33)
\{Q3})

where N dre the no.of nodes and R, the no, of retained nodes.

Similarly, the component B can be analyjed and the correspénding
% . >
displacement vector is written as,

({as} )

lawd 2= [Tylyxr Parlra

: (4.34)
where
, [ ¢, T30y 0 ]
' B 0 Tuy oy

-

. Byq. B
Ty = = [kag ')t [kaw b ]

i e -l
and Ty = - [k 227 [k, 2],

Modes ¢3, ¢, and ¢, are obtained in the same manner as those of
®,, 9, and ¢3.



-153-

Displacements for component A and component B are assembled to get
[y

the overall displacement of the structure,

{a1}
{a2 . \
sk ¢ - {¢R}(2R-1)xl
{qu} ' R )
(as} ’
— ~ (2N-1)x(2R-1)

(4.35)

The elements of the matrix in the hatched area, are divided. by 2,
because the displacement at the node point 3 is added twice while assem-

bling the transformation matrices of component A and component B.

In general, equation (4.35) can be written as,

«

{ab = [7](an-1)x(2R-1) (05} . (4.36)

-

The total structural ma&rices are obtained By‘assembling the
stiffness and mass matrices and force vectors of component A which are -
available in equation (4.30) aﬁd the corresponding matrices of component
B. The'resulting overall mass and stiffﬁegs matrices are [Ma11] and
[Ka]]]~respective1y. The stfugture's generalized coordinates are

!
obtained as, N

0 1 [90ind + 017k 0k = (017t .3

where the size of [Ma]]] and [Ka11] are (2N-1)x(2N-1).
NS
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The rigid disk properties are included at the appropriate nodal points

of the mass matrix [”all]' By solving the hpmogenous part of equation
(4.37), the natural mode matrix of the system [°allj is obtdined and it

is of the size (2R-1)x(2R-1).

. & .
Equation (4.37) can be transformed in the physical co-ordinate

system by multiplying by [(Da”]’l as shown:

(117001 021) oy 17 (@t (1917000 109) Loy 37 o = (00'4F)

(4.38)

Now, the fluid film damping matrix is included and the equa-

6?50 of motion of the structure can be written as shown:
o T

[MHa} + [c){a} + [xk}a} = [v] {F} (4.39)

where w; ‘
- foll : -1
[M] - [V] [Ma”][v][‘ba”]. . N

< (o1l -1
[K] = [V] [Fa]]][v‘][q’a]]] + [Kfﬂm]
(Keiqnd 18 fluid film stiffnessumatrix .
and  [C] contains the damping properties of the system.
>

Equation (4.39) is a nonsymmetric second order equation of size
(2R-1)x{2R-1). The solution of these equations using modal analysis
method was already discussed in Chapter 3. The reduction depends upon

the number of modes to be retained,

For the single disk rotor system supported on hydrodynamic bear-
ings at the two ends, the overall system matrix is of size 20x20. Using,

'the reduction procedure, this ha§ been reduced to the size of 1éx]2

e’
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which is sufficient sinte the first few modes of the system are of

interest.

7 Three different configurations of the rotor system are considered
for the response analysis using the finite elemeq& method with reduction

procedure developed before,

4,5.1 Rotor with Equal Bearing Clearances (c,=c, = 0.0000533m)

§

The rotor details are given as shown in Table 2.1 for a single

disk rotor supported on hydrodynamic bearings'at the two eﬁds. Since,
the rotor system is a simple one, the'discrete model approximates'the)
real system very c}osely.vﬁgonsequently, the response obtained using
this discrete model is close enough to the actual response of the

system, Hence, it is reasonable to compare this response with the one

. obtained using the finite element model, Accordingly, Fig. 4.4 shows a

%
comparative plot of normalized response of the rotor against the .rota-

tional speed. A good agreement is observed in the response and the

critical speeds as well,

4.5.2 Rotor with Equal Bearing Clearances (c,=cy, = U,.000188)

The same rotor details as above are used with different bearing
clearance values to determine the normalized response of the rotor
system, Here, the response shows double peaks corresponding to the

split first critica],sbeedsrof the ro&gf system, Again, a good correla-

‘tion is. seen between the responses obtained using two different system

 models. This is shown in Fig. 4.5. o -
; , ',,f’]‘ .

¢
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\;

Figure \.6 shows the. comparative response plots of tne ‘same rotor

supported on'dissiﬁila} hydrodynamic bearinés. Here, the bearing clear-
ance values are different at each end, i.e. ¢, = 0.0000533m and €y =
0.000188m. Again double peak respoﬁse corresponding to the split first '

LY

criticals is obtained.

In general, it is found that the finite element model provides
comparatively good results with those obtained using a Jeffcott model.
However, using a finer mesn_of the rotor system, it is possible to

Py

achieve responses which are closer to the results of the real system.

4,6 Stability fAnalysis
/]

The instability of a rotor gystem supg?rted on plain cylindricatl
beari&gs is a self-excited vibration attributed mainly to the diféerent
oil fi\m properties in Z and Y q1rections and aiso the asyunthic cross-;
coupled film ﬁroberttes along the twu directions, ypis instability in
rotars is tqtai{y 1ndependegk'of anyﬂexternal forées. Rotor instability
cohdition'cou]d'occur in/&,given fluid film bearing'design, when a

threshold speed condition exists, beyond which the orbital path of the

journal becomes unstable and the orbit yrows in time,
}

A simple analysis developed by Rao [47] and Reiger [48] is dis-
cussed here and based on the analysis, the threshold speed of a simﬁle
rotor is determined. Sincé the translatory first c}itica] speed is of
interest, it iq/convenient to consider an equivalent rotor as shown in.
Fig. 4.7. Thq‘shaft carries/@wo discs'M each separatepmby a distance EL
symmetricé]lytwith the qentre.; For trans]ato?yjmhirlj 3 be%§7es 1, and ~
the equations of motion of thé rotor can be written alongutwo directians

as »

} ) : 3
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| : K(Z, - 2) = - W Z
- ‘ (4.40)
\\ CR(Yp-Y¥) =aMyy ] '

where K'is g'he stiffness of the rotor.

4

For @ whir] frequency v

e
Z, = 7, et 2 =1et
. . , ' , (4.41)
Yl = Yl e‘]Vt Y = Y~e“wt
Substitution of equation (4.43) in equation (4.42) leads, .
R S
/\wj ’ 1 - v?
| ‘ -.z("‘cz ‘ | . -
and
Yl = ""-Y-—, +
3y y2 ) - (4.42)
1 - ' o . o
o V/W ‘ g
. ' \
where “’cl = K and w, corresponds to the rigid bearing
L . 2M ‘
critical ﬁ)ézd of the rotor. '
. _ ‘
Now, consjderirlg the r/férce balance at bearings for transliatory -
whirl gives,
tt tt .. tts  tt . )
‘7 K(Zi-Z) = kool * Ky o¥od ey 2+ Crye . (4.43)
: ft tt,, , tt tt.s
K - = of + k¥YeZl 4+ chCe¥ ¢ .
L and K(YpeY) = kg y2'l ey Vel

Lt

l
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» .

Substituting for Z; and Y; from equations (4.41) }nd (4.42)

provides,
' tt t tt o,
kol + kzy‘f + czz-Z,+ czy-?
Ki
L.}
(4.44)
and 1
p2 tt tt tt
] = ~——— - = K oY ¢+ il + + .
KY 1 | ! kyZL nyY cyzz
2“’(:2
Multiplying both sides of equations (4.44) by‘s, we get:
R W
P
l:‘uz y » .
2 w? - - ,c ttip
Sz ] ——- - Ezzz * ksz teuw,,
N' . w w
B I l..!i ’
co tt . ¥ . .
ch W zy N . .
' ' (4.45)
1r2 ~
2w’
Sy =Ev+Ez+ mc‘;;l- .
W 1 »2 W w
\ 1 -=— o
2 : C tt y
Z_Qt + = i w zy J

where ¢ = radial clearance of bearing
W = load un eadh bearing 3

tt ottt tt tt ; : iy
Ezz, Ezy, Eyz and E are nondimensional f]uid‘f{lm

_ stiffness coﬁeff1c1ents .

e

and - w speed of rotation,

s

e AN =
e
.
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Equations (4.45) can be rewritten as, o .

XZ = Kk  eZ +Kk_oY+jc . A+jcC. A .
2z ‘zy 2z 2y (4.46)

= oY + ;+'-A+'EA
XO = Rye¥wkpeleje Aegc b - ~

where X .= < K

- Syt .
LS D . “ . "

3

2]

EE-wctt

yy - T -

(g

c S-C-mctt

z :
yz. o4 0 vz ' . ) '

¢ -, c tt -
Czy‘-u-wczy X

A

V.4 freguency of whirl
w frequency of rotation

- +

‘Equ‘ations (4.46) can be written in the matrix form as, C

[~
"

and

r - (e PR m : o
1 (R - Xx+3iac,) (kzy"'J‘ACzy? ‘ L o

LEyzfjAc) ’ (E”-x+JAcyy)\

| A .
| L S ‘- (4.47)
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The determinant of equation (4.47) above is required for the sta- .
bility analysis. Hence equatiny the real and imaginary products of the

characteristic equation to zero, provides the fullowing conditions to

determine :instability threshold. : 5
E N c + E O c - c . E + c . E »
Ry o &y vy o &) (&t Ry * 8t Ry) (4.48)
- 27 cyy &
and
(k. -x) (k. -x)-k, *
ZZ y.y Z_Y .YZ -_-_02 (4.49)
C._.+C _=-C _oC

These expressions contain the whirl threshold rotatiopaf speed w
and Fhe whirl frequency v as unknowns and can be solved assuming a rotor
speed w. The corresponding bearing co-efficients are theq gbtained for

.the speed w. Substituting these values ih equation (4.48), the value of
X is obtained and then equation (4.49) can be used to solve for the
thrl frequency ¥. This method is conginued uan] the calculated values

for w and y agree with their assumed values., The guide line to achieve

the convergence is given by,

0.45 w < ¥ < 0.5 w ////////

Based on fhe procedure disgussed above,‘gge threshold}sﬁeed of
instability for a single disk rotor supported on hydrodynamic bearings
at the two ends with bearing clearance values of 0,000188m, is found to )
be at "a rotor speed of 5000 RPH whicq’pgrees closely with the threshold

instability speed’ of 4950 RPM determined earlier using modal analysis
in CW(S' : , SN
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4.7 Conclusions

Since a simple Jeffcott model of a rotor system is not sufficient
to repfesent large rotors, a finite element method is used to model the
rotor-bearing systems, ‘In .that, the sﬁaft mass and stiffnesses are
represented by means of the consistent formulation by Archer {84]. The
model- includes the effects of rotatory inertia, yyroscopic moments only. 7
The effects of shear deformation, axial torygue are not included. How-

ever, these effects can be included as shown by N. Ozgliven and Z.L.
! ¥

Ozkan [85] f¥or any general rotor system. -

v

The overall system matripes are reduced using a modal reduction
method qued on the component mode synthesis procedure. The resulting
reduced system equations are solved to obtain the critical speeds and
& unbalance response of the simple rotor system using modal ana]yEis. The
dynamic responses of the simple rotor system obtained using a discrete
Jeffcott model, are compared witq those obtained using the finite elemgnt
'mode1 and a good qualitative agreement is séen. The threshold speed ?ﬁ
instability of the rotor systefi for one Configgfation is obtgined using
the instability-analysis developed by Rao [47] and Reiger [48).
' ‘ ’ )
In this Chapter, the fluid film bearing is modeled using linear-
ized translational film properties onty. However, when the shaft span
is large, the inclined journal also produces rotational film properties,

Hence, a comprehensive bearing model which includes both translational

. ,
and rotational film properties, will be developed in the next Chapter.
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CHAPTER 5

4
H

FLUID FILM PROPERTIES DUE TO MISALIGNED JOURNAL IN

FINITE CYLINDRICAL BEARING .

In previous chapters, different modelling and solution procedures
were discussed to obtain the dynamic responses of- a simple rotor-bearing
system, assuming aligne& shaft .conditions in the bearings. Aligned

. journal cond1t3ons provide only force stiffness and damping co-efficients
"in the hydrodynamic bearings.‘ When the rotor shaft is flexible or when
the support span is large, journal tilt at the bearings is inevitable.
Under such circumstances. it is highly essential to include the momenf
stiffness and damping co-efficients due t& iﬁb1ination of the

journal at the bearings. This leads to an improved model of the rotor
system by including the rotational springs and dampers together with the
translational springs and dampers at the bearing supports. Consequently,.
in this chapter, Reynolds equation which governs the pressure in fluid
flow is solved using a simple approach to evaluate the collinear and
cross-coupled translational and rotational fluid film co-efficients for

'around the ‘mean position of the journal for 5.

small perturbations
finite bearing model. Later, these co-efficients'obtained through a
finite bearing theory are compared with the corresponding co-efficients

obtained using a short bearing approximation.

5.1 Analysis

In an oil film béaring, a convergent shape in/the direction of

motion draws the fluid.adhering to the moving sufface into the narroﬁing
. ‘v : s
clearance space, and builds up a pressure sufflicient to carry the

load. Thus, ihe hydrodynamjc pressure-foreds are generated in the fluid

[




|

= from.the vertical load line as shown in Fig. 5.1 and x is measured‘%ﬂong

« =« the journal axis.

v
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film between the bearing and the journal surfaces. In the mathematical
sense, the study of this hydrodynamic lubrication is the evaluétion of _
tﬁg hydrodynamic pressure equation known as Reynolcs equation. This
Reynolds equation is derived from the Navier-Stokes equations as a
particular form of the equation which relates velocity, film thickness,
pressure and relative motion characteristics of the two surfaces. The
basic assumptions involved in deriving such Reynolds equation qtg;‘

v

1

(i) The flow is laminar. .

(ii) “The effects of the curvature of the film are negligible;
in other words, the radius of curvature of the moving surfaces is large
as compared to the film thickness. h

~ 7 (iii) The variation of pressure across the film and

also the rate of change of. any one yelocity component along the film

are small and hence they.are negligible.

(iv) The cross-section of the journal remains circular.

Based on these aséumptions, the pressure‘equation for the incom-

pressible fluid film can be written as, A

<

1o (bom) .2 (b _1,2h,3h
R* 9B \12% 33 ax \12a ) 2% 7 et

5

where § = (B;+B,) , B, is the.attitude angle of the journal, h

is the film thickness at a point determined by B and x; B are measured

.

Since a rotor always has a certain amount of unbalance, the journal

Y] .
deyelops an additional forced vibration around the static point of

*
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equilibrium due to the tran§1étiona1 motion of the journal along Z and
Y axes. In-addition to this translational motion of the journal, the
bending of the journal introduces a finite slope at the bearing location
and'the resulting inclination of the journal is shown in Fig. 5.2. Under
this tilted configuration of the journal, if a load W acts vertically
down at the mi@p]ane, there will be an axial couple of magnitude Wx at
any point x along the bearing axis in the ZX plane. Also, there will be
a twisting couple acting in the horjzohta] YX plane. Therefore, under .
dynamic condjtions, the journal center motion can be described by the
mutually perpendicular translations Az aﬁd Ay, and the corresponding
rotations AY and A@ around the Z and Y axes respectively such that the.
\

h=h + Az cosB + Ay sinB + (x-A@ cos® - (x-a¥) sinB (5.2)

film thickness becomes,

where‘h0 =c+ecosB, and B, = (B-B,)
For small perturﬁaiions around the static equilibrium position of
the journal, where a linear analysis is permissible, a first order

expression of the pressure gives: ,(,
=p 4+ D AZ+ DAY + D.oAZ + p.oAy +
P=py. %P, Dy‘AY Pz ' ?y Ay

~AY + g, AP+ q.eAY " (5.3)
Y z y
o
where Po is the mean. pressure under static equilibrium conditions

t9,°4¢ ¢

) . ’m
» q_ and q_ are the perturbed pressures.

and p., P P,s P.» Qys Q
z y

Yooy m o

Substituting equations (5.2) and (5.3) in equation (5.1) and
neglecting higher order terms in Az, Ay, A®and A@ and their products of

displacements and velocities, nine equations are obtained, These nine

»

N
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_equatgonsn together with their non-dimensional conversions are shown in

Appendix A. The final form of nine non-dimensional equation§ are as

\ shown below:
S .
» 2 P oH
2 {H; ._Q} + (%—) 2 {H; -——-} = 12 —2 (5.4)
3B 38 ox ak 38 o
A . 9P 2 d, ) . L = oH_\.
< H ——z} + (%) < {H’ —2£ = -12n gsinB +3 Spsb —-‘1) SRS
B |0 a8 x (% & SN o B
i - a-p"
38 O aB 6,
el 9 3 _B.E! + (P_ : 9 Hal .a_pl = 121 (COSé _ 3sinB i'g_)
38 | © 98 L/ &% |9 & Y
F .
— AN .
- Bp
~ a3 3 [sinB 0
E Hy 38 (—H;_) B (5.6)
~ p - ( /
-' Z *70 . .
. I T Qi 3 SN 9) A 22V 212 cosB 5.7
T as{°ae} (L TR - e LB
B 9o )*\[/ & |° & :
J | o, ad %3, " } 3H
n . ) ! aq . 2 . . -
: FI a1 +(D) I I 3 SR -( 4 3cosB ___o_) i
S B {0 38,} U ) o & ‘5"" siné "R, «
.' . . ‘: | @ : 2 - ‘35 . *35 .
. -1.5 Ha (D) COSB ___9. + i ‘< ) —9. :(‘5.9) -
I : o{t B Y & ﬁq 3 Rt
. S \ w .
?h/ -

B 2" O i i
B AR s O

£
1
°
——— -
!



NG e
i -
_ ,, . ) ’
Cd
{9 aq
2 {m Brbo () 2 fie Jeb conn (cospe b 0
8 |0 a8 X | 0 X X o oF
- «‘3“.
Ls 2 = ap ) - 3- -
- 1.5 K (P-) sig 0,3 2 (‘x—s"‘s 0 5.10
‘0{ L/ Hy ek B \ My /38 ( ;)

4 - ‘ -
3. 2 (. 3gs .S
jé {H-3 -—5: & (9) jé {Ha —ﬁg} = 6Xx cosB 0 (5.11)
38 0 9 3x :

3. 2 39 .
2 )y X +(9> S XY = 6% sind (5.12)
1 3B 0 3B L oX 0 3%
- [
5.2" Finite Difference Method: . e

The nine differential equations shown above are evaluated numeric-

— .
ally using a finite differénce formulation. A grid mesh is developed as /,/l
described by Pinkus [55] with finite number of intersection points r and
s (r varies from 1 to 10 and s varies from 1.to 30 in the brid)uvarying .
along the dependant yariable X and B directions respectively. With the
grid nethfk shown in Fig; 5.3, the nine Reyno]dsl equationg can be
written in thggfinite diﬁference form. —Here, one differential equation
cor}esponding to.étatic mean pressure is shown in the finite difference

. ‘

aoform and the remaining eight equations can be formulated in a similar

manner,
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p ‘ 5 - p bt
' Ortls  Ors %, s  Or-l,s '
+ (é) s & %-4,5 AX

SN =
. [ Ax

H - H ' '

"0 0, . . :

=127 { rystd  rys-3 (5.13)
A8
«

In solving these nine equations, it is observed that the left
hand side of the equations remain the same and hence need not be re-

peated, whereas the right hand side equations néed to be cHanged each

«\"
el

time to determine the different pressures.

5.3 Boundary Conditions

The boundary conditions required to‘so1ve the resu]tihg nine

finite difference equations (5.4 through 5.12) are as follows.
Atxbii‘) p=0
| At =0 and ZN://P~F 0 (5.14)

fe po=p, =Py, =Pp;=py=9, =0 =q=qs=0

Using the above boundary conditions, the nine equations are solved
by the "column method" [63]. Since this technique is féuad more economical
Jn terms of savings in computer effort, this is preferred over gthér
methods, such as relaxation methods. Moreover, the influences of the
neighbouring columns are not multiplied out until all boundary conditions

are satisfied.

' ",
- #
' 4
N
\ ‘

L

;
'-‘”
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5.4 Column Method

The general form of numerical approximation to the finite differ-

ence equation is represented in matrix form as follows:

TEjMpy) + [610p; ) + (0 0pyyy) = (0 . (5.19)

where i represents n number of columns in B direction,

(n is 30 in the present work) {pi} is vector of i-th column of unknown

~ pressures and [E;], [G;] and [D;] arem xmmatrices of co-efficients (m

is 10 in the present work). m is the number of rows of elements in X

direction and {Ji} is vector of i-th column of right hand side elements.

Since the above equations do not involve higher order terms in
the present work, the matrices [6'] and [D'] are diagonal whereas [E'] is
tridiagonal. Equation (5.15) is applicable to regular field points as

well as points defining boundaries and recesses. The boundary points

are specified by p = pboundary’ which can be considered a partigular

form of a row of sgquation (5.15). Then equatfon (5515) can be io]ved'by
§
relations of the type ‘

(il = 1oy + B;) | , (5.16)

Substituting equation (5.16) into equation (5.15) and solving for
{p;}we obtain,

{py) = -|LE[] + [G;][A;]]" [0;1{py,q)

¢

L +|[E] + [e;][A;]]"‘ ;) - 65118, (5.17)

Comparing equatioﬁ\fs.ls) and (5.17), the recurrence relations for

matrix [A] and vector (B} are obtained as fol Tows:

R N e e
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(A1) = - (1,1 [D,] T s
\ ' L >
(Bpp) = (110 - (818, . @

were [1,] = [16;] + [6;108]1]"
v
If the boundary va]ﬁgs of p are known on cotumn n, equation (5.16)
is used recursively for i =\\\n. n-1, ..., 2. At the end of this process,

T

all values of p have been determined.

4

Using the column method, the ning finite difference equations are
evaluated numerically. Initially, the static pressure po is ca]cu1éted
which is used in all subsequent equations to evaluate other pressure
‘ values. In doin§ S0, ény‘subambient pressure Qalue is set equal to zero

before proceeding to calculate the next pressure value. ,

5.5 Static Load-Displacements

When all the pressure values are obtained by golving each finite
difference equation, they are integrated over the film domain to get
tge 0il film forces and moﬁénts.‘ For a given bearing, the dynamic force
F of the oil film is a function of displacements (e;Bl)and velocities
(¢,8,) and therefore F = F(e‘Bl,é,é1). Since the linear‘analysis is
valid close to the static equilibrium of the journal, the nondimensional
force F can be split up into s@atié component ?0 and dynamic component
A?o. Because the rotor shaft is flexible, the tilt of the journal at the
bearings is inevitable. Therefore, in this work, fluid film properties
arising out of moment due to rotations are con§idéred together with the

force film stiffness and damping co-efficients. The reaction forces and

moments of the bear%ng are expressed in terms of journal deflections

N
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4z, Ay, 4@, AY and their velocities both along Z and Y directions and.

P a—

- shown.

Rt (K a2 kttAy+ k"" be + KET v

Z z0 zy
+ tt AZ + ctt Ay + ctr A¢+ cg; A‘i‘} '

€22 zy

Foo=F _ + {ktt Az + ktt by + kET ag+ LT v

Y " Tyo yz y2 W
,- v
+cttoaz 4 Ay+c pp+ ctr A\if}
yz & % yy

My =M+ {k" AQ+ kz A‘l‘+krtAz+krtAy

Z0 y zy
rr rt rt . } ‘
+¢ A<p4'- czy AV + czz Az Gzy Ay )
re rr rt rt
= + + +
MY Myo . {k AY kyy AY kyz ky.y ay

v, Tt rt }
+ + +
7 0% cyy o # cy; 2 Sy Ay

double brackets are due to dynamic forces or moments.

moments. of the bearing can be evaluated as follows:

. Ce 2m L/2 _ \
P o Fpe- N RoposinB-gB o
- < o -L/2
L am L2 ;
.FY"I f . R p cosB dB dx
o -L/2 )

" In the equations (5.20) through (5.23), the terms inside the

they consist of terms due to static and dynamic forces and moments as

(5.20)

(5.21)

(5.22)

(5.23)

. These forces and

-

(5.24)

ER

T
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8
.‘ —
i . en L/Z . " \
- [ Rp x cos8 B dx e
o -L/2 ‘ K ‘
’ ‘ > L fs.es)
2r L2 - L R / A
Mp= - f I Rp.x sir:B d8 dx STy
° Ut R AT

Under static equilibrium condition of thedou‘mai, 1.e.}.f/whe'n .

Tk

P =Py the vertical reaction force F_-

R cT : : » /
Joad at the bearing whereas F__ is zero. The ~t6rm§pond1n? attitude -

yo .
- angle ¢ for this static position is determined. ‘ /
o /
. - /" .
"When p = p_ IR | / 2
‘ j_vr Lj_Z - : Y ./ :
F..=W=- } ' cosB R & dx
0 " Ps
2 0 -L/2 / 4
, ) o/ |
and 1 " (5.26)
e = S ' / -
Fyo 0 ) ’
' The nondimensional form of equation (S:Zb/) is as f&]ldﬁv's: B
) . / Coe [N
21 L2 / -
%—z - 7( f - f -/p, cost dB dx (5.27)
ﬂNDL( ) 0 --L/2/ ‘ o
wherg 'p'o = . Q s // ! .
- oy g |
‘ /
_ Instead-of the magnitude of t/r/e force F, or the vertical load W,
a nondimensional parameter caHed/Somnerfeld number S, 1s used and S is
defined as, . / .
[ i 2 ’ ‘
g . oL (R /
W \e

(5.28)

L |

, / \ ' ' '/.
e/ o

. A' / ' '
A becomes eqqal,to W, the static .

PO S

"SRR
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’ From this def1n1t1on, it is apparent that F o or W is proport1on-
al to 1/5 When the. égat1c operating conditions change, the center

- point of the Journal moves a]ong the static curve of equ111br1um For
the c1rcular cylwndr1ca1 bear1ng. this has. an approximate]y semi-cir-

i cular sbape The calculated 8, values for different clearance ratios for
the various stat1c equ111br1um of the circu]ar-cy11ndrica1 bearing are
plotted as shown in Fig. 5.4, Th1s theorettca] static equilibrium
curve has been-compared with the similar curves obtaingd by Someya [86]
and Sassenfer-hafthet [87] and also compared with the measured bearing
static equilibrium curve by Glienicke [38] and K911nann and Glienicke

[88]. They all show a very good agreement with the present work.

o

Now,it is clear that the bearing characteristics B; and ¢ are
functions of N. Figure 5. 5 shows one of the journal-bearing character—l
istics under steady operating conditions. Here, thehquantity S which .-
is preportional to W is plotted against €. The relationship between €
and S,-based on outlet oil film temperature obtained experimentally by

I3
Morton [89] is also shown in Fig. 5.5. Other useful contributions of

fluid fiIm dynamic properties are by Pethu and Rao [90], Prabhu [91]

and Hagg and Sankey [92]. The theordtical results show a very goed"

55/5?\@5 a good starting point to
{ kY

(d\filarfco-efficients. Knowing the

correlation with the experiments.

proceed further and evaluate the f1
static position (B,)of the journal in thb bearing for different eccen-
:trictty values €, the perturbed faorces a;q mpments are evaluated by
simply replacing p infeqhations (5.2 (5. 25) with perturbed
pressures p., py, etc. and the fluid £i1d force and moment stiffness
and damping va]ues are determined. One set of translational and rota-

tional stiffness co-efficients eva]uated in nondimensional form are

4
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According ‘to Sassenfeld - Walther
© —==—=——— According to Someya -

—0—0— sured Values -
e rasent  Work

—

" Figure 5.4 Measured Bearing Clearance and static Equilibrium Curves

of the Circular — Cylindrica! Bearing : Comparison with
. Theoretical values.
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as shown below:

e

tt
ktt - ¢ kzz_
2
2 onpL.d
_tt Cre krr
A T — 2
yz R. 2
ONDL —
S C
rr -’
LR c-k

z
2Y' anpL % 'k

rr
e €.* kaz .
2 2
22 QNDL% L

2n 1
J.

0 -1
en 1

p. cosB dB dx
P, sinB dB dx

]

X cqu.dE dx

L1
>

X sinB dB dx

DO
>

§5.29)

(5.30)

where equations (5.29) and {5.30) represent.the translational and

rotational oil film co-efficients respectively. The remaining 28 co-

efficients are also determined in a

§.6  Fluid-Film Dynamic Co-efficients

similar manner.

<

The Rfynolds equations derived earlier, for the finite cy]jndrical

bearings are modelled as grid mesh points,witﬁ the‘dependent variables

B and X represented by finite number of points]located at the inter-

sections of the grid and they are.solved by the column method to get the

pressure field. This pressure field is integrated ovar the entire film

domain and the fluid film reaction forces and moments of these forces

are obtained.

The nondimensional form of translational fluid film stiffness;and

damping cq;gjfifients that were obtained from the fluid film reaction

o~

forces,for a finite cylindrical bearing are ifmpared with the respective

“fluid film co-efficients, evaluated through th

short bearing approximation

LA
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by Kikuchi/[]4] and through the finite bearing method'by Lund £49,93]. Also
these flyid f11m translational co-efficients are compared with the
corresponding co-efficients obtained experimentally by Mortonr[89]

The rotat1ona1 fluid film co- eff1c1entsﬁ9bta1ned in the present work are
compared w1th those‘evaluated through short bearing theory by K1kué%1

[14] and with the rotational fluid film co-efficients obtained for }inite’
bearings using Fedor's proportfonalityhypothesis by Mukherjee and Rao

[59]. Also, these co-efficients are compared with.those obtained by

Capriz [60] using finite bearing theory.

The nongimensional, transtational fluid film ;o—efficienty are
shown in Figs. 5.6 through 5.9 along with those of([14,49]. It is found
that there is a good qualitative agreement between the collinear and
cross-coupled translational fluid film co-efficients obtained in the
present work and the corresponding film co-efficients obtained by [14,49].
It will be meaningful to compare these fluid film co-efficients with
those obtained by experiments. Therefore, a coméarison is made with the
tranilationa1 co-efficients obtained expérimenta11yqf0r a 4" Qjameter 0il ,
film bearing with different oil viscosities and temperatures by Morton

[89]. Also, the translational film co-efficients are compared with .

those obtained by Smith [Q4},_,The plots are shown in Figs. 5.10 and 5.11.

_An excellent corre1apjon of the co-efficients are sean with those obtained

by experiments and also with those obtéined by Smith. In general, the
stiffness and damping co-efficients obtained by Lund [49] are lower than

the co-efficients obtained in the present work.

The rotational fluid film stiffness and damping co-efficients of

v
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the present study are compared with those oerikuchi [14] and are shown
in Figs. 5.12 through 5.15. For a'range of Sommerfeld numbers, the
rotational film co-efficients obtained by the two procedures show a good

qualitative agreement. The only significant difference is in the

rr
zy

tational film co-efficients obtained for a misaligned ﬁournal in a finite

ro;ational cross~-coupled damping co-efficients c.  and c;;. These ro-
bearing is compared with those obtained by Mukherjee and Rao [59] and
those obtained by Capriz [60]. They are shown in Figs. 5.16 through
5.19. A comparison of the rotational co-efficients obtained in the
present investigation shows a good agreement with those obtained by
Capriz. The rotational film co-efficients obtainéd by Mukherjee and
Rao [59] show considerable discrepancy with the present work and also

with the results obtained by Capriz [60] for higher eccentricities.

The coupled film co-efficients due to translational and‘rotatioqal
film reaction forces and moments are also obtained. The coup]e&'foroe
film c&-efficients arising out of rotatioﬁ of tﬁe journal and the
coupled moment fi]m\co—efficients due to the displacement of the journal
are obtaiﬁed for finite bearings and are shown in Figs. 5.20 gnd\5.21.
The corresponding coupled damping co-efficientt are shown along with ‘the
pure trans]atioﬁﬁ] film co-efficients in Figs. 5.8 and 5.9 and with pure

rotational film co-efficients in Figs. 5.14 andq§.15.

5.7 Dynamic Response of Rotor

tow

The translational and rotational Fluid film co-efficients
evaluated for the finite cy1indrica] bearings are used in the analysis
of two rotor systems to determine the critical speeds and peak aniplitude
ré5pon§e. The first one is a simple rotor system which consfsts of a

i

%
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single disk mounted at the center of the shaft, which in turn, is

N

supported on hydrodynamic bearings at its two engs. o

Thi; simpie’rotor sysfpm is modelled using the finite element
method. The entire system is discretized into bearing, shaft and disk
elements. The overall éz:embled matrices are solved for the frequencies
and responses by modal analysis. The stiffness and damping matrices for
the bééring element are shown in Appendix B. The details of this simple
rotor System were already shown in Table 2.1. Some case studies are

made based on the different bearing clearances at the two bearing

3

"locations. Table 5.1 gives different configurations of the rotor

system which are discussed subsequently. The present results are com-

pared with those obtained by Kikuchi [14] and Lund [49]. ror conven™

ience, the analysis of the rotqgsysfem using .the fluid film co-effic-
ients obtained by present work, by Kikuchi [14] and by Lund [49] are

referred to.as Analysis I, Analysis LI and Analysis III respectively.

5.7.1 Case [: Equal Bearing Clearances (c, = c, = 0.0000533m)

The frequggcies and the normalized response amplitudes of the rotor
are'studied and the comparative plot of all the three analyses are shown
in Fig. 5.22. I%\is observed that only a single peak exists in all
the th}ee analﬁes;5 The }otor critical speeds at t;e peak amplitudes are
25?5, 2530 apd 2610 rpm, for analyses I, II and III respectivefx. And,

the respective normalized peak ﬁmp]itudes are 22.58, 16.89 and 18.6. :
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TABLE 5.1:

-

Rotor Configurations

-
- [Case No. Dist;‘ Wt. £, m £, m ¢, m c, m
1 116 0.256525 0.25525 0.0000533 | 0.0000533
‘ 2 116 0.25525 0.25525 0.000188 0.000183
3 \( 116 0.25525 0.25525 0.0000533 | 0.000188
-«
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LI

f{xcept in the critical frequency region, the difference in amplitude

levels between the three analyses is small

5.7.2 Case II: Equal Bearing C]earan‘ces (c,=c,=0.000188m)

The dynamic characteristics of this configuration of rotor system
are studied and the comparative graph for all the three analyses is
shown in Fig. 5.23. It is-observed that the response plots obtained by
Analysis I show a single peak at the rotor speed of 2481 rpm whereas
tﬁose obtained by Analysis IT and Analysis III show two distinct peaks.
However, the predicted damped eigenvalues in Analysis 1 show two dis-
tinct peaks, one at 2216 rpm, and the other at 2482.6 rpm and these
double peaks correspond to first split criticals due to bearing asymmetry.
But, the first peak in Analysis I is hidden because the amount of damping
at this rotor speed is comparatively large. The first peak for
Analysis, Il and III correspond to rotor speeds'of 1700 rpm and 1850 rpm
respectively and the corhes_ponding second peak occurs at the rotor

speeds of 2443 rpm and 2500 rpm.

5.7.3 Case 111: Unequal Bearing Clearances (c,=0.0000533m,c; = 0.000188m)

For th1s ;onhgufatmn of the rotor, the var1at1on of critical
speeds against the speed of the rotor is shown in fig. 5. 24 Aga’i{a
single peak response is seen for Analysis I at a rotor speed of 2510 rpm
and U}e/peak response for An—a]ysis I1 and Ana]ysis' 111 show two distinct
‘peaks. - However, the first and'sgﬁg;ﬁd predicted damped eigenvalues in
Analysis I occur at the rotor sbe.egs of 2409 rpm and 2509 rpm respectively
and they are the first split criticah]s due to bearing asymmetry. But, the
first peak is not seen,in the freq‘;ency ;esponsé plots due to the high

amount of damping at this rotor speed.. The first peak for Analysis II

1

4
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- and Analysis IIl correspond to rotor speéds of 1975 rpm and 2080 rpm an&

tﬁe corresponding second béak occurs at rotor speeds of 2485 rpm and

2490 rpm respectively.

Secondly, the rotor model-1 used by Kikuchi [14] is analyzed

"using the fluid film co-efficients evaluated in the present analysis.

The variation of response amplitudes against the rotational speeds of

the shaft observed by Kikuchi [14] in his three rotor system (Model-I)

_ is compared with the corresponding parameters obtained using finite

béarihg results. -This comparative plot is shown in Fig, 5.25. It is

- observed that the rotor critical speed falls at 69.7 cycles/sec in

Anaiysis I and that for Analysis Il is 70.7 cycles/sec. -

Also, the peak response amplitudes for Ané]ysis I and Analysis II
are about 360.8 and 485.0 respectively. It is important to note that

the critical speed and the response amplitude determined in Kha]ysis [

" are closer to the experimental results for this rotor model.

5.8 Conclusions

'

The “translational and rotational ;tiffness and damping co-effic--

jents of the fluid film are obtained for finite cylindrical bearings.

The translational fluid film co-efficients are compared with those

obtained by experiments.

The rotational film co;efficients ﬁre also compared with those -

obtained by short bearing approxihation. They show a very good qualita-

"the agreement. The critical speeds obtained for a single disk and three

disk rotor systems using a finite bearing model differ by 2-8% when a

,short bearing model is considered. " Also, the results obtalned using the

finite bearing approximation compares very well-with the experimental
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results of the three disk rotor system.

’ The coupling effect on the fluid film forces and moments due to
the translational and rotational motion of the journal is also obtained.
On the whole, a total of 32 fluid film stiffness and damping co-effic-
ients are obtaineﬂ/for a bearing model. However, it {;{noted in general é“b
that the effects of rotational fluid film co-efficients have véry little

influence on the response of simple rotor systems.

4

In this chapter, a very comprehensive model of the bearing is
considered and the corresponding fluid film dynamic co-efficients are
obtained by solving appropriate Reynold's equation for the resulting
fluid film. A total of 32 fluid film stiffness and damping co-efficients
are considered. However, the support model is still not complete since
" the support'structure, on which the bearings are mdunted, is not
‘ modelled in this analysis and will be considered in Chapter 6. More-
over, the support structur;;ﬁare sometimes subjected to excitations dge
to various reasbns. These éxcitations are not in general deterministic
in nature. Under these circumstances, it is important to consider the
random nature of the excitations through the suppoht structure. The

sugport/structure model and the resulting influence of excitations

through these supports will be dealt with in the next Chqgtér.
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CHAPTER 6

1

THE STUDY OF THE RESPONSE OF ROTOR SYSTEMS SUBJECTED

i TO RANDOM SUPPORT EXCITATIONS

In the previous chapter, the fluid film bearings of the rotor
system were modelled using rotational springs and dampers along with the
lateral springs and dampers. The support structure of the bearings was
assumed to have infinite stiffness along the two perpendicular directions.
However, in practice, the rotor-bearing system is supported by means of
resilient pedestals which have finite stiffness and damping properties )

along the two perpendicutar directions. This requires that the' support

model be improved over the-model used for the supports in the

previous chapter. In this chapter, the support structure of rotors is

modelled in addition to the fluid film bearing.

0f most practical concern in rotor dynamic analysis is the re-
sponse to mass unbalance. When the excitation is due to mass hnba]ance,
it is a single frequency excitation and the response is large in the
vicinity of critical speeds. However, other forms of excitations are
of interest, especially when the excitations are from outside sources,
as it may occur in machinery on board various vehicles or for stationary
machinery, in cgse of ground excitations. These support excitations can
be of a single ?Fequency type or random, involving several frequencies.
For thé mach%he\installed onbeard vehicles or the machinery installed
in tﬁé regions of low or moderate seismological activity, the support
gXcitations are random in nature. When the excitations are rand%m Qith

A
considerable power distributed at several frequencies, the system will

also respond at these frequgncies. Moreover, if one of the system

»

4
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natural -frequencies of the rotor c;)incides with the excitation frequen-
cies, the resulting response may be quite sigm’ﬁ'cant' and of concern,
When the response of the structure is determined using modal analysis
techniques, that becomes an uncoupled model and the respons"e calcula-

tions can be carried out by the following three methods:

. .
a) time-history response e

b) response spectrum method

c_random vibration techniques.

Each one of these methods will bé discussed briefly, before a

s
method is chosen to solve the problemat hand. : =

6.1 Time History Response

The most straightforward way of spgcifying a support input to an .
analysis is to take an actual time history and apply it as an éccelera-‘
tion to the support points of the model. The dynamic response is then
calculated directly as a time history of the structurj displacements.

For simplicity, discussions are advanced only for symmetric systems.
However, the analysis can be extended for non-symmetric systems such as.

rotors on fluid film bearings, without much difficulty.

The equation of motion can then be transformed using a transfor-

mation matrix {q} = [¢]{n} and premultiplying by [_q>]T leads to
Dulin) + [elt) + [elind = [817(F) (6.1)

This is a set of uncoupled single degree of freedom equations,
each of which can be sqolved separately by considering how each one re-
sponds.to an impulse. Hence, the impulse response of the system at any

time t can be‘written as,



-209-

fq} = ft wit-t) #8) ar S (6.2) -
0 /
where w is the impulse response matrik. It relates the dynamic response

& "y of the structure to éﬂé time history of the force input. The equation:
&can be ihtegrated by assuming,that the force is constant over

the interval or better still assuming that it varies linearly oveér the
“interval. Not all the modes need be included in the response. The

force input will contain the frequency components of interest and hence

the responsexgi‘tlé>other or high frequency modes will be constant and

can be included\és a single fictitious high frequency mode whf%h is chosen

to give, together with the active modes, the correct static stiffness.

This means that [¢] is a rectangular matrix containing %n]y‘%he mode

shapes correspondifig to the Tower or at the range of frequencies of
interest. Fewer modes are required to give a good respresentation of the

displacement response.

e

The obvious objection to this method is thi} 3@ can be used
for one particular ground motion only. In order to have a safe evalu-
ation of the response for a series of ground motions, a number of such
r ' t{me hi;tory evaluations are necessary. As more histories are analyzed
so confidence is increased. Moreover, the bulk of computer effort is

taken up in this method since a lot of time histories are to be evaluated.

“

6.2 Response Spectrum Method

Another technique used for the support motion gf the structures
is the response spectrum method. This is a valid technique for the

calculation of response of simplqpand symmetric structures.
?,.4-7 - .
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In this method one fundamental assumption made is that all of the

heo

support motions in any one direction are the same. Consequently, the

ground.hotion ﬁo can be subtracted from the structural motion g by ~
giving the structure an equal and opposite rigid body movement. The
/_—d .

ground is then effectively still into structure accelerating,
G, =g -bg, (6.3)

¢

where b is the rigid movement. Using the equation (6.3) in the general

equation of motion of a structure we have,

A
mg,+cqg.tkq, =-m b.d, (6.4)
Using the co-ordinate transfermation,
q.=?%n . (6.5)

’

and assuming that the mass matrix on the left side of equation (6.4) is

T

normalized Such that ¢' m@ = I, equation (6.4) can be written as,

. i+ n+kns= -¢T mb ﬁo = -p do (6.6)

where P is called the participation fActor. Again, equation (6.6) is a
set of single degree of freedom equations and can be solved separaie1y.
Tpe response for any moae can then Se found by choosing the frequency

on the response spectrum curve gdrresponding to the modal resonan£~
frequency. The value of the response spectrum is then ﬁu]ti;iied by the
modal participation factor WQ;Ch gives the maximum response for.the

mode.

Just as wth the time history method, it is not necessary to in- ‘

" clude all the modes in the analysis. Howegﬁvr—the participation factor

gives an indication of the relative importance of each mode, but unless
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all the participation factors are evaluated, it is not poésip1e to “say
that sufficient modes were used in the analysis in order to geé:giigﬁiable

spectrum. Also, this method 1acﬁs a great deal of mathematical rigour
and this method is not suitable to a non-symmetric system such.as

§
rotors supported in fluid film bearings.

6.3 Spectral Density Methods

In order to be mathematically more rigorous, the fact that the ’
support excitations are randem can be recognized and formalized in a |
random analysis. Here a series of samples of the signal or represen-
tative signa]s are taken and averaded. The frequency content of each
signal is found using a ﬁgurier analysis. The amplitude of any’bne )
frequency will vary with each signal but an average is found by squaring
anakadding each component anq finally dividing by the number of samples.
Provided all of the signahﬁ are representative then this process wiil
converge to a constant valué’as the number of samples is increased.

Thi's will give the spectral density of the signal at the freqﬁeﬁcy
considered. If there are two simultaneous signals e.g., movement at
two different points of the structure, then these signals, since they“‘“j
are both emanating from the same basic subport excitations, will be re-
lated in some complex way. This relationship can be expressed as a
cross spééfra] density and is found by ﬁu]tip]yiné’the average
amplitude of the signals. When expressed in terms of Fourier

serie§, the frequenky content can be complex numbers, Thé squéring and
adding for the direct spectral densitieé will make these real, but cross
spectral densities will gqnera]}y be complex. 'This can be interpreted
by recognizing thatvthé two signals making th; cross spectral denéity

will be out of phase with each other. The complex humber then represents
8
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»

SF(m) whicw‘qan be defined at each frequency w. In speétra] density

-

mefﬁbds, the inputs are defined in terms of a spectral density matrix.’

e

- 3
For any symmetric non-conservative system, the dynamic flexibility

matrix H{w) can be written as, ,

H(w) = oDt e

| (6.7)

where D = [(ki - wzmi) +jw ci]'l .

Then, the response spectral density matrix can be formulated as,

| I5g) = M6 5] WD)

where H*(w) is cggple& conjugate of H(w).

the spectral density method has the distinct advantage that- it is.

mathematically complete 5nd well defined. It contains no ambiguities |
and retains full information about amplitude and relatiye phases of any
set ofﬁgnpdts. / ’ ‘

' ance-%he'support éxcitations in the present analysis are consid-
eréd to be random and ghe speﬁtra] density netﬁdd is by far the best:
apprbach, the re§ponse’behavior of the rotor-bearing system subjected to
‘random ba§g¢exe#tati§ns ére studied using this method. To achieve the
dbjective, certain assumptioﬁs are‘made ;egarding the characteristics of
support motions in general. * To simplify the analysis, the support ex-
titation is assumed as a zero mean stqﬁionary, Gaussian and possessing a
white noise type of power spectral density over a large frequgpcy range

b .
" [95]. Two different rotor systems are considered to study the system

, g

. : . f
@ ) . '

Fas

(6.8)
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- t
response due to random base excitations.

’

6.4 Analysis

Py

The rotor with its support model is shown in Fig. 6.1. This rotor
can be discretized into beam, rigid disk and suppﬁrt elements. The |
properties of beam and disk elements are formulated by consistent para-,

‘meter representation shown by Archer [84] .whicﬁﬂwas discussed in

chapter 4. Hence, only the equations of motion~ for the support element '

f ™) .
are given here. This support element consists of bearing and pedestal.
k

Accordjngly, the equations of motion of pedestal are as shown:

3 . s ttvs s tros s
+ -2, ) + -z ) + -z )+ -
Mz cpz(_zp z,) kpz(zp z,) czz(zp z,) czz(ep 8)
ot tr .ttt . trp=
tokgp(zpmza) + kp (8-8 ) % ¢ (ypva) + ¢ (6-6))

D) )0 (6.9)
myp * ) G5 & Ly oy ) + cBhp g ) + ct"(;"-&a )
P Py “P b Py P b yywp o1 | Yy 'p «1’
 Kylpey,) ¢ k§;'(¢'p-¢x) et s Vet h)
. leyygp ' cpe(épfé )+ (07y) ¥ LTS éxu) + cpylip-t))
)+ e i) + G
* k;‘;(«tf‘pwlﬁ ¥ k;;(yp—yl) =0 (6.11)

——,

g »,:f»,»m‘ . t%ﬁ»ﬂmh'«rd&. i T 1 2O
i:% G .
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I T
pzz by cp¢(¢p 8 ) + % (d=0p+ . ¢p b T“»cyyuﬁ\yl)\\“
o <
rr rt rroe s rt,s
kyylepme )tk by ) +ep (8,260 + o (2-2))
)
rr rt -
kyz(ep 8. ) + yz(zp z)=0 ‘ (6.12)
’ q
3 Equations of motion of bearing:
tt trys o tt
zZ(z -zp) + czz(el-ep) k (z -z ) (B -8 )
i 1
ot R tt,, _ tre oy =
+Cp(9imvp) ey (6 -6) + kzy(yl Yp) +kyy (6 -0) = Fg;
N (6.13)
e
C(y,-dy) + cirlo g + k“( )+ k" (0,-6.)
Sy Yy 0,-8p) + kyy (v, ¥, yy' ¢4
Cya z -zp) + c; (e -8 ) + k;i( -zp) + kyz(e Bp) FBY
‘ (6.14)
) crr(é -6 ) + t(z -2 ) + k™M (6 -0 ) + krt(z -z.)
22\917%7 Ty p 221 p 22457 %
o c"w é) yl V) * kpp(0,-0) + KISy -y ) = My,
. ‘ . (6.15)
Mea o)+ oTEO o me rte, _u -
Cyylo=0p) + ey -yp) + ey (o,-60)+ K o(y,-yp)
v rtes oy L oW rt _
+ cyz‘el-ep) + cyz(zl-zp) + kyz(el-ep) + kyz(zl-zp) = MﬁY(G o
Equations (6.9) to.(6.16) 'can be rearranged and put  in the
matrix form by reblacing .the generalized displacements as shown:
1 ¥
iy}

.b
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.-//"’ -
—
.(z,p-zb) =w° :
(z,-7) =w,
Py =y ’
(‘yl: yb) =V,
(eg - 8) = éoLf
(e - ) = é '
a0 % _ ) (6.17)
= 4 (
(8- 9)) = ¢,
and (¢, - 4) =0,

The present analysis does not consider the effect of coupling
motions in the pedestal along Z and Y directions and hence, it is not

" included in the stiffness and damping matrices of th& support structure.
{ .

The details of stiffness and damping matrices of the. support

structure are given in Appendix B.
The generalized displacement vector {q,i} can be represented as
[Ws Vis B0 6,10 o
LA e S R (6.18)

Now, the gerieral form of equations of motion for N degrees of

freedom of any rotor-bearing-pedestal systems can be written as,

[mlygy (a3 + [elyyy €G- 43 + Dy {a-q.3 =0 (6.19)

Defining {qr} = {q-qb}, the equation (6.19) becomes ,
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Imdy {8+ Lelyy 18,0 + klygy (9,2 = ~[n] G} (6.20)
where {q.} = {ay,, 0,0, ..., 0, qp,}

and 9%, and qb2 are support displacemerits at the left and right bearing-

> pedestal supports respectively. ‘

Recasting the equation (6.20) in the first order form to get,

MIonxon @} + KLy (QF = {F} : (6.21)

.

where o m ' - -m o
M= lan ¢ , (K] o k

q
} = Y'I { } )
“ %qrf e |-In16G,}

1]
——
(=}

Solving the homogenous form of equation (6.21), the eigenvalues'
and the right eigenvectors [¢] are obtained. Because the rotor-bearing
system is non-symmetric due to the presence of asymmetric cross-couplegy

e Fluid film stiffness and dampjng co-efficients, the right eigenvectors
[¢] are not orthogonal to each other and hence the left eigeq&gctors are
necessary in order te decouple the system equations. The left eigen-
vectors [p] are obta{ned by solving the homogenous form of the transposed

- system. The biorthogonality re]atioqﬁbﬁ%E??w:the 1eft‘and right eigen-
vectors is to decouple the overall mass [M] and stiffness [K] matrices of
. the system. N

Using the transformation of the system,
{Q(t)} = [¢] {n(t)} \ ; ~ (6.22)

. T
in equation (6.21) and premultiplying the resulting equation by [p]

the system equations are decoupled as shown:

b ———— s - ' apongorn - " SRR SRS
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Cugd thgh + Deged Ingd = [o1T (R} 41,0000 (6.23)
where Cul=[ D]T [M] [2]
and [k = (e [KI [0]

Assuming steady-state solution of the form,

J .

(t) = {A)} &% and  (F) = (F} eIWE ' (6.24)

. the equation (6.23) can be written as,

. o,}1 AN | \

{n,(t)} = -———————7;;5 i=1,...,2N EEY (6.25)"
ﬂ1 (qui (:‘\ 1 * ,"'h

A

¢

The response in all modes is summed to obtain the total response
as,

.

(Q(t)} = [0] {n(t)} = [0 [F ()1 [p 1 {Fy) (6.26)
9 ‘ : i=T1,...,2N

The frequency response of the rétor system is obtained as,

[H(3w)] = [8] (3w [0 1" (6.27):

]

For multi-degree of freedom systems excited with a power spectral
qensify SF tkﬁ:{esulting power spectral density of the amp1litude SR is

given by,

. o,
o Splw) = [H(w) | Splw) - | (6.28)
Equation .(6.28) can be written in the matrix form as' shown, »

[sp()1= [0 [F(4u)] [p 1 [Sp(w)] (0] B¥(-du)l [p 17 (6.29)

CAMONR i 1an chimkebr s = < g S < —— oy L
Q

P

[
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where [91?-jw)\] is the complex conjugate of [#{jw)-].

For white noise excitation, SF is independent of frequency w and
simply it is So' The excitations coming through different supparts are
assumed to be statistically independent so that their cross correlations
are zero and hence the matrix of excitation power spectral densities [SF] is
a diagpna] matrix with non-zero terms corresponding to the support .

Tocation.

6.5 System Response

The rotor response due to random suppofi excitations imparted to
the system through différent sources is s;udied. For example, the rotor
system installed on board ships is subjected to random excitationsﬂby
the wave motion; on the other hand, the machine installed on foundations "
is 1iable to random base motions of different order. However, in both
the cases the response of the support point is highly controlled by the
filtering effects of the structure itself. In view of this, it is quite
reasonable to assume that the motions imparted to the pedestal of a

rotor-bearing system to be a zero mean stationary Gaussian random

-~
2 ~

process.

Based on this assumption, the power spectral densities of re]afive
amp]itqdes of the.two differeﬁt rotorig;;tems are obtained using the
respoﬁse eva]uatjon technique discussed above. Rotor 1 has a siﬁg]e disk
at the center of the shaft and is supported by fluid film bearings which .
in turn are mounted on identfca] pedestals at the two ends. The schematic
diagram of tﬁis rotor system is shown in Fig. 2.1. The rotor details

are given in Table 6.1. It is assumed that the base excitations at the }

two supports are of the same order along both vertical and horizontal




TABLE 6.1:

Disk Mass
Type of bearings
Bearing diameter

Bearing L/D ratio

-220-

Details of Rotor 1

Viscosity of oil at 25.5°C

Total length of .rotor

Modulus of elasticity of
the material of shaft

Shaft diameter
Disk diameter

Pedestal mass

Transverse mass M,I.

of pedestal

Polar mass M.l.
of pedestal

Pedestal stiffnesses

-

11 kg
Plan cylindrical

0.0254 m T~

1

Se—

0.0241 N. sec/m?
0.5105 m

2.145 x 10!} N/n?
0.022 m

0.2032 m

2.0412 kg

0.002191 kg.m2

0.00098 kg.m
0.8383 x 10° N/m

i
|
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'directions. The power spectral density of the resulting amplitudes at
both the disk and the bearing locations of the rotor for the spTﬁ speed

of 1000 rpm and in the frequency range of 0 to 500 rad/s is shown in
Figs. 6.2 through 6.5.

For Rotor 1, equal bearipg c]earance\va]ués of 0.000188m-are con-
sidered at both the ends with all other details of the rotor same as
given in Table 6.1. The power spectral density plots of t%e relative
amplitudes along~Z and Y axes of the rotor system due to identice] base
excitations at the two supports in Z-direction are:shown in Fig. 6.2.

It is seen from the plots that there are two peaks in the response )
corresponding to the two eigenvalues of the system at 160.57 rad/sec and

263.04 rad/sec. It is observed from the plots that the amplitude power

spectral densities are more predominant in the Z-direction for both disk and

bearing-locations than they appear in the Y-direction. Héwever, the first
peak corresponding to the eigenvalue of 160.57 rad/sec is very well pr&ﬁ
nounced in the amplitude response corresponding to the Y-direction.'

two eigenvalues become the two split critical speeds of the rotor- system

when they match with the corresponding rotational speeds of the rotor. -

Th; power spectral densities of relative amplitude dué to base
excitations of equal value at both the supports in Y-direction are
plotted as shown in Fig. 6.3. Here, again the amplitude spectrum shows
two distinct peaks at the same frequencies as before. It(ds seen that
the peak amplitude response in the Z-direction is larger ;f'the second

frequency of 263.04 rad/sec than that due to Y-dinFction.
A

The power spectral densities of relative amplitdue in both Z and

Y directions are shown in Fig. 6.4 due to base excitations of equal




PRE N

§ T T 3 1 1 1
3 \
g; Disk (Z -directsion) ™ ‘
<«
- —— - —— Bearing { Z - direction )
3
T_:—' o' b --=—=—Disk (Y-drecton) .
L
@ —— -~ — Bearing (Y -direction )
- ) et
o
)
»
a
B (O-M m
N
©
£
o
z
IO-IS -
107" i
lo-l? ha
o 18 7
(ﬂr
\'x-,/-
|o"9 [
0 . 500

Frequency rad/sec

Figure 6.2 Amplitude Spectral Density Distribution Due
to Support Excitations ( Z-direction) at the
. .. Bearings of Rotor | .



Relative Amplitude

Normalized PSD of

l
1
|

-223-

'
Bl

!

—— v ——

T T

]{i
Disk { Z - direction) E.
Bearing ( Z - direction)
Disk {Y-direction )

Bearing (Y-direction )

{ - | L

Figure 6.3

o 100 200 300 400 « 500

Frequency rad/sec

Amplitude Specjral Density Distribution Due to
Excitations ( Y -direction) at the Bearings
of Rotor | .




Amplitude

Normalized PSD of Relative

-220-

— — oo —

—— e c—

— g e G

——— Oisk ( Z - drection )
. - Beon‘r;g ( Z - direction )
Disk (Y- diregfion/) P ‘ -
Bearing ( Y - directiod )

ExciiationY : 2x Excitation Z

1 . | o L 1
0 " 100 200 300 400 500
' Frequency rad / Sec
Figure 6.4 Amplitude Spectral Density Distribution Due to

Support Excitations { both Z and Y directions ) ot
the : Beorings of Rotor | . 4

3

PERY
5




- .
s
-225- -
) - ) —
'
»~
a

L

magﬁ?tade simu]taneously\in both Z and Y directions. This plot corres-

(_/,aﬂPqEﬁs to the severity condition that can be simulated for the seismic

type of excitations.

In practice, the base motions due to earthquakg_excitations are
e;pected to be ]argef in the Y-direction because the support structure is
comparatively more stiff  in the Z-direcfion than in the Y!direci%on.

Hence, it is reasonable to consider the base excitationiyalongthe Y-direction
to be larger than the base motion that is expected along Z—direction§, to
simulate close to real conditions of the machine. As such, the relative
power spectral densities of the machine due to base excitation which is

2 times larger in the’Y-direction than the base motion along the Z-direction
\is plotted in chain lines at the disk location only as shown in Fig. 6.4.

It is seen that the magnitude of the response of the rotor at disk ’

location along Y-direction is larger in this case than those observed 1

for the Corresponding position before. -

When such a rotor system (Botor 1) is supported on a floating base,
for example, on board a gbjp, the support excitations are felt not only
in Z and Y directions, but afs; in their corresponding rotational direc-
tions, 6 and ¢ respectively. Under severe wave motions arising out of
j&rough sea conditions? a ship-undergoes motions like pitch, rol1 and yaw.
Under these conditions, it is important to study the influence of the »
base excitations gye’to rotational degrees of freedom on the re]ativg

amplitude PSDs in Z and Y directions of thg rotor system.

A3
The vertical and horizontal ampliitude response spectrum due to

rotational excitations about the Y axis at the two supports are shown in —

Figs. 6.5 and 6.6 respectively. It is observed from these plots that the
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~

response due to the rotational excitations are less than that due to
translational base excitations. A similar trend in the response spectrum

is observed due to rotational excitations about Z-axis.

For this configuration of rotor, the normalized unbalance response

is also shown in Fig. 6.7 to have an ideal of the deterministic response

<,

pattern. . T

Thus far, a simple rotor system (Rotor 1) was studied for its re-
sponse due to random support excitations. In practice, large rotor
s&stems like turbine rotors cénsist of different components along the
shaft and also have larger span between supports. Such a large rotor
system is considered and it is called Rotor 2. The details of this rotor -
sysiem are given in Table 6.2. This rotor consists of two overhung
disks at the two ends and a rigid flange coupling connéE%ﬁng the two ends
of the shaft at the center. This rotor is mounted on f]uid film bearings
at two points and in turn is supported'by pedestafs as shown in Fig. 6.8.
The mechanical rigid coupling is designed as shown by Bannister [96].

It is assumed that the structure gets excitation thqough'BQe support
point only whereas the other support po1nt does. not get exc1ted Under
this condition, the effect of the random support excitation on the
response of the structure at the vulnerable point§\1ike Bedrings, ' .

mechanical coupling etc., i$ studied.
. @
Base excitations are provided in the form of translational motion

along Z and Y directions. The gower spectral densities of relative
amplitude of this rotor system at the two disks and coupling locations
due to base excitations along’'Z and Y directions are plotted as shown in

Figs. 6.9 through 6.12. The eff% of moment stiffness and damping ™~
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' TABLE 6.2 Details of Rotor 2

D%ameter of shaft
Total length of the shaft
Mass of disk 1
ﬁas; of disk 2
Diameter of disk 1
Diameter of disk 2
Thickneéss of disk 1
Thickness of disk 2
Transverse mass M.I. of disk 1,
‘ I, = Iyy = 1.21666 kg.n?
Transverse mass M,I, of‘disk 2,
‘ Iz = 1y, = 4.6068 kg.n?
Pedestal data:
Mass of the pedestal 1
" Mass of the‘pedestal 2

" Stiffness of pedestals:

K = 0,23642 x 10}¢ N/m
P21

0.127 m
Im

240 kyg
661.2 &g
0.3048 m
0.3048 m
0.643 m
0.118 m

204,12 kg
226.8 kg

e
kpyl = 0,355 x 107 N/m | N
k. = 0.23642 x 100 N.n/rad )
. Pal .
kp = 0,742 x 10° N.m/rad -
01 - : |
, kp , * 0.122588 x 1010 N/m
| : z2
ko' = 0.184 x 16 W/m
¥2 ' ' !
. kK. = (,122588 x 1019 N.m/rad A i
: Pa2 o C ;
{ kp , = 0.380 x 10% N.m/rad ;
\ 92 »
% S 3
: | »
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x

TABLE 6.2: Details of Rotor 2 (continued)

\ »
| Bearing details:
‘Weight on bearing 1 y . 17747.52 N
Weight on bearing 2 - '23930.24-N
Bearing L/D ratio - : 1
Viscosity of oil at 26.5°C- f 0.0138 N.sec/m?
Bearing clearance . “ 0.0001524 m

‘Rigid coupl ing<details:
Massg:r the coupling : 448,82 kg
% 0.000285 m

Diameter of the hub

Young's modulus for the

material of coupling : 0 1.9718 x 1041 N/m?
Equivalent second moment

of area of coupling ot 7,357 x 1075 mt
Bolt circle of diameter | -

of coupling : ¢+ 0.281l1l m

[}
i
*
-
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offered by the fluid film is consider&d. The power spectral densities '
of resulting amplitudes for base excitations which are predominant at
specific locations and directions are determined and plotted for a

constant rotor speed of 2400 rpm and for the frequency range of 0 to

1000 rad/sec. \\\\\\

The power spectra},density of relative amplitude of the rotor due
to base excitations 6n1y in Z-direction at the left support is shown in
Fig. 6.9. The system exhibits six eigenvalues at the range of frequen-
cies of interest. The six eigenvalues are 278.63, 346.65, 395.8, 544.74,
672.54 and 934.43 rad/sec. The response power spectral densities are ~
calculated at the locations of the disk and the coupling. It is seen

from these plots that the power spectral density of amplitude of the

rotor system along'the Z-direction has a prominent peak at the disk 1 location.

The power spectral density of relative amplitude due to base ex-
citations in Z-direction only at the right end support are shown in
Fig. 6.10. It is again seen that the peak amplitude response is larger -
at disk 2 location compared to the responses at all other locations.
However, the peak respon§e at the coupling location is predominant at
one of the eigenvalues which match with the running speed of the rotor
at the frequency and this trend is fhe same as was observed in the plot

of Fig. 6.9.

.Similar plots are obtained for the horizontal excitations at the
support point considered one at a time and are shown in Figs. 6.11 and
6.12. They again show the peak responses are predominant at one or more

natural frequencies of the system.
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6.6 Conclusions ,

The support structure of a rotor sy§temiis"Tode11ed. fhe response
power spectral density of the rotor system subjectéd to support random
excitations in different degrees of freedom is studied using modal
analysis. The power spect?ET densities of relative amplitudes are

’

obtained at different locations of two different rotor systems (Rotor 1
™

L]
and Rotor 2) and are presented. It was observed that,

(i) Significant response in the vertical direction can occur
&yhen.the roter experiences support excitations jn the horizontal direc-

7
tion and vice versa_ because of coupling in the oil film co-efficients.

(i) Trgns]ationa] response resulting from support excitations in

the rotational d;;ﬁg;ions is not significant. y

In. this analysis on]y.f1uid film translational and rotational co-
efficients are considered.- However, for a large rotor system, the in-
+ clusion of coupling effect of thegzu;o-efficients will improve the model
and provide better response values. ﬁoreover, the pedestal coupling
motions'in Z and Y directions are not taken into account. An improved

moael of the rotor system can be obtained by inéluding the above mentioned

coupling effects-both in the fluid film bearing and support structure.
-



ERPEY

oy

o e ot

4 ' \\.
PR V‘
-239-

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

.

The dynamic behavior of a simple rotor system supported on hydro-
dynamic bearings is studied. Orbit diagrams atthe disk as well as at
'y

the bearing locations are obtained for various configurations of the

5

conditions for the occurPence of backward whirl are :

rotor and the
U , ,

derived.

e
“
~

Modal analysis is used to obtain all’ the required rotor system
behavior such as unbalance response, critical speeds, individual system
modes and the threshold speed of ‘instability etc. The above q%namic
behavior of the simple rotogfsystem is verified by experiments. Also,
the modal parameters of the ‘rotor are identified through modal testing.,
The support structure and‘suspension are modelled jn a compfeh%%;ive
manner and included in the analysis. Accordingly, the rotational
springs ‘and dampers are introduced in the model for the fluid film in
the finite cylindrica{ bearing in addition to the translational springs
and dampers, The rotational stiffne:zfz%d damping co-efficients for the
fluid film are obtained by solving thé Reynolds equations governing the
f]uiq fi1m\§ehavior and are graphically presented in a nbndimgnsiona] form

against Sommerfeld number. waever, the properties of support pedestals

for the bearings have also been considered in this study and, as a result,

"an overall rotor-bearing pedestal system is developed using finite ele-

ment model. Large size matrices, arising out of the finite element

assembly for the several elements considered, are ;:Z»ged using a modal
condensation technique. The dynamic behavior of s a rotor system is

obtained for specified .unbalance conditions at the disk and also due to

~

L
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stochastically varying base excitations.
71 Coﬁclusions

X The conclusions arrived on the basis of the results of this inves-
tigation described in the different. chapters of thé thes%s are
summarizeéd and given below:

(ii A proper design of the rotor s;stem must consider the
response at the bearings also, in adgition to the' response at other
important 19;axipns,“such as those where disks are mounted, This is
bécause when the response at the bearings are of the order of magnitude
of bearing c¢learance, a linear analysis is not ;Lfficignt to study the
rotor behavior and also the opefaQing range cannot be chosen at the
critical region. \ .

(i) Theéépnfiguration of aléingie disk rotor supported on hydro- ‘
dynam1c bearings at the two ends, cén be altered by adJust1ng the bear-
ing clearances in the two bearings and also by adjusting the location of
the disk sola; to have a specific lodad distribution on the two bearings.
Consequently, the response pattern of the rotor changes, depending upon
the rotor configuratians. o . w l .

(i%i) For a particular configuration of a simple‘rotor which,
exhibits split criticals, a backward whirl condition is obtained in
between the criticals, depending up;; the bearing parametérs and the-
operating speed, Since, backward whif?‘provides stress reversals in the
rotor, it gag/ﬁg,avoided by :zitably changing thg cohffguration of the
rotor, \.

- (iv) Since modal analysis provides all the system fnformation‘
such as unbélance response, egitfcal speeds, the modal béhaviqr and also O

the stability of the syst®m in a single procedure, this is breferred'over

N
° N w .
. |
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. other direct methods. The discrepancy between the dynamic reSp%nses

obtained by modal analysis and -those by other direct methods, in most
cases is negligible and in some cases it is less than l%.

(v)  Tne modal testing is normallysperformed for statiuvnary
structures in order tp identify thg.modé]:parameters of the structure. -

For a simpde rotor system, the method provides the critical frequencies

" which are' found closer to those obtained by analysis. This forms a

sound basis that the modal testing technique can be extended to more
complex structures in order to obtain their modal parameters,

(vi) Tne predicted{éynamic behavior of a simple rotor system, dué
to specified unbalance in the 'disk, achieved using the rotational dyn-
amic film properties along with the translational «film pnéperties in
the comprehensive model of the bearing does not change Sggpificantly when

compared with that obtained using only transldtional fluid Ailm co-

efficients in the simple model of the bearing. Howevergsfor a large

 rotor system such as a three disk rotor model used by Kikdchi t14], the

. , . A .
dynamic characteristics obtained using the comprehensive model of tne

finite bearing provide results which are closér to those obtained by

k]
\

experiments,

(vii) Significant response in the vertical pléne,can occur when
the rotor experiences support excitations }n the horizantal"plane and
vice versa due to the coupling in the fluid film co-efficients.

(viiif Translational response resulting from support excitations

in the rotational directions: which are ponsidered to be random station-

ary Gaussian process, is not significant.

»
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7.2 Recuﬁnendatlpgg for Future Work

Some suggestiqne for the possib1e fnture work are ‘given below:

1; The'rotationa]‘flnidrfjlm properties can be evaluated for
different‘types of bearings euéh.as‘el]iptica]; tilted pad bearings
etc., with diﬁferent L/D'ratios so that they tan be used as design
charts in the nond1mens1ona1 form for the aralysis of 1arge and comp]ex
rotor systems. |

2. In the present investigation, the rotationa1 stiffnees and
damping fluid film co-efficients are obtained for small perturpations
around the mean pqsition of the journal. This work can be extended for
larger tilt angles and displacementS‘of the journal and the resultjng\
non-1inear f]uid film properties‘can be obtained.

3. In the transfer matrix procedure, the mass matrix .is a diag-
onal matrix and the stiffness properties are obtained assuming canti-
lever beam theory These matrices can be obta1ned based on a consistant
‘formulation of propertles so that the accuracy and, the computat1ona1 v
complexity of this method can be -compared with those. obt%jned by the
finite element method. "

4, With the comprehensive snpport model achieved. in the present
investigation, the responeé behavior of notbr Systems can be analyzeq
with the non-stationary base motions. | ‘

5, Fluid filled disks’ can he introduced in the rotor system and
they can be modelled to study their 1nf1uence on the stability of system
with a view to limiting the unstab]e regions which are obtained 1n'the

case of rotors supported on hydrodynamic bearings. -

v
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6. Tne dynamic characteristics obtained by the variation of different
clearance values at the bearing supports show a certain pattern; hence
this study may be undertaken for a whole range of clearance parameters
for completion.

7{ In the case of transient vibration of rotors, coupled torsional-
bending @ptions are possible, and QGpce this coupled effect is important

and that kind of study is recommended for rotor systems. —

8. A trend analysis can be carried out with nonlinear bearings in

. [ .
“order to compare all the dynad!t information of the system with those '

- )
obtained using linear bearing theory., -~
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. APPENDIX A
BEAM ELEMENT MATRICES

156
0 156
0 228 442
224 o .0 452
54 ¢ - 0 132
0 54 -132 0
0 132 -1322 0
a3 0 0 -3
|
[ 36
0 36
0 -32 - 42 '
3 0 0 412
36 0 0 -3
0 -3 M 0
0 -38  -x? v
i 3L j 0 | 0 -12
-,

156

=224

Symmetric
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225, 482
0
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U 0
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APPENDIX B
REYNOLDS EQUATIONS FOR FLUID FILM

Substitution of equations (5.2) and (5.3) in equation (5.1) result

in the following nine*equations: '

4

S h 3 9p ) h3 ap ) o .
i.i:{g_j§}+i_*g_lh} I (3.1)_~
R 8 {120 9B ax (120 ox 2 3B e
‘ h nd  9p
]_ -8___. {__0_.. pz} + —?— {_0._. hod Z; = ly_\ ..g: (COSB)
R® 3B lizg” 9B ) ax (12, dx 27 98
-1 -?—_. (3hz cosp — - i—)(ﬁi ho2 cosﬁ‘——q) - (B.2)
CRPB\ 9 . 3B Ak ax
,;> '
(/-\,‘. » N
‘4 (b} 3 h ® op
—L _a_..{...o_. —p}} +£— { 0 _1} :lm_?:(s'lns)
R? 38 l12a 9B ax 120 ax 2 38
P y ap
12 (3hg sinB —._°) =2 (3 [ S"‘B——‘g‘) (B.3)
R B\ B /- ax )
] ‘ h 3 ap. h 3 ap. S -
A_P_’ _g:{ 0 __}} 4.1 {_9__ __Z_}s cosB : ' ‘(8.4)
R? o8 {T2n 9B ax L1zm ax _ ) ‘
[ .
| h s ..aﬁ., h 3 ap, _ - .
1 _a:{_o_ X + 2 {-—9—— —l} = sing (B.5).
- R 3B (120 9B ax L1zg ax ). a ‘
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h 3 aq : ‘h ¥ 3q

1__{_9_ _____a} s 2 {_o_ .__1}.-. w2 (x cosh)

B L12e a8 ax  L12e ax . B

. ‘ '

N]—‘

1 3 Mo\ 3 %, P
- - = (3 h? X cosB ——) - (3 h% x cosB -0 (B:6)
R? 3B 3B ax ax /
o
o h’ 2y 2 fhy’ 2 I
— = T U S -:(xs1n6)
oB (12 oB 29X 129 3x 2 B
p .\ _
-1 —a_- (3 h? x - sinB —:Q>+ 3 (3 hé x sinB —-—0) (B.7)
R? 38 3B ax ax b
)
5
h 3 aqs h ® aqs '
._a: {_0_. ::.z‘ + _Q.. {_0_ ____Z_} = X COSE ‘ (8,8) J .
B U 120  9x

A (h® 3q) h ? aqge I
.E%. {_9__. _1} + 2 {—9— J} = x sind . (B19)
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and substituting then in the_above nine equatiods (8.1 through B.9)

resglt‘in the nondimensional form of Reynold's equations which are

s

showp in equations (5.4).
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! APPENDIX C . . v

STIFFNESS AND DAMPING MATRICES OF THE
ELUID FILM IN FINITE BEARING

‘ ,
‘ 7
~—— ’ - - ‘ . T &
‘ bl
The bearing element stiffness matrix is given by:
Lt tt tr tr | X
kzz kzy kzz kzy
£t £t tr tr S o ,'
kyz Kyy Kyz kyy ' . : ‘
- ‘ o
rt’ rt rr rr
’ Kz Kzy ke Yy X
rt re rr" re v :
Ly by b Ky
) N \‘
and the corresponding vector of displacements is . . E
(2 %
v \ ‘
\ , - ~
y P. K
% -
\¢)

A
s AARIEER NE w L oe

R X
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Similarly the bearing element damping matrix is given as: ’ )
' | , r
- — tt tt tr tr : h
, C2r Czy €22 Czy T
tt . tt tr tr
c ¢ c ¢ .
yz yy yz Yy 4
4 . v
rt rt *r rr - oot
‘22 X Czy , 22 ﬁzy \
: ) rt rt rr rr & ' Co A .
! ' h C L ~c C C
. | "y ¥y yz Yy -
‘.’ \ N
'}’z/ . )
g . . . . :
% N " oo ‘ , :
i, ’ and the corresponding velocity vector is \ :
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APPENDIX D
SUPPORT MASS AND STIFFNESS MATRICES OF A ROTOR SYSTEM

The support mass matrix becomes, M= [LH ]
' M
0 P
: _ .

whegg |
; ' I mp ) 0. ' 0 0 ‘
M ] 0 mp 0 0 - |
p .
0 0 ] Ipyy 0 '
I 0 0 0 Ipzz‘

L]

*( . tt . tt 0. o ] o
'z K72 kzy . , : e
! K LYz oy
"' bb . ,
; rr rr
. 0 0 NNy
o} " . )
- e, rr
) 0 0 kyz" Ky
\ ‘'
P .
| \ ¢ttt )
N ’ “*2z 'k,Z.Y ( 0 ) 0
tt tt-
. i i . 0 |
k kyz kyy 0 s
pb rrorr ‘
. 0 ‘ .kll -\(zy
3 rr rr
L T 7
| o .
) p
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tt tt
'kzz 'kzy 0 0 \
W . . "
. tt tt
. . Kyy 0 ckyy 0 0
bp .
‘ rr
E) ) 0 -kzz 'kzy
rr. re
0 -k
0 yz kyy _J
, - QMW TN
[.tt tt
kzz * kzy 0 0 .
k | —
- Py
tt tt ’
2 [ty B O
_ k )
Py
~ k * . s ' .
PP rr rr ) Co v )
0o 0 kp‘3 +H kK 2y ,
rr
kzz P
¢ rr ¢ ’
0 0 kyz k P
h— N P _
Yy -
The corresponding generalized displacement vector is L " ‘
Tw o 6,8 s wa v, 6,4 ‘ | \ !
. \ l’ l’ 1) 01l o'l ol' 0) ’0 :/
" The »support damping matrix can be written analogously. .
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