INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600
THE EFFECTS OF CORNER RADII ON THE LOCAL BUCKLING OF COLD-FORMED SECTIONS

ARASH NASSIRIRAD

A Thesis in SCHOOL FOR BUILDING

Presented in partial fulfillment of the requirements for the degree of Master of Applied Sciences (Building) at Concordia University.

Montreal, Quebec, Canada

September 1998

© ARASH NASSIRIRAD, 1998
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

0-612-39469-7
ABSTRACT

THE EFFECTS OF CORNER RADII ON THE LOCAL BUCKLING OF COLD-FORMED SECTIONS

ARASH NASSIRIRAD

In steel construction the methods to produce structural members include hot rolling, forming and welding hollow section (HSS) and welding plates to form I's (WWF). Another method, which is less widely known but is growing in acceptance, is cold-forming from steel sheet or strip using roll-forming machines, press and bending brakes, or folding operations. These cold-form steel sections have their own design codes.

The use of cold-formed structures in building constructions goes back to about the 1850s in both the United States and Great Britain but the formal design methods for these sections were developed only since 1940.

Cold-formed sections add aspects to the design procedure which are neglected in codes for hot-rolled shapes, namely local and torsional buckling. The elements of a box or channel section formed from thin sheet may buckle locally, leading to collapse. To calculate the buckling stress the
manufacturing process, makes the measurement of the width uncertain. Codes simply adopt the flat width. The objective of this study is to develop a more accurate method to predict the buckling stresses for two major kinds of cold-formed section, namely an open section (channel) and a closed section (box).

A theory has been developed to model the elastic local buckling mode for box and channel sections. This is extended to predict the behavior of the section after buckling and up to the collapse. Comparisons are made with the results of the numeric analysis carried out using the finite element program ABAQUS, and with the code requirements.
To Dr. Shahin Izadian

who supports this study by her life and spirit.

توجه به: خانم دکتر شهین ایزدیان

که زندگی این بندیان این رساله است.
ACKNOWLEDGMENTS

The author wishes to express his gratitude to Professor Cedric Marsh, for the initial encouragement in the project, and for his continuous guidance and suggestions, which have enriched the content of this work.

The author is also grateful to his colleagues, for their valuable criticism, helpful advice and solid support.

Financial support from NSERC is also acknowledged.
TABLE OF CONTENTS

LIST OF FIGURES xi
LIST OF TABLES xiv
LIST OF SYMBOLS xv
DEFINITIONS xix

CHAPTER 1 1
INTRODUCTION 1-1
1.1 General 1-1
1.2 Behavior of cold formed members 1-4
1.2.1 Rectangular box columns 1-6
1.2.2 Channel columns 1-7

CHAPTER 2 2
THEORETICAL MODEL 2-1
2.1 Overall buckling 2-1
2.2 Box section 2-2
 2.2-1 Code procedures 2-2
 2.2.2 Proposed analytical model 2-5
 2.2.3 Theoretical post-buckling 2-6

2.3 Channel section 2-10
 2.3.1 Code procedures 2-10
 2.3.2 Proposed analytical model 2-12
 2.3.4 Theoretical post-buckling 2-13

CHAPTER 3 3

FINITE ELEMENT STUDIES 3-1

3.1 Introduction 3-1
3.2 Eigenvalue method 3-2
3.3 Ultimate load 3-4
3.4 ABAQUS program 3-6
 3.4.1 Introduction 3-6
 3.4.2 Input of the program 3-7
 3.4.3 Output of the program 3-8
CHAPTER 4

COMPARING THE RESULTS

4.1 Typical example

4.1.1 Theoretical calculation

4.1.2 Code predictions

4.1.3 Finite element results

4.1.3.1 Eigenvalue result

4.1.3.2 Postbuckling strength

4.2 Results for box sections

4.3 Results for channel sections

4.4 Conclusions

4.4.1 Box section

4.4.2 Channel section

4.4.3 Final comments

4.4.4 Future research

APPENDIX I

ANALYSIS

I.1 Introduction
I.2 Box section I-1
I.3 Channel section I-9
 I.3.1 Flange mode I-9
 I.3.2 Web mode I-13
APPENDIX II II
WARPing constant II-1
 II.1 Box section II-1
 II.2 Channel section II-4
APPENDIX III III
 List 1 III-1
 List 2 III-4
FIGURES F1
TABLES T1
REFERENCES R1
LIST OF FIGURES

Figure D-1 Local buckling for a box section
Figure D-2 Local buckling for a channel section
Figure D-3 Flat, overall and effective widths
Figure D-4 Collapse mode for a box section
Figure D-5 Warping for I beam
Figure 1-1 Cold-formed sections
Figure 1-2 Cold-formed steel structure
Figure 1-3 Cold-formed and hot-rolled steel structure
Figure 1-4 Typical cold-formed panels
Figure 1-5 Force-shortening relationship for column and plate
Figure 1-6 Box and panel section dimensions
Figure 1-7 Stress distribution on a simply supported plate
Figure 2-1 Buckling and postbuckling strength
Figure 2-2 Cold-formed and hot-rolled corners
Figure 2-3 Simply Supported plate
Figure 2-4 Postbuckling curve
Figure 2-5 Buckling modes of a channel
Figure 3-1 Sample plate for ABAQUS
Figure 4-1 Typical box section

F4-1

Figure 4-2 ABAQUS elastic buckling

F4-2

Figure 4-3 Stress distribution across the wall of a box section

F4-3

Figure 4-4 Mean stress and axial shorting for a box section

F4-4

Figure 4-5 to 4-34 Critical and ultimate stress for box sections

F4-5 to F4-34

Figure 4-35 to 4-37 m factor for box sections

F4-35 to f4-37

Figure 4-38 to 4-40 Normalized m for box sections

F4-38 to F4-40

Figure 4-41 Normalized mean postbuckling strength for box sections

F4-41

Figure 4-42 to 4-56 Critical stress for channel sections

F4-42 to F4-56

Figure 4-57 to 4-59 m factor for channel sections

F4-57 to f4-59

Figure 4-60 to 4-62 Normalized m for channel sections

F4-60 to F4-62

Figure 4-63 Normalized mean strength for channel sections

F4-63

Figure I-1 Deflection of a box section

FA-1

Figure I-2 Deflection of a channel section (flange mode)

FA-2

Figure I-3 Deflection of a channel section (web mode)

FA-3

Figure II-1 Corner of a box section

FA-4

Figure II-2 Warping constant construction for the corner of a box section

FA-5

Figure II-3 Warping constant for box sections

FA-6
Figure II-4 Warping factor α for box sections
Figure II-5 Corner of a channel section
Figure II-6 Warping constant construction for the corner of a channel section
Figure II-7 Warping constant for channel sections
Figure II-8 Warping factor α for channel sections

FA-7
FA-8
FA-9
FA-10
FA-11
LIST OF TABLES

Table 4-1 Summary of results for box sections

T-1

Table 4-2 Summary of results for channel sections

T-13
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Unreduced cross-sectional area of section</td>
</tr>
<tr>
<td>A_{eff}</td>
<td>Effective cross-sectional area of section</td>
</tr>
<tr>
<td>D</td>
<td>Plate rigidity</td>
</tr>
<tr>
<td>E</td>
<td>Elastic modulus</td>
</tr>
<tr>
<td>F_{cr}</td>
<td>Elastic buckling force</td>
</tr>
<tr>
<td>F_{ult}</td>
<td>Ultimate force</td>
</tr>
<tr>
<td>$F_{\text{ult}}^{\text{ABAQUS}}$</td>
<td>Ultimate load from ABAQUS</td>
</tr>
<tr>
<td>H</td>
<td>Warping constant</td>
</tr>
<tr>
<td>K</td>
<td>Factor</td>
</tr>
<tr>
<td>K_b</td>
<td>Elastic stiffness matrix</td>
</tr>
<tr>
<td>K_Q</td>
<td>Initial stiffness matrix</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>M</td>
<td>Bending moment</td>
</tr>
<tr>
<td>N</td>
<td>Axial flux</td>
</tr>
<tr>
<td>Q</td>
<td>Loading pattern matrix</td>
</tr>
<tr>
<td>R</td>
<td>Bend radius to median line</td>
</tr>
<tr>
<td>U_B</td>
<td>Strain energy due to bending</td>
</tr>
</tbody>
</table>
\(U_H \) \(\text{Strain energy due to warping} \)

\(U_w \) \(\text{Strain energy due to bending of web} \)

\(T \) \(\text{External work} \)

\(W \) \(\text{Work done by applied stresses} \)

\(X \) \(\text{Axis} \)

\(Y \) \(\text{Axis} \)

\(Z \) \(\text{Axis} \)

\(A \) \(\text{Shorter width of the box and width of the web of a channel} \)

\(a_1, a_2, a_3, a_4 \) \(\text{Deflection coefficients} \)

\(b \) \(\text{Longer width of the box and width of the flange of a channel} \)

\(b_{\text{eff}} \) \(\text{Effective width of the box and flange of a channel} \)

\(c \) \(\text{Halfwave length of a buckled element} \)

\(e \) \(\text{Distance to shear centre} \)

\(m \) \(\text{Factor} \)

\(_m \) \(\text{Normalized m factor} \)

\(s \) \(\text{True length of section} \)

\(t \) \(\text{Thickness} \)

\(u \) \(\text{Displacement in X direction} \)
Δu Increment in displacement for load-displacement control
v Displacement in Y direction
w Flat width
w' Flat width limit
x Distance along X axis
y Distance along Y axis
z Distance along Z axis

α Warping factor
θ Angle of rotation
ρ Factor

[δ] Deflection matrix for eigenvalue
ϕ Angle of twist at the corner

[ϕ] Buckling mode matrix for eigenvalue

λ Slenderness

λ̅ Normalized slenderness

[λ_i] Load multipliers for eigenvalue

ν Poisson ratio (0.3 for steel)

σ Stress
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\sigma}$</td>
<td>Normalized stress</td>
</tr>
<tr>
<td>σ_c</td>
<td>Actual buckling stress</td>
</tr>
<tr>
<td>σ_{cr}</td>
<td>Elastic buckling stress</td>
</tr>
<tr>
<td>σ_w</td>
<td>Actual buckling stress for web of channel section</td>
</tr>
<tr>
<td>σ_y</td>
<td>Yield strength</td>
</tr>
<tr>
<td>σ_{av}^{ABAQUS}</td>
<td>Average ultimate stress from ABAQUS</td>
</tr>
<tr>
<td>σ_{cr}^{ABAQUS}</td>
<td>Elastic critical stress from ABAQUS</td>
</tr>
</tbody>
</table>
DEFINITIONS

- LOCAL BUCKLING shown in Fig D-1 for box and Fig D-2 for a channel is a wavelike deflection form, with a wavelength independent of the overall length.

- CORNER RADIUS: is the radius of the median line at the corners of a formed section. It is usually a multiple of the thickness.

- CRITICAL FORCE (STRESS): is the force (stress) which causes initial elastic buckling of a member or element.

- EFFECTIVE DESIGN WIDTH (b_{eff}): is the width assumed to carry the yield strength, used to calculate the collapse load.

- FLAT WIDTH (w): is the width of the straight portion of the element, Fig D-3.

- LIMITING WIDTH/THICKNESS RATIO (w/t): is the width/thickness ratio below which local buckling need not be considered.

- OVERALL WIDTH (b): is the overall width of the element between points of intersections of the median lines, Fig D-3.
• ULTIMATE FORCE: is the load which causes the member to collapse, as shown in Fig D-4

• WIDTH/THICKNESS RATIO: is either the “flat width ratio” which is the ratio of the flat width \(w \) to the thickness \(t \) or “overall width ratio” which is the ratio of the overall width \(b \) to the thickness. (Fig D-3)

• WARPING: when twisting in open sections causes translation in the planes of elements of the section, the cross sections tend to warp from the original flat plane, as shown in Fig D-5. If this warping is resisted it contributes to the torsional stiffness.

• YIELD: is the stress at the limit of the elastic range, or at a 0.2% permanent offset strain.
CHAPTER 1

INTRODUCTION

1.1 GENERAL

Cold-formed steel sections represent an alternative to hot rolled sections in applications where the light weight sections can be used.

Although the use of cold-formed sections in construction has been known since the middle of the last century the use of cold formed members in buildings was formalized with the publication of “Specification for the Design of Cold-Formed Steel Structural Members” by the American Iron and Steel Institute (AISI 1946) which was the first to provide a formal design procedure base on the seminal work of Winter (1937). The most recent AISI code is “Specification for the design of cold-formed steel structural members” (1996). The first Canadian standard, “The Design of Light Gauge Steel Structural Members” appeared in 1963, while the latest CSA-S136-M94 “Cold formed steel structural members” was issued in 1994.
The America Society of Civil Engineers (ASCE) prepared a standard ANSI/ASCE 8-90 “Specification for the Design of Cold-Formed Stainless Steel Structural Members” in 1990.

By using cold forming it is possible to produce more efficient structural shapes, which have been used extensively in airplanes and car bodies, but in the construction industry the use was limited to roofing sheet and panels. Over the past 40 years, several studies for the design of thin walled sections have led to an increasing use of cold-formed steel in building structures. Open sections used as wall studs, floor and roof beams are found in institutional, commercial, residential and light factory buildings. Storage racks and latticed joists incorporate special cold formed shapes.

The major difference between cold-formed sections and hot-rolled sections is the relative thickness, or (b/t) ratio, which leads to the following advantages:

- Cold-formed members can be manufactured more easily.
- Unusual sectional configurations can be produced economically and consequently, more favorable strength-to-weight ratios can be obtained.
• Nesting sections can be produced, allowing for compact packaging for shipping.
• Great accuracy of the profile
• A wider variety of shapes
• A wider variety of steel tempers
• Coated and painted sheet
• Sections can be perforated

Cold-formed steel structural products can be classified into two major types:

• Individual structural framing members.

• Panels and decks.

Fig 1-1 shows some of the cold-formed sections generally used in structural framing. The more usual shapes are channels, Z-sections, angles, hat sections.

In general the thickness of cold-formed members ranges from 1 to 10 mm.

In view of the fact that the major function of this type of individual framing member is to carry load, structural strength and stiffness are the main
considerations in design. Such sections can be used as primary framing members in buildings. Fig 1-2 shows a two-story building framed using cold-formed steel sections. In tall multistory buildings the main framing is typically of heavy hot-rolled or welded sections, to support the primary loads, while the secondary elements such as studs and joists (Fig 1-3) may be of cold-formed steel to support secondary loads.

Typical cold-formed panels are shown in Fig 1-4. These products are generally used for such items as roofs, floor decks, wall panels, siding material, and concrete forms.

1.2 BEHAVIOUR OF COLD FORMED MEMBERS

The current approach to the design of structures is based on a limiting stress dictated by the proportions of the section. This limiting stress is related to the mode of failure which may be governed by any of a number of factors. Tension members under static loads can fail by general yielding of the cross section or rupture at the net section. Members in axial compression may reach their maximum strength by yielding, by local buckling of thin elements, or by overall buckling in flexure or torsion, or by a combination of
modes. Members in bending may be controlled by yielding, rupture at a net section, local buckling or lateral buckling.

The study concentrates on two common cold-formed sections which belong to separate categories:

1. The behaviour of a box section is used to represent flat elements in formed panels, and channel webs, where the elements are supported along both long edges.

2. The channel section, in which the flange represents an element supported along one long edge only.

In all cases of buckling, the critical elastic stress, σ_{cr}, is given by:

$$\sigma_{cr} = \frac{\pi^2 E}{\lambda^2} \quad (1.1)$$

where

- E: elastic modulus
- λ: slenderness ratio
 - $= KL/r$ for flexural buckling in columns
 - $= mb/t$ for local buckling of plate elements
- b: width
- K: a factor related to flexural buckling
- L: length
- m: a factor related to local buckling
- r: radius of gyration
- t: thickness
For an axially loaded column failing in flexure or torsion, the critical load is the ultimate load and the theoretical force/shortening relationship is as shown in Fig 1-5 curve 1. In the case of flat elements supported along both long edges which possess postbuckling strength, the theoretical force/shortening relationship is shown in Fig 1-5 curve 2.

1.2.1 RECTANGULAR BOX COLUMNS

The ultimate axial compressive strength of a rectangular box column is governed by either overall buckling or local buckling. Overall buckling leads to collapse, but after initial local buckling of the flat elements there is a reserve of strength.

The initial stress to cause elastic local buckling is given by:

\[\sigma_{cr} = \frac{\pi^2 E}{(m \frac{b}{t})^2} \] \hspace{1cm} (1.2)

For a uniform axial stress, on a square box section, \(m=1.65 \) (CSA-S136-94)

The dimensions used are shown in Fig 1-6.
Up to initial local buckling, the force/shortening relationship is assumed to be linear and the stress is assumed to be uniformly distributed over the cross section. After buckling, the behaviour changes:

- The relation between force and shortening is nonlinear
- The distribution of stress over the section is not uniform but takes the form shown in Fig 1-7.
- The local deflection of a buckled element becomes large
- The applied force can be increased until the yield strength is reached at the corners of the section.

1.2.2 CHANNEL COLUMNS

Channels are open sections with only one axis of symmetry. In this case failure may be by local buckling of the flanges, overall flexure or torsion, or by a combination of these. Buckling in any of these modes precipitates collapse.

The flange of an open section, such as in a channel, is considered to be an unstiffened element, supported along only one longitudinal edge.

Local buckling of the flange is given by equation (1.2) with a value of m between 3 and 5 depending on the ratio of the flange width to the web depth.
If the flange buckles first, in a pin ended member, the section cannot carry more load and this critical buckling load can be assumed to be the ultimate load. However, if the web buckles first, the element can carry more load, as in a box section.
CHAPTER 2
THEORETICAL MODELS

In this chapter the current design methods, taken from CSA S136-94 "Cold formed steel structural members", which is typical of such Codes in general, are introduced, followed by a description of the analytical model used in this study for plates with one or both longitudinal edges supported, representing the flanges of channels and the walls of boxes.

2.1 OVERALL BUCKLING

For overall flexural buckling, CSAS136-94 uses a relationship between the elastic critical stress, σ_{cr}, and the actual buckling stress, σ_c, given by:

$$\begin{align*}
\text{for} \quad \sigma_{cr} > \sigma_y / 2, \quad \sigma_c &= \sigma_y - \frac{\sigma_y^2}{4 (\sigma_{cr}/\lambda)^2} \\
\text{for} \quad \sigma_{cr} < \sigma_y / 2, \quad \sigma_c &= \sigma_{cr} / 1.2
\end{align*}$$

(2.1)

When normalized this becomes:

$$\begin{align*}
\bar{\sigma} &= 1 - 0.3 \bar{\lambda}^2 \\
\bar{\sigma} &= \frac{1}{1.2} \frac{1}{\bar{\lambda}^2}
\end{align*}$$

(2.2)
where

\[
\bar{\sigma} = \frac{\sigma_e}{\sigma_y} \\
\bar{\lambda} = \left(\frac{\sigma_y}{\sigma_{\sigma}}\right)^{1/2}
\]

(2.3)

The curve is shown in Fig 2-1. In this figure the CSA Code result for plate and column are compared with this thesis theory and von Karman’s results.

2.2 BOX SECTION

2.2.1 CODE PROCEDURES

The manufacture of cold-formed section requires a radius at each corner. (The form of radius differs for that in hot-rolled sections as shown in Fig 2-2) In today’s design codes the influence of this radius is to reduce the width to the “flat width”, which is used in design.

In all the current codes for strength design in cold-formed steel the following procedure is adopted for walls with both long edges supported:

- For all proportions of the cross section, local buckling is treated by considering the flat elements to be joined together at the corners with simply supported edges.
- Only the flat width (w) is considered to buckle locally.
• Below a specified limit for the flat width \((w')\) there is no buckling.

• For greater widths, after initial local buckling, zones at the edges of the flat width are assumed to carry the yield strength. (The sum of these two zones is called the "effective width", \(b_{\sigma}\))

• Radiused corners are assumed to carry the yield strength, but are otherwise disregarded

The critical buckling stress is given by (CSA S136-94):

\[
\sigma_{cr} = \frac{\pi^2 E t^2}{3(1-\nu^2)w^2} = \frac{\pi^2 E}{\lambda^2}
\]

(2.4)

Using Poisson's ratio, \(\nu=0.3\), this gives:

\[\lambda = 1.65\left(\frac{w}{t}\right)\]

(2.5)

The critical axial force for the flat width is then:

\[F_{cr} = \sigma_{cr}A\]

(2.6)

where

\[A = wt\]

(2.7)
To calculate the ultimate force, the Codes introduce an effective width which can carry the yield strength, based on a formula proposed by Winter (1967), given below in its normalized form (ASCE-8-90):

\[
\begin{align*}
\text{for } & \bar{\lambda} \leq 0.673, \quad b_{\text{eff}} = w \\
\text{for } & \bar{\lambda} > 0.673, \quad b_{\text{eff}} = \rho \ w
\end{align*}
\]

(2.8)

where:

\[
\rho = \frac{1 - 0.22/\bar{\lambda}}{\bar{\lambda}}
\]

(2.9)

and

\[
\bar{\lambda} = \left(\frac{\sigma_y}{\sigma_{cr}} \right)^{1/2} = 0.53 \ w \sqrt{\frac{C_y}{E}}
\]

(2.10)

The ultimate force on the “flat width” for a singular plate is then given by:

\[
F_{\text{ult}} = \sigma_y b_{\text{eff}} t
\]

(2.11)

The four walls of a square box will thus resist a total ultimate force:

\[
F_{\text{ult}} = 4 \ \sigma_y \left(b_{\text{eff}} + \frac{\pi}{2} \frac{R}{t} \right) t
\]

(2.12)

That the “flat width” should be used was the result of a committee decision based on an intuitive feel for behavior but with no support from theoretical or experimental evidence.
This study undertakes to show the true influence of the radius, and, also, of
the influence of adjoining elements.

2.2.2 PROPOSED ANALYTICAL MODEL

To obtain theoretically the critical stress, a rectangular box with the
following dimensions is considered:

a: shorter width of box
b: longer width of box
c: halfwave length of buckled element
R: radius at the corner
t: thickness

The box is assumed to be subjected to a uniform axial stress. The energy
method, (Timoshenko and Gere (1961)), in which the total strain energy of
distortion of the plates is equated to the work done by the axial stress in the
longitudinal direction as buckling occurs, is used to obtain the local initial
elastic critical stress.

The strain energy has two components:

• That due to deflection of the plates

• That due to twisting at the corners

The strain energy due to bending of the plate of width b, supported on all
edges, can be written in terms of the deflections as follow: (Fig 2-3)
\[U_s = \frac{D}{2} \iint \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right)^2 \, \! dx \, dy \] \tag{2.13} \]

(Timoshenko, The terms related to twisting is equal zero in box sections) where \(w \) is the deflection at the point \((x,y)\) and \(D \) is the plate flexural rigidity given by:

\[D = \frac{E t^3}{12 \left(1 - \nu^2\right)} \] \tag{2.14} \]

The strain energy due to twisting at the corners is calculated based on the resistance to warping of the radiused portion.

The general form of strain energy due to warping is (Timoshenko):

\[U_w = \frac{E H}{2} \iint \left(\frac{d^2 \phi}{ds^2} \right)^2 \, \! ds \] \tag{2.15} \]

where \(H \) is the warping constant and:

\[\phi = \frac{\partial w}{\partial y}_{y=0} \] \tag{2.16} \]

The work done by the compressive external force as the elements shorten during buckling is given by:

\[T = \frac{N}{2} \iint \left(\frac{\partial w}{\partial x} \right)^2 \, \! dx \, dy \] \tag{2.17} \]
in which \(N \) is the load per unit width of the section.

The change in strain energy in the member is equal to the work done, thus:

\[
U_b + U_H - T = 0
\]
(2.18)

\(U_b, U_H \), and \(T \) are for the total section.

This is a minimum energy state. Differentiating equation (2.16) with respect to the coefficients \(a_1 \) and \(a_2 \) and equating the results to zero, gives two equations. The determinant of these two equations is then equated to zero and solved for \(N \).

The deflected shape of each wall of the box is assumed to be given by an expression of the form:

\[
w = \sin\left(\frac{\pi x}{b}\right)\left[a_1 \sin\left(\frac{\pi y}{b}\right) + a_2 (1 - \cos\left(\frac{2\pi y}{b}\right))\right]
\]
(2.19)

The cosine term represents the influence of the corner restraint. The complete procedure to obtain the theoretical critical stress is presented in Appendix I.

2.2.3 THEORETICAL POST-BUCKLING
The above analysis deals with elastic buckling and gives the critical stress. After exceeding this stress the deflection increases rapidly, but the plate can support the increasing load by a redistribution of the stress. The limiting capacity is reached when the stress at the supported edges reaches the yield strength. An approximate expression that determines the ultimate load is represented below.

The theory assumes a perfect plate and linear material behaviour, but real plates are not completely flat before loading and materials are nonlinear as the yield strength is approached. The result is that the deflection increases from the beginning of the load application, and buckling is not a sharp action, furthermore the stress distribution is not uniform from the beginning of loading, with higher stress at the edges. The true initial buckling stress, σ_e, differs from the ideal elastic value, σ_{er}, and is given by a curve based on experiments, of the form shown in Fig 2-1, taken from CSA-S136-M94 for columns.

After buckling the stress distribution is shown in Fig 1-7 and the total load is given by:

$$F_{ult} = \int \sigma \, t \, dy \quad (2.20)$$
which is the area under the actual stress distribution curve. It can be seen that in the limiting condition the plate may be approximated by two strips carrying the yield strength as describe in 2.2.1.

In the general case, the width of plate, when the critical stress is equal to the yield strength, is obtained from:

\[\sigma_y = \frac{\pi^2 E}{\alpha^2} = \frac{\pi^2 E}{(m b / t)^2} \] \hspace{1cm} (2.21)

from which:

\[b = \frac{\pi t}{m} \sqrt{\frac{E}{\sigma_y}} = b_{eff} \] \hspace{1cm} (2.22)

The total axial force on the flat plate is then \(\sigma_y b_{eff} t \). Von Karman (1940) proposed that this value of the axial force remained constant for all greater values of \(b \), thus when \(b > b_{eff} \) the mean axial stress at the ultimate load is:

\[\sigma_{av} = \frac{\sigma_y b_{eff} t}{b t} = \left(\sigma_c \sigma_y \right)^{1/2} \] \hspace{1cm} (2.23)

From tests, this expression has been shown to be unconservative. It is proposed to replace \(\sigma_{av} \) by the true buckling stress \(\sigma_c \) from the buckling curve shown in Fig 2-4.

The normalized average stress can then be expressed by:
\[
\frac{\sigma_{xe}}{\sigma_y} = \left(\frac{\sigma_e}{\sigma_y}\right)^{1/2} = \bar{\sigma}^{1/2} \tag{2.24}
\]

and the ultimate force is given by:

\[
F_{ul} = \bar{\sigma}^{1/2} \sigma_y b t \tag{2.25}
\]

The resulting relationship is compared with the code formula [Winter (1967)] in Fig 2-4.

In this study it is proposed that in the general case the ultimate load is given by:

\[
F_{ul} = (\sigma_e \sigma_y)^{1/2} s t \tag{2.26}
\]

in which the buckling stress, \(\sigma_e\), will be that for the element of the box, taking into account the corner radius and the adjoining walls, and \(s\) is the total length of the walls:

\[
s = 2(a + b) - (8 - 2\pi) R \tag{2.27}
\]

2.3 CHANNEL SECTION

2.3.1 CODE PROCEDURES

A channel section is considered to be an assembly of individual plates simply supported at all edges except at the free edges of the flanges. In this
way the design is simplified to the design of one plate simply supported on both long edges and two plates simply supported along one long edge and free the other.

The current method used in Canadian codes is based on the effective areas of these individual plates. The following procedure is adopted:

- Only the flat widths \((w)\) are considered to buckle locally.
- The corners are treated as simple supports.
- Below a specified limit for the flat width \(w\) there is no buckling.
- For greater widths, after initial local buckling, zones at the edges of the flat width are assumed to carry the yield strength.
- Radiused corners are assumed to carry the yield strength but are otherwise disregarded.
- The web of a channel is treated in the same manner as the elements of a box section.
- For flanges, called "unstiffened elements", the critical buckling stress, neglecting any restraint by the web, is given by (ASCE-8-90)

\[
\sigma_{cr} = \frac{0.43 \frac{\pi^2 E}{t^2}}{12 (1 - \nu^2) w^2} = \frac{\pi^2 E}{\lambda^2}
\]

Using Poisson's ratio, \(\nu=0.3\), this gives:

\[
\lambda = 5 \left(\frac{w}{t}\right)
\]
2.3.2 PROPOSED ANALYTICAL MODEL

The following dimensions are used for obtaining theoretically the critical stress of a channel:

- a: flange width
- b: web width
- c: halfwave length of buckled element
- R: radius at the corner
- t: thickness

As with the box channel the energy method is used to obtain the critical stress. The strain energy is supplied by:

- Deflection of the web, U_b
- Bending and twisting of the flange, U_w
- Twisting at the corners, U_T

The change in strain energy in the member is equal to the work done, thus (Timoshenko):

$$U_B + U_w + U_T - T = 0$$ \hspace{1cm} (2.30)

The complete procedure for finding the theoretical critical stress is presented in Appendix I.

Should the ratio of the web depth to the flange width exceed three, for uniform stress, the web is less stable than the flange, and it is restrained by
the flanges. This is shown as the "Web Mode" in Fig 2-5. For smaller ratios, the flange is less stable and is restrained by the web shown as the "Flange Mode" in Fig 2-5.

2.3.4 THEORETICAL POST-BUCKLING

Up to this point the analysis has been concerned with the theoretical local elastic buckling stress. In a concentrically loaded column, flange buckling leads to collapse at the critical local buckling stress as there is no mechanism to develop postbuckling strength.

If the web buckles first it possesses postbuckling strength and the average limiting strength for the web area based on the box section calculation, becomes:

$$\sigma_{avw} = \left(\sigma_w\sigma_y\right)^{\frac{1}{2}}$$

(2.31)

where \(\sigma_w\) is the actual buckling stress for the web obtained from equation 2.2, using \(\bar{\lambda}\) for the web with \(m=1.65\).
CHAPTER 3

FINITE ELEMENT STUDIES

3.1 INTRODUCTION

The more complex a section is, the more difficult is evaluation with theoretical analysis. This is the reason that, today, many plate stability problems in practical engineering are evaluated by numerical methods such as the finite element method, which give approximate solutions for the ruling equations. In the finite element method the exact differential equation at a point is replaced by an algebraic expression consisting of the value of the function at that point and at adjacent points. In other words, the analytical solution describes the behaviour of the system as a continuous system, while the finite element solution gives an discrete solution of the function. In general if a continuous system is replaced by a discrete system the analytical function is replaced by numerical values which represent the function at each point.

In this study finite element methods provide a means to obtain an independent check on the results of an analytical approach and on the validity of code procedures. Box and channel sections were analyzed using the FEM program ABAQUS to obtain:
• The critical elastic buckling stress using the Eigenvalue method
• The ultimate, postbuckling capacity, using controlled displacement

3.2 EIGENVALUE METHOD

The eigenvalue represents the ideal elastic critical stress for initial buckling, and is used here to compare the values obtained for different boundary conditions. The formation of the eigenvalue problem is based on stability analysis. The procedure may be stated as follows. Given a system with an elastic stiffness matrix \((K^{NM}_{(b)}) \), a loading pattern defined by the vector \((Q^M) \), and an initial stress and load stiffness matrix \((K^{NM}_{(Q)}) \), find load multipliers \((\lambda_i) \), and buckling mode shapes \((\phi_i^M) \), which satisfy:

\[
\begin{bmatrix}
K^{NM}_{(b)} + \lambda_i K^{NM}_{(Q)}
\end{bmatrix}
\phi_i^M = 0
\]

(3.1)

in which N and M refer to degrees of the freedom of whole system and i refers to the ith mode. The critical buckling loads are then given by \((\lambda_i, Q^M) \). Usually only the smallest load multiplier and its associated mode shape are of interest.

As an illustration of the procedure of the eigenvalue method a simply supported plate is considered. Assume a square thin elastic plate, simply
supported on all four edges is loaded by an axial compression force in one
direction. (Fig 3-1)

The plate is divided into 20 elements (eight-node elements with 4 node on
the corner and 4 node on mid points). Due to symmetry, only a quarter of the
plate need to be considered. Briefly, the elastic stiffness matrix\(k_n\), is
formed by adding all the element stiffness matrices which is given by:

\[
\left[\delta_n \right]^T \left[k_n \right] \left[\delta_n \right] = \sum \left(\int \int \left[\phi \right]^T \left[D \right] \left[\phi \right] \, dx dy - \int \int \left[\alpha \right]^T \left[N \right] \left[\alpha \right] \, dx dy \right)
\] \tag{3.2}

in which \([\delta]\) is the matrix of the deflection on 4 nodes of the element:

\[
\left[\delta \right] =
\begin{bmatrix}
\delta_1 \\
\delta_2 \\
\delta_3 \\
\delta_4
\end{bmatrix}
\] \tag{3.3}

\([\phi], [\alpha]\) are given by:

\[
\left[\alpha \right] =
\begin{bmatrix}
\frac{\partial \delta \phi}{\partial x} \\
\frac{\partial \delta \phi}{\partial y} \\
\frac{\partial^2 \delta \phi}{\partial x^2} \\
\frac{\partial^2 \delta \phi}{\partial y^2} \\
\frac{\partial^2 \delta \phi}{\partial x \partial y}
\end{bmatrix}
\] \tag{3.4}

\[
\left[\phi \right] =
\begin{bmatrix}
\frac{\partial^2 \delta w}{\partial x^2} \\
\frac{\partial^2 \delta w}{\partial y^2} \\
\frac{\partial^2 \delta w}{\partial x \partial y}
\end{bmatrix}
\] \tag{3.5}

[\mathcal{D}] is the material constant matrix:
\[
[D] = \begin{bmatrix}
D & vD & 0 \\
vD & D & 0 \\
0 & 0 & D/2(1-\nu)
\end{bmatrix}
\]
(3.6)

and \([N]\) is the external work matrix on the element, given by:

\[
[N] = \begin{bmatrix}
N_x & N_{xy} \\
N_{xy} & N_y
\end{bmatrix}
\]
(3.7)

Consequently to determine the critical load it is necessary to obtain the non-zero solution of:

\[
\{k_u\} - [N, I][\Delta] = 0
\]
(3.8)

in which \([\Delta]\) consists of the section nodal deflections and \([I]\) is the index matrix.

This is done by setting the determinant of the matrix equal to zero and solving for the smallest root of the resulting equation.

3.3 ULTIMATE LOAD

To determine the collapse load for shells, a load-displacement analysis is performed. This checks that the eigenvalue buckling prediction is accurate
and at the same time investigates the behavior after buckling, and up to the collapse load.

The collapse load is defined as the maximum value in the load-displacement curve. To find the maximum load, a stepwise increasing load or displacement is applied. If the applied load is incremented it is called “load control”, and if the axial shortening is incremented it is called “displacement control”. Briefly, for “load control” an equilibrium system is assumed to which a small increment of load is added. This unbalance causes a displacement in the system which can be represent as:

\[u = u_0 + \Delta u \] \hspace{1cm} (3.9)

where \(u_0 \), is the initial displacement and \(\Delta u \), is a small increment which can be evaluated based on the increment in load.

This displacement becomes the initial displacement for the next step with a new load increment. It is the same process for “displacement control” by assuming steps in displacement.
3.4 ABAQUS PROGRAM

3.4.1 INTRODUCTION

The program which is used for numeric evaluation is ABAQUS. This program is a general finite element program. It is an interactive preprocessor used to create finite element models for shells. It has a variety of analysis types. Those of the interested in this study are eigenvalue extraction and static stress analysis, which are used for pre- and post-buckling. The program accepts the input which includes:

- Model Data
- History Data

The data to define a finite element model are:

- the elements: number, properties
- nodes: number
- material properties

History Data represents the initial condition or sequence of events or loading for the model. History data for eigenvalue method is basically an arbitrary initial load based on this method, and has only one step. For load-displacement analysis it represents the properties at each step which include both load and displacement.
3.4.2 INPUT OF THE PROGRAM

For executing the program, based on the method used, the following input is required:

- **DEFINING OF MODEL:**
 - Elements and Nodes: The number and type of element (classified by the number of nodes in each element)
 - Shell: The elements in each shell and the number of layer in each shell with their thicknesses.
 - Material: The elastic modulus, yield strength and Poisson ratio for each layer of the shell
 - Boundary and Symmetric Condition: The conditions on each boundary and any symmetry

- **DEFINING OF HISTORICAL DATA**
 - Eigenvalue method: An initial stress distribution on the specific boundary is required. (Appendix III–List 1)
 - Load - Displacement analysis: In case of Load Control an initial and a step increment stress distribution on the required elements.
For the case of Displacement Control an initial and a step increment strain distribution on the required elements. (Appendix III– List 2)

3.4.3 OUTPUT OF THE PROGRAM

For each case by executing the eigenvalue section of the program, ABAQUS predicts the buckling modes and corresponding eigenvalue. Also a list of stresses and deflections is provided in the output of the program.

The load-displacement analysis results for each case are typically provided in \(n \) steps from zero load to a maximum which is part of the input. At each step the stress and strain distribution over the section is provided in the output.
CHAPTER 4
COMPARING THE RESULTS

The numerical, finite element results are compared with the theoretical predictions and the Codes rules. The finite element study was made for box and channel sections in the following ranges:

BOX SECTION

<table>
<thead>
<tr>
<th>Ratio of widths, a/b (a < b):</th>
<th>0.25, 0.5, 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio of width / thickness, b/t</td>
<td>40, 50, 66, 100, 200</td>
</tr>
<tr>
<td>Ratio of corner radius / width, R/b</td>
<td>0 to a/2</td>
</tr>
</tbody>
</table>

CHANNEL SECTION

<table>
<thead>
<tr>
<th>Ratio of web / flange width, a/b</th>
<th>1, 2, 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio of flange width / thickness, b/t</td>
<td>40, 50, 66, 100, 200</td>
</tr>
<tr>
<td>Ratio of corner radius / flange width, R/b</td>
<td>0 to b/2</td>
</tr>
</tbody>
</table>

4.1 TYPICAL EXAMPLE

To show the procedure for each case the following typical box section is chosen (Fig 4-1):

\[
\begin{align*}
 a &= 100 \text{ mm} \\
 b &= 100 \text{ mm} \\
 c &= 100 \text{ mm} \\
 R &= 5 \text{ mm} \\
 t &= 1 \text{ mm} \\
 \nu &= 0.3 \\
 E &= 200000 \text{ MPa} \\
 \sigma_y &= 350 \text{ MPa}
\end{align*}
\]
4.1.1 THEORETICAL CALCULATION

D is given by:

\[
D = \frac{Et^3}{12(1-\nu^2)} = 1.83 \times 10^4 \text{ N.mm}
\] \hspace{1cm} (4.1)

Warping factor \(\alpha = 0.044\), and the warping constant \(H\) is given by (see appendix II for details):

\[
H = \alpha b t R^4 = 0.044 \times 100 \times 1 \times 5^4 = 2750 \text{ mm}^6
\] \hspace{1cm} (4.2)

The elastic critical stress obtained from the theoretical analysis is:

\[
\sigma_{cr} = \frac{N}{A} = 82.4 \text{ N.mm}^{-2}
\] \hspace{1cm} (4.3)

The normalized slenderness is:

\[
\lambda = \left(\frac{350}{82.4}\right)^{\frac{1}{2}} = 2.06
\] \hspace{1cm} (4.4)

Thus, according to the CSA standard, the true buckling stress for \(\lambda > 1/\sqrt{0.6} = 1.29\), is:

\[
\sigma_t = \frac{82.4}{1.2} = 68.7 \text{ N.mm}^{-2}
\] \hspace{1cm} (4.5)

The predicted mean stress at collapse, according to the method proposed in this thesis (Equation 2.24) is then:

\[
\sigma_{p} = \left(\sigma_{cr}^2 \cdot 68.7 \times 350\right)^{\frac{1}{2}} = 155 \text{ N.mm}^{-2}
\] \hspace{1cm} (4.6)
The true length of the walls is:

\[s = 2(a + b - 4R) + 4 \frac{\pi}{2}R = 2(200 - 20) + 4 \frac{\pi}{2} 5 = 391 \text{ mm} \quad (4.7) \]

Then the collapse load is:

\[F_{ut} = \sigma_{av}st = 155 \times 391 \times 1 = 60700 \text{ N} \quad (4.8) \]

4.1.2 CODE PREDICTIONS

The flat width is:

\[w = b - 2R = 100 - 2 \times 5 = 90 \text{ mm} \quad (4.9) \]

giving a slenderness of:

\[\lambda = 1.65 \frac{w}{t} = 1.65 \times \frac{90}{1} = 149 \quad (4.10) \]

The critical buckling stress is given by:

\[\sigma_{cr} = \frac{\pi^2 E}{\lambda^2} = \frac{2000000}{149^2} = 89.5 \text{ N/mm}^2 \quad (4.11) \]

Then:

\[\bar{\lambda} = \left(\frac{\sigma_y}{\sigma_{cr}} \right)^{1/2} = \left(\frac{350}{89.50} \right)^{1/2} = 1.98 \quad (4.12) \]

Leading to:

\[\rho = \frac{1 - 0.22/\bar{\lambda}}{\bar{\lambda}} = \frac{1 - 0.22/1.98}{1.98} = 0.448 \quad (4.13) \]
and:

\[b_{\text{eff}} = \rho \omega = 0.448 \times 90 = 40.3\ mm \quad (4.14) \]

The ultimate load from the Code is given by:

\[F_{\text{ult}} = 4 \sigma_y \left(b_{\text{eff}} + \frac{\pi R}{2} \right) t = 4 \times 350 \left(40.3 + \frac{\pi \times 5}{2} \right) \times 1 = 67400\ N \quad (4.15) \]

Thus the predicted average stress at collapse is:

\[\sigma_{\text{av}} = \frac{F_{\text{ult}}}{t s} = \frac{67400}{1 \times 391} = 172\ N/mm^2 \quad (4.16) \]

4.1.3 FINITE ELEMENT RESULTS

4.1.3.1 EIGENVALUE RESULT

The eigenvalue is determined using load-control. Based on the input shown in Appendix III—List.1 the elastic critical stress for this case is (Fig 4.2):

\[\sigma_{\text{cr}}^{\text{ABAQUS}} = 857\ N/mm^2 \quad (4.17) \]

4.1.3.2 POSTBUCKLING STRENGTH

The ultimate load is determined using displacement control, Appendix III—List.2 shows the input format. At each step, the stress distribution across the boundary element set is obtained, and the average stress is evaluated. For the
typical example being demonstrated, the stress distribution across the section at the ultimate load is shown in Fig 4.3.

Fig 4.4 shows the relationship between the mean stress and axial shortening. The highest stress in this curve represents the ultimate average stress, which is:

\[
\sigma_{av}^{\text{ABAQUS}} = 162 \, \text{N/mm}^2
\]

(4.18)

The ultimate force is given by:

\[
F_{ul}^{\text{ABAQUS}} = \sigma_{av}^{\text{ABAQUS}} \times \text{t} = 162 \times 391 \times 1 = 63500 \, \text{N}
\]

(4.19)
4.2 RESULTS FOR BOX SECTIONS

The results are given in the figures listed in following table:

<table>
<thead>
<tr>
<th>Fig No</th>
<th>Type</th>
<th>a/b</th>
<th>b/t</th>
<th>R/b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 4.5</td>
<td>Critical</td>
<td>1</td>
<td>40</td>
<td>0 to 0.5</td>
</tr>
<tr>
<td>Fig 4.6</td>
<td>Critical</td>
<td>1</td>
<td>50</td>
<td>0 to 0.5</td>
</tr>
<tr>
<td>Fig 4.7</td>
<td>Critical</td>
<td>1</td>
<td>66</td>
<td>0 to 0.5</td>
</tr>
<tr>
<td>Fig 4.8</td>
<td>Critical</td>
<td>1</td>
<td>100</td>
<td>0 to 0.5</td>
</tr>
<tr>
<td>Fig 4.9</td>
<td>Critical</td>
<td>1</td>
<td>200</td>
<td>0 to 0.5</td>
</tr>
<tr>
<td>Fig 4.10</td>
<td>Critical</td>
<td>0.5</td>
<td>40</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.11</td>
<td>Critical</td>
<td>0.5</td>
<td>50</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.12</td>
<td>Critical</td>
<td>0.5</td>
<td>66</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.13</td>
<td>Critical</td>
<td>0.5</td>
<td>100</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.14</td>
<td>Critical</td>
<td>0.5</td>
<td>200</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.15</td>
<td>Critical</td>
<td>0.25</td>
<td>40</td>
<td>0 to 0.125</td>
</tr>
<tr>
<td>Fig 4.16</td>
<td>Critical</td>
<td>0.25</td>
<td>50</td>
<td>0 to 0.125</td>
</tr>
<tr>
<td>Fig 4.17</td>
<td>Critical</td>
<td>0.25</td>
<td>66</td>
<td>0 to 0.125</td>
</tr>
<tr>
<td>Fig 4.18</td>
<td>Critical</td>
<td>0.25</td>
<td>100</td>
<td>0 to 0.125</td>
</tr>
<tr>
<td>Fig 4.19</td>
<td>Critical</td>
<td>0.25</td>
<td>200</td>
<td>0 to 0.125</td>
</tr>
<tr>
<td>Fig 4.20</td>
<td>Ultimate</td>
<td>1</td>
<td>40</td>
<td>0 to 0.5</td>
</tr>
<tr>
<td>Fig 4.21</td>
<td>Ultimate</td>
<td>1</td>
<td>50</td>
<td>0 to 0.5</td>
</tr>
<tr>
<td>Fig 4.22</td>
<td>Ultimate</td>
<td>1</td>
<td>66</td>
<td>0 to 0.5</td>
</tr>
<tr>
<td>Fig 4.23</td>
<td>Ultimate</td>
<td>1</td>
<td>100</td>
<td>0 to 0.5</td>
</tr>
<tr>
<td>Fig 4.24</td>
<td>Ultimate</td>
<td>1</td>
<td>200</td>
<td>0 to 0.5</td>
</tr>
<tr>
<td>Fig 4.25</td>
<td>Ultimate</td>
<td>0.5</td>
<td>40</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.26</td>
<td>Ultimate</td>
<td>0.5</td>
<td>50</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.27</td>
<td>Ultimate</td>
<td>0.5</td>
<td>66</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.28</td>
<td>Ultimate</td>
<td>0.5</td>
<td>100</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.29</td>
<td>Ultimate</td>
<td>0.5</td>
<td>200</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.30</td>
<td>Ultimate</td>
<td>0.25</td>
<td>40</td>
<td>0 to 0.125</td>
</tr>
<tr>
<td>Fig 4.31</td>
<td>Ultimate</td>
<td>0.25</td>
<td>50</td>
<td>0 to 0.125</td>
</tr>
<tr>
<td>Fig 4.32</td>
<td>Ultimate</td>
<td>0.25</td>
<td>66</td>
<td>0 to 0.125</td>
</tr>
<tr>
<td>Fig 4.33</td>
<td>Ultimate</td>
<td>0.25</td>
<td>100</td>
<td>0 to 0.125</td>
</tr>
<tr>
<td>Fig 4.34</td>
<td>Ultimate</td>
<td>0.25</td>
<td>200</td>
<td>0 to 0.125</td>
</tr>
</tbody>
</table>
In each figure the Code, theory and ABAQUS result for critical and ultimate stresses are shown.
Table 4-1 shows the summary of the results for all the cases. In this table how the Code and the theory differ from ABAQUS is shown as a percentage error.

The m factors used in equation 1.1 are represented in Fig 4-35 to 4-37, and values normalized with respect to 1.65, for box sections, are shown in Fig 4-38 to 4-40, as they vary with R/b.

Finally following figure shows the normalized mean stress at the ultimate load for theory, ABAQUS and Code predictions.
The extreme cases based on the percentage error between Code and ABAQUS result are shown in following table:

<table>
<thead>
<tr>
<th>a/b</th>
<th>b/t</th>
<th>R/b</th>
<th>Critical stress (N/mm²)</th>
<th>Code</th>
<th>Theory</th>
<th>ABAQUS</th>
<th>Code Error</th>
<th>Theory Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>0.3</td>
<td>2832</td>
<td>1435</td>
<td>1578</td>
<td></td>
<td>-79%</td>
<td>9%</td>
</tr>
<tr>
<td>0.25</td>
<td>200</td>
<td>0.1</td>
<td>28</td>
<td>72</td>
<td>81</td>
<td></td>
<td>65%</td>
<td>11%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a/b</th>
<th>b/t</th>
<th>R/b</th>
<th>Ultimate stress (N/mm²)</th>
<th>Code</th>
<th>Theory</th>
<th>ABAQUS</th>
<th>Code Error</th>
<th>Theory Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>0.3</td>
<td>174</td>
<td>134</td>
<td>145</td>
<td></td>
<td>-20%</td>
<td>7%</td>
</tr>
<tr>
<td>0.25</td>
<td>200</td>
<td>0.125</td>
<td>106</td>
<td>160</td>
<td>177</td>
<td></td>
<td>40%</td>
<td>10%</td>
</tr>
</tbody>
</table>

4.3 RESULTS FOR CHANNEL SECTIONS

The results are given in the figures listed in following table:

<table>
<thead>
<tr>
<th>Fig No</th>
<th>Case</th>
<th>Critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 4.42</td>
<td>a/b</td>
<td>1</td>
</tr>
<tr>
<td>Fig 4.43</td>
<td>b/t</td>
<td>40</td>
</tr>
<tr>
<td>Fig 4.44</td>
<td>R/b</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.45</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Fig 4.46</td>
<td>0.5</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.47</td>
<td>40</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.48</td>
<td>0.5</td>
<td>66</td>
</tr>
<tr>
<td>Fig 4.49</td>
<td>100</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.50</td>
<td>200</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.51</td>
<td>0.5</td>
<td>0 to 0.25</td>
</tr>
<tr>
<td>Fig 4.52</td>
<td>0.25</td>
<td>40</td>
</tr>
<tr>
<td>Fig 4.53</td>
<td>0.25</td>
<td>50</td>
</tr>
<tr>
<td>Fig 4.54</td>
<td>0.25</td>
<td>66</td>
</tr>
<tr>
<td>Fig 4.55</td>
<td>0.25</td>
<td>100</td>
</tr>
<tr>
<td>Fig 4.56</td>
<td>0.25</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 to 0.25</td>
</tr>
</tbody>
</table>

4-8
In each figure the Code, theory and ABAQUS predictions for critical stresses are shown.

Table 4-2 shows the summary of the results for all the cases. In this table how the Code and the theory differ from ABAQUS is shown as percentage errors.

The m factors are represented in Fig 4-57 to 4-59 and normalized values with respect to 5 for the flanges, are shown in Fig 4-60 to 4-62 as they vary with R/b.

Finally Fig 4.41 shows the normalized mean stress at the ultimate load for theory, ABAQUS and Code results.

The extreme cases based on the percentage error between Code and ABAQUS result are shown in the following table:

<table>
<thead>
<tr>
<th>a/b</th>
<th>b/t</th>
<th>R/b</th>
<th>Critical stress (N/mm²)</th>
<th>Code</th>
<th>Theory</th>
<th>ABAQUS</th>
<th>Error</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Code</td>
<td>Theory</td>
<td>ABAQUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>0.1</td>
<td>16</td>
<td>69</td>
<td>74</td>
<td>78%</td>
<td>7%</td>
<td></td>
</tr>
</tbody>
</table>
4.4 CONCLUSIONS

4.4.1 BOX SECTIONS

The influence that the radii at the corners has on the elastic and ultimate buckling stress of the box sections is important and should not be neglected, as in the current codes.

For boxes with a low width to thickness ratio, 66 or less, failure occurred close to the yield strength. In these situations the buckling stress is more influenced by the ratio of the widths, (a/b) than R/b. For a high width to thickness ratio, more than 66 when the failure stress is lower than yield strength, both the ratio of the widths and R/b are very influential on the failure. By neglecting the b/a ratio and R/b the Code can be 65% conservative to 79% unsafe.

4.4.2 CHANNEL SECTIONS

The influence that the ratio of the web to flange, b/a, has on the buckling capacity of the section is important and must be considered. For the channels with a web to flange ratio less than 3 failure occurred by flange buckling mode, and the critical stress represents the ultimate stress. For a web to flange ratio more than 3 web buckling occurred first. In this case there is a possibility for the channel to carry an ultimate load in exceed of critical
elastic value. By neglecting the b/a ratio the Code can be varied from over 34% to 54% conservative while by neglecting R/b, the Code can be 78% conservative.

4.4.3 FINAL COMMENTS

An inappropriate interpretation of the ratio of the width for the cold-formed sections and the neglect of the influence of the corner radii on the buckling capacity as in the current codes, can lead to unsafe design or overdesign.

4.4.4 FUTURE RESEARCH

To follow the present work, which is just done for two major forms of cold-formed section (box, channel) it is recommended that other be investigated.
APPENDIX I

ANALYSIS

I.1 INTRODUCTION

In this chapter the steps of the procedure are described. The software which is used for parametric calculation is Mathcad which has the ability to solve algebraic equations. To obtain the result for each specific case the numerical values of the parameters are substituted in the final algebraic expressions.

I.2 BOX SECTION

After buckling the deflection of the elements is assumed to be modeled by trigonometric expressions as follows: (shown in Fig I.1)

Side a:

\[w = \left[a_3 \sin \left(\frac{x}{a} \right) + a_4 \left(1 - \cos \left(\frac{x}{a} \right) \right) \right] \sin \left(\frac{y}{c} \right) \quad (I-1) \]

Side b:

\[w = \left[a_1 \sin \left(\frac{x}{b} \right) - a_2 \left(1 - \cos \left(\frac{x}{b} \right) \right) \right] \sin \left(\frac{y}{b} \right) \quad (I-2) \]

where \(a_1, a_2, a_3, a_4 \) define the buckled shape and \(a < b \).

As it was explained in Chapter 2 the strain energy due to deflection in a plate supported on all edges, is given by:

\[\text{I-1} \]
\[u = \frac{D}{2} \int \int \left[\left(\frac{\partial^2 w}{\partial x^2} \right) + \left(\frac{\partial^2 w}{\partial y^2} \right) \right]^2 \, dx \, dy \]
\tag{1-3}

Considering the affect of the corner radii on the width of the plates for side \(b \) the strain energy due to bending is given by:

\[U = \frac{D}{2} \int_0^c \int_0^{b-\beta} \left[\left(\frac{\partial^2 w}{\partial y^2} \right) + \left(\frac{\partial^2 w}{\partial x^2} \right) \right]^2 \, dy \, dx \]
\tag{1-4}

\[= \frac{1}{48} D \frac{E}{(a^3 \cdot b)} \left[-12 \sin \left[\frac{\pi \cdot (b-\beta)}{b} \right] b^5 a_2^2 - 6 b^5 a_1^2 \cos \left[\frac{\pi \cdot (b-\beta)}{b} \right] \sin \left[\frac{\pi \cdot (b-\beta)}{b} \right] \right] \]

\[+ 84 \cos \left[\frac{\pi \cdot (b-\beta)}{b} \right] b^3 a_1 a_2 c^2 - 48 \sin \left[2 \pi \frac{(b-\beta)}{b} \right] b^3 a_2^2 c^2 + 6 b^5 a_1^2 \cos \left[\pi + 18 \frac{a_2 b^5 c^4}{b^5} \right] \]

\[+ 6 a_1^2 c^4 \cos \left[\frac{\pi \cdot (b-\beta)}{b} \right] \sin \left[\frac{\pi \cdot (b-\beta)}{b} \right] b - 16 \sin a_1 a_2 c^4 \cos \left[3 \pi \frac{(b-\beta)}{b} \right] \]

\[- 4 b^5 a_1 a_2 c^2 \cos \left[3 \pi \frac{(b-\beta)}{b} \right] + 36 \cos \left[\pi \frac{(b-\beta)}{b} \right] b^5 a_1 a_2 \]

\[+ 48 \sin a_1 a_2 c^4 \cos \left[\frac{\pi \cdot (b-\beta)}{b} \right] + 48 a_2^2 c^4 \cos \left[2 \pi \frac{(b-\beta)}{b} \right] \sin \left[2 \pi \frac{(b-\beta)}{b} \right] \]

in which \(\beta \) is given by:

\[\beta = R \left(1 - \frac{1}{\sqrt{2}} \right) \]
\tag{1-5}

and for side \(a \) it is given by:
\[U = \frac{P}{2} \int_{\beta}^{\alpha} \left[\left(\frac{d^2 w}{dx^2} \right) + \left(\frac{d^2 w}{dz^2} \right) \right]^2 \, dx \, dz \quad (1-6) \]

\[\frac{m^4}{48} D \frac{R}{(c^2 + a^2)} \left[-12 \sin \left(2 \pi \frac{(a - \beta)}{a} \right) \cdot a^5 \cdot a_4^2 \cdot \frac{(a - \beta)}{a} \cdot \sin \left(2 \pi \frac{(a - \beta)}{a} \right) \right] \]

\[+ 8 a_2 a_4 c^2 \cos \left(2 \pi \frac{(a - \beta)}{a} \right) \cdot a^3 \cdot a_4^2 \cdot c^2 \cdot 6 a_2 a_3 a_4^2 \cdot \frac{(a - \beta)}{a} \cdot \sin \left(2 \pi \frac{(a - \beta)}{a} \right) \]

\[- 4 a^2 a_3 a_4 \cos \left(2 \pi \frac{(a - \beta)}{a} \right) \cdot a - 16 a_1 a_3 a_4 c^2 \cdot \cos \left(2 \pi \frac{(a - \beta)}{a} \right) \]

\[+ 48 a_1 a_3 a_4 c^2 \cos \left(2 \pi \frac{(a - \beta)}{a} \right) + 48 a_1 a_2 a_3 a_4 c^2 \cdot \cos \left(2 \pi \frac{(a - \beta)}{a} \right) \cdot \sin \left(2 \pi \frac{(a - \beta)}{a} \right) \]

The external work due to uniform axial force given by:

\[\tau = \frac{N}{2} \int \int \left(\frac{d w}{d y} \right)^2 \, dx \, dy \quad (1-7) \]

The external work for side b is given by:

\[\tau b = \frac{N}{2} \int_{0}^{b} \int_{\beta}^{\alpha} \left(\frac{d w}{d y} \right)^2 \, dy \, dz \quad (1-8) \]

\[\frac{m^4}{48} N c \frac{R}{(c^2 + a^2)} \left[-6 a_2 a_3 \cdot \cos \left(\frac{(b - \beta)}{b} \right) \cdot \sin \left(\frac{(b - \beta)}{b} \right) + 3 a_2 c^2 \cdot \cos \left(2 \pi \frac{(b - \beta)}{b} \right) \cdot \sin \left(2 \pi \frac{(b - \beta)}{b} \right) \right] \]

I-3
\[\cdot -6a_1^2\cos\left(\frac{\beta}{b}\right)\sin\left(\frac{\beta}{b}\right) + 18a_2^2\pi_1\beta - 4a_1a_2\cos\left(3\frac{\beta}{b}\right) + 6a_1^2\pi_1\beta + 36\cos\left(\frac{\beta}{b}\right)a_1a_2 \]

\[\cdot -6a_1^2x + 36\cos\left[\frac{\beta}{b}\right]a_1a_2 + 6a_1^2\pi_1\beta - 12\sin\left(2\frac{\beta}{b}\right)a_2^2 \]

and for side \(a \) is given by:

\[T = \frac{N}{2} \int_0^c \int_0^{a-\beta} \left(\frac{d\omega}{dz} \right)^2 dx dz \]

\[= \frac{1}{48}N \frac{a}{c} \left[-6a_3^2\cos\left[\frac{\beta}{a}\right] - \sin\left[\frac{\beta}{a}\right] + 3a_4^2\cos\left[2\frac{\beta}{a}\right] - \sin\left[2\frac{\beta}{a}\right] \right] \]

\[\cdot -6a_3^2\sin\left(\frac{\beta}{a}\right) + 18a_4^2\pi_1\beta - 4a_3a_4\cos\left(3\frac{\beta}{a}\right) + 6a_3^2\pi_1\beta + 36\cos\left(\frac{\beta}{a}\right)a_3a_4 \]

\[+ 36\cos\left[\frac{\beta}{a}\right]a_3a_4 + 6a_3^2\pi_1\beta - 6a_3^2\pi_1 - 12\sin\left(2\frac{\beta}{a}\right)a_4^2 \]

The warping constant is given by:

\[H = \int \left(\vec{s} \cdot \vec{a}_s \right)^2 \cdot ds \]

(1-10)

Where \(\left(\vec{s} \cdot \vec{a}_s \right) \) is the net displacement normal to a cross section due to warping and the length \(s \) is measured along the element wall.

(For evaluation of \(H \) see Appendix II)
The strain energy due to warping for the corner between sides a and b is given by:

$$ U_{H=EH} = \int_0^a \left(\frac{d^2 w}{dz^2} \right)^2 dz $$

(I-11)

in which

$$ \frac{dw}{dy} \bigg|_{y=0} $$

(I-12)

This leads to:

$$ U_{H=EHE} = \frac{1}{4} E H \frac{a^3}{6} \frac{a^2}{b^2} $$

(I-13)

The energy balance for the whole section is given by:

$$ U_a + U_b + U_H - (T_a + T_b) = 0 $$

(I-14)

This equation has five unknowns, N, a_1, a_2, a_3, a_4. At each corner the tangents to the deflected plates must be perpendicular to each other.

This provides the third equation which gives a_3 in terms of a_1:

$$ \left(\frac{\delta w}{\delta x} \bigg|_{x=0} \right) \left(\frac{\delta w}{\delta y} \bigg|_{y=0} \right) $$

thus

$$ a_1 \sin \left(\frac{x}{c} \right) \frac{a_3}{b} = 3 \sin \left(\frac{x}{c} \right) \frac{a_3}{b} $$
Considering the bending moment for sides a and b, to provide equal moments at the corner for both plates the following equation must be valid:

$$\left(\frac{d^2w}{dx^2} \right) _{x=0} = \left(\frac{d^2w}{dy^2} \right) _{y=0}$$

$$-4a_2 \frac{x}{b^2} \sin \left(\frac{x}{c} \right) = 4a_4 \frac{x^2}{a^2} \sin \left(\frac{x}{c} \right)$$

Substituting the value of a_3 and a_4 in terms of a_1, a_2, leads to an equation with three parameters. Differentiating with respect to a_1 and a_2 gives two equations. To find the theoretical critical stress the determinant of these equations is equated to zero.

Differentiating with respect to a_1 gives:

$$F_{11}(N) a_1 + F_{12}(N) a_2 = 0$$

Differentiating with respect to a_2 gives:

$$F_{21}(N) a_1 + F_{22}(N) a_2 = 0$$
Equating the determinant of equations 5-17 and 5-18 to zero leads to:

\[F_{11(N)} - F_{22(N)} - F_{12(N)} - F_{21(N)} = 0 \]

\[(1-19) \]

in which

\[F_{11(N)} = \frac{1}{48} \pi \frac{4}{(c^2-b^2)} \left[-12 \cos \left(\frac{(a-b)}{b} \right) b^5 \sin \left(\frac{(a-b)}{b} \right) + 12 b^5 \pi + 12 c^4 \cos \left(\frac{(a-b)}{b} \right) \sin \left(\frac{(a-b)}{b} \right) \right] \]

\[(1-20) \]

\[+ \frac{1}{48} N \pi \frac{b}{c} \left[-12 \cos \left(\frac{(a-b)}{b} \right) b^5 \sin \left(\frac{(a-b)}{b} \right) + 12 a^x + 24 \pi \beta - 12 \cos \left(\frac{a}{b} \right) \sin \left(\frac{a}{b} \right) \right] \]

\[+ \frac{1}{2} E \frac{\pi}{c} \frac{b^5}{c^2} \]

\[+ \frac{1}{48} D \pi \frac{4}{(c^2-b^2)} \left[-12 b^4 \cos \left(\frac{(a-b)}{b} \right) \sin \left(\frac{(a-b)}{b} \right) + 12 b^4 \cos \left(\frac{(a-b)}{b} \right) \sin \left(\frac{(a-b)}{b} \right) \right] \]

\[+ \frac{1}{48} N \pi \frac{b}{c} \left[-12 \cos \left(\frac{(a-b)}{b} \right) b^5 \sin \left(\frac{(a-b)}{b} \right) + 12 a^x + 24 \pi \beta - 12 \cos \left(\frac{a}{b} \right) \sin \left(\frac{a}{b} \right) \right] \]

\[+ \frac{1}{2} E \frac{\pi}{c} \frac{b^5}{c^2} \]

\[F_{21(N)} = \frac{1}{48} \pi \frac{4}{(c^2-b^2)} \left[-4 b^5 \cos \left(3 \pi \frac{(a-b)}{b} \right) + 168 \cos \left(\frac{(a-b)}{b} \right) b^3 \right] + 72 \cos \left(\frac{(a-b)}{b} \right) b^5 \]

\[(1-21) \]

\[+ \frac{1}{48} N \pi \frac{b}{c} \left[36 \cos \left(\frac{(a-b)}{b} \right) - 4 \cos \left(3 \pi \frac{a}{b} \right) + 36 \cos \left(\frac{a}{b} \right) \right] \]

\[+ \frac{1}{48} D \frac{4}{(c^2-b^2)} \left[-4 b^4 \cos \left(3 \pi \frac{(a-b)}{b} \right) + 168 \cos \left(\frac{(a-b)}{b} \right) b^2 \right] + 72 b^4 \cos \left(\frac{(a-b)}{b} \right) \]

\[+ \frac{1}{48} N \pi \frac{b}{c} \left[36 b \cos \left(\frac{(a-b)}{b} \right) - 4 b \cos \left(3 \pi \frac{a}{b} \right) + 36 \cos \left(\frac{a}{b} \right) \right] \]

\[I-7 \]
\[
F_{12(N)} = \frac{1}{48} D \frac{4}{(c^4 b^3)} \left[-4 b^5 \cos \left(3 \pi \frac{b - \frac{b'}{b}}{b} \right) + 84 \cos \left(\frac{b - \frac{b'}{b}}{b} \right) \right] b^3 c^2 + 36 \cos \left(\frac{b - \frac{b'}{b}}{b} \right) b^5
\]

\[
\quad + \frac{1}{48} N \pi \frac{b}{c} \left[36 \cos \left(\frac{b - \frac{b'}{b}}{b} \right) - 4 \cos \left(\frac{b - \frac{b'}{b}}{b} \right) + 36 \cos \left(\frac{b - \frac{b'}{b}}{b} \right) \right] b^3 c^2 + 36 \cos \left(\frac{b - \frac{b'}{b}}{b} \right) b^5 \]

\[
\quad + \frac{1}{48} D \frac{4}{(c^4 b^3)} \left[-4 b^5 \cos \left(\frac{b - \frac{b'}{b}}{b} \right) + 84 \cos \left(\frac{b - \frac{b'}{b}}{b} \right) \right] b^3 c^2 + 36 \cos \left(\frac{b - \frac{b'}{b}}{b} \right) b^5 \]

\[
\quad + \frac{1}{48} D \frac{4}{(c^4 b^3)} \left[-4 b^5 \cos \left(\frac{b - \frac{b'}{b}}{b} \right) + 84 \cos \left(\frac{b - \frac{b'}{b}}{b} \right) \right] b^3 c^2 + 36 \cos \left(\frac{b - \frac{b'}{b}}{b} \right) b^5 \]

\[
F_{22(N)} = \frac{1}{48} D \frac{4}{(c^4 b^3)} \left[-24 \sin \left(2 \pi \frac{b - \frac{b'}{b}}{b} \right) b^5 - 192 \sin \left(2 \pi \frac{b - \frac{b'}{b}}{b} \right) b^3 c^2 + 72 b^5 \right]
\]

\[
\quad + \frac{1}{48} N \pi \frac{b}{c} \left[6 \cos \left(2 \pi \frac{b - \frac{b'}{b}}{b} \right) \sin \left(2 \pi \frac{b - \frac{b'}{b}}{b} \right) + 36 \pi + 36 \pi \beta - 24 \sin \left(2 \pi \beta \right) \right]
\]

\[
\quad + \frac{1}{48} D \frac{4}{(c^4 b^3)} \left[-24 \sin \left(2 \pi \frac{b - \frac{b'}{b}}{b} \right) b^5 + 192 \sin \left(2 \pi \frac{b - \frac{b'}{b}}{b} \right) b^3 c^2 + 72 b^5 \right]
\]

\[
\quad + \frac{1}{48} N \pi \frac{b}{c} \left[-6 \frac{b^2}{b'} \cos \left(2 \pi \frac{b - \frac{b'}{b}}{b} \right) \sin \left(2 \pi \frac{b - \frac{b'}{b}}{b} \right) + 36 \pi \frac{b^2}{b'} + 36 \pi \beta - 24 \sin \left(2 \pi \frac{b^2}{b'} \right) \right]
\]

The critical theoretical buckling force is evaluated from \(F_{11(N)} \)

to \(F_{22(N)} \) as:

\[
N_{c_{F_{11(N)}}} = F_{22(N)} - F_{12(N)} - F_{21(N)}
\]

\[(I-24) \]
I.3 CHANNEL SECTION

For a channel section the procedure is divided into two phases. Depending on the ratio of web width to flange width, the critical buckling stress for the web may be smaller or larger than the critical stress for the flange. The true buckling stress is that of the combined section, but the buckling mode may be described as "flange mode" or "web mode".

I.3.1 FLANGE MODE

Assuming the flange buckles first, the deflection of the elements after buckling is given by: (shown in Fig I.2)

Web:

\[w_{web} = \left[a_1 \sin \left(\frac{\pi y}{b} \right) + a_2 \left(1 - \cos \left(\frac{2 \pi y}{b} \right) \right) \right] \sin \left(\frac{\pi z}{c} \right) \] \hspace{1cm} (I-25)

Flange:

\[w_{flange} = \theta x + a_3 \left(1 - \cos \left(\frac{\pi x}{2a} \right) \right) \sin \left(\frac{\pi z}{c} \right) \] \hspace{1cm} (I-26)

where \(\theta, a_1, a_2, a_3 \) define the buckled shape.

The strain energy due to bending for the web is given by:

\[U_{web} = \frac{D}{2} \int_0^c \int_{\beta}^{b-\beta} \left[\left(\frac{d^2 w}{dy^2} \right)^2 + \left(\frac{d^2 w}{dz^2} \right)^2 - 2(1-\nu) \left(\frac{d^2 w}{dy^2} \right) \left(\frac{d^2 w}{dz^2} \right) \right] \right) dy dz \]

I-9
\[
\frac{1}{48} \cdot D \cdot \frac{\pi^4}{(c^4 \cdot b^4)} \left[-12 \cdot \sin \left(2 \cdot \pi \cdot \frac{(b - \beta)}{b} \right) \cdot b^5 \cdot a \cdot 2 \cdot 2^2 - 6 \cdot b^4 \cdot a \cdot 1^2 \cdot 2 \cdot \cos \left(\pi \cdot \frac{(b - \beta)}{b} \right) \cdot \sin \left(\pi \cdot \frac{(b - \beta)}{b} \right) \right] \]

\[
= -84 \cdot \cos \left(\pi \cdot \frac{(b - \beta)}{b} \right) \cdot b^3 \cdot a \cdot 1 \cdot a \cdot 2 \cdot 2^2 - 48 \cdot \sin \left(\pi \cdot \frac{(b - \beta)}{b} \right) \cdot b^3 \cdot a \cdot 2^2 \cdot c^2 + 6 \cdot b^5 \cdot a \cdot 1^2 \cdot \pi + 18 \cdot a \cdot 2^2 \cdot b^2 \cdot \pi
\]

\[
+ 6 \cdot a \cdot 1^2 \cdot c^4 \cdot \cos \left(\pi \cdot \frac{(b - \beta)}{b} \right) \cdot \sin \left(\pi \cdot \frac{(b - \beta)}{b} \right) \cdot b + 16 \cdot b \cdot a \cdot 1 \cdot a \cdot 2 \cdot c^4 \cdot \cos \left(\pi \cdot \frac{(b - \beta)}{b} \right)
\]

\[
+ 4 \cdot b^5 \cdot a \cdot 1 \cdot a \cdot 2 \cdot \cos \left(\pi \cdot \frac{(b - \beta)}{b} \right) - 36 \cdot \cos \left(\pi \cdot \frac{(b - \beta)}{b} \right) \cdot b^5 \cdot a \cdot 1 \cdot a \cdot 2
\]

\[
+ 48 \cdot a \cdot 2^2 \cdot c^4 \cdot \cos \left(\pi \cdot \frac{(b - \beta)}{b} \right) \cdot \sin \left(\pi \cdot \frac{(b - \beta)}{b} \right) \cdot b - 48 \cdot b \cdot a \cdot 1 \cdot a \cdot 2 \cdot c^4 \cdot \cos \left(\pi \cdot \frac{(b - \beta)}{b} \right)
\]

where:

\[
\beta = R \left(1 - \frac{1}{\sqrt{2}} \right)
\]

For the flange the strain energy is given by:

\[
U\text{flange} = \frac{D}{2} \int_0^c \int_0^a \left[\frac{d^2 w}{dx^2} \right]^2 + \left(\frac{d^2 w}{dz^2} \right)^2 - 2 \cdot (1 - v) \cdot \left(\frac{d^2 w}{dx} \right) \cdot \frac{d^2 w}{dz} - \frac{d^2 w}{d x^2} \cdot \frac{d^2 w}{d z^2} \right] \, dx \, dz
\]

\[
= \frac{D}{384 \cdot a^3 \cdot c^3} \left[96 \cdot \sin \left(\frac{1}{2} \cdot \pi \cdot \frac{b}{a} \right) \cdot a^3 \cdot 3^2 \cdot \pi^2 + 6 \cdot a^3 \cdot 3^2 \cdot \pi \cdot \cos \left(\frac{1}{2} \cdot \pi \cdot \frac{b}{a} \right) \cdot \sin \left(\frac{1}{2} \cdot \pi \cdot \frac{b}{a} \right) \right]
\]

\[
+ 144 \cdot a^2 \cdot 3^2 \cdot \pi \cdot b + 96 \cdot \theta(a) \cdot 3^2 \cdot \pi \cdot b^2 - 144 \cdot a^2 \cdot 3^2 \cdot \pi \cdot b^2 - 384 \cdot \sin \left(\frac{1}{2} \cdot \pi \cdot \frac{b}{a} \right) \cdot a^5 \cdot 3^2 \cdot \pi^2
\]

\[
+ 32 \cdot a^5 \cdot \pi - 144 \cdot a^2 \cdot 3^2 \cdot \pi + 144 \cdot a^2 \cdot 3^2 \cdot \pi + 96 \cdot a^2 \cdot 3^2 \cdot \pi + 768 \cdot a^2 \cdot 3^2 \cdot \pi^2
\]

\[
- 3 \cdot a^2 \cdot 3^2 \cdot \pi + 96 \cdot a^2 \cdot 3^2 \cdot \pi + 192 \cdot a^2 \cdot 3^2 \cdot \pi \cdot \cos \left(\frac{1}{2} \cdot \pi \cdot \frac{b}{a} \right)
\]

\[
- 96 \cdot a^2 \cdot 3^2 \cdot \pi \cdot \sin \left(\frac{1}{2} \cdot \pi \cdot \frac{b}{a} \right) - 768 \cdot a^6 \cdot 3 \cdot \cos \left(\frac{1}{2} \cdot \pi \cdot \frac{b}{a} \right)
\]

I-10
The external work for the web is given by:

\[
T_{\text{web}} = \frac{N}{2} \int_0^C \int_0^{b - \beta} \left(\frac{d}{dz} \right)^2 \text{dy} \text{dz} \tag{I-30}
\]

\[
= \frac{1}{48} \cdot N \cdot \pi \cdot \frac{b}{c} \left[-6 \cdot a_1^2 \cdot \cos \left(\frac{\pi \cdot (b - \beta)}{b} \right) \cdot \sin \left(\frac{\pi \cdot (b - \beta)}{b} \right) + 3 \cdot a_2^2 \cdot \cos \left(2 \cdot \pi \cdot \frac{(b - \beta)}{b} \right) \cdot \sin \left(2 \cdot \pi \cdot \frac{(b - \beta)}{b} \right) \right]
\]

\[
- 6 \cdot a_1^2 \cdot \cos \left(\frac{\pi \cdot \beta}{b} \right) \cdot \sin \left(\frac{\pi \cdot \beta}{b} \right) + 18 \cdot a_1^2 \cdot \pi \cdot \beta + 4 \cdot a_1 \cdot a_2 \cdot \cos \left(3 \cdot \pi \cdot \frac{\beta}{b} \right) + 6 \cdot a_1^2 \cdot \pi \cdot \beta - 36 \cdot \cos \left(\frac{\pi \cdot \beta}{b} \right) \cdot a_1 \cdot a_2
\]

\[
- 6 \cdot a_1^2 \cdot \pi + 6 \cdot a_1^2 \cdot \pi \cdot \beta - 36 \cdot \cos \left(\frac{\pi \cdot (b - \beta)}{b} \right) \cdot a_1 \cdot a_2 - 12 \cdot \sin \left(2 \cdot \pi \cdot \frac{\beta}{b} \right) \cdot a_2^2
\]

and for flange it is given by:

\[
T_{\text{flange}} = \frac{N}{2} \int_0^C \int_0^a \left(\frac{d}{dz} \right)^2 \text{dx} \text{dz} \tag{I-31}
\]

\[
= \frac{N \cdot \pi \cdot a}{24 \cdot c} \left(-24 \cdot a_3^2 - 24 \cdot a_2 \cdot a \cdot a_3 + 6 \cdot a_2 \cdot a_3 \cdot \pi + 2 \cdot a^2 \cdot \pi \cdot a^2 + 9 \cdot a_3^2 \cdot \pi \right)
\]

\[
+ \frac{N}{24 \cdot c} \left(-9 \cdot a_3^2 \cdot \pi \cdot a + 24 \cdot a_3^2 \cdot \sin \left(\frac{1}{2} \cdot \pi \cdot \frac{\beta}{a} \right) \cdot \pi \cdot a - 6 \cdot \theta \cdot 2 \cdot \pi \cdot a_3 \cdot \beta - 2 \cdot \theta \cdot a_3 \cdot \beta^3 \right)
\]

\[
+ 24 \cdot \theta \cdot a_3 \cdot \pi \cdot \sin \left(\frac{1}{2} \cdot \pi \cdot \frac{\beta}{a} \right) \cdot \beta + 48 \cdot \theta \cdot a \cdot a_3 \cdot \cos \left(\frac{1}{2} \cdot \pi \cdot \frac{\beta}{a} \right) - 6 \cdot a_3 \cdot \pi \cdot \cos \left(\frac{1}{2} \cdot \pi \cdot \frac{\beta}{a} \right) \cdot \sin \left(\frac{1}{2} \cdot \pi \cdot \frac{\beta}{a} \right)
\]

The strain energy due to twisting at one corner is given by:

\[
U_H = \frac{E \cdot H}{2} \int_0^C \left(\frac{d^2}{dz^2} \phi \right)^2 \text{dz} \tag{I-32}
\]

in which

\[
\phi = \left(\frac{d}{dy} w \right) = 8 \cdot \sin \left(\frac{\pi \cdot z}{c} \right)
\]

\[y = 0 \tag{I-33}
\]

I-11
This leads to:

$$U_H = \frac{1}{2}E\cdot H \cdot \frac{a_1^2}{c^3}$$ \hspace{1cm} (I-34)

The energy balance for the whole section is given by:

$$U_{web} + 2 \cdot U_{flange} + 2 \cdot U_H - (T_{web} + 2 \cdot T_{flange}) = 0$$ \hspace{1cm} (I-35)

This equation has five unknowns N, θ, a_1, a_2, a_3. At each corner the tangent to the plates must be perpendicular to each other. Thus:

$$\left(\frac{dw_{flange}}{dx} \right)_{x=0} = \left(\frac{dw_{web}}{dy} \right)_{y=0}$$

$$a_1 \cdot \frac{\pi}{b} \cdot \sin \left(\frac{z}{c} \right) = \phi \cdot \sin \left(\frac{z}{c} \right)$$

$$\phi = a_1 \cdot \frac{\pi}{b}$$ \hspace{1cm} (I-36)

Equal bending moment at the corner for both plate gives:

$$\left(\frac{d^2w_{flange}}{dx^2} \right)_{x=0} = \left(\frac{d^2w_{web}}{dy^2} \right)_{y=0}$$

$$4 \cdot a_2 \cdot \frac{\pi}{b} \cdot \sin \left(\frac{z}{c} \right) = \frac{1}{4} \cdot a_3 \cdot \frac{\pi}{a} \cdot \sin \left(\frac{z}{c} \right)$$

I-12
Finally by substituting the value of \(a_3 \) and \(\theta \) in term of \(a_1, a_2 \), leads to an equation with three parameters and the rest of the procedure is the same as that for the box section.

1.3.2 WEB MODE

Assuming the web buckles first, the deflection of the elements after buckling is given by: (shown in Fig 1.3)

Web:

\[
\begin{align*}
 w_{\text{web}} &= \left[a_1 \cdot \sin \left(\frac{\pi y}{b} \right) - a_2 \cdot \left(1 - \cos \left(\frac{2 \cdot \pi y}{b} \right) \right) \right] \cdot \sin \left(\frac{\pi z}{c} \right) \\
\end{align*}
\]

(1-38)

Flange:

\[
\begin{align*}
 w_{\text{flange}} &= \left[\theta \cdot x - a_3 \cdot \left(1 - \cos \left(\frac{\pi x}{2 \cdot a} \right) \right) \right] \cdot \sin \left(\frac{\pi z}{c} \right) \\
\end{align*}
\]

(1-39)

where \(\theta, a_1, a_2, a_3 \) define the buckled shape.

The strain energy due to bending for the web is given by:

\[
U_{\text{web}} = \frac{D}{2} \int_{0}^{c} \int_{0}^{b-\beta} \left[\left(\frac{d^2 w}{dy^2} \right) + \left(\frac{d^2 w}{dz^2} \right) \right]^2 - 2 \cdot (1 - \nu) \cdot \left[\frac{d^2 w}{dy^2} \cdot \frac{d^2 w}{dz^2} - \left(\frac{dw}{dyz} \right)^2 \right] \, dy \, dz
\]

\[
= \frac{1}{48} \cdot \frac{\pi}{D} \cdot \left[-12 \cdot \sin \left(\frac{2 \cdot \pi \cdot (b - \beta)}{b} \right) \cdot b^5 \cdot a_2^2 - 6 \cdot b^5 \cdot a_1^2 \cdot \cos \left(\frac{(b - \beta)}{b} \right) \cdot \sin \left(\frac{(b - \beta)}{b} \right) \right]
\]

(1-40)
\[+ 84 \cdot \cos \left(\frac{(b - \beta)}{b} \right) \cdot b^3 \cdot a_1 \cdot a_2 \cdot c^2 - 48 \cdot \sin \left(2 \cdot \frac{(b - \beta)}{b} \right) \cdot b^3 \cdot a_2^2 \cdot c^2 + 6 \cdot b^5 \cdot a_1^2 \cdot c^2 + 18 \cdot a_2^2 \cdot b^5 \cdot \pi \]
\[+ 6 \cdot a_1^2 \cdot c^4 \cdot \cos \left(\frac{(b - \beta)}{b} \right) \cdot \sin \left(\frac{(b - \beta)}{b} \right) \cdot b - 16 \cdot b \cdot a_1 \cdot a_2 \cdot c^4 \cdot \cos \left[3 \cdot \frac{(b - \beta)}{b} \right] \]
\[- 4 \cdot b^5 \cdot a_1 \cdot a_2 \cdot \cos \left[3 \cdot \frac{(b - \beta)}{b} \right] + 36 \cdot \cos \left[\frac{(b - \beta)}{b} \right] \cdot b^5 \cdot a_1 \cdot a_2 \]
\[- 48 \cdot b \cdot a_1 \cdot a_2 \cdot c^4 \cdot \cos \left[\frac{(b - \beta)}{b} \right] + 48 \cdot a_2^2 \cdot c^4 \cdot \cos \left[2 \cdot \frac{(b - \beta)}{b} \right] \cdot \sin \left[2 \cdot \frac{(b - \beta)}{b} \right] \cdot b \]

and for flange it is given by:

\[U_{\text{flange}} = \frac{D}{2} \int_{0}^{c} \left(\int_{\beta}^{a} \left[\left(\frac{d^2}{dx^2} w \right) + \left(\frac{d^2}{dz^2} w \right) \right]^2 - 2 \cdot (1 - v) \cdot \frac{d^2}{dx} w \cdot \frac{d^2}{dz} w \right] \, dx \, dz \]

\[= \frac{D}{384 \cdot a^5 \cdot c^3} \left(96 \cdot \sin \left(\frac{1}{2} \cdot \frac{\beta}{a} \right) \cdot a^3 \cdot a_3 \cdot c^2 \cdot \pi + 6 \cdot a_3 \cdot c^4 \cdot \pi \cdot \cos \left(\frac{1}{2} \cdot \frac{\beta}{a} \right) \cdot \sin \left(\frac{1}{2} \cdot \frac{\beta}{a} \right) \right) \quad (I-41) \]
\[+ 144 \cdot a_3 \cdot a_2 \cdot c^4 \cdot \pi \cdot \beta - 96 \cdot a_3 \cdot a_2 \cdot c^4 \cdot \pi \cdot \beta - 144 \cdot a_3 \cdot a_2 \cdot c^4 \cdot \pi \cdot \beta - 384 \cdot \sin \left(\frac{1}{2} \cdot \frac{\beta}{a} \right) \cdot a^5 \cdot a_3 \cdot c^2 \cdot \pi \]
\[+ 32 \cdot a_2 \cdot a_3 \cdot c^4 \cdot \pi \cdot \beta + 144 \cdot a_2 \cdot a_3 \cdot c^4 \cdot \pi \cdot \beta + 96 \cdot a_2 \cdot a_3 \cdot c_2 \cdot c_3 \cdot \cos \left(\frac{1}{2} \cdot \frac{\beta}{a} \right) \cdot c_2 \cdot \pi \]
\[- 3 \cdot a_3 \cdot c_2 \cdot c_3 \cdot \pi \cdot \beta - 96 \cdot a \cdot a_3 \cdot c_2 \cdot c_3 \cdot \pi \cdot \beta + 96 \cdot a_3 \cdot a_3 \cdot c_2 \cdot c_3 \cdot \sin \left(\frac{1}{2} \cdot \frac{\beta}{a} \right) \cdot \beta \]
\[- 192 \cdot a_4 \cdot a_3 \cdot c_2 \cdot c_3 \cdot \cos \left(\frac{1}{2} \cdot \frac{\beta}{a} \right) + 768 \cdot a^6 \cdot a_3 \cdot c_2 \cdot \cos \left(\frac{1}{2} \cdot \frac{\beta}{a} \right) \]

The external work for the web is given by:

I-14
\[T_{\text{web}} = \frac{N}{2} \int_{0}^{c} \int_{\beta}^{b} \left(\frac{d}{dz} \phi \right)^2 dy \, dz \]
\[= \frac{1}{48} N \pi \frac{b}{c} \left[-6 a_1 \frac{b}{c} \cos \left(\frac{\pi (b - \beta)}{b} \right) \sin \left(\frac{\pi (b - \beta)}{b} \right) + 3 a_2 \frac{b}{c} \cos \left(\frac{2 \pi (b - \beta)}{b} \right) \sin \left(\frac{2 \pi (b - \beta)}{b} \right) \right] \]
\[- 6 a_1 \frac{b}{c} \cos \left(\frac{\pi \beta}{b} \right) \sin \left(\frac{\pi \beta}{b} \right) + 18 a_2 \frac{b}{c} \cos \left(\frac{3 \pi \beta}{b} \right) + 6 a_1 \frac{b}{c} \cos \left(\frac{\beta}{b} \right) a_1 a_2 \]
\[- 12 \sin \left(\frac{2 \pi \beta}{b} \right) a_1 \frac{b}{c} - 6 a_1 \frac{b}{c} + 6 a_1 \frac{b}{c} + 36 \cos \left(\frac{\pi (b - \beta)}{b} \right) a_1 a_2 + 18 a_2 \frac{b}{c} \]

and for flange it is given by:

\[T_{\text{flange}} = \frac{N}{2} \int_{0}^{c} \int_{\beta}^{a} \left(\frac{d}{dz} \phi \right)^2 dx \, dz \]
\[= \frac{N \pi a}{24 c} \left[-24 a_3 \frac{b}{c} + 24 \phi \frac{b}{c} - 6 \phi \frac{b}{c} + 2 \phi \frac{b}{c} a_2 + 9 a_3 \frac{b}{c} \right] \]
\[+ \frac{N}{24 c} \left(-9 a_3 \frac{b}{c} \beta + 24 a_3 \frac{b}{c} \sin \left(\frac{1}{2} \pi \frac{\beta}{a} \right) \pi a + 6 \phi \frac{b}{c} a_3 \frac{b}{c} \right) - 2 \phi \frac{b}{c} a_3 \frac{b}{c} \]
\[- 24 \phi \frac{b}{c} a_3 \frac{b}{c} \sin \left(\frac{1}{2} \pi \frac{\beta}{a} \right) - 48 \phi a_2 \frac{b}{c} \cos \left(\frac{1}{2} \pi \frac{\beta}{a} \right) - 6 a_3 \frac{b}{c} \pi \cos \left(\frac{1}{2} \pi \frac{\beta}{a} \right) \sin \left(\frac{1}{2} \pi \frac{\beta}{a} \right) a \]

The strain energy due to warping for a corner is given by:

\[U_{\text{Hweb}} = \frac{1}{2} E H \frac{\pi a_1^2}{c^3 b^2} \]
\[(l-44) \]

Using the equations 1-41 and 1-44 and substituting the values of \(a_3 \) and \(\theta \) in terms of \(a_1, a_2 \) leads to an equation with three parameters, and the rest of the procedure is the same as that for the box section.
APPENDIX II

WARPING CONSTANT

Each radiused corner of a box or channel section possesses a warping constant which depends on the geometry of the section. Based on the method of Timoshenko and Gere (1961) the following procedure is used to calculate the warping constant.

II.1 BOX SECTION

The corner is opening up as shown in Fig II.1. This is then treated as a beam "loaded" by the normal distance from the intersection of the median lines of the adjoining plates to the tangent to the corner element, as shown in Fig II.2. This normal distance is given by:

\[r = R \cdot (\sin \theta + \cos \theta - 1) \]

(II-1)

The total "load" is given by:

\[V = \int_0^{\pi/2} R \cdot (\sin \theta + \cos \theta - 1) \cdot R \, d\theta = 43 \, R^2 \]

(II-2)

\(R_1 \) and \(R_2 \), the reactions of the ends of the "beam", as shown in Fig II.2, are:

\[R_1 = \frac{0.43R^2 \left(\frac{a}{2} - R + \frac{R}{3}\right)}{\left(\frac{a + b}{2} - 2 \cdot R + \frac{R}{2}\right)} \]

(II-3)

II-1
\[R_2 = \frac{0.43R^2 \left(\frac{b}{2} - R + \frac{R}{4} \right)}{\left(\frac{a+b}{2} - 2R + \frac{R}{2} \right)} \]

(II-4)

The "shear force" in the beam is shown in Fig II.2. This shear force represents the term of \(\bar{\omega}_s - \omega_s \) in the warping constant equation:

\[H = \int \left(\bar{\omega}_s - \omega_s \right)^2 \cdot t \, ds \]

(II-5)

The evaluation of this integral is based on two parts which are:

1. Integration on the straight parts

2. Integration on the curve part

\[H_{\text{straight}} = \left[\left(\frac{0.43R^2 \left(\frac{a}{2} - R + \frac{R}{4} \right)}{\left(\frac{a+b}{2} - 2R + \frac{R}{2} \right)} \right)^2 \cdot \frac{b}{2} - R \right] + \left[\left(\frac{0.43R^2 \left(\frac{b}{2} - R + \frac{R}{4} \right)}{\left(\frac{a+b}{2} - 2R + \frac{R}{2} \right)} \right)^2 \cdot \frac{a}{2} - R \right] \cdot t \]

(II-6)

\[H_{\text{curve}} = \frac{1}{2} \cdot R \cdot 1^2 \cdot \pi \cdot R + \left(\frac{1}{4} \cdot \pi^2 - \pi \right) \cdot R^3 \cdot R \cdot 1 + \left(\frac{1}{24} \cdot \pi^3 - \frac{1}{8} \cdot \pi^2 + 2 \cdot \pi - 5 \right) \cdot R^5 \]

(II-7)
and H is given by:

$$H = H_{\text{straight}} + H_{\text{curve}}$$ (II-8)

The warping constant H can be expressed by (Fig II.3):

$$H = a \cdot b \cdot t \cdot R^4$$ (II-9)

in which:

$b = \text{longer length}$
$\alpha = \text{a factor that varies with } a/b \text{ and } R/b \text{ shown in Fig II.4}$

The value of α is given closely by:

$$\alpha = 0.01 + 0.037 \frac{a}{b} - 0.057 \frac{R}{b}$$ (II-10)
II.2 CHANNEL SECTION

The corner is opened up as shown in Fig II.5. The procedure is the same as that for the box; however, in the channel section the centre of rotation for the corner is no longer at the intersection of the median lines but at a distance e from this point, on the median line of the web, and is established by minimizing the warping constant as follows:

The normal distance from the centre of rotation to the element tangent is given by (Fig II.6):

\[r = R \cdot (\sin(\theta) + \cos(\theta) - 1) - e \cdot \cos(\theta) \] \hspace{1cm} (II-11)

The total "load" is given by:

\[V = \int_{0}^{\frac{\pi}{2}} \left[R \cdot (\sin(\theta) + \cos(\theta) - 1) - e \cdot \cos(\theta) \right] \cdot R \cdot d\theta = (0.43R^2 - e \cdot R) \] \hspace{1cm} (II-12)

\(R_1 \) and \(R_2 \), the reactions of the ends of the open corner beam, as shown in Fig II.6, are calculated using:

\[R_1 \cdot \left(b + \frac{a}{2} - 2 \cdot R + \pi \cdot \frac{R}{2} \right) + e \cdot \left(b - R \right) \left(\frac{a}{2} - R + \pi \cdot \frac{R}{2} \right) + e \cdot R \left(\frac{a}{2} - R + \pi \cdot \frac{R}{6} \right) - 0.43R^2 \left(\frac{R}{4} + b - R \right) = 0 \]

thus:

\[R_1 = \frac{0.25 \cdot e \cdot a \cdot b + 0.46 \cdot e \cdot b \cdot R + 0.25 \cdot e \cdot b^2 - 0.55 \cdot R^2 \cdot e + 9.22 \cdot 10^{-2} \cdot R^3 - 0.215 \cdot R^2 \cdot a}{(-b - 0.5 \cdot a + 0.43 \cdot R)} \] \hspace{1cm} (II-13)
and
\[e (b - R) + eR = 0.43R^2 + \left(\frac{25e \cdot a \cdot b \cdot .46e \cdot b \cdot R + .25e \cdot b^2 \cdot .55R^2e + 9.22 \cdot 10^{-2}R^3 - .215 \cdot R^2a}{(-b - .5a + 43R)} \right) + R = 0.43R^2 \]

thus:
\[R_2 = \frac{(75e \cdot b^2 + 25e \cdot a \cdot b + 3e \cdot b \cdot R - 43R^2b + 9.27R^3 + 55R^2e)}{(-100b - 50a + 43R)} \] \hspace{1cm} (II-14)

The shear force in the beam, as shown in Fig II.6 represents the term of \(\langle \bar{w}_s - w_s \rangle \) in the warping constant given by:
\[H = \int \left(\bar{w}_s - w_s \right)^2 \cdot ds \] \hspace{1cm} (II-15)

The evaluation of this integral is based on three parts which are (Fig II.6):
1. Integration on C part
2. Integration on D part
3. Integration on F part

\[H_C = \int_0^{b-R} (R_1 + e \cdot s)^2 ds = \frac{1}{3} \cdot e \left[(R_1 + e \cdot b - e \cdot R)^3 - R_1^3 \right] \] \hspace{1cm} (II-16)

\[H_D = \int_0^{\frac{\pi}{2}} \left[(R_1 + e \cdot L) - (R^2 - R^2 \cdot \cos(\theta) - R^2 \cdot \sin(\theta) - R \cdot \sin(\theta) \cdot e) \right]^2 \cdot R \ d\theta \] \hspace{1cm} (II-17)

\[= \frac{1}{24} \left(24e \cdot L \cdot R^2 \pi + 6e^2 \cdot R^2 \pi + 4e^3 \cdot R^3 + 48 \cdot e^2 \cdot L^2 \pi + 6e \cdot L \cdot R^2 \pi^2 - 12e^2 \cdot R^2 \pi + 6e \cdot L \cdot R^2 \pi \right) \cdot R \]
\[+ \frac{1}{24} \left(12e^2 \cdot R^2 + 48 \cdot e^2 \cdot R^2 - 96 \cdot R^4 + 48 \cdot e \cdot L \cdot R^2 \pi + 48 \cdot e \cdot L \cdot R^2 \right) \cdot R \]
\[+ \frac{1}{24} \left(R^3 - R^2 \cdot e + 2e^2 \cdot L - 2e \cdot R_1 \cdot R + 2e \cdot R \cdot e - 2e \cdot L \cdot R \right) \cdot R \]

II-5
where:

\[L = b - R \]

\[H_F = R^2 \left(\frac{a}{2} - R \right) \]

Differentiating the warping constant with respect to \(e \), and equating it to zero gives:

\[
\epsilon = \frac{(36.4 \cdot b \cdot a^2 \cdot R + 65 \cdot R^3 \cdot a - 21.4 \cdot R^2 \cdot a^2 - 18.3 \cdot R^4 + 46 \cdot b \cdot a \cdot R + 41.5 \cdot a \cdot b \cdot R^2 - 59.6 \cdot R^2 \cdot a \cdot b - 19.2 \cdot R^3 \cdot a)}{(105 \cdot b \cdot a^2 + 384 \cdot a \cdot b - 360 \cdot R^2 + 400 \cdot b^2 \cdot a + 424 \cdot R^2 \cdot b + 228 \cdot a \cdot R^2)}
\]

and \(H \) is given by:

\[H = H_C + H_D + H_F \]

The warping constant \(H \) can be expressed by (Fig II.7):

\[H = \alpha \cdot b \cdot t \cdot R^4 \]

in which:

\(b = \) longer length

\(\alpha = \) a factor that varies with \(a/b \) and \(R/b \) shown in Fig II.8

The value of \(\alpha \) is given closely by:

\[\alpha = 0.015 + 0.014 \frac{a}{b} - 0.03 \frac{R}{b} \]
APPENDIX III list-1

*HEADING
SQUARE PLATE - ELASTIC BUCKLING (BUCKLE)-S8R5 2 X 2 4-2-3-1
*restart, write
*NODE
1010
1018, 0.0, 0.45, 0.0
1024, 0.05, 0.5, 0.0
1032, 0.5, 0.5, 0.0
2010, 0.0, 0.0, 3.0
2018, 0.0, 0.45, 3.0
2024, 0.05, 0.5, 3.0
2032, 0.5, 0.5, 3.0
1, 0.450, 0.050, 0.0
2, 0.450, 0.050, 3.0
*NGEN, NSET=ZYEDG1
1010, 1018, 1
*NGEN, NSET=ZYEDG2
2010, 2018, 1
*NGEN, NSET=ZXEDG1
1024, 1032, 1
*NGEN, NSET=ZXEDG2
2024, 2032, 1
*NGEN, NSET=ZR1, LINE=C
1018, 1024, 1, 1
*NGEN, NSET=ZR2, LINE=C
2018, 2024, 1, 2
*NGEN, NSET=YZEDG
1010, 2010, 100
*NGEN, NSET=XZEDG
1030, 2030, 100
*NFILL
ZYEDG1, ZYEDG2, 10, 100
*NFILL
ZXEDG1, ZXEDG2, 10, 100
*NFILL
ZR1, ZR2, 10, 100
*ELEMENT, TYPE=S8R5, ELSET=ONE
1, 1010, 1012, 1212, 1210, 1011, 1112, 1211, 1110
*ELGEN, ELSET=ONE
1, 11, 2, 1, 5, 200, 11
*MATERIAL, NAME=PLATE
*ELASTIC
20.E4, .3
*SHELl SECTION, MATERIAL=PLATE, ELSET=ONE
.01, 3
*BOUNDARY
ZYEDG1, 1
ZYEDG1, 4
ZYEDG1, 6
ZYEDG2, 1
ZYEDG2, 4
ZYEDG2, 6
ZXEDG1, 2
ZXEDG1, 5, 6
ZXEDG2, 2

III-1
*STEP
*BUCKLE
1,,99
*MODAL FILE
*CLOAD
1010, 3, 1.458
1011, 3, 5.833
1012, 3, 2.917
1013, 3, 5.833
1014, 3, 2.917
1015, 3, 5.833
1016, 3, 2.917
1017, 3, 5.833
1018, 3, 2.767
1019, 3, 5.236
1020, 3, 2.618
1021, 3, 5.236
1022, 3, 2.618
1023, 3, 5.236
1024, 3, 1.726
1025, 3, 1.667
1026, 3, 0.833
1027, 3, 1.667
1028, 3, 0.833
1029, 3, 1.667
1030, 3, 0.833
1031, 3, 1.667
1032, 3, 0.417
2010, 3, -1.458
2011, 3, -5.833
2012, 3, -2.917
2013, 3, -5.833
2014, 3, -2.917
2015, 3, -5.833
2016, 3, -2.917
2017, 3, -5.833
2018, 3, -2.767
2019, 3, -5.236
2020, 3, -2.618
2021, 3, -5.236
2022, 3, -2.618
2023, 3, -5.236
2024, 3, -1.726
2025, 3, -1.667
2026, 3, -0.833
2027, 3, -1.667
2028, 3, -0.833
2029, 3, -1.667

III-2
2030, 3, -0.833
2031, 3, -1.667
2032, 3, -0.417
*NODE PRINT
 U
*END STEP
APPENDIX III LIST-2

*HEADING
SQUARE PLATE - RIKS STEP ANALYSIS (STATIC)-S8R5 2 X 2 4-2-3-1
*restart,write
*NODE
1010
1018, 0.0, 0.45, 0.0
1024, 0.05, 0.5, 0.0
1032, 0.5, 0.5, 0.0
2010, 0.0, 0.0, 3.0
2018, 0.0, 0.45, 3.0
2024, 0.05, 0.5, 3.0
2032, 0.5, 0.5001, 3.0
1, 0.450, 0.050, 0.0
2, 0.450, 0.050, 3.0
*NGEN, NSET=ZYEDG1
1010, 1018, 1
*NGEN, NSET=ZYEDG2
1020, 2018, 1
*NGEN, NSET=ZXEDG1
1024, 1032, 1
*NGEN, NSET=ZXEDG2
2024, 2032, 1
*NGEN, NSET=ZR1,LINE=C
1018, 1024, 1, 1
*NGEN, NSET=ZR2,LINE=C
2018, 2024, 1, 2
*NGEN, NSET=YZEDG
1010, 2010, 100
*NGEN, NSET=XZEDG
1030, 2030, 100
*NFAIL
ZYEDG1, ZYEDG2, 10, 100
*NFAIL
ZXEDG1, ZXEDG2, 10, 100
*NFAIL
ZR1, ZR2, 10, 100
*ELEMENT, TYPE=S8R5, ELSET=ONE
1, 1010, 1012, 1212, 1210, 1011, 1112, 1211, 1110
*ELGEN, ELSET=ONE
1, 11, 2, 1, 5, 200, 11
*MATERIAL, NAME=PLATE
*ELASTIC
20, E4, .3
*SHELL SECTION, MATERIAL=PLATE, ELSET=ONE
.01, 3
*BOUNDARY
ZYEDG1, 1
ZYEDG1, 6
ZYEDG2, ZSYM
ZXEDG1, 2
ZXEDG1, 6
ZXEDG2, ZSYM
ZR1, 1, 2
ZR1, 6
ZR2, ZSYM
YZEDG, YSYM
*STEP, NLGEOM, INC=400
*STATIC, RIKS
, , , 1030, 3, .2

III-4
*MODAL FILE
*CLOAD
1010,3,.0166666
1011,3,.0666666
1012,3,.0333333
1013,3,.0666666
1014,3,.0333333
1015,3,.0666666
1016,3,.0333333
1017,3,.0666666
1018,3,.0333333
1019,3,.0666666
1020,3,.0333333
1021,3,.0666666
1022,3,.0333333
1023,3,.0666666
1024,3,.0333333
1025,3,.0666666
1026,3,.0333333
1027,3,.0666666
1028,3,.0333333
1029,3,.0666666
1030,3,.0166666
*PRINT,RESIDUAL=NO
*NODE file, NSET=N2030
U
*END STEP
Fig D.1 Local buckling of a box section
Fig D-2 Local buckling for a channel section

FD-2
Overall width b, and flat width w

Effective width, b_{eff}

Fig D-3 Flat, overall and effective widths

FD-3
Fig D-4 Collapse mode for a box section
Twisting without restrain

Twisting with fixed end

Fig D-5 Warping for I beam
Fig 1-1 Cold-formed sections
Fig 1-2 Cold-formed steel structure (Pen Metal Company)
Fig 1-3 Cold-formed and hot-rolled steel structure (Stran-Steel Corporation)
Fig 1-4 Typical cold-formed panels
Fig 1-5 Force-Shortening relationship for column and plate

Curve 2 - Plate
Curve 1 - Column
Fig 1-6 Box and panel section dimensions

F1-6
Fig 1.7 Stress distribution on a simply supported plate
Fig 2-1 Buckling and postbuckling strength

\[\bar{\sigma} \]

- von Karman
- CSA CODE for plate (A to B only)
- CSA CODE for column
- Theory

\[\bar{\lambda} \]

F2-1
Fig 2-2 Cold-formed and hot-rolled corners
Fig 2-3 Simply supported plate
Flange buckling mode

Web buckling mode

Fig 2-5 Buckling modes of a channel
Fig 3-1 Sample plate for ABAQUS
$t = 1 \text{ mm}$

$E = 200000 \text{ N/mm}^2$

$v = 0.3$

Fig 4-1 Typical box section

F4-1
Fig 4-2 Typical ABAQUS elastic buckling
Fig 4-3 Stress distribution across the wall of a box section
b/a=1, b/t=100, R/b=0.05

Mean stress, σ_{av}

Critical elastic stress, σ_{cr}

True length = $\pi R/2 + (b-2R)$
Fig 4-4 Mean stress and axial shortening for each step for a box section
Fig 4-5 Critical stress for a box section, a/b=1 b/t=40
Fig 4-6 Critical stress for a box section, a/b=1 b/t=50
Fig 4-7 Critical stress for a box section, a/b=1 b/t=66
Fig 4-8 Critical stress for a box section, $a/b=1$ $b/t=100$
Fig 4-9 Critical stress for a box section, a/b=1 b/t=200
Fig 4-10 Critical stress for a box section, a/b=0.5 b/t=40
Fig 4-11 Critical stress for a box section, $a/b=0.5$ $b/t=50$
Fig 4-12 Critical stress for a box section, $a/b=0.5 \ b/t=66$
Fig 4-13 Critical stress for a box section, a/b=0.5 b/t=100
Fig 4-14 Critical stress for a box section, $a/b=0.5$ $b/t=200$
Fig 4-15 Critical stress for a box section, $a/b=0.25$ $b/t=40$
Fig 4.16 Critical stress for a box section, a/b=0.25 b/t=50
Fig 4-17 Critical stress for a box section, $a/b=0.25$ $b/t=66$
Fig 4-18 Critical stress for a box section, a/b=0.25 b/t=100
Fig 4-19 Critical stress for a box section, $a/b=0.5\ b/t=200$
Fig 4-20 Ultimate stress for a box section, \(\frac{a}{b}=1 \) \(\frac{b}{t}=40 \)
Fig 4-21 Ultimate stress for a box section, $a/b=1$ $b/t=50$
Fig 4-22 Ultimate stress for a box section, a/b=1 b/t=66

- Code
- Theory
- ABAQUS
- Yield

Stress (N/sq mm) vs. R/b

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0 50 100 150 200 250 300 350

F4-22
Fig 4-23 Ultimate stress for a box section, \(a/b=1\ b/t=100\)
Fig. 4.24 Ultimate stress for a box section, $a/b=1$, $b/t=200$
Fig 4.26 Ultimate stress for a box section, \(a/b = 0.5 \) b/w = 50
Fig 4-27 Ultimate stress for a box section, $a/b=0.5$ $b/t=66$
Fig 4-28 Ultimate stress for a box section, $a/b=0.5 \ b/t=100$
Fig 4-29 Ultimate stress for a box section, a/b=0.5 b/t=200
Fig 4-30 Ultimate stress for a box section, $a/b=0.25$ $b/t=40$
Fig 4-31 Ultimate stress for a box section, a/b = 0.25, b/t = 50
Fig 4-32 Ultimate stress for a box section, $a/b=0.25$ $b/t=66$
Fig 4-33 Ultimate stress for a box section, \(a/b=0.25\) \(b/t=100\)
Fig 4-34 Ultimate stress for a box section, $a/b=0.25$ $b/t=200$
Figure 4.35 M factors for box sections (a/b=1)
Fig 4-36 m factors for box sections (a/b=0.5)
(Theory)
Fig 4-37 m factors for box sections (a/b=0.25)
(Theory)
Fig 4.39 Normalized m for box section (a/b=0.5)
Fig 4-40 Normalized m for box section (a/b=0.25)

\[m = m / 1.65 \]
Fig 4-41 Normalized mean postbuckling strength
for box sections
Fig 4.42 Critical stress for a channel section, b/a=1 b/t=4/0

Note: The diagram shows stress values in N/mm² versus the length in mm, with theoretical and ABAQUS Code data points indicated.

Stress N/mm²

400 350 300 250 200 150 100 50 0

Length mm

0.10

0.20

0.25
Fig 4-43 Critical stress for a channel section, b/a=1 b/t=50
Fig 4-44 Critical stress for a channel section, b/a=1 b/t=66
Fig 4-45 Critical stress for a channel section, \(b/a = 1 \) \(b/t = 100 \)
Fig 4-46 Critical stress for a channel section, a/b=1 b/t=200
Fig 4-47 Critical stress for a channel section, b/a=0.5 b/t=40
Fig 4-48 Critical stress for a channel section, b/a=0.5 b/t=50
Fig 4-49 Critical stress for a cannell section, b/a=0.5 b/t=66
Fig 4.50 Critical stress for a channel section, b/a=0.5 b/t=100
Fig 4-51 Critical stress for a channel section, b/a=0.5 b/t=200
Fig 4-52 Critical stress for a channel section, b/a=0.25, b/t=40
Fig 4-53 Critical stress for a channel section, $b/a=0.25$ $b/t=50$
Fig 3-54 Critical stress for a channel section, b/a=0.25 b/t=66
Fig 3-55 Critical stress for a channel section, b/a=0.25 b/t=100
Fig 4.56 Critical stress for a channel section, b/a=0.25 b/t=200
Fig 4-57 m factors for a channel sections, a/b=1
(Theory)
Fig 4-58 m factors for a channel sections, b/a=0.5
(Theory)
Fig 4-59 m factors for a channel sections, b/a=0.25
(Theory)
Fig 4-60 Normalized m for channel sections, (a/b=1)

\[m = \frac{m}{5} \]

- Theory \(b/t = 40 \)
- ABAQUS \(b/t = 40 \)
- Theory \(b/t = 200 \)
- ABAQUS \(b/t = 200 \)
- Code

Y-axis: normalized m
X-axis: \(R/b \)

F4-60
Fig 4-61 Normalized m for channel sections, \(a/b=0.5\)

\[m = m / 5 \]
Fig 4.63 Normalized mean strength for channel sections
Side a:

\[f(x,z) = [a_3 \cdot \sin\left(\frac{x}{a}\right) + a_4 \cdot \left(1 - \cos\left(\frac{2 \cdot x}{a}\right)\right)] \cdot \sin\left(\frac{z}{c}\right) \]

N X-Y-Z 45 degree view N Down X axis N Down Z axis

Side b:

\[f(y,z) = [a_1 \cdot \sin\left(\frac{y}{b}\right) - a_2 \cdot \left(1 - \cos\left(\frac{2 \cdot y}{b}\right)\right)] \cdot \sin\left(\frac{z}{c}\right) \]

M X-Y-Z 45 degree view M Down Y axis M Down Z axis

Fig 1-1 Deflection of a box section
Flange:

\[f(x, z) := \theta \cdot x + a_3 \cdot \left(1 - \cos \left(\frac{\pi x}{2} \cdot a\right)\right) \cdot \sin \left(\frac{\pi z}{c}\right) \]

![Diagram of flange](image1)

Web:

\[f(y, z) := [a_1 \cdot \sin \left(\frac{\pi y}{b}\right) - a_2 \cdot \left(1 - \cos \left(2 \cdot \frac{\pi y}{b}\right)\right)] \cdot \sin \left(\frac{\pi z}{c}\right) \]

![Diagram of web](image2)

Fig 1-2 Deflection of a channel section (flange mode)
Flange:

\[f(x, z) = \left[0 \cdot \phi - a_3 \cdot \left(1 - \cos \left(\frac{\pi x}{2 \cdot a} \right) \right) \right] \cdot \sin \left(\frac{\pi z}{c} \right) \]

N X-Y-Z 45 degree view N Down X axis N Down Z axis

Web:

\[f(y, z) = \left[a_1 \cdot \sin \left(\frac{\pi y}{b} \right) + a_2 \cdot \left(1 - \cos \left(\frac{2 \cdot \pi y}{b} \right) \right) \right] \cdot \sin \left(\frac{\pi z}{c} \right) \]

M X-Y-Z 45 degree view M Down Y axis M Down Z axis

Fig I-3 Deflection of a channel section (web mode)
Fig II-1 Corner of a box section
FigII-2 Warping constant construction for the corner of a box section
Fig II-3 Warping constant for box sections (t=1)

- $a/b=1$ design formula
- $a/b=0.75$
- $a/b=0.5$
- $a/b=1$ by analysis
- $a/b=0.75$
- $a/b=0.5$

H vs R/b

FA-6
Fig II-5 Corner of a channel section

FA-8
Fig II-6 Warping constant construction for the corner of a channel section
Fig II-7 Warping constant for channel sections (t=1)
Fig II-8 Warping factor α for channel sections

- $a/b=1$ design formula
- $a/b=0.75$
- $a/b=0.5$
- $a/b=0.25$
- $a/b=0.1$
- $a/b=1$ by analysis
- $a/b=0.75$
- $a/b=0.5$
- $a/b=0.25$
- $a/b=0.1$

FA-11
Table 4-1 Summary of results for box sections

<table>
<thead>
<tr>
<th>Step</th>
<th>Height</th>
<th>Width</th>
<th>Depth</th>
<th>Error</th>
<th>Percent Error</th>
<th>Stress</th>
<th>Percent Stress</th>
<th>Strain</th>
<th>Percent Strain</th>
<th>Total Stress</th>
<th>Percent Total Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>0.000</td>
<td>453</td>
<td>453</td>
<td>467</td>
<td>3%</td>
<td>3%</td>
<td>299</td>
<td>3%</td>
<td>307</td>
<td>331</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>0.025</td>
<td>502</td>
<td>454</td>
<td>472</td>
<td>-6%</td>
<td>4%</td>
<td>309</td>
<td>4%</td>
<td>310</td>
<td>331</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>0.050</td>
<td>559</td>
<td>464</td>
<td>501</td>
<td>-12%</td>
<td>7%</td>
<td>319</td>
<td>7%</td>
<td>312</td>
<td>332</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>0.100</td>
<td>708</td>
<td>593</td>
<td>646</td>
<td>-10%</td>
<td>8%</td>
<td>342</td>
<td>8%</td>
<td>313</td>
<td>343</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>0.150</td>
<td>925</td>
<td>921</td>
<td>978</td>
<td>5%</td>
<td>6%</td>
<td>350</td>
<td>6%</td>
<td>329</td>
<td>355</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>0.200</td>
<td>1259</td>
<td>1212</td>
<td>1314</td>
<td>4%</td>
<td>8%</td>
<td>350</td>
<td>8%</td>
<td>340</td>
<td>361</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
<td>0.300</td>
<td>2832</td>
<td>1435</td>
<td>1578</td>
<td>-79%</td>
<td>9%</td>
<td>350</td>
<td>9%</td>
<td>337</td>
<td>364</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>0.000</td>
<td>290</td>
<td>287</td>
<td>299</td>
<td>3%</td>
<td>4%</td>
<td>255</td>
<td>4%</td>
<td>280</td>
<td>313</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>0.025</td>
<td>321</td>
<td>293</td>
<td>302</td>
<td>-6%</td>
<td>3%</td>
<td>265</td>
<td>3%</td>
<td>280</td>
<td>311</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>0.050</td>
<td>358</td>
<td>310</td>
<td>324</td>
<td>-10%</td>
<td>4%</td>
<td>275</td>
<td>4%</td>
<td>282</td>
<td>311</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>0.100</td>
<td>453</td>
<td>402</td>
<td>459</td>
<td>1%</td>
<td>12%</td>
<td>299</td>
<td>12%</td>
<td>303</td>
<td>327</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>0.150</td>
<td>592</td>
<td>675</td>
<td>712</td>
<td>17%</td>
<td>5%</td>
<td>325</td>
<td>5%</td>
<td>327</td>
<td>347</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>0.200</td>
<td>806</td>
<td>845</td>
<td>910</td>
<td>11%</td>
<td>7%</td>
<td>350</td>
<td>7%</td>
<td>337</td>
<td>353</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>0.300</td>
<td>1813</td>
<td>951</td>
<td>1035</td>
<td>-75%</td>
<td>8%</td>
<td>350</td>
<td>8%</td>
<td>330</td>
<td>356</td>
</tr>
<tr>
<td>1</td>
<td>66</td>
<td>0.000</td>
<td>163</td>
<td>163</td>
<td>168</td>
<td>3%</td>
<td>3%</td>
<td>203</td>
<td>3%</td>
<td>218</td>
<td>246</td>
</tr>
<tr>
<td>1</td>
<td>66</td>
<td>0.025</td>
<td>181</td>
<td>164</td>
<td>170</td>
<td>-6%</td>
<td>4%</td>
<td>212</td>
<td>4%</td>
<td>219</td>
<td>245</td>
</tr>
<tr>
<td>1</td>
<td>66</td>
<td>0.050</td>
<td>201</td>
<td>173</td>
<td>187</td>
<td>-6%</td>
<td>7%</td>
<td>221</td>
<td>7%</td>
<td>225</td>
<td>256</td>
</tr>
<tr>
<td>1</td>
<td>66</td>
<td>0.100</td>
<td>255</td>
<td>278</td>
<td>303</td>
<td>16%</td>
<td>8%</td>
<td>243</td>
<td>8%</td>
<td>276</td>
<td>304</td>
</tr>
<tr>
<td>1</td>
<td>66</td>
<td>0.150</td>
<td>333</td>
<td>420</td>
<td>460</td>
<td>28%</td>
<td>9%</td>
<td>268</td>
<td>9%</td>
<td>304</td>
<td>334</td>
</tr>
<tr>
<td>1</td>
<td>66</td>
<td>0.200</td>
<td>453</td>
<td>487</td>
<td>549</td>
<td>17%</td>
<td>11%</td>
<td>299</td>
<td>11%</td>
<td>311</td>
<td>348</td>
</tr>
<tr>
<td>1</td>
<td>66</td>
<td>0.300</td>
<td>1020</td>
<td>530</td>
<td>594</td>
<td>-72%</td>
<td>11%</td>
<td>350</td>
<td>11%</td>
<td>314</td>
<td>358</td>
</tr>
</tbody>
</table>
Table 4-1 Summary of results for box sections

<table>
<thead>
<tr>
<th>m1</th>
<th>s1</th>
<th>s2</th>
<th>s3</th>
<th>V Area</th>
<th>T Area</th>
<th>δ</th>
<th>δ1</th>
<th>δ2</th>
<th>δ3</th>
<th>δ4</th>
<th>δ5</th>
<th>δ6</th>
<th>δ7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0.000</td>
<td>73</td>
<td>72</td>
<td>75</td>
<td>3%</td>
<td>4%</td>
<td>143</td>
<td>145</td>
<td>153</td>
<td>6%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>0.025</td>
<td>80</td>
<td>75</td>
<td>76</td>
<td>-6%</td>
<td>1%</td>
<td>150</td>
<td>146</td>
<td>152</td>
<td>1%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>0.050</td>
<td>90</td>
<td>83</td>
<td>89</td>
<td>0%</td>
<td>7%</td>
<td>157</td>
<td>155</td>
<td>164</td>
<td>4%</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>0.100</td>
<td>113</td>
<td>154</td>
<td>172</td>
<td>34%</td>
<td>10%</td>
<td>174</td>
<td>214</td>
<td>225</td>
<td>23%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>0.150</td>
<td>148</td>
<td>210</td>
<td>233</td>
<td>36%</td>
<td>10%</td>
<td>195</td>
<td>251</td>
<td>268</td>
<td>27%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>0.200</td>
<td>201</td>
<td>228</td>
<td>258</td>
<td>22%</td>
<td>12%</td>
<td>221</td>
<td>260</td>
<td>268</td>
<td>17%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>0.300</td>
<td>453</td>
<td>234</td>
<td>268</td>
<td>-69%</td>
<td>13%</td>
<td>299</td>
<td>264</td>
<td>265</td>
<td>-5%</td>
<td>7%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m1</th>
<th>s1</th>
<th>s2</th>
<th>s3</th>
<th>V Area</th>
<th>T Area</th>
<th>δ</th>
<th>δ1</th>
<th>δ2</th>
<th>δ3</th>
<th>δ4</th>
<th>δ5</th>
<th>δ6</th>
<th>δ7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200</td>
<td>0.000</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>3%</td>
<td>3%</td>
<td>76</td>
<td>73</td>
<td>61</td>
<td>6%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>0.025</td>
<td>20</td>
<td>18</td>
<td>20</td>
<td>-3%</td>
<td>8%</td>
<td>79</td>
<td>74</td>
<td>78</td>
<td>-2%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>0.050</td>
<td>22</td>
<td>28</td>
<td>29</td>
<td>23%</td>
<td>3%</td>
<td>84</td>
<td>88</td>
<td>95</td>
<td>12%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>0.100</td>
<td>28</td>
<td>52</td>
<td>58</td>
<td>51%</td>
<td>10%</td>
<td>93</td>
<td>124</td>
<td>135</td>
<td>31%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>0.150</td>
<td>37</td>
<td>57</td>
<td>64</td>
<td>42%</td>
<td>11%</td>
<td>106</td>
<td>132</td>
<td>136</td>
<td>22%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>0.200</td>
<td>50</td>
<td>62</td>
<td>67</td>
<td>25%</td>
<td>7%</td>
<td>122</td>
<td>133</td>
<td>139</td>
<td>12%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>0.300</td>
<td>113</td>
<td>60</td>
<td>68</td>
<td>-68%</td>
<td>11%</td>
<td>174</td>
<td>134</td>
<td>145</td>
<td>-20%</td>
<td>7%</td>
<td></td>
</tr>
</tbody>
</table>
Table 4-1 Summary of results for box sections

<table>
<thead>
<tr>
<th>H/D</th>
<th>B/D</th>
<th>L/D</th>
<th>a</th>
<th>0.025</th>
<th>0.050</th>
<th>0.075</th>
<th>0.100</th>
<th>0.150</th>
<th>0.200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>1.65</td>
<td>1.65</td>
<td>2.20</td>
<td>2.20</td>
<td>2.16</td>
<td>0.41</td>
<td>0.42</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>1.57</td>
<td>1.62</td>
<td>1.63</td>
<td>2.09</td>
<td>2.16</td>
<td>2.14</td>
<td>0.43</td>
<td>0.42</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>1.49</td>
<td>1.54</td>
<td>1.51</td>
<td>1.98</td>
<td>2.06</td>
<td>1.98</td>
<td>0.45</td>
<td>0.44</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>1.32</td>
<td>1.13</td>
<td>1.09</td>
<td>1.76</td>
<td>1.51</td>
<td>1.43</td>
<td>0.50</td>
<td>0.61</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>0.97</td>
<td>0.93</td>
<td>1.54</td>
<td>1.29</td>
<td>1.23</td>
<td>0.56</td>
<td>0.72</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>0.99</td>
<td>0.93</td>
<td>0.89</td>
<td>1.32</td>
<td>1.24</td>
<td>1.16</td>
<td>0.63</td>
<td>0.74</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>0.66</td>
<td>0.92</td>
<td>0.87</td>
<td>0.88</td>
<td>1.22</td>
<td>1.14</td>
<td>0.85</td>
<td>0.75</td>
<td>0.81</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H/D</th>
<th>B/D</th>
<th>L/D</th>
<th>0.025</th>
<th>0.050</th>
<th>0.075</th>
<th>0.100</th>
<th>0.150</th>
<th>0.200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>1.65</td>
<td>1.65</td>
<td>4.39</td>
<td>4.39</td>
<td>4.33</td>
<td>0.22</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td>1.57</td>
<td>1.66</td>
<td>1.61</td>
<td>4.17</td>
<td>4.41</td>
<td>4.23</td>
<td>0.23</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>1.49</td>
<td>1.33</td>
<td>1.33</td>
<td>3.95</td>
<td>3.54</td>
<td>3.48</td>
<td>0.24</td>
<td>0.25</td>
<td>0.27</td>
</tr>
<tr>
<td>1.32</td>
<td>0.97</td>
<td>0.94</td>
<td>3.52</td>
<td>2.59</td>
<td>2.47</td>
<td>0.27</td>
<td>0.35</td>
<td>0.39</td>
</tr>
<tr>
<td>1.16</td>
<td>0.93</td>
<td>0.89</td>
<td>3.08</td>
<td>2.48</td>
<td>2.33</td>
<td>0.30</td>
<td>0.38</td>
<td>0.39</td>
</tr>
<tr>
<td>0.99</td>
<td>0.89</td>
<td>0.87</td>
<td>2.64</td>
<td>2.38</td>
<td>2.29</td>
<td>0.35</td>
<td>0.38</td>
<td>0.40</td>
</tr>
<tr>
<td>0.66</td>
<td>0.91</td>
<td>0.87</td>
<td>1.76</td>
<td>2.42</td>
<td>2.28</td>
<td>0.50</td>
<td>0.38</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Table 4-1 Summary of results for box sections

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>40</td>
<td>0.000</td>
<td>450</td>
<td>590</td>
<td>604</td>
<td>26%</td>
<td>2%</td>
<td>299</td>
<td>321</td>
<td>343</td>
</tr>
<tr>
<td>0.5</td>
<td>40</td>
<td>0.025</td>
<td>510</td>
<td>587</td>
<td>611</td>
<td>17%</td>
<td>4%</td>
<td>309</td>
<td>320</td>
<td>343</td>
</tr>
<tr>
<td>0.5</td>
<td>40</td>
<td>0.050</td>
<td>559</td>
<td>597</td>
<td>645</td>
<td>13%</td>
<td>7%</td>
<td>319</td>
<td>322</td>
<td>343</td>
</tr>
<tr>
<td>0.5</td>
<td>40</td>
<td>0.100</td>
<td>708</td>
<td>730</td>
<td>796</td>
<td>11%</td>
<td>8%</td>
<td>342</td>
<td>323</td>
<td>350</td>
</tr>
<tr>
<td>0.5</td>
<td>40</td>
<td>0.150</td>
<td>925</td>
<td>1085</td>
<td>1171</td>
<td>21%</td>
<td>7%</td>
<td>350</td>
<td>327</td>
<td>359</td>
</tr>
<tr>
<td>0.5</td>
<td>40</td>
<td>0.200</td>
<td>1259</td>
<td>1462</td>
<td>1608</td>
<td>22%</td>
<td>9%</td>
<td>350</td>
<td>343</td>
<td>364</td>
</tr>
<tr>
<td>0.5</td>
<td>40</td>
<td>0.250</td>
<td>2832</td>
<td>1822</td>
<td>2004</td>
<td>-41%</td>
<td>9%</td>
<td>350</td>
<td>330</td>
<td>367</td>
</tr>
<tr>
<td>0.5</td>
<td>50</td>
<td>0.000</td>
<td>290</td>
<td>372</td>
<td>387</td>
<td>25%</td>
<td>4%</td>
<td>255</td>
<td>297</td>
<td>333</td>
</tr>
<tr>
<td>0.5</td>
<td>50</td>
<td>0.025</td>
<td>321</td>
<td>379</td>
<td>391</td>
<td>18%</td>
<td>3%</td>
<td>265</td>
<td>297</td>
<td>330</td>
</tr>
<tr>
<td>0.5</td>
<td>50</td>
<td>0.050</td>
<td>358</td>
<td>380</td>
<td>417</td>
<td>14%</td>
<td>9%</td>
<td>275</td>
<td>299</td>
<td>328</td>
</tr>
<tr>
<td>0.5</td>
<td>50</td>
<td>0.100</td>
<td>453</td>
<td>517</td>
<td>558</td>
<td>19%</td>
<td>7%</td>
<td>299</td>
<td>311</td>
<td>337</td>
</tr>
<tr>
<td>0.5</td>
<td>50</td>
<td>0.150</td>
<td>592</td>
<td>793</td>
<td>857</td>
<td>31%</td>
<td>7%</td>
<td>325</td>
<td>326</td>
<td>352</td>
</tr>
<tr>
<td>0.5</td>
<td>50</td>
<td>0.200</td>
<td>806</td>
<td>1050</td>
<td>1129</td>
<td>29%</td>
<td>7%</td>
<td>350</td>
<td>335</td>
<td>358</td>
</tr>
<tr>
<td>0.5</td>
<td>50</td>
<td>0.300</td>
<td>1813</td>
<td>1190</td>
<td>1323</td>
<td>-37%</td>
<td>10%</td>
<td>350</td>
<td>334</td>
<td>361</td>
</tr>
<tr>
<td>0.5</td>
<td>66</td>
<td>0.000</td>
<td>158</td>
<td>211</td>
<td>218</td>
<td>27%</td>
<td>3%</td>
<td>203</td>
<td>248</td>
<td>280</td>
</tr>
<tr>
<td>0.5</td>
<td>66</td>
<td>0.025</td>
<td>191</td>
<td>212</td>
<td>220</td>
<td>13%</td>
<td>4%</td>
<td>212</td>
<td>249</td>
<td>278</td>
</tr>
<tr>
<td>0.5</td>
<td>66</td>
<td>0.050</td>
<td>201</td>
<td>222</td>
<td>239</td>
<td>16%</td>
<td>7%</td>
<td>221</td>
<td>254</td>
<td>289</td>
</tr>
<tr>
<td>0.5</td>
<td>66</td>
<td>0.100</td>
<td>255</td>
<td>334</td>
<td>364</td>
<td>30%</td>
<td>8%</td>
<td>243</td>
<td>290</td>
<td>319</td>
</tr>
<tr>
<td>0.5</td>
<td>66</td>
<td>0.150</td>
<td>333</td>
<td>520</td>
<td>562</td>
<td>41%</td>
<td>7%</td>
<td>268</td>
<td>313</td>
<td>344</td>
</tr>
<tr>
<td>0.5</td>
<td>66</td>
<td>0.200</td>
<td>453</td>
<td>635</td>
<td>692</td>
<td>34%</td>
<td>8%</td>
<td>299</td>
<td>319</td>
<td>358</td>
</tr>
<tr>
<td>0.5</td>
<td>66</td>
<td>0.300</td>
<td>1020</td>
<td>699</td>
<td>764</td>
<td>-34%</td>
<td>8%</td>
<td>350</td>
<td>322</td>
<td>368</td>
</tr>
</tbody>
</table>
Table 4-1 Summary of results for box sections

<table>
<thead>
<tr>
<th>ALP</th>
<th>TPE</th>
<th>WPE</th>
<th>S11</th>
<th>S12</th>
<th>S13</th>
<th>S14</th>
<th>TPE</th>
<th>WPE</th>
<th>S11</th>
<th>S12</th>
<th>S13</th>
<th>S14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>1.45</td>
<td>1.45</td>
<td>0.88</td>
<td>0.77</td>
<td>0.76</td>
<td>0.85</td>
<td>0.92</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.55</td>
<td>1.45</td>
<td>1.44</td>
<td>0.83</td>
<td>0.77</td>
<td>0.76</td>
<td>0.88</td>
<td>0.91</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.48</td>
<td>1.44</td>
<td>1.40</td>
<td>0.79</td>
<td>0.77</td>
<td>0.74</td>
<td>0.91</td>
<td>0.92</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.32</td>
<td>1.30</td>
<td>1.26</td>
<td>0.70</td>
<td>0.69</td>
<td>0.66</td>
<td>0.98</td>
<td>0.92</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.15</td>
<td>1.07</td>
<td>1.04</td>
<td>0.62</td>
<td>0.57</td>
<td>0.55</td>
<td>1.00</td>
<td>0.93</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.99</td>
<td>0.92</td>
<td>0.89</td>
<td>0.53</td>
<td>0.49</td>
<td>0.47</td>
<td>1.00</td>
<td>0.98</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.66</td>
<td>0.83</td>
<td>0.80</td>
<td>0.35</td>
<td>0.44</td>
<td>0.42</td>
<td>1.00</td>
<td>0.94</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALP</th>
<th>TPE</th>
<th>WPE</th>
<th>S11</th>
<th>S12</th>
<th>S13</th>
<th>S14</th>
<th>TPE</th>
<th>WPE</th>
<th>S11</th>
<th>S12</th>
<th>S13</th>
<th>S14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>1.45</td>
<td>1.45</td>
<td>1.10</td>
<td>0.97</td>
<td>0.95</td>
<td>0.73</td>
<td>0.85</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.57</td>
<td>1.44</td>
<td>1.44</td>
<td>1.04</td>
<td>0.96</td>
<td>0.95</td>
<td>0.76</td>
<td>0.85</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.49</td>
<td>1.43</td>
<td>1.40</td>
<td>0.99</td>
<td>0.96</td>
<td>0.92</td>
<td>0.79</td>
<td>0.85</td>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.32</td>
<td>1.23</td>
<td>1.21</td>
<td>0.88</td>
<td>0.82</td>
<td>0.79</td>
<td>0.85</td>
<td>0.89</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>0.99</td>
<td>0.97</td>
<td>0.77</td>
<td>0.66</td>
<td>0.64</td>
<td>0.93</td>
<td>0.93</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.99</td>
<td>0.86</td>
<td>0.85</td>
<td>0.66</td>
<td>0.58</td>
<td>0.56</td>
<td>1.00</td>
<td>0.96</td>
<td>1.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.66</td>
<td>0.81</td>
<td>0.78</td>
<td>0.44</td>
<td>0.54</td>
<td>0.51</td>
<td>1.00</td>
<td>0.96</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALP</th>
<th>TPE</th>
<th>WPE</th>
<th>S11</th>
<th>S12</th>
<th>S13</th>
<th>S14</th>
<th>TPE</th>
<th>WPE</th>
<th>S11</th>
<th>S12</th>
<th>S13</th>
<th>S14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>1.45</td>
<td>1.45</td>
<td>1.49</td>
<td>1.29</td>
<td>1.27</td>
<td>0.58</td>
<td>0.71</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>1.45</td>
<td>1.44</td>
<td>1.35</td>
<td>1.29</td>
<td>1.26</td>
<td>0.61</td>
<td>0.71</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.46</td>
<td>1.42</td>
<td>1.38</td>
<td>1.32</td>
<td>1.26</td>
<td>1.21</td>
<td>0.63</td>
<td>0.73</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>1.15</td>
<td>1.12</td>
<td>1.17</td>
<td>1.02</td>
<td>0.98</td>
<td>0.69</td>
<td>0.83</td>
<td>0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.14</td>
<td>0.92</td>
<td>0.90</td>
<td>1.03</td>
<td>0.82</td>
<td>0.79</td>
<td>0.77</td>
<td>0.89</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.97</td>
<td>0.84</td>
<td>0.81</td>
<td>0.88</td>
<td>0.74</td>
<td>0.71</td>
<td>0.85</td>
<td>0.91</td>
<td>1.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>0.80</td>
<td>0.77</td>
<td>0.59</td>
<td>0.71</td>
<td>0.68</td>
<td>1.00</td>
<td>0.92</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4-1 Summary of results for box sections

<table>
<thead>
<tr>
<th>a/b</th>
<th>h</th>
<th>t</th>
<th>a</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>100</td>
<td>0.000</td>
<td>73</td>
<td>94</td>
<td>98</td>
<td>26%</td>
<td>4%</td>
<td>143</td>
<td>165</td>
<td>180</td>
<td>21%</td>
<td>8%</td>
<td>0.5</td>
<td>100</td>
<td>0.025</td>
<td>80</td>
<td>95</td>
<td>98</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>0.050</td>
<td>90</td>
<td>104</td>
<td>112</td>
<td>20%</td>
<td>7%</td>
<td>157</td>
<td>174</td>
<td>183</td>
<td>14%</td>
<td>5%</td>
<td>0.5</td>
<td>100</td>
<td>0.10</td>
<td>113</td>
<td>189</td>
<td>206</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>0.15</td>
<td>148</td>
<td>270</td>
<td>292</td>
<td>49%</td>
<td>7%</td>
<td>195</td>
<td>274</td>
<td>276</td>
<td>29%</td>
<td>1%</td>
<td>0.5</td>
<td>100</td>
<td>0.200</td>
<td>201</td>
<td>310</td>
<td>330</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>0.300</td>
<td>453</td>
<td>320</td>
<td>346</td>
<td>-31%</td>
<td>7%</td>
<td>299</td>
<td>286</td>
<td>317</td>
<td>6%</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>0.000</td>
<td>18</td>
<td>23</td>
<td>24</td>
<td>25%</td>
<td>3%</td>
<td>76</td>
<td>83</td>
<td>87</td>
<td>13%</td>
<td>5%</td>
<td>0.5</td>
<td>200</td>
<td>0.025</td>
<td>20</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>0.050</td>
<td>22</td>
<td>32</td>
<td>35</td>
<td>36%</td>
<td>7%</td>
<td>84</td>
<td>97</td>
<td>106</td>
<td>21%</td>
<td>8%</td>
<td>0.5</td>
<td>200</td>
<td>0.100</td>
<td>28</td>
<td>66</td>
<td>72</td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>0.150</td>
<td>37</td>
<td>76</td>
<td>82</td>
<td>55%</td>
<td>7%</td>
<td>106</td>
<td>149</td>
<td>165</td>
<td>36%</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>0.200</td>
<td>50</td>
<td>78</td>
<td>86</td>
<td>42%</td>
<td>10%</td>
<td>122</td>
<td>151</td>
<td>159</td>
<td>23%</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>0.300</td>
<td>113</td>
<td>79</td>
<td>87</td>
<td>-30%</td>
<td>9%</td>
<td>174</td>
<td>152</td>
<td>164</td>
<td>-6%</td>
<td>7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.65</td>
<td>1.45</td>
<td>1.45</td>
<td>2.20</td>
<td>1.93</td>
<td>1.89</td>
<td>0.41</td>
<td>0.47</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>1.57</td>
<td>1.45</td>
<td>1.45</td>
<td>2.09</td>
<td>1.92</td>
<td>1.89</td>
<td>0.43</td>
<td>0.47</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>1.49</td>
<td>1.38</td>
<td>1.35</td>
<td>1.98</td>
<td>1.83</td>
<td>1.77</td>
<td>0.45</td>
<td>0.50</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>1.32</td>
<td>1.02</td>
<td>1.00</td>
<td>1.76</td>
<td>1.36</td>
<td>1.30</td>
<td>0.50</td>
<td>0.67</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>0.86</td>
<td>0.84</td>
<td>1.54</td>
<td>1.14</td>
<td>1.10</td>
<td>0.56</td>
<td>0.78</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>0.99</td>
<td>0.80</td>
<td>0.79</td>
<td>1.32</td>
<td>1.06</td>
<td>1.03</td>
<td>0.63</td>
<td>0.81</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>0.66</td>
<td>0.79</td>
<td>0.77</td>
<td>0.88</td>
<td>1.05</td>
<td>1.01</td>
<td>0.85</td>
<td>0.82</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>1.65</td>
<td>1.45</td>
<td>1.45</td>
<td>4.39</td>
<td>3.86</td>
<td>3.80</td>
<td>0.22</td>
<td>0.24</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>1.57</td>
<td>1.43</td>
<td>1.42</td>
<td>4.17</td>
<td>3.81</td>
<td>3.73</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>1.49</td>
<td>1.23</td>
<td>1.20</td>
<td>3.95</td>
<td>3.28</td>
<td>3.16</td>
<td>0.24</td>
<td>0.28</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>1.32</td>
<td>0.87</td>
<td>0.84</td>
<td>3.52</td>
<td>2.31</td>
<td>2.21</td>
<td>0.27</td>
<td>0.40</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>0.80</td>
<td>0.79</td>
<td>3.08</td>
<td>2.14</td>
<td>2.06</td>
<td>0.30</td>
<td>0.43</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>0.99</td>
<td>0.80</td>
<td>0.77</td>
<td>2.64</td>
<td>2.12</td>
<td>2.01</td>
<td>0.35</td>
<td>0.43</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>0.66</td>
<td>0.79</td>
<td>0.76</td>
<td>1.76</td>
<td>2.10</td>
<td>2.00</td>
<td>0.50</td>
<td>0.44</td>
<td>0.47</td>
<td></td>
</tr>
</tbody>
</table>

Table 4-1 Summary of results for box sections
Table 4-1 Summary of results for box sections

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Width (m)</th>
<th>Spacing (m)</th>
<th>Code</th>
<th>Theory</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>40</td>
<td>0.000</td>
<td>449</td>
<td>677</td>
<td>697</td>
<td>36%</td>
<td>3%</td>
<td>299</td>
<td>322</td>
<td>347</td>
<td>14%</td>
<td>7%</td>
<td>3%</td>
<td>299</td>
<td>322</td>
<td>347</td>
<td>14%</td>
</tr>
<tr>
<td>0.25</td>
<td>40</td>
<td>0.025</td>
<td>505</td>
<td>678</td>
<td>705</td>
<td>28%</td>
<td>4%</td>
<td>309</td>
<td>322</td>
<td>348</td>
<td>11%</td>
<td>8%</td>
<td>4%</td>
<td>309</td>
<td>322</td>
<td>348</td>
<td>11%</td>
</tr>
<tr>
<td>0.25</td>
<td>40</td>
<td>0.050</td>
<td>550</td>
<td>687</td>
<td>742</td>
<td>26%</td>
<td>7%</td>
<td>319</td>
<td>322</td>
<td>349</td>
<td>8%</td>
<td>8%</td>
<td>7%</td>
<td>319</td>
<td>322</td>
<td>349</td>
<td>8%</td>
</tr>
<tr>
<td>0.25</td>
<td>40</td>
<td>0.100</td>
<td>708</td>
<td>822</td>
<td>896</td>
<td>21%</td>
<td>8%</td>
<td>342</td>
<td>327</td>
<td>359</td>
<td>5%</td>
<td>9%</td>
<td>8%</td>
<td>342</td>
<td>327</td>
<td>359</td>
<td>5%</td>
</tr>
<tr>
<td>0.25</td>
<td>40</td>
<td>0.125</td>
<td>925</td>
<td>1198</td>
<td>1294</td>
<td>29%</td>
<td>7%</td>
<td>350</td>
<td>334</td>
<td>361</td>
<td>3%</td>
<td>7%</td>
<td>7%</td>
<td>350</td>
<td>334</td>
<td>361</td>
<td>3%</td>
</tr>
<tr>
<td>0.25</td>
<td>50</td>
<td>0.000</td>
<td>300</td>
<td>438</td>
<td>446</td>
<td>33%</td>
<td>2%</td>
<td>255</td>
<td>305</td>
<td>341</td>
<td>25%</td>
<td>11%</td>
<td>2%</td>
<td>255</td>
<td>305</td>
<td>341</td>
<td>25%</td>
</tr>
<tr>
<td>0.25</td>
<td>50</td>
<td>0.025</td>
<td>340</td>
<td>430</td>
<td>451</td>
<td>25%</td>
<td>5%</td>
<td>265</td>
<td>305</td>
<td>338</td>
<td>22%</td>
<td>10%</td>
<td>5%</td>
<td>265</td>
<td>305</td>
<td>338</td>
<td>22%</td>
</tr>
<tr>
<td>0.25</td>
<td>50</td>
<td>0.050</td>
<td>358</td>
<td>434</td>
<td>479</td>
<td>25%</td>
<td>9%</td>
<td>275</td>
<td>306</td>
<td>336</td>
<td>18%</td>
<td>9%</td>
<td>9%</td>
<td>275</td>
<td>306</td>
<td>336</td>
<td>18%</td>
</tr>
<tr>
<td>0.25</td>
<td>50</td>
<td>0.100</td>
<td>453</td>
<td>590</td>
<td>623</td>
<td>27%</td>
<td>5%</td>
<td>299</td>
<td>316</td>
<td>342</td>
<td>13%</td>
<td>7%</td>
<td>5%</td>
<td>299</td>
<td>316</td>
<td>342</td>
<td>13%</td>
</tr>
<tr>
<td>0.25</td>
<td>50</td>
<td>0.150</td>
<td>592</td>
<td>867</td>
<td>948</td>
<td>38%</td>
<td>9%</td>
<td>325</td>
<td>328</td>
<td>355</td>
<td>8%</td>
<td>7%</td>
<td>9%</td>
<td>325</td>
<td>328</td>
<td>355</td>
<td>8%</td>
</tr>
<tr>
<td>0.25</td>
<td>66</td>
<td>0.000</td>
<td>163</td>
<td>244</td>
<td>251</td>
<td>35%</td>
<td>3%</td>
<td>203</td>
<td>264</td>
<td>298</td>
<td>32%</td>
<td>12%</td>
<td>3%</td>
<td>203</td>
<td>264</td>
<td>298</td>
<td>32%</td>
</tr>
<tr>
<td>0.25</td>
<td>66</td>
<td>0.025</td>
<td>181</td>
<td>246</td>
<td>254</td>
<td>29%</td>
<td>3%</td>
<td>212</td>
<td>264</td>
<td>296</td>
<td>28%</td>
<td>11%</td>
<td>3%</td>
<td>212</td>
<td>264</td>
<td>296</td>
<td>28%</td>
</tr>
<tr>
<td>0.25</td>
<td>66</td>
<td>0.125</td>
<td>201</td>
<td>260</td>
<td>274</td>
<td>27%</td>
<td>5%</td>
<td>221</td>
<td>268</td>
<td>306</td>
<td>28%</td>
<td>12%</td>
<td>5%</td>
<td>221</td>
<td>268</td>
<td>306</td>
<td>28%</td>
</tr>
<tr>
<td>0.25</td>
<td>66</td>
<td>0.100</td>
<td>255</td>
<td>370</td>
<td>403</td>
<td>37%</td>
<td>8%</td>
<td>243</td>
<td>296</td>
<td>326</td>
<td>26%</td>
<td>9%</td>
<td>8%</td>
<td>243</td>
<td>296</td>
<td>326</td>
<td>26%</td>
</tr>
<tr>
<td>0.25</td>
<td>66</td>
<td>0.125</td>
<td>333</td>
<td>574</td>
<td>626</td>
<td>47%</td>
<td>8%</td>
<td>268</td>
<td>317</td>
<td>348</td>
<td>23%</td>
<td>9%</td>
<td>8%</td>
<td>268</td>
<td>317</td>
<td>348</td>
<td>23%</td>
</tr>
</tbody>
</table>
Table 4-1 Summary of results for box sections

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>1.35</td>
<td>1.35</td>
<td>0.88</td>
<td>0.72</td>
<td>0.71</td>
</tr>
<tr>
<td>1.66</td>
<td>1.35</td>
<td>1.34</td>
<td>0.83</td>
<td>0.72</td>
<td>0.70</td>
</tr>
<tr>
<td>1.49</td>
<td>1.34</td>
<td>1.31</td>
<td>0.80</td>
<td>0.71</td>
<td>0.69</td>
</tr>
<tr>
<td>1.31</td>
<td>1.23</td>
<td>1.19</td>
<td>0.70</td>
<td>0.65</td>
<td>0.63</td>
</tr>
<tr>
<td>1.15</td>
<td>1.01</td>
<td>0.99</td>
<td>0.62</td>
<td>0.54</td>
<td>0.52</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>1.35</td>
<td>1.35</td>
<td>1.08</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>1.55</td>
<td>1.36</td>
<td>1.34</td>
<td>1.01</td>
<td>0.90</td>
<td>0.88</td>
</tr>
<tr>
<td>1.51</td>
<td>1.36</td>
<td>1.30</td>
<td>0.99</td>
<td>0.90</td>
<td>0.85</td>
</tr>
<tr>
<td>1.34</td>
<td>1.16</td>
<td>1.14</td>
<td>0.88</td>
<td>0.77</td>
<td>0.75</td>
</tr>
<tr>
<td>1.17</td>
<td>0.96</td>
<td>0.93</td>
<td>0.77</td>
<td>0.64</td>
<td>0.61</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>1.35</td>
<td>1.35</td>
<td>1.46</td>
<td>1.20</td>
<td>1.18</td>
</tr>
<tr>
<td>1.57</td>
<td>1.34</td>
<td>1.34</td>
<td>1.39</td>
<td>1.19</td>
<td>1.17</td>
</tr>
<tr>
<td>1.49</td>
<td>1.31</td>
<td>1.29</td>
<td>1.32</td>
<td>1.16</td>
<td>1.13</td>
</tr>
<tr>
<td>1.32</td>
<td>1.10</td>
<td>1.06</td>
<td>1.17</td>
<td>0.97</td>
<td>0.93</td>
</tr>
<tr>
<td>1.16</td>
<td>0.88</td>
<td>0.85</td>
<td>1.03</td>
<td>0.78</td>
<td>0.75</td>
</tr>
</tbody>
</table>
Table 4-1 Summary of results for box sections

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>100</td>
<td>0.000</td>
<td>77</td>
<td>110</td>
<td>112</td>
<td>31%</td>
<td>1%</td>
<td>143</td>
<td>178</td>
<td>194</td>
<td>26%</td>
</tr>
<tr>
<td>0.25</td>
<td>100</td>
<td>0.025</td>
<td>86</td>
<td>109</td>
<td>113</td>
<td>24%</td>
<td>4%</td>
<td>150</td>
<td>178</td>
<td>200</td>
<td>25%</td>
</tr>
<tr>
<td>0.25</td>
<td>100</td>
<td>0.050</td>
<td>95</td>
<td>118</td>
<td>128</td>
<td>26%</td>
<td>7%</td>
<td>157</td>
<td>186</td>
<td>165</td>
<td>19%</td>
</tr>
<tr>
<td>0.25</td>
<td>100</td>
<td>0.10</td>
<td>113</td>
<td>207</td>
<td>228</td>
<td>50%</td>
<td>9%</td>
<td>174</td>
<td>247</td>
<td>264</td>
<td>34%</td>
</tr>
<tr>
<td>0.25</td>
<td>100</td>
<td>0.13</td>
<td>148</td>
<td>305</td>
<td>329</td>
<td>55%</td>
<td>7%</td>
<td>195</td>
<td>283</td>
<td>266</td>
<td>32%</td>
</tr>
<tr>
<td>0.25</td>
<td>200</td>
<td>0.000</td>
<td>16</td>
<td>27</td>
<td>28</td>
<td>43%</td>
<td>3%</td>
<td>76</td>
<td>89</td>
<td>93</td>
<td>19%</td>
</tr>
<tr>
<td>0.25</td>
<td>200</td>
<td>0.025</td>
<td>22</td>
<td>27</td>
<td>29</td>
<td>24%</td>
<td>6%</td>
<td>79</td>
<td>90</td>
<td>94</td>
<td>15%</td>
</tr>
<tr>
<td>0.25</td>
<td>200</td>
<td>0.050</td>
<td>22</td>
<td>37</td>
<td>39</td>
<td>43%</td>
<td>6%</td>
<td>84</td>
<td>103</td>
<td>112</td>
<td>25%</td>
</tr>
<tr>
<td>0.25</td>
<td>200</td>
<td>0.100</td>
<td>28</td>
<td>72</td>
<td>81</td>
<td>65%</td>
<td>11%</td>
<td>93</td>
<td>147</td>
<td>157</td>
<td>41%</td>
</tr>
<tr>
<td>0.25</td>
<td>200</td>
<td>0.125</td>
<td>37</td>
<td>84</td>
<td>94</td>
<td>61%</td>
<td>11%</td>
<td>106</td>
<td>160</td>
<td>177</td>
<td>40%</td>
</tr>
</tbody>
</table>
Table 4-1 Summary of results for box sections

<table>
<thead>
<tr>
<th>Value</th>
<th>Component 1</th>
<th>Component 2</th>
<th>P</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.65</td>
<td>1.35</td>
<td>1.35</td>
<td>2.13</td>
<td>1.78</td>
<td>1.77</td>
<td>0.41</td>
</tr>
<tr>
<td>1.56</td>
<td>1.36</td>
<td>1.34</td>
<td>2.02</td>
<td>1.79</td>
<td>1.76</td>
<td>0.43</td>
</tr>
<tr>
<td>1.49</td>
<td>1.30</td>
<td>1.26</td>
<td>1.92</td>
<td>1.72</td>
<td>1.65</td>
<td>0.45</td>
</tr>
<tr>
<td>1.36</td>
<td>0.98</td>
<td>0.94</td>
<td>1.76</td>
<td>1.30</td>
<td>1.24</td>
<td>0.50</td>
</tr>
<tr>
<td>1.19</td>
<td>0.81</td>
<td>0.79</td>
<td>1.54</td>
<td>1.07</td>
<td>1.03</td>
<td>0.56</td>
</tr>
<tr>
<td>1.65</td>
<td>1.35</td>
<td>1.35</td>
<td>4.68</td>
<td>3.60</td>
<td>3.54</td>
<td>0.22</td>
</tr>
<tr>
<td>1.41</td>
<td>1.35</td>
<td>1.33</td>
<td>3.99</td>
<td>3.60</td>
<td>3.48</td>
<td>0.23</td>
</tr>
<tr>
<td>1.40</td>
<td>1.15</td>
<td>1.14</td>
<td>3.95</td>
<td>3.08</td>
<td>2.99</td>
<td>0.24</td>
</tr>
<tr>
<td>1.24</td>
<td>0.83</td>
<td>0.79</td>
<td>3.52</td>
<td>2.20</td>
<td>2.08</td>
<td>0.27</td>
</tr>
<tr>
<td>1.09</td>
<td>0.77</td>
<td>0.73</td>
<td>3.08</td>
<td>2.04</td>
<td>1.93</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Table 4-2 Summary of results for channel sections

| No. |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
	CRITICAL	CODE	THEORY	BIAS	CODE	BIAS	THEORY	BIAS																			
1	40	0.000	49	95	97	49%	2%	5.00	3.60	3.60	1.00	0.72	0.72														
1	40	0.025	55	96	98	44%	2%	4.75	3.59	3.59	0.95	0.72	0.72														
1	40	0.050	61	102	105	42%	3%	4.50	3.48	3.47	0.90	0.70	0.69														
1	40	0.100	77	167	178	57%	6%	4.00	2.72	2.66	0.80	0.54	0.53														
1	40	0.150	101	254	260	61%	2%	3.50	2.20	2.20	0.70	0.44	0.44														
1	40	0.200	137	324	339	60%	4%	3.00	1.95	1.93	0.60	0.39	0.39														
1	40	0.250	197	371	401	51%	7%	2.50	1.82	1.77	0.50	0.36	0.35														
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
1	50	0.000	32	61	61	48%	0%	5.00	3.60	3.60	1.00	0.72	0.72														
1	50	0.025	35	61	62	43%	1%	4.75	3.59	3.58	0.95	0.72	0.72														
1	50	0.050	39	67	68	43%	1%	4.50	3.42	3.42	0.90	0.68	0.68														
1	50	0.100	49	122	126	61%	3%	4.00	2.54	2.51	0.80	0.51	0.50														
1	50	0.150	64	175	183	65%	4%	3.50	2.12	2.08	0.70	0.42	0.42														
1	50	0.200	88	214	229	62%	6%	3.00	1.92	1.86	0.60	0.38	0.37														
1	50	0.250	126	261	273	54%	4%	2.50	1.74	1.70	0.50	0.36	0.34														
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
1	66	0.000	18	34	35	49%	1%	5.00	3.60	3.60	1.00	0.72	0.72														
1	66	0.025	20	35	35	44%	1%	4.75	3.58	3.58	0.95	0.72	0.72														
1	66	0.050	22	41	41	46%	1%	4.50	3.31	3.31	0.90	0.66	0.66														
1	66	0.100	28	81	84	67%	4%	4.00	2.34	2.30	0.80	0.47	0.46														
1	66	0.150	36	105	111	67%	5%	3.50	2.05	2.00	0.70	0.41	0.40														
1	66	0.200	49	135	138	64%	2%	3.00	1.81	1.80	0.60	0.36	0.36														
1	66	0.250	71	160	173	59%	7%	2.50	1.66	1.61	0.50	0.33	0.32														
Table 4-2 Summary of results for channel sections

EX	ROY	ROY	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z
1	100	0.000	8	15	15	49%	1%	5.00	3.60	3.60	1.00	0.72	0.72													
1	100	0.025	9	16	16	47%	1%	4.75	3.48	3.48	0.95	0.70	0.70													
1	100	0.050	10	22	22	56%	1%	4.50	2.99	2.99	0.90	0.60	0.60													
1	100	0.100	12	45	48	74%	5%	4.00	2.09	2.05	0.80	0.42	0.41													
1	100	0.150	16	69	74	78%	7%	3.50	1.69	1.64	0.70	0.34	0.33													
1	100	0.200	22	97	106	79%	8%	3.00	1.43	1.37	0.60	0.29	0.27													
1	100	0.250	32	108	123	74%	12%	2.50	1.35	1.27	0.50	0.27	0.25													
1	200	0.000	2	4	4	54%	2%	5.00	3.60	3.60	1.00	0.72	0.72													
1	200	0.025	2	7	7	70%	3%	4.75	2.75	2.74	0.95	0.55	0.55													
1	200	0.050	2	19	20	88%	4%	4.50	1.67	1.66	0.90	0.33	0.33													
1	200	0.100	3	33	35	91%	6%	4.00	1.28	1.26	0.80	0.26	0.25													
1	200	0.150	4	36	39	90%	8%	3.50	1.23	1.19	0.70	0.25	0.24													
1	200	0.200	5	37	43	87%	13%	3.00	1.20	1.13	0.60	0.24	0.23													
1	200	0.250	8	41	50	84%	17%	2.50	1.15	1.05	0.50	0.23	0.21													
Table 4-2 Summary of results for channel sections

0.5	40	0.000	49	70	72	32%	3%	5.00	4.20	4.20	1.00	0.84	0.84
0.5	40	0.025	55	70	72	24%	3%	4.75	4.19	4.20	0.95	0.84	0.84
0.5	40	0.050	61	75	78	22%	4%	4.50	4.06	4.04	0.90	0.81	0.81
0.5	40	0.100	77	122	129	40%	5%	4.00	3.17	3.14	0.80	0.63	0.63
0.5	40	0.150	101	185	193	48%	4%	3.50	2.58	2.57	0.70	0.52	0.51
0.5	40	0.200	137	237	249	45%	5%	3.00	2.28	2.26	0.60	0.46	0.45
0.5	40	0.250	197	272	285	31%	5%	2.50	2.13	2.11	0.50	0.43	0.42

0.5	50	0.000	32	45	45	30%	0%	5.00	4.20	4.20	1.00	0.84	0.84
0.5	50	0.025	35	45	46	23%	1%	4.75	4.18	4.18	0.95	0.84	0.84
0.5	50	0.050	39	51	52	24%	1%	4.50	3.93	3.92	0.90	0.79	0.78
0.5	50	0.100	49	98	102	51%	3%	4.00	2.83	2.79	0.80	0.57	0.56
0.5	50	0.150	64	134	140	54%	4%	3.50	2.43	2.38	0.70	0.49	0.48
0.5	50	0.200	88	160	168	48%	5%	3.00	2.22	2.17	0.60	0.44	0.43
0.5	50	0.250	126	194	209	40%	7%	2.50	2.02	1.95	0.50	0.40	0.39

0.5	66	0.000	18	25	25	30%	1%	5.00	4.20	4.20	1.00	0.84	0.84
0.5	66	0.025	20	25	26	23%	1%	4.75	4.17	4.17	0.95	0.83	0.83
0.5	66	0.050	22	30	30	27%	1%	4.50	3.86	3.85	0.90	0.77	0.77
0.5	66	0.100	28	59	65	57%	9%	4.00	2.74	2.63	0.80	0.55	0.53
0.5	66	0.150	36	77	87	58%	11%	3.50	2.40	2.27	0.70	0.48	0.45
0.5	66	0.200	49	99	113	55%	12%	3.00	2.12	1.99	0.60	0.42	0.40
0.5	66	0.250	71	118	140	49%	16%	2.50	1.94	1.79	0.50	0.39	0.36

T-15
Table 4-2 Summary of results for channel sections

<table>
<thead>
<tr>
<th>Pel</th>
<th>k</th>
<th>h</th>
<th>Critical Flow Rate</th>
<th>Critical Friction Factor</th>
<th>Critical Stagnation Loss</th>
<th>Critical Velocity</th>
<th>Velocity Ratio</th>
<th>Impulse</th>
<th>Impact Loss</th>
<th>Impact Coefficient</th>
<th>Impact Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>100</td>
<td>0.000</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>30%</td>
<td>1%</td>
<td>5.00</td>
<td>4.20</td>
<td>4.20</td>
<td>1.00</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>0.025</td>
<td>9</td>
<td>12</td>
<td>12</td>
<td>27%</td>
<td>1%</td>
<td>4.75</td>
<td>4.06</td>
<td>4.06</td>
<td>0.95</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>0.050</td>
<td>10</td>
<td>16</td>
<td>16</td>
<td>38%</td>
<td>-3%</td>
<td>4.50</td>
<td>3.49</td>
<td>3.56</td>
<td>0.90</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>0.100</td>
<td>12</td>
<td>33</td>
<td>33</td>
<td>62%</td>
<td>-2%</td>
<td>4.00</td>
<td>2.44</td>
<td>2.48</td>
<td>0.80</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>0.150</td>
<td>16</td>
<td>51</td>
<td>60</td>
<td>73%</td>
<td>15%</td>
<td>3.50</td>
<td>1.97</td>
<td>1.82</td>
<td>0.70</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>0.200</td>
<td>22</td>
<td>71</td>
<td>85</td>
<td>74%</td>
<td>16%</td>
<td>3.00</td>
<td>1.67</td>
<td>1.53</td>
<td>0.60</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>0.250</td>
<td>32</td>
<td>79</td>
<td>96</td>
<td>67%</td>
<td>17%</td>
<td>2.50</td>
<td>1.58</td>
<td>1.44</td>
<td>0.50</td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>0.000</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>42%</td>
<td>2%</td>
<td>5.00</td>
<td>4.20</td>
<td>4.20</td>
<td>1.00</td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>0.025</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>32%</td>
<td>3%</td>
<td>4.75</td>
<td>4.37</td>
<td>4.35</td>
<td>0.95</td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>0.050</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>59%</td>
<td>4%</td>
<td>4.50</td>
<td>3.21</td>
<td>3.18</td>
<td>0.90</td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>0.100</td>
<td>3</td>
<td>9</td>
<td>10</td>
<td>68%</td>
<td>6%</td>
<td>4.00</td>
<td>2.56</td>
<td>2.52</td>
<td>0.80</td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>0.150</td>
<td>4</td>
<td>9</td>
<td>10</td>
<td>61%</td>
<td>8%</td>
<td>3.50</td>
<td>2.51</td>
<td>2.43</td>
<td>0.70</td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>0.200</td>
<td>5</td>
<td>9</td>
<td>11</td>
<td>50%</td>
<td>13%</td>
<td>3</td>
<td>2.50</td>
<td>2.35</td>
<td>0.60</td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>0.250</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>31%</td>
<td>17%</td>
<td>2.5</td>
<td>2.50</td>
<td>2.29</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Table 4-2 Summary of results for channel sections

<p>| D | H | F | x | y | z | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
| 0.25 | 40 | 0.000 | 30 | 30 | 31 | 2% | 2% | 1.60 | 1.60 | 1.60 | 0.32 | 0.32 | 0.32 |
| 0.25 | 40 | 0.025 | 31 | 30 | 32 | 3% | 4% | 1.58 | 1.59 | 1.57 | 0.32 | 0.32 | 0.31 |
| 0.25 | 40 | 0.050 | 32 | 34 | 37 | 14% | 8% | 1.56 | 1.50 | 1.46 | 0.31 | 0.30 | 0.29 |
| 0.25 | 40 | 0.100 | 33 | 64 | 70 | 52% | 9% | 1.52 | 1.10 | 1.06 | 0.30 | 0.22 | 0.21 |
| 0.25 | 40 | 0.150 | 35 | 88 | 102 | 66% | 15% | 1.48 | 0.94 | 0.88 | 0.30 | 0.19 | 0.18 |
| 0.25 | 40 | 0.200 | 37 | 105 | 114 | 67% | 8% | 1.44 | 0.86 | 0.83 | 0.29 | 0.17 | 0.17 |
| 0.25 | 40 | 0.250 | 39 | 118 | 123 | 68% | 4% | 1.40 | 0.81 | 0.80 | 0.28 | 0.16 | 0.16 |
| 0.25 | 50 | 0.000 | 19 | 19 | 19 | 0% | 0% | 1.60 | 1.60 | 1.60 | 0.32 | 0.32 | 0.32 |
| 0.25 | 50 | 0.025 | 20 | 20 | 20 | 0% | 1% | 1.58 | 1.59 | 1.59 | 0.32 | 0.32 | 0.32 |
| 0.25 | 50 | 0.050 | 20 | 23 | 23 | 13% | 1% | 1.56 | 1.46 | 1.45 | 0.31 | 0.29 | 0.29 |
| 0.25 | 50 | 0.100 | 21 | 46 | 48 | 55% | 3% | 1.52 | 1.03 | 1.02 | 0.30 | 0.21 | 0.20 |
| 0.25 | 50 | 0.150 | 23 | 59 | 63 | 64% | 6% | 1.48 | 0.91 | 0.89 | 0.30 | 0.18 | 0.18 |
| 0.25 | 50 | 0.200 | 24 | 69 | 76 | 69% | 9% | 1.44 | 0.85 | 0.81 | 0.29 | 0.17 | 0.16 |
| 0.25 | 50 | 0.250 | 25 | 83 | 86 | 71% | 4% | 1.40 | 0.77 | 0.76 | 0.28 | 0.15 | 0.15 |
| 0.25 | 66 | 0.000 | 11 | 11 | 11 | 1% | 1% | 1.60 | 1.60 | 1.60 | 0.32 | 0.32 | 0.32 |
| 0.25 | 66 | 0.025 | 11 | 11 | 11 | 1% | 1% | 1.58 | 1.58 | 1.58 | 0.32 | 0.32 | 0.32 |
| 0.25 | 66 | 0.050 | 11 | 14 | 16 | 27% | 8% | 1.56 | 1.39 | 1.33 | 0.31 | 0.28 | 0.27 |
| 0.25 | 66 | 0.100 | 12 | 29 | 34 | 65% | 13% | 1.52 | 0.97 | 0.91 | 0.30 | 0.19 | 0.18 |
| 0.25 | 66 | 0.150 | 13 | 35 | 41 | 69% | 15% | 1.48 | 0.89 | 0.83 | 0.30 | 0.18 | 0.17 |
| 0.25 | 66 | 0.200 | 13 | 43 | 51 | 74% | 16% | 1.44 | 0.80 | 0.74 | 0.29 | 0.16 | 0.15 |
| 0.25 | 66 | 0.250 | 14 | 51 | 65 | 78% | 22% | 1.40 | 0.74 | 0.66 | 0.28 | 0.15 | 0.13 |</p>
<table>
<thead>
<tr>
<th>EF</th>
<th>CP</th>
<th>CRITICAL</th>
<th>$a_{	ext{SE}}$</th>
<th>$a_{	ext{ME}}$</th>
<th>$a_{	ext{BE}}$</th>
<th>$a_{	ext{TE}}$</th>
<th>$a_{	ext{LE}}$</th>
<th>$a_{	ext{TE}}$</th>
<th>$a_{	ext{TE}}$</th>
<th>$a_{	ext{TE}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>100</td>
<td>0.000</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1%</td>
<td>1%</td>
<td>1.60</td>
<td>1.60</td>
<td>1.60</td>
</tr>
<tr>
<td>0.25</td>
<td>100</td>
<td>0.025</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7%</td>
<td>1%</td>
<td>1.58</td>
<td>1.53</td>
<td>1.53</td>
</tr>
<tr>
<td>0.25</td>
<td>100</td>
<td>0.050</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>37%</td>
<td>-3%</td>
<td>1.56</td>
<td>1.22</td>
<td>1.24</td>
</tr>
<tr>
<td>0.25</td>
<td>100</td>
<td>0.100</td>
<td>5</td>
<td>16</td>
<td>15</td>
<td>65%</td>
<td>-2%</td>
<td>1.52</td>
<td>0.89</td>
<td>0.90</td>
</tr>
<tr>
<td>0.25</td>
<td>100</td>
<td>0.150</td>
<td>6</td>
<td>22</td>
<td>26</td>
<td>79%</td>
<td>15%</td>
<td>1.48</td>
<td>0.74</td>
<td>0.69</td>
</tr>
<tr>
<td>0.25</td>
<td>100</td>
<td>0.200</td>
<td>6</td>
<td>31</td>
<td>37</td>
<td>84%</td>
<td>16%</td>
<td>1.44</td>
<td>0.63</td>
<td>0.58</td>
</tr>
<tr>
<td>0.25</td>
<td>100</td>
<td>0.250</td>
<td>6</td>
<td>34</td>
<td>41</td>
<td>85%</td>
<td>17%</td>
<td>1.40</td>
<td>0.60</td>
<td>0.55</td>
</tr>
<tr>
<td>0.25</td>
<td>200</td>
<td>0.000</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-34%</td>
<td>2%</td>
<td>1.60</td>
<td>1.60</td>
<td>1.60</td>
</tr>
<tr>
<td>0.25</td>
<td>200</td>
<td>0.025</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>14%</td>
<td>3%</td>
<td>1.52</td>
<td>1.22</td>
<td>1.22</td>
</tr>
<tr>
<td>0.25</td>
<td>200</td>
<td>0.050</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>68%</td>
<td>4%</td>
<td>1.44</td>
<td>0.71</td>
<td>0.70</td>
</tr>
<tr>
<td>0.25</td>
<td>200</td>
<td>0.100</td>
<td>3</td>
<td>11</td>
<td>11</td>
<td>73%</td>
<td>6%</td>
<td>1.28</td>
<td>0.59</td>
<td>0.58</td>
</tr>
<tr>
<td>0.25</td>
<td>200</td>
<td>0.150</td>
<td>4</td>
<td>11</td>
<td>12</td>
<td>68%</td>
<td>8%</td>
<td>1.12</td>
<td>0.57</td>
<td>0.55</td>
</tr>
<tr>
<td>0.25</td>
<td>200</td>
<td>0.200</td>
<td>5</td>
<td>12</td>
<td>14</td>
<td>60%</td>
<td>13%</td>
<td>0.96</td>
<td>0.56</td>
<td>0.53</td>
</tr>
<tr>
<td>0.25</td>
<td>200</td>
<td>0.250</td>
<td>8</td>
<td>13</td>
<td>16</td>
<td>50%</td>
<td>17%</td>
<td>0.80</td>
<td>0.53</td>
<td>0.49</td>
</tr>
</tbody>
</table>
REFERENCES

ABAQUS/STANDARD (Version 5.5), “Manual and Examples”
Hibbit Karlsson & Sorensen, Inc.
Email: hks@hks.com

AISI (1996), “Specification for the Design of Cold-Formed Steel Structural Members”, American Iron and Steel Institute, 1996 EDITION

DeWolf J., Pekoz T., Winter G. (1976), Closure to “Local and Overall Buckling of Cold-Formed Steel Members”, ASCE J. Struct. Div., vol. 102, No ST2

European Convention for Constructional Steelwork (1977), "European Recommendations for the Stressed Skin Design of Steel Structures", ECCS-XVII-77-1E, March

Marsh C. (1960), "Strength of Aluminum", Alcan, Canada Products Limited

Rhodes J. (1990), "Thin-walled Structures", Vol. 9 No S1-4 1990, ISSN 0263-8231

Walker A.C. (1975), “Design and Analysis of Cold-Formed Section”, John Wiley & Sons, First publishing

