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ABSTRACT . ’ "
The _}?" Theory: Feynman|Rulé§, S
Renormalizability, Regularization a'v\\d Renormalization ' ﬁ

Mohamed Amjad Husain

Functional techniques are used to establish the Feynman Rules for ' -
the 'A¢" theory. Dimensional analysis of the coupling constant (X)
along with Dyson's power counting method is utilized to examine the re-

normalizability (non-renormalizability) of the theory in a variable

space time dimension. A prescription for achieving dimehsionally regu-

larized intéé}als from divergent Feynman integrals is‘given. " The method
4

is applied to the one-loop graphs froﬁ. A¢3, X¢° and x¢" theorjes.

The results are found to be consistent with the already existing ones. v
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The stqutpre of quantum field theory simplifies when one considers
a theory involving the boson. fie1d~on1& These simplificétidﬁs are: im-

',portant in that they 1mprove our ability to dea] with the more comp11ca-

ted theories The purpose of this thesis is to 1nvestigate certain as-

'pects "of the A¢ theory such as Feynman Rules, Ultravioiet (uv) diver-

" gences, regularizat1on and renorma11zat1on v

The Feynman Ru]es developed. in Chapter I ibr A¢ —theory and in

Chapter II for A¢ theory, would genera11y }ead to Feynman ampIitudee‘

containihg loop integrations which are infinife‘for both 1$rge and small
loop mbmehta!. For large loop momenta. the eivergehces are\known as Uv
eivergences. These qivergences.are discueeed in ChapteriIV‘for ehe x¢"‘
theorv. The diveragences that arise for small loop momenta are‘called
Infra'red (iR) divergences and are present only in massless theories.
Diveraences are removed by renorma11zat1on Renormalization is

essential, for otherw1se most f1e1d theories do not exist. Pertﬁhative

* . .
'renqrmaWization js  dealt with in'Chapter III in a general sense while

*

- Chapter VI is devoted to regularization and renormalization of some sim-

ple examples. The fundamental result of renormalization theory states

that to all order in pertubation theory the UV divergences of a quantum

"~ field theory may be forma]]y absorbed- into the parameters defining ‘the

theory while 1oca11ty, un1tar1ty and Lorentz invariance are maintained

Theories with cons1derab1e predictive powers are specified by only a

*

finite number of parameters. . Such theories are called renormalizable

theoriesf} Thus there are renormalizabTe and'nonrenormaliiable theories.

s ’ 4

v
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< The word "nonredormalizagle" maf‘be mi;fzading. It does not mean

. that such theories cannot be maqg finite but rather that ‘the multiplica-

tion of their divergences, and hence of counterterms, make then unreal-

fstic in the framework of the pertubation expansion. After renormaliza-
tion they will depend on an infinite number of parameters:

A necessary precusor of renonnaiization is the requlatization of\
Feynman integrals. There are many techniques available tq achieve téﬁ.m
gular1ied integrals. In Chapter V a few of -the standard techniques used
are reviewed with special emphasis on the latest technique, dimensional’
requlatization. <

Regularization is the introduction of a Dt-off parameter into a
Feynman intégrak 1n‘such a way as to make f%e divergen;es appear only as
the cut-of paraméters tends to some 11m1t1nJ}va1ue ﬁy this cunning
trick, it becomes'possible to make mathematical]y respectable what
wou]%hot:;zsise be purely formal man1pu1at1on of d1vergent quantities.

regularization method mainta1ns as many of the desirable

features of the theory as it can. The early proofs in renprmalization

"~ used PauH-ViHars2 regulators which maintains manifest Poincaré sym-

metry. The most recent requlatization technique is dimensional regulari-
N )

zatip jnvented by t'Hooft and Ve]tman?. A very important and attrac-

tivghfeature of this method is that i§”caﬁ"51§@ ¥elulate infra-red di-

vergences.

The originality of this thesis ?s-contaiﬁed mainly in Chapters II
and IV. To my knowledge, renormawization of the one-loop diagram from

" theory (Section 6.5) is also original wdkk.



CHAPTER 1 :

FEYNMAN RULES FOR THE 14" THEORY ' '

In this chapter the equation of motion for #he k¢4 theory-is

so]vediby expanding the generating functional, to be defined later, in
o ;

powers of the coupling constant XA. The two and four-points functions

are then used to obtain the Feynman Rules for thiS“yheory.

L

4 ’Theory

1.1 Equation of Motgon for the \d

~

The quantum field theory that is considered in this thesis may be
described by the Lagrangian given by Equation (1.T):,

- W 2,2 , .

3 2,00x) 3 (x) - 6% (x) * Ly, (1.1)
Lintbn»the interaction Lagrangian, can take many forms; the most general
formt consists of the fermion field (y), the electromagnetic interac-
tion (Au)’ a polynomial in the boson field (¢3 and thé€ir derivatives. .

In particular, when Lint is set équa] to Zero, the resulting Equation

;(1.2) ‘describes a free particle of mass m.

S )
# N .
= 15 0(x) o(x) - in%e?(x) | /////,,,\Q“Llfés/”~‘
. - “ » (
A much more 1nterest1ng Lagrangian is that obtaineq by setting
L equal to ——9—1—l~—~ ~Equatien (1.1) now reads —

= 32, 6(x) a“¢(x) anle?(x)- 28 () (1.3)
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The quantum field -theory described by\Equgifi:/(1.3) is known in the

. .

~

®

Titerature as the " theory or the ¢4 théory. The minus sign in

the interaction term of (1.3) is the one used in a classical field -

theory.to ensure~stabflity of the solution ¢(x) = 0 of the equation
of motion (Itzykson and Zubef)4. The 4! in the denominator will take
care of combinatorial factors.

The equation of motion for fhe x¢4 théory'is obtained by insert--

ing Equation (1.3) into the variational equatibn given by /;,}
3 - . 8L sL . .
- =0 i (1.4)
axu 63u¢(x). So(x ’ )
The resulting equation of motion is : ‘ “
}
3 C
( 0 +nf) o(x) = 3 . . (L)

a7 .
< J.:\-\’ L

1.2 Vacuum Expectation.Value of the Time-Ordered Product —_—

I3

The nonlinear character of Equation (1.5) makes it difficult to
obta%ntsqutions by some general méthod. The usual technique is to

obtain\3>pertubation—expangion of ngnman diagrams for the Lagrangian
(1.3)*/ This is exactly what was done by Nashs. His work will be .

4

followed in the development of the Feynman Rules for the X4  theory.
f

The solutions of Equétion'(].s) are the Green's functions. There

. exists a simple relation between the Green's functions and the vaéuum
exbectation value (VEV) of the time-ordered product. Equation (1.6)
defines the vacuum expectation value of the time-ordered product for two
scalar fields '

3

."*F@
i
i

o
i
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QTG = Blxgeyy) <OletxyNIOs s

8(y -x,) <Olo(y)a(x)|o> (2.6)
where © is the step function defined as"

1 for t>0
8(t) = . ,
0 for t<O

*

If GN(x] ‘e xN) represents the N-point Greéﬂ<§ function and -

: i <01T(¢(x1)¢(x2) cen ¢(xN)){0> 1snthe‘Vacuum expectation value of the

time-o;dered product for N scalar fie]ds,‘thé simple re]dtiontponnect-

ing thém is
Gy (X o Xy) = <OIT(3(x))(x,) ... (i) 0> L (.6

There are two equivalent formulae expreééing’the vacuum expectation

[4

value of thé time-ordered product of N scalar fields in terms of the
interaction Lagrahgian. The first is due to Gell-Mann and Lows; their

formula takes the form LAl

2
-,

o

. <0|T(¢(xif¢(x2) e ¢(XN))16> = <Oierxp[i f’L}é;ky)d4y]¢{n(xi),...'
. e gl 10> 7 ofttexelt [ Ly ety (1L7)

- . . .
— . - . 3
.
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I ¥ ' . vihe#e ¢1n(x) is the Heise"nberg picture field operator which is related
\)3“ , qtg—tﬁe.fr‘ee field operator ¢(x) by the fo‘rmula 9
Cr , ¢ ~ 4 . -
T T ey = U m)el0) (t) - A )
F AR S o |
o k“ ‘ with v(t) be'mg a unitary operator (Itzykson and Zuber) = A more N
o S . faﬁﬂlarf(oirm of .(1. 7) is obtained by expandmg the exponentials of the |
:L % 5 numerator and denom'lnator in series. : ~ S
. - The setond form of <0! PTo(x )¢(x2) ¢(>;N))|0> “appears when -
nﬁ' L dealing with the non-pertubative form of the theory and was first writ-
.: . o ten down in print by Mathews and Salam7.‘ »The expectation vah}e takes
. the form | - B .
A . b .
v o ; ‘ JD[¢]exp[in?xL(x)] 1_I]¢(x ;)
ﬁ IR B jomexp[ird“xui)l |
¢ - R X
: where D[¢] = r‘f'dq:(x) ]
-~ ' o Derivatio:: of Equation (1.9),r'equ1'.res the médification of the \
‘ ‘action (Equation (1.10)) by addipg the tedh jd’xJ(x)«b(x) to it. This
- . - . technique j.;, due to Schwingera. J(x) s an ord1nary scalar funct?on
. ‘ kndwn as the source func}:ion). . ‘f \
o o : .
. ¥ jdx(gam“ '“2—33 %?i) ~ "‘v‘o' (1.10)
- - P X :
« . A functjonal integralj z27J] 1’§ now defihec},as o

R oL . . 22 4 —_ ;
Y . 2[] =,‘\- [ D[¢]exp[i[d4x(gau¢a“¢-$-g; %+ J(x)¢)] S (1)
— N N - .
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. Where ;

S Ny 22 4 |
‘ A m[%(p]expﬁ I d'x [33 68" - me LA (1.12)
S L S C . , . -

© N

ign a normalizét'ion factor The functional 1ntegra'l Z[J] ¥s very use-
fu'l because the Green 3 functwons can be obtamed from.it by performing
L’simpl\e functiona] d1fferentat1‘on with respect to J(x). (For some {n-

formation on functional differentatmn and’ functlona1 Taylor Series see

>,Append1x A). For example . . g ,
Qo : : ' . {!P. - < .
82[J i [ | , u m2 2 Mi
Sy = & oredetxyexeli | d*x (3 300% - —% Ty e,
, ] i - . . ‘
R o o, Jh 13)
"; and in, general = o : \ sﬁ.
‘ NN - 2.2
’ (-i) " & -2[J] N I Y R TR
BIR ISR, -- STk * A | Pledereli [y 2980 - o
v | ’ —'
, 4 N
e - M4 9(00)] 1ol )
B ° : J-
2
Setting J = 0 gives A
( )N NZro] _l . : R . -
GJ )x] 2 6J xN :-' ' ‘r’(‘- - -
. 22 .4 N
o Josleeli[ o aaedde - TE RO ety
) T = - 77 1*‘];1 . (]-‘5) :

.3
g [orotexsli [ d'x 3 3,00% - T4 - H))
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The riéat hand sides of (1.9) and {1.15) are identical. Hence
1 ./\/
> | | e S
' . (1) & 72[J]
OIT(o0xy)olxp) .- (X)) 10> = F3r5 TEITw ) .- SIayT
—: . ‘ | “" ’ ' J=0
. = ‘ - (1.16)

h

The right hand side of (1,16) is the Nt order moment-of the functional

integral -Z[J]. .

H

1.3 -The Free Particle Green's Functions

\

” \ . .
Direct;evaluation of.Equation_(1;11l'is possible only for exponents

e

of quadratjc'form.‘ For x = 0. _ ‘

" . -«
4 s B

X . 2.2
21 | = P91 = [atedenals [ o g o0 -
A=0 ' o

| . | " 22 .
© e awn [olelenls [dhoaagdte - B

[ 4
1 4

[

defines ‘a new functional F[JJ whose e;éonent is of quadratic form. Of

4

course, the Green's functieﬂs obtained from (1.17) will ‘describe a free

particle. A lengthy but ébmprehensive evaluation of °F[J] 1is given by

>

5
Nash™ .. The result is
.

Al

ﬁ[d] =‘exp [- % I dx dy J(x) AF(X-Y)J(Y)J SR . "~ (1.18)

- Lo

4]

where AF(i-y) is the Feynman propagator‘satisfying the equation

' -
B4



( ml;n?) AF(x;y) = G(x;y) (1.19f

t 4

The solution of (1.19) is ' - o=

pelxy) = | S S —— .20

In the above equaéion,\ p denotes momentum. . Note also that F[0] = 1=
from‘Eduation (1.18). The furictional F[J] has a functional Taylor
se}ies obtained by expanding the exponential (see Appendix A). The

" terms in th%s series turn out to be the free particle Green's function.

s

.aIn particular, the two point Green's function is

. . 2
N _ F[ 2 .
GZ(x1x2) - Gdixlidglxzi

But AF(x]-xz) is a solution of Equation (1.19), therefore 33%%‘%%%%7"y‘ .

. 1 2
~ is gﬁe propagator of a scalar particle of mass m. In diagramatic °

- i ; ‘ \
= :-1 AF(X]-XZ) . (1°2])
J=0 =~ ‘

4

notation AF(x]-xz). is represented by

' AF(x]-XZ‘) = o , o ) w g ..' ’ i :(

FIGURE 1.1 ] ) R

o "‘ 4 -
~

-

Similar combutggions show that the 4-point Green's function is

i} ! v 'Y -~

o
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=10 -

"(gip‘{(

y~ bl 6 - = = Aclxy-x,) A (x‘-x )
6J{x7)6d1x,)8J(x4)8d\x, N A ER A ‘31.5.
T Bplxg=x3) Bplxpmxy)

- Aplxgmxq) 8plxpmx3)

and its diagramatic representation is

6t oy
. ) X3 Xy 6 X3 ) X4

e
.

i

r -

; FIGURE 1.2
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It is obvious from Equation (1.18) that the higher derivative GNF[O]/

6J(x1) . GJ(xN) vanishes for odd N;- and for even N are given by
sums of products of the function AF(x-y). This means that GNF[O]/
GJ(xl) . GJ(xN) are simply the free particle Green's functions,/f.e.,~

the quantities <0|T(¢(x]) cer ¢4xN))|0> where ¢(x) 1is a scalar
field.

A

1.4 Green's Functions for. A¢4 Theory

It was already mentioned that the Green's functions for a free
particle are simply aiven by the moments of the functional ‘F[J]. The
great importance of this property is that it remains trgq‘for interact-
ing fields. When considering the A¢4 ‘interaction the functiona] F[J]
is replaced by Z[J]. The presence of the quartic term in the actjon
“now makes it impossible to ﬁerform the functional .integral directly.
Instead the numerator and denominator of Equation (1.11) are expanded
in powers of A and the functional integral pecomes sums of moments of
the free action.

The following definitions will be of use in the future :

(a) Connected diagrams are those which are made up of only one
piece. Figure 1.3 i11ustr;tes the meaning of this statement. Figure
1.3 is the 4-point. function of A¢4 thebry. Using the representation
of Fiéure 1.1 for the‘propagator together with Equation (1.6a) Figure

1.3 transforms to

LR

<0[T(8(x,)6(x,)) [0><0|T(0(x,)8(x3)) |0> +

0IT(6(x) -.o b(x4))]0>

+

+

4



.
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/ LN # <0[T(s(x)dolxpdolx3)e(xz)) [0z (1.23) .
. q'/ , . : ' '
The subscript C on the last term of Equation (1.23) indicates that the )
“corresponding diagram js connected.
/ (b) It is also common practice to work with "amputated connected"
/ diagrams. Sdch diégrams are obtained by rémoving the external propaga-
tors from the cqnnected diagrams. Equation (1:24) relates:the ampuiﬁted
~‘connected 4-point Green's function to _the connécted 4-point Gréenfs func-
tion. | >

A ' 4
<0|T(¢(x])¢(x2)¢>(x;‘)¢‘>(x4))IO% - | 33 dEjA":"(x’j-F;j)]‘ S
o

<0[T(0(E, 8(E,)é(E5)0(E4)) |05

S (1.24) -
,:The inverse propagator satisfies b
I dg A;i (x-E)/BF()E-.Y)' = 6(x—\y)' 3 ; \ {1 .'25)"\‘
in cdérdina;e spate’énd -
- Boim-r (126

-

(Y »

in momentum‘space. In passing to momentum space t ‘amphtated“connected

\

diffé}ences of the x's. Therefore there is alwags an energy-momentum
conserving delta function appearing in the Fourfiertransform. If the .

‘ contribution to- the series of Feynman diagrams {n momentum space is .
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T(p1 = p4) foi <0|T(¢Fx]) ..7,¢(x4))|0> then

4 “ipaxe
J m dx.e RS <0[T(¢(x]) ... ¢(x4)){O> =
H : T

A ] / | N oy
T(p, ---'p4)(-1)(2ﬁ)46(p1+p2+p3+p4) - . (1.27)

Iﬁ momentum space the only diagrah contfibuting to the amp1{tude for
<0|T(¢(x]) . ¢(x4))|0> js shown in Fiqure 1.4b; its coordinate re- ~ -

presentation is shown in Figure 1.4a.
X2

Fourier

Transform

FIGURE 1.4

The slash appearing on a propagator indicates that the propagator is

amputated.

-

Returning to Equation’ (1.11) for 2[J] and expanding numerator and

denominator in poyers of A, it is founmd that

= 2Vy = i [ oreleett | dx (1,000 - { oro3 J d*x

. .
.
[
. , - ' )
.
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1
1

%l!“e"p'“ f '.d4)<(LQ)}}'~{E£¢].exp {i J'd“xLo}}"? _4.
1;\‘1 DLo] Jr d*x gi: exp [i J d4nx (.L°+J¢)] {I DLo] exp {1 J

d4x(Lo)}}" | - (1.28)

L0 is the free Lagrangian defined in Equation (1.2). The superseript

on Z indicates that (1.28) is the first order term in the expansion.

To obtain thewﬁ;poiht Green's function from (1.28) one must evaluate

AR
GJ(*H 6J(x2)dd(x3)éd(x4)

J=0

Inspection of (1.28) shows that

YA &t F[O] st F[o;!
- 8d(xy) ... 8d(x,) B 8d(x, I SJ 7 8Jdly,

8

- ._}‘..... i 8 ELO] Tk ‘ )
41 Idx 83(x;) .. 83(x,) sd(y]) oo 8ly,) (1.29)
| | -
Where ¥y =¥z =¥z =Yg =X VP |
s\ FLo / S o
Since 33 ‘{ 5 X is sums of products of AF(x-y) it 1s

clear that the right hand s1de of (1.29) is also sums of products of the
free propagator. All d1agrams except one, arising from (1.29) contain
. at least one "bubble"”. A bubble can be taught of as a line leaving and

returning at the same point. For example



- 16 -.
.- )
‘r s -:g <
. L J' Ty Q
Be(x-x) = 8.(0) = O ' ; W
PSR
| \. e - 00+ 00 + 00
y oJ X, T6JTx, J6d(x, )8d{x,) ‘
oo where AJ d4x .sigﬁifies the presence of a vertex: ‘ -~
1.5 The Feynman Rules for X' Theory / )
/ s ) , - R
T?\g'.only bubble free diagram of Equation (1,29) ts also the only
connected” diagram and is sho%in Figure 1.5°
7y R "’ ’
N ) - -
¢
\/(‘
: - . ) T FIGURE 1.5

at



. <0|T(¢(x]) ...§¢(x4))|0>c =-2 J dqu(x]-x)AF(xzrx)
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In terms of the free propagator, Figure 1.5 transforms to

-

o PR ) - =

vt . o
AF@iE’X)AF(x4'X) ) (1.30)

The contribution from the amputated connected diagram is obtained from - .

(1.24) by making use of (1.25) and (1.30). The resu1<jis

<OITCo(xq) .. alxg))f0> = -2 8(xp=x1)8(x3-%,)80x-%)  (1.31)
. J ' -C »

The momentum contribution T(pl,pz,p3,p4), arising from the vertex

‘(Figure 1.4b) is obtained by substituting (1.31) into (1.27). The

result is'simp]y -ix. Similarly, the momentum represéntation of the

14

propagator is found to be

k’az(f:)'l"l:)) = —Z'JT‘—:_ ) | ' (].32)

p--m + ig

The diagram&tic representation of (1.32) i§

. SR - Y (1.33) 9
3 P .p-m o+ e :
. C

Table 1.1 contains a summary of the Feynman Rules for 2A¢  Theory.
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. TABLE 1.1

evaman RULES FOR X¢"  THEORY .

o+
Jth

”zth internal line

‘

~

. -

vertex -

external line ~

pth loop inteégration -

REPRESENTATION 'CONTBIBUTION
. - i
y > —— .
“m© +
?j Pj m | ie
- i
kz ;kz-m + je

Zupi.= Y
i=1 .
-~ . X
symmetry factor S (varies
R ‘ according to
B the diagram)
LA N
. ﬁé w.) N
- P K .
}‘p —
/

PR
L
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. The symmetry .factor appearing in Table 1.1 }esu1¢s from the number
of possible contractions leading to the\same diagram. ‘In this context
two diagrams are different if they are topologia11y distinct. The
phrase "topo]ogica11¥ distinct" may best bé uhﬁers}ood by an example.
For instance, Figure 1.6(a) and (b) ar; topologically distinct but |
Figure 1.6(c) are (d) are not.

The symmetry factor of a diagram may be easily forgotten. However.

_ once one knows how to calculate the symmetry factor of a diaaram there
is no need to ﬁemorize ft. Given below are a few simple steps involved
in the calcu¥ation of the symmetry facto; of a diagram. Fiqure 1.7(a)
is used as an example. The first step is to disconnect the diagram as
in Figure 1;7(b). Then tfy to find out‘the number of different ways in
which the discoﬁnected vertices of Figure 1.7(b) can form Figure 1.7(a).
This is done by firgt finding out the number of ways in which one can
choose the eiterna] 1ine at any one o% the vertices. Consider the vertex -
x of Figﬁre 1.7(b). The following aiagrams of Figure 1.8 shows the pos-
sible chbices. The arrows {pecifiy the directipns of the momenta. There-
_fore"fhere are eight chgic?@jof the external line at x. Once a choice
is made th \number of choicls for the external line af vertex y is .
reduced tof}our. The reason for this becomes clear by looking at what
. happens i?lFigure 1.8(§) is choosen for vertex x. The line AB through
the vertices x and y of Figure 1.7(a) is a single 1;ne. Once a
choice is made at vertex x, the direction of the external line.at ver-
tex y must be consistent with this choice. The external Tine of F1gure.
1.8(a) is into the vertex therefore the external line at vertex y mugt

be choosen to point away from the vertex. The possible choices are

shown in Figure 1.9. Therefore there are four choices for the external
N

.
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o o \ . ‘ \ .
'Hne at vertex y after the choice at vertex x is made. The remain- .
1ng six Jines may be joined in six possible-ways. (No two Tines from
the same ‘vertex are coﬁmected to each other) See Figure 1.10 below. *

Therefore, the total number of ways to form the diagram of Figure 1.7(a)

g 1s 8x4x6 and the symnetr_y factor is . -
e ot _Bxdx6 1_ ) '
. ZMMF ° - =
\

where 3]—!- is the initial vertex' factor for each vertex. The 2! in

the‘ ‘denominator appears because there are two identical vertices in

" Figure 1.7(a). | : -

\ A graph"may be thaught of as a collection of'vertiées and lines. In
 the scal* tﬁeory, the number of lines assmned to a vertex is determmed
by 1nsptction of the interaction Lagrancnan For 1nstance<, the A¢

theory has vertices with four lines only. A theory like k¢ + g¢

[§

would contain diagrams 'v'n'\th two types of vertices, some with three lines
‘v : :
and some with six lines. In future the words araphs and diagrams will

be used in tHessame context unless otherwise stated.

)

g -
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FIGURE 1.6 (a) ard (b) are topologically distinct
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but (b) and (c) are not
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FIGURE 1.8 The eight poss1ble cho1ces of vertex X
of Figure'1.7(b)

.’ ‘ Y
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FIGURE 1.9 The four possible’choices of ‘vertex y
1.7(b) after vertex x was choosen:

Y

F

of Figure
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FIGURE 1.10 The six possible ways of jbininq the internal
lines of Figure 1.7(b)
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CHAPTER 11

- ' THE 2¢" THEORY

The material in this chapter is a generalization of that found-in’
the preceeding chapter. A general p§1ynomia1 interaction of the bgson

field takes the form
[+ o] 3 i K ‘ . ’
I nEe(x)T7ir | N
i=3 ) . .

The absence of an =1 term ensures that the current Jj(x) derivéd

. " ‘ from the interaction has zero vacuum éxpectation value (Jaffe)9 while
" the 1i=2 term is omitted because L, (see Equation (1.2)) already con-
tains a term of this order. It will suffice to consider a single term

from the above'interaqtion which will be written. in the form- A¢"/n!.

A

2.1 The Equation of Motion for 2¢"  Theory

—_— The interaction term of the Lagrangianv(1.]) is now -A¢"/n! .

n ™ '

Ao theofy as

S ™! . -
LML RRIORS - S ~ (2.1)

W

when n=4, Equation (1.5) is recovered.

—

2.2 The Generating Functional Z[QJ

. _ 4 n . . ‘ . T
After replacing -%%— by A%T in Equations (1.11) and (1.12) it is
\ . )

g} t N

This, together with Equation (1:4) g%ves the equation of motion for the

.

— N\
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found that the generating functional is . L.

2,2
2001 = 3 [ ol) ewfs [ dt b 0,007 - B - Mrs ) (22

where

' 2.2 n e
Al = j D[¢] exp{i jd“x (1 3 6% - I - 20)) . (23

Therefore, in analogy with Equation (1.14) the N-point Green's function

for x¢" theory is

A

' N N
_ -i) 6 11J _
GN("L'“ xy) = 5J§x]§ ‘_‘5'(17 8k

o : ‘ ' 2,2 n, .
‘= K],-I DEd;] exp {1‘ Jq“x‘/({‘auqaa% - % _er_{a_!__ + J¢}X o

—

"o =

8(x,) o C(2.0)
j=1 ' _

2.3 Green's Functions for XQn Theory

" Now expand the right hand side of Equation (2.2) as in Chapter I

and retain terms of order A. Equation (2.5) shows the result.

<

2y - fix J 06] exp {i j d* (L +a8)) - [ 0[] J.d4x

%r!lexp f" I a’x Lo}} {JDM exp {1 J o 10}}-2
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L3

-{i [ ore1. ¢ 81 exp i | d* (L0+:]¢)}}-{ [ ors3

]

exp [ I d*x LO]}'] o \\_/y/’ (2.5)

. o . '
When n=4, Equation (2.5) reduces to Equation (1.28). In terms of the
: ”

generating functional F[J] for the free pérticie, Equation (2.5) reads

(Mg - i )" " o) i,
2497 = - -’—.F[J] J fsah)']) ...[éd(yn))( '

.A‘ ~4. .n
i) d'x & F[J] )
"l I 8(y,) ... 8Jly,) - (?'6)

It follows that the N-point Green's function for the A¢" theory is

(- ) Vo } Six (=) N Frog £-1)" 6" FroT d*x
8J X 6 n! GJ(x]) ... GJ(XN) J 6J(x1) R GJ(xn)

r 4 - _A_( -4)" I &, & £0] 6" F[o]
. n!

SITx, T -+ 830Xy )83Ty, .. 89Ty, -

(2.7)

-—

In particular, when N =n then . L“Sj "

L -ix ()" 8" Flo (-1)"s" Fl0] d
<OT(oxy) - ol 10>« 3P gL EFG e [ 4555 LR
, 13(-1)“J S i () ]

" b d’x N1 R RV M 3R T-NI (7% USSR N )
' " (2.8)
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2.4 Feynman Rules for 6" Theory .

The only connected d%qgram arising from Equation (2.8) is the
first order vertex diagram shown in Figure 2.1. 1In terms of the free
. ' LS
propagator Figure’2.1 transforms to
-\
<0T(o(x;) ... olx ))[0> = - A J Belx-x) Be(xy=x) . Bflx _x) -

b 3

AF(xn-x) d4x . ‘ ‘2.9)
After generalizing Eauations (1.24} and (1.27) to give

' n
- x1° .
DITox) - ol DIo = [ 1 dey F Tegeg)) x

.___.I J ) ‘
<0]T(¢(E1) . ¢(€n3176£,;> (2.10)
. 2. o
and ) . ,;’ v
A : a n ' h .
T(p],.: ;7(~i)(2w) ) Pj) = I T dxj exp (-ipixj) X
. l{x ' s, j=1 J=] “‘a
<01 T(8(x;) +.. o(x.))]0> N (2.11)
PR B

they are used along with (2.9) to obtain

NT( Y1) (2m)® 6 T p,) = - A J 1 d*, exp 4-tox,)
p],..t.pn - m . ]pj p i p 3% 3

= i=

N
6(x2-x1) 6(x3-x]) . es G(XH-X])$

= -2 I d4x] eXP[;iX1 g ]
Fgd



"~ 30 -

‘ - * . ) . -

: n \ L
, = - a(zm?s( § py) ST (2a2)
r =1 3 . o
‘ Therefore 'T(pj.,...pn), the momentum contribution of Figure ‘2.2,“1'5
Y ' _simply -1). ' o
.’ A3
3 A «
.
.4
“ "/
St
-
[
. L
FIGURE 2.2
g ?
/ Y
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¢

o Below are the rules for ob}aining the\ﬁgynman amplitude from an

14

anb:trary,diagram. Although actual calculations would not involve the

ntributions arising from the external lines of the diagram, the rule

for bbtaining their contribution is nevertheless stated below.

(1} Assign the factor ——7r—%r————- to the jth external line. -~
! b (pj'm + 15) <
-
¢’(2) To the zth internal line whose internal momentum is kl,
. i N
assign the factor - .
kz-m + ie 4
d’k
(3) For the th Toop is assigned the factor [ z——%z
, 2n

fK4) The factor (-11)(2n)4 64(qi) is assigned to the jth vertex.
qj is the sum of the incoming'qomenta at the jth vertex.

(5) The p}oduct of the above factors a]ong.with the appropriate
symmetry factor is the Feynma%.amplitude for ‘the diagram in question.

Far a more compact form of the above rules refer to Table 2.1.
The only difference between ‘Table 1.1 and Table 2.1 is clearly the
vertex. 'It is obvious that there are a total of n lines at any ver-

oRg iagram belonging to A" theory. But whatever thg value of
‘:fﬁfzzzxgﬁntribution from a virtex is always the same, name\y ;ix.

\

. | SN
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TABLE 2.1

FEYNMAN RULES FOR A¢" THEORY.

REPRESENTATION -

-

CONTRIBUTION
th R SR
- 7 external line > T
. D, p.-m + ie
, J ‘ J
7 . ‘/ )
zwinternal line % —2—21——
kz k’p-m + ie
"~
" 'k, 7
£ . loop integration J—z .
, (2m
y -
. 4.4, "
Vertex (-ia)(27)787( ] py)
. j=1 9
R = -_1')\”
>
n
.=0 .
L i
‘ Symmetry factor S
L
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CHAPTER 111

PERTUBATIVE RENORMALIZATION

-

As used here, the word renormalization means the remov&] of infin-

o

ities from Feynman amplitudes in pertubation theory, for Lagrangian

field tﬁeory with polynomial interaction. In particular non-per{ybative

)10

renormalization (Bui Duy is outside ‘the scope of this thesis, as are

" the properties of non-polynomial interactions. :Field theori€s involving

‘only the boson field will be concerned with in what follows.’

(

3.1 Dix@aZEﬂﬂLlniegrnls.a o o

Attempts to calculate scattering amplitudes with Equation (3.1), -

following the conventional Feynman rules, soon leads to divergent *

-Feynman diagrams. As an example, consider the four-point function (Figure
3.1) for A¢4 theory. \Usiﬁg the Feynman Rules appearing 1n Table 1.1.
the Feynman amplitude of Fig. 3.1 is

1~>‘~I4 1
1= Al dk (3.1)
oo [k°-mé + ieT(kPy-p,)° - m° + fe]

By introducing Feynmgn pa}ameters (see Appendix B) Equation 3N can be
written as

I =
2(2n)e=

"2 _J . ddo
L+ (1-a)(py0,)2 - o° + (1-a)s - (l-?)?s]2(3.2)

1

where s s the\Mandtestam variable defined as

a—

173

£
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s = (p1*pé)2 . (3.3)

After a shift of the origin, Equation (3.2) reads- -+
2(2m)* (k2+p%)? <
., ’ |
where , ‘ . -
2’ . 1 vﬁ -

b = -m® + a(l-a)s (3.5) .
But . , | o I B

f a2 f(n-zg 2 N (3.6)° |

, (k2+b2)n T'{n (b2)n-2 . : i .

where T is the Euler gramma function. When =2 Equatién k3.6)
involves T'(0), which is ipfinite becguse F(n)# has poles at n=0,-1,-2
To avoid working with these %éfinites the propagators are usua]]y‘

regularized (§ée Chapter V) by introduciné a cut-off parameter. The

renormalization procedure.of Bogo}ﬂubov]] consjists of adding-to the

Lagrangian, extra terms, the so-called renormalization counterterm

whose function is to cancel the cutoff-dependence of the amplitude.
_Understanding the construction of the counterterms requires the

" following three definitions. '

1) - One particle-irreducible diagrams .(1PI).°

A Feynman diagram is said to be oﬁe.particie-irreducible 1f it is

connected and cannot be disconnected by cutting one internal line.-
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Figure 3.2 shows three Feynman diagrams in A¢4 theory. 'Fiduresl3.2(a)
and (b) are 1PI but (c) is not.

2) Superficial degree of divergence.

‘A Feynman integral is,’ in ggneraa‘a multiple integral.The super-
ficial %ﬁgree ofldivergence of such an integral is therxdifference
between the momentum power iqﬂthe numerator of the integral (arising
frqm Toop integr&tﬁqn variables and from explicit momepta at vertices
due to derivative interactions if any) and the momentum power in the de-
nominator (Dyson)] arising from the propagator. Figure 3.3 shows three\
Feynman diagrams in A¢4 theory, with théir superficial degree of diver-
gence denoted by &r. The integrals are taken to be in 4-space-time
dimension. |

Figures 3.3(a) and (b)harg respectively 16garithmically and quadra-
tically divergent while Figure 3.3(c) is superfically quadratically
coﬁvergent. Although Figure 3.3(c) is superficially convergent: it is
in fact divergent and it is for this reason the word "suyperficial” is
used; the integration along the lower loop is divergent no matter what
happens in the rest of the diagram. A large portion of Chapter IV is
devoted to superficial degree of divergence so there is no reason to s
dwell on the subject any longer. |

3)  The third definition is that of the Taylor expansion of a
Feynman amplitude abgut the point zero. A Feynman amplitude with n
external lines is a function of n-1l in&ependent four momenta. Further-
m;re if there are no massless particles in the theory it is an analytic
function of theizxmomenta in some neighbourhood of the point zero, the

point where all external momenta vaniih. Thus, it may-be expanded in a

Taylor series of these variables. e



-

FIGURE 3.2(a)

A fourth order 1PI diagram from
A¢4 theory

3
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" FIGURE 3.2(b) A third order 1PI diagram from >\¢4 theory
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3

.
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FIGURE 3.2(a)

A 1PR diagram from A¢4 t/heory -
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FIGURE 3.3(b)

@
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-variance forbids a first order term in the Taylor expansion.
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S
¥

3.2 PRenormalization Prescription
1

Theirenorma1izatidn prescription of Bogoliubov and Paras‘fuk1 is
as follows . '

(1) Calculate in pertubation theory until a 1PI diag}am whose
superficial degree of divergence (éT) is greater than or.equal to zero
is encountered.

(2) Add to the Lagrangian extra terms (the counterterms) choosen
to precisely cancei,‘to fhis order, all terms in the Taylor expansion

of this diagram of order &I or less.. As an example of this procedure,

_consider A¢4 'theqry, for which the Lagrangian is ’

4
- u 2.2 A ‘
L= 34d% -3 " - 2y (3.7)

The two second order diagrams encountered in A¢4 theorx are shown
insFdure 3.3(a) and (b). According to step 2 above, L must be altered

by adding extra terms so that

Ay0? W2 :
L L= =7+ 3 Byd 00" =1Co0 . (3.8)

The subscripts on A,B,C, are reminders that these ar@®second order
terms. The A2 term is choosen to cancel the zeroth-order term in
the Taylor expansion of Figure 3.3a; the 82 and C2 terms will can-

<
BgfTaylor expansion of Figure

cel the zeroth and second order terms’ ig

3.3b. There is no need for a first 6rdf counterterm because Lorentz in-

(3) Continue computing, now usiny the corrected Lagrangian. Thié_
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‘procedure eliminates all divergences in the se;ond order;
This procedure can be confinuéd for a1l order diagrams, with the e
original Lagrangian and new counterterms; Each time the counterterms
are choosen t; cancel the divergences in that order. The rémarkab]e
thing about this brocedure when applied to A¢4 and other‘renotma1iz- |
able theories, is ihat fhe counterterms needed to rémove the divergences

all generate new interactions of the same type as those present in the

- original Lagrangian. As a result, the modified Lagrangian is

e lr/

RN COME TR S EE DR IO T O

where A,B and C are power series in 1, with coefficients that are,
in general, cutoff dependent. Each term in these power series takes

_care of the divergence of a diagram from A¢4" theory, Equation (3.9)

~ usually appears in the literature as

- A ‘
. 2 2.2 0 .4 :
L= g(auqbo) -3 My - g7 %o . . | (3.10)

with

¢ = (1+8)} ‘ : (3.11)

3 “ |

m, = (m2+c) (148)7 ' . ; T (3.12)
and , 1

A = (A+A)(1+8)72 : - - (3.13)



L -
e /\__/

Equation (3.10) takes the exact form of ‘the original Lagrangian, except

that the coefficients have been changed. ¢° is known as the unrenormal-

7 {zed fﬂET;, The quantities m  and A are called the "bare'- mass

and "bare" coupling constant respectively. Thus, when the bare mass
and coupiing constant are choosen in a cut-off-dependent fashion, all

the divergences of A¢4 theory disappear. order by order, in pertuba-

tion theory. A Lagrangian tHat has this property is saia to be renor-'

' "malizable.
In the next chapter the subject of renormalizability and non-renor-

malfzability of A¢n theory 1s considered by examination of the super- \\A

ficial degree of divergence of a general Feynman amplitude in an arbi-

trary space-time dimension..

o 3
»
)
9
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\ | ~ CHAREER, IV

RENORMALIZABILITY AND NONRENORMALIZABILITY OF A¢"™ THEORY

The concept of renormalization and renorma]izabi]ﬁty are quite dis-
tinct and there is no reason why the divergences of even nonrenormaliz-
able theories ca;not be absorbéd into an infinite family of local count-
erterms. What is important is, for all renormalizable theories, not
oniy is the number of primitively divergent graphs Iiﬁited. but further,

perhaps more important, the degree of‘divergence of the integrals corres-

ponding to these graphs do not depend on the order of the graphs.

4.1 erficial Degree of Divergence Feynm

Almost every book on quantgm field theory contains some material on
superficial degree .of divergence and its relation to renormalizable and
nonrenormalizable theories, Itzykson and Zuber? gave a formula for the
degkee of divergence of a graph in 4-space-t§me dimension fqr a theory
involving spin 0 or spin 1 boson fields and spin 3 fermion fields.

12

Similar work was done by Pohlmeyer'“ but in d-space-time dimension. It

yéfzvtrivial task to derive from these results, the degree of divergence
of a graph originating from a theory with boson fields only (Ramond)la.
Only ultraviolet divergences, those divergences associated with
large loop momenta, will be looked at in this chapter.a Another type of
divergence is the infra-red (IR) djvergence_associated‘with small loop
momenta. It aokcurs only in massless theories. ‘ )
Consider a 1PI graph, F(E), from A¢ﬁ theory, The 1ist below

shows some symbols used in the derivation of the degfee of divergence

(sr{)y of r(E)y
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v "+ Number of Vertices
. ) .
n - ¢ as in A¢ °
"E :  Number of external lines
1 "+ Number of internal lines
d :  Number of space-time dimension .
L - :  Number of loops .
GP(E) : Degree of divergence of F(E)

<= -

The number of internal momenta is equal to the number of 100ps in

the diagram. The I internal momenta satisfy (V-1) relations among

themsé]ves.a The -1 appears because of overall momentum conservation.’

Therefore . _»

L=1- (V-1) ' (4.1)

\

. The general form of F(E) (apart from<symmetry-factors) is shown in
Equation (4.2)

. ‘ ' d j,
L a%, 1

r{E) ae-in) f 1T— 1 — 1 r (4.2)

i=1 (2m)® =i (25 + ie)

There are V vertices each contibuting (-iA), hence the factor (-ik)v.
The quantity zj is a linear combination of external and Toop momenféf

GF(E) is.obtained by counting the powers of loop momenta in the

integral of (4.2). The power counting method is descgibeﬂ in Dyson's1

paper and an elementary proof is also given by Héhn and Zimmerman14.

Q

Each loop integration_of (4.2) provides ~§ powers of momenta. The

factor
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J=1 (z§ -m

'powé;s of momenta. The minus sign appears because the

momenta is in the denominator. Together, the degree of divergence is oz

¥

~-

AL N I S ° S € % S
- Remembering that éqch vertex of the A¢n theory Has n lines attached

to it, the total number-of I4nes in the diagram is nV, But each 1nt§r—

nal Tine must be counted twice because they are attached to two vertices. -
. It follows from the conservation of the number of lines in the diagram ﬂ

that ' S . -
nv = E + 21 , ) | a (4.4) o
Substituting (4.4) and (4.1) into (4.3) yields ' .

-~ .

sr(E\) = d - !21 (d-2) + V[%(n-z)_ - n] . (4.5)

-4

7

3.2 Dimensional Analysis of the Coupling for A¢” Theory

>

o

Consider the action in d-space-time dimension

-

* . ~ . N
. § = ,[ L ddx ! E (4.6) .:

“where L .is given by . . | !



ot

. # _
‘ 2:2 ] S
X L= (Me)f- Dt M . ,- (4.7)
e ‘?'l ]
With the knowledge that the Feynman ‘path integral involves the expres-
) - ' '
| sion (Feynman and Hibbs)ls.
Y . ’
" + \ . i
TN ' - g .
CoL . .exp {-ﬁ S(x,t)}
"t is clear that the action is dimensidnless. (The natural u.m'ts h=c |
) = 1 were used). Denoting the dimension of a quantity R by [R] and
2 pecalling that’ : | - : e
@ : ' .
. - _ [ENERGY ) -
| SN (A R ) SRS
E “ . f
)’ "' o 1t follows from (4.6) that
. : : . , *
" oo &q _.1 _ [ENERGY] ,d | ’
~ : ot [S],-,] = L—LTIJ L - i (.4-8)
. N ' | ‘ , "
: - -1 .. > 3
Therefore [ENERGY] = £~ whete P is the dimension of length. Equa-
. tion (4.6) and (4.7) gives -
| . ! \/ﬁrz
. 2.2 n (r (3 ¢) -
m d d
‘ U_EL dx£=“—>—‘n@!—dx%= J-—%—ddxf=1 (4.9)
4 } 'S ‘
. »
- Sd_1in ‘units of mass dimension ' .
Sooow e 31’153% - nf C ﬁ T (a00)
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\

and Equation (4.5) may now be written as

t

orE) < a - Ea-2) - v | | ©a)

N

Therefore there-is an explicit relation between the degree of divergence

and the dimension of the coupling. e ///
. L A '

) ,
4" theory © e

r

4.3 Degree of Divergence of )¢

The interpretation of (4.5) may be achieved by copsidering some
specific examples. Take for example the case d=4; Equation (4.5) re-
duces to : ) ) ' ' X

%’ -

sr(E) 2 4 - E 4 (n-a)y o ‘ (3.12)

Evidently the case n=4, the A¢4~ theory, is a very interesting one

for then Gf(E)

is.indeﬁendent of the number of vertices [see Equation
. ’/ ~
(4.13)] and there are only a finite number of graphs for which GP(E)
)
¢ is non-negative. These graphs are the primit%ve]y divergent graphs of

the A¢4 “theory.’

or(E) =4 -k (4.13)
N Ay “~ '
The two primitivé]y divergent graphs bf A¢4 theory are
ah .
F‘2§ _with GF(Z) = 2 ‘: superficial quadratic divergence
. ‘and ' . "
. .2 _ . . ¢
7 7 ,P(4) with ar‘?’ =0 : superficjal logarfthmic divergence

T {

]



ot

X (a)
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FIGURE 4.1 Ths primitively diveraent dlaarams of
. . A¢" theory in 4 d1mens1ons
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\

FIGURE 4.2 A two loop 1PR diagram from A¢

.o 4]

4 theory .

3
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' ’ A
' 1
/\\\ »
% ' \\-’ h
»
3 ¢
9
¢ a
. N v ) . ' . ’
_ FIGURE 4.3 A 1PR diagram from A¢® theory with a bubble
on.one leg \ :
S
“ - ( .
. ? R &
-~ . N ’ )
. . ! 1 ~ 0.




’ -« 53 - . _ -

Figures 4.1(a) and (b) show the primitively divergent graphs from

l¢4 theory.” ‘

. The above analysis does not mean;that graphs with negative 'GF(E)'
_wjl1 cﬁnverge. To understand this statement consider the diagrams of
Figures 4.2 and 4.3, K]though the degree of divergence of Figure 4.2°
is -2 .the graph still diverges. The reason for this is the presence
of the divergent loops. Thé graph of Figure 4.3 is .also divergent but
its degree of divergences is -2, apparéntly convergent. Now the

. source of divergences is the "buBb]e“ shown on one of its legs. Figures
4.2 and 4.3 are one particle reducible (1PR) graphs. There are also
2,3, ... N particle reducible graphs containing diyergent subgraphs

Q‘but yet appear to be superficially convergent. .

| In genéra], if in a Feynman graph, there.are subgraph(s) whose
degree of divergehce is (are) greater than or equal to zero, the graph
is divergent. This result is-due to Weinberg]6 and is stated more

. v -
elegantly in his theorem which says

The general Feynman graph converges jf its
degree of divergence.together with the ae-
gree of divergence of all its subgrabhs are
negative.. _

Although all scatter*ng.amp}itudes of A¢4 \theory may have infinite

parts there are only two real sources of Giveréence in the d=4 dimen-
. .sién. These are the two and four point functions of Figure 4.1.
When d=4 and n>4 (x¢5, A¢6 etc) the dimension of the coupling

is negative and

srlE) = 4 - £ 4 (n-4)V | - .(4,-143

¢



| - _

But V(n-4) > 0. Therefore SF(E) can be made as large as possiplg by
choosing the appropriate number of vertices. For this reason k¢n"theofy
for n>4, 1is said to be nonrenormalizable in 4-space-time dimensiong.

On the other hand, when d=2

L

or{E) = 2(1-v) B (4.15)
and the degree of divergence is seen to be indepe;dent of the theory.
The oniy primifively divergent d:agrams are those for which V=0,1.
Since divergences occur because of loop integrations, this means that
the divergence occurs only whqp a leg from one vertex is connected to
the same vertex, and not from ;he interaction between two or more ver:
tices. Such self-inflicted divergences are called "Pormal ordering" and

are u;ua]]y removed by working with a Lagrangian whose interactibn term

is nogmal ordered. For instance, for the A¢n theory the replacement

d

n n by -
A oA .2 AL N
W e Tari e
is made. The operators enclosed within the syrbol pooare

said to be normal Grdered. For: two operations the definition is

Crelaely): = T(e(x)e(y)) - <0[T(6(x)e(y))|0> (4.16)
) ‘
In the 1imit as y-x, (4.16) give
:d(x)o(x): = o(x)o(x) - <0|o(x)¢{x)|0> (4.17)
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The time ordered symbols are omitted because the arguments of the opera-

tors are the same. It was seen in-Chapter I that the last term in (4.17)

was
<0]¢(x)9(x)]0> = A(x-x) = Ac(0) ' (4.18)
Therefore
< :
d(x)o(x): = ¢(x)o(x) - 4,(0) - 4 (4.19)

shows that the effect of normal ordering is to subtract out the diagrams

containing AF(O). It can be shown in a similar way that -
:¢4(x): = ¢4(x) - diagrams containing AF(O) } (4.20)

The definiiion for the normél product 6f N operators is given by

Itzukson and Zuber4.

The A¢3 theory, considered by C611ins]7 in détai] and mentioned
' : 18
by Bogoliubov and Shirkov, is the simplest model of a real scalar field
one can consider. Its superficial degree of divergence in d-space-time

dimension§ is
orlEl =g Eqa2) +vig-3 E (4.21)
This theoky is renormalizable only for those values of d which makes

(% - 3)<0 i.e. for d<6. Again it {s evident that the non-negative

dimension of the coupling is responsible for the theory being

v
-
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renormalizable.

1y made |
[A] = 0 Renormalizabie
[A] > 0 " Super-renormalizable
[A] < 0 Non-renormalizable

"~k

The following classification in terms of [A] are usual-

\

Finally [A] is less thah zero for all values of d>7 regardless

of the'value of n. For n>2 the A¢" theory is non-renormalizable

for d>7.

Dimensions 1n‘\@ich Acp" T[Leory is Renormalizable, Super-

Table 4.1 shows the summary of the results.

TABLE 4.1

Renorma]izab]e/ﬁ Non-Renormalizable

Dimensions in which theory is

n
Super-renormalizable| Renormalizable|{ Non-Renormalizable
3 2, 3, 4, 5 6 d>6
4 2, 3 4 d>4
>>4 (\ 2 ' d>2
1 T e
N B
™
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CHAPTER V
REGULARIZATION TECHNIQUES

The purpose of this chapter is to introduce q»few regularization
tec?ﬁigggi\used in quantum field theory. Special attention will be paid
to dimensional regu¥g¥izat13n and a prescription for regularizing any.

Feynman amplitude will be given (Leibbrandt)19.

5.1 Pauli-Villars Reqularization,

A regu]arizationutechnique is any mathematical prescription whjch
‘renders a divergent amplitude finite by means of a special cut-off pro-
cedure. There are numerous regularization techniques available. How-
ever there are a few standard techniques used, the first of which is due

. to Pauli and Vi]larsz.

Their technique introduced massive auxillary
fields called regulators in order to eliminate singularities from propa-
gators and other i1l defined fqutions. In its simplest version the

*Pauli-Villars method consists of replacing the free progator

in a scalar theory by .

S (pamsM), = 74—, T-z —,_—7— -’ O (5)
- -M%- (p®-m®) (p©-M%) ,

Notice that as M + = the original propagator is recovered. The beha-

viour for large p has clearly been improved. Thus the degree of
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divergence of the Feynman graph in the theory has been reduced.
.. g N

< '

5.2 Analytié Regularization

The method of analytic regularization differs completely -from that '
of Pauli and Villars in that it makes use of the con;ept of analytic
continuat1on in some complex parameter o. h .

To obtain an insight into the workings of this method cons1der the -
Feynman propagator

\

(p?- !ﬂz‘_fj.E)']

for a scalar particle of mass m. The crucial step in the prescription

-

lis to replace the above propagator by

(p? -mf + i¢)™® 3

where the regulating parameter o may be complex. The result of such

a replacement is to transform originally divergent integrals into well

" behaved analytic functions of -a. The integrals are now convergent and

can be eva}uated unambiguously by performing the usual operations of
integration by parts, shift of 1nfegration variables etc. After these
manipulations one can continue ghe resulting expressions analytically to
a=l. The origina1 uv divergeﬁces now show up as poles at a=1. Sub--
traction of these poles at the end of the'calculétion yields the desired

finite portion of the integral. .
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{
.5.3 Dimensional Reqularization | e

~
The technique of, dimensional regularization, first introduced by

3

t'Hooft and Veltman®, is the latest and probably thé best regularization

7/

’/ﬁ;cggiggg\avai]ab1e. Because the notion of analytic continuation of

~__~ the space time dimension js utilized, the method is also commonly re-

ferred to as "the continudus dimensiéna] method". To understand the
basic motivht;Bh\Esﬁiﬂng%is\tgchnique consider the four-dimensional
integral ) ‘3 ‘ |

¢k

I{4) =
) J (2m)¥ K[ (k-p)% + m°]

(5.2)

defined over Euclidean momentum space. To transfer from Minkowski

space to Euclidean space it is necessary to perform a rotation through
n/2 1in the complex energy plane. Such a rotation is called "Wick-rota-
tion" and it has the effect of changing the time component ko of a

Minkowski vector to -iko. If

g1 oo Kyoy) o . (5.3)

d-1

T

-1'

2

- 12 2 .
k™= = ko - ki ‘ » : (5.4)

represents a d-dimensional vector in Minkowski space then
k = ("'ikog k], k2, . e kd“]) . - (5.5),

1

with

e L
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d-1

Co kBaa i S (5.6)
~ \\\~\__ i=0 - .

‘ . % \ : <:./
represents the same vector but in Euclidean space. ‘Evidently the square

N .
of the Euclidean vector is always negative. This procedure is regarded

. . . A
as analytic continuation to ‘the region where k2 is negative. Results
of expreésions for positive k2 are obtained by analytic continuation

at the end of<fhe caltulations. o
The 1ntegra1 of Equation (5.2) is 1ogar§thm1ca11y divergent for

large momentum (k ﬂ-«ﬁ.@ However the. corresponding integral in 3-d1men—

sion is convergent. So-a reduction in the number gf space-time dimen-
sion rendéred the divergent integral convergent. The idea, therefore,
is to write all Feynman 1ntegrals in an arb1trary space-time dimension

(d) and use d as a regularising parameter. Once all man1pu]at10ns

involving integrals have been made, the princip]e of analytic continuation

L
can be utilised to return to four-dimensienal space. The concept of

an"T}tic cont1nuat1on in the number of space -time dimensions is the most

important single feature in the techn1que of d1mens1oﬁhl regu]ar1zat1on

The famous theorem of Knoppzo. Stated below, will clarify the meaning

a

of analytic continuation.

THEOREM: Let an analytic function g](z) be defined in a reghon D,
and let 02 " be another region which has a certain subregion -
R, but only this one, in common w\th Dy. Then if a func-
tion 'gz(z) exists which is analytic in D, and coincides
viitr; g](z) in R there can only be one such functionh. »
g](z) and ~gz(z) are said to be analytic continuations of o

each other. See Figure 5.1.

L.

“ -
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A nice example which is the basis for the method of analytic contin-
uation, is the difference between the Euler and Weierstrass representa-
tions of the gamma functions.” For Rez>0, the Euler representation-is

. /
re(z) < J dt £ le”t ' . (5.7)
) :

The domain of analyticity is shown #n Figuré 5.2. For Rez<0 and t+0

fE(z) behaves as : ‘ ' ' c .

dt .. . ! | _
| N(TFReR) - » RN ‘
wh1ch leads to an 1nf1n1ty In order to discuss points outside the

ana]yt1c region it is necessary to find f1rst an analytic continuation

of PE(z). Such a continuation is obtained by splitting the integration

1imit in (5.7). o " . R,
~ . : ‘ '
[- . n o o) .
relz) = J i—H—j dt ™20 4 J it et 1 - (5.8)
n=0 ’ 0 R ’

A
where a is fbtally‘arbitrary.' The second‘integra] is well defined

even when Rez<0 as long as a>0. The f1rst integral has simple poles
Qhenever z ' is a negative inteffer or zero. The weierstrass representa-

tion of the gamma function is obtained by settthg o1 so that L;_;“n
) n -°°’~ } m\ ' A b
r,(z) = zd G [ aete L (5.9) -
. , 1 ‘

» . .
which is analytic everywhere except at z=0, -1, 72. ... See Figure 5.3,
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“The common reqion R
’/gﬂa]ytic cnntinuation
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is the region of * <»
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A\

FIGURE 5.3 Domain of analyticity of T, (2) -
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. ~—’

Pw(z) is a unique analytic continuation of PE(z). since its domain of

definition clearly gverlaps that of FE(z).

]

5.4 Dimensional Reqularization Prescription

fl . -.}’
This section contains a multistep prescription which should be he1p4jil’
. )

ful in achieving regularized integral by the continuous dimensional

method. Suppose that the four-dimegsional Yntegral

F

| .. |
ae) = [ e k) . (5.10)

2m)
4

is ultraviolet divergent. For massive fielMs, the basiessteps in the
method of dimensional regularization as. given by Leibbran‘dt]9 are

(i) - Define all vector products over a complex d-dimensional

sBace
(ii) . Parametrize all momentum-space propagator according to .
—?_l——f = - da exp[-a-(k2‘4 mz)] (5 lf)
kS +m T L il . '
i 0 ) C '

<

 Notice that in Euclidean-space the 1ie term in the. propagator is not

requinéd. To understand this consider the Minkowski\épace propagator

wihout tie iec term: i "
s e 1 , e (5.11a)
M 2 . . .

’

SM has real poles at k=tm. So integration of ‘Sﬁ immediately di-

verges, To avoid this vaergence the small complex qhantity ie is

n

-
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added to Sy. On the other‘ﬁand the Euc1idgén space propagator (5.11)

has imaginary poles at ki\Q tim. Tﬁerefore integration of this propa-

tor does not produce divergence so there is no need for the ie term.
(iii) Use the generalfzed gaussian integral (5.12) to integrate

L

over momentum space

d.
4 b2

/ J (—‘;‘»—)3 exp-xkE + 2k.b] = LL-)H ew S (00) (52)
m -
Ny

(1v) “The resulting amplitude is now well“defined as a function
in'a'finite domain. of the complex d-plane. To obtain an amplitude de-
fined outside this domain.analytic continuation must be performed.

(V) - Integration over Feynman parameters lead, 1n regions ‘where

thesi::egral exists, to gamma (r) functions. Ana]yt1c continuation

is achieved-by using the Weierstrass representation of this T cfunction.

(vl) A1l d dependent quantities are'expanded in Laurent

T~ ¢

series about the\point d=4, so_that the integral I(p) of Equation
(5.10) becomes \ AN

1(p) = —(P—1+ F(p?) + 0(d-4) S (5.13) "

The original UV jnfinites now manifest themselves as poles at the
"physical" value d= 4 ’
-(VII) -Cancel the pole term G(p )/(d 4) by adding appropriate

counterterms to the original Lagrangian in which case the regularized

fntegral is shown in (5.14).“‘F(p2) is the renormalized integral and the,

counterterm is -G(p2)/(d-4).

a 2 N ) ’
Ireg(p) = F(p©) + O(dr4) h | . , (5.14)

>

"
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. of the 2's on the k's must be known.

"done by Itzykson and Zuber'.
sary to study the ana]ytic\properties~of—Feynman~graphs—{Tod8rov721--H-;~———~— '

- 66 -

(VIII) Analytically continue Equation (5.14) to four space-time
dimension by taking the limit d+4 so the value of the integral is given

by the finite portion F(pz) of the Laurent expansion, properly con-

tinued to Minkowski space. . e

The above prescription is sufficient™to regularize UV divergent in-

tegrals associated with massive scalar fields. .

/ .
In the preceeding chapter the Feynman integral for a 1PI graphs with

L ioops, I internal lines and vertices was written as =~
UPURN TN :
1eseh) [ =l 1 (5.15)
: - i=1 (2n)" §=1 (z -m

+ ig) ) | , !

where Lj is a,lineariggjbination of external and loop momenta and S
A b

is the symmetry factor. To parametrize (5.15) the explicit dependence

PS

Regularization of the general Feynman graph of a scalar theory was

4 Tq fully understand their work it_is neces-

Such a study is beyond the scope of this thes1s and w111 not be ¢onsider-
ed any further. Instead, a s1mp3e graph from A¢ theory will be regu-

larized in the next chapter.
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CHAPTER VI

DIMENSIONAL REGULARIZATION AND
RENORMALIZATION OF ONE LOOP GRAPHS

In this chapter the techniques of dimensional regulariiation and
minimal subfraction‘(MS) (Co]h‘ns)]7 are utilized so as to achieve renor-

malization of some simple graphs.

6.1 The d-Dimensiona1"Integrél .

It:was already mentioned that the method of dimensional regulariza-
tion treated the space-time dimension as a continuous variablsr Since
vector spaces of non-integer dimension do ndt exist as such, it 1; not
obvious that the concept has any consistency, let alone validity, even
in the purely formal sense. é’b the concept of integration oﬂ’g space
of finite nonsinteger dimension, d, cannot be taken completely Titeral-
ly. Either it is a'sei of purely formal rules for obtaining gnsQers or
it is an operatiqn that is not. literally integration in d-dimensions,
but only behaves in many respects as if it were integration in d dimen-
sions. ﬁeverthe]ess uniqueness and existence of the d-dimensional inte-
- grals will be assumed and standard manipulations will be applied to them.
. For an explicit definition of the d-dimension integration. and some axioms

necessary in -application to Feynman integra1§ see Co]]ins17.

!

6.2 'The Basic Graphs of X¢> Theory

" The basic graphs of A theory in 4 space-time dimensions aFe shown

in Figure 6.1. Figures 6.1(a) and (c) are called tadpole graphs.

-

'
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FIGURE 6.1- The basic graphs from ¢

a

3

theory in 4-dimensions
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The divergences caused by these, and all qther tadpole graphs, are re-

moved by imposing the renormalization condition
<0{¢[0> = 0 | (6.1)

To third order, the left hand side of (6.1) is as given in Equation (6.2)

P

ooy = —QO
+— + ‘———(;} +'—Tﬂ<:>*-~——¥ | | : ‘
S -
4 e

Figures 5:1(39 and (c)'an& theirncounterterms are contained in (6.2) as
a result, divergences caused by them are removed by imposing condition
(6.1). H@nce, the only basic graph that need berenormalized in 4zdimen-
sion is the one-loop self-energy graph ;hown in Figure 6.1(b).

s

6:3 Regular1zat1on and Renormq}TZat1on of the One-Loop Self-Energy
Graph from A¢ Theory

w——— >

The contribution of Figu?e 6.2 to the self-energy is defined as 1
times the Feynman integral for the amputated graph of Figure 6.2. fn d

space time dimensions tﬁis is given by Equation 6.3..

n
- .
. .
/’—\.l\n , «
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Jru

~

Y .
FIGURE 6.2 Thé one-loop self-eneray diagram from ‘AQ3
theory

Ly
n

- 2 FIGURE 6.3  The tounterterm o% Figure 6.2,

!

.

”
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DI Y. f [KE - +ie][ (kep) “-m+ie] (€2

Using Schwinger's- parametric¢ representation for each Euclidean propa- .

gator (Appendix B)

n

] f: do exp['—"&(m2 - l<.2 -ie)] ' (6;4)

mz-kz-ie

Equatfon (6.3) reads

.. 2 . © © ! .
== _JA d - 2
Z-' W J do J dg j d k exp[~(a+g)m
2 . 2 .
Bp~ + 2Bp.k'+ (atB)k"] AN (6.5)

. ' T ,
Now replace k" by k" - TSEET and change variables to
Z=g+B 5 Xx=> ’ (6.6)
" The Jacobian of the transformation, defined by '

dx dz

o 0B
. 28
X X
. . , N
together with the new k gives
ouy - 3 [
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2 1 o .
. =jA J . I d 2. 2 2
= dx dzz | dk exp -z[m - p"x(1-x)] + zk '
h 2(2m)° J‘o 0o .

(6.7)

- - I .
' After scaling k by a factor, zi " Equation (6.7) becomes

W2 © T '
21 ‘:-Z_Z(I;—Tr)—dr J dx J dz Z]-d/Z expi-z[m2 - pzx(ll-x)] X .
f ddk exp(kz) | ; (6.8)

At
3

d/2

The integral over k may be replaced by iw which is correct for |

integer d. With a change of variable in Equation (6.8),

‘ ' N
2 _ o 9 .
z[w N E‘?x(l x)] z |

the integr;ation reads

g 92 ‘
}2'd[2 ’ X P21 B |

/A

2
{m - pzx(l;x)

-

4.

. 2 7 J R e I
{~m - p‘x(l-x)}

Comparing the integral in the above expréssion with Equation (5.8) re-

veals that ‘the integration over z in Equation (6.8) is nothing more
than

(e . :
e .
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. d/2~2
r2 - d/?) { m2 - pzx(l-x)} /
so that -
ol )\2 1 ) ) d/2-2
= . - - d - - .
I Ezz;ga7§-r(2 d/2) [ x'{m p.x(l x)}\ (6.9)

0
Tﬁe divergence of the original integral now resides‘fn the Euler gamma
function of (6.9) which has simple pofes at d=4,6,8, .... The re-
" sidue of each pole is a polynomial in p of degree equal to the degree
of divergence. ’

Consider renormalization in‘4 space-time dimensions. A rather
obvious way of renormalizing (6.9) is to define a term so that when 1t.
is added go 21 the singularities are exact]y“cance11ed1 The term
added is called the counterterm (see Chapter III). The counterterm of
Figure.6.2 is shown in Figure 6.3. |

.

Now T(y) =" - yg+ 0(y) o * (6.10)

~<|—

where“the Euler's constant Yg is given by

. 1,1 L = 0.57 .
CRLEUREAS RERRS Toggn) = 0.577... (6.11)

Mso —— ="1-minb (6.12)
CL(b) ‘ . '

Substitute (6.10) and'(6.12) into (6.9) to find

o]
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2 n .
I - Ez;i;a7§' {17:%757 -Ygt 0(2~d/2)} X
’ 1 ' s 2 | ,
{j dx[1 - (2-d/2)an{p” - p x(]-f)} + .:] | (6.13)

0 %

The infinite part of.(6.13) is now a pole at d = 4. The residue of
this pole is N

32 }
3212 (2-4/2) -0

i

'fherefore/QFE‘CGDnterterm\ﬁeeded is

g LN
28 ' .

2nl(2-d/2)

The renormalized self-energy is thus

' 2 2 2 |
. = A dx dan [P x(1=x)y } 6.14
g heleettig e

’

There is only one fault'wjth (6.14). The problem is that the ekpansion

in powers of (d - 4f did not allow for 'the fact that A has a mass di-
mension dependent én d. Therefore the implicit introduction of a mass
séa]e is inevitable. For this reason (6.14) cMatains the logarithm of .
a dimensional unﬁtity. The scale can be méde explicit by redefinin§

13

the coupling constant (Ramond'S, Collins'’) so that

N g2d2, T

. ) .
. . ) v
.
\ . ’ B - - 3
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where u _is a parameter with dimensions of mass. Now making use of thé:.

relation ) ‘ P ki.:
f(x?‘= exa[ﬁnf(x)]f. o "“ | t‘ (6,15? ‘
gives . )
u?:d(z = exp[(Z-d/Z)in ﬁ] o . | o ‘ -
R W(Z-d./Z);.n u o+ 3(2-0/2)%0% ... | ) (6.16)
Th; new renormalized seff-ene;gy-is thgrefore . )
Z]B . gﬁ;2’tj e; ;%némz ;“Eix{1-xg'¥ TE ‘~Q ;2 (6.17)

-

The above prescription is called Minimal Subtraction (MS) whenever the -
counterterms a}e pure poles at the phy;ica] value of\ d. The same

type of calculations can be performed fqr d = 6.

1 1
-

$.4 Overlapping Divergence °
| F

theory were seen to be those of Figure

‘ The basic graphs of A¢
6.4 below. . The éymmetry factor of'ngure 6.4(a)_;ms éalcula;ed,in

'Chaptér I and was found to he 1/6. Thus, theJFeynman amplitude of

Figure 6:4(a) is i ‘ . - \
,. .“9 . ’ / '
2 "4, 4 °
i AS J d'k_d"s ',
I== . (6.18) .
6 (2m8 | [kZnHie] [ -il+ie][(pte-K)miHic] ‘

. " '
. -

(12N

[
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s

Equation (6. 18) diverges logarithmically if k is held fixed and L + o

- or if & is held f1xed and K+ o, However, if both &, k + o the

integral diverges quadratically. The latter is called an overlapping
divergence. Whenever there are diagrams with loops, at least two of
which has an internal line in common, there will be overlapping diver-
gence(s). The counterterms of Figure 6.4(a) are shown in Figure 6.5.
Another example of a d1agram with overlapping divergence 1n Figure 6.6
Overlapping divergences are mucp more difficult to deal with,than the

simpler kind (i.e. those associated with one loop of a diagram). They )

“have the property that if one tries to evaluate the intejgfj)after

parametrization, éhe d{vergence'moves in part from the lo -momenta’ in-
tegrations to the iptegrationé over the Feynman parameters. This makes
the dimensional method much more difficult'to\use and caution must be
exerciged|when dealing with mﬁ]ti]oop ca]éu]ations. For simplicity pn]&

one loop diagrams will be freated here.

6.5 The One Loop Diagram from A¢n _Theory !

Figure 6.7 shows the one loop diagram from A" theory. There are

a total of n lines at each vertex. With S as the symmetry factor,
£ .

E the Feynman integral of Flgure 6.7 is (in d dimensions)

P —

3

I= ;§£:iA%E I i[ 77 ddg. " (6.19)

(2m) Ke-mC+ic][(k + g ” ) ot o+ el

The index j of pj runs frag 1 to (n-2). Using the Schﬁinger's

¥

parametric representation for each propagator (Equation (6.4)) 1t is

¢

found that
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b Afte} dropping the *ié_ term, the above expregsion becomes _

N
' . -8 -

I=¢C I do J ds J ddk exp 3: d(m2 - kz - ig)

.- B[m2 - (k+P)2.- ie]z

© where o,
12
c = Sf-TX; < ,
(2m) , '
and } )
)

¢ .n=-2 .y o

P - z pj * ) . ot

=1

The argumeht of the exponential may be written as
. < . -

A = -a(%z - K2 - ic) ;\BLmzl— (k’;p]+p2 + ..

= '
i
-

-

»

+ pn,z)z - 15]

LR R L L S L LR AL
\\; . S 3 i#J
Y o \ , :
A= K 2( 1 pf+ el
= G+B),"m (q+3) + ZBK Z Pj - B(ZPJ + ;-;pipj)
- ! J ' EC '
| . A B .
Now shift k so that =~ I
¢ - "‘ CoL |
k+ k. =(=E) Tpy - .
C o latgt £ 0§ S
. J ' .
¢ - . .

(6.23)

1

(6.28) —

-
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This proceduré‘wi11 eliminate the terms linear in gﬂ
N2
A= (o+8) [k (;;%) I3l - (ov)m™ +
+28 | k - (5 I p (2ps) + | . '\
. T ." - ls\
. - o | R ‘.
-+ B + P 6.25
| {EPJ ,,i;j p1p3} 5 (6.25)
or: 4 iy X [ . -
v 5 |
<;“' A = a+8)k2 (ZP ) - (o+B) n? + ‘
. " }i"l cL+B ] ‘.
Y 8L Jp° + T pops) . | (6.26)
* j i;j 1 J ' _“ . . -
_The change of variables defihleBy (6.6)-1ead to M ™
a2 25 pr orge 2) S
A= 2 -z [of x(0f] Pj +'i§j. 2 ‘ . (6.27)
o %, |
Substitute in (6.20) to find - . ‘ .
‘ 1 © . Y e
- 1=C J dx j dz z J ddk EXp{zkz-z{mz -'X("I-x)():pg +-’§ pjpi')}}
0o 0 | D S
. I . (6.28)

4
[

After scaIing .k by 2! and perform1ng the z and k 1?tegrations as

in section 6.3 the result 1s i ; G
) .
. ' A )
¢ ‘ N
’ " ¢ A .
t [ RS < |.
( 4
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' .2 L d/2-2
T = __153%7 I(2~d/2) [ dx[m2 - x(l-x)([pg + .2. pipji] o
- (4n)™"" 0 . it -
7 _ ] (6.29)
‘___‘/ .
' When the only external momentum is p]“= P , Figure 6.7 becomes Figure
6.2, the one-loop self energy diagram from x¢3 theory. The symmetry
- \
factor of Figure 6.2 is i and the term .g. pipj vanishes. Hence, from
i#; , .
(6.29)
o I —-—-57—' i° 1 (2-4/2) (M axn? - p2x( )]d/z-2 T (6.30)

, - - x[m® - p™x{(1-x)] . .

- . 2(4TT) 2 .. jo .
This'is exactly what was obtained in Section 6.3 (see Equation (6.9))
except for a factor i, but in-Section 6.3 the Feynman integral was

_ multiplied by 1.
| ) It was found in Chapter IV that in 2 dimensions the divergent graph
| from A¢" theory are those with 0 or 1 vertex. Since Figure. 6.7 .
does not-contain either of these graphs as subgraphs it is expected that
A e -
. Equation (6.29) .is finite in 2-dimensions. The gamma function T(2-d/2)
may be written as |

W .

r2-ds2) =r(1 -d/2 +1) (6.31)
; . , 52
« But T(z+1) = zr(z) h \ - (6.32),
. [ .
/ ‘ .

| S -df24+1) = (1 -d/2)r(1 - d/2) & (6.33)

i N e . N ' “ N .

’ Also from Equation (6.10) . T
1 . ) ‘

I"(Z)=-z--YE":0(Z) ' ‘ - :‘*“‘ r .

i
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So .. T -d/2+1)= (1 ~&2) { =gz -¥vg + 000 -d/2) +..

2 -~
‘j? ’ (6.34)
or .
t M- d/2+1) =1 - (1-d/2) vg + 01 - d/2)%) + ... (6.35) 7
Using Equations (6.12) and (6.35) in (6.29) 1t is found that
1=__a7-“25 {1 - (‘1-d/'2)y +0((1-4/2)%) + ... x
. (4") 2 . E ‘ , u .
1 2 2 ‘
I dx[1 - (2-d/2)an {m" - xL]-x)(ij + Zpipj)} + ..]
e 0 ' ! . -
’ ' (6.36)
As expected, when d = 2 quation (6.36) is finite an& there is no i
. reason to add ‘a counterterm. : - .
_ 6.6 The One Loop Diagram from A¢4 Theory _
To complete the discussion on one-loop diagrams consider Figure
6.4b from }¢4 theory. In Chapter III parametrization of the Feynman
integral shown in Equation (3.1) lead to the intearal shown in Equation
(3:4). In d-dimensions this integral may be written as ﬁh
R X ' ) H
. .
: *i*a' —dz‘l‘l%-z (6.37). .
2(2n) [k° + b°] , i
avhere ' b° is defined by Equation {3.5). : 1.
Equation (6.37) was obtaiped b& using the Feyngg? parametrization -
defined in Appendix B. Using the identity——— * ¢ T
‘ - ‘ ’ & ' ) & : !
\ ' i ' e ; P
l . . 1 " 1 . .




d . d/2 :
dk . ixr’ T(n-d/2) 1 S - (6.38
J T2 7 b2]" T(n) (bz)n-dlz, | )

: %
— .. to perform the k integration in (6.37), one finds that

- Gl do T - aCirg)potp )21 2 (6.39)
- ' - = - m - =) (PP . .
242 | RN ' .

« - .
oL

‘Equations (3.3) and (3.5) were used to replace b

2 and s. | _

-
»

When Equation (6.29) is used to evaluate the same diagram [Figure

6.4b] then . . - ) .
2 . x
] Zp Zy PR . (6.40)
and ;! C
Z p'lpJ p]pz"" PoPy = ZP]P? N & i (6.41) -
i#] " , -
. ' 2 ‘ - 2 N ’ . . 2’
¢ XpJ + 1;3. pipj~_ (p]+P2) ~ : ' zz.42?
t ) . " -

A
Equation (6.2?) now reads, with § = i,
- ? dx[n’ - x(1 )f 2 (6.43)
= x[m© - x(1-x)(py+p . .
2(am) 972 . e

A .
i A}

e

”. In. obta1n1ng (6. 39) the Feynman integral was parameterized using the -i:::)
Feynman parameteric representation of the propagators. but Equation

- {6.43) was,obta1ned using the Schwinger represe ation for the pro- o

pagatoas “Nevertheless Equation (6.39) and (6. 43) are identical. The

— e

finite portion of (6.43) is obtained by using Equations (6.10) and
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(6.12). The result is / . .
’ 2 Y
-1A 1 2 2 1
2.7 J dx{zn[m = x(1=x)(py+p) T+ yp e
- 0 o 7

’iThfs is the same result obtained by Nashs..-Thisconcﬁudes the discussion

of reqularization and renormalization of the ore loop araph (Figure 6.7}
’ 1
for A¢" theory.
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results are consistent with those found by Nash
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o~

7N CONCLUSION

/

\
The resu1t§ of CHapters I and II sﬁéued that the Green s functtons
of X¢ and Ad * theories can be expressed in terms of the generating
function ar1s1ngnfrom the free Lagrangian. The Feynman Rules for x¢
and//x¢¥——theor1es differ only in the structure of the vertices. A ver-

4 theory contains 4 lines while a vertex from the Adn

~tex from Ao
theory contgins n lines. Hence, diagrams from a theory like A¢p + g¢q
“will cohtain vertices with p and q 1lines. Although the structure of

the vertices are different, the contribution to the Feynman amplitude of

any vertex, whether from A¢3 or A¢4: theory, is always -iAX.

Whether a theory is renormatizable or not depends on the mass di-
mensjor-oTthe coupling (r) which in turn depends on d, the space-
;;EETThneNEion:( In particu]ar, the A¢4 and A¢ theories were found
to be superrenormalizable for. d<4 \and(ﬁd < 6, renormalizable for
d = 4, 6 and non-renormalizable for 'd > 4, d > 6 respectively. These
5, Ramond' %" and Col1ins'”.
Furthermore, when d =.4 and n > 4  the coupling constant has a nega-
tive mass dimension and &I can be made as large as required by choos-

ing the appropriate number of vertices.- Hehce. the A¢" theory is non-

renorma]izab]e in 4-dihensions\for all n>4, When d=2 the situa- -

- tion is reversed, for then the degreeﬁof d1vergence'1s independent of. n;

- There are only two primitively divergent diagrams and a1t theories are
super-renormalizable in d= 2 dimensions. When d >7 there are no
values of n>2 for which x¢ theory is renormalizabie.

Equ tion (6 29) shows}the dimensiona11y regularized Feynman amp11-
of the one-loop dia am from x¢ theory. For n =3, 4 Equation
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A

(6.29) reduces to (6.9).and (6.43) rggﬂectively. These are consistent
. :

-with: the éxpressioqs given by Nash® and Collins'’.
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/ APPENDIX A.
e FUNCTIONAL DIFFERENTIATION AND FUNCTIONAL

TAYLOR SERIES *°  #

Let E(f(x)) .be a functional of f(x). The'functigna1_derivatiVe
of E(F(x)) with respect to f(y) is defined as. '

*

- | SE(f(x)) . . E[f(x)+e8(x-y)] - E(f(x)) f t
ny -‘]im . € ‘ ‘ Lo (A])

€+0

’ There are some reasonable similarities to ordfnary differentiation and
the well known chain rule for functions of a function has a functional

counterpart. Let E = E(F) and F = F(f(x)), then the chain rule is

-
o SE . - 8E  SFEx') A ‘ ' "
] . gﬂ—)——f d)r( TS—FT)-(-'T <Sfy o A (AZ)

Let F be an arbitrary functional of f, and X a real-variable:.

so that
. Q )
gA) = F(F+af) . T (M)
- N ‘v ¢ }
The functional F )has a Functional Taylor series eXpansion ‘defined by \ '
@ ‘, ) ' '

-

o 8% F(0)
F(f) = g = J dx] v dxnf(x1),---’ffxn) 5f(x])‘...3f(xn) (A4)

o

providing that the ordinary Taylor Series of a(k) defined by'AS,

-
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g

oOr~1 8

N

g(})

ﬁg)\"‘ “ .. . ' | - .
9—-(-—?——".“ | ‘ ’ (AS5)

converges at the point A = 1. \ ' - ,
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APPENDHX B,
PARAMETRIC FORMS OF THE PROPAGATOR

THE FEYNMAN PARAMETER

The general Feynman amplitude arising irom a graph with V ver-
tices,” 1 internal lines and L loops, was seen to take the form

d o '
L d kJ I 1

I * (B
=1 (2n)9  i= 4 (22 me+ie) : % )

1=(-in)Vs J

}gﬂne very 1mportant step necessary to regularize & graph is'the parame-"
terization of its propagators. There are two equ1va1ent parametric forms
/
of the propagator usually used. The f1rst is due to Feynman. Its most
general form is
S R
agf oy T
1y LX)

[Ax+by+. . +E2]0VE*- ¥
- (B2)

f dx dy ... dz 8(1-x-y- ... z

, where A, B etc. are propagatbrs.

A

THE SCHWINGER PARAMETER

For the propagator (ngkz)'“ the‘Séhwinger parameteﬁﬁc representa-

tion is - - .

23
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