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Abstract

Reverse Engineering and Optimisation of the BLASTP Program

Shawn Delaney

The BLASTP (Basic Local Alignment Search Tool for Proteins) is a popular pro-
tein database search program. The BLASTP algorithm consists of three steps: (1)
Constructing the set of neighbourhood words, (2) Scanning a database sequence for
word hits, and (3) Extending a word hit. By using a reverse engineering approach,
the architecture of the program that implements the algorithm is obtained and de-
scribed. It was found that approximately 90% of the program’s execution time is
spent doing the third step of the algorithm, extending word hits. This work describes
three optimisations to the algorithm that significantly decrease the program’s execu-
tion time. The optimisations are of two types: (1) Two new sequence representations
that facilitate the extension step and are only used in the extension procedure and
(2) A scanning procedure that restricts the number of invocations of the extension
procedure. The first optimisation represents the query as a sequence of memory ad-
dresses. These addresses are those of the rows of the residue pair score matrix which
correspond to a particular residue. This representation reduces the number of in-
structions executed per matrix access. The second optimisation represents the query
and database sequence as a sequence of residue-doublets. A doublet consists of two
adjacent residues. Extensions are done in steps of aligned residue-doublet pairs. The
third optimisation counts the number of word hits per aligned segments of the query
and database sequence. The extension procedure is invoked only if the number of hits
per alignment meets a threshold criteria. Each optimised algorithm is implemented
in the BLASTP version 1.4 program. A comparison of performance data between
each of the optimised programs and the unmodified program shows a performance

increase of 15%, 48% and 63% respectively.
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Chapter 1

Introduction

1.1 Motivation For Thesis

The BLAST (Basic Local Alignment Search Tool) suite of programs [1] is arguably
the best tool currently available for searching molecular sequence databases. BLASTP
is the particular program that looks for similarities between a query protein sequence
and those in a protein sequence database. Search speed is a critical issue in scanning
sequence databases whose sizes continue to grow as the sequence data from large-scale
genome sequencing efforts is produced [2]. As the size of the search space increases,
the performance of search programs such as BLAST decreases. There are two solu-
tions to this problem: (1) Develop faster algorithms for scanning sequence databases
and (2) Reduce the search space by grouping similar database sequences. This thesis
addresses the problem of similarity search performance using the former approach.
In this work, the more specific problem of protein database search performance is ad-
dressed by optimising the existing BLASTP version 1.4 program with an acceptable

compromise in search sensitivity.

A faster BLASTP program would benefit scientists in several ways - two examrgles
are provided: (1) Searching with a protein database scanning tool such as BLASTP
is one of several steps performed in the analysis of genome sequence data (Figure 1).
A faster program reduces the likelihood that analysis with BLASTP is a rate-limiting
step in the work-flow and (2) BLAST servers, such as the one at NCBI [3], would

require less time to perform BLASTP searches providing better service to clients.
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Figure 1: Role of BLASTP in Genome Analysis Work-flow A protein sequence com-
parison program such as BLASTP can be used as a filter to mark sequences for
further investigation. In this example work-flow, the genome sequence () is scanned
to identify protein coding regions or ORFs (open reading frames) (2). Each ORF is
conceptually translated into three protein sequences each of which is used as a query
in a BLASTP search (8). The results of the searches (4) are a criteria for prioritising
the sequences (5). Here, the definition of “high and low priority sequence” is sub-
jective to the investigator but may, for example, be a sequence that has no database
matches (i.e a novel sequence) or one that matches a database sequence that is im-
portant to the investigator, for example, a match to a known drug target. Prioritising
the sequences is necessary since further analysis may involve building secondary or
tertiary structure models of the sequence using resource-intensive programs (6). Low
priority sequences are set aside for later investigation (7).



1.2 The BLASTP Program

BLASTP is an appropriate program for protein database scanning for several reasons:

e The BLASTP algorithm is designed for fast database scanning. The algorithm
is heuristic in nature, allowing the user to modify the search sensitivity by
assigning values to various parameters; mainly W, T and X. These are fully

described in section 2.3.

e The program produces local alignments. Proteins are more similar in sub-
regions rather than over their entire lengths. Searching for local alignments
increases the likelihood of finding similarities between an unknown protein and

one that is distantly related in an evolutionary context.

e The program contains a method for assessing similarity scores. This reduces

the likelihood of interpreting a match as significant when it it is not.

e Given a particular scoring scheme, in most cases, the algorithm is sensitive
enough to find all similarities that a highly sensitive, but more time expensive,

dynamic programming algorithm would detect.

The program performs two tasks: (1) It scans the protein sequence database with an
input query sequence and compiles a list of HSPs (high scoring segment pairs and
(2) analyses the HSP list in order to assign statistical significance to those matches.
The minimum program input is a query and a database. The BLASTP algorithm
generates the HSP list which is post-processed to generate an output list in which

each HSP is assigned a measure of statistical significance.

1.2.0.1 Program Input

The program requires two basic inputs; the name of the file which contains the pro-
tein query sequence in FASTA format (Box 1) and the name of the protein sequence

database. These are specified on the command line:
blastp [databasefile] [query file]

The FASTA format consists of a sequence descriptor and a sequence of characters

3



that represent the protein. The descriptor is prefixed by a '>’ character. It contains
the sequence identifier(s) - the sequence may be in several databases - and a descrip-
tion which includes the name of the sequence and possibly a short description of its
biological function. The sequence database, also in FASTA format, must be processed
by the setdb program prior to searching with BLASTP. This is described in Figure
12.

Box 1

£i[129937] sp|P27644|PGLR_AGRTU POLYGALACTURONASE (PECTINASE) (PGL)
£i|95113] pir]]A40364 picA protein - Agrobacterium tumefaciens gi}142256 (M62814) PGL
ORF [Agrobacterium tumefaciens)
S>MALATRATGGAGRRKPVRARCARGLHLVSCHKTQLLGFTIRNAASWTIHPQGCEDL
TAAASTIIAPHDSPNTDGFNPESCRNVMISGVRFSVGDDCIAVKAGKRGPDGEDDH
LAETRGITVRHCLMQPGHGGLVIGSEMSGGVHDVTVEDCDMIGTDRGLRLKTGARS
GGGMVGNITMRRVLLDGVQTALSANAHYHCDADGHDDWVQSRNPAPVNDGTPFVDG
ITVEDVEIRNLAHAAGVFLGLPDVPSATSLSATSPIVSHDPSAVATPPIMADRVRP
MRMRLVFEQADVVCDDPALLNDAPVSISSYFD

The program has several command line options which are listed in {4]. Those options
that a typical user may specify are: (1) -matrix, which specifies the residue pair
score matrix, and (2) W, T or X, which may be adjusted to control the sensitivity of
the search. The default matrix used is BLOSUM62. With the -matrix option, the user

may specify the name of a file containing an alternative or user-defined matrix:
blastp [database file] [query.file] -matrix [score-matrixfile]

Controlling Search Sensitivity
The program parameters, W, T and X may be adjusted to control the sensitivity of

the search:
blastp [database.file] [query file] W=[ ] T=[ ] X=[ ]

The sensitivity can be increased, i.e more HSPS can be detected, by (1) lowering
the neighborhood word score threshold, T, while keeping the word size, W, constant,
(2) by lowering both Wand T appropriately and/or (3) by raising the word hit exten-
sion falloff score X. These parameters are fully explained in section 2.3. For a more

complete discussion of all possible input parameters see [4].



1.2.0.2 Program Output

The output of the program consists of five parts: (1) Program introduction, (2) His-
togram of expectations if one is requested, (3) List of one-line summaries for each
matching database sequence, (4) List of alignments or HSPs (high scoring segment
pairs) and (5) Parameters used and search statistics. Parts three and four are of
general interest to users and are further described here. For a description of the re-

maining parts see [4].

The one-line summary list (Figure 2) facilitates the comparison of the scores and
statistical significance of individual matches to that of the set. The first column,
Sequences Producing High Scoring Segment Pairsis the sequence descriptor from
the FASTA format (see Box 1), and contains the sequence identifier and name. The
second column High Score contains the score of the highest scoring HSP - the MSP
or maximal segment pair. The query may have more than one HSP with a subject,
but only the highest scoring one is reported in the one-line summary. The third
column Smallest Sum Probability P(N) contains the lowest P-value ascribed to
any set of HSPs. The fourth column Smallest Sum Probability (N) displays the
number of HSPs in the set which was ascribed the lowest P-value. Essentially, the
P-value is the probability that this HSP could occur by chance alone. The greater
the number of HSPs between two sequences, the lower is this probability. If not

otherwise specified, the list of one-line summaries is sorted by increasing P-value.

Smallest
Sum
High Probability
Sequences producing High-scoring Segment Pairs Score P(N) N
splP27644lpglriagrtu polygacturonase (pectinase) (pgl)... 1649 6.1e-226 1
gil1575707 (U70481) abscission polygalacturonas... 117 l.1e-15 2
gil1575705 (U70480) abscission polygalacturonas... 112 1.6e-14 2
pirllIS57806 polygalacturonase precursor - tomato... 112 22e-14 2
gil479088 (X77231) polygalacturonase [Prunus p... 142 5.5e-12 3

Figure 2: Ezample BLASTP Output - One Line Summary

The set of HSPs is listed for each matching database sequence. (Figure 3) shows



an example of the information listed for each HSP. The sequence descriptor for the
matching sequence is given followed by each HSP that was found between this se-
quence and the query. A description of an HSP consists of a statistical summary and

the alignment.

The statistical summary contains: (1) the alignment Score, (2) the number of times
one might Expect to see an equivalent or better match by chance, (3) the P-value
or probability (in the range 0-1) of observing such a match, (4) the number and per-
centage of total residues in the alignment which are identical and (5) the number and

percentage of residue pairs for which the score is positive.

Below the statistical summary is the HSP; the alignment of the query segment with
the subject segment. The offsets of the HSPs are placed at the beginning and end of
the query and subject segments. In between, letters indicate exact matches while +
indicates a non-identical, but positive scoring match. No symbol indicates a zero or

negative score for that residue pair.

>gil1575707 (U70481) abscission polygalacturonase [Lycopersicon esculentum]
Length = 387

Score = 117, Expect = 1.1e-15, Sum P(2) = 1.1e-15
Identities = 22/66 (33%), Positives = 35/66 (53%)

Query: 37 GFTI RNAASWTI HPQGCEDLTAAASTI I APHDSPNTDGFNPESCRNVMI SGVRFS VGDDC 96
G T++N+ + 1 GC + +++P +SPNTDG + +S v 1 GDDC
Sbjet: 156 GVTVQNSQM FHI LVDGCHNAM IQGVKVLSPGNSPNTDGI HVQSSSGVS IMNSNI GTGDDC 215

Query: 97 1AVKAG 102
I+4 G
Sbjct: 216 1S1GPG 221

Figure 3: Ezample BLASTP Output - HSP List



1.3 Summary of Thesis

This section provides a summary of the thesis contents. In essence, this work involved
reverse engineering the BLASTP program for the sole purpose of optimising its per-
formance. First, a brief description of the BLASTP algorithm is given followed by a
summary of the reverse engineering methodology and the results obtained from that
process. Next, a summary of the three optimised algorithms is presented along with
their performance evaluations. Finally, this section outlines the contributions made

by this thesis to the fields of bioinformatics and software engineering.

The BLASTP Algorithm

The algorithm works in three steps. First, the neighborhood is constructed. The
neighborhood consists of the set of W-mers that score at least T with some W-mer in
the query. The second step scans the database for matches or hits to a neighborhood
word. The third step attempts to extend a hit into an HSP before the falloff value of
X is reached. Extensions start from the hit and proceed in steps of aligned residue
pairs in both directions. At each step the score of the aligned pair is looked-up in a

score matrix and added to a running sum.

Reverse Engineering of the BLASTP Program

This work uses a reverse engineering approach to identify those parts of the program
that, if optimised, would give the largest CPU speed-up. This is an application of
Amdahl’s Law [5] - the largest speed-up is obtained by optimising those parts that
use the most CPU cycles. The reverse engineering method consists of 1) obtaining
an execution profile of the program which provides a breakdown of execution time
according to procedures and lines of code and 2) constructing a program model which
consists of a set of sub-architectures each of which implements a particular function-
ality and accounts for a relatively large fraction of the overall execution time. The
execution profile indicates where optimisations should be made while the program
model shows the context and extent of any modification. The execution profile of the
BLASTP program under the conditions described in 3.2.1 shows that over 90% of the
CPU time is spent in the procedure that implements the third step of the algorithm,
extending word hits. In addition, within that procedure, three do-while loops, which

localise the starting points of extension and perform the left and right extensions



respectively, account for more than 76% of the overall execution time. Each loop
contains either one or two lines of code that retrieve a score from the matrix. These
lines alone account for more than 63% of the overall time. The focus for optimisation
is clear. Any modified program that more efficiently accesses the matrix, executes
fewer extension loops or invokes the extension procedure less frequently will provide
a substantial speed-up. Reverse engineering the program provides a model of the
program’s design. Such a model is necessary to show where additional code should
be added and what effect that modification might have on the rest of the program.

Optimisations to the BLASTP Algorithm

This thesis proposes three optimisations that are of two types: 1) New sequence rep-
resentations that are used explicitly in the extension procedure and 2) A constraint
on the number of times the extension procedure is invoked. The first optimisation
uses a score matrix row address representation of the query sequence which reduces
the number of instructions required to access the matrix. The second optimisation
uses a sequence representation for both the query and subject sequences that groups
residues into pairs or residue-doublets; each residue-doublet in the amino acid al-
phabet is assigned an integer. This effectively halves the lengths of the sequences,
allowing extensions to be done in approximately half the time since the number of
extension loops executed is greatly reduced. The third optimisation, rather than
modify the extension procedure, invokes the procedure less frequently. The second
step of the algorithm, scanning for hits, is modified so that the extension procedure is
called only when two hits are found within a given distance. For the first and second
optimisations, termed row-address and residue-doublet respectively, new extension
procedures were coded and and plugged into the BLASTP version 1.4 program. For
the third or two-hit optimisation, the scanning procedure was augmented with code
that counts the number of hits per aligned segment of the query and subject sequences.
Compared to the unmodified program, those implementing the three optimised al-
gorithms show speed-ups of 15%, 48% and 63% respectively. In addition, the effect
of each of the optimisations on the detection of HSPs was studied. The row-address
optimisation is in fact more of a change to the implementation of the algorithm rather
than a change to the algorithm’s heuristics. Thus, the matrix-row algorithm finds all
HSPs found by the unmodified algorithm. However the residue-doublet and two-hit



optimisations change the heuristics of the algorithm and do in fact miss some lower-
scoring HSPs. As a consequence of grouping residues into pairs, the residue-doublet
algorithm misses some HSPs with S < 50. The two-hit algorithm misses those HSPs
that contain a single hit since it only attempts to extend those hits that are within
a given distance of a previous hit. Any HSP detected by the two-hit algorithm will
always contain at least two hits. The program implementing the two-hit algorithm
reports all HSPs reported by the unmodified program. The only difference is that
the P-values of some of the HSPs reported by the modified program are slightly lower.

Contributions

This work makes three valuable contributions. First, each of the optimised BLASTP
algorithms provides a significant speed-up of the program that enables scientists to
obtain results of BLASTP searches much faster with an acceptable compromise in
search sensitivity. Second, the reverse engineering of the program resulted in a pa-
rameterised description of the algorithm that clearly shows how that algorithm works.
Such a description was not previously available in the literature. Finally, this work
is a case study in reverse engineering in which the design of a program was extracted

from the source code and modelled with the aid of execution profilers.

1.4 Organisation of Thesis

There are four additional chapters. Chapter 2 describes the role of a database search
tool such as BLASTP in the experimental process of identifying homologous se-
quences. In addition, this chapter discusses four important issues in protein sequence
comparison: (1) Score Methods (2) Sequence Databases (3) Sequence Comparison
Algorithms and (4) Assessment of Results. Finally, the chapter provides a parame-
terised description of the BLASTP algorithm.

Chapter 3 describes the reverse engineering of the BLASTP program. It presents the
reverse engineering methodology which includes descriptions of (1) the test search, (2)
how execution profilers were used as reverse engineering tools, and (3) how particu-
lar sub-architectures of the program were modelled. Finally, the chapter presents the

profile results and the program models obtained from revere engineering the program.



Chapter 4 describes the three optimisations to the BLASTP algorithm. Each op-
timisation is presented in four parts: (1) Concept - explains the idea behind the
optimisation and why its implementation would result in a performance speed-up,
(2) Design and Implementation - describes how the optimisation was implemented
in the BLASTP version 1.4 program, (3) Results - compares the performance of the
optimised program to that of the unmodified one and (4) Effect on HSP Detection
- describes the cost in search sensitivity by comparing the HSPs detected using the

optimised algorithm to those of the unmodified one.

Chapter 5 summarises the performance gains obtained from each of the three al-
gorithm optimisations. In addition, a discussion of whether or not the cost in search
sensitivity of using the optimised algorithms is acceptable. Finally, an outline of the
contributions of this work to the fields of software engineering and bioinformatics is

provided.
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Chapter 2

Topics in Protein Similarity

Searching

2.1 Biology Primer - Protein Structure, Function

and Homology

Proteins are biological macromolecules that are comprised of amino acids of which
there are twenty. Proteins differ in their amino acid composition. The simplest view
of protein structure is that of a linear sequence of amino acids, referred to as primary
structure. However, the amino acids that comprise a protein interact to produce more
complex structures. Secondary structure refers to the spatial arrangement of amino
acids that are near one another in the linear sequence. Some of these structures con-
tain repeating sub-structures such as a-helices and §-sheets. Tertiary structure refers
to the spatial arrangement of amino acid residues that are far apart in the linear se-
quence; it is the three-dimensional conformation of the protein over its entire length
that includes regions of secondary structure. Another level of structure is quaternary

structure which refers to the spatial arrangement of two or more interacting proteins.

The tertiary structure of a protein implies the protein’s functionality. It is the inter-
action among the protein’s amino acids both locally and globally that provides the
structural integrity required for a protein to perform its biological function. “The
information needed to specify the complex three-dimensional structure of a protein

is contained in its amino acid sequence - sequence specifies conformation” [6], page 33.
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Two proteins are homologous if they share a common ancestor [7]; i.e. they are
related in an evolutionary context. Homologous proteins always share a common

three-dimensional folding structure and often share active sites or binding domains

[8).

2.2 Protein Sequence Comparison

2.2.1 Inferring Homology

Comparing one protein to another is one of the most informative computational ac-
tivities in biology. Sequence comparison is used as a method to infer homology and
is most informative when it detects homologous proteins. Information about the sec-
ondary and tertiary structure of a protein for which only the primary sequence is
known can be inferred by finding a homologue for which this information is known.
Similarity is a measured quantity while homology is inferred. Two sequences whose
primary structures are similar within a certain level of confidence can be inferred to
be homologous. This inference can be later reinforced by comparison techniques that
go beyond primary structure and provide measures of similarity based on secondary

and tertiary structure.

The process of inferring homology consists of several sequential steps each of which
builds on facts gathered in the previous one to build a case for homology [9] [10].
First an unknown protein is compared to a sequence database to find the set of known
sequences to which it is similar. The BLASTP [1] or FASTA [11] programs are ap-
propriate tools for this step since they perform searches quickly with an acceptable
compromise in sensitivity. In addition, both programs provide a statistical measure of
significance for each match that contributes greatly to the assessment of the biological
significance of a match. Matches that have a borderline score or ambiguous signif-
icance can be compared again using more rigorous, but computationally expensive,
programs that implement dynamic programming algorithms. Subsequently, possible
homologues identified by these techniques can be compared to structural databases
such as HSSP [12] or FSSP [13] which may give further evidence of homology based

on similarity of secondary or tertiary structure.
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The context of this work is the first step of this process in which an unknown is
compared to a sequence database. The issues in this step are: (1) choosing a score
method (2) choosing a sequence database to search (3) choosing a search algorithm
and (4) assessing the significance of matches. The following subsections provide a

brief introduction to each of these issues.

2.2.2 Score Matrices

One of the most frequently used matrices is that of Dayhoff [14] who counted the num-
ber of point-accepted mutations (PAMs) in 71 groups of closely related proteins(85%
similarity). An accepted point mutation is defined as “a replacement of one amino
acid by another, accepted by natural selection”. From the mutation data a mutation
probability matrix was derived which gives the probability of replacement for amino
acid pair at a particular evolutionary distance. This distance is inherent in the relat-
edness of the proteins within the group from which the mutation data was obtained
and is given the measure of 1 PAM. Successive multiplications of the PAM1 matrix
by itself N number of times provide a measure of relatedness at greater evolutionary
distances (N PAMs). However, at a distance of 2034 PAMs the change in replacement
probability with increasing PAM is asymptotic. Therefore, the distance at which the
PAM family can provide a measure of similarity is limited. This limitation is a func-
tion of the relatedness of the proteins within the original group; i.e. if the proteins
within the original group were more distantly related, a PAM matrix may be de-
rived which may be used to detect more distant similarities. The score matrix used
in sequence comparison is the log odds matrix of the mutation probability matrix
at a particular N PAMs. Dayhoff et al.[14] have found that the log odds matrix for
250 PAMs (PAM250) is an effective scoring matrix for detecting distant relationships.

The BLOSUM series of matrices, Henikoff and Henikoff [15], are also constructed
using replacement or substitution frequencies, but from over 2000 sets of similar
segments or blocks. A single block can be considered as representing a conserved
region of protein family. Unlike the PAM series which infers evolutionary distance
by multiplying mutation frequencies, the BLOSUM series infers distance from the

percent relatedness of the protein segments that constitute a block. For example,
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a BLOSUMS62 matrix is derived from a block whose members are 62% similar. To
detect similarity between more distantly related proteins one would use, for example,
a BLOSUM matrix constructed from a block whose members differ by less than 62%.
Henikoff and Henikoff [15] have found that matrices derived from blocks, the BLO-
SUM series, perform better in alignments and homology searches than those based

on accepted mutations in closely related groups as in the PAM series.

2.2.3 Protein Sequence Databases

When comparing an unknown protein to a database, it is of vital importance that
the database contain the most recent sequence information [16]. “Sequence relation-
ships critical to important discoveries have on occasion been missed because old or
incomplete databases were employed”[9]. There are several independently maintained
protein sequence databases; Swiss-Prot [17], PIR-International [18], GenPept [19] and
the PDB [20]. The curators of these databases use different strategies for updates,
a consequence of which is that one database may contain sequences that others do
not. To ensure that an unknown is compared to all known sequences, an investi-
gator should search all databases. This cumbersome task is simplified by searching
a non-redundant database which merges sequences that are similar in amino acid
cornposition. For example, NCBI [3] maintains the protein NRDB (non-redundant
database) [21] which is constructed from Swiss-Prot, PIR-International, GenPept and
the PDB. The criteria for membership in a non-redundant database is generally quite
low; the database may contain sequences that differ in composition by less than ten
percent or even by only one residue. The sequences in these databases are non-
redundant with respect to amino acid composition, but not necessarily with respect
to biological information. A search that produces matches that are 80% identical is
essentially producing matches to the same sequence. Non-redundant databases are
larger than necessary and expectation values calculated from them are artificially
high and may be less significant [7]. However, these databases provide the benefit
of a 50% reduction in search space over the set of independent databases. “More
sophisticated methods for creating derived, composite views of protein and DNA se-
quences data provide even further reductions [9]. One promising method is to cluster
sequences into groups based on percent compositional similarity and select a repre-

sentative member to which a query is compared. This not only further reduces the
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search space, but adds value to the statistical interpretation of results by reducing the
number of matches that contain the same biological information. The best approach
for database comparison is to perform searches against a database that contains all
known compositionally non-identical sequences that are clustered into groups that

contain disjoint biological information.

2.2.4 Statistical Assessment of Similarity Scores

The basic output of a similarity search is a list of scores which provide a measure of the
extent of similarity between the query and database sequence. Similarity searching
programs are greatly improved if this basic output is augmented with a measure of the
statistical significance for each score. A natural question is: what is the probability
that an alignment could occur by chance alone? Such measures reduce the likeli-
hood that an investigator will call sequences homologous when they are not [7]. In
searching protein sequence databases, avoiding high similarity scores with unrelated
sequences can be just as important as calculating high scores for related sequences
[8]. This subsection describes the statistical measures used in the BLASTP program

to assess the significance of scores.

The statistics of local similarity scores for alignments without gaps have been de-
scribed by Karlin and Altschul [22]. With each HSP (high scoring segment pair),
an Expect and P-value is reported. The Expect value is the number of times one
might expect to observe the occurrence of an HSP having score S by chance alone.
The P-value is the probability of this occurrence in the range 0-1. These values are
dependent on several factors [23]: (1) the scoring system, (2) the residue composition
of the query, (3) an assumed residue composition for a typical database sequence, (4)

the length of the query sequence and (5) the total length of the database.

In certain cases, multiple HSPs are found between two sequences. A P-value is
calculated for each subset of the HSP set. The P(N) value reported in the output is
that of the subset of HSPs with the lowest P-value. The value of N is the number
of HSPs in the lowest P-value set. The P-value is a function of N; the greater the
number of HSPs between two sequences, the lower the probability that the match is

a chance similarity.
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2.2.5 Algorithms for Protein Sequence Comparison

This section places the BLASTP algorithm in the context of the most widely-used
algorithms for protein sequence comparison. The majority and most popular protein
sequence comparison algorithms fall within two groups; dynamic programming and
heuristic (Figure 4). The dynamic programming algorithms are more computationally
expensive, but are less likely to overlook a significant match given a particular scoring
scheme. They are the methods of choice when a rigorous comparison is required.
Heuristic algorithms are less computationally expensive, but may miss borderline
regions of similarity; i.e. regions in which the similarity measure exceeds a preset
threshold only slightly. They are the methods of choice for database searching because

of their relatively low computational requirements.

. Alignment Type
Algorithm Type Global Local
Dynamic Programming Needleman-Wunsch Smith-Waterman
Heuristic FASTA BLAST

Figure 4: Classification of Algorithms for Protein Sequence Comparison. The
Needleman-Wunsch [24] and Smith-Waterman(25] algorithms form the basis for most
dynamic programming methods. FASTA [11] and BLASTP [1] are the most popular
algorithms for protein database searching. These algorithms either report a measure
of similarity based on a comparison of two sequences over their entire lengths (global)
or among one or more aligned sub-segments (local).

The output of these algorithms is a similarity score(s) based on either a global or one
or more local comparisons Algorithms that compute a global score optimally align
both sequences over their complete lengths. In doing so, they may assign less than
optimal scores to aligned sub-segments. The converse is true for algorithms that re-
port scores computed from local alignments. In fact, no global score is computed.
Instead, the output consists of a set of scores computed from aligned sub-segments
whose scores are locally optimal. Global alignment algorithms are often the choice
if two sequences are known a priori to be closely related. However, distantly-related
proteins are more likely to be similar in sub-regions such as an active site rather than
over their complete lengths. Therefore, when comparing an unknown protein to a
database, local alignment algorithms are better than global alignment algorithms at

detecting distantly-related similarity.
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Dynamic programming algorithms have been successfully applied to biological se-
quence comparison problems. The two algorithms that form the basis of most meth-
ods are those of Needleman and Wunsch [24] and Smith-Waterman [25]). The former
finds the best alignment of two sequences over their entire lengths; the latter, the

best local or sub-alignment.

A variant of the Needleman-Wunsch algorithm is shown in Box 2, while the Smith-
Waterman algorithm is shown in Box 3. Both algorithms compute a score for the
best alignment. The time complexity of these algorithms derives from the traversal
of a comparison matrix whose size is proportional to the product of the two sequence
lengths. In addition, it is important to note that these algorithms compute a score
for the optimal alignment, not the alignment itself; i.e. the positional mapping be-
tween residues. The alignment must be obtained by back-tracking the optimal-scoring
path through the similarity matrix which takes time proportional to the length of the
longer of the two sequences. Thus, the time complexity for obtaining the best score
as well as as the actual alignment is of the order (N z M) + M where N and M are the
lengths of the two sequences and M is the longer of the two.. The time complexity is

further increased if more than a single best score and alignment are requested.

Dynarmic programming algorithms applied to database searches are impractical. The
time to search a database of K sequences is of the order K(N z M) where K is typi-
cally of size 10* or 10°. The inapplicability of these algorithms to sequence database
scarching lead to the development of heuristic algorithms that sacrifice sensitivity for
speed. The most popular of these are FASTA, for computing global alignments, and
BLASTP, for computing local alignments.
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Box 2

1. S(0,0) <-0

2. forj<-1to Ndo

3. S(O ’J) <- S(O ) j'l) + (a'[l.a-,])

4. fori<-1toMdo

5. S(i , 0) <- S(i-1, 0) + (a[*])

6. for j <— 1to N do

7. 8@ ,j) <- max { 8(i-1 , j-1) + (o[3;]), SG-1,3) + (a[Z]), 8(i , j-1) + (o[3;]) }

A Variant of the Needleman- Wunsch Algorithm [26]

The similarity matrix, 5, stores the scores of all sub-alignments ;5 7"]. Each entry is initialised to
zero (1). The algorithm traverses the matrix from left to right (4) and from top to bottom (6). The
operator, o, returns the score of an aligned pair which may be residue-residue, [g;] residue-gap or
deletion, [2'] or gap-residue or insertion, [b_,] Scores may be negative. The score of the optimal or
highest scoring alignment up until a particular aligned pair is the maximum of the entries surrounding
S(i,j); either S(i-1, j-1), above-left, S(i-1, j), left or S(i , j-1), above. The algorithm extends the
optimal alignment by adding the least costly aligned pair, the score of which is stored in S(3,7) (7).
The score of the optimal global alignment is thus the value of S(M,N). The algorithm penalises end
gaps (2,3,5). The penalty increases with the length of the gap.

Box 3

1. best <- 0

2. forj <-1to N do

3, S(0.,3) <= S(0,§-1) + (o5;)

4. fori <-1to M do

5 S, 0) <—S8(3-1, 0) + (o[*])

6. for j <-1to Ndo

7 S(l sJ) <- max { 0, S(i'l rj'l) + (0'[:;]): S(i'l ' J) + (U[i'])! S(l :j'l) + (‘7[;,]) }
8. best <-max { S(i,j), best

The Smith- Waterman Algorithm [26]

This algorithm is similar to that of Needleman-Wunsch except that the score of a particular sub-
alignment, S(i,j), is at least 0 (7). This allows the local alignment, 5(3,5), to re-start at any aligned
pair. The score of the optimal local alignment is stored as S is saved in best (8). The end-gap

penalties are zero (2,3,5).
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FASTA and BLASTP operate on the premise that each residue of both sequences
need not be compared to detect the highest scoring alignments. Both algorithms first
identify short, highly-similar segments which are then expanded. The main assump-
tion made by these algorithms is that any significant alignment encompasses one or
more of these segments. The difference between dynamic programming and heuristic
algorithms is best understood in terms of a comparison matrix where one sequence is
positioned horizontally and the other vertically. Each entry is a measure of similarity,
or score, between two residues. The dynamic programming algorithms fill each entry
in the matrix. The heuristic algorithms first fill a subset of entries forming common
sub-sequences of high similarity. Then, neighboring entries are filled or calculated
until the score of an extended aligned segment is maximised. The complexity of the
heuristic algorithms remains on the order of O(N z M), but the number of computa-

tions based on residue-residue comparisons is greatly reduced.

The FASTA algorithm [11] is an improvement over the initial FASTP algorithm [27]
[28]. It operates in four steps: (1) Exact matches of length one or two are identified,
(2) Segments that contain identity matches are re-scored using a score matrix. These
are termed “initial regions”, (3) Initial regions that meet a “joining threshold” are
linked and (4) The highest scoring initial region is scanned using a dynamic program-
ming, usually Needleman-Wunsch. The output of the FASTA program is the highest

scoring region of global similarity, including gaps.

BLAST also first determines short segments of high similarity. However, BLAST
does not only search solely for identity matches, but uses a score matrix to identify
short similar segments (hits). Another difference is that BLAST does not build global
alignments by linking these segments, but attempts to extend each one into an align-
ment whose score is locally maximal. A significant simplification that is made by the
BLAST algorithm is to exclude gaps in the alignment. This improves search time,
but is detrimental to the detection of similarity between distantly related proteins
which are likely to contain insertions and deletions. Recently, the BLAST algorithm
has been enhanced with the ability to produce gapped alignments [29].
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2.3 The BLASTP Algorithm

This section provides a parameterised description of the BLASTP program and each
of the three steps of the algorithm. The description of the program is given in Box
4, while those for each of the three steps - neighborhood construction, hit detection

and hit extension - are given in Boxes 5, 6 and 7 respectively

The BLASTP program (Box 4) first builds the neighborhood (Box 5), then itera-
tively retrieves a subject sequence from the database and scans it for hits (Box 6).

Upon detection of a hit, the extension step (Box 7) is invoked.

Box 4
The BLASTP Program

@, query sequence, ¢og1g2..-q

DB, subject sequence database, size = K

M, function that returns the alignment score

HSP, set of high scoring segment pairs or alignments
W, word size

T, threshold word score

X, falloff score

S, threshold alignment score

HSP = BLASTP(Q,DB,M,W,T,X,S)
N, neighborhood word set
SB, subject sequence, §05152...5m
N = Build-Neighborhood(Q, M, W, T)
for (i=0 ; i<K ; i++) {
SB = DBIi]
Scan(SB,N)

The BLASTP algorithm works in three steps:

1. Neighborhood Construction. A set of words of length W, the neighborhood N, is computed.
Each word scores at least T with some word of equivalent length in the query sequence @.

2. Hit Detection. Each subject SB in the database DB is scanned for matches to a word in N.

3. Hit Extension. The match or hit H is extended into a potentially higher scoring alignment.
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Box 5
Step One - Neighborhood Construction

N = Build-Neighborhood(Q,M, W, T)
AA, amino acid alphabet
for (i=0;i < I-W+1;i++)
if 3 a word nonina...nw_;, where n; € A4
M th_a.t M(ng,-.,.l...q.-+w_1||non,-...nw_1) >=T
then N J < non;...nw—1,gi4w—1 >

This step is parameterised by the query sequence @, the score function M, the word size W and the
threshold word score T. The alphabet of residues is AA. This step outputs the neighborhood, N.
The query sequence @ is scanned. Each query word may have zero or more neighbors. The set of
neighbors of all query words is the neighborhood. The neighborhood is a set of tuples of the form
< neighbor,offset> where neighbor is the word that matched the query word at offset.

Box 6
Step Two - Hit Detection

Scan(SB,N)
H, word hit, composed of (s_off,¢-off), the offsets of H on SB and Q.
for (j=0;j < m-W+1; j+-+)
if ((sjsj41---554w-1) € N)
H.s.off = sjew—1
H.q_off = offset, where < s;8541...5j4w-1 , offset> € N
Extend(H)

This step is parameterised by a subject sequence SB and the neighborhood N. A word hit H is
an alignment of a query word and subject word whose offsets are g_off and s_off respectively. The
subject SB is scanned for matches to a member of the neighborhood. When a match is found, the

extension step is invoked.

21




Box 7

Step Three - Hit Extension

1 Extend (Q,SB,W,H,M,X,S)

2 qg-beg = q = H.q.off W, q.end = q_pos = H.q_off, s.beg = s = H.s_off W, s.end = H.s_off

3 do

4 sum += M(Q,||SB;)

5 if(surn > score) then score = sum, q_end = q, s.end = s

6 else if(sum <= 0) then sum = 0, q_beg = q, s_beg = s

7 q++, s++

8  while(q < q-pos)

9 H((x = -score) < X) then x = X

10 leftq = q-beg, lefts = s_beg, rightq = g-end, rights = s_end

11 leftsum = rightsum = leftscore = rightscore = 0

12  Left Extension:

13 q = leftq , s = lefts, sum = leftsum

14 do

15 q--, s--

16 sum += M(Q,||SB;)

17 if(sum > 0) then

18 score += sum, sum = 0, g_beg = q, s_.beg = s

19 if((x = —score) < X) thenx = X

20  while (sum >= x)

21  if (score > rightscore) A (rightsum > X) A (-rightscore > X) then
22 leftq = q, lefts = s, leftsum = sum, leftscore = score;
23 Right Extension:

24 q = rightq, s = rights, sum = rightsum

25 do

26 sum += M(Q,||SB,)

27 if(sum > 0) then

28 score += sum, sum = 0, gq.end = q, s.end = s
29 if((x = -score) < X) then x = X

30 g+, s++

31 while (sum >= x)

32 rightq = g

33 if (score > leftscore) A (leftsum > X) A (-leftscore > X) then
34 rights = s, rightsum = sum, rightscore = score

35 goto Left Extension

36  if (score >= S) then HSP |J ((Qg-beg.--Qq_endl|SBs_ teg--SBs_ena)
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Box 7 continued

This step is parameterised by the word hit H, the word size W, a scoring function M, the falloff
score X, the threshold alignment score S and the query and subject sequences @ and $B (1). This
step attempts to extend a hit into a longer, potentially higher scoring alignment. The offsets g-beg,
g-end, s_beg and s.end mark the maximal scoring alignment. They are first set to the delimiters
of the word hit (2). The first loop (3-8) then sets them to the delimiters of the maximal scoring
sub-alignment within H. The hit is traversed from ¢ to g-pos. Residue pair scores are accumulated
in sum (4). When sum is positive (5) it is added to score and g_end||s.end is advanced right. A
negative sum (6) causes g_beg||s_beg to be advanced right effectively excluding the negative scoring
residue pair from the maximal scoring sub-alignment of H. Parameters specific to either the left or
right extensions are initialised in (10-11). The second loop (12-20) extends in the left direction.
Residue pair scores are accumulated in sum (16). If sum is positive, it is added to score then reset
to zero and the alignment is extended (17-18). If sum falls below z, the extension terminates (20).
Longer extensions are favored by allowing z to be set to -score (9,19,29). A right extension occurs if
the conditions in (21) hold which is always the case at first. The values of s, sum and score are saved
in the left extension parameters, lefts, leftsum and leftscore respectively (22). The third loop works
in the same manner as the second except that the extension proceeds in the right direction (23-31).
The left extension may continue if the conditions in (33) hold. If so, s, sum and score are saved
in the right extension parameters, rights, rightsum and rightscore respectively (34). The maximal
scoring alignment is stored in the HSP set if score meets the threshold S (36). Figure 5 illustrates

the dynamics of the extension algorithm.

left q_beg qbeg qend qend qright
q /“— e ——t—+ :/ e ——H————+ \: e ———+—+ \
’ s " é
s ettt —t—t—tt———t—>
,\; left :\ s_beg s_beg s_end l_end'/| s_right /

q . query sequence
5 . subject sequence
H, word hit

W, word size

M. score function

Figure 5: Dynamics of Extension Algorithm. A word hit His a sub-alignment of length
W, H = (gbeg---Gend||Steg-.-Send) Whose score, M(H) >= T. The extension algorithm
finds the locally maximal alignment starting from H. Extension continues in either
direction until M(giest. Qoeg||Stest--Speg) < X oF M (Grighte--Qong||Sright---Sena) < X. The
total score of the alignment is M(q,',eg...q;ndllsgeg...s;nd)
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Chapter 3

Reverse Engineering of BLASTP

Program

3.1 Introduction

Reverse engineering is an activity in which a design is derived from its implementation.
In software programs, domain knowledge and design expertise are contained within
the source code. The reverse engineering process extracts this design knowledge and
expertise from the source code and presents it at a higher level of abstraction, using

more understandable models.

This work uses a reverse engineering approach (Figure 6) to identify and describe
those parts of the BLASTP program that, if optimised, would have the greatest im-
pact on the program’s performance. A program model is constructed which describes
the design and implementation of such time expensive parts. The model provides
a framework in which an understanding of how a modification to one part of the
program might effect the overall performance. In addition, the model suggests how a

modification might effect the rest of the program.

The program model is comprised of a set of sub-architectures each of which is pre-
sented in subsection 3.2.4.2. They were derived and described using the reverse engi-
neering methodology given in section 3.2. The program model mostly describes the
design and implementation of the BLASTP algorithm. From the program model, a
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description of the algorithm is obtained that is more comprehensive than any descrip-
tion given in the literature. This parameterised description of the algorithm, already
presented in subsection 2.3, essentially expands literature descriptions to include the
sub-steps of each of the three major steps; neighborhood construction, hit detection

and hit extension. Each sub-step is a potential focus for optimisation.

BLASTP executable

(8) gprof (1) prof -pixie (6) debug

call trace list of procedures/execution times debug results

. , TALS (5) test
list of lines/execution times

(9) expand readin

7 if
(2) localise reading (7) verify
(3) build
source code Q’ program model
(4) verify

Figure 6: Reverse Engineering Process. The process consists of profiling the program
using execution profilers and studying the source code to construct a program model
that describes the sub-architecture of the program that accounts for a large proportion
of the overall execution time. The profiler prof [30] was used to obtain a list of
procedures and lines of code ordered according to execution time (). This data
indicated which parts of the program, if optimised, would give the largest speed-up.
The prof data also provided a starting point for reading the source code (2). The
model was constructed from a study of the source code (9) that involved forming an
assumption about the functionality of a particular section of code and then verifying
that hypothesis by re-examining the source code (4) and testing using debuggers
(5,6,7). The model was expanded by linking already studied code to related code
using the call trace provided by the gprof profiler [31] (8,9).
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3.2 Methodology

3.2.1 Test Search

A single test search is used as a standard. The search program is BLASTP, version 1.4
[32]; the default values for all parameters are used. The database is the protein NRDB
(non-redundant database) [21], a conglomerate of several protein sequence databases
in which identical sequences are merged into one entry. The database contains 252,307
entries. The query sequence (length = 312 residues) is given in Box 1, section 1.2.
The average length of database sequence is 283 residues. The performance results
presented in subsection 3.2.4.1 are part of the execution profile of the test search run

on a DEC Alpha computer.

3.2.2 Execution Profilers as Reverse Engineering Tools

Figure 6 outlines the reverse engineering process. Execution profilers account for the
execution time of the procedures that comprise a program. They have two main
outputs: 1) A flat profile which lists all the procedures and the seconds of execution
time for which each of them is accountable. The procedures are listed in decreasing
order of execution time. The individual times sum to the total execution time of the
program. 2) A call graph which lists each procedure together with information about
the procedures that are its parents and children. The graph is sorted by the sum of
the time for the procedure itself plus the time inherited from its descendants.

This work uses the profilers prof [30] and gprof [33] [31] as reverse engineering
tools to analyse the test search (subsection 3.2.1). The prof profiler with the -pixie
[34] option provided a flat profile which gave a quick overview of the procedures used
and showed which ones account for large fractions of the overall execution time. The
gprof profiler provided a dynamic call graph which was used to deduce the program’s
architecture; i.e. control flow and structures. In addition, the profilers were run with
various options to provide additional data. The prof -pixie program was run with
the -heavy option in order to obtain a listing of code lines ordered from the most to
least heavily used. Each code line is referenced to a line number in a source file. The
-numbers option of gprof provided an alphabetical list of procedures. In this case,

each procedure is referenced to a line number in a source file.
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The profile data suggest a reverse engineering methodology which reveals areas of the
program that, upon optimisation, may yield a substantial performance enhancement.
Execution times are measured in CPU cycles, a consistent basis for comparison among
individual or sets of procedures. The flat profile gives the most expensive procedures,
providing a starting point for the textual study of the program code. Similarly, the
-heavy option provides the most expensive lines of code which are also good points
of focus for analysis. While the prof data provides a starting point, the gprof data
provides a basis for continuation. The call graph was used to obtain the parent(s)
and children of the expensive procedures. By expanding through the call hierarchy,
a set of procedures that comprise a sub-tree of the call graph was constructed. The
abstraction implemented by a sub-tree is revealed from a textual study of the code,
which includes the analysis of structures that are a local to a procedure as well as

those that are passed between procedures as parameters.

The result of this bottom-up process is a description of a sub-architecture whose
implementation accounts for a relatively large fraction of the execution time, making
it a potential area of optimisation. In this way, the sub-architectures that imple-
ment the second and third step of the algorithm were deduced and modelled. Other
sub-architectures whose implementations are not expensive could not be deduced
bottom-up. In such cases, a top-down approach was used. The call-graph was traced
starting from the main procedure. Again, procedures were coupled with structures
to construct a sub-architecture that implements a particular abstraction. The sub-
architectures that implement the first step of the algorithm and the event loop, which
first fetches a database sequence then invokes the algorithm, were constructed with

this approach.
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3.2.3 Modelling of Program Architecture

The sub-architectures reverse engineered using the process described in subsection
3.2.2 are modelled using elements of the Object Modelling Technique (OMT) [35] and
the Unified Modelling Language (UML) [36]. These techniques provide established
models and notations through which the relationships among a program’s entities
can be effectively communicated. Although BLASTP is a procedural program writ-
ten in the C programming language, its design can be accurately described using these
object-oriented models. For a discussion on which modelling concepts and notations

are used in this work, consult appendix A.

The representation of C programming constructs with object-oriented modelling el-
ements is exemplified in Figure 7. The user-defined struct type of C or structure
[37) [38] is modelled well as a class (Figure 7-A). Procedures that contain, within
its parameter list, a reference to a structure are modelled as operations of the class
that represents that structure. The members of the structure are modelled as the
attributes of that class. In addition, several procedures may contain a local variable
used for the same purpose. This variable can also be abstracted as a class attribute.
A structure member that is a reference to another structure implements an associa-
tion(Figure 7-B). Nested structures that logically form a “part-whole” hierarchy can
be modelled using aggregation. One structure may send a message to another if a
procedure that is grouped with the first structure invokes a procedure that is grouped
with the second. The content of the message is a member of the first structure which

is passed to the second procedure as an argument (Figure 7-C).

Algorithms are presented with pseudo-code, the level of abstraction of which is de-
pendent upon the complexity of the code that implements the algorithm. For the
scanning algorithm, the code is a sufficient description. For more complex algorithms,
the code hides the fundamental concepts of the algorithm. This is the case with the
neighborhood word algorithm, which is illustrated as invoking itself recursively, but
is not implemented in this manner. With the extension algorithm, the code is simple
but detailed. The pseudo-code presented for this algorithm is similar to the source
code. Here, the omission of detail would result in an incomplete description of the

algorithm.
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Concept C Program Contructs Elements on Class Diagram

structure X {
T a
Thb

} X

P(X * xref) {
Classes Tr
Attributes Tt
Operations xref->a 4= ]
}

-
Ladiie BN - 2 )

]

Q(X * xref) {
Tr
Tt
xref->b +w= 1

}

structure X { X
Y * yref
Z* zref z

}

or
Associations structure Y {

} X

structure Z {

} Y Z

structure X {
T a
}

structure Y {
Tb X Y

}

Ta Tb

PO b Q0

Message Passing

P(X * xref) {
Q(xref->a)
}

QY * yref) {
P(xref->b) J

}

Figure 7: Object-Oriented Modelling of C Language Elements. Three examples are
shown, A, B and C. The first column lists the object-oriented concept. The second
shows a set of C structures and procedures in which that concept is implemented.
The third shows the equivalent group of object-oriented elements.
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3.2.4 Results of Profile Analysis and Reverse Engineering

of Program
3.2.4.1 Profile Analysis

The execution profile of the program indicates those parts of the program whose
optimisation would result in the greatest speed-up. The set of procedures that im-
plement the BLASTP algorithm account for greater than 99 percent of the execution
time (Figure 8). The third step, word hit extension, accounts for greater than 93 per-
cent of the time. Within the extension procedure, the three extension loops account
for greater than 76 percent of the time (Table 1). Furthermore, the profile reveals
that the line of code that accesses the residue pair score matrix is the most expensive,

accounting for greater than 63 percent of the execution time (Table 2).

Amdahl’s Law [5] states that the greatest savings in execution time stands to be
gained by optimising the most time expensive part of the program. Clearly the ex-
tension procedure should be the focus of optimisation. The profile further suggests
that a finer focus should be the extension loops and the line within that accesses the
score matrix. Therefore, an algorithm optimisation that invokes the extension pro-
cedure less frequently, executes less extension loops or reduces the cost of the matrix

access can potentially improve the overall performance of the program.

Algorithm Step CPU cycles x 10 9 % cPU cycles
Neighborhood Construction 0.002 1x10 -4
Hit Detection 1.2 93.2
Hit Extension 20.0 5.9

21.2 99.1
Test Search
Program  BLASTP version 1.4
Query : gil129937l, polygalacturonase, 312 residues

Database : GENBANK - proteinNRDB, 252,307 sequences, 71,280,657 residues
Platform DEC Alpha/ UNIX

Figure 8: Ezecution Time for Three Steps of Algorithm. The execution time is mea-
sured in CPU cycles. The total cycles for a step is the sum of the cycles for the set
of the procedures that implement the step. The algorithm accounts for more than
99 percent of the execution time. The third step, word hit extension, is the most
expensive, accounting for more than 93 percent of the time.
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| Code [ Reference to Figure 20 | CPU cycles x 10° | % CPU cycles |
start extension loop | 15-24 1.9 8.7
left extension loop | 41-49 7.3 34.0
right extension loop | 63-71 7.3 34.0

( | 16.5 76.7 |

Table 1: Ezecution Time for BlastWordEztend Procedure Code Sequences (row-
address). The three extension loops account for more than 76 percent of the execution

time.
| Line [ Ref. Figure 20 | CPU cycles x 10° | % CPU cycles |
matrix access - start loop | 16 1.4 6.7
matrix access - left loop | 42 6.0 28.2
matrix access - right loop | 64 6.0 28.2
| I | 13.4 63.1 |

Table 2: Ezecution Time for BlastWordExstend Procedure Lines (row-address). The
three lines that access the residue pair score matrix to retrieve a score account for
more than 63 percent of the execution time.

3.2.4.2 Reverse Engineering of Code

The optimisations are implemented in the existing BLASTP version 1.4 program. A
reverse engineering approach is used to obtain the set of program sub-architectures
that implement the algorithm. Class diagrams [35] are used to communicate the pro-
gram’s design. An overview of the architecture that was reverse engineered from the
source code is given in Figure 9. This model provides a sufficient understanding of
the program in order to implement the optimisations described in Chapter 4 and to

anticipate how any changes made might effect the rest of the program.
The structure that implements the algorithm is BlastWordFinder. BLAST Filterim-

plements the neighborhood construction step. BlastWordFinder uses DFA to scan the

the subject for matches (step 2 of the algorithm). DFA is composed of non-accepting
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states (DFA_State) and accepting states (DFA_Accept). DFA_Accept contains a list
of query offsets DFA_Patlist for each neighborhood word. BLAST WordExtender im-
plements step 3 of the algorithm. The query and subject sequence are stored in
BLAST_Str structures. BLAST_WFContext is composed of two BLAST_Str structures,
which contain the query and subject sequence, and BLAST Score Blk which contains

the score matrix.

[BLAST_WordFinder |

[BLAST Filter | [DFA| [BLAST WordExtender | [BLAST Str(subjecty | [BLAST WFContext B

E S | : ?
— ,
[DFA_State |2 DFA_Accept | [BLAST ScoBIk | [BLAST_Str (query) |

—

| —
"N.a"

[

DFA _Patlist

l DFA_PatID

Figure 9: Sub-Architecture that Implements the BLASTP Algorithm.

3.2.4.2.1 Implementation of Event Loop BLASTP is essentially a protein
database scanner. The program iteratively retrieves a subject from the database,
then scans it for subsequences (hits) that are similar to the query (Figure 11).
The search loop is implemented by the procedure blastp.dosearch. Two events
occur with each iteration: (1) The protein sequence database db.seq is accessed
to retrieve the subject which is placed in the BLAST Str structure. This is ini-
tiated by the procedure db_get_seq and (2) The subject is scanned for hits by
BLAST WordFinder. The structures that comprise the program’s interface to the
protein sequence database are DBFile, BDBFile and MFILE. Each iteration consists of
positioning the database file pointer to point to the next subject (db_seek), retrieving
the next subject db_get_long and invoking the scanning step of the algorithm with

the procedure BlastWordFinderSearch.



The BLASTP application is a client of the BLAST and GISH libraries (Figure 10).
The former contains the structures and procedures that implement the algorithm,
the latter those that implement database management and retrieval. Each library
contains a structure that acts as an interface to the database. The DBFile structure
fulfils this role for the BLASTP application, while the BDBFile and MFILE structures
do the same for the BLAST and GISH libraries respectively. These three structures form
a hierarchy; i.e. DBFile is a client of BDBFile which is a client of MFILE. Each contains
a set of file operations; open, seek, close and get. Each like operation from each
structure forms a procedural hierarchy; for example, db_seek calls blast_db_seek

which invokes mfil_seek.

BLASTP

BLAST

DFA | GISH

NCBI Toolbox

Figure 10: Architecture of the BLASTP Application and Libraries. The architecture
is open. The BLASTP program uses for libraries: (1) BLASTAPP, (2) BLAST, (3) GISH,
(4) DFA and (5) the NCBI ToolBox.

The protein sequence database is first processed by the setdb program prior to search-
ing so that it is more efficiently accessible by the BLASTP program (Figure 12). Each
FASTA entry consists of two corﬁponents: (1) A header which contains the sequence
id and a descriptor and (2) A letter representation of the amino acid sequence. The
setdb program reads each FASTA entry, converts the sequence to an integer repre-
sentation and writes it to the .seq file. In addition, the program writes the header
to the .ahd file. The offset into .seq of the sequence is stored in seq.beg. Likewise,
the offset into the .ahd file of the header is stored in hdr_beg. The array a-tob maps
the character representation of the amino acid to its integer one. After all entries are
converted, setdb writes summary information about the database to the .atb file.
This includes the number of entries entry, the length of the longest sequence mxlen,

the type of residue restype and the index arrays header_beg and seq.beg.
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Protein Sequence Database _§ setdb S.hdr
Sequence S[ENTRY.MAX] unsigned long seq_beg[ENTRY_MAX + 1) db.ahd
unsigned long header_beg[ENTRY_MAX + 1] seq_beg
int aa_atob{alphabetsize] 2;33/"—“8
int restype mxlen
Sequence unsigned long entry, maxlen ——
char * hdr FILE "intp
char *» seq FILE * hdrfile
FILE * sfile seq
FILE * tfile ———] db.seq |
unsigned char seqf}

"Figure 12: Processing by the setdb Program.

3.2.4.3 Implementation of Algorithm

3.2.4.3.1 Construction of the Neighborhood The program structure that im-
plements the neighborhood construction step of the algorithm is shown in Figure 13.
The neighborhood words are the patterns that are recognised by the DFA. The compu-
tation of the neighborhood is initiated by BLAST WFContext. BLAST Filter contains
the set of procedures that calculate the subset of the neighborhood for a particular

query word. Upon computing a neighbor, BLAST.WFContext adds it to the DFA.

The procedure BLAST WFContextWordFltrApply traverses the query and, for each
query word, ¢i—w+1---gi-1¢i, invokes the procedure BlastStdWordFltr which deter-
mines whether or not to calculate the subset of the neighborhood for that word. The
procedure BlastSelfScoreWordFltr scores the query word against itself. The iden-
tity match, gi-w41...qi—1¢:||gi—w+1--.9i-1¢;, is the highest scoring neighbor. Therefore,
a word whose self-score does meet T will have no neighbor that does so. If T is met,
the neighborhood is computed by the procedure BlastNeighborHoodWordF1ltr which,
upon finding a neighbor, calls back the procedure BlastWFContextAddWordFltr.
This procedure augments the DFA with the neighbor pattern.
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Figure 13: Sub-Architecture that Implements the Neighborhood Construction Step.
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The complexity of the neighborhood word computation is proportional to the word
size W, illustrated in Figure 14. A naive algorithm that computes all possible neigh-
borhood words is given in Figure 15. The BLASTP program implements an opti-
mised algorithm that constructs the set of neighbors using a special data structure,
the order matrix (Figure 16) that significantly reduces the number of neighborhood
words that need to be computed. The optimised algorithm (Figure 17) traverses the
matrix such that the neighborhood words are tested in a partial order from highest

scoring to lowest scoring.

offseti= O 1 2 W-1
q — — — — W= wordsize
N e e e — q = query word
T T T T n = neighborhood word
rj = Jjth residue in alphabet
o 1y) rp, - - - I i = position in alignment of g and n
ri r 1 r T rq M = score of alignment
r) r2 L, - - - ry T = threshold word score
. . o . N = size of residue alphabet
v N Nt ™

Figure 14: Neighborhood Word Problem. Given a query word, ¢ = gigi+1.--@i+W-1,
of length W, compute all neighbors, n = n;ni41...nizw-1, such that M(g|[n) >=T.
Each position iin n can be occupied by N residues therefore there are N W neighbors

to test.
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matrix[N][N] /* matrix = residue pair score matrix */
n[W] /* N = size of residue alphabet */

i=0 /* W = wordsize */

Mi- 0 I* M ; = score ofsub-alignmentqoql. - q, Ilnonl SRR P */
1 NeighborHood(M;_1, 1)

2 j=-1

3 do

4 j++

5 n i= r J

6 M; = M;_{ + matrix[q;][n;]

7 if (i==W-1)

8 if (M >=T)

9 SaveNeighbor(n)

10 else

11 NeighborHood(M;, i+1)

12 while(j< N)

Figure 15: Naive Neighborhood Word Algorithm. The algorithm tests N* neighbors
- see Figure 14. It is recursive in nature. Each call to Neighborhood (1) tests each
r; at position ¢ (3-12). The position corresponds to the level of recursion. At each
position, M; is computed (6). The neighbor is saved (9) if the current position is the
last position in the word (7) and the score of the word alignment, M _;, meets the
threshold (8). If the current position is not the last, a recursive call is made; i.e. n;4;
is tested with each r; (11). The algorithm is depth first. It first tests each r; at nw_,
while placing ro at each position ¢ in non;..nw_2. Next, it places rq at each position
2in ngny...nw-3, 71 at nw-2 and again tests each r; at nw_,.
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residue, r, tested atn

j=| 0 1 2 N-1
qj
9 '(0,0) To,1) T0.2) - Tz
q, 1(1,0) T(1,1) T(1,2) - TAZD
9, 1(0,0) I©,1) 1(0,2) - - - T(0,Z-1)

Qw1 | "ow-1,00 “ow-1,) Tw-12) Tw-1,2-1)

W = wordsize
Z = size of residue alphabet
q . = ith residue in query word

. . . .
n . = ith residue in neighbourhood word
l

Figure 16: Order Matriz. The row indices are the residues g;. Recall from Figure 15
that : is the position in the alignment go...g1gw-1||n0...n1nw_1, and corresponds to
the ith level of recursion. The column indices j are ordered from 0¢to N — 1. Each
entry, order|g;][r(i;] is the jth highest scoring residue pair of the form (g:,7(5)); i-e.
the residues in each row are ordered from highest to lowest pair-wise score with the
row index g;. Note that the highest scoring neighbor is the identity match to ¢ (Box
9). The row-ordering allows the algorithm to stop the traversal of a row prior to
testing each order[g:][r ;] at n:.

Box 9
Thighest = order(qo][0], order[q:1][0], ..., order[gw_1][0]
Tiowest = order|[qo)[N — 1], order[q,}{N — 1], ..., order[gw-1][V — 1]
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matrix[N][N] /* matrix = residue pait score matrix */

n[W] I* N = size of residue alphabet */
i=0 /* W = wordsize */
S;=0 /*M; = score ofsub-alignmentqoql - 4 Il non] R */
order[W][N] /* order = order matrix */
1 NeighborHood(M. ,1)
. i-1
2 j=-1
3 do
4 j++
5 n; = order[q;]{j]
6 M; = M;_1 + matrix[q;][n;i]
7 if (i==W-1)
8 if(M;>=T)
9 BlastWFContextAddWordFltr(n)
10 else
11 noProgress = 1
12 else
13 progressNextLevel = NeighborHood(M;j, i+1)
14  while ((j < N) && (! noProgress ) && (progressNextLevel > 0) )
15  return j

Figure 17: Optimised Neighborhood Word Algorithm. The algorithm is identical to
the naive one in all but three aspects: (1) The residue n; is obtained form order
(5), (2) There are two additional loop conditions (14) which may terminate fur-
ther testing of r; at position n; for values > j. These conditions are noProgress
(Box 10) and progressNeaztLevel (Box 11) and (3) The procedure returns the ex-
tent of traversal j of a particular row which is assigned to progressNeztLevel (13).
BlastWFContextAddWordFltr adds the neighborhood word to the DFA.

Box 10

if M(goq1...qil|nons...7i) < T

then M(qoq1...qi|l|nony...v¢j4x)) < T, where k > 0
since M(gillr.;) >= M(gllr.s4r)

Box 11

if M(qoq1..-qigi+1||non1...7G )T (i410) < T
then M(qogi-.-qigi+1||ron1 .7 j+1)T(i+10)) < T
since M(gil|r:,5)) >= M(gllr¢.+1))
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3.2.4.3.2 Detection of Word Hits The program structure that implements the
scanning phase of the algorithm is shown in Figure 18. Three structures implement the
scanning step; BLAST WordF inder, DFA and BLAST WordExtender. BLAST WordFinder
traverses the subject and uses the DFA to detect word hits. Upon detection, the offsets
of the hit are passed to BLAST WordExtender.

The DFA structure recognises the neighborhood. BLAST WordFinder uses the DFA
to detect common subsequences of length W between the query and subject; i.e. a
word hit. An automata is a network of states and transitions. The program employs
a Mealy machine implementation wherein output activity is linked to state transi-
tions (accepting transitions), rather than in association with the states themselves
(accepting states) as in a Moore machine [39] [40]. Each state is an array of pointers
to states. Its size is N; the size of the residue symbol alphabet. Thus, each state con-
tains a pointer to a next state for each symbol. A transition is taken by dereferencing
a pointer. A non-accepting transition dereferences a pointer to a state DFA State.
However, an accepting transition dereferences a pointer to DFA_Accept. Conceptually,
this structure is part of the transition and contains a pointer to a next state which
is the destination of the transition. An accepting transition indicates that the pat-
tern in the subject sequence, s;—w_i...8i-15i, is perfectly matched to a neighborhood
word, but not necessarily to a query word. DFA_Accept contains a pattern list that
is comprised of offsets, u, of the query such that M(gu-w-1.--qu-19ul|3i—w-1...5i-15 )

>=T.

The scanning algorithm consists of two iterative steps (Figure 18, procedure

BlastWordFinder): (1) Following transitions through the automata and (2) Process-
ing an accepting transition. A pointer to the current state of the DFA is kept in state.
As the subject is traversed from i=0 to N-1 the transition whose label is s; is taken;
state->next[s;]. The macro DFA_ISACCEPTING returns true if state points to a
structure of type DFA_Accept; false if it points to a structure of type DFA_State. An
accepting transition is processed by first checking if the end of the subject has been
reached, (i==N), then obtaining pointers to the pattern list, plp, and to the next
state, retState. BlastWordExtend is invoked for each word hit; i.e. for each query

offset u in pl, the pattern list.
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Sub-Architecture that Implements the Hit Detection Step.

Figure 18
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3.2.4.3.3 Extending a Word Hit The extension algorithm is contained in
the BlastWordExtender structure shown in Figures 19 and 20. The parenthesised
numbers in the following description refer to the lines of code in the latter figure.
This structure contains the query and subject sequences, q and s, the residue pair
score matrix, a structure in which to store high scoring alignments, hsp and the
procedure BlastWordExtend. An extension is a traversal of an alignment in both the
left (41-49) and right (63-71) directions. A sub-extension is a traversal in a particular
direction which commences from the delimiters of the word hit and proceeds in steps
of residue pairs whose scores are accumulated in sum (17,43,65). Residue pair scores
are obtained from matrix (16,42,64). A net positive sum is added to the alignment
score after which sum is reset to zero. A sub-extension terminates when sum falls
below x (49,71), whose value is determined by SetFallOff (25,48,70). Under certain
conditions an extension may consist of more than one iteration of the left-right sub-
extensions (50,74) as shown in Figure 21, but in most cases an extension consists of
a single iteration. The delimiters of the aligned query segment are stored as offsets
in q-beg and q.end (46,68). The corresponding offsets on the subject segment are
obtained by adding diag (1,88,89). The offsets of the residue pair whose score gives
sum a net positive value become the new alignment delimiters. The first loop (15-
24) determines the delimiters of the maximal scoring sub-alignment of the word hit.
The hit has a net positive score of at least T. However, it may contain residue pairs
whose scores are negative. The staring point of extension are the delimiters of the
maximal scoring sub-alignment of the word hit. The offsets of the rightmost residue
pair are stored in q_pos and s.pos(5,9). In case either conditions in (50) or (74)
hold, the left and right sub-extension respectively store the following values. Let
“direction” be either “left” or “right”. The offsets of furthest extension are stored in
direction_q and direction.s (52-53,72,76). These offsets are the starting points of
a sub-extension (37-38,58-59). The last sum which causes the extension to terminate
is stored in direction_sum (32,33,54,77). The score of the sub-extension is stored in

direction._score (34,35,55,78).
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A hit is extended only if it has not been encompassed by a previous extension. The
array Extent stores the offset of the rightmost extension for each diagonal (82). The
offset of the hit is compared to the entry indexed by diag (3). Extension proceeds
only if the condition in (3) holds. An alignment whose score meets S is stored as a

high scoring segment pair (84-89).

BlastWordExtender
BLAST_Letter * q_str, * s_str /* query and subject sequences */
BLAST Letter *q,* s /* alignment traversal pointers */
BLAST_Letter * g_pos, * s_pos /* starting points of extension */
BLAST_Letter * q_beg, * q_end 1* delimiters of HSP */
BLAST_Letter * leftg, * lefts, * rightq, * rights 1* delimiters of left and right extensions */
BLAST_diag diag /* diagonal on which hit is located *!
size_t Extent[} /* indexed by diag, offset of maximum extension */
BLAST_ScoreMat matrix /* residue pair score marrix */
BLAST_Score x I* falloff score */
BLAST_Score sum /* running sum of residue pair scores */
BLAST_Score score 1* total score for alignment */

BlastWordExtend(size_t q_off, size_ts_offy---------=-~~- i

Figure 19: Procedure that Implements the Extension Step - Part A.
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' 1 diag =s_off - g off 50 if ( Conditions_Right_Extend() )

! 2 /% check for previous extension through word hit *! 51 /* save values of left e ion par s */
{3 if ! ( Extent[diag) > q_off ) 52 leftq=q

P4 1* locate end of word hit on query */ 53 leftsm s

H-] gq.end=q=q_pos=q_str+q off 54 leftsum = sum

16 1* locate start of word hit on query %/ 55 leftscore = score

V7 q_beg=q_end- W 56

E 8 1* locate end of word hit on subject®! 57 1* set start parameters for right extension values */
V9 S=s_pos=s_str+s_off -W 58 q=rightq

110 /* set intial values for score and sum *! 59 s=rights

11 score = 0 60 sum = rightsum

E 12 sum =0 61

V13 * determine starting points of extension - where 62 /* right extension loop *!

E 14 positive scoring starts and ends on word hit */ 63 do

115 do 64 pair_score = matrix[*q++}{*s++)
E 16 pair_score = matrix[*q++1{*s++] 65 sum +w residue_pair

117 sum += pair_score 66 if ( sum > score )

118 if ( sum > score ) 67 SCore = sum

119 score = sum 68 qend=q

E 20 qend=q 69 sum =0

121 else if (sum <= 0) 70 x = SetFallOff(score)

122 sum =0 n while (sum > x )

123 q beg=q 72 rightq=q

124 while ( g <g_pos) 73

125 x = SetFallOff(score) 74 if ( Conditions_Left_Extend() )

E 26 75 1* save values of right extension parameters*/
127 1* set initial values for extension variables ¥/ 76 rights = s

128 leftg = q_end 77 rightsum = sum

129 rightq = q_beg 78 rightsccre = score

130 lefts = s_pos - (q_pos - leftq) 79 goto Extend_Left

31 rights = s_pos + (rightq - q_pos) 80

E 32 leftsum = 0 81 I* save offset of rightmost extension */

133 rightsum = 0 82 Extent[diag] = rightq - q_str

134 leftscore = 0 83 1% record HSP */

135 rightscore = 0 84 if (score>= §)

136 /* set start parameters for left extension %/ 85 hsp.score = score

137 q = lefig 86 hsp.start_query = q_beg - q_str

138 s = lefts 87 hsp.end_query = q_end - q_str

139 sum = leftsum 88 hsp.start_subject = hsp.start_query + diag
E 40 Extend_Left:  /* left extension loop */ 89 hsp.end_subject = hsp.end_query + diag
141 do

142 pair_score = matrix{*--q][*--s]

143 sum += pair._score

E 44 if ( sum > score )

145 score = sum

146 q.beg=q

47 sum =0

148 x = SetFallOff(score)

149 while ( sum >=x )

Figure 20: Procedure that Implements the Eztension Step - Part B.
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................

BlastWordExtender 1 !if (score < X) ‘

BLAST_Score score, leftscore, rightscore, leftsum, rightsum, X E return (-score) E
BLAST_Score SetFallOff(BLAST_Score score)---=-=-====-==~=-f-=-cc---- » else E
int Conditions_Right_Extend()----=--=--=-~-=-=--==-=--=-----4 - i _reum(-X) !

int Conditions_Left_Extend()-------------===-----=oc------~- o

2i 1 intcd.c5.c6 :
! ¢4 = (score > rightscore)
1 €5 = (rightsum > X) .
fmmm-m - - c6 = (-rightscore > X) :

2ii g intcl,c2,c3

]
]

i ¢1 = (score > leftscore) '
' ! c2 = (leftsum > X) '
""""" > ¢3 = (-leftscore > X) !

! return (c1 && c2 && c3)

Figure 21: Eztensions that are Comprised of Multiple Left-Right Iterations. By def-
inition an extension terminates in a particular direction when sum >= x. However,
there is a bias toward longer extensions; an extension in which score < X uses a
falloff value x = -score. Here, there may be more than one iteration of the left-right
sequence. After the first right sub-extension, the left sub-extension may continue if
three conditions, Conditions Left_Extend, hold: (c1) The score must have increased
in the right extension, otherwise x cannot more negative in the left-sub-extension. (c2)
The last sum must not be more negative than x, otherwise, although c1 may hold,
the last sum will be re-computed causing the extension to terminate. (c3) The value
of -leftscore cannot be more negative than X, otherwise x is already at its most
relaxed value. Likewise, right extensions may be continued under similar conditions ,
Conditions Right.Extend (c4,c5,c6) which always evaluates to true prior to the first
right sub-extension.
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Chapter 4

Algorithm Optimisations

4.1 Introduction

This chapter describes the design and implementation of three optimisations of the
BLASTP algorithm that enhance the overall time performance of the program. The
profile results described in subsection 3.2.4.1 demonstrate that the extension step of
the algorithm, implemented in procedure BlastWordExtend, accounts for approxi-
mately 90% of the program’s execution time. The optimisations described in this

chapter focus on the this step and the BlastWordExtend procedure.

The optimisations are of two types: (1) new sequence representations that facili-
tates extension and are used only in the extension procedure; and (2) restricting the
number of calls to the extension procedure. The first two optimisations are of the
first type while the third is of the second type. The first optimisation represents the
query as a sequence of memory addresses. These addresses are those of the rows
in the score matrix whose indices correspond to particular residues. Employing this
representation decreases the number of operations required to access the matrix, thus
reducing the overall time to perform an extension. The second optimisation repre-
sents the query and subject sequence as a sequence of residue-doublets. A doublet
consists of two adjacent residues. Integers in the range 0-399 are used to represent the
alphabet of residue-doublets; there are 20 residues in the alphabet, therefore there are
400 residue pairs. This representation facilitates the extension of word hits in steps of

residue-doublet pairs instead of residue pairs. This reduces the number of iterations
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of the extension loop required to perform an extension, thus reducing the overall time
for extensions. The third optimisation constrains the number of invocations of the
extension procedure. The scanning procedure counts the number of word hits per
aligned segment of the query and subject sequences and invokes the extension proce-
dure only if the number of hits per segment meets a threshold criteria. The overall

time for extensions is reduced since the procedure is invoked less frequently.

Each optimised algorithm is described in a subsection of this chapter. Each sub-
section is composed of four parts: (1) A conceptual description of the optimisation
and its potential to improve performance, (2) A description of the design and im-
plementation of the optimised algorithm in terms of the program structures that
were augmented with new functionality, (3) A performance comparison between the
optimised and unmodified algorithms using CPU time and wall clock time for the
programs and CPU time for the scanning and extension procedures and (4) A dis-
cussion of the effect of the optimisation on the detection of HSPs compared to the

unmodified algorithm.
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4.2 Row-Address Sequence Representation

4.2.1 Row-Address Concept

The profile analysis, subsection 3.2.4.1, revealed that one procedure, BlastWordExtend,
accounts for greater than 90% of the program’s execution time. Furthermore, within
that procedure, the lines of code that access the residue pair score matrix account for

63% of the program’s execution time.

The logical instruction sequence for the code fragment that accesses the score matrix
is given in Figure 22. Two address calculations are executed; one to calculate the ad-
dress of the matrix row and the other for the matrix entry (lines 2 and 4 respectively).
The optimised algorithm lifts instruction 2 outside of the extension procedure, thus
removing an instruction from a frequently executed line of code. The query sequence
is represented as a sequence of matrix row-addresses instead of matrix row indices
(Figure 23). In the optimised extension procedure, instructions 1 and 2 are equivalent
to one instruction in which the row-address corresponding to a particular residue is
obtained by dereferencing the query traversal pointer q. It is cost effective to use such
a representation for the query since there is only one query per database search and
that same sequence is traversed in the extension procedure for each scan. Using an
equivalent representation for the subject sequences would not be cost effective since
each subject would need to be translated into the row-address representation. Any
increase in extension performance would be offset by the time required to perform

this translation for each subject.
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(i) unmodified

(iii) logical instruction sequence
matrix[*q++][*s++] row_offset = Dereference(q)
row_address = matrix_address + row_aoffset
column_offset = Dereference(s)
score_address = row_address + column_offset
score = Memory_Access(score_address)
Increment(q)
Increment(s)

remove 2

(ii) optimised

NV A WN -

(*g++)[*s++]

Figure 22: Logical Instruction Sequence for Retrieval from Score Matriz. In the
unmodified algorithm a residue is represented as an index of the score matrix; 1.e.
amino acids are represented with integers in the range 0-19. Given that ¢ and s are
references to residues on the query and subject, the repeatedly executed line of C code
that retrieves a score from the matrix is shown in part (i). The logical instruction
sequence for this line is shown in Part (iii). Each scan consists of comparing the same
query to a new subject. Instruction 2 can be lifted out of this line and done once per
database search. Therefore, query residues are represented as row-addresses of the
score matrix. The optimised extension procedure uses a query sequence comprised of
row-addresses which are offset by the subject index to obtain the matrix entry Part

(ii) .

Given the sequence of residues,
§=53S1% ... S, Whereforeach s , min <= i <= max

Let M be a function that returns the memory address of a particular row in the residue pair score matrix.

Let s, be the address representation of the sequence.

Then, s; = M(s)
Sa - M(SO), M(Sl). M(Sz), eeo M(S n)
5, = matrix{ sO], matrix[ sq),matrix{ 52]. .. wmatrix[ sy}

Figure 23: Row-Address Algorithm. The BLASTP program represents amino acid
residue as integers which are the row indices of the residue pair score matrix. Pro-
teins are represented as sequences of row indices. Alternatively, residues can be repre-
sented as addresses which point to the particular matrix row indexed by that residue.
Proteins are thus represented as sequences of matrix row-addresses. The largest and
smallest integers in the residue symbol alphabet are max and min respectively. The
residue pair score matrix is matrix.
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4.2.2 Row-Address Design and Implementation

The BLAST_WFContext structure (Figure 24) was augmented with a member that
stores the residue pair score matrix row-address representation of the query sequence,
qra. The procedure, Calculate Row-Address-Rep, constructs an equivalent se-

quence of row-addresses from the original sequence of row-indices.

BLAST_WordFinder BLAST_Str 2"
BLAST_Str * subject BLAST_Letter * str
BL.AST_WFContext wfcontext[1]

<> BLAST_WFContext
BLAST_Str * subject

|| BLAST_Str * query

BLAST _Score* * g_ra

BLAST_WordExtender BLAST_ScoreBlk * sbp

int BlastWordExtend Row-Address-Rep(size t q_off, size_ts off) Calculate Row-Address-Rep()

BLAST_ScoreBlk
BLAST_ScoreMat matrix

Figure 24: Modified Sub-Architecture that Implements the Row-Address Algorithm.

The optimised extension procedure (Figures 25 and 26) differs from the original in
three aspects: First, members such as q, q-beg and g-end which reference a query
residue are of type pointer to pointer. In the unmodified algorithm these members
were of type pointer to BLAST Letter, which is an index of the matrix. In the opti-
mised algorithm, these members are of type pointer to pointer to BLAST Score since
a query residue is a row-address. Second, the lines of code that retrieve a score from
the matrix (Figure 26, lines 19, 45 and 67) merely offset the address of the row by the
index of a column which represents a subject residue. In the unmodified algorithm
the address of the matrix was offset by the index of a row, which represented a query
residue, to obtain the address of the row. This address was then offset by the index
of the column to obtain the matrix entry or score. Finally, it is interesting to note

that the address of the score matrix is not directly used in the optimised procedure.
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BlastWordExtender

BLAST Score * * g_str I* query and subject sequences */
BLAST _Letter * s_str

BLAST_Score * * q * alignment traversal pointers */
BLAST Letter* s

BLAST_Score * * q_pos /* pointer to last residue of hit */

BLAST_Letter * s_pos
BLAST_Score * * g_beg, * * g_end 1* delimiters of HSP */
BLAST_Letter * s_beg, * s_end

BLAST _Score * * leftq, * * rightq 1* delimiters of left and right extensions */

BLAST Letter * s_left, * s_right

BLAST _diag diag I* diagonal on which hit is located */

size_t Extent[] * indexed by diag, offset of maximum extension right *!
BLAST_ScoreMat matrix I* residue pair score matrix - not directly referenced */
BLAST_Score x I* falloff score */

BLAST_Score sum I* running sum of residue pair scores */

BLAST_Score score /* total score for alignment */

BlastWordExtend_Row-Address-Rep(size_t q_off, size_ts_off)------------------

)
]
o]

Figure 25: Optimised Eztension Procedure that Implements the Row-Address Algo-
rithm - Part A.
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t 1 diag=s_off - q_off 53 if ( Conditions_Right_Extend() ) H
\ 2 I* check for previous extension through word hit */ 54 1* save values of left extension parameters */ E
! 3 if ! (Extent[diag] > g_off ) 55 lefig=q !
v 4 56 lefis= s :
Z 5 I* locate end of word hit on query */ 57 leftsum = sum H
HS q_end = q=q_pos=gq_str + q_off- W 58 Ieftscore = score :
E 7 1* locate start of word kit on query */ 59 :
v 8 q_beg=q_end-W 60 1% se1 start par s for right ion values */ :
E 9 /* locate end of word hit on subject*! 61 q=rightq B
110 S = s_pos = s_str + s_off 62 s = rights ;
¥ 63 sum = rightsum .
112 /* set intial values for score and sum */ 64 E
113 score = 0 65 1% right extension loop */ :
V14 sum =0 66 do E
‘15 67 pair_score = (*q++)[*s++) :
V16 1* determine starting points of extension - where 68 sum <+ residue_pair E
! 17 positive scoring starts and ends on word hit */ 69 if ( sum > score ) .
118 do 70 score = sum :
f 19 pair_score = (*q++)[*s++} n g endeq H
120 SUM +e pair_score 72 sume=0 :
121 if ( sum > score ) 73 x = SetFallOff(score) '
122 score = sum 74 while ( sum >= x ) ‘
E 23 g endmq 75 rightg = g '
‘24 else if ( sum <= 0) 76 :
125 sum =0 77 if ( Conditions_Lefi_Extend() ) !
126 q beg=q 78 I* save values of right extension parameters */ E
E 27 while (q < q_pos) 79 rights=s .
128 x = SetFallOff(score) 80 rightsum = sum :
E 29 81 rightscore = score .
.30 /* set initial values for extension variables */ 82 goto Extend_Left E
131 lefiq = q_end 83 :
132 rightq = q_beg 84 1* save offset of rightmost extension */ :
133 lefts = 5_pos - (q_pos - leftq) 85 Extent[diag] = rightq - q_str :
134 rights = s_pos + (rightq - g_pos) 86 /* record HSP */ :
135 lefisum = 0 87 if (score>=S$) :
136 rightsum = 0 88 hsp.score = score :
E 37 leftscore = 0 89 hsp.start_query = q_beg - q_str .
138 rightscore = 0 90 hsp.end_query = q end - g_str E
E 39 1* set start par s Jor left ion */ 91 hsp.start_subject = hsp.start_query + diag '
1 40 q =lefiq 92 hsp.end_subject = hsp.end_query + diag :
141 5 = lefts :
142 sum = leftsum '
i 43 Extend_Left:  /* left extension loop */ H
44 do :
145 pair_score = (*--g)[*--5) !
' 46 sum += pair_score :
247 if ( sum > score ) H
' 48 score = sum :
E 49 qend=g .
150 sum = 0 :
151 X = SetFallOff(score) :
152 while ( sum > x ) )

Figure 26: Optimised Extension Procedure that Implements the Row-Address Algo-
rithm - Part B.



4.2.3 Row-Address Results

A program that employs the optimised algorithm uses approximately 14% less cycles
than a program that uses the unmodified algorithm (Table 3). This saving is realized
in the time spent in the BlastWordExtend procedure (Table 4). In particular, it is

realized in the lines that access the residue pair score matrix (Table 5).

Program CPU cycles x 10*° | CPU time (s)
BLASTP (row-address) | 1.8 62.9
BLASTP (unmodified) | 2.1 73.4

Table 3: Comparison of BLASTP Program Time. A program implementing the
optimised algorithm uses approximately 14% less CPU cycles. There is an equivalent
savings in CPU time.

| Procedure [ CPU cycles x 10%° [ CPU time (s) |
BlastWordExtend .Row-Address-Rep | 1.7 57.9
BlastWordExtend 2.0 68.5

Table 4: Comparison of Eztension Procedure Time. The optimised extension proce-
dure uses 15% less CPU cycles than the unmodified procedure, BlastWordExtend.
There is an equivalent savings in CPU time.

| Code [ Reference to Figure 26 | net CPU cycles x 10'° |
location of hit on query | 6,8 - 0.13
start extension loop 18-27 + 0.13
left extension loop | 44-52 + 0.56
right extension loop 66-74 + 0.63
[ Total Net CPU Cycles | [ 1.19 B

Table 5: Net CPU cycle gain by BlastWordEztend_Row-Address-Rep over Blast-
WordEztend. The comparison is based on the lines of code that were optimised to
implement the row-address algorithm. The savings are realized in the three extension
loops: start, left and right.
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4.2.4 Row-Address Effect on HSP Detection

The row-address algorithm does not effect the sensitivity of the search. The optimised
algorithm detects the same HSPs and their respective scores that the unmodified
algorithm detects. This optimisation is in fact more of a change to the algorithm’s

implementation than a change to its heuristics.
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4.3 Residue-Doublet Sequence Representation

4.3.1 Residue-Doublet Concept

The unmodified extension algorithm works in steps of aligned residue pairs. The opti-
mised algorithm performs extensions in steps of aligned residue-doublet pairs (Figure
27). This requires that sequences be represented by an alphabet of residue-doublets.
A sequence comprised of residues is logically equivalent to two residue-doublet se-
quences (Figure 28). The reason for having two representations becomes apparent
in the context of mapping a particular point within an alignment of two residue se-
quences to the corresponding point within the equivalent residue-doublet alignment
(Figure 29). As a consequence of representing sequences as residue-doublets, each ex-
tension cycle accumulates scores of residue-doublet pairs instead of scores of residue
pairs. These scores are obtained from a doublet pair score matrix which is accessed

in each iteration of the extension loop.

unmodified word hit
AASTII APHD(SPNTDGFNPESUC CR
Lrrrrr et e
QGVKVL SPGNISPNTDGIHVQS S S
- -
<-<-<- ”’
- haglit s
optimised word hit
AASTII APHD(SPNTDGFNPESCR
Lt e e
QGVKVL SPGNSPNTDGIHVQSSS
— —
— —

Figure 27: Esztending in Steps of Two Residue-Doublet Pairs. In the unmodified
algorithm, alignments are constructed by extending from the word hit in both direc-
tions in steps of aligned residue pairs. In each step, a score is looked up in a residue
pair score matrix and added to a cumulative sum. An alternative is to proceed in
steps of aligned residue-doublet pairs. A residue-doublet representation is used for
sequences. In each extension step of the optimised algorithm, a score is looked up in
a residue-doublet pair score matrix and summed.



ints[n], s (/2] , s, (/2 + 1]
if ( length(s) is even )
Se -(so sl), (52 53), (s4 55), I ¢ sn-l sn )
so = (0 so), (s1 sz),(s3 s4), .. .,(snO )
else { length(s) is odd }
Se -(so sl), (52 s3),(s4 55), .. .,(sn0)
5o = (O so), (sl sz), (53 s4), .. "(sn-l sn)

Figure 28: Sequences of Residues Represented as Sequences of Residue-Doublets. A
sequence comprised of single residues, s, is logically represented by two sequences
comprised of residue-doublets; s, and s,. Each residue-doublet in s, is of the form
(si,8i+1), where i is even. Similarly, for s,, each residue-doublet is of the form (s;,5:+1),
where i is odd. The null residue, O, may be appended to either the beginning and/or
end of s to ensure that s is evenly divisible into residue-doublets.

(a) (b)

alignment 1 ° alignment 2 °

NMOEEEE..B || DOEEHE...H

alignment 3 ° alignment 4 °

s o] (2] L] L. Sloh] [5] [w%s] ...

qe |qoq1| |q2q3l |q4“5' s e qe quqzl |q3q4| F‘sqel LRI
] ®

Figure 29: Mapping of Word Hit from Residue Sequence Alignment to Egquivalent
Residue-Doublet Alignment. The lengths of the sequences, s and ¢, are » and m and
are assumed to be even. The darkened circles mark the offset of the last residue on
the word hit. (a) In alignment 1, s and g are aligned along an even diagonal (diag =
5-3 = 2). The equivalent alignment of the corresponding residue-doublet sequences
is alignment of s, and ¢, - alignment 3. (b) In alignment 2, s and g are aligned along
an odd diagonal (diag = 4-3 = 1) on which a hit is located. The equivalent alignment
of the corresponding residue-doublet sequences is that of s. and g, - alignment 4. In
summary, a hit located on an even diagonal, as in (1), requires s. to be aligned with
ge while a hit on an odd diagonal, as in (2) requires s, to be aligned with g,.
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4.3.2 Residue-Doublet Design and Implementation

The program structures that implement the residue-doublet algorithm are shown in
Figure 31. The program was augmented with functionalities to (1) compute residue-
doublet sequences for the query and subject, (2) access a residue-doublet database, (3)

access a residue-doublet pair score matrix and (4) extend residue-doublet alignments.

1. Functionality was added to compute the residue-doublet representations of the
query and subject. A database was created to store a residue-doublet repre-
sentation for each subject in the protein sequence database, db.seq_rd. In
addition, summary information about the database was calculated and stored
in db.atb.rd. These data include the number of residue-doublet sequences,
count._rd, the length of the longest sequence, mxlen and an index, seq.beg._rd,
which stores the offset into db.seq.rd of the beginning of each sequence. This
was done by a modified setdb program (Figure 32) which implements an algo-
rithm that constructs the residue-doublet sequences (Figure 33). This algorithm
was also implemented in the procedure Construct Residue Doublet_Sequences
to derive the two residue-doublet representations of the query; str_rd_even and
str_rd_odd. It is only necessary to store two residue-doublet representations for
either the query or the subject, but not for both. The reason, as illustrated in
Figure 30, is that the four possible alignments of two residue-doublet sequences
fall into two equivaience classes. The subject is the obvious choice to be rep-
resented with one residue-doublet sequence for reasons of space efficiency; i.e.

there is a database of subjects, but only one query.

2. The program’s interface to the database was expanded with functionality to
retrieve the residue-doublet subject. The structures DBFile and BDBFile were
each augmented with procedures to re-position the file pointer for db_seq.rq,
db_seek.rd and blast.db_seek.rd respectively, and to retrieve a sequence,

db_get_seq.rd and blast_db_get_seq-rd respectively.

3. An algorithm (Figure 34) was implemented in the procedure
Calculate Residue-Doublet Matrix to derive the residue-doublet pair score
matrix from a residue pair score matrix. The residue-doublet matrix was com-
puted prior to searching and loaded at run-time. This procedure is shown in

Figure 31 as a logical component of the BLAST_ScoreBlk structure.
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4. An extension algorithm that performs extensions in steps of residue-doublet
pairs was designed (Figures 35 and 36) and implemented in the procedure
BlastWordExtend Residue-Doublet. In this optimised extension procedure,
an aligned pair of residue-doublet sequences is traversed (seq.rd and s_seq.rd).
Residue-doublets are integer types, therefore references to members of a se-
quence such as q and s are of type int *. The matrix, matrix_rd, contains a
score for each possible pairing of residue-doublets. It’s size is N* where N is the
number of residues in the alphabet. Further differences from the unmodified

procedure are listed below with references to lines of code in Figure 36:

(a) The offset of the hit on each residue-doublet sequence is calculated (5-8).

(b) The appropriate residue-doublet query sequence is selected based on the
parity of the diagonal (11-14).

(c) The delimiters of the word hit on the residue-doublet sequences are calcu-
lated using the offsets from (a) (17,19).

(d) Scores are obtained from matrix_rd (25,52,74).

(e) The offset of the maximum extension on the residue query is calculated

from the equivalent offset on the residue-doublet query (92).

1 Alignment 2

NN EREE...E RHEEEE...
: lllll...l

Equivalence Set 1 Bquwa.lenoe Set 1T
Ali Al

I[__J |__| w1 % | s:_ RS .
‘*[qoqIJ [ ofs ] | “J‘J v [ma %] | ®[ 0% | [ 99 | I, | ...

Alignment 4 Alignment 6
sfon J v J [ ], .. Cao | ol [an ][ 58] ... 0
hd °qL| a9, | | 984 |, . . Lm0 Il | ae 99, | [9As ] [ %8s ] ... (91 9]

Figure 30: Equivalence of Residue-Doublet Alignments. Assume n and m to be even.
An alignment of two residue sequences can be aligned along either an even or odd
diagonal; alignments 1 and 2 respectively. An a.hgnment along an even diagonal can
be represented by either residue-doublet alignment in the first equivalence set; an
alignment along an odd diagonal by either alignment in the second set.
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Figure 31: Modified Event Loop Sub-Architecture that Implements the Residue-Doublet

Algorithm.
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Protein Sequence Database S setdb
Sequence S[ENTRY_MAX] unsigned long seq_beg[ENTRY_MAX + 1] :";ybef‘j'd
unsigned long seq_beg rd[ENTRY_MAX + 1] maxle_n rd
unsigned long header_beg{[ENTRY_MAX + 1] ——==—e__ (db.atb rd
S int aa_atob[alphabetsize] be
equence int restype seq_beg
char * hdr unsigned long entry, maxlen, len_rd, maxlen_rd ::au_c;cr_beg
char seq(] unsigned char seq[] mxlen
int seq_rd[] | -
FILE *intp Seq_
FILE *= hdrﬁle
FILE * sfile, *sfile_rd seq
FILE * tfile, * tfile_rd
Construct_Residue_Doublet_Sequences( e db.ahd

Figure 32: Modified setdb Program for Residue-Doublet Algorithm. The algorithm
is implemented by the procedure Construct Residue Doublet_Sequences. The se-
quence is temporarily stored in seq.id then written to db.seq.rd. Upon writing,
the offsets into db. seq.rd of the beginning and end of each sequence are recorded in
seg.beg.rd. After scanning the protein sequence database, setdb records summary
information about the residue-doublet database in db.atb_rd. These data include
the index, seq.beg.rd, the total number of sequences, entry_rd and the length of
the longest sequence, mxlen_xd.
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1 Residue-Doublet (s)

2 /* Length Calculations */

3 1_s = length(s)

4 g =(0s/2)+2

5 l=(s/2)+1)+2

6 /* Allocate Memory for residue-doublet sequences */
7 se = allocate(l_s o )

8 o = allocate(l_s , )

9 /* Sentinels mark the beginning of residue-doublet sequences */
10 se [ ec++ ] = Sentinel

11 $o [ oc++ ] = Sentinel

12 /*s,always starts with the null residue */

13 soloc++]= (O, s.)

14  /* build the residue-doublet sequences */

15 for i=0tol_s-1

16 if imod 2) == 1

17 se [ec++1= (5, 8547 )

18 else /* (imod2)==0%

19 soloc++1= (s, si41)

20 /* add null residue to end of either s, orsg,*/

21 if(lLsmod2) ==

22 soloc++1= (s, , O)

23 else {(I_Lsmod2)==0}

24 Se [ec++]= (s, , O)

25  /* Sentinels mark the end of the residue-doublet sequences */
26 Se [ ec++ ] = Sentinel

27 So [ 0oc++ ] = Sentinel

Figure 33: Residue-Doublet Algorithm. The algorithm derives the two residue-doublet
sequences, s, and s,, from the residue sequence, s. The algorithm traverses s, com-
putes the representation for the residue-doublet (s;,s;41) and appends it to either s,
or s,
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Residue-Doublet_Matrix( BLAST_Score * m )

1
2
3 const N I* number of residue symbols in amino acid alphabet */
4 BLAST_Score *m  /* the residue pair score matrix *|

5 BLAST_Score *dm /* the residue-doublet pair score matrix */

6

7

8

rl,2,cl,c2 I* row, r, and column, ¢, counters for m */
dr, dc I* row, dr, and column, dc, counters for dm */
9 /¥ allocate space for residue-doublet pair score matrix */
10 dm = [ N2 ][N2}
11 /* Build residue doublet pair score matrix */
12 for(cl=0toN-1)
13 for (c2=0toN-1)
14 /* at the beginning of each row, set dc to 0 */
15 dc=0
16 for(r1=0to N-1)
17 for (r2 =0to N-1)
18 dm[dr][dc] = m[rl1]{cl] + m[{r2]1[c2]
19 dc++
20 dr++

Figure 34: Residue-Doublet Matriz Algorithm. The algorithm constructs the residue-
doublet pair score matrix dm from the residue pair score matrix m; in this implemen-
tation m is the BLOSUMSG62 residue pair score matrix. Let ¢ and s be the query and
subject sequence respectively. Then, the score of a particular residue-doublet pair-
wise alignment, (gi,q;)||(8k,8:) is the sum of the scores of the residue-residue pairwise

alignments, (g:||sx) + (g;]|s1)-
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BlastWordExtender
int * q_seq_rd_odd, * q_seq_rd_even /* two query residue-doublet sequences */
int*s_seq_rd 1* subject residue-doublet sequence */
int * seq_rd I* pointer to beginning of residue-doublet sequence */
int*q,*s * residue-doublet sequence traversal pointers */
int * q_pos, * s_pos /* starting points of extension */
int * q_beg, * q_end 1* delimiters of HSP */
int * leftq, * lefts, * rightq, * rights I* delimiters of left and right extensions */
size_t qoff_rd, soff_rd /* hit offsets on residue-doublet sequences */
size_trq I* offset of rightmost extension */
BLAST_diag diag /* diagonal on which hit is located */
BLAST_ScoreMat_rd matrix_rd /* residue-doublet pair score matrix */
BLAST_Score x /* falloff score */
BLAST_Score sum /* running sum of residue-doublet pair scores */
BLAST_Score score /* total score for alignment */
BlastWordExtend_Residue_Doublet(size_t q_off, size ts offy---------------

'y
5
o

Figure 35: Optimised Eztension Procedure that Implements the Residue-Doublet Al-
gorithm - Part A.
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{1 diag=s_off-q off 60 if ( Conditions_Right_Extend() ) ;
1 2 I* check for previous extension through word hit %/ 61 I* save values of left extension parameters */ '
i 3 if ! (Extent[diag) > q_off) { 62 lefig=gq :
) 1* calculaie hit offsets on rd sequences */ 63 lefis=s )
15 qoff_rd = (q_ofti2)+1 64 leftsum = sum '
1 6 soff_rd = (s_oft/2)+1 65 leftscore = score H
E 7 ifl((diag%2) != 0) && ((q_off%2) != 0)) 66
. 8 qoff_rd++; 67 % set siart parameters for right extension values */
‘9 68 q =rightq ;
110 I1* select appropriate rd sequence */ 69 s = rights !
111 if ((diag%2)==0) 70 sum = rightsum ;
112 seq_rd = q_seq_rd_odd n ,
113 else 72 1* right extension loop */ :
V14 seq_rd = q_seq_rd_even 73 do H
115 74 pair_score_rd = matrix_rd[*q++][*s++] ;
116 1* locate beginning and end of word hit on query */ 75 sum += residue_pair_rd H
517 q beg=qg= (g_end = q_pos=seq_rd +goff rd)- ( W/2) 76 if ( sum > score ) E
118 1* locate beginning and end of word hit on subject */ 77 SCOre = sum 5
19 s_beg=5=(s_end=s pos=s seq rd +soff rd)-(W/2) 78 qend=q '
120 79 sum = 0 :
121 score = 0 80 x = SetFallOff(score) :
122 sum =0 81 while ( sum >ex ) J
123 I* determine siarting points of extension *! 82 rightqe= g ;
124 do 83 '
f 25 pair_score_rd = matrix_rd[*q++][*s++] 84 if ( Conditions_Left_Extend() ) E
126 sum += pair_score_rd 85 /* save values of right extension parameters */ !
3 27 if ( sum > score ) 86 rights = s :
128 SCore = sum 87 rightsum = sum H
129 gend=q 88 rightscore = score ;
130 else if ( sum <= 0) 89 goto Extend_Left !
131 sum =0 90 :
132 q beg=g 91 1% save offset of rightmost extension */ !
133 while ( q < q_pos) 92 Extent[diag] = (rq = rightq - q_seq_rd) +rq '
134 x = SetFallOff(score) 93 /* record HSP */ !
135 94 if (score>= §) ;
136 /* set initial values for extension variables */ 95 hsp.score = score !
137 lefig = q_beg 96 hsp.start_query = q_beg - q_str :
138 rightq = g_end 97 hsp.end_query = g_end - g_str !
139 lefts = 5_pos - (g_pos - lefiq) 98 hsp.start_subject = hsp.start_query + diag ;
140 rights = s_pos + (rightg - q_pos) 99 hsp.end_subject = hsp.end_query + diag !
141 lefisum = 0 :
142 rightsum = 0 !
143 leftscore = 0 ;
144 rightscore = 0 !
145 I* set start parameters for left extension */ :
146 q = leftq H
147 5= lefts E
148 sum = leftsum !
149 i
150 Extend_Left:  /* left extension loop */ !
151 do ;
152 pair_score_rd = matrix_rd{*-q][*--s] !
153 sum += pair_score_rd E
54 if ( sum > score ) !
155 SCOTe = sum ;
156 gendmq !
157 sum = 0 5
158 x = SetFallOff{score) 1
159 while ( sum >=x ) e

Figure 36: Optimised Extension Procedure that Implements the Residue-Doublet Al-
gorithm - Part B.
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4.3.3 Residue-Doublet Results

A BLASTP program implementing the residue-doublet extension algorithm uses ap-
proximately 48% less CPU cycles than the unmodified program (Table 6). The
BlastWordExtend Residue Doublet procedure uses 50% less CPU cycles than the
unmodified procedure (Table 7). Lines of code were added to the procedure,

BlastWordExtend, to implement the residue-doublet extension algorithm. Table 8
shows that the cost of executing this additional code is insignificant in comparison
to the savings obtained in performing extensions in steps of residue-doublet pairs.
However, according to Table 6, this savings is not realized in wall clock time. The
profiler prof with the pixie option measures only the cycles used by the application
program. It does not report cycles spent by the operating system for such operations
as memory accesses. The residue-doublet extension procedure repeatedly accesses a
score matrix three orders of magnitude larger than the original residue pair score
matrix. One possible explanation for this unrealized real-time savings is that the un-
modified program can keep the score matrix cached throughout its entire execution.
In contrast, at a particular point in the execution of the optimised program, only part
of the residue-doublet pair score matrix can be resident in cache. Furthermore, the

order of accesses seems random, causing the cache to be swapped frequently.

| Program [ CPU cycles x 10™ [ CPU time(s) | wall clock time(s) |
BLASTP (residue-doublet) | 1.3 45.5 109
BLASTP (unmodified) 2.5 87.1 100

Table 6: Comparison of BLASTP Program Time. A program implementing the
modified algorithm uses 48% less CPU cycles. There is an equivalent savings in CPU
time. However, this savings is not realized in wall clock time, reported by the program
as real time [4], page 17, which may vary between runs depending on the availability
of the CPU for the BLASTP process. However, the times reported from different
runs consistently show longer wall clock times for the residue-doublet program. This
unrealized savings in real time is most likely due to the relative increase in memory
access time. The residue-doublet score matrix is two orders of magnitude larger than
the residue pair score matrix, BLOSUMS62. Its size prohibits the possibility of it
being cache resident in its entirety, thus requiring more accesses to memory to load
requested blocks to cache.
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| Procedure CPU cycles x 107 | CPU time (s) |

BlastWordExtend_Residue-Doublet | 1.2 39.9
BlastWordExtend 2.4 81.5

Table 7: Comparison of Eztension Procedure Time. The modified procedure uses
50% less CPU cycles than the unmodified one. There is an equivalent savings in CPU
time.

[ No. | Code Fragment Reference to Figure 36 | net CPU cycles x 10° |
1 calculate rd offsets 5-8 -3.3
2 select rd query 11-14 -0.1
3 locate delimiters of hit | 17,19 -0.04
4 start extension loop 24-33 +13.7
5 left extension loop 51-59 +578.7
6 right extension loop 73-81 +671.3
7 save rightmost offset 92 -1.8
[ [ Total Net CPU Cycles | +1258.5 |

Table 8: Net CPU Cycle Gain by BlastWordEzrtend_Residue-Doublet over Blast-
WordEztend. The savings is realized in the three extension loops; start, left and
right(4-6). There are fewer iterations of the extend loop since the alignment is tra-
versed in steps of residue-doublet pairs. The cost of modifying the procedure is in
the addition of code to do the following: () calculate the offset of the hit on the
residue-doublet alignment (1), (2) select the appropriate residue-doublet query based
on the parity of the diagonal (2), (9) locate the delimiters of the word hit on both
sequences and (4) save the rightmost offset by mapping the delimiters of the HSP on
the residue-doublet alignment to the residue alignment (7). However, the time lost
executing these additional lines of code is insignificant compared to the time saved in
doing less extension loops.

4.3.4 Residue-Doublet Effect on HSP Detection

The heuristic character of the residue-doublet algorithm is stronger than that of the
unmodified algorithm. There are three anomalies in the ability of the residue-doublet
algorithm to detect HSPs when compared to the unmodified algorithm. These arise
directly from grouping residues into doublets and from performing extensions using

sequences of residue-doublets.
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1.

o

Lower initial falloff score.

The extension procedure begins by calculating the score of the maximal scoring
sub-alignment of the word hit. This score is assigned to the initial falloff value
x. If a word hit contains a negative scoring pair, it will not be added to the
score of the sub-alignment. In the residue-doublet case, the negative scoring
pair may be grouped with an adjacent positive scoring one. The score of the
doublet is net positive, thus it is added to the sub-alignment. However, the
negative scoring pair makes the overall score is lower, making the initial falloff
score lower than would be the case in the unmodified algorithm. Since the
falloff value is lower or more stringent, extensions may terminate earlier in the
residue-doublet case. In the test search, some HSPs with S < 50 were missed

by the residue-doublet algorithm that were found by the unmodified algorithm.

Lower scores for HSPs.

Scores of HSPs are lower by approximately one to five points in the residue-
doublet case for the same reason as described in (1). The maximal scoring local
alignment is delimited by q_beg and q-end. The residue pair immediately left
of g-beg or right of q_end is negative scoring and is the first pair of the sub-
alignment that brings sum below x. This negative scoring sub-alignment is not
part of an HSP. However, in the residue-doublet case, the negative scoring pair
may be grouped with the positive scoring one, lowering the overall score. In
the unmodified algorithm, the negative score would not have been added to the

overall score. In the test search, this anomaly occurred frequently.

Higher scores for negative scoring falloff sub-alignment.

This anomaly is the converse of the first two in the sense that it arises by an
unwanted grouping of a positive scoring pair with a negative scoring one. The
negative scoring residue pair causing sum to fall below x are located at positions
q-left and q.right - 1 for the left and right extensions respectively. However,
in the residue-doublet case these negative scoring pairs may be grouped with
positive scoring ones at positions causing sum to remain above x, thus allowing

the extension to continue. In the test search, this anomaly occurred twice out

of 452 HSPs with S > 50.
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4.4 Two-Hit Detection

4.4.1 Two-Hit Concept

The third step of the BLASTP algorithm extends word hits to longer, potentially
higher scoring, alignments. Recall that a word hit is a short alignment of length W
which scores at least T. The extension algorithm uses the word hit as a seed and
extends it to the left and right to determine the maximal scoring alignment relative
to the word hit. The score of an alignment is the cumulative sum of the scores of its
residue pairs, making the score a function of the alignments length. The extension
algorithm has a hill climbing character. As the extension proceeds in a particular
direction, net scores for both positive scoring and negative scoring sub-alignments
are computed. Net positive scores are added to the total score for the extension in a
particular direction. The extension in that direction terminates when a net negative
score matches or falls below the falloff parameter X. The greater the number of net
positive scoring sub-alignments within an alignment, the greater the probability that
the alignment is an HSP. Recall an HSP, or high scoring segment pair, is an alignment

whose score meets the threshold set by the cutoff parameter S.

Word hits are net positive scoring sub-alignments. The alignments that result from an
extension contain the word hit from which it was seeded and possibly others. Word
hits are detected during the scanning phase (step 2) of the algorithm. Therefore,
during scanning it is possible to obtain a measure of the number of word hits located
on an alignment. The data of Table 9 shows that the result of virtually all extensions
are alignments that contain either one, two or three word hits. The average scores of
these alignments rarely meet a score of 32, the default value for the cutoff parameter
S (Figure 37). The extension time spent on those word hits that are extended into

HSPs comprises a minute percentage of the total.

The two-hit algorithm employs a scanning step (step 2) that constrains the num-
ber of times that the extension procedure is invoked. An aligned segment of two
sequences must contain two word hits within a given distance constraint. The dis-
tance constraint is the average length of a negative scoring sub-alignment whose score

meets or falls below the falloff parameter X. The two-hit algorithm uses the heuristic
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that only an alignment of a query and subject segment which contains two hits within

a distance that is less than the average falloff distance is likely to be a sub-alignment

of an HSP. The concept of the two-hit algorithm is demonstrated in Figures 38 and

39; the former shows the case where the scanning constraint is satisfied, the latter

the case where it is not.

Hits/Alignment(n) | % Alignments with n Hits | % Extend Loop Cycles |
1 75 71

2 21 24

3 3 5

Table 9: %Exztension Time as a Function of Number of Hits per Alignment. Extension
time is measured in number of executed extend loops. Alignments containing a single
word hit account for 75 percent of all alignments and 71 percent of the extension

time.
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Figure 37: Plot of Average Alignment Score v.s. Hits per Alignment. The protein
NRDB was scanned using the test search described in subsection 3.2.1. The set of
data tuples of the form < alignment number, iiits, score > was collected. These data
were analysed to obtain the plot. The default value for the cutoff parameter S is 32.
This is the threshold score for an alignment to be recorded as an HSP. The plot
indicates that, on average, HSPs that meet this threshold contain five word hits for
the values of word size, W=3, and threshold, T'=11.
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Figure 38: Two-Hit Algorithm - Case where Ezxtension is Called. The example shows
the alignment of two segments, g —gi||s; — sj, which contains two word hits, and a plot
of sum v.s. alignment position, ¢. The value of score is the residue pair score matrix
value for the residue pair [gk4t)[sis:] Where k <= k+t <=land ¢ <=i+t <= j. The
value of sum is the cumulative sum of residue pair scores which is reset to 0 after each
positive scoring residue pair, but in which the scores of negative scoring residue pairs
are accurnulated. The alignment contains two word hits ( W=3) at positions 10 and
30. Word hits are short positive scoring alignments of length W which correspond
to positive scoring peaks on the plot of sum v.s. alignment position. The two-
hit algorithm attempts to extend the word hit located at t=30 which is within the
average falloff distance of the hit at t=10. Since the two hits satisfy the distance
constraint, it is probable that the left extension of the hit at =30 will encompass the
hit at {=10 before sum accumulates to the value of the falloff parameter X. In this
example, the negative scoring sub-alignment between the two word hits has a score
of -15, which is below the default of X = -22.
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<= average falloff distance

hit !

s 1 2 3 4 5 6 7|8 9 10/11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
qk 1 2 3 4 5 6 78 9 10{11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
ir

sggrenun 041 O -1 [#5 +4 +4}3 2 1.3 -2 -1 41 0 +142 +3 +3 41 142 43 O
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alignment score = +22

+l +1 +1 +1

AN

1

28 29 30 31 32 33 34 35 36 37 sj
28293031323334353637qI
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O = N W h
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sum -4

Figure 39: Two-Hit Algorithm - Case where Eztension is not Called. This example

is analogous to Figure 38 with the exception that the aligned

segment qx — qi||s: — S;

contains only a single word hit at ¢=10. There is no invocation of the extension
algorithm since there is no other hit within the average falloff distance of the hit at

t=19.
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4.4.2 Two-Hit Design and Implementation

Figure 40 shows the design of the BLASTP program that implements the two-hit al-
gorithm. The BlastWordFind procedure was augmented with functionality to count
the number of hits per alignment. The BlastWordFinder structure was augmented

with new members.

The WordFind procedure was modified to call the extension procedure only for hits
within the average falloff distance of a previous hit on a particular diagonal. The fol-
lowing constant attributes were added to the BlastWordFinder structure; MAX_DIAG,
INC, DIAG_FTR, and FALLOFF. The values of these four attributes were determined
using the test search described in subsection 3.2.1. The constant DIAG_FTR is the
value added to the diagonal, diag, to obtain a positive index to the array HitsDiag.
The constant MAX_DIAG is the maximum value of this index. The constant INC is the
value added to current_inc with each new subject scan. The average falloff distance

is FALLOFF.

Three variable attributes were also added to the BlastWordFinder structure. The
array HitsDiag stores the query offset of the last hit on a particular diagonal. It is
indexed by index. The value of current_inc is added to current_qoff to uniquely lo-
calise that offset to a particular subject scan. This permits the re-use of the HitsDiag
array, thus avoiding the time consuming re-initialisation of the array for each scan.
This idea is borrowed from [32].

The scanning procedure, WordFinder, was augmented with a local variable

current.qoff which stores the query offset of the current word hit. The inner scan-
ning loop was modified to compute the index and current_qoff, check if a diagonal
has two word hits within the falloff distance and store the query offset of the last hit
on a particular diagonal in HitsDiag. Recall that the inner scanning loop iterates
over the list of offsets of query W-mers to which some W-mer on the subject was
matched; i.e. the subject W-mer is in the neighborhood of the query W-mer. At the

end of the procedure, current_inc is set to its value for the next scan.
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4.4.3 Two-Hit Results

A BLASTP program that employs the two-hit optimisation runs 63% faster than the
unmodified program (Table 10). The execution time for extending is significantly
reduced (Table 11), but the time for scanning is increased (Table 12). The increased

amount of time spent scanning does not significantly offset any time saved in extend-

ing (Table 13).

| Program | CPU cycles x 10%° | CPU time (s) | wall clock time(s) |
BLASTP (two-hit) 0.8 27.4 40
BLASTP (unmodified) | 2.1 73.5 102

Table 10: Comparison of Program Time. The program using the two-hit algorithm
uses approximately 63% less CPU cycles than the program using the unmodified
algorithm. There is a corresponding decrease in CPU time. The savings in wall clock
time is approximately 61%. Wall clock time is the time reported by the program
as real time [4], page 17 whose values may vary between runs depending on the
availability of the CPU for the BLASTP process.

| Procedure | CPU cycles x 10'° | CPU time (s) |
BlastWordExtend (two-hit) 0.6 19.4
BlastWordExtend (unmodified) | 2.0 68.5

Table 11: Comparison of BlastWordEztend Procedure Time. The procedure that
implements the extension step of the algorithm, BlastWordExtend, accounts for 72%
less time in the two-hit program than it does in the unmodified program. There is a
corresponding decrease in CPU time.
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{ Procedure [ CPU cycles | CPU time (s) |

BlastWordFinder (two-hit) 0.2 x 10 [ 7.1
BlastWordFinder (unmodified) | 0.1 x 10° | 3.8

Table 12: Comparison of BlastWordFinder Procedure Time. The procedure that
implements the scanning step of the algorithm, BlastWordFinder, accounts for 90%
more time in the two-hit program than it does in the unmodified program. There is
a corresponding increase in CPU time.

| Procedure [ CPU cycles | CPU time (s) |

BlastWordFinder | — 0.10 x 10 | -3.3
BlastWordExtend | + 1.43 x 10%° | +49.1

[ Net Total [+ 1.33 x 10 | +45.8 j

Table 13: Net Performance Results for Scanning and Eztension Procedures. There
is a net savings in extension time using the two-hit program since BlastWordExtend
is invoked less frequently. There is a net gain in scanning time since lines of code
were added to BlastWordFinder to implement the two-hit algorithm. However, the
performance cost in scanning is small relative to the performance gain in extending.

4.4.4 Two-Hit Effect on HSP Detection

The two-hit BLASTP program reports all alignments that the unmodified program
does. Recall that the alignment reported in the output is the highest scoring one
from the set of HSPs from which the P(N) value was calculated. Scores are identical.
However, the two-hit program reports lower N values. Here, N is the number of H5Ps
in the set which was ascribed the lowest P-value (subsection 2.2.4). This effects the
value for P(N). The two-hit algorithm may not detect some HSPs that are detected
by the unmodified algorithm as a result of not extending aligned segments which
contain a single hit. For the experimental search this has no effect on the reported
alignments since the missed HSPs were not the highest scoring members of the HSP

set; i.e. they were not the maximal scoring segment pairs or MSPs.
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Chapter 5

Conclusions and Contributions

5.1 Conclusions

This section presents the speed-ups obtained and costs incurred from each of the

programs employing an optimised algorithm.

5.1.1 Summary of Performance Measures

Each of the optimisations proposed in this thesis results in a significant decrease in the

computational time required to perform a search. Figure 41 compares the program

and extension performance of each optimised program with that of an unmodified

program. Figure 42 summarises the CPU speed-ups for each optimised program.

Program Performance Extension Performance
BLASTP Program 10 10
CPU cycles x 10 CPU time (s) | wall clock time (s) CPU cycles x 10 CPU time (s)
BLASTP (row-address) 1.8 62.9 1.7 579
BLASTP (residue-doublet) 1.3 45.5 109 1.2 399
BLASTP (two-hit) 0.8 27.4 40 0.6 19.4
BLASTP(unmodified) 2.1 73.4 100 2.0 68.4

Figure 41: Summary of Performance Measures.

BLASTP Program % Increase in Program Performance
BLASTP (row-address query) 15
BLASTP (residue-doublet) 48
BLASTP (two-hit) 63

Figure 42: Performance Gain Per Optimisation.
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5.1.2 Gain in Performance vs. Cost in HSP Detection

This subsection weighs the cost of using an optimised algorithm against the gain in
performance. Cost is measured as a loss in search sensitivity or the decreased ability

of the optimised algorithm to detect HSPs.

row-address

The row-address optimisation enhances performance by 15%, but is not observable
in wall clock time for a single search, but could be in the context of, for example, a
BLAST server that is continuously executing searches; one estimate shows that two
hundred additional searches per day could be performed. The optimised algorithm

produces the exact HSP set produced by the unmodified algorithm.

residue-doublet

The residue-doublet optimisation decreased the CPU time by 48%, but increased time
to access memory most likely because the residue-doublet score matrix exceeded the
cache size of the DEC Alpha (4 KB). This savings could be realized in wall clock
time on a machine whose cache is sufficiently large to store the entire residue-doublet
matrix. Performing extensions in steps of residue-doublet pairs increases the heuristic
character of the algorithm. As a consequence of grouping residues into doublets, in
some cases, the residue-doublet algorithm, compared to the unmodified algorithm,
misses lower scoring HSPs, reports overall scores that are slightly lower and continues
extensions beyond there normal point of termination. These anomalies are described
fully in subsection 4.3.4. These anomalies mean that an HSP may not be locally
maximal as described in [1]. However, such deviations could be corrected by post-
processing the HSP set or by adjusting the X parameter or may be accepted as a

reasonable compromise to obtain the performance speed-up.

two-hit

The two-hit optimisation provides the greatest performance enhancement at 67%.
Again, this optimisation increases the heuristic character of the algorithm. Those
cases where a single hit is extended into and HSP will be missed. However, these
cases may be detected by lowering the threshold score for neighborhood words, T

[29], which essentially increases the probability of having two hits on the alignment.
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5.2 Contributions of this Thesis

This work makes three valuable contributions to the fields of bioinformatics and
software engineering: (1) An optimised BLASTP algorithm (2) A parametrised de-
scription of the algorithm and (3) A case study in reverse engineering using execution

profilers.

The three optimisations provide a significant performance enhancement to a popular
algorithm used for protein database scanning. The row-address and residue-doublet
optimisation take advantage of the view that a sequence can have multiple equivalent
representations each of which is used for a particular part of the overall computation.
The development of the two-hit optimisation arose from an experiment in which a
query was compared to a single database sequence and the number of hits per align-
ment was measured. This experiment was later extrapolated over the entire database,
the results of which are shown in Figure 37. However, this thesis makes no claims of
original discovery of this optimisation since it is implemented in the BLAST version
2.0 program [29]. This thesis provides a parameterised description of the BLASTP
algorithm. Descriptions of the algorithm that exist in the literature provide only gen-
eral textual and diagrammatic descriptions of each of the three steps of the algorithm
from which a direct implementation is not possible. From a software engineering per-
spective, this thesis provides a reverse engineering methodology based on information
obtained from execution profilers. In addition, this work demonstrates the use of

modelling techniques to describe the design of a reverse engineered program.
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Appendix A

Summary of Object-Oriented

Concepts and Notation

A.1 OMT Concepts and Notation

This work uses concepts and notation from both OMT [35] and UML [36]. Class
diagrams are part of the object model. Classes group attributes and operations, cou-
pling a part of a program’s state with its functionality. At¢tributes are data that are
contained within the class while operations are functions or transformations that may
be applied to these data. Associations are relationships among classes. A-special kind
of association is aggregation which is the “part-whole” or “a-part-of” relationship in
which component classes are associated with an assembly class. An association may
be constrained by its multiplicity which specifies how many instances of one class may

relate to a single instance of an associated class.

Classes are represented using rectangles subdivided into three layers. The top layer
contains the class name, the middle its set of attributes and the bottom its set of
operations. Associations are lines between classes. Aggregation is indicated with a
diamond which is drawn at the “assembly class” end of the association line. Multi-
plicity is indicated with special symbols at the end of the association line. A filled ball
indicates “many” while an integer specifies an exact number of associated instances.

A line without multiplicity symbols indicates a one-to-one association.
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A.2 TUML Concepts and Notation

Collaboration diagrams of UML label links among objects with messages. Messages
travel from sender to receiver. In most cases they are invocations of a method of
receiver’s method by the sender. Often, an argument of this method is a member

data of the sender. Thus, messages essentially send data from one object to another.

The notation for messages is an arrow above a link or association. The arrowhead
indicates the direction in which the message is sent. The arrow can be labelled with

a method name and may contain a sequence number.

This work uses class diagrams to describe the program sub-architectures. The di-
agrams use the OMT modelling entities just described. In addition, the diagrams
show message passing. However, unlike collaboration diagrams, messages are sent
between classes. The arrow notion is used, but the label is an attribute data of the
sender class. The class diagrams are also augmented with algorithm boxes whose
notation is a dashed line rectangle. A dashed arrow links the operation of a class to

the algorithm box that displays its pseudo-code.
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Appendix B

Future Work

B.1 Residue-Doublet Algorithm

B.1.1 Reducing Cache Misses

The residue-doublet extension algorithm shows a promising performance increase that
is not realizable in wall clock time. A possible explanation is that any decrease in
the number of instructions executed is offset by an increase in the time to access the
score matrix because of cache misses. Perhaps a suitable ordering of the rows and
columns can be found that improves the ratio of cache hits. A score matrix can be
represented as an array whose entries are ordered from the most to least frequently
accessed. Thus, a given entry is more likely to be cached (Figure 43). The frequency
of occurrence of residue symbols in the protein NRDB was determined (Table 44).
The BLOSUMSG62 residue pair score matrix can be rearranged so that the order of
the column and row indices correspond to the order shown in Table 44. From this
matrix, a residue-doublet pair frequency score matrix can be constructed using the
algorithm of Figure 34. From this matrix, a residue-doublet pair frequency array can

be constructed using the algorithm of Figure 45.
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Figure 43: Logical Organisation of the Frequency Residue-Doublet Score Matriz. Ma-
trices can be represented as arrays. (i) A matrix represented as a row-major order
array. (ii) A matrix represented as a diagonal order array. The arrows above the
sequences of matrix cells are the diagonals on which the cells are located. The or-
ganisation of (ii) is used to represent the residue-doublet pair frequency score matrix.
The x and y coordinates of the matrix are residue-doublets in decreasing order of
occurrence in a protein sequence database. The entries of the matrix are residue-
doublet pair scores. The diagonal order array representation of this matrix orders the
scores according to frequency of occurrence; from most to least frequently occurring.
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Residue | Occurrences | Frequency (%)

L 6.6 9.2

A 53 7.36

S 5.2 7.35

G 4.9 6.9

\" 4.6 6.4

E 4.4 6.2

T 42 5.9

K 4.1 5.8

I 4.0 5.7

R 3.70 5.19

D 3.67 5.16

P 5.2 5.1

N 3.3 4.6

Q 1.3 4.1

F 29 4.0

Y 23 3.3

M 1.64 2.3

H 1.60 2.2

C 1.3 1.8

w 1.0 1.3

X 0.1 0.01

zZ 0.01 0.00001
B 0.01 0.00001

Figure 44: Frequency of Occurrence of Residue Symbols in the Protein NRDB [21].
The number of occurrences of each symbol was done by counting. Column 1 gives the
number of occurrences of each residue symbol. Column 2 shows the relative frequency
of each symbol.

84



N = NUM_ROWS = NUM_COLUMNS

/* traverse the diagonals above and including the main diagonal and add their entries to array_frd */
for column=0to N
temp_column = column
for (row = 0 ; row < column ; row++)
array_frd[index++] = matrix_frd[row]{temp_column]
temp_column--

/* traverse the diagonals below the main diagonal and add their entries to array_frd */
for row=1to N
temp_Iow = row
for (column =N - 1 ; column > = temp_row ; column-- )
array_frd[index++] = matrix_frd[temp_row]{column]
temp_row++

Figure 45: Algorithm for Constructing the Frequency Residue-Doublet Pair Score
Array. The array, array_frd is constructed from the frequency residue-doublet pair
score matrix, matrix_frd. The algorithm consists of two parts. The first traverses
the diagonals above and including the main diagonal; the second traverses the ones
below. The order in which the entries of a particular diagonal are traversed are
from lowest to highest diagonal value, z + y. The order in which the entries of a
particular diagonal are traversed are from lowest to highest  value. As the diagonals
are traversed their entries are copied to the diagonal order array, array.frd.
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