ACKNOWLEDGEMENTS

While enrolled in the Educational Technology program at Concordia University, I have been fortunate to meet and work with many interesting people. Some have been extremely helpful and encouraging when it came time for me to write my thesis.

First of all, I would like to thank Professor David Mitchell for sparking my interest in operational research and agreeing to act as my thesis supervisor. Not only is he a Kingsman— which of course makes him special— but he has been a good friend and extremely generous with his time. I only wish I could have seen more of David, Daphne, and Parker without this thesis hanging over our heads!

When Professor Eric Holden heard that I was interested in working with David in operational research, he wondered whether I would be interested in doing my research at Bell Canada's Business Office training program— would I!!!!? He also took me personally to meet the administrators, instructors, and GAF, who could not have been more helpful.

If it hadn't been for Professor Gary Boyd, I would never have been able to complete this research. He referred me to books and a program which helped me with my Fortran, he made sure I knew what I was doing when designing and writing my computer-simulation, and introduced me to Dianne Stephorn, who helped me get my program running. Without Gary's support, I probably would have given up, thinking I was a girl of "too little brain" to understand the computer.
I would also like to thank Dr. D. West, as well as Gary, Eric, and David for agreeing to be on my defense committee on such short notice.

Furthermore, I can't thank Patrick and Shelley Rose enough. Patrick is a whizz at computers and always seemed to be around when I most needed him - poor dear. And Shelley was kind enough to type my final draft when my original typist hurt her hand defrosting the freezer! I didn't want to ask a friend to do something I wouldn't do, but she agreed instantly and put me out of my misery.

The assistance of a grant to Professor P. D. Mitchell from the Quebec Minister of Education's "Programme de formation des chercheurs et d'action concertée" is gratefully acknowledged.

Last, but definitely not least, I would like to thank and dedicate this "obra de arte" to: Mom, for her loving confidence in thinking I knew what I was doing and doing a terrific job of it (when I had my doubts); my sister, Barb, for offering to help if and when needed, and explaining to our "coroas" what I was doing; and Daddy, for being who he is and believing in me. They have been helpful in many ways and I would be very little without them.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Problem Statement</td>
<td>1</td>
</tr>
<tr>
<td>Purpose of the Research</td>
<td>1</td>
</tr>
<tr>
<td>The Operational Research Approach</td>
<td>6</td>
</tr>
<tr>
<td>Operational Research Investigations</td>
<td>8</td>
</tr>
<tr>
<td>Concerning Instructional Resources</td>
<td>15</td>
</tr>
<tr>
<td>II. The Systematic Approach to Building the Model of the Queueing System</td>
<td>16</td>
</tr>
<tr>
<td>The Specific Systems Analysis Problem</td>
<td>16</td>
</tr>
<tr>
<td>Basic Queueing Concepts</td>
<td>18</td>
</tr>
<tr>
<td>Theoretical Definitions</td>
<td>22</td>
</tr>
<tr>
<td>Model of the Specific Queue System</td>
<td>22</td>
</tr>
<tr>
<td>Components of the Original Instructional System</td>
<td>25</td>
</tr>
<tr>
<td>Research Sample</td>
<td>25</td>
</tr>
<tr>
<td>Mean Service Times and Mean Service Rates</td>
<td>26</td>
</tr>
<tr>
<td>Exponential Distribution</td>
<td>29</td>
</tr>
<tr>
<td>Mean Inter-arrival Times</td>
<td>31</td>
</tr>
<tr>
<td>Mean Arrival Rates</td>
<td>35</td>
</tr>
<tr>
<td>Poisson Distribution</td>
<td>38</td>
</tr>
<tr>
<td>III. Analytical Solutions to the Model of the Original Training System</td>
<td>39</td>
</tr>
<tr>
<td>Analytical Model</td>
<td>39</td>
</tr>
<tr>
<td>Analytical Calculations</td>
<td>42</td>
</tr>
<tr>
<td>Validation</td>
<td>44</td>
</tr>
<tr>
<td>Conclusions</td>
<td>44</td>
</tr>
</tbody>
</table>
IV. Computer-Simulation Solutions to Model of the Original Training System 46
 Operational Definitions 46
 Computer-Simulation Model 48
 Arrival Sub-routine 51
 Departure Sub-routine 53
 Main Program 54
 Computer Print-out Results 64
 Conclusions 69
 Audio-Visual 69
 Audio .. 70
 Print .. 70

V. Systems Design and Solutions to the Modified and Expanded Training System Problem 72
 Systems Design 72
 Service Mechanism 72
 Arrival Pattern 73
 Analytical Solutions to the Queue Model of the Expanded and Modified Training System 74
 Computer-simulation Solutions to the Expanded and Modified Training System 76
 Conclusions 79
 Audio-visual 79
 Audio .. 79
 Print .. 79

VI. Discussion and Conclusions of Both Analytical and Computer-Simulation Models of the Original and Proposed Training Systems 81
 Discussion 81
 Recommendations 84
 Recommendations for the Expanded and Modified Training System 85
 Conclusions 86
References and Bibliography ... 89

LIST OF TABLES

Table 2.1: Average service time, in hours, for each lesson, arranged by the simulated office media used for the period June 1 - Nov. 30, 1976 ... 27

Table 2.2: Mean service times and mean service rates for each medium in the training system ... 29

Table 2.3: The frequency distribution for the service timings, for each of the media, in the training system ... 29

Table 2.4: The number of student arrivals per day to the training program during the 6-month period of June 1-Nov. 30, 1976 ... 32

Table 2.5: Student arrival frequency to the training program during the 6-month period of June-Nov., 1976 ... 33

Table 2.6: The mean inter-arrival times and the mean arrival rates for each media subsystem in the system ... 34

Table 3.1: AT, AR, ST, and SR for each medium in the training system, given in hours ... 40

Table 3.2: Plane and Kochenberger's P₀ Chart ... 43

Table 3.3: Analytical solutions to the training system's media needs ... 45

Table 4.1: Z₀₀, S, ST, SR, AT, and AR as specified in the 3 sub-systems of the simulation model ... 55

Table 4.2: Computer-simulation results for audio-visual needs in the training system ... 68

Table 4.3: Computer-simulation results for audio needs in the training system ... 69

Table 4.4: Computer-simulation results for print needs in the training system ... 69

Table 4.5: Computer-simulation solutions to the training system's needs ... 71
Table 5.1: Total service time and the number of lessons (Z_m) for each media sub-system in the proposed system 72

Table 5.2: Mean service times (ST) and mean service rates (SR) for each media in the modified and expanded training system ... 73

Table 5.3: Mean inter-arrival times (AT) and mean arrival rates (AR) for the media in the modified and expanded training system ... 74

Table 5.4: Analytical solutions to the expanded and modified system's media needs ... 75

Table 5.5: Computer-simulation results for audio-visual needs in the expanded and modified training system ... 77

Table 5.6: Computer-simulation results for audio needs in the expanded and modified training system ... 78

Table 5.7: Computer-simulation results for print needs in the expanded and modified training system ... 78

Table 5.8: Computer-simulation solutions to the expanded and modified training system ... 80

Table 6.1: Analytical and computer-simulation results for the original training system ... 81

Table 6.2: Analytical and computer-simulation results for the proposed (expanded and modified) training system ... 82

Table 6.3: Recommendations for the Business Office program's media needs ... 85
CHAPTER I
INTRODUCTION

PROBLEM STATEMENT

In recent years, there has been an increasing tendency to look at various systems in a systematic and scientific way. However, the use of operational research methods in educational and training systems has been limited and rarely documented.

Educational technologists have many skills, but rarely can they accurately plan how many units of each media facility are needed in a self-instructional system. Normally, intuition and common sense are used. Often, one of two undesirable outcomes occurs, either: 1) Too much money is wasted buying too many facilities; or 2) Students are unmotivated or dissatisfied because there are not enough facilities and, therefore, they must wait to gain access to the instructional facility. In either case, the outcome is less desirable and more costly (in terms of money or human inconvenience) than an optimal or near optimal solution.

This thesis argues that this type of problem, and others found in educational and training systems, can be easily solved by operational research techniques.

PURPOSE OF THE RESEARCH

This thesis is both theoretical and operational in nature. The general or theoretical purpose of this study was to show that an operational research modeling technique -
in this case queueing theory could be successfully applied to problems involving self-instructional facilities as an aid to problem-solving and planning resource requirements. The fundamental rationale for this assertion was that systems analytic problems repeat themselves in diverse systems and educational systems presumably are not exceptions.

As in the case of the training system being studied, one problem that has always existed in educational and training systems is the inability to optimally determine how many facilities (be they books, playground equipment, or media equipment) are needed. Consequently, one of two outcomes usually occurs, either: 1) Too much money is spent to purchase too many service facilities which will remain idle most of the time; or 2) Too little money is spent so that students must wait to gain access to the service facilities.

As mentioned, intuition and common sense—greatly influenced by monetary restrictions—have usually been used to determine how many materials are needed. Somehow, educational institutions have muddled through, but it is time to cut down on human and financial waste by applying available and applicable skills—such as operational research—to solve problems found in educational and training systems.

This inability to optimally determine resource requirements became important with the increasing problem of rising costs (Schroeder and Adams, 1976). This inability to plan resource requirements became critical when "self-pacing" or "personalized self-instruction" methods were introduced into the educational system. This teaching method is based on the
theory that students would be motivated to learn more efficiently if they could work on their own, using carefully planned learning programs comprised of any combination of appropriate media - print, audio, audio-visual, etc. This learning method supported the idea that "slow" students would not be discouraged and confused by trying to keep up with the "faster" students. Furthermore, the "faster" students would not be held back or become bored by a "slow" pace used to accommodate most students. This teaching method also made the teachers free to motivate all students and help where and when individual problems arose (Keller, 1968).

As long as only one type of media was used - for example, print - there seemed to be no real problem in determining facility needs: if there were 30 students, then 30 desks were needed. But when the learning programs became more complex and used various types of media simultaneously - such as audio, audio-visual, and print - and allowed students to proceed at their own pace, problems developed. Institutions tried to schedule students, but this only eliminated the advantages of self-pacing and personalized instruction.

Therefore, the crucial problem to solve was: how many units of each medium should be made available? Naturally, the easiest solution would be to purchase one of everything for each student: if classes had 30 students, then 30 units of each media (i.e. 30 multi-media units) were planned. However, it became more and more difficult to apply this extremely efficient but expensive solution to the problem of how many media facilities should be available because of
rising costs and monetary restrictions.

Therefore, the general or theoretical purpose of this study was to show that the model building techniques of operational research—specifically queuing theory—could be used as an aid to determine resource requirements in such a learning system. In other words, the purpose of this thesis was to show that queuing theory could be used to control the size of (or eliminate) educational systems while simultaneously keeping purchasing costs to a minimum.

The specific or operational purpose of this study was threefold: 1) Analytical and computer simulation models were to be made of an existing media-based, self-instructional system which were then to be tested against data from existing operations for validation; 2) Analytical and computer simulation models were to be made to represent the same system with a proposed expansion of enrollment and modifications to the media pattern; and 3) Given the existing and proposed models, feasible predictions and recommendations were made for the organization of the learning resources.

The specific, self-instructional system considered was a training system at Bell Canada in Montreal. Their Business Office program was a form of PSI (Personalized System of Instruction) whereby students worked individually at their own pace. The course was comprised of 69 lessons using a simulated office and three types of self-instructional media: audio, audio-visual, and print. There was a definite lesson and media pattern to be followed, but it was still difficult to exactly identify resource requirements because students
paced themselves. This caused student arrivals to and departures from the instructional facilities to be randomly distributed. This meant that it was difficult to predict how many students on the average, used each of the three media facilities simultaneously. Therefore, it was difficult to plan for such a system's media needs. The program trained about 26 students at a time, using 14 existing multi-media carrels and as many desks as were needed.

The manager of the training program intended to: 1) Expand student capacity from 26 to 45; and 2) Change one audio lesson and five print lessons to audio-visual media. An important consideration was to determine how many (new) units of each type were needed to service the students in the expanded system and keep waiting time down to about one minute (or less) per student for any lesson.

The researcher considered only the three types of media used in the instructional program: audio, audio-visual, and print (i.e. not the simulated office). The training program used many units of each media type to serve the random student arrivals at each type; thus the system had many channels. Likewise, the system had many phases because it had 69 lessons. Therefore, in operational research terminology, this self-instructional system was a multi-phase, multi-channel queueing system.

The problem statement then, was formulated as follows: "Can the model-building approach of operational research — queueing theory — be successfully applied in the planning and management of facilities for a self-instructional system?"
THE OPERATIONAL RESEARCH APPROACH

Because operational research is new to educational theory and practice, it is important to define a few terms before going any further. Operational research (OR) is "the application of scientific methods, techniques, and tools to problems involving the operation of systems (humans, tools, materials, educational institutions, etc.) so as to provide those in control of the systems with optimum solutions to the problems that arise" (Churchman, Ackoff and Arnow, 1957, p. 18). Furthermore, "OR is not distinguished by what it investigates, but by how it conducts its investigations" (Ackoff and Rivett, 1965, p. 61).

Stafford Beer goes further by saying that "operational research is the attack of modern science on complex problems arising in the direction and management of large systems of men, machines, materials and money in industry, business, government, and defense. Its distinctive approach is to develop a scientific model of a system, incorporating measurements of factors such as chance and risk; with which to predict and compare the outcomes of alternative decisions, strategies or controls. The purpose is to help management determine its policy and actions scientifically" (1966, p. 92).

Problems and solutions are not unique - they often repeat themselves - so the same type of situations arise in diverse ways. Consequently, Ackoff and Sasieni identify eight problem-solving (operational research) types: queueing, inventory, allocation, sequencing, routing, replacement, competing, search, and any combination of the above (1968, p. 13).
Ackoff and Rivett say that OR has three essential characteristics: 1) It is systems oriented, which means it expands to encompass the whole problem with all its interacting parts, although it does not necessarily start with the system as a whole; 2) It is interdisciplinary because it uses methods and techniques of OR and other fields to look at complex systems. "When scientists from different disciplines study a system from different angles—particularly their field of specialization—the possible approaches to solving the problem grows" (Churchman, Ackoff, and Aronoff, 1957, pp. 3-9); and 3) It uses a scientific method, or mathematical equations (models) often used to better understand the real system (1965).

As stated, a system is a very important operational research term because a system is taken to be an organized group of components which, when interacting upon or with each other, produces a definable output when given a prescribed input (Edney, 1972, p. 66). What this means is that the system is constructed of different parts (variables) which are defined as accurately as possible. In so doing, the system is greatly simplified, is made more manageable, is better understood, and can be considered as a whole. The overall result is that the system produces a definable output or solution which might not have otherwise been defined in the complex "real world" system.

Three observations should be kept in mind when using models: 1) Models cannot replace the "real world" but, at best, reduce a complex system to manageable proportions;
2) Models are neither true nor false, their value is their contribution to our understanding of the systems they represent; and 3) If models are used in parallel with the "real" systems being studied, this can stimulate more ideas for research and lead to better results (McMillan and Gonzales, 1965).

OPERATIONAL RESEARCH INVESTIGATIONS CONCERNING INSTRUCTIONAL RESOURCES

Operational research emerged as a separate field during World War II for two reasons: 1) Tremendous changes were made in warfare technology after World War I and the military found itself using systems and equipment it knew little about; and 2) The Forces found that equipment, such as radar, often failed or acted unexpectedly in the field after being tested satisfactorily in laboratories. So an approach had to be found which would help produce more successful warfare equipment (Ackoff and Rivett, 1965).

In 1940, Blackett formed a team of experts, with little or no military knowledge, to study and solve certain military problems. His group was interdisciplinary because: 1) Scientists were scarce during the war; 2) It was believed that theories of other fields of knowledge could help solve these problems; and 3) Because it was hoped that these scientists would be more objective than "involved" military experts. The first experiments with radar worked, so other teams were set up in the British and later, the Allied Armed Forces with similar successes. Later, operational research experiments were considered such as: at what depth bombs
should explode to sink enemy submarines, how guns should be set to hit planes, tanks, etc. (Ackoff and Rivett, 1965).

After the war, operational research experts moved into the government and industry. However, it was only in the 1950's with the second industrial revolution - automation - that operational research became popular with decision makers (Ackoff and Rivett, 1965).

In this study, the researcher was faced with the problem that the use of operational research methods in education and training had been limited and rarely documented (as this literature review will show). Schroeder and Adams (1976) said this could be the case because educators: 1) Lack an understanding of available operational research techniques; 2) Are unable to assess derivable benefits; and 3) Are unable to assess the interaction between the various methods and the problems at hand.

However, Mitchell (1976a) said that financial pressures are making it necessary for educational systems to use operational research techniques. He discussed and solved several single and multi-channel queueing problems and asserted that educational technologists cannot simply trust their intuition and common sense to solve instructional systems' needs. He further suggested that a new type of educational expert, an educational engineer, is needed to develop instructional systems as well as to apply operational research techniques.

Beaulieu and Dubois (1974) also argued that changes must be made in the educational system. They proposed that simulation models can assist in: 1) Planning resource re-
quirements (human or non-human); and 2) Programming curriculum to best fulfill human and community needs. For example the models can determine how many materials and how much equipment a learning resource centre needs, what professionals (and how many) a community needs, what the courses should teach, etc. They detailed the systematic approach to be taken, considering such things as: student flow through institutions, community human resource needs, flow of community college students to higher institutions, the labor hiring rate, major factors that would vary the level of student potential, etc. They also suggested that the "real" systems are usually too complex for intuition, therefore systems analytic models - such as queueing theory - should be used. They unfortunately neglected to show the simulation model used.

Ackoff and Rivett (1965) described one of the first documented applications of operational research theory to a training problem. An American airline, wishing to minimize operational costs, asked an operational research team to determine how many air stewardesses the company should train, and how often the courses should be run. The team succeeded in optimally balancing the supply and demand for stewardesses to be trained. Then the team considered, with equal success, other problems such as where the personnel should be based, how many planes were needed and where, etc. The results made it possible for the airline to cut down on expenses yet maintain good service.

While Ackoff and Rivett (1965) were concerned with
regulating student arrivals into the learning system, Dwyler (1976) considered a problem similar to the present study, i.e. that the most important problem to solve when a school plans to expand or modify its media centre is what media facilities are needed and how many? Decisions such as these must be based on fact and reliable procedures, so that the limited available resources can meet the material needs of the learners. At Thornwood High School in Illinois, students' and teachers' requests for media were used to help plan the media centre purchasing. Two things were considered—the media and material utilization and the number of students and teachers who were denied service. Queueing theory considers these two points, but Dwyler neglects to state what computer model he used to help plan his media centre requirements. He concludes by saying that his computer model was successful and that he was able to recommend what facilities were needed and how many so that neither students nor teachers were denied use of media equipment.

Redfearn (1973), on the other hand, describes his problem-solving model in great detail. He stated that a student demanding self-instructional materials resembles a customer. Learning is concerned with presenting and reinforcing knowledge, as well as motivating students; waiting to be served does not create good-will nor motivate learning. Redfearn affirmed that it is essential to consider queueing theory to optimally balance user and server idle time in a learning system. What is desired is to provide enough learning facilities so that students do not wait too long,
but not too many facilities that would never or rarely be used.

Redfearn presented a simple queueing (mathematical/graphical) model - used in this research - and resolved how many serving units are needed for a certain personalized instruction course. He concluded that the model was not perfect, but useful for providing approximations. Redfearn further suggested that designers should usually consider buying cheap, simple equipment to provide many service channels and low utilization.

Mitchell (1976b) presented some problems that learning resource centre managers often face: whether to expand and decentralize a centre, how many audio-visual units should be provided to serve conference delegates, etc. One example is very similar to this research: One-User Media Centre (OUMC) set up a program for 600 students whereby the 15 hours per week of multi-media self-instruction had been assigned as follows - 1) 2 hours of TV, 2) 8 hours of slide-tape, 3) 4 hours of audio, and 4) 1 hour of film. Initially, 500 multi-media carrels were provided to meet student demand. It soon became clear that so many expensive units were unnecessary and that fewer units could keep waiting time down to one minute. Mitchell solved many such problems by using a queueing model and associated shortcuts and long formulae which he presented in the article.

Anderson (1973), by using his QUEUING computer model, simulated: 1) A 9-hour working day; 2) A mean service time of 10 minutes; and 3) A mean arrival rate of 20 students per hour to the personalized instructional system. The simulation
started off by examining the effect of 20 facilities and found that fewer were needed. By iteration, Anderson concluded that four units would satisfy service needs with a high (facility) utilization, but that five or six units should be considered so that service facilities would be freer and therefore students would probably not have to wait so long to gain access to them. He believed that his model could: 1) Indicate how many facilities were needed to keep student waiting time and purchasing costs within accepted limits; and 2) Specify how long students would probably have to wait to gain access to a learning system with a certain number of facilities.

In another area of education, Bookstein (1972) aimed to minimize library congestion at the card catalogue by determining whether the catalogue system should be arranged in alphabetical order or divided into subject-author headings. He developed a queueing model, similar to that used in this study, to look at three types of congestion: 1) The probability of drawer being used; 2) The average time needed to wait for drawer use; and 3) The average number of people attracted to the drawer at any time. Arrival and service rates were assumed to be random and drawers were randomly picked. He concluded that the alphabetic catalogue system seemed to be the better choice. While Bookstein studied the above-mentioned types of congestion, the researcher considered congestion to three types of media in a training system.

Rouse (1975) gave other examples of where queueing theory
could be successfully employed to solve library problems. Some examples he mentioned dealt with books, reference and other services, balancing old and new services, etc. He believed, as does the researcher, in using queueing theory to determine the optimal "quantity" and thereby provide the best possible "quality" of library service.

McManamon (1973), in another related area, surveyed the inter-connection of existing and future cable TV for two-way transfer of audio-video and digital data signals. Because cable TV is providing more and more educational programs, it was desirable to develop an interactive system whereby the users can communicate requests (using digital telephones) and the cable network will show the desired program as soon as possible, automatically changing the users' sets to the right station. Queueing theory was used to determine how many stations will be needed to serve a minimum of 30,000 families considering first-come-first-served, an incomplete system's design, and the telephone, television, cost, technical advancement, and other projections. McManamon said a computer simulation model of multi-channel queueing theory must be used to solve this problem, because of the lack of data available and the complexity of the system.

All the above-mentioned researchers showed how the operational research method - queueing theory - could help develop and/or improve educational systems ranging from "personalized self-instruction" programs to cable television and libraries. However, only Anderson (1973), Bookstein (1972), Mitchell (1976a&b), and Redfearn (1973) provided the actual models
used to plan resource requirements. The researcher used Mitcell (1976a&b) and Redfearn's (1973) queueing models to develop this study's analytical and computer models.

OBJECTIVES

This research had the following aims:

1) To show that one of the important problems an educational or training system technologist must solve when setting up or expanding a media centre is - what equipment is needed and how many of each type?

2) To show that an operational research modelling method can help solve such planning problems;

3) To use queueing theory to model and to solve a training centre's facility planning and resource allocation problem;

4) To construct both an analytical and a computer simulation model to represent an existing self-instructional system; and

5) To show how an educational technologist can engage in facility planning and resource allocation.

Therefore, the objectives of this research become the following: 1) To construct and test (a) an analytical and (b) a computer model of an existing instructional system; and 2) To conduct a systems analytic study to provide the design for a proposed new system (which consisted of a modification and expansion of the original system).
CHAPTER II

THE SYSTEMATIC APPROACH TO BUILDING

THE MODEL OF THE QUEUEING SYSTEM

Before building the model to be used in the analytical and computer simulation models, the researcher examined the original Business Office training program of Bell Canada in more detail.

THE SPECIFIC SYSTEMS ANALYSIS PROBLEM

The Business Office training program at Bell Canada in Montreal was a variation of the so-called Personalized System of Instruction (PSI) whereby students worked individually, at their own pace, during the 7-hour working day. The program was made up of 69 sequential lessons using a simulated office and three types of media: audio, audio-visual, and print. There was a definite lesson and media plan that students had to follow, with each lesson taught using only one of the specified media. Student self-pacing makes equipment needs difficult enough to determine, but in addition, each media sub-system, at this training centre, had a different number of lessons and their lengths varied in duration.

The program was made up of about 180 hours, depending on the individual student's speed. The working day was 7 hours long, excluding lunch and coffee breaks. By dividing the total service time of 180 hours, derived from the Bell documentation, by the 7-hour working day, the researcher deduced that the mean course duration was about 26 days.
Therefore, considering the arrival rate of about one student per day, it could be assumed that there was student capacity of about 26 in the existing training program at Bell Canada.

The researcher decided to study the Business Office training program by considering each media sub-system rather than the lesson sequence. To follow students through the 69 lessons would only complicate matters unnecessarily. Considering the training program as three media sub-systems (each with prescribed lessons, service mechanisms, arrival patterns, etc.) would provide a reliable estimation of media needs.

Before continuing, it is essential to visualize the system by using a diagram. Figure 2.1 indicates the lessons belonging to each media and the flow within the program.

Figure 2.1: The original training system indicating the lessons belonging to each medium and the flow pattern.
Considering Figure 2.1, we see that students using a media sub-system for any assigned lesson wait for service, i.e., there is no jumping ahead of others. This supports the assumption of first-in-first-out (FIFO) queue discipline.

It was hypothesized that the training program could be considered a queueing problem. Students arrived into the training program and started the first lesson, using audio. Then the students would leave lesson one and enter lesson two, and use print. Throughout the sequence of lessons, the trainee might re-enter the same media sub-system or move to another. This process continued until the students finished the 69 lessons in the training program.

Since this training program could be considered a queueing problem, the researcher will first discuss a few basic queueing concepts.

BASIC QUEUEING CONCEPTS

Queueing theory is the operational research model that observes a system and its queues — it can provide general information about the number of self-instructional service facilities needed to keep costs, the number of students lined up waiting to use the facilities and the student waiting time within accepted limits. By knowing how many people are being taught and how long it usually takes students to learn, the queueing model can predict how many learning facilities (carrels, books, etc.) are needed. The model can also predict how long students wait when any specified number of facilities are available. This last prediction
is extremely useful because decision-makers can then see if additional facilities and cost will significantly alter the amount of time students wait. Queueing theory is applicable to a wide variety of situations where there exists an imperfect matching between people requiring service and service facilities available.

Churchman, Ackoff and Arpoff (1957), Panico (1969), Plane and Kochenberger (1972), and many other well-known operational researchers say that queueing systems have the following three parameters: 1) An arrival pattern which is determined by the average rate of student arrivals to the learning location within a specified time span and the statistical distribution of their inter-arrivals; 2) A service mechanism which determines how many student arrivals can be served simultaneously and how long they take to complete self-instruction; and 3) The queue discipline which is usually first-come-first-served in a learning environment.

Mitchell (1976a) describes and illustrates (Figure 2.2) the four basic queue systems:

1) The simplest form a queue can take is called single-phase, single-channel queue. This simple system is made up of only one service step (phase) and only one service facility (channel). This system is a queue because people arriving, who may be students, must line up to receive attention. There are many types of simple queues such as this, and an example would be students lining up to deposit their tray of dirty dishes on the conveyor, i.e. students who must line up (and wait) before they get their chance to
get rid of their trays and depart. The length of the queue and the amount of time students spend waiting for a chance at the conveyor depends on how slowly the conveyor moves, how fast the conveyor is cleared by kitchen staff, and how many students want to deposit trays.

2) Another type of system is called the **single-phase, multi-channel queue**. This system is comprised of only one service step (phase) but has more than one service facility (channel) to attend to student needs. An example would be a number of librarians (channels) checking out students' books (phase). The students undergo one step, and the number of librarians serving speeds up the queue turnover or student departures.

3) A slightly more complex system is the **multi-phase, single-channel queue**. This queue system is made up of a couple of service steps (phases) but only one service facility (channel) is available. An example of this would be a computer course made up of three lessons with only one computer terminal available for students to use. A student could sit down and complete one or all lessons before vacating the terminal. If another student should arrive while the terminal is occupied, then he/she would have to wait until the terminal is free before commencing the course work.

4) The final type of queue is called the **multi-phase, multi-channel queue**. This latter system has various stages (phases) and various service facilities (channels). An example could be a slight variation of the previous example: a three-lesson computer course with two terminals for students
to use. This latter queue system could serve about twice as many students than the same system with only one terminal. Clearly, student turnover would be greater and students would probably not have to wait in line so long.

Figure 2.2 illustrates the four basic queue systems (Mitchell, 1976a, pp. 23-26).

Figure 2.2: Illustrations of the four basic queue systems.

1) Single-phase, single channel:

```
arrivals  phase  channel  departures
```

2) Single-phase, multi-channel:

```
arrivals  phase  channel 1  channel 2  departures
```

3) Multi-phase, single-channel:

```
arrivals  phase 1  channel 1  phase 2  departures
```

4) Multi-phase, multi-channel:

```
arrivals  phase 1  channel 1  channel 2  phase 2  channel 1  channel 2  departures
```
THEORETICAL DEFINITIONS

Seven theoretical definitions should be clarified before going any further:

\[AR = \text{Average number of students who arrive in the program every hour for service, e.g. to use audio cassettes} \]

\[AT = \text{Average time, in hours, between student arrivals for service to the program, e.g. the number of hours between people coming for audio tapes} \]

\[S = \text{Number of parallel service units of carrels available for students who take the program to use} \]

\[SR = \text{Average number of students who can be served (e.g. have access to audio recorders and tapes) every hour} \]

\[ST = \text{Average amount of time, in hours, that students take to be served} \]

\[U = \text{Utilization factor of the service facility which means the percentage of time the service facility is busy} \]

\[WT = \text{Average time students wait in queue before being served} \]

MODEL OF THE SPECIFIC QUEUE SYSTEM

The training system was further simplified. For each media sub-system, we estimated: 1) The mean inter-arrival time (AT) and the mean arrival rate (AR) which represented the entire sub-system, not each lesson; 2) The mean of all service times (ST) and the mean service rate (SR) which also represented the entire sub-system; and 3) The number of lessons (Z) using each sub-system or medium. Figure 2.3
portrays this information for each sub-system or medium.

Figure 2.3: The simplified, aggregated model of the original queue system, indicating for each media sub-system: mean service time (ST), mean service rate (SR), mean inter-arrival time (AT), mean arrival rate (AR), and the number of lessons using each medium (Z).

The model of the original queue system was now simplified to a three-single-phase, multi-channel queueing model, each media sub-system modelled as a single-phase, single-channel system. The researcher believed that such a simplified model
would be adequate to determine approximate solutions. Therefore, data from this simplified single-phase, multi-channel queueing model would be used to provide a rough approximation—a first step to determine resource requirements for the Business Office training program at Bell Canada.

It should be pointed out that the number of carrels generated by this simplified queue model will be slightly higher than results produced by a multi-phase, multi-channel queue model. This simplified model assumes that students complete all lessons using one media type before going to the next media type. Clearly, the probability of students having to wait to gain access to the multi-phase, multi-channel queue system is smaller because of the greater turn-over and smaller amount of time needed to complete a lesson and media type.

Therefore, a student arriving at an occupied medium would have to wait for another student to finish—which could take anywhere up to the full amount of time allotted to complete all the lessons using that medium. In reality, the first student in line would only wait for a student to complete a lesson.

The researcher also simplified the facilities-planning problem by considering only media needs. There also existed in the Bell training program a simulated office and two human elements— instructors and GAF (groupe d'abonnés fictifs). The instructors could affect the student flow by delays in setting up the audio-visual material, assisting when needed, and testing the students at the end of the lesson. Similarly, the GAF could cause student delays. This group of people assisted
learners by calling up and pretending to be customers. Students were not marked on these exercises, they just signalled the GAP when they were ready and waited to be phoned back. These two human elements were kept in mind but not considered because the main objective was to plan media facilities. Furthermore, it was pointed out by the manager of the learning resource centre that staffing was not normally a problem. If necessary, at a later date, this operational research study could be expanded to consider a more complex system.

COMPONENTS OF THE ORIGINAL INSTRUCTIONAL SYSTEM

As in any analysis of an operational system, the researcher had to observe the various components of an existing system and collect the necessary data to build the analytical and computer-simulation models. The researcher collected information on the following: research sample, service mechanism, arrival pattern, course duration, and student capacity.

Research Sample

The research sample was drawn from the Business Office training program at Bell Canada. It was important to devise a selection process which would best represent the existing learning situation. The researcher collected data on all students who entered the program between June 1 and November 30, 1976. This six month period was selected because it was the longest and best documented period found in the files. It was considered unnecessary for the researcher to personally observe a large sample of students progress through
the program, because the researcher had access to the available data collection mechanism — the instructors of Bell Canada. The instructors normally assisted students when necessary, set up audio-visual materials, tested students at the end of each lesson, and recorded the amount of time individual students spent on each lesson. The latter provided the main data source for the investigation.

For the six-month period, a total of 129 students was documented. From this, a random sample of 70 trainees was selected. The research sample was picked by shuffling the 129 student documentation and taking the first 70 subjects.

Mean Service Times and Mean Service Rates

The data collected in the research sample was sufficient to determine the service mechanism — mean service times and mean service rates. It was imperative to: 1) Determine the average time spent (a) in each lesson and (b) using each medium (mean service times); and 2) Determine how many students each media facility actually served per hour (mean service rates).

The researcher created a computer-based data file which contained the time taken to complete each of the 69 lessons, one trainee at a time. The researcher then used a Statistical Package for Social Sciences (SPSS) program called "condescriptive". This program provided the following information for each of the 69 lessons (variables) and three types of media: mean, standard deviation, skewness, variance, minimum, maximum, and sum. The first result was the most important because the means were the average service times
for each lesson and medium. The other six results were used by the researcher to check for mistakes in the computer data file.

Table 2.1 shows the average service time (in hours) for each lesson arranged by the medium used and total service time students spent in each medium. This table was prepared from results given in the SPSS "condescriptive" program.

Table 2.1: Average service time, in hours, for each lesson, arranged by the simulated office media used for the period June 1-November 30, 1976. Audio (A), audio-visual (A-V), print (P), simulated office (SO).

<table>
<thead>
<tr>
<th>No.</th>
<th>A</th>
<th>A-V</th>
<th>P</th>
<th>SO</th>
<th>No.</th>
<th>A</th>
<th>A-V</th>
<th>P</th>
<th>SO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.75</td>
<td>3.75</td>
<td>36</td>
<td>7.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>*2.75</td>
<td>3.75</td>
<td>37</td>
<td>7.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.75</td>
<td>2.50</td>
<td>38</td>
<td>*75</td>
<td>*75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.50</td>
<td>3.00</td>
<td>39</td>
<td>1.50</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.50</td>
<td>5.25</td>
<td>40</td>
<td>2.75</td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>.50</td>
<td>4.25</td>
<td>41</td>
<td>1.25</td>
<td>2.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1.75</td>
<td>4.00</td>
<td>42</td>
<td>1.75</td>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.25</td>
<td>5.25</td>
<td>43</td>
<td>1.75</td>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.25</td>
<td>4.25</td>
<td>44</td>
<td>1.75</td>
<td>1.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.00</td>
<td>1.00</td>
<td>45</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.75</td>
<td>4.75</td>
<td>46</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6.25</td>
<td>6.25</td>
<td>47</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>5.25</td>
<td>5.25</td>
<td>48</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2.75</td>
<td>2.75</td>
<td>49</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>*75</td>
<td>*75</td>
<td>50</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4.75</td>
<td>4.75</td>
<td>51</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3.50</td>
<td>3.50</td>
<td>52</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.50</td>
<td>1.50</td>
<td>53</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>*75</td>
<td>*75</td>
<td>54</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.00</td>
<td>3.00</td>
<td>55</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1.00</td>
<td>1.00</td>
<td>56</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.00</td>
<td>1.00</td>
<td>57</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2.00</td>
<td>2.00</td>
<td>58</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>*75</td>
<td>*75</td>
<td>59</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4.00</td>
<td>4.00</td>
<td>60</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.00</td>
<td>1.00</td>
<td>61</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2.75</td>
<td>2.75</td>
<td>62</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1.50</td>
<td>1.50</td>
<td>63</td>
<td>1.25</td>
<td>1.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>16.00</td>
<td>16.00</td>
<td>64</td>
<td>2.50</td>
<td>2.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>*30</td>
<td>1.50</td>
<td>65</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2.50</td>
<td>2.50</td>
<td>66</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.75</td>
<td>2.75</td>
<td>67</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>4.25</td>
<td>4.25</td>
<td>68</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>.75</td>
<td>.75</td>
<td>69</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>4.25</td>
<td>4.25</td>
<td>70</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Six media changes from audio & print to audio-visual to be considered in the expanded system.

Total 65.25 6.75 91.50 16.75
Having obtained the mean service time for each lesson and the total service time for the three media, in addition to knowing the number of lessons using each media \(Z_m \), where \(m \) refers to the media type, the researcher determined the mean service time \((ST) \) and the mean service rate \((SR) \) for one lesson in each medium. The following formulae were used:

\[
ST = \frac{\text{total service time}}{Z_m} \quad \quad SR = \frac{1}{ST}
\]

Although the instructors rounded student study time to the nearest 15 minutes, the researcher decided not to do the same for the calculations. The researcher wanted the model's output to limit waiting time to approximately 1 minute if possible. It was lamentable that timings were rounded off, but it would not be practical for the instructors to be more specific — it would be far too confusing and time-consuming.

It was assumed that measurement errors introduced by rounding off were not systematic but balanced, and that these errors — introduced into a model that was already a crude approximation — could justifiably be accepted and that calculations be made using them. This also applies to almost all tables to follow.

By referring back to Table 2.1 and using the above-mentioned formulae, the following mean service times \((ST) \) and mean service rates \((SR) \) as shown in Table 2.2, were derived for the different media in the original Business Office program.
Table 2.2: Mean service times (ST) and mean service rates (SR) for each medium in the training system.

<table>
<thead>
<tr>
<th>ST (hours)</th>
<th>SR (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>audio-visual 2.250</td>
<td>.444</td>
</tr>
<tr>
<td>audio 4.661</td>
<td>.215</td>
</tr>
<tr>
<td>print 1.867</td>
<td>.536</td>
</tr>
</tbody>
</table>

Exponential Distribution

Queueing theory assumes an exponential distribution of service times. By referring back to the computer data file, the researcher determined the frequency of the service timings (per hour). Table 2.3 shows the frequency distribution for each medium.

Table 2.3: The frequency distribution for the service timings, for each of the media, in the training system.

<table>
<thead>
<tr>
<th>DURATION (hours)</th>
<th>AUDIO-VISUAL</th>
<th>AUDIO</th>
<th>PRINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>93</td>
<td>5</td>
<td>856</td>
</tr>
<tr>
<td>1</td>
<td>46</td>
<td>115</td>
<td>1203</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>198</td>
<td>713</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>196</td>
<td>385</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>170</td>
<td>167</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>92</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>67</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>38</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>26</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>210</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>4</td>
<td>3430</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>980</td>
</tr>
</tbody>
</table>
These frequency distributions were then plotted for each of the media as shown in Figure 2.4 (audio-visual), Figure 2.5 (audio), and Figure 2.6 (print).

Figure 2.4: The frequency distribution of audio-visual service timings, for the original training system.

Figure 2.5: The frequency distribution of audio service timings, for the original training system.

Figure 2.6: The frequency distribution of print service timings for the original training system.
The diagrams show that the service timings were approximately exponentially distributed, with a few bumps here and there. The graphs also show that there was a higher frequency of short timings than long timings. Panico (1969) states that real world data rarely follows this (exponential) service distribution. He also states that the process to determine the distribution (of plotting each timing) is laborious and rather useless because the researcher will undertake the study regardless of the service distribution.

Insofar as the three figures did approximate an exponential distribution, it could therefore be assumed that queueing theory could be used.

Mean Inter-arrival Times and Mean Arrival Rates

The next major component to be considered was the arrival pattern: mean inter-arrival times and mean arrival rates. It was necessary to determine when new students arrived each day at the training program (mean inter-arrival times) and estimate how many students arrived at each media per hour (mean arrival rates).

Table 2.4 depicts the student arrivals at the Bell Canada Business Office training program during the observed six-month period.
Table 2.4: The number of student arrivals per day to the training program during the 6-month period of June 1 - Nov. 30, 1978, from which the sample was taken.

Months	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Working Days	Arrivals
June	1	1	2	1	2	2	-	-	2	1	2	1	-	-	2	1	1	1	-	-	4	x	22	24									
July	1	-	-	2	3	-	-	1	1	-	-	4	1	2	2	-	-	1	2	1	-	22	21										
Aug.	-	3	1	2	-	-	3	-	-	1	1	2	1	-	-	1	1	1	3	1	-	22	21										
Sept.	1	1	-	-	1	1	1	-	-	2	2	1	1	-	-	2	2	1	-	-	1	2	x	22	19								
Oct.	1	-	-	3	1	1	-	-	4	1	-	-	2	-	-	1	1	2	1	-	-	21	18										
Nov.	2	1	1	3	-	-	3	2	2	1	-	-	1	3	1	-	-	3	1	1	-	-	1	x	22	26							

--- = Weekends x = No day

Total 131 129
Since arrivals were not consistently one per day, Panico's (1969) method was used to obtain the daily arrival rate. By following his model, the researcher first specified the arrival frequency, as shown in Table 2.5. The mean arrival rate of one student per day was then found by dividing 129 by 131.

Table 2.5: Student arrival frequency to the training program during the 6-month period of June - November, 1976.

<table>
<thead>
<tr>
<th>Daily Arrivals</th>
<th>Number of Days</th>
<th>Total Number of Student Arrivals</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>131</td>
<td>129</td>
</tr>
</tbody>
</table>

The arrival frequency distribution depicted in Table 2.5 is shown in Figure 2.7 below.

Figure 2.7: The arrival frequency to the whole training system as shown in Table 2.5.
Having ascertained the student arrival pattern at Bell's training program, the researcher then determined the mean inter-arrival times (AT) and the mean arrival rates (AR) for each media sub-system, Z_m being the number of lessons using each medium. The following formulae were used:

$$AT = \frac{\text{inter-arrival time}}{Z_m} \quad AR = \frac{1}{AT}$$

Keeping in mind that, on the average, one student arrived daily (i.e. every 7 hours), the researcher derived the following mean inter-arrival times (AT) and mean arrival rates (AR) as shown in Table 2.6 for each media sub-system in the Business Office training program.

Table 2.6: The mean inter-arrival times (AT) and the mean arrival rates (AR) for each media sub-system in the system.

<table>
<thead>
<tr>
<th>Media Sub-System</th>
<th>AT (hours)</th>
<th>AR (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>audio-visual</td>
<td>2.333</td>
<td>.429</td>
</tr>
<tr>
<td>audio</td>
<td>.500</td>
<td>2.000</td>
</tr>
<tr>
<td>print</td>
<td>.143</td>
<td>7.000</td>
</tr>
</tbody>
</table>

It was assumed that the inter-arrival media were randomly distributed even though the initial arrivals into the whole training program were somewhat regulated, i.e. about one student arrived per day. Furthermore, the system was always a bit unsteady during the starting-up periods (in the morning and after breaks), which was to be expected. On the whole, however, the system appeared to be stable with randomly
distributed arrivals to the different media sub-systems beginning after the first lesson.

Poisson Distribution

While queueing models assume that the service frequency has an exponential distribution, they also assume a poisson distribution for the arrival frequency. Therefore, the arrival frequency had to fulfill the following conditions:

1) Arrivals could never occur simultaneously, there was always some measurable interval between them; 2) There existed a possibility of zero arrivals during the time segment; 3) It was more frequent for more than one student to arrive per day to the entire training program; 4) There was a single peak in the arrival distribution; and 5) The arrival distribution could not be symmetrical about the mean (Panico, 19690).

To determine the individual poisson probabilities, the researcher referred to Schlaifer’s (1959), "Cumulative Poisson and Gamma Distribution Chart" (p. 712), reproduced in Figure 2.8.

Referring to Schlaifer’s chart and given that the mean arrival rate was one per day, the poisson probabilities for the arrival frequency were read from the chart by using the relation: \(P(x) = Px - Px \) (Schlaifer, 1959, p. 213). Therefore, the probabilities of the different arrival frequencies were calculated as:

\[
\begin{align*}
P(\text{zero}) &= .9999 - .6300 = .3600 \\
P(\text{one}) &= .6300 - .2600 = .3700 \\
P(\text{two}) &= .2600 - .0540 = .2060 \\
P(\text{three}) &= .0540 - .0140 = .0400 \\
P(\text{four}) &= .0140 - .0030 = .0110
\end{align*}
\]
Figure 2.8: Schlaifer's Cumulative Poisson and Gamma Distribution Chart (1959, p. 712)
Figure 2.9 shows the probabilities of the different arrival frequencies, plotted from the previous calculations. There was only one peak and all the other conditions for a poisson distribution were fulfilled, therefore it was concluded that this arrival frequency had a poisson distribution.

Figure 2.9: The (Poisson) distribution of the arrival frequency to the original training program.
Queue Discipline

The queue discipline that existed within this training program and therefore, the model, was to deal with students as they arrived to use any one of the media on a first-in-first-out (FIFO) basis. This was the fairest and simplest discipline on the whole, because it served the first students to arrive and ruled out the confusion that might be caused by priorities.
CHAPTER III
ANALYTICAL SOLUTIONS TO THE MODEL
OF THE ORIGINAL TRAINING SYSTEM

There are various approaches to solving queueing models. The two approaches used in this research were analytical and computer-simulation. Mathematical or analytical approaches are useful for simple systems or for acquiring quick estimations. Computer-simulations are useful for more complex problems or for acquiring more detailed estimations (Tersine and Altimus, 1974).

ANALYTICAL MODEL

The analytical model was borrowed from Redfearn (1973). The researcher was able to approximate the number of service facilities needed in the Business Office program by performing the following three steps:

1) Determine the percent utilization (U) of the service facilities and the expected student waiting time (ST) by using the following formulae: \(U = \frac{AR}{S \times SR} \) (Mitchell, 1976b, p. 32) and \(WT = QT \times ST \) (Redfearn, 1973, p. 228) where QT stood for the mean queueing time;

2) Refer to Redfearn's "Mean Queueing Time" graph (Redfearn, 1973, p. 228), reproduced in Figure 3.1;

3) Use the appropriate AT, AR, ST, and SR for each medium as presented in Table 3.1 (to follow). Since the answers derived from the use of the above formulae were in "hours", they were multiplied by 60 to determine estimated
waiting time in "minutes".

Figure 3.1: Redfearn's Mean Queueing Time graph.

Table 3.1: AT, AR, ST, and SR for each medium in the training system, given in hours.

<table>
<thead>
<tr>
<th>Medium</th>
<th>AT</th>
<th>AR</th>
<th>ST</th>
<th>SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>audio-visual</td>
<td>2.333</td>
<td>.429</td>
<td>2.250</td>
<td>.444</td>
</tr>
<tr>
<td>audio</td>
<td>.500</td>
<td>2.000</td>
<td>4.661</td>
<td>.215</td>
</tr>
<tr>
<td>print</td>
<td>.143</td>
<td>7.000</td>
<td>1.867</td>
<td>.536</td>
</tr>
</tbody>
</table>

For validation, the researcher used Plane and Kochenberger's P_0 chart (1972, p. 196) reproduced in Table 3.2 and two of Mitchell's formulae (1976b, pp. 32-33):

$$U = \frac{AR}{(S \times SR)}$$

$$WT = \frac{(S \times U)^S}{S! \cdot (1-U)^2 \times S \times SR} \cdot P_0$$

The following flow chart, depicted in Figure 3.2, shows the steps the researcher took to obtain the analytical solutions for each medium in the queueing model. This procedure was repeated three times to consider audio, audio-visual and print media needs.
Figure 3.2: Flow chart used to analytically determine media needs in the training system.

START

find AT, AR, ST, & SR (Table 3.1)

randomly pick S & use
1) Redfearn's graph
2) formulae:
 \[U = \frac{AR}{S \times SR} \]
 \[ST = QT \times ST \]

WT \text{ } \leq 41 \text{ min.}

add a service facility

yes

use long formulae for validation:
\[V = \frac{AR}{S \times SR} \]
\[WT = \frac{(S \times U)^S}{S! (1-U)^2 \times S \times SR} \]

WT \text{ } \leq 41 \text{ min.}

add a service facility

no

compare both methods and conclude

STOP
ANALYTICAL CALCULATIONS

Following the steps in the flow chart, Figure 3.2, the following calculations were made for the training center's media needs. The "*" denotes the accepted number of facilities (S) to keep waiting time down to about one minute.

FORMULAE: \(U = \frac{AR}{S \times SR} \quad WT = CT \times ST \)

Audio-Visual Sub-System

If \(S = 3 \) and \(U = 0.32 \), then \(WT = \frac{0.045 \times 2.250}{10125 \text{ hour}} \times 60 = 6 \text{ min.} \)

*If \(S = 4 \) and \(U = 0.24 \), then \(WT = \frac{0.0075 \times 2.250}{0.016875 \text{ hour}} \times 60 = 1 \text{ min.} \)

If \(S = 5 \) and \(U = 0.2 \), then \(WT = \frac{0.001 \times 2.250}{0.000225 \text{ hour}} \times 60 = 0.01 \text{ min.} \)

Audio Sub-System

If \(S = 16 \) and \(U = 0.58 \), then \(WT = \frac{0.055 \times 4.6610}{0.0256355 \text{ hour}} \times 60 = 1.54 \text{ minutes} \)

*If \(S = 17 \) and \(U = 0.55 \), then \(WT = \frac{0.028 \times 4.6610}{0.0130508 \text{ hour}} \times 60 = 0.8 \text{ minute} \)

Print Sub-System

If \(S = 19 \) and \(U = 0.69 \), then \(WT = \frac{0.015 \times 1.867}{0.028005 \text{ hour}} \times 60 = 1.7 \text{ minutes} \)

*If \(S = 20 \) and \(U = 0.65 \), then \(WT = \frac{0.0075 \times 1.8670}{0.0140025 \text{ hour}} \times 60 = 0.8 \text{ minute} \)
Table 3.2: Plane and Kochenberger's Pq Chart.

<table>
<thead>
<tr>
<th>Number of Channels, s</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

...
VALIDATION - COMPARISON OF THE MODELS

To ascertain whether Redfearn's analytical model had been satisfactorily applied to the problem, the researcher re-computed for audio-visual needs by referring to Plane and Kochenberger's probability that no customers are in the system chart (1972, p. 196) and two of Mitchell's formulae (1976b, pp. 32-33):

\[U = \frac{AR}{S \times SR} \quad \text{WT} = \frac{(S \times U)^S}{S! \times (1-U)^2 \times S \times FR} \times P_0 \]

(It should again be pointed out that results for the above formulae were in "hours", so the researcher multiplied them by 60 to determine waiting time in "minutes").

Therefore, if \(S = 4 \) and \(U = .24 \), then audio-visual needs were calculated as follows:

\[\text{WT} = \frac{(4 \times .24)^4}{4! \times (1-.24)^2 \times 4 \times .444} \times P_0 = \]

\[\frac{.8493465 \times .3824}{24.6196220} = .0131923 \text{ hour} \times 60 = .8 \text{ minute}. \]

CONCLUSION

The calculation above agreed with the previous analytical solution of four carrels being needed for audio-visual use, with a slight variation in WT which was to be expected. So it was assumed that the analytical estimations to the model of the original training system were valid (i.e. feasible). The analytical solutions, briefly shown in Table 3.3, estimated the total system's needs to be 41 carrels (S) with 4 assigned to audio-visual, 17 to audio, and 20 to print.
Table 3.3: Analytical solutions to the training system's media needs.

<table>
<thead>
<tr>
<th>Media Type</th>
<th>S</th>
<th>WT (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio-visual</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Audio</td>
<td>17</td>
<td>.8</td>
</tr>
<tr>
<td>Print</td>
<td>20</td>
<td>.8</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER IV

COMPUTER-SIMULATION SOLUTIONS

TO MODEL OF THE ORIGINAL TRAINING SYSTEM

Having completed the mathematical analysis of the original training system, the researcher then proceeded to simulate the same queueing model by using a more complex approach—a computer-simulation program. The researcher adapted McMillan and Gonzales' single-channel queue system simulation (1965, p. 264). First of all, the program had to be adapted to Concordia's computer system then modified to approximate a single-phase, multi-channel system.

The researcher decided to determine the queueing behavior in the training system by simulating the arrival and departure of 1,000 students. It was felt that by "observing" at least this many students use the training program, solutions would be reliable. Likewise, the researcher ran the program 10 times, with a different random number, and averaged the results. It was felt this would also contribute to the reliability of the results.

OPERATIONAL DEFINITIONS

Before going any further, the following abbreviations and terms used in the computer-simulation models should be defined. Their values varied within each media sub-system:

AHRNQ = Average student-hours spent in queues
AMIQ = Average student-minutes spent in queues
AR = Mean arrival rate in an hour time span
AT = Mean inter-arrival time, i.e. the time between consecutive arrivals
AVTIS = Average student-hours spent in the system
CUMQUE = Variable which held the cumulative record of
 hours during which there had been a student queue of various lengths (0 to 18)
CUMUTL = Cumulative utilization, i.e. the total number of hours that the service facility was busy
CURUN = Variable that kept track of which media sub-system was being considered
CUSERV = Cumulative number of customers who had been served by and had departed from the service facility
HRSNQ = Total student-hours spent waiting in queue to use the service facility
PCUTIL = Percent utilization of the service facility
P₀ = Probability that no customers were in the system
QT = Mean student queueing time given in "hours"
QUE = Queue length of student waiting to use the medium being considered
S = Number of parallel service units or channels
SR = Mean service rate or the number of students that are served every hour
ST = Mean service time or how long service took to complete, given in hours
STATUS = State of the service facility: when status was 0.0, it was empty, and when it was 1.0, the facility was occupied
TIME = A sub-program built into the computer system to generate a random number function, called TIME because it uses the computer clock.

TYME = Hour value of the most recent change in the state or status of the system.

TNARV = Time of the next arrival.

TNDPR = Time of the next departure.

U = Percent utilization of the service facility.

WT = Expected student waiting time in queue, given in minutes.

Z = Number of lessons in the media sub-system being simulated.

COMPUTER-SIMULATION MODEL

The following questions were answered for each media sub-system during the simulation: 1) How many service facilities were needed (S); 2) What was the expected average student-minutes spent in queues (AMIQ); 3) What was the percent utilization of each service facility (FUFC); 4) What was the percent utilization of the service facilities (PCUTIL); 5) What was the average or expected time, given in hours, in the system per student; and 6) What were the probabilities of queues of varying lengths forming before the service facilities (CUMQUE). In this study, the researcher was mostly interested in the first two problems mentioned above.

Figure 4.1 is a flow diagram for the Fortran (FTN) program used to simulate the Bell Canada training system. Figure 4.2 is a macro flow diagram that summarizes Figure 4.1 in an over-simplistic manner.
Figure 4.1: Flow diagram of the computer-simulated model.
Figure 4.2: Macro flow diagram of the computer-simulation model.

START

initialize & define variables

compare TNARV & TNDPR

call either ARRIVE or DEPART SUB-Routine

1,000 students served?

YES

discontinue run
summarize & document

NO

add another facility

WT ≥ 1 min.

YES

go to next sub-system or end

STOP
During the simulation, students could either arrive or depart. A sub-routine was designed for both these events, and will be explained before the main program.

Arrival Sub-routine

Keeping in mind that Tyme was always the hour value of the most recent change in the state or status of the system, the first thing the program routine had to update were CUMQUE (variable recording the student-hours spent in queues of varying lengths of up to 18 students) and Tyme. The sub-routine took note of how many students were already in the queue and added the latest arrival. The program also determined how long the queue had that particular length. Now that CUMQUE was updated, Tyme was updated as well, with the following Fortran statements:

\[
M = QUE,
CUMQUE(M+1) = CUMQUE(M+1) + TNARV - TME
TME = TNARV
\]

Next, the program checked the queue length and state of the service facility. If the QUE was empty (0.0), then the student could use the facility and the facility became occupied (STATUS = 1.0). If there was someone using the facility, then the student joined the queue, as seen in the following lines:

1. IF (QUE = 1.0) 1, 3, 3
2. IF (STATUS = 1.0) 2, 3, 3
3. STATUS = 1.0
4. QUE = QUE + 1.0

The third consideration in the arrival routine was to establish the time spent in the facility (T) and the
time of the next departure (TNDPR). T was determined by multiplying the negative exponential service time (ST) by the random number generator. TYME was still the recent time of the arrival:

\[T = -\text{ST} \times \text{ALOG} \left(\text{RANF[X]} \right) \]
\[\text{TNDPR} = \text{TYME} + T \]

Knowing the T increment during which the facility was estimated to be occupied, the program could then update cumulative utilization (CUMUTL). T was multiplied by S to take into account that S number of facilities existed in the system:

\[\text{CUMUTL} = \text{CUMUTL} + (T \times S) \]

Finally, the program determined the expected time of the next arrival (TNARV) by adding the product of the Poisson arrival rate and the random number generator to TYME:

\[4 \, \text{TNARV} = -1.0 / \text{AR} \times \text{ALOG} \left(\text{RANF[X]} \right) + \text{TYME} \]

At this point, the computer returned to the main program. The whole arrival sub-routine, as seen in Figure 4.3, ran as follows:

Figure 4.3: The arrival sub-routine.

```
C ARRIVE SUBROUTINE
SUBROUTINE ARRIVE (QUE, STATUS, TNDPR, CUMUTL, TNARV,
CUMQUE, TYME, ST, S, AR)
DIMENSION CUMQUE(10)

C UPDATE CUMULATIVE QUEUE AND RESET TYME
CUE = CUE + CUMQUE(N) - CUMQUE(N-1) + TNARV - TYME
TYME = TNARV

C CHECK QUEUING LENGTH AND STATE OF SERVICE FACILITY
IF (QUE <= 1.0) TNARV = 1.3
ELSEIF (STATUS = 1.0) TNARV = 1.3
ELSE TNARV = 1.0

C ESTABLISH TYME IN SERVICE FACILITY AND TYME OF NEXT DEPARTURE
CUE = CUE * 0.99999 + (1.0 / TNARV)
TNDPR = TYME + 1.3
```
Departure Sub-routine

Because the status of the system was affected again, CUMQUE and TYME had to be reset. The procedure was similar to that used in the arrival sub-routine, but now TNDPR (the most recent status-disturbing event) was considered:

\[
M = \text{QUE}, \\
\text{CUMQUE}(M+1) = \text{CUMQUE}(M+1) + \text{TNDPR} - \text{TYME} \\
\text{TYME} = \text{TNDPR}
\]

Next, the sub-routine checked the queue length. To initiate the simulation, TNDPR was set at 999999.9 so that it was impossible for the next disturbance to be a TNDPR. If there was no one in the QUE, STATUS remained 0.0, but if there were, then the QUE was decreased:

If \((\text{QUE} - 1.0) \geq 2, 2, 2\)
 STATUS = 0.0
 TNDPR = 999999.9
 GO TO 3
 QUE = QUE - 1.0

Having done the above, it was necessary to determine how long the student would be in the facility (S) to then determine the TNDPR. This step was identical to the one found in the arrival sub-routine:

\[
T = -ST \times \text{ALOG(RANF}(X)) \\
\text{TNDPR} = \text{TYME} + T
\]
The last step of the routine was to update CUMUTL and indicate that another student had been served. Once again, T was multiplied by S number of facilities:

\[\text{CUMUTL} = \text{CUMUTL} + (T \times S), \quad \text{3 CUSERV} = \text{CUSERV} + 1.0 \]

The entire departure sub-routine is seen in Figure 4.4, which follows.

Figure 4.4: The departure sub-routine.

```c
C DEPARTURE SUBROUTINE
  SUBROUTINE DEPART (QUE, STATUS, INDR, CUMUTL, CUMQUE,
                   TYME, CUSERV, ST, S)
  DIMENSION CUMQUI(40)
C
C UPDATE CUMULATIVE HULIFE AND RESET TYME
  N-QUE
  CUMQUI(N+1) = CUMQUE(N+1)+INDPR*TYME;
  TYME = INDFR
C
C CHECK QUEUE LENGTH
  IF (QUE < 1.0) 1.2, 2
  1 STATUS = 0.0
     TINDR = 999999.9
     GO TO 3
C
C DECREASE QUEUE LENGTH
  2 QUE = QUE - 1.0
C
C ESTABLISH TYME IN SERVICE FACILITY AND TYME OF NEXT DEPARTURE
  TYME = STATUS + INDFR*TYME + T
C
C UPDATE CUMULATIVE UTILIZATION AND CUMULATIVE SERVED
  CUMUTL = CUMUTL + (T*S)
  3 CUSERV = CUSERV + 1.0
  RETURN
END
```

Main Program

The main program consisted of: 1) Initializing statements; 2) Defining variable values; 3) Summarizing and printing out the desired results; 4) Adding another service facility and beginning again if waiting time exceeds one minute; and 5) Proceeding to the next run or ending the
program run.

To begin with, the main program, called TIME(x) and RANSET(x), a sub-program in Concordia's computer system, were used to determine the random number by using the clock time.

Next, the program gave values to the variables that changed with each sub-routine, or CURUN: Z_m, S, ST, SR, AT, and AR. S was initially set at the numbers suggested by the analytical model for each media sub-system. ST was determined for each media sub-system by dividing the total service time (found in Table 2.1) by Z_m. SR was found by dividing 1 by ST. For each media sub-system, AT was determined by dividing the inter-arrival time to the training system (7 hours) by Z_m. Finally, AR was found by dividing 1 by AT. Therefore, Z_m, S, ST, SR, AT, and AR were the following values for each of the media sub-systems (Note: the computer was allowed to calculate them to decrease the possibility of errors occurring):

Table 4.1: Z_m, S, ST, SR, AT, and AR as specified in the 3 sub-systems of the simulation model.

<table>
<thead>
<tr>
<th></th>
<th>audio-visual</th>
<th>audio</th>
<th>print</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_m</td>
<td>3</td>
<td>14</td>
<td>49</td>
</tr>
<tr>
<td>S</td>
<td>4</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>ST</td>
<td>6.75/3</td>
<td>66.25/14</td>
<td>94.5/49</td>
</tr>
<tr>
<td>SR</td>
<td>1/ST</td>
<td>1/ST</td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>7/3</td>
<td>7/14</td>
<td>7/49</td>
</tr>
<tr>
<td>AR</td>
<td>1/AT</td>
<td>1/AT</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.5: The introduction to the main program:

```plaintext
PROGRAM QUEUE(INPUT, OUTPUT)
DIMENSION QUEUE(40)
REAL AVTIS, CUMQUE, CUMUTL, CUSERV, HRSNQ, PCUTIL
REAL QUE, STATUS, TYME, TNARV, TNPR, AR, AT
REAL SR, ST, S, Z, AHRNG, AMID, CURUN

CALL TIME(X)
CALL RANSET(X)
CURUN = 1.0
S = 5
PRINT 1, CURUN
FORMAT(*CURUN = **, F4.1, ** --AUDIO-VISUAL--**)
ST = (6.75/3, )/S
SR = 1.0/ST
AT = 7.0/3
AR = 1.0/AT
Z = 3.0
GO TO 10

S = 10.0
PRINT 4, CURUN
FORMAT(*CURUN = **, F4.1, ** --AUDIO--**)
ST = (66.25/14, )/S
SR = 1.0/ST
AT = 7.0/14
AR = 1.0/AT
Z = 14.0
GO TO 10

S = 16.0
PRINT 7, CURUN
FORMAT(*CURUN = **, F4.1, ** --PRINT--**)
ST = (94.5/49, )/S
SR = 1.0/ST
AT = 7.0/49
AR = 1.0/AT
Z = 49.0

CONTINUE
PRINT 9, S
FORMAT(*NOW USING **, F4.1, ** CARRELS.**) TYME = 0.0
TNBFE = 999999.9
STATUS = 0.0
QUE = 0.0
CUMUTL = 0.0
CUSERV = 0.0
AVTIS = 0.0
PCUTIL = 0.0
HRSNQ = 0.0
AHRNG = 0.0
AMID = 0.0
TNARV = 0.0
DO 11 M = 1, 20, 1

CUMQUE(M) = 0.0
TNARV = -1.0/AR*ALOG(RAN(X))
```


After the program was initialized, it was imperative to consider the calling routine. The following routine had to compare TNARV and TNDPR and call the appropriate subroutine. Furthermore, if 1,000 students had already been served, the program then summarized and documented its finding:

C CALL UPON TYME ROUTINE
12 IF(TNARV-TNDPR)13.14.15
13 CALL ARRIVE(QUE,STATUS,TNDPR,CUMUTL,TNARV,CUMQUE,
+TYME,ST,S,AK)
 GO TO 12
14 CALL DEPART(QUE,STATUS,TNDPR,CUMUTL,CUMQUE,TYME,
+CUSERV,ST,S)
C
C TERMINATE SIMULATION IF 1000 ARRIVALS HAVE BEEN SERVED
IF(CUSERVY-1000.0)12.15.15

Now the program could determine the percent utilization of the service facility (PCUTIL) and then the average utilization of each facility (PUFC). The PCUTIL was found by dividing CUMUTL by TYME and multiplying the result by 100. PUFC was found by dividing PCUTIL by the number of service facilities being used.

C
C DETERMINE PERCENT UTILIZATION OF THE SERVICE FACILITY
15 . PCUTIL=CUMUTL/TYME*100.0
C
C DETERMINE PERCENT UTILIZATION OF EACH SERVICE FACILITY
PUFC=PCUTIL/S

Having determined CUMQUE in the sub-routines, the program could then calculate: total student-hours spent in queues (HRSNQ), average student-hours spent in queues (AHRNQ), and finally average student-minutes spent in queues (AMIQ).
To determine HRSNQ, the researcher had a loop which multiplied the number of students in each queue (from 0 to 18) by the amount of time students spent in these queues (CUMQUE). These 19 results were then added together. The calculations looked somewhat like this:

1 x hours queue had 1 student
+ 2 x hours queue had 2 students
+ 18 x hours queue had 18 students

AVTIS (the average time students spent in the system) was found by adding the total time students spent in the different queues (HRSNQ) to the total number of hours the service facilities were busy (CUMUTL). This result was then divided by the number of students that were simulated, i.e. 1,000.

To obtain AHRNQ, HRSNQ was divided by 1,000 because the program simulated 1,000 students being served. To determine AMIQ, AHRNQ was multiplied by 60 to transform the average "hours" into average "minutes". The same calculation was then divided by 2 (number of lessons using the media) to estimate how long students usually waited.
for service in the medium. AMIQ represented the average waiting time per lesson (in minutes), not the cumulative waiting time per media.

The next task was to print out the results of these calculations, using PRINT and FORMAT statements. This was a straight-forward procedure.

```
17 FORMAT(2X,9I4,1X,1F8.4)
18 FORMAT(2X,9I4,1X,1F8.4)
19 FORMAT(2X,9I4,1X,1F8.4)
20 FORMAT(2X,9I4,1X,1F8.4)
21 FORMAT(2X,9I4,1X,1F8.4)
22 FORMAT(2X,9I4,1X,1F8.4)
```

When the program finished documenting the run, the program compared AMIQ to one minute. If AMIQ (waiting time) was more than one minute, the program added another service facility (S) and looped back to the same CURUN or media sub-system for a re-run. This portion of the program is seen in the following:

```
24 IF (AMIQ.EQ.1.0) GO TO 24.
    IF (CURIU.EQ.0.0) GO TO 2
    IF (CURIU.EQ.1.0) GO TO 5
    IF (CURIU.EQ.2.0) GO TO 8
    CONTINUE
```
Finally, when the waiting time (AMIq) was less than or equal to one minute, the program then proceeded to the next CURUN or ended the program run. Unlike the previous loop, this one had to return to the line defining the value of S:

C PROCED TO THE NEXT CURUN OR END PROGRAM RUN
 CURUN = CURUN + 1.0
 IF CURUN.EQ.2.0 GO TO 25
 IF CURUN.EQ.3.0 GO TO 6
 25 CONTINUE
 STOP
 END

The total program appeared as shown in Figure 4.6:

Figure 4.6: The whole queue program.

PROGRAM QUEUE(INPUT,OUTPUT)
DIMENSION CURRUN(40)
REAL, AUTO, CURRUB, TUBIT, COSSRY, ORSNA, FOUT IT.
REAL QUE, STATLS, THYS, TNYRY, TNDFB, AK, AT
REAL SK, ST, S, Z, ANLIN, AMQ, CURUN

C INITIALIZE SYSTEM AT TIME ZERO AND DEFINE VARIABLES
C
 CALL TIME(X)
 CALL RANSET(X)
 CURRUN = 1.0
 B = 0.
 PRINT 1, CURRUN
 FORMAT (*, F4.1, "--AUDIO-VISUAL--")
 S = (6.75/3.) / S
 SK = S / 51.
 AT = 7. / 3.
 AR = 1. / AT
 Z = 4.0
 GO TO 10

C
 1 S = 18.0
 PRINT 4, CURRUN
 FORMAT (*, F4.1, "--AUDIO--")
 S1 = (66. 75/14.) / S
 SK = S1 / S
 AT = 7. / 14.
 AR = 1. / AT
 Z = 14.0
 GO TO 10
C
6 S=15.0
 PRINT 7,F4,1,ST
7 FORMAT(*CURR,N=4,1,ST-PRINT-*)
8 ST=(74.5/49.)/S
 SR=1./ST
 AT=7./49.
 AR=1./AT
 Z=49.0
C
10 CONTINUE
 PRINT 9,;
9 FORMAT(*NOW USING *,F4,1,* CARRELS,*)
 T=0.0
 TNDPR=999999.9
 STATUS=0.0
 QUE=0.0
 CUMUTL=0.0
 CURRY=0.0
 AVJIS=0.0
 FCUTIL=0.0
 HRSNU=0.0
 AIRNNU=0.0
 MINU=0.0
 THRV=0.0
 IN IT M=1,20,1
11 CUMQUE(M)=0.0
 TNRV=-1.0/AK+ALOG(RAND(X))
C
C CALL UPON TYME ROUTINE
12 IF(TNRV-TNDPR)13,14,14
13 CALL ARRIVE(QUE STATUS TNDPR CUMUTL TNRV CUMQUE
 +TYME ST S AK)
 GO TO 12
14 CALL DEPART(QUE STATUS TNDPR CUMUTL CUMQUE TYME
 +CUSERV ST S)
C
C TERMINATE SIMULATION IF 1000 ARRIVALS HAVE BEEN SERVED
 IF(CUSERV-1000.0)12,15,15
C
C DETERMINE PERCENT UTILIZATION OF THE SERVICE FACILITY
15 FCUTIL=CUMUTL/TYME*100.0
C
C DETERMINE PERCENT UTILIZATION OF EACH SERVICE FACILITY
 FCUTF-CUTIL/S
C
C DETERMINE STUDENT-HOURS SPENT IN QUEUE
 HRSNU=0.0
 IN 16 M=1,19,1
 H-H
16 HRSNU=HRSNU+H*CUMQUE(M+1)
C
C ADD STUDENT-HRS IN FACILITY AND DETERMINE AVERAGE TYME IN SYSTEM
 AVTIS=(HRSU+CUMUI)/1000.0
C
C DETERMINE AND PRINT AVERAGE WT (IN MTN.)
 AIRNNU=HRSNU/1000.0
 AMUO=(AIRNNU*60.0)/Z
PRINT 10,90
17 FORMAT(2X,9A1,1H MINUTES IN QUEUE 1 110.4)
C
C PRINT PERCENT UTILIZATION PER FACILITY
C PRINT 10,90
18 FORMAT(2X,**PERCENT UTILIZATION PER FACILITY =**110.3)
C
C CONVERT CONTQNT OF CUMQUC TO PROBABILITIES
C PRINT 10,90
19 CUMQUC(M) = CUMQUC(M)/TUME
C
C PRINT PERCENT UTILIZATION AND AVERAGE TUME IN SYSTEM
C PRINT 20,90,100
20 FORMAT(2X,**PERCENT UTILIZATION OF SERVICE FACILITIES = **,
10 12.6/2X,**AND AVERAGE TIME IN SYSTEM PER CUSTOMER =**,
 15 F10.2)
C
C PRINT PROBABILITIES OF QUEUES IN VARYING LENGTHS
C PRINT 22,11,9.1
21 IF (M) GO TO 24
11 PRINT 21,11,9.1,1
22 CONTINUE
C
C ADD ANOTHER FACILITY AND LOOP BACK TO SAME CURUN
C IF (CUMQUC.LT.1.0) GO TO 24
S = S1 1.0
IF (CUMQUC.NE.1.0) GO TO 102
IF (CUMQUC.EQ.2.0) GO TO 103
IF (CUMQUC.EQ.3.0) GO TO 105
24 CONTINUE
C
C PROCEED TO THE NEXT CURUN OR END PROGRAM RUN
C CURUN = CURUN + 1.0
IF (CURUN.GE.2.0) GO TO 3
IF (CURUN.EQ.3.0) GO TO 6
25 CONTINUE
C
C ARRIVE SUBROUTINE
C SUBROUTINE ARRIVE(QUE,STATUS,INDFR,CUMQUC,INAVY,
10 CUMQUC,TUNE,S(I,SAR)
DIMENSION CUMQUC(40)
C
C UPDATE CUMULATIVE QUEUE AND RESULT TIME
C N=QUE
C CUMQUC(M+1) = CUMQUC(M+1)+NARY-TUME
C TUME=NARY
C
C CHECK QUEUE LENGTH AND STATE OF SERVICE FACILITY
C IF (QUE-1.0) 1,3,3
1 1 IF (STATUS-1.0) 2,3,3
2 STATUS=1.0
ESTABLISH TYME IN SERVICE FACILITY AND TYME OF NEXT DEPARTURE
T=-ST*Aalog(RANF(X))
TNDPR=TYME+T

UPDATE CUMULATIVE UTILIZATION
CUMUTL=CUMUTL+(T*ST)
GO TO 4

INCREASE QUEUE LENGTH
QUE=QUE+1.0

ESTABLISH TYME OF NEXT ARRIVAL
TNAYV=-1.0/AR*Aalog(RANF(X))+TYME
RETURN
END

DEPARTURE SUBROUTINE
SUBROUTINE DEPART(QUE,STATUS,TNDPR,CUMUTL,CUMQUE,
+TYME,CUSERV,ST,S)
DIMENSION CUMQUE(40)

UPDATE CUMULATIVE QUEUE AND RESET TYME
M=QUE
CUMQUE(M+1)=CUMQUE(M+1)+TNDPR-TYME
TYME=TNDPR

CHECK QUEUE LENGTH
IF(QUE<1.0)1,2,2
1 STATUS=0.0
TNDPR=999999.9
GO TO 3

DECREASE QUEUE LENGTH
QUE=QUE-1.0

ESTABLISH TYME IN SERVICE FACILITY AND TYME OF NEXT DEPARTURE
T=-ST*Aalog(RANF(X))
TNDPR=TYME+T

UPDATE CUMULATIVE UTILIZATION AND CUMULATIVE SERVED
CUMUTL=CUMUTL+(T*ST)
CUSERV=CUSERV+1.0
RETURN
END
Before analysing the results of the computer model, the researcher had to keep in mind two factors that could influence the results:

1) The data collected by Bell Canada instructors was rounded off to the nearest 15 minutes. Therefore, any results are gross approximations. Therefore, it was decided that computer print-out results would be submitted to the researcher's judgement. The researcher then decided to accept any results under 2.5 minutes and reconsider the results. Redfearn (1973) and many other operational researchers agree that such a decision is acceptable because models such as this computer-simulation are not perfect but useful to provide approximations;

2) Since the queue model was over-simplified to represent a single-phase, multi-channel queue system, the required number of servers would be higher than those which a multi-phase, multi-channel queue model would produce. This means that one must consider recommending fewer media service facilities than the computer-simulation model suggests.

COMPUTER PRINT-OUT RESULTS

Applying the computer-simulation program to the model of the training system and setting service facilities (S) to the numbers suggested by the analytical study, the researcher ran the program 10 times. Each run used a different random number to generate varying results which were then averaged together for a more reliable solution. Because a print-out of ten simulation runs would be too lengthy and confusing, the researcher shows only one program run,
in Figure 4.7, and later summarizes all results.

Figure 4.7: Computer print-out of figures obtained by running the queue program.

CURUN = 1.0 --AUDIO-VISUAL--
NOW USING 5.0 CARRELS
Ave. Minutes in queue = 2.2610
Percent utilization per facility = 19.01141
Percent utilization of service facilities = 95.055707
And average time in system per customer = 2.30
Probability of 0 customers in queue = 0.243678
Probability of 1 customers in queue = 0.027214
Probability of 2 customers in queue = 0.0069179
Probability of 3 customers in queue = 0.0015203
Probability of 4 customers in queue = 0.0001326
Probability of 5 customers in queue = 0.00000000
Probability of 6 customers in queue = 0.00000000
Probability of 7 customers in queue = 0.00000000
Probability of 8 customers in queue = 0.00000000
Probability of 9 customers in queue = 0.00000000
Probability of 10 customers in queue = 0.00000000
Probability of 11 customers in queue = 0.00000000
Probability of 12 customers in queue = 0.00000000
Probability of 13 customers in queue = 0.00000000
Probability of 14 customers in queue = 0.00000000
Probability of 15 customers in queue = 0.00000000
Probability of 16 customers in queue = 0.00000000
Probability of 17 customers in queue = 0.00000000
Probability of 18 customers in queue = 0.00000000

NOW USING 6.0 CARRELS
Ave. Minutes in queue = 1.3234
Percent utilization per facility = 15.226656
Percent utilization of service facilities = 91.359934
And average time in system per customer = 2.24
Probability of 0 customers in queue = 0.9778735
Probability of 1 customers in queue = 0.0178740
Probability of 2 customers in queue = 0.0037194
Probability of 3 customers in queue = 0.0004362
Probability of 4 customers in queue = 0.0000979
Probability of 5 customers in queue = 0.00000000
Probability of 6 customers in queue = 0.00000000
Probability of 7 customers in queue = 0.00000000
Probability of 8 customers in queue = 0.00000000
Probability of 9 customers in queue = 0.00000000
Probability of 10 customers in queue = 0.00000000
Probability of 11 customers in queue = 0.00000000
Probability of 12 customers in queue = 0.00000000
Probability of 13 customers in queue = 0.00000000
Probability of 14 customers in queue = 0.00000000
Probability of 15 customers in queue = 0.00000000
Probability of 16 customers in queue = 0.00000000
Probability of 17 customers in queue = 0.00000000
Probability of 18 customers in queue = 0.00000000
NOW USING 7.0 CARRELS.
Ave. Minutes in Queue = 1.2035
Percent Utilization Per Facility = 15.624544
Percent Utilization of Service Facilities = 95.371808

And Average Time in System Per Customer = 2.24

Probability of 0 Customers in Queue = .9770007
Probability of 1 Customers in Queue = .0193300
Probability of 2 Customers in Queue = .0021026
Probability of 3 Customers in Queue = .0006152
Probability of 4 Customers in Queue = .0000716
Probability of 5 Customers in Queue = 0.0000000
Probability of 6 Customers in Queue = 0.0000000
Probability of 7 Customers in Queue = 0.0000000
Probability of 8 Customers in Queue = 0.0000000
Probability of 9 Customers in Queue = 0.0000000
Probability of 10 Customers in Queue = 0.0000000
Probability of 11 Customers in Queue = 0.0000000
Probability of 12 Customers in Queue = 0.0000000
Probability of 13 Customers in Queue = 0.0000000
Probability of 14 Customers in Queue = 0.0000000
Probability of 15 Customers in Queue = 0.0000000
Probability of 16 Customers in Queue = 0.0000000
Probability of 17 Customers in Queue = 0.0000000
Probability of 18 Customers in Queue = 0.0000000

NOW USING 8.0 CARRELS.
Ave. Minutes in Queue = 1.6097
Percent Utilization Per Facility = 11.606371
Percent Utilization of Service Facilities = 92.850966

And Average Time in System Per Customer = 2.21

Probability of 0 Customers in Queue = .9882701
Probability of 1 Customers in Queue = .0106357
Probability of 2 Customers in Queue = .0010930
Probability of 3 Customers in Queue = .0000012
Probability of 4 Customers in Queue = 0.0000000
Probability of 5 Customers in Queue = 0.0000000
Probability of 6 Customers in Queue = 0.0000000
Probability of 7 Customers in Queue = 0.0000000
Probability of 8 Customers in Queue = 0.0000000
Probability of 9 Customers in Queue = 0.0000000
Probability of 10 Customers in Queue = 0.0000000
Probability of 11 Customers in Queue = 0.0000000
Probability of 12 Customers in Queue = 0.0000000
Probability of 13 Customers in Queue = 0.0000000
Probability of 14 Customers in Queue = 0.0000000
Probability of 15 Customers in Queue = 0.0000000
Probability of 16 Customers in Queue = 0.0000000
Probability of 17 Customers in Queue = 0.0000000
Probability of 18 Customers in Queue = 0.0000000

Cikun = 2.0 --Audio--

NOW USING 18.0 CARRELS.
Ave. Minutes in Queue = 1.1908
Percent Utilization Per Facility = 52.932005
Percent Utilization of Service Facilities = 952.776087

And Average Time in System Per Customer = 4.79
<table>
<thead>
<tr>
<th>Probability of</th>
<th>Queue Size</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Customers in queue</td>
<td>0.7258222</td>
</tr>
<tr>
<td>1</td>
<td>Customers in queue</td>
<td>0.1328202</td>
</tr>
<tr>
<td>2</td>
<td>Customers in queue</td>
<td>0.0693751</td>
</tr>
<tr>
<td>3</td>
<td>Customers in queue</td>
<td>0.0367377</td>
</tr>
<tr>
<td>4</td>
<td>Customers in queue</td>
<td>0.0174354</td>
</tr>
<tr>
<td>5</td>
<td>Customers in queue</td>
<td>0.0074737</td>
</tr>
<tr>
<td>6</td>
<td>Customers in queue</td>
<td>0.0033258</td>
</tr>
<tr>
<td>7</td>
<td>Customers in queue</td>
<td>0.0020091</td>
</tr>
<tr>
<td>8</td>
<td>Customers in queue</td>
<td>0.0000000</td>
</tr>
<tr>
<td>9</td>
<td>Customers in queue</td>
<td>0.0000000</td>
</tr>
<tr>
<td>10</td>
<td>Customers in queue</td>
<td>0.0000000</td>
</tr>
<tr>
<td>11</td>
<td>Customers in queue</td>
<td>0.0000000</td>
</tr>
<tr>
<td>12</td>
<td>Customers in queue</td>
<td>0.0000000</td>
</tr>
<tr>
<td>13</td>
<td>Customers in queue</td>
<td>0.0000000</td>
</tr>
<tr>
<td>14</td>
<td>Customers in queue</td>
<td>0.0000000</td>
</tr>
<tr>
<td>15</td>
<td>Customers in queue</td>
<td>0.0000000</td>
</tr>
<tr>
<td>16</td>
<td>Customers in queue</td>
<td>0.0000000</td>
</tr>
<tr>
<td>17</td>
<td>Customers in queue</td>
<td>0.0000000</td>
</tr>
<tr>
<td>18</td>
<td>Customers in queue</td>
<td>0.0000000</td>
</tr>
</tbody>
</table>

NOW USING 17.0 CARRELS.

Ave. Minutes in Queue = 0.9345
Percent Utilization per facility = 47.491114
Percent Utilization of service facilities = 902.331169
And Average Time in System per Customer = 4.56
Probability of 0 Customers in Queue = 0.7642923
Probability of 1 Customers in Queue = 0.1233313
Probability of 2 Customers in Queue = 0.0667967
Probability of 3 Customers in Queue = 0.0360864
Probability of 4 Customers in Queue = 0.0104630
Probability of 5 Customers in Queue = 0.0034544
Probability of 6 Customers in Queue = 0.0009388
Probability of 7 Customers in Queue = 0.0003614
Probability of 8 Customers in Queue = 0.00028513
Probability of 9 Customers in Queue = 0.0003044
Probability of 10 Customers in Queue = 0.0000000
Probability of 11 Customers in Queue = 0.0000000
Probability of 12 Customers in Queue = 0.0000000
Probability of 13 Customers in Queue = 0.0000000
Probability of 14 Customers in Queue = 0.0000000
Probability of 15 Customers in Queue = 0.0000000
Probability of 16 Customers in Queue = 0.0000000
Probability of 17 Customers in Queue = 0.0000000
Probability of 18 Customers in Queue = 0.0000000

CURREN = 3.0 ---PRINT---
NOW USING 16.0 CARRELS.

Ave. Minutes in Queue = 0.5236
Percent Utilization per facility = 84.480474
Percent Utilization of service facilities = 1351.687582
And Average Time in System per Customer = 1.85
Probability of 0 Customers in Queue = 0.2097998
Probability of 1 Customers in Queue = 0.1282576
Probability of 2 Customers in Queue = 0.1136090
Probability of 3 Customers in Queue = 0.1006152
Probability of 4 Customers in Queue = 0.0741308
Probability of 5 Customers in Queue = 0.0461389
The computer-simulation results derived from the ten program runs for the queueing model of the training system are briefly shown in Table 4.2 (for audio-visual), Table 4.3 (for audio) and Table 4.4 (for print).

Table 4.2: Computer-simulation results for audio-visual needs in the training system.

<table>
<thead>
<tr>
<th>WT for the 10 Simulation Runs (Minutes)</th>
<th>Mean WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.22 2.10 2.75 2.32 2.31 2.44 2.50 2.20 2.39 2.00 2.32</td>
</tr>
<tr>
<td>2</td>
<td>1.82 1.85 2.64 1.65 2.00 2.08 2.38 2.00 2.22 1.74 2.04</td>
</tr>
<tr>
<td>3</td>
<td>1.06 1.07 1.21 1.37 1.47 1.13 1.09 1.37 1.37 1.01 1.22</td>
</tr>
<tr>
<td>4</td>
<td>1.12 .93 .94 1.25 .93 .99 1.05 1.00 .86 .85 .99</td>
</tr>
<tr>
<td>5</td>
<td>.78 .74 .80 .70 .76</td>
</tr>
</tbody>
</table>
Table 4.3: Computer-simulation results for audio needs in the training system.

<table>
<thead>
<tr>
<th>S</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Mean WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>1.59</td>
<td>2.40</td>
<td>2.10</td>
<td>3.00</td>
<td>1.50</td>
<td>1.90</td>
<td>1.37</td>
<td>2.14</td>
<td>1.73</td>
<td>1.30</td>
<td>1.90</td>
</tr>
<tr>
<td>18</td>
<td>1.06</td>
<td>1.69</td>
<td>1.44</td>
<td>2.28</td>
<td>.90</td>
<td>1.31</td>
<td>.81</td>
<td>1.14</td>
<td>1.41</td>
<td>1.06</td>
<td>1.32</td>
</tr>
<tr>
<td>19</td>
<td>1.10</td>
<td>.90</td>
<td>.88</td>
<td>1.31</td>
<td>.95</td>
<td>1.09</td>
<td>1.40</td>
<td>.91</td>
<td></td>
<td></td>
<td>1.70</td>
</tr>
<tr>
<td>20</td>
<td>.92</td>
<td></td>
<td></td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
<td>.73</td>
<td></td>
<td>.87</td>
<td>.93</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.73</td>
</tr>
</tbody>
</table>

Table 4.4: Computer-simulation results for print needs in the training system.

<table>
<thead>
<tr>
<th>S</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Mean WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1.18</td>
<td>1.40</td>
<td>1.37</td>
<td>1.26</td>
<td>1.15</td>
<td>1.33</td>
<td>1.02</td>
<td>1.54</td>
<td>1.28</td>
<td>1.13</td>
<td>1.27</td>
</tr>
<tr>
<td>16</td>
<td>.40</td>
<td>.96</td>
<td>.95</td>
<td>.91</td>
<td>.88</td>
<td>.92</td>
<td>.73</td>
<td>.99</td>
<td>.89</td>
<td>.84</td>
<td>.85</td>
</tr>
</tbody>
</table>

CONCLUSIONS

Audio-Visual

Running the sub-routine ten times produced varying results for the different number of service facilities available. This, of course, reflected the random number function. To keep student waiting down to one minute, the results (see Table 4.2) would indicate that seven audio-visual carrels were needed. However, keeping in mind the conservative nature of the model, as outlined on p. 64, fewer facilities should suffice. In fact, four facilities
would keep student waiting time for audio-visual facilities under 2.5 minutes as stipulated. Fewer than four facilities is well over the accepted maximum waiting time.

Audio

The computer results (see Table 4.3) suggest that twenty facilities were needed to keep waiting time within the accepted limits of one minute. However, considering again the conservative nature of the model, the researcher found that 17 audio carrels should be more than adequate to keep WT under 2.5 minutes. The researcher tried running the program with fewer carrels, but then waiting time was well over three minutes.

Print

The print results (see Table 4.4) caused some confusion in the researcher's mind. The analytical model suggested that 20 facilities (i.e. desks) were needed, but the computer simulation indicated that only 16 desks were needed to keep waiting time within the desired minute. The results also show that 15 carrels would keep the waiting time down to well under 2.5 minutes. When fewer facilities were used, however, the model would not accept them and "rambled" into the exchange package. Therefore, 15 desks should be considered to satisfy print needs.

Taking into account that the model assumes an infinite queue, the researcher would recommend the above number of facilities. The more conservative number of desks (generated by the analytical model) was suggested because the print subsystem is a finite queue. The computer solutions are briefly shown in Table 4.5.
Table 4.5: Computer-simulation solutions to the training system's needs.

<table>
<thead>
<tr>
<th>Method</th>
<th>S</th>
<th>WT (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>audio-visual</td>
<td>4</td>
<td>2.32</td>
</tr>
<tr>
<td>audio</td>
<td>17</td>
<td>1.90</td>
</tr>
<tr>
<td>print</td>
<td>15</td>
<td>1.27</td>
</tr>
</tbody>
</table>
CHAPTER V
SYSTEMS DESIGN AND SOLUTIONS
TO THE MODIFIED AND EXPANDED TRAINING SYSTEM PROBLEM

SYSTEMS DESIGN

In the proposed new system, the management intended to: 1) Expand capacity from 26 to 45 students; and 2) Change 6 lessons, 1 audio and 5 print, to audio-visual media as shown in Table 2.1. The important consideration was to determine how many units of each media (i.e. audio-visual, audio, and print) would be needed to keep waiting time down to about one minute. This was too complex a problem to decide without a systematic analysis, therefore the queueing model was modified to describe the proposed training system.

Service Mechanism

To be able to determine the service mechanism, the researcher had to make the media-lesson changes and assume the average service times for the lessons remained the same. The total service time and the number of lessons (Z_m) per media sub-system in the proposed scheme are shown in Table 5.1.

Table 5.1: Total service time and the number of lessons (Z_m) for each media sub-system in the proposed system.

<table>
<thead>
<tr>
<th>Media</th>
<th>Z_m</th>
<th>Total ST (hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>audio-visual</td>
<td>9</td>
<td>20.0</td>
</tr>
<tr>
<td>Z_m</td>
<td>Total ST (hour)</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>audio</td>
<td>13</td>
<td>62.0</td>
</tr>
<tr>
<td>print</td>
<td>44</td>
<td>81.5</td>
</tr>
</tbody>
</table>

Having done this, the researcher could then solve for mean service times (ST) and mean service rates (SR) for each media sub-system. Using the same formulae (applied in Chapter II, p. 28) to determine the service mechanism of the original training system, the results set down in Table 5.2 were found. As noted before, results were given to the third decimal for computational purposes.

Table 5.2: Mean service times (ST) and mean service rates (SR) for each media in the modified and expanded training system.

<table>
<thead>
<tr>
<th></th>
<th>ST (hour)</th>
<th>SR (hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>audio-visual</td>
<td>2.222</td>
<td>.450</td>
</tr>
<tr>
<td>audio</td>
<td>4.769</td>
<td>.210</td>
</tr>
<tr>
<td>print</td>
<td>1.852</td>
<td>.540</td>
</tr>
</tbody>
</table>

Arrival Pattern

Having determined the new service mechanism, the researcher then had to figure out the new arrival pattern. Given the capacity of 45 students and the mean training duration of 26 days, the arrival ratio to the whole system became 1.73 per day, i.e. a new student arriving about every four (4.05) hours. Following the formulas (in
Chapter II, p. 34) used in the original training system, mean inter-arrival times (AT) and mean arrival rates (AR) were found for the three media, as seen in Table 5.3. Results were again given to the third decimal for computational purposes.

<table>
<thead>
<tr>
<th></th>
<th>AT (hours)</th>
<th>AR (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>audio-visual</td>
<td>.450</td>
<td>2.222</td>
</tr>
<tr>
<td>audio</td>
<td>.312</td>
<td>3.210</td>
</tr>
<tr>
<td>print</td>
<td>.092</td>
<td>10.864</td>
</tr>
</tbody>
</table>

Table 5.3: Mean inter-arrival times (AT) and mean arrival rates (AR) for the media in the modified and expanded training system.

ANALYTICAL SOLUTIONS TO THE QUEUE MODEL OF THE EXPANDED AND MODIFIED TRAINING SYSTEM.

Tak[ing into account the new service mechanisms and arrival patterns, but keeping the other system components and queue model untouched, the researcher was then able to analytically solve the facility needs for the expanded and modified model of the training system. The analytical model was the same one explained and used in Chapter III, page 38. The following calculations were made:

Audio-visual -

if \(S = 9 \), \(U = .55 \), then \(WT = .019 \times 2.222 \)

\[
WT = 0.042218 \text{ hour} \times 60 = 2.5 \text{ minutes}
\]
* if $S = 10$, $U = .49$, then $WT = .00675$
 \[\times 2.2200 = .0149985 \text{ hour} \times 60 = .9 \text{ minute} \]

Audio -

* if $S = 24$, $U = .64$, then $WT = .00375$
 \[\times 4.76900 = .0178347 \text{ hour} \times 60 = 1.1 \text{ minute} \]

if $S = 25$, $U = .61$, then $WT = .0017$
 \[\times 4.7690 = .0081073 \text{ hour} \times 60 = .5 \text{ minute} \]

Print -

* if $S = 27$, $U = .74$, then $WT = .013$
 \[\times 1.852 = .024076 \text{ hour} \times 60 = 1.44 \text{ minutes} \]

* if $S = 28$, $U = .72$, then $WT = .009$
 \[\times 1.852 = .01668 \text{ hour} \times 60 = 1 \text{ minute} \]

Therefore, the analytical estimations to the expanded and modified training system's needs are summarized in Table 5.4.

Table 5.4: Analytical solutions to the expanded and modified system's media needs.

<table>
<thead>
<tr>
<th></th>
<th>ST</th>
<th>WT (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio-visual</td>
<td>10</td>
<td>.9</td>
</tr>
<tr>
<td>Audio</td>
<td>25</td>
<td>1.0</td>
</tr>
<tr>
<td>Print</td>
<td>28</td>
<td>1.0</td>
</tr>
</tbody>
</table>
COMPUTER-SIMULATION SOLUTIONS TO THE EXPANDED AND MODIFIED TRAINING SYSTEM

Applying the already documented computer program to the expanded and modified training system was no real problem, as only a few things had to be changed: \(z_m, S, AT, AR, ST, \) and \(SR \). Figure 5.1 shows the modified portion of the program:

Figure 5.1: Modified program.

```
C INITIALIZE SYSTEM AT TIME ZERO AND SET THE VARIABLES
C
CALL TIME(X)
CALL RANDSET(X)
CURUN=1.0
S=10,
PRINT 1,CURUN
1 FORMAT(*CURUN =F4.1, ---AUDIO-VISUAL ---*)
2 ST=(20.9)/S
SR=1./ST
AT=4.05/9,
AR 1./AT
Z=9.0
GO TO 10
C
3 S=01.0
PRINT 4 , CURUN
4 FORMAT(*CURUN =F4.1, ---AUDIO---*)
5 ST=(62./13.)/S
SR=1./ST
AT=4.05/13
AR 1./AT
Z=13.0
GO TO 10
C
6 S=24.0
ERKIN 7 , CURUN
7 FORMAT(*CURUN =F4.1, ---PRNT---*)
8 ST=(81.5/44.)/S
SR=1./ST
AT=4.05/44
AR 1./AT
Z=44.0
```
By running the modified version of the program 10 times, the researcher obtained the results shown in Table 5.5 (for audio-visual), Table 5.6 (for audio), and Table 5.7 (for print).

Table 5.5: Computer-simulation results for audio-visual needs in the expanded and modified training system.

<table>
<thead>
<tr>
<th>Runs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Mean WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1.75</td>
<td>2.26</td>
<td>2.91</td>
<td>2.33</td>
<td>3.00</td>
<td>2.26</td>
<td>2.75</td>
<td>3.50</td>
<td>2.88</td>
<td>2.21</td>
<td>2.58</td>
</tr>
<tr>
<td>10</td>
<td>1.19</td>
<td>1.49</td>
<td>1.49</td>
<td>1.49</td>
<td>1.43</td>
<td>1.60</td>
<td>1.41</td>
<td>1.79</td>
<td>1.27</td>
<td>1.22</td>
<td>1.44</td>
</tr>
<tr>
<td>11</td>
<td>1.34</td>
<td>.96</td>
<td>1.11</td>
<td>.93</td>
<td>1.31</td>
<td>1.00</td>
<td>1.41</td>
<td>1.12</td>
<td>1.18</td>
<td>1.23</td>
<td>1.16</td>
</tr>
<tr>
<td>12</td>
<td>.77</td>
<td>.85</td>
<td>.90</td>
<td>.88</td>
<td>.82</td>
<td>.80</td>
<td>.92</td>
<td>.85</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.6: Computer-simulation results for audio needs in the expanded and modified training system.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3.25</td>
<td>2.80</td>
<td>2.29</td>
<td>2.12</td>
<td>3.00</td>
<td>2.75</td>
<td>2.90</td>
<td>2.59</td>
<td>2.31</td>
<td>2.26</td>
<td>2.63</td>
</tr>
<tr>
<td>24</td>
<td>1.65</td>
<td>1.18</td>
<td>1.46</td>
<td>1.13</td>
<td>1.50</td>
<td>1.75</td>
<td>1.63</td>
<td>1.31</td>
<td>1.70</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.62</td>
<td>1.41</td>
<td>1.37</td>
<td>1.19</td>
<td>1.16</td>
<td>1.37</td>
<td>1.15</td>
<td>0.89</td>
<td>1.23</td>
<td>1.52</td>
<td>1.29</td>
</tr>
<tr>
<td>26</td>
<td>1.60</td>
<td>1.16</td>
<td>1.40</td>
<td>1.25</td>
<td>1.03</td>
<td>1.28</td>
<td>1.02</td>
<td>1.12</td>
<td>1.09</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1.08</td>
<td>1.08</td>
<td>1.19</td>
<td>1.27</td>
<td>1.10</td>
<td>1.10</td>
<td>1.07</td>
<td>0.80</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.89</td>
<td>0.83</td>
<td>1.09</td>
<td>0.85</td>
<td>1.17</td>
<td>0.89</td>
<td></td>
<td>1.26</td>
<td></td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>0.88</td>
<td>0.46</td>
<td>0.79</td>
<td></td>
<td></td>
<td></td>
<td>0.79</td>
<td></td>
<td>0.73</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.7: Computer-simulation results for print needs in the expanded and modified training system.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1.20</td>
<td>1.31</td>
<td>0.87</td>
<td>0.72</td>
<td>0.69</td>
<td>0.83</td>
<td>0.99</td>
<td>1.01</td>
<td>0.92</td>
<td>1.71</td>
<td>1.03</td>
</tr>
<tr>
<td>24</td>
<td>0.80</td>
<td>0.94</td>
<td>0.39</td>
<td>0.50</td>
<td>0.46</td>
<td>0.55</td>
<td>0.56</td>
<td>0.62</td>
<td>0.76</td>
<td>1.50</td>
<td>0.71</td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS

Audio-Visual

The ten program runs (see Table 5.5) show that twelve facilities would keep the student waiting time under one minute. However, this computer-simulation is conservative in nature, so ten audio-visual carrels should be considered to keep the waiting time (for the computer-simulation model) down to under 2.5 minutes. Fewer carrels kept students waiting more than this amount of time.

Audio

The simulation results (see Table 5.6) suggest that 28 facilities were needed to keep student waiting time within the limit. However, it would seem that, at most, 24 carrels should be considered to keep waiting time (for the computer-simulation of the queueing model) to within 2.5 minutes.

Print

The simulation results (see Table 5.7) suggest that 24 desks would suffice to keep student waiting time within the desired one minute. Knowing that the model was conservative, the researcher tried fewer carrels, but the model wouldn’t accept fewer carrels than 23 as it would just "ramble" into the exchange package. Therefore, 23 facilities should be considered because the researcher would not suggest fewer facilities without print-out results for back-up.

The computer solutions are briefly shown in Table 5.8 on page 80.
Table 5.6: Computer-simulation solutions to the expanded and modified training system.

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>WT (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio-visual</td>
<td>10</td>
<td>1.44</td>
</tr>
<tr>
<td>Audio</td>
<td>24</td>
<td>1.45</td>
</tr>
<tr>
<td>Print</td>
<td>23</td>
<td>1.03</td>
</tr>
</tbody>
</table>
CHAPTER VI
DISCUSSION AND CONCLUSIONS OF BOTH
ANALYTICAL AND COMPUTER-SIMULATION MODELS
OF THE ORIGINAL AND PROPOSED TRAINING SYSTEMS

DISCUSSION

Given the solutions to both the analytical and computer-simulation models of the original and proposed (expanded and modified) training systems, the researcher then examined the two sets of results together.

A comparison of the analytical and computer-simulation results are briefly shown in Table 6.1 (for the original training system) and in Table 6.2 (for the expanded and modified version of the training system).

Table 6.1: Analytical and computer-simulation results for the original training system.

<table>
<thead>
<tr>
<th></th>
<th>Analytical</th>
<th></th>
<th>Computer-simulation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>WT (minutes)</td>
<td>S</td>
<td>WT (minutes)</td>
</tr>
<tr>
<td>Audio-visual</td>
<td>4</td>
<td>1.01</td>
<td>4</td>
<td>2.32</td>
</tr>
<tr>
<td>Audio</td>
<td>17</td>
<td>3.80</td>
<td>17</td>
<td>1.90</td>
</tr>
<tr>
<td>Print</td>
<td>20</td>
<td>4.80</td>
<td>15</td>
<td>1.27</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td></td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.2: Analytical and computer-simulation results for the proposed (expanded and modified) training system:

<table>
<thead>
<tr>
<th></th>
<th>Analytical S</th>
<th>WT (minutes)</th>
<th>Computer-simulation S</th>
<th>WT (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio-visual</td>
<td>10</td>
<td>.9</td>
<td>10</td>
<td>1.44</td>
</tr>
<tr>
<td>Audio</td>
<td>24</td>
<td>1.0</td>
<td>24</td>
<td>1.45</td>
</tr>
<tr>
<td>Print</td>
<td>28</td>
<td>1.0</td>
<td>23</td>
<td>1.03</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
<td>1.0</td>
<td>57</td>
<td></td>
</tr>
</tbody>
</table>

When examining the results, the researcher found three things of interest:

1) The analytical and computer-simulation models were consistent;

2) The computer-simulation results tended to recommend a higher number of service facilities in the audio and audio-visual sub-systems, but the answers became identical because the researcher chose to accept WT of up to 2.5 minutes in the computer-simulation model;

3) In the print sub-system, the reverse situation occurred. The computer-simulation suggested that fewer facilities were needed than the analytical model. When both models of the original and expanded training systems were compared, the computer-simulation indicated that five fewer carrels were needed.

The researcher supports the accuracy of the analytical model for two reasons. First of all, Redfearn (1973) built a multi-queueing model. Secondly, the researcher
compared the system existing at Bell Canada with the results for the original training system model (Table 6.1). The Business Office program had 14 multi-media carrels and as many desks as were needed — about 14. The analytical and computer-simulation results were close, but they could not be closer because the models and the training system were designed a bit differently (i.e. the program operated with two types of service facilities — multi-media and print — and the models considered three types — audio, audio-visual, and print).

The researcher also supports the approximations of the single-phase, multi-channel simulation model. This second model over-estimated media needs because of the way the system was designed, but by knowing this, the researcher was able to adjust the model slightly. As it has already been mentioned, the researcher decided to allow more than one minute waiting time in the simulation — deciding that 2.5 minutes would be acceptable. As it turned out, this readjustment nearly made the results for both the analytical and simulation models identical.

With the readjustments, the results for the audio and audio-visual sub-systems became identical. It would seem that by accepting a waiting time of 2.5 minutes in the simulation, it could adequately represent a multi-phase, multi-channel queueing system.

However, the results for the print sub-systems were a bit of a shock — at first, in both the original and modified models of the queueing system, the computer suggested that
five fewer carrels were needed. This could have been brought about by a bug in the computer-simulation or by the fast turnover of students arriving and leaving print - there were many lessons of short duration. The researcher noted however, that Bell was working with about 14 desks - one less than the conservative simulation suggested for the original queue system. It would seem therefore, that the computer-simulation was not far wrong.

It is concluded that both models are reliable (i.e. consistent) but that they should be used under different conditions. The analytical model was clearly the faster model. Furthermore, if an educational technologist was working on a very low budget, this model would be recommended because all that would be needed would be the formulae, a calculator, Redfearn's graph, and the Schlaifer graph. On the other hand, should a more elaborate study be made to determine media needs in a learning centre, it would be recommended to use both models or only the computer model. This latter model can process more students and under differing conditions. This model can also be run a number of times and an average of several runs could be taken to produce the final solution.

RECOMMENDATIONS

Given the results generated by both the analytical and computer-simulation models, the researcher would suggest that the manager of the Business Office program consider the following recommendation, seen in Table 6.3, for their