NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. Č-30, and subsequent amendments.

AVIS

La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.
STABILITY OF LEAST SQUARES INVERSE POLYNOMIALS
AND REALIZATION OF LOW SENSITIVITY
2-D RECURSIVE DIGITAL FILTERS

SRIDHAR PALACHERLA

A Thesis
in
the Department
of
Electrical & Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University
Montréal, Québec, Canada

February 1991

© Sridhar Palacherla, 1991
The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-64709-4
ABSTRACT

Sridhar Palacherrla

Least square inverse (LSI) polynomials are used to stabilize 1-D recursive digital filters. It is not explicitly proved by Robinson that the 1-D LSI of any polynomial having zeros on the unit circle is stable or not. In this thesis we prove that the LSI of a given 1-D polynomial is always devoid of zeros on the unit circle irrespective of whether original polynomial has such zeros or not. Also if LSI polynomial chosen is lacunary then it need not be stable. Proper explanation is given for this which is missing in the proof given by Robinson.

The second part of the thesis is concerned with the BIBO stability of n-D practical digital filters where only one of the independent variables of n-D signal is temporal and other variables are spatial. Double least square inverse method is used to stabilize such filters. We prove that the LSI of the denominator polynomial of a practical n-D digital filter will always be stable in the practical and less restrictive sense.

The third part of the thesis deals with the design and implementation of 2-D recursive digital filters. The second order real coefficient 2-D transfer function can be obtained as a sum of two first order 2-D all-pass complex coefficient transfer functions, in which one complex all-pass transfer function coefficients are complex conjugate of other complex transfer function. The coefficients of complex all-pass transfer function are obtained in the design using non-linear optimization. The resulting 2-D real coefficient filter is implemented using complex multipliers. It is shown that the 2-D filter designed and implemented in this manner is less sensitive in the pass band to the coefficient quantization.
ACKNOWLEDGEMENTS

I wish to express my gratitude to my thesis supervisor, Dr. M.N.S. Swamy for his guidance during this research work. I would like to thank Dr. P.S. Reddy for his assistance during the preparation of this thesis. This work was supported, on part, by a Grant from National Sciences and Engineering Research Council of Canada awarded to Dr. M.N.S. Swamy.
TABLE OF CONTENTS

LIST OF FIGURES .. vii
LIST OF TABLES .. viii
CHAPTER 1 : INTRODUCTION .. 1

CHAPTER 2 : LEAST SQUARES INVERSE POLYNOMIALS 7
 2.1 Introduction ... 7
 2.2 Preliminaries ... 7
 2.3 Stability of 1-D LSI Polynomials ... 11

CHAPTER 3 : PRACTICAL-BIBO STABILITY OF n-D DIGITAL FILTERS 17
 3.1 Introduction ... 17
 3.2 Some Preliminaries ... 17
 3.3 A Proof of Practical Stability of n-D LSI Polynomials 20

CHAPTER 4 : DESIGN OF QUARTER PLANE RECURSIVE 2-D DIGITAL FILTERS ... 27
 4.1 Introduction ... 27
 4.2 Review of Structural Boundedness .. 27
 4.3 Realization of Real Second Order 2-D Digital Filter 30
 4.4 Design of Quarter Plane 2-D Recursive Digital Filters 39
 4.5 Effects of Finite Word Length ... 46
LIST OF FIGURES

Figure 4.1 : Magnitude as a function of multiplier coefficient.

Figure 4.2(a) : Parallel connection of two all-pass sections.

Figure 4.2(b) : Single complex all-pass section for processing $u(m,n)$.

Figure 4.3(a) : Complex delay (both in z_1 and z_2).

Figure 4.3(b) : Complex adder.

Figure 4.3(c) : Complex multiplier.

Figure 4.4 : Realization of first order complex coefficient 2-D all-pass section.

Figure 4.5 : Amplitude response of the one section low-pass filter.

Figure 4.6 : Amplitude response of the cascaded two section low-pass filter.
LIST OF TABLES

Table 4.1 : Error function values before and after truncation of binary multiplier coefficients.
CHAPTER 1

INTRODUCTION

Digital signal processing (DSP) has become an essential element of modern technology and has achieved wide spread acceptance in such areas as filtering, data communication, bio-medical engineering, speech processing, radar and sonar.

The origins of DSP can be found in the computational algorithms of the seventeenth and eighteenth century mathematicians Sir Isaac Newton and Karl Friedrich Gauss. In the late 1950s and early 1960s, the digital processing of signals using general-purpose computers began to appear. J.F. Kaiser popularized the several versions of the Z-transform for use as a digital filter design tool. It was soon discovered that filters, which emulated their classic analog counter parts, could be designed in a straightforward manner. Digital filters were found to be particularly effective in processing low frequency signals. Because of their digital nature, results were always repeatable and therefore superior to analog filters. Furthermore, filters of high precision and large dynamic range can be achieved using digital hardware.

Signal processing is concerned with two basic tasks - information rearrangement and information reduction. Computer aided tomography (CAT), image scanning, image enhancement and spectral analysis are examples of information rearrangement. In a CAT scanner the information about the structure of an unknown object is first transferred to a series of electromagnetic waves, which are then sampled to produce an array of numbers, which, in turn, are processed by a computational algorithm and finally displayed on a cathode
ray tube screen. Information reduction is concerned with the removal of extraneous information. Noise removal, parameter estimation are examples of this category.

Digital signal processing is concerned with the processing of signals which can be represented as sequence of numbers and multi dimensional signal processing is concerned with the processing of signals which can be represented as multi dimensional arrays, such as sampled images and sampled waveforms. During the past decade, there has been a considerable research activity in the area of two-dimensional and multi-dimensional digital filters. For a given response characteristic, recursive digital filters have less hardware requirements and so wherever a linear phase is not required recursive digital filters are preferred to non-recursive filters.

The major problem associated with the design of recursive 2-D digital filter is maintaining stability at the time of design using computer aided optimization. One way of guaranteeing stability is to incorporate stability constraints while doing optimization itself [1] [2]. But this requires a lot of computer time since stability constraints are to be checked for at the end of every iteration of optimization process. Another method [3] which does not require stability test after each iteration need not always produce an optimal solution as pointed out in [4]. The stability problem of two and multi-dimensional digital filters is well presented in the literature [5][6]. In general, it is difficult to take stability constraints into account during the stage of approximation problem. From this point of view it would be useful to develop techniques by which the stability problem could be separated from the approximation. Then the problem is how an unstable 2-D transfer function (obtained at the end of the approximation procedure) can be stablized with out affecting the magnitude characteristics.
Shanks et al. [7] proposed a technique by which this can be achieved. Their technique is based entirely on the validity of their conjecture that planar least squares inverse (PLSI) polynomial of a given arbitrary 2-D polynomial is stable. Making use of the above conjecture, they suggested that the double PLSI of the denominator of the original (unstable) filter gives its minimum phase version with amplitude spectrum roughly equal to that of original filter. By examples they also verified that the larger the dimensions of the intermediate PLSI filter, the better is the resemblance of the amplitude spectra, but they could not prove the conjecture.

Later, Genin and Kamp [8] came up with a counter example for the above conjecture (known as Shanks’ conjecture) by proving that a polynomial of third degree in two variables allows a PLSI polynomial of lower degree in two variables, which violates the stability conditions. Keeping the above counter example in view, Jury [9] introduced a modification to Shank’s conjecture, which requires that the PLSI polynomial should be of the same degree or higher than the original polynomial. Anderson and Jury [10][11] verified the modified conjecture for special lower order polynomials which are linear in two variables and for some higher order polynomials. Even though no attempt has been made to prove or disprove the conjecture in [12] the result led its authors to make a conjecture that PLSI polynomial is asymptotically stable. Later, Kayran and King [13] have given a counter example to Jury’s modified conjecture showing that a third degree two variable polynomial possessed a third degree PLSI polynomial which is unstable.

Shanks’ conjecture has been recently modified [14]. The modification suggested in [14] to Shanks’ conjecture is that the original 2-D polynomial should be free from zeros on the unit hyper circle. Reddy et al. [15] gave proof for the
same. But there is a flaw in that proof as pointed out by two groups of researchers independently [16][17]. In their paper [15] authors used 2-D to 1-D form preserving transformation. In doing that transformation 1-D polynomial obtained from 2-D polynomial became lacunary with the consequences that its stability can not be guaranteed.

The application of multidimensional (n-D) digital signal processing is in areas like seismic, sonar and television image processing. In many situations which occur in practice the independent variables $i_1, i_2, i_3, ... i_n$ of an n-D signal $x(i_1, i_2, i_3, ..., i_n)$ are usually spatial variables except perhaps one variable, say i_j is a temporal variable. Practically the temporal variable is unbounded where as the other spatial variables are bounded. In [18], using this concept of only one variable being bounded, a theorem is developed for the practical-BIBO stability of n-D discrete systems.

In [18] it is shown that the conventional-BIBO stability conditions are too restrictive for many applications. Subsequently in [19] a proof is given to show that the least squares inverse (LSI) of the denominator polynomial of a linear shift invariant n-D digital filter satisfies the practical-BIBO stability conditions given in [18]. But unfortunately there is a flaw in their proof as reported in [20]. In their proof [19] the authors make use of the result of Robinson [21] which says that the least squares inverse polynomial of any 1-D polynomial is always stable. But the result of Robinson is not true if the least squares inverse selected is lacunary in the sense that it has some missing terms between the highest power term and the constant term [22].

The choice of the digital filter structure and the direct design of filters with quantized coefficients remain as important research areas. The problem in digital filter implementation is the sensitivity of the magnitude or phase of the
filter frequency response to minor variations of the multiplier coefficients. Sometimes the quantized filter may fail to meet specifications even though unquantized filter does. The sensitivity of the filter response to errors in the parameters is dependent on the structure of the filter realization. Thus, for efficient implementation of digital filters, low sensitivity digital filter structures requiring less number of bits per multiplier coefficients are required.

The wave digital filters [23] obtained from the classical doubly terminated LC networks, are low sensitivity digital filters. Digital lattice filters [24] derived from the LC lattice filters are known for low pass-band sensitivity. Swamy and Thyagarajan [25] introduced a new type of wave digital filter structure, which is translated from the classical continuous time networks by considering each element in the continuous domain as a two-port rather than as a one-port. They showed that these structures have low sensitivity properties similar to wave digital filters. Vaidynathan et al. [26] developed low sensitivity digital filter structures using bounded real property of the transfer function.

Vaidynathan, Mitra and Neuve [27] have developed a procedure for synthesizing a 1-D digital transfer function as a parallel connection of two all-pass sections without reference to continuous time LC synthesis. They showed that certain digital transfer functions (which can be decomposed in this fashion) are realizable by structurally passive all-pass structures. They implemented each of the two all-pass sections as a cascade of first and second order building blocks.

The concept of complex coefficient 1-D digital filters is not new. Several authors have discussed these complex filters [28-31]. Fettweis [31] derived complex wave digital filters from complex analog reference filters and suggested their use in the processing of complex signals. Recently, Saramaki et
al.[32] realized low sensitivity 1-D recursive filters using complex all-pass structures. They ensured structural passivity property by implementing the second order stage using first order complex all-pass structures.

Swamy et al.[33] introduced 2-D wave digital filters using doubly terminated two variable LC-ladder configuration. These filters have low sensitivities associated with finite word length of coefficients. In this thesis, we consider a 2-D digital filter characterized by complex impulse response sequence, that is, a 2-D digital transfer function with complex coefficients. We show that the real coefficient 2-D digital filter derived from the complex coefficient all-pass sections satisfy the low sensitivity in the pass band as is the case of 1-D digital filters [32].

In this thesis we deal with:

(1) A new look at the proof of guaranteed stability of 1-D Least Square Inverse (LSI) polynomials.

(2) The problem of stabilizing the unstable n-D practical digital filters using the double least square Inverse method.

(3) A new technique for designing quarter plane second order low sensitivity 2-D recursive filters using complex coefficient first order all-pass 2-D filter.
CHAPTER 2

LEAST SQUARE INVERSE POLYNOMIALS

2.1 Introduction

As is well known, recursive digital filters are superior to non-recursive digital filters from the point of view of memory and cost requirements to satisfy the same design specifications. So invariably one goes in for recursive digital filters when linear phase is not a requirement to be met by the filter. In this chapter, we explain why a lacunary 1-D Least Square Inverse polynomial is not guaranteed to be stable as pointed out in [16], [17]. Also we deal with some preliminaries by giving some definitions on LSI polynomials and also furnish for ready reference a stability theorem on 1-D polynomials.

2.2 Some Preliminaries

In this section we state for the sake of completeness what is meant by least squares inverse polynomials in the case of both 1-D and 2-D polynomials and give a stability theorem pertaining to 1-D polynomials. We also briefly mention how the least squares inverse polynomials are obtained in these two cases.

1-D Polynomials:

Let

\[A(Z) = \sum_{i=0}^{M} a_i Z^i \]

(2.1)
be an 1-D polynomial of degree M, where a_i's are known. Then a polynomial denoted by

$$B(Z) = \sum_{i=0}^{N} b_i Z^i$$

(2.2)

is called the LSI polynomial of $A(Z)$, if $B(Z)$ is obtained such that

$$B(Z) = \frac{1}{A(Z)} \text{ on } |Z| = 1$$

(2.3)

and the coefficients of $B(Z)$ namely b_i's, are obtained by minimizing the error energy function E given by

$$E = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| 1 - A(e^{-j\omega})B(e^{-j\omega}) \right|^2 d\omega$$

(2.4)

with respect to each one of the coefficients b_i. We assume that the LSI polynomial in (2.2) is a full polynomial without any missing terms between the highest power term and the constant. It can be shown that the following expressions are equivalent to (2.4). If $C(Z) = A(Z)B(Z)$ then,

$$E = \left(1 - c_0 \right)^2 + \sum_{i>0}^{M+N} c_i^2$$

(2.5)

where c_i's are coefficients of the polynomial $C(Z)$. Also

$$E = \frac{1}{2\pi j} \oint_{|Z|=1} \left[1 - A(Z)B(Z) \right] \left[1 - A(Z^{-1})B(Z^{-1}) \right] \frac{dZ}{Z}$$

(2.6)

and
\[E = (1 - 2a_0b_0) + \sum_{s=-k}^{k} \alpha_s \beta_s \]

(2.7)

where \(\alpha_s \) and \(\beta_s \) are the autocorrelation coefficients of the polynomials \(A(Z) \) and \(B(Z) \) respectively and \(k \) is an integer equal to either \(M \) or \(N \), whichever is smaller [21].

It is more convenient to use equation (2.5) or (2.7) to minimize \(E \) with respect to each \(b_i \). For this we obtain \(\frac{\partial E}{\partial b_i} \), for \(i=0,1,\ldots,N \) and make \(\frac{\partial E}{\partial b_i} = 0 \), for \(i=0,1,\ldots,N \). Thus we get a set of linear algebraic equations involving \(b_i \)'s and can be put in the compact form as below [21].

\[T b = a \]

(2.8)

where \(T \) is an \((N+1) \times (N+1)\) square matrix whose entries are the autocorrelation coefficients of the polynomial \(A(Z) \), \(b \) and \(a \) are column vectors such that

\[b = \begin{bmatrix} b_0, b_1, \ldots, b_N \end{bmatrix}^t \]

and

\[a = \begin{bmatrix} a_0, 0, 0, \ldots, 0 \end{bmatrix}^t \]

where \(t \) denotes the transpose. It may be noted that the matrix \(T \) is Toeplitz, centro-symmetric and positive definite. Since \(T \) is positive definite we have a unique solution for \(b \) when we solve (2.8) and hence a unique \(B(Z) \).

\textit{Definition 2.1} : The 1-D polynomial \(B(Z) \) is said to be stable if \(B(Z) \neq 0, |Z| \leq 1 \).

Robinson [21] has proved that the LSI polynomial \(B(Z) \) corresponding to a given \(A(Z) \) is always stable. We shall discuss this later in section 3.3.
2-D PLSI polynomials:

Let

\[
A(Z_1, Z_2) = \sum_{i=0}^{M_1} \sum_{j=0}^{M_2} a_{ij} Z_1^i Z_2^j
\]

be a given 2-D polynomial (quarter plane and first-quadrant). Then the 2-D polynomial denoted by

\[
B(Z_1, Z_2) = \sum_{i=0}^{N_1} \sum_{j=0}^{N_2} b_{ij} Z_1^i Z_2^j
\]

is a PLSI polynomial of \(A(Z_1, Z_2) \) if

\[
B(Z_1, Z_2) = \frac{1}{A(Z_1, Z_2)} \quad \text{for } |Z_1| = 1, |Z_2| = 1
\]

and the coefficients \(b_{ij} \)'s are obtained by minimizing the error energy function \(E \) given by

\[
E = \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left| 1 - A(e^{-j\omega_1}, e^{-j\omega_2}) B(e^{-j\omega_1}, e^{-j\omega_2}) \right|^2 d\omega_1 d\omega_2
\]

with respect to each coefficient \(b_{ij} \) as in 1-D case. We make a mention that there are three other expressions for \(E \), as in 1-D case, which are equivalent to the one given in (2.12). We can formulate the normal equations in the form

\[
Tb = a
\]

following the simple procedure given in [34] where \(T \) is a Toeplitz and centro-
symmetric matrix of order \((N_1+1)\times(N_2+1)\) and its entries are 2-D autocorrelation coefficients of \(A(Z_1, Z_2)\). \(b\) and \(a\) are column matrices given by

\[
b = \begin{bmatrix} b_{00}, b_{01}, b_{02}, \ldots, b_{0N_2}, b_{10}, b_{11}, \ldots, b_{N_1N_2} \end{bmatrix}^t
\]

and

\[
a = \begin{bmatrix} a_{00}, 0, 0, \ldots, 0, 0, 0, \ldots, 0 \end{bmatrix}^t
\]

The solution of (2.13) gives \(b\) and it is unique since \(T\) is positive definite [35]. It may be noted that [36]

\[
E_{\text{min}} = 1 - b_{00}^t a_{00}.
\]

(2.18)

Equation (2.18) means that the element \(b_{00}\), namely, the constant term of \(B(Z_1, Z_2)\) is incidentally maximized while minimizing \(E\) of (2.12).

2.3 Stability of 1-D LSI Polynomials

If

\[
A(Z)A(Z^{-1}) = r_0 + r_1(Z+Z^{-1}) + \ldots + r_M(Z^M + Z^{-M})
\]

(2.19)

then \(r_0, r_1, \ldots, r_M\) are in fact the autocorrelation coefficients of the 1-D polynomial \(A(Z)[21]\). For example if

\[
A_1(Z) = a_0 + a_1Z + a_2Z^2
\]

then the autocorrelation coefficients of \(A_1(Z)\) are

\[
r_0 = a_0^2 + a_1^2 + a_2^2
\]

\[
r_1 = a_0a_1 + a_1a_2
\]
$$r_2 = a_0a_2$$

With the above definition for autocorrelation coefficients we discuss in this section the result of Robinson [21] with regard to the stability of the LSI 1-D polynomials. We try to explain why the LSI 1-D polynomial need not necessarily be stable if it is chosen to be lacunary in the sense there are some missing terms in it.

It is shown in [21] that corresponding to the polynomial $A(Z)$ there exist, in general, $2^M - 1$ other 1-D polynomials of order M all of whom have the same autocorrelation coefficients as $A(Z)$. All these 2^M polynomials belong to a 'family'. It has been shown [21, p131] that out of these 2^M polynomials belonging to the same 'family' as $A(Z)$ only that polynomial with the highest constant term is stable. It must be noted here that if $A(Z)$ has a zero on the unit circle, no member of the 'family' is stable. Let us take, for example a simple real polynomial $A_1(Z)$,

$$A_1(Z) = a_0 + a_1Z + a_2Z^2 = (p_1 + q_1Z)(p_2 + q_2Z)$$

Let p_i and q_i be real such that $|p_i| > |q_i|$ which makes $A_1(Z)$ a stable polynomial according to Theorem 2.1. The other three polynomials which have the same autocorrelation coefficients as $A_1(Z)$ are

$$A_{1a}(Z) = (p_1 + q_1Z)(q_2 + p_2Z)$$
$$A_{1b}(Z) = (q_1 + p_1Z)(p_2 + q_2Z)$$
$$A_{1c}(Z) = (q_1 + p_1Z)(q_2 + p_2Z)$$

(2.20)

Of these four polynomials only $A_1(Z)$ is stable since $|p_i| > |q_i|$ making its constant term a_0 being the highest when compared to the constant term of each
one of the three polynomials given in (2.20). It may be noted that the members of the 'family' of \(A(Z) \) can be constructed either by factorizing \(A(Z) \) as product of first order factors as done above or by solving the following set of equations:

\[
\begin{align*}
a_0 \cdot r_0^2 + a_1 \cdot r_1 + a_2 \cdot r_2 &= r_0 \\
a_0 \cdot a_1 \cdot r_1 + a_1 \cdot a_2 \cdot r_2 &= r_1 \\
a_0 \cdot a_2 \cdot r_2 &= r_2
\end{align*}
\]

where \(r_0^2, r_1, r_2 \) are the autocorrelation coefficients of the given \(A(Z) \). It may be noted that the existence of solution to the set of equations (2.21) is guaranteed and in fact (2.21) has four solutions including the one corresponding to the coefficients of the given \(A(Z) \). In general all the \(2^M \) members of the 'family' of \(A(Z) \) can be obtained by solving a set of \((M+1) \) equations of the type given in (2.21).

In [21] Robinson has proved that the LSI polynomial \(B(Z) \) of \(A(Z) \) is always stable. This is based on the fact that while obtaining \(B(Z) \) coefficients we minimize the error energy function \(E \) and obtain [21] \(E_{\text{min}} \) as

\[
E_{\text{min}} = 1 - a_0 b_0
\]

(2.21)

Since \(E_{\text{min}} \) of (2.21) is the lowest error energy, \(b_0 \) which is the constant term of \(B(Z) \) is the greatest in magnitude when compared to the other members of the 'family' of \(B(Z) \) which are obtainable by solving the set of \((N+1) \) equations of the following type as discussed in this section

\[
\begin{align*}
b_0 \cdot r_0^2 + b_1 \cdot r_1 + \ldots + b_N \cdot r_N &= r_0 \\
b_0 \cdot b_1 \cdot r_1 + b_1 \cdot b_2 \cdot r_2 + \ldots + b_{N-1} \cdot b_N \cdot r_N &= r_1 \\
\ldots &
\end{align*}
\]
\[b_0 \cdot b_{N-1}^* + b_1 \cdot b_N^* = r_{N-1} \]
\[b_0 \cdot b_N^* = r_N \] \hspace{1cm} (2.22)

where \(r_i \)'s are the autocorrelation coefficients of \(B(Z) \). In order that \(B(Z) \) is the stable polynomial, \(b_0 \) has to be greatest in magnitude when compared to the constant terms of each one of the \(2^N - 1 \) polynomials whose coefficients are obtainable by solving equations (2.22). What this means is that if you solve (2.22) maximizing \(b_0^* \), the only solution we get should be such that \(b_0^* = b_0 \). This will be always guaranteed provided the \(B(Z) \) polynomial chosen has no missing coefficients since we will be then using exactly identical left hand side expressions as in (2.22) in finding out \(r_i \)'s used in (2.22).

We want to mention here that in order for the proof given by Robinson to be complete, we have to show that the LSI polynomial \(B(Z) \) is free of zeros on the unit circle. This is required because even if \(b_0 \) is the highest in magnitude the polynomial \(B(Z) \), though not lacunary, need not be stable if \(B(Z) = 0 \) on \(|Z| = 1 \) as mentioned earlier, since no member of the 'family' of \(B(Z) \) is stable in that case. So we state and prove the following theorem.

Theorem 2.1: The LSI polynomial \(B(Z) \) of the given \(A(Z) \) is always devoid of zeros on the unit circle irrespective of whether \(A(Z) \) has such zeros.

Proof: In order that \(B(Z) = 0 \) on \(|Z| = 1 \) irrespective of the polynomial \(A(Z) \) for some frequency \(\omega \) other than the frequencies at which \(A(e^{j\omega}) = 0 \),

\[A(e^{j\omega})B(e^{j\omega}) = 0, \text{ for some value of } \omega \] \hspace{1cm} (2.23)
This requires,

$$\text{Re} \left[A(e^{j\omega})B(e^{j\omega}) \right] = 0, \quad \text{Im} \left[A(e^{j\omega})B(e^{j\omega}) \right] = 0 \quad (2.24)$$

That is,

$$c_0 + \sum_{i=1}^{M+N} f_i(\omega)c_i = 0$$

$$\sum_{i=1}^{M+N} g_i(\omega)c_i = 0 \quad (2.25)$$

where $f_i(\omega)$ and $g_i(\omega)$ are trigonometric functions and c_i are coefficients of the polynomial $C(Z) = A(Z)B(Z)$. We will now see whether a consistent set of c_i can be obtained by solving (2.25) such that $B(e^{j\omega}) = 0$ for some ω. In (2.25) there are $(M+N+1)$ number of c_i which, of course, are functions of a_i and b_i. So it looks as though we can select $(M+N+1-2) = (M+N-1)$ number of c_i arbitrarily and solve the two equations (2.25) for the remaining two c_i. But we show now that such a method does not work. When we select values for $(M+N-1)$ number of c_i arbitrarily we have these many equations involving a_i and b_i coefficients which are together $(M+N+2)$ in number. So these $(M+N-1)$ equations can be solved for $(M+N+2)$ unknowns, namely a_i and b_i. When once all a_i and b_i are fixed the remaining two c_i are readily known without having to solve the two equations (2.25). In case we solve (2.25) for the remaining two c_i it will yield different values for the two c_i, not consistent with the values already obtained. Thus there exists no consistent set of values for c_i such that equations (2.25) are satisfied. So $B(e^{j\omega})$ is not equal to zero for any ω. Hence the proof of Theorem 2.2.
Having completed the proof of supplementary theorem (Theorem 2.2) we have set right the proof of Robinson [21] on the guaranteed stability of the LSI polynomial $B(Z)$. But one more thing which was not explained or mentioned explicitly in [21] by Robinson is that whether we can choose the LSI polynomial as lacunary (with some missing coefficients) and still guarantee its stability. The answer is no, as mentioned in [16],[12]. We give here proper explanation for the same. Suppose there are some missing terms (coefficients) in $B(Z)$, though we have minimized E and thus maximized b_0 (since $E_{\text{min}} = 1 - a_0 b_0$ even in this case) we can not guarantee a solution such that $b_0' = b_0$ when we solve equations (2.22) maximizing b_0'. This is because while obtaining r_i's of (2.22) we have not used exactly identical expressions for the left hand side of (2.22) since some b_i's are missing in $B(Z)$. So b_0' may be some times greater than b_0. Hence $B(Z)$ need not be stable if it is lacunary.

In 2-D case, in general, the PLSI polynomial is not stable and so further research has to be done to prove Shank's conjecture at least in some modified form. We have clarified certain points regarding Robinson's Proof of guaranteed stability of 1-D LSI Polynomials.
CHAPTER 3

PRACTICAL-BIBO STABILITY OF n-D DIGITAL FILTERS

3.1 Introduction

In this chapter we deal with a new proof of practical-BIBO stability of n-D digital filters and show that the n-D LSI of the filter denominator polynomial satisfies the practical-BIBO stability requirement. For the sake of completeness, we first present some theorems pertaining to conventional and practical-BIBO stability of n-D digital filters. We then present the basic definition of the LSI of an n-D polynomial. We also discuss a basic fact with respect to the stability of 1-D polynomials. A theorem on practical-BIBO stability of n-D digital filters is given by showing that the least squares inverse of the denominator polynomial of an n-D digital filter always satisfies the practical-BIBO stability requirement. The results of this chapter have appeared as a paper[42].

3.2 Some Preliminaries

This section contains some preliminary concepts and results already existing in the literature. The material presented in this section will be very useful for the easy understanding of the results presented in the subsequent sections.

Consider the transfer function of an n-D linear shift invariant digital filter

\[H(Z_1, Z_2, \ldots, Z_n) = \frac{P(Z_1, Z_2, \ldots, Z_n)}{Q(Z_1, Z_2, \ldots, Z_n)} \quad (3.1) \]

We assume that \(H(Z_1, Z_2, \ldots, Z_n) \) has no non essential singularities of the
second kind on the unit polydisc.

An n-D polynomial \(B(Z_1, Z_2, \ldots, Z_n) \) is the LSI polynomial of \(Q(Z_1, Z_2, \ldots, Z_n) \) if

\[
B(Z_1, Z_2, \ldots, Z_n) = \frac{1}{Q(Z_1, Z_2, \ldots, Z_n)} \quad \text{for} \quad |Z_1| = |Z_2| = \ldots = 1
\]

It may be noted that the coefficients \(b_{ij} \) of \(B(Z_1, Z_2, \ldots, Z_n) \) are to be obtained by minimizing the error function

\[
E = (1-c_{0,0,\ldots,0})^2 + \sum_{i_1, i_2, \ldots, i_n} c_{i_1, i_2, \ldots, i_n}^2
\]

where \(c \)'s are the coefficients of the n-D polynomial \(C(Z_1, Z_2, \ldots, Z_n) = B(Z_1, Z_2, \ldots, Z_n) Q(Z_1, Z_2, \ldots, Z_n) \). Following the proof given for 2-D polynomials [36] it can be shown that the minimum value of \(E \) will be

\[
E_{\text{min}} = \left[1 - b_{0,0,\ldots,0} q_{0,0,\ldots,0} \right]
\]

where \(b_{0,0,\ldots,0} \) and \(q_{0,0,\ldots,0} \) are the constant terms of \(B(Z_1, Z_2, \ldots, Z_n) \) and \(Q(Z_1, Z_2, \ldots, Z_n) \) respectively. Obviously from (3) since \(q_{0,0,\ldots,0} \) is a known quantity \(b_{0,0,\ldots,0} \) is the maximum corresponding to the set of n-D autocorrelation coefficients obtained while minimizing \(E \) and thus arriving at all \(b_{ij} \) values [36].

Consider a 1-D real polynomial \(B(Z) \),

\[
B(Z) = \sum_{i=0}^{N} b_i z^i
\]
B(Z) is said to be stable if all its zeros are outside the unit circle. Let

\[B(Z)B(Z^{-1}) = r_0 + r_1(Z + Z^{-1}) + \ldots + r_N(Z^N + Z^{-N}) \]

Where \(r_0, r_1, \ldots, r_N \) are called autocorrelation coefficients of B(Z). In terms of the coefficients \(b_i \) we can write \(r_i \) as

\[
\begin{align*}
 b_0^2 + b_1^2 + \ldots + b_N^2 &= r_0 \\
 b_0b_1 + b_1b_2 + \ldots + b_{N-1}b_N &= r_1 \\
 b_0b_2 + b_1b_3 + \ldots + b_{N-2}b_N &= r_2 \\
 &\vdots \\
 b_0b_N &= r_N
\end{align*}
\]

(3.4)

As mentioned in the previous section, in general there are \(2^N \) polynomials including B(Z) having the same autocorrelation coefficients as B(Z) [21]. This means if we rewrite equations (3.4) by replacing each \(b_i \) by \(b_i' \) on the left hand side of the equations and call them equations (3.5) and solve them for \(b_i' \) we will be able to get \(2^N \) sets of solutions for the coefficients \(b_i' \). Out of all these \(2^N \) polynomials, one corresponding to each set of \(b_i' \), only one of the polynomials will be stable. It is proved in [21] that the polynomial having the highest constant term will be the stable one. If we are interested in this stable one only we should solve equations (3.5) maximizing \(b_0' \). So this becomes a constrained optimization problem and can be handled using Lagrangian multiplier method.
3.3 A Proof of Practical stability n-D LSI Polynomials

In this section, we present the main result of the thesis. That is, if $B(Z_1, Z_2, \ldots, Z_n)$ is the n-D LSI polynomial of the denominator polynomial $Q(Z_1, Z_2, \ldots, Z_n)$ of an n-D transfer function then we show that $B(Z_1, Z_2, \ldots, Z_n)$ is stable in the practical sense [18],[19]. That is,

$$B(0,0,\ldots,0,Z_k,0,0,\ldots,0) \neq 0 \text{ for } |Z_k| \leq 1, \quad k=1,2\ldots,n$$

We first prove some simple result with respect to 2-D PLSI polynomials and extend the discussions to n-D LSI polynomials to prove the main result.

Theorem 3.1: If $B(Z_1, Z_2)$ is a 2-D PLSI polynomial of order one in both the variables, then $B(Z,0)$ and $B(0,Z)$ are stable.

Proof: Let

$$B(Z_1,Z_2)=b_{00}+b_{01}Z_2+b_{10}Z_1+b_{11}Z_1Z_2$$

then

$$B(Z,0)=b_{00}+b_{10}Z$$

Case (i) $B(Z_1, Z_2) \neq 0$ on T^2

Since $B(Z_1,Z_2)$ is a full 2-D polynomial, $B(Z,0)$ as seen above is a full 1-D polynomial. In order that $B(Z,0)$ be stable b_{00} should be the highest constant term when compared to the constant terms of all other (in this case one other) 1-D polynomials having the same auto correlation coefficients as $B(Z,0)$. Since b_{00} is incidentally maximized while obtaining the PLSI $B(Z_1, Z_2)$ it satisfies the above requirement. Hence $B(Z,0)$ is stable.
Case (ii) \(B(Z_1, Z_2) = 0 \), for some \(Z_1 = Z_1' (e^{j\omega_1}) \) and \(Z_2 = Z_2' (e^{j\omega_2}) \).

In this case though \(b_{00} \) is the highest constant term we just can’t straight away conclude that \(B(Z, 0) \) is stable. It is because \(b_{00} \) is the highest subject to the auto correlation constraints corresponding to \(B(Z, 0) \) and an additional constraint. These constraints are,

\[
\begin{align*}
 b_{00}'^2 + b_{10}'^2 &= r_0 \\
 b_{00}' b_{10}' &= r_1
\end{align*}
\]

(3.6(a))

\[
B' (Z_1' Z_2') = b_{00}' + b_{01}' Z_2' + b_{10}' Z_1' + b_{11}' Z_1' Z_2' = 0
\]

(3.6(b))

We can only say that if we maximize \(b_{00}' \) subject to the constraints (3.6), (3.6(a)) and (3.6(b)) We will get a solution as

\[
\begin{align*}
 b_{00}' &= b_{00} \\
 b_{10}' &= b_{10}
\end{align*}
\]

(3.7)

But if we want to show that \(B(Z, 0) \) is stable, we have to prove that if we maximize \(b_{00}' \) subject to the constraints 3.6(a) only, the maximum value of \(b_{00}' \) is equal to \(b_{00} \).

We first maximize \(b_{00}' \) with the constraints (3.6) using Lagrangian multiplier method as before. Let \(f_4 \) be defined as

\[
f_4 = b_{00}' + \lambda_1 (b_{00}'^2 + b_{10}'^2) + \lambda_2 (b_{00}' b_{10}') + \lambda_3 [B' (Z_1' Z_2')]
\]

Equating the first derivatives of \(f_4 \) with respect to each \(b_{ij}' \) to zero, we have

\[
\begin{align*}
 1 + \lambda_1 (2b_{00}') + \lambda_2 (b_{10}') + \lambda_3 &= 0 \\
 \lambda_1 (2b_{10}') + \lambda_2 (b_{00}') + \lambda_3 Z_1' &= 0 \\
 \lambda_3 Z_2' &= 0
\end{align*}
\]
\[\lambda_3 Z_1 Z_2 \dot{=} 0 \]

(3.8)

Appending equations 3.6(a) and 3.6(b) to (3.8), we have to solve the resulting 7 equations for 7 unknowns, the unknowns being four \(b_{ij} \) and three \(\lambda_i \). The last two equations of (3.8) requires that \(\lambda_3 = 0 \). Substituting \(\lambda_3 = 0 \) in the first two equations of (3.8), we then have only 5 equations as follows:

\[
\begin{align*}
1 + \lambda_1 (2b_{00}) + \lambda_2 (b_{10}) &= 0 \\
\lambda_1 (2b_{10}) + \lambda_2 (b_{00}) &= 0 \\
b_{00}^2 + b_{10}^2 &= r_0 \\
b_{00} b_{10} &= r_1 \\
(3.9(a))
\end{align*}
\]

\[
\begin{align*}
b_{00} Z_2 \dot{+} b_{10} Z_1 \dot{+} b_{11} Z_1 Z_2 &= 0 \\
(3.9(b))
\end{align*}
\]

As mentioned earlier, the solution of (3.9) is the same as given in (3.7).

On the other hand if we try to maximize \(b_{00} \) with the constraints 3.6(a) only, we get the following equations:

\[
\begin{align*}
1 + \lambda_1 (2b_{00}) + \lambda_2 (b_{10}) &= 0 \\
\lambda_1 (2b_{10}) + \lambda_2 (b_{00}) &= 0 \\
b_{00}^2 + b_{10}^2 &= r_0 \\
b_{00} b_{10} &= r_1 \\
(3.10)
\end{align*}
\]

It can be seen that equations (3.10) are the subset of equations (3.9). So we can show easily the solution of (3.10) will give the same values for \(b_{00} \) and \(b_{10} \) as the solution of (3.9) does. That is \(b_{00} = b_{00} \) and \(b_{10} = b_{10} \). It must be commented here that solving (3.10) or equations of (3.9(a)) first and then substituting the resulting \(b_{00}, b_{10} \) values in (3.9(b)) to obtain \(b_{01} \) and \(b_{11} \) does not present any problem since 3.9(b) gives rise to two equations involving \(b_{01} \) and \(b_{11} \) as unknowns. Thus, since the maximum value of \(b_{00} \) we get subject to the
constraints 3.6(a) only is equal to \(b_{00} \), we can say that \(B(Z, 0) \) is stable. Similarly we can prove that \(B(0, Z) \) is stable. Hence the proof of Theorem 3.1.

Now we consider any 2-D full PLSI polynomial

\[
B(Z_1, Z_2) = \sum_{i=0}^{M} \sum_{j=0}^{N} b_{ij} Z_1^i Z_2^j
\]

and the corresponding 1-D polynomials \(B(Z, 0) \) and \(B(0, Z) \). The 1-D polynomial \(B(Z, 0) \) has \((M+1)\) coefficients namely \(b_{ij} \), for \(i=0,1, \ldots, M \) and \(j=0 \). Since \(B(Z_1, Z_2) \) is a full 2-D PLSI polynomial, \(B(Z, 0) \) is also a full 1-D polynomial.

When \(B(Z_1, Z_2) \neq 0 \) on \(T^2 \), since \(B(Z, 0) \) is a full 1-D polynomial of degree \(M \) and since its constant term \(b_{00} \) is the highest (having been maximized while obtaining the PLSI \(B(Z_1, Z_2) \)) it is stable. This follows from the fact that if we obtain the autocorrelation coefficients \(r_i \) of \(B(Z, 0) \) from its known \((M+1)\) coefficients and form autocorrelation equations of the type given in (3.4) we will have \((M+1)\) equations as follows:

\[
\begin{align*}
b_{00}^2 + b_{10}^2 + b_{20}^2 + \ldots + b_{M0}^2 &= r_0 \\
b_{00} b_{10} + b_{10} b_{20} + \ldots + b_{(M-1)0} b_{M0} &= r_1 \\
&\vdots \\
&\vdots \\
&\vdots \\
\end{align*}
\]

\[b_{00} b_{M0} = r_M\] \hspace{1cm} (3.11)

If we now try to maximize \(b_{00} \) with equations (3.11) as constraints we get the maximum \(b_{00} \) as equal to \(b_{00} \). Thus we get the same set of coefficients as those of \(B(Z, 0) \), as the solution in the maximization process. This is mainly
because $B(Z,0)$ is a full 1-D polynomial and r_i on the right hand side of (3.11) have been obtained using the coefficients of $B(Z,0)$.

In the case when $B(Z_1,Z_2)=0$ on T^2 for some $Z_1=Z_1^\cdot$ and $Z_2=Z_2^\cdot$, in addition to the constraints (25), we have an additional constraint

$$B_1(Z_1^\cdot,Z_2^\cdot)=0$$

where $B_1(Z_1^\cdot,Z_2^\cdot)$ is what we get from $B(Z_1^\cdot,Z_2^\cdot)$ by replacing each b_{ij} by b_{ij}^\cdot. We know that if we maximize b_{00}^\cdot with the equations (3.11) and (3.12) as constraints, we will get the maximum b_{00}^\cdot as equal to b_{00} and the solution for b_{ij}^\cdot is

$$b_{ij}^\cdot=b_{ij}, \text{ for } i=0,1,...,M \text{ and } j=0$$

But in order to show that $B(Z,0)$ is stable we have to prove that if we maximize b_{00}^\cdot subject to the constraints (3.11) alone we still get the maximum b_{00}^\cdot as b_{00}.

When we maximize b_{00}^\cdot with (3.11) and (3.12) as constraints, as in case (ii) of Theorem 3 the (M+2)th Lagrangian multiplier λ_{M+2} which multiplies the constraining equation (3.12) will be forced to take zero value since all the derivatives of the Lagrangian function with respect to each b_{ij}^\cdot, for $i=0, j=1,2,...,N$, will give rise to single term equations involving λ_{M+2} as the coefficient. This makes the number of equations to be solved for when maximizing b_{00}^\cdot with (3.11) and (3.12) as constraints as just one more than what we have to solve while maximizing b_{00}^\cdot with (3.11) only as constraints. This extra equation is (3.12) and all other $2(M+1)$ equations are identical in both these optimizations, involving b_{ij}^\cdot, $i=0,1,...,M$ and $j=0$, and (M+1) Lagrangian multipliers.
as unknowns. Thus the equations we get when maximizing b_{00} with (3.11) only as constraints is a subset of the equations we have when maximizing b_{00} with (3.11) and (3.12) as constraints. So the solution of these subset of equations for b_{ij} is unique and is given by (3.13). Here also as in case (ii) of Theorem 3 solving (3.12) for the other unknown coefficients b_{ij}, for $i=0$ and $j=1,2 \ldots, N$ does not pose any problem since it constitutes only two equations (because of the complex nature of Z_1 and Z_2) involving all these N coefficients. Hence in this case of $B(Z_1,Z_2) = 0$ on T^2 for some $Z_1 = Z_1$ and $Z_2 = Z_2$, since the maximum value of b_{00} we get subject to the constraints (25) only is equal to b_{00} we can say that $B(Z,0)$ is stable.

The above arguments can be applied to $B(0,Z)$ also in a similar way to conclude that $B(0,Z)$ will also be stable.

Thus we have the generalization of Theorem 3.1 in the form of Theorem 4.

Theorem 3.2: If $B(Z_1,Z_2)$ is a 2-D full PLSI polynomial of some 2-D polynomial, then $B(Z,0)$ and $B(0,Z)$ are stable.

In view of the above discussions the proof of the following main theorem follows:

Theorem 3.3: If $B(Z_1, Z_2, \ldots, Z_n)$ is the full n-D LSI of a given n-D polynomial, then

$$B(0,0,\ldots,0,Z_k,0,0,\ldots,0) \neq 0 \text{ for } |Z_k| \leq 1 \text{ for } k=1,2,\ldots,n$$

irrespective of whether $B(Z_1,Z_2,\ldots,Z_n)$ has zeros on the polydisc or not.

Without going into the details of the proof of above theorem, we simply state that all the arguments we have applied earlier to prove $B(Z,0)$ and $B(0,Z)$
are stable in the discussions leading to Theorem 3.2 are valid here also, since each one of the polynomials $B(0,0,\ldots,0,Z_k,0,0,\ldots,0)$ is a full 1-D polynomial and the coefficient $b_{0,0,\ldots,0}$ has been maximized. Hence the proof of Theorem 3.3 follows.

We have presented in this chapter some interesting results with regard to the stability of 2-D PLSI polynomials. A proof for the stability of the LSI polynomials of n-D practical digital filters which will be useful in stabilizing such filters is given.
CHAPTER 4

DESIGN OF LOW SENSITIVITY QUARTER PLANE
RECURSIVE 2-D DIGITAL FILTERS

4.1 Introduction

For the last several years, digital filtering has been a major area of research. Attention has been focused on the performance of a digital filter under finite word length implementations. We consider a 2-D digital filter characterized by a complex impulse response sequence, that is, a 2-D digital transfer function with complex coefficients. We show that the real coefficient 2-D digital filter derived from the complex coefficient all-pass sections satisfy the low sensitivity in the pass band as is the case of 1-D digital filters [32]. In this chapter, a new method for designing and implementing low sensitivity 2-D recursive filters is presented. Also some preliminaries regarding structural boundedness, complex coefficient digital filter basic building blocks and realization of complex all-pass filter are discussed. The results of this chapter will be appearing as a paper[43].

4.2 Review of Structural Boundedness

The role of structural boundedness in low sensitivity implementations is given for 1-D digital structures in [26]. In this section the concepts of structural boundedness in the case of 2-D digital filter structures is discussed.
Consider an Nth order 2-D digital real coefficient transfer function:

\[
H(Z_1Z_2) = \sum_{i=0}^{N} \sum_{j=0}^{N} a_{ij} Z_1^{-i} Z_2^{-j} \over 1 + \sum_{i=0}^{N} \sum_{j>0}^{N} b_{ij} Z_1^{-i} Z_2^{-j}
\] (5.1)

where coefficients \(a_{ij}\) and \(b_{ij}\) are real. Our aim is to design a structure with multiplier coefficients \(m_1, m_2, \ldots\) such that the sensitivity of \(|H(e^{j\omega_1}, e^{j\omega_2})|\) with respect to each \(m_k\) is reduced in the passband. If the quantity \(|H(e^{j\omega_1}, e^{j\omega_2})|\) is bounded by unity, that is, \(|H(e^{j\omega_1}, e^{j\omega_2})| \leq 1\) for all frequency pairs of \((\omega_1, \omega_2)\), then \(H(Z_1Z_2)\) is called a bounded real (BR) transfer function and such a function is less sensitive to multiplier coefficients. If \(|H(e^{j\omega_1}, e^{j\omega_2})| = 1\) for all frequency pair \((\omega_1, \omega_2)\), then \(H(Z_1Z_2)\) is called a lossless bounded real (LBR) transfer function. It is also known as a stable all-pass function.

\(|H(e^{j\omega_1}, e^{j\omega_2})|\) is bounded by unity, regardless of actual values of the multiplier coefficients \(m_k\). Let \((\omega_1^{(l)}, \omega_2^{(m)})\) be a frequency pair in the passband such that \(|H(e^{j\omega_1^{(l)}}, e^{j\omega_2^{(m)}})| = 1\) for \(m_k = m_{k0}\). If the multiplier coefficient \(m_k\) is perturbed, then \(|H(e^{j\omega_1^{(l)}}, e^{j\omega_2^{(m)}})|\) can only decrease regardless of the sign of the perturbation. Thus the slope of \(|H(e^{j\omega_1^{(l)}}, e^{j\omega_2^{(m)}})|\) with respect to \(m_k\) is zero at this frequency pair. The plot of \(|H(e^{j\omega_1^{(l)}}, e^{j\omega_2^{(m)}})|\) as a function of \(m_k\) is as shown in Fig. 4.1.
Fig. 4.1 Magnitude as a function of multiplier coefficient.

The zero first order sensitivity at frequency pair \((\omega_1, \omega_2)\) is given by

\[
\frac{\partial |H(e^{j\omega_1(l)}, e^{j\omega_2(m)})|}{\partial m_k} \bigg|_{m_k=m_{k0}} = 0 \quad VL, Vm, Vk
\]

(4.2)

If there are number of closely spaced points in the pass band region such that \(|H(e^{j\omega_1}, e^{j\omega_2})| = 1\) at all these points, then we can expect the low pass-band sensitivity. Thus the structure which limits the upper bound on \(|H(e^{j\omega_1}, e^{j\omega_2})|\) to unity irrespective of perturbations in the multiplier coefficients is called structurally passive or structurally bounded [26].

In summary, these are the properties required for a structure to have low sensitivity in the pass-band.

1. The boundedness property \(|H(e^{j\omega_1}, e^{j\omega_2})| \leq 1\) for all \(\omega_1\) and \(\omega_2\).
2. \(|H(e^{j\omega_1}, e^{j\omega_2})| = 1\) at certain frequencies in the pass-band.
3. Property 1 and 2 holds regardless of the values of the multiplier coefficients, as long as they remain in certain range.

It may be noted that the low sensitivity in the stop-band is obtainable by
using cascade realization of lower order 2-D sections.

4.3 Realization of a Real Second Order 2-D Digital Filter

In this section we realize a 2-D real coefficient digital filter using a cascade of second order structures, where each stage is realized in a structurally passive form. We assume that the input u(m,n) to be processed is real and the output y(m,n) required is also real. As mentioned in the previous section, all-pass transfer functions are BR functions. In this section, a second order 2-D digital filter transfer function (with real coefficients) is derived from a first order complex coefficient 2-D all-pass transfer function.

Let us consider the first-order complex all-pass transfer function,

\[
G(Z_1, Z_2) = \frac{\alpha_3^* + \alpha_2^* Z_1^{-1} + \alpha_1^* Z_2^{-1} + \alpha_0^* Z_1^{-1} Z_2^{-1}}{\alpha_0 + \alpha_1 Z_1^{-1} + \alpha_2 Z_2^{-1} + \alpha_3 Z_1^{-1} Z_2^{-1}} \tag{4.3}
\]

where \(\alpha\)'s are complex coefficients and \(\alpha^*\) by:

\[
\alpha_0 = a_0 + jb_0 \\
\alpha_1 = a_1 + jb_1 \\
\alpha_2 = a_2 + jb_2 \\
\alpha_3 = a_3 + jb_3 \tag{4.4}
\]

where a's and b's are real coefficients. In the case of a 2-D real coefficient first order filter the stability conditions are known [37]. It is straightforward to extend the same results to the 2-D first order complex coefficient filter transfer function. The necessary and sufficient conditions for the first-order 2-D complex all-pass transfer function given in (4.3) to be stable are:
\[
\sqrt{(a_0-a_1)^2 + (b_0-b_1)^2} > \sqrt{(a_2-a_3)^2 + (b_2-b_3)^2}
\] (4.5a)

\[
\sqrt{(a_0+a_1)^2 + (b_0+b_1)^2} > \sqrt{(a_2+a_3)^2 + (b_2+b_3)^2}
\] (4.5b)

\[
\sqrt{a_1^2+b_1^2} < \sqrt{a_0^2+b_0^2}
\] (4.5c)

Using the transfer function given in (4.2), let

\[
H(Z_1Z_2) = \frac{1}{2} \left[G(Z_1Z_2) + G^*(Z_1Z_2) \right]
\] (4.6a)

where \(G^*(Z_1Z_2) \) is a first order complex all-pass transfer function with coefficients that are conjugates of those of \(G(Z_1Z_2) \). \(H(Z_1Z_2) \) will be a 2-D real coefficient filter transfer function of order 2 whose coefficients are in terms of coefficients of \(G(Z_1Z_2) \) as follows:

\[
H(z_1, z_2) =
\begin{bmatrix}
(a_0a_3 - b_0b_3) & (a_0a_1+a_2a_3-b_0b_1 -b_2b_3) & (a_1a_2 - b_1b_2) \\
(a_0a_2+a_1a_3-b_0b_2 -b_1b_3) & (a_0^2+a_1^2+a_2^2-b_0^2-b_1^2-b_2^2-b_3^2) & (a_0a_2+a_1a_3-b_0b_2 -b_1b_3) \\
(a_1a_2 - b_1b_2) & (a_0a_1+a_2a_3-b_0b_1 -b_2b_3) & (a_0a_3 - b_0b_3)
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
\]

(4.6b)

As both \(G(Z_1Z_2) \) and \(G^*(Z_1Z_2) \) are lossless bounded real functions, the addition of these functions gives a bounded real function. Thus the implementation of \(H(Z_1Z_2) \) without affecting the all-pass property of \(G(Z_1Z_2) \) gives rise to a
structurally bounded realization.

From (4.6a), it is clear that real coefficient 2-D filter \(H(Z_1, Z_2) \) can be implemented as a parallel connection of two complex filters characterized by transfer functions \(G(Z_1, Z_2) \) and \(G^*(Z_1, Z_2) \) respectively, as shown in Fig. 4.2(a). The solid line indicates a real signal and dotted line indicates a complex signal. If input is real, then the output of \(G(Z_1, Z_2) \) is the complex conjugate of \(G^*(Z_1, Z_2) \). So, the real part of the complex filter output from \(G(Z_1, Z_2) \) is the desired real sequence \(y(m,n) \). That means only a single complex filter is enough for processing the real input signal \(u(m,n) \) as shown in Fig. 4.2(b).

Basic Building Blocks

The basic building blocks required in the case of 2-D complex filters are complex unit delays, complex multipliers and complex adders as shown in Fig. 4.3, where the solid and dotted lines indicate, respectively, the real and imaginary parts of a complex signal.

Let the complex signal \(v(m,n) \) with real and imaginary parts, \(r(m,n) \) and \(i(m,n) \), given by:

\[
v(m,n) = r(m,n) + ji(m,n)
\]

be the input to the complex unit delay (in both \(Z_1 \) and \(Z_2 \)), then its output \(v_0(m,n) \) will be

\[
v_0(m,n) = v(m-1,n-1) = r(m-1,n-1) + ji(m-1,n-1)
\]

The operations of the complex adder and the complex multiplier are quite similar to their real counterparts. Thus, if the inputs to a complex adder are
Fig. 4.2(a) Parallel connection of two all-pass sections.

Fig. 4.2(b) Single complex all-pass section for processing $u(m, n)$.
Fig. 4.3(a) Complex delay (both in Z_1 and Z_2).

Fig. 4.3(b) Complex adder.

Fig. 4.3(c) Complex multiplier.
\[v_1(m,n) = r_1(m,n) + ji_1(m,n) \text{ and } v_2(m,n) = r_2(m,n) + ji_2(m,n), \text{ respectively, its output } v_0(m,n) \text{ is given by:} \]

\[v_0(m,n) = \left[r_1(m,n) + r_2(m,n) \right] + j \left[i_1(m,n) + i_2(m,n) \right] \quad (4.9) \]

In the case of complex multiplier, the output \(v_0(m,n) \) with a multiplier coefficient \(\gamma=\alpha + j\beta \) for an input \(v(m,n)=r(m,n)+j\ i(m,n) \) is given by:

\[v_0(m,n) = \left[\alpha r(m,n) - \beta i(m,n) \right] + j \left[\alpha i(m,n) - \beta r(m,n) \right] \quad (4.10) \]

Realization

We mentioned earlier that the 2-D second order digital transfer function \(H(Z_1,Z_2) \) can be obtained from a sum of two complex coefficient 2-D all-pass digital transfer functions and is given in (4.6b). We have also mentioned that \(H(Z_1,Z_2) \) can be realized as in Fig. 4.2(b) using a single complex coefficient all-pass first order section and taking the real output when the input is real. We now obtain a realization for a single complex all-pass 2-D section having \(G(Z_1,Z_2) \) as its transfer function. From (4.3),

\[
G(Z_1,Z_2) = \frac{Y(Z_1,Z_2)}{U(Z_1,Z_2)} = \frac{Z\left\{ y^\prime(m,n) \right\}}{Z\left\{ u(m,n) \right\}}
\]
\[
A_0 = \frac{a_0^2 - b_0^2}{a_0^2 + b_0^2}
\]

\[
B_0 = \frac{-2a_0b_0}{a_0^2 + b_0^2}
\]

\[
A_i = \frac{a_0a_i + b_0b_i}{a_0^2 + b_0^2} \quad \text{for } i=1,2,3
\]

\[
B_i = \frac{a_0b_i - a_i b_0}{a_0^2 + b_0^2} \quad \text{for } i=1,2,3
\]

From (4.11), if we let

\[
Z^{-1}\left[G'(Z_1, Z_2)\right] = \frac{y'(m,n)}{u'(m,n)}
\]

we have
\[
y'(m,n) = (A_3-jB_3)u'(m,n) + (A_2-jB_2)u'(m-1,n) \\
+ (A_1-jB_1)u'(m,n-1) + u'(m-1,n) \\
- (A_1+jB_1)y'(m-1,n) - (A_2+jB_2)y'(m,n-1) \\
- [(A_3+jB_3)y'(m-1,n-1) \\
= A_3 \left[u'(m,n)-y'(m-1,n-1) \right] + A_2 \left[u'(m-1,n)-y'(m,n-1) \right] \\
+ A_1 \left[u'(m,n-1)-y'(m-1,n) \right] - jB_3 \left[u'(m,n)+y'(m-1,n-1) \right] \\
- jB_2 \left[u'(m-1,n)+y'(m,n-1) \right] - jB_1 \left[u'(m,n-1)+y'(m-1,n) \right] \\
+ u'(m-1,n-1) \\
\]

(4.12)

If we realize (4.12) and cascade a multiplier \(\beta = A_0 + jB_0 \) at the input, \(G(Z_1,Z_2) \) is realized as shown in Fig. 4.4. The transfer function \(H(Z_1,Z_2) \) is realized as shown in Fig. 4.2(b).

The realized complex all-pass configuration is structurally passive. That is, in spite of the multiplier quantization, the mirror image property of the all-pass transfer function is preserved. The proposed structure of Fig. 4.2(b), where \(G(Z_1,Z_2) \) is implemented using the structure shown in Fig. 4.4, requires 7 complex multipliers or equivalently 14 real multipliers, where as the direct realization of a second order 2-D filter proposed by Mitra et al. [38] requires 17 multipliers. The other advantage of our structure is the low multiplier coefficient quantization sensitivity, which will be discussed in detail later. With presently available VLSI technology, complex multipliers can be fabricated efficiently on a single chip.
Fig. 4.4 Realization of first order complex coefficient 2-D all-pass section.
4.4 Design Of Quarter Plane 2-D Recursive Digital Filters

Several methods in designing 2-D recursive digital filters are discussed in [39] by Ramamoorthy and Bruton. An l_p design technique for a 2-D digital filter was proposed by Maria and Fahmy [1]. In a recent paper, Wan and Fahmy [41] designed an N-D digital filter with a finite word length and assured stability of the filter by using non-optimal step size. All these design techniques are based on nonlinear optimization algorithms.

As it is not possible, in general, to decompose a given $H(Z_1, Z_2)$, we obtain it from a complex coefficient first order all-pass transfer function as in (4.5b). It may be noted that the coefficients of $H(Z_1, Z_2)$ thus obtained are functions of a_i and b_i. Our aim is to design a 2-D filter with desired magnitude specifications. That is, to find a 2-D transfer function $H(Z_1, Z_2)$ from the given magnitude characteristic H_{mn}^d specified as a set of real numbers corresponding to a discrete set of frequency pairs $\left(\omega_m^{(1)}, \omega_n^{(2)}\right)$ for $m=1, 2, \ldots, M$ and $n=1, 2, \ldots, N$. The objective function is defined as

$$J(x) = \sum_{m=1}^{M} \sum_{n=1}^{M} \left[|H(Z_{1m}, Z_{2n})| - H_{mn}^d \right]^p$$ \hspace{1cm} (4.13)$$

where $Z_{1m} = e^{j\omega_m^{(1)}}$, $Z_{2n} = e^{j\omega_n^{(2)}}$, p is any even positive integer, and x is the parameter vector which contains a_i and b_i coefficients of $G(Z_1, Z_2)$.

There are several optimization algorithms available for designing 2-D digital filters. In all these, the Fletcher-Powell algorithm [41] is extensively used in the design of the 2-D digital filter. In [40], Wan and Fahmy used nonoptimal step size in the algorithm to increase the computational efficiency
per iteration. We have followed the same optimization procedure for our design. Here briefly, we give the theorems presented in [40].

Theorem 4.1: In the \((j+1)\)th iteration of the Fletcher-Powell algorithm, a mapping matrix \(D_j\) is positive definite (PD) if and only if the step size \(\lambda_j\) satisfies:

\[
g'(\lambda_j) + \nabla J(y_j)^T D_j \nabla J(y_j) > 0 \tag{4.14}
\]

where

\[
g'(\lambda_j) = \frac{dJ\left[y_j + \lambda d_j\right]}{d\lambda} \bigg|_{\lambda=\lambda_j} = \nabla J\left[y_j + \lambda d_j\right]^T d_j
\]

Theorem 4.2: If \(H^j(Z_1, Z_2)\) is stable with coefficient vector \(x = y_j\), and the searching direction \(d_j\) is descent, then the smallest value \(\lambda_0\) satisfying

\[
g'(\lambda_0) = \frac{dJ_N\left[y_j + \lambda d_j\right]}{d\lambda} \bigg|_{\lambda=\lambda_0} = 0 \tag{4.15}
\]

will ensure the stability of \(H^{(j+1)}(Z_1, Z_2)\) with coefficient vector \(x = y_j \lambda_0 d_j\). Proof of this theorem is given in [40].

Example:

A 2-Dimensional low-pass filter with a cut off frequency equal to one-tenth of Nyquist frequency is considered here. The magnitude specifications are taken to be the same as in [1].

\[
H_{mn}^d = 1, \quad \left[(\omega_m^{(1)})^2 + (\omega_m^{(2)})^2 \right]^{1/2} \leq 0.08
\]
= 0.5, \quad 0.08 \leq \left[(\omega_m^{(1)})^2 + (\omega_n^{(2)})^2 \right]^{1/2} \leq 0.12

= 0, \quad \left[(\omega_m^{(1)})^2 + (\omega_n^{(2)})^2 \right]^{1/2} \geq 0.12

\omega_m^{(1)} = 0.00, 0.02, \ldots, 0.18, 0.2, 0.4, \ldots, 1.0

\omega_n^{(2)} = 0.00, 0.02, \ldots, 0.18, 0.2, 0.4, \ldots, 1.0

Once we obtain the design parameters, namely, the coefficients a_i and b_i, we have the transfer function $G(Z_1Z_2)$ of the complex coefficient first-order 2-D all-pass filter. We have used the Fletcher Powell algorithm with non-linear optimizing algorithm with non-optimum step size [40] for minimizing the performance index $J(x)$. This is an unconstrained optimization problem. A new approach given by Wan and Fahmy [40] to ensure stability of the filter in each iteration with out having to perform a stability test used (Theorem 2) in designing the filter. Our parameter vector x is:

$$x = [a_0 \ a_1 \ a_2 \ a_3 \ b_0 \ b_1 \ b_2 \ b_3]^T$$

where T indicates transpose. The initial parameter vector is chosen as:

$$x = [1.3258 \ -0.5412 \ -0.7841 \ 0.1538 \ 1.3449 \ 0.4381 \ -0.4132 \ -0.1257]^T$$

The final parameter vector after non-linear optimization is found to be:

$$x = [2.0498 \ -0.1661 \ -0.1667 \ -1.1661 \ 1.8922 \ -0.3210 \ -0.3215 \ -1.4318]^T$$

The final error function value is given as:

$$J(x) = 2.3657$$

The multiplier coefficients used in the realization are given as:
We also designed a 2-D digital filter with two first order complex coefficient all-pass filters in cascade which gives in effect two second order real coefficient 2-D filters in cascade. The parameter vector is:

\[x = \begin{bmatrix} x_1^T \\ x_2^T \end{bmatrix} \]

where \(x_1 \) is the first single order section parameter vector and \(x_2 \) is the second first order section parameter vector. The final error function in this case is \(J(x) = 1.8464 \). The parameter vector after optimization is:

\[x_1 = \begin{bmatrix} 1.988 & -0.1055 & -0.1059 & -1.0846 & 1.9673 & -0.3110 & -0.3117 & -1.4765 \end{bmatrix}^T \]

\[x_2 = \begin{bmatrix} 2.2939 & -0.1348 & -0.1356 & -1.1352 & 1.9367 & -0.3074 & -0.3095 & -1.4175 \end{bmatrix}^T \]

The multiplier coefficients used in the cascade realization are given as:
\[
H_1(z_1, z_2) = (0.0107 - j 0.9999) \frac{[1 \ z_1^1] \begin{bmatrix} -0.6469 + j 0.1025 & -0.1050 + j 0.0525 \\ -0.1053 + j 0.0526 & 1 \end{bmatrix} [1 \ z_2^1]}{[1 \ z_1^1] \begin{bmatrix} 1 & -0.1053 - j 0.0526 \\ -0.105 - j 0.0525 & -0.6469 - j 0.1025 \end{bmatrix} [1 \ z_2^1]}
\]

\[
H_2(z_1, z_2) = (0.1677 - j 0.9858) \frac{[1 \ z_1^1] \begin{bmatrix} -0.5935 + j 0.1168 & -0.1004 + j 0.0493 \\ -0.1010 + j 0.0496 & 1 \end{bmatrix} [1 \ z_2^1]}{[1 \ z_1^1] \begin{bmatrix} 1 & -0.1010 - j 0.0496 \\ -0.1004 - j 0.0493 & -0.5935 - j 0.1168 \end{bmatrix} [1 \ z_2^1]}
\]

where \(H_1(Z_1, Z_2) \) and \(H_2(Z_1, Z_2) \) are the first and second section respectively of the cascade realization. The amplitude response for one section and two sections in cascade are as shown in Figs. 4.5 and 4.6.

It may be observed that the specified magnitude response has circular symmetry. This results in certain symmetry in the coefficients of the transfer function if the 2-D filter is designed directly with real coefficients using, for example, the \(l_p \) design of Maria and Fahmy [1]. The 2-D real coefficient second order filter we obtain via first order complex coefficient 2-D all-pass filter using (4.6b) does not possess this symmetry. So naturally the error \(J(x) \) in our case is a little more than what it is in [1] for one second order real coefficient 2-D filter. But our 2-D filter is less sensitive to coefficient truncation as will be discussed in the next section.
Fig. 4.5 Amplitude response of the one section low-pass filter.
Fig. 4.6 Amplitude response of the cascaded two section low-pass filter.
The number of design parameters, namely, a_i's and b_i's are only 8 in our case whereas they are 11 (with symmetry) in l_p design [1] for designing a single second order 2-D real coefficient digital filter. This results in less computational time in the design. As mentioned earlier, the number of real multipliers required in the implementation of the filter designed by our approach is only 14, whereas it is 17 when real coefficient second order filter designed by l_p design is implemented by direct realization [38]. Also, there is no overshoot in the magnitude characteristic in the pass band of our filter unlike in [1].

4.5 Effects of Finite Word Length

When the multiplier coefficients of a digital filter are quantized, the frequency response is perturbed from the original frequency response. If the structure is sensitive to perturbations of the multiplier coefficients, the resulting system may no longer meet the original design specifications.

Effect of the finite word length is studied by truncating the binary multiplier coefficients to 8 bits, 10 bits and 16 bits for filters obtained both by our method and l_p design (normal) method. These are given in Table 4.1. From Table 4.1, it is clear that truncation of coefficients does not have much effect on the error function in the case of complex coefficient multiplier filter. In the case of normal design, for 8 bit truncation, the filter is becoming unstable. Even for 10 bit truncation, error is increased to more than 6 times. So our designed filter is less sensitive to coefficient quantization.

In this chapter a new design technique for designing quarter plane second order 2-D recursive filters using a complex coefficient first order all-pass 2-D filter is given.
<table>
<thead>
<tr>
<th></th>
<th>Error Function $J(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original (before truncation)</td>
</tr>
<tr>
<td>One section complex multiplier filter</td>
<td>2.3657</td>
</tr>
<tr>
<td>Two section complex multiplier filter</td>
<td>1.8464</td>
</tr>
<tr>
<td>l_p design one second-order section</td>
<td>1.8689</td>
</tr>
</tbody>
</table>

Table 4.1 Error function values before and after truncation of binary multiplier coefficients.
CONCLUSIONS

Following the introductory chapter, certain points regarding Robinson’s proof [21] of guaranteed stability of 1-D LSI polynomials have been clarified in chapter 2. This is very important in stabilizing 1-D recursive digital filters. In chapter 3, a proof for the stability of the LSI polynomials of n-D practical digital filters has been given, and this is useful in stabilizing such filters. In the conventional sense, stabilizing an unstable filter through the double LSI approach meets with difficulties particularly when the original denominator polynomial has zeros on the unit polydisc. Theorem 3.3 presented is valid even if the original and the corresponding LSI polynomials have zeros on the unit polydisc.

In chapter 4, a new method for designing a quarter plane second order real 2-D recursive filter using a complex coefficient first order all-pass 2-D filter has been discussed. An implementation scheme for these filters using complex multipliers has been given. This implementation effectively requires less number of real multipliers. It is also shown that the sensitivity of these filters to the coefficient is very low quantization when compared to the real filter designed directly.

Suggestions For Further Study:

The problem of proving that the planar least square polynomial of a 2-D polynomial is stable is important in the area of digital filters. So further research may be directed towards proving Shank’s conjecture by suitably modifying it. This can solve the problem of stabilizing 2-D recursive digital
filters. Once this result is available for 2-D case, it can be extended to n-D "first quadrant" and 2-D non symmetric half plane (NSHP) polynomials.
REFERENCES

[1] G.A. Maria and M.N. Fahmy, "An l_p design technique for two-

sive filter design - A spectral factorization approach," IEEE
Trans. Acoustics, Speech and signal processing, vol. ASSP-28, pp. 16-26,
Jan 1980.

filters from magnitude specifications," Int. J. Circuits Theory Appl., Vol. 7,

puter aided design of stable recursive filters from magnitude

recursive digital filters," IEEE Trans. Acoustics speech and signal processing,

two-dimensional Recursive filters," IEEE Trans. Audio and Electroacoustic,

[8] Y. Genin and Y. Camp, "Counter example in the least square inverse sta-
bilization of 2-D recursive filters," Electron. Lett. vol. 11, pp. 130-131,
July 1975.

Oct./Nov. 1977.

