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l. 

ABSTRACT 

AN INVESTIGATION OF THE THEORETICAL AND DESIGN 
ASPECTS OF UNSYMMETRICAL MULTI-CUTTING ACTION IN 

DEEP-HOLE MACHINING 

Vojislav Latinovic 
Concordia University, 1978 

A new design concept of multi-edge deep-hole machining 

is presented. The work deals mainly with BTA metal cutting 

systems. 

The main feature of the design is that the cutting 

head consists of multi-cutting edges unsymmetrically located 

with respect to the rotational axis on the cutting head. This 

provides a means of maximizing the metal removal rate per 

revolution, and hence the productivity, without sacrificing the 

essential advantages provided by single-edge deep-hole boring 

tools. The role of a stabilizing cutting force resultant 

necessary for self-guidance in machining holes of high length­

to-diameter ratio is explained for a single-edge cutting tool, 

and extended to tools with unsymmetrical multi-cutting edges. 

The design procedure for unsymmetrical multi-edge 

cutting tools is investigated by formulating a mathematical 

model which takes into account the following: 
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(a) 	 Cutting edges are placed unsymmetrically on the 


cutting head in such a way that a predetermined 


cutting force resultant is transmitted onto the 


hole-wall by means of supporting pads; 


(b) 	 The cutting force resultant is chosen in such a 

way that, sufficient pressure is exerted onto the 

machined hole-wall to prevent separation of the 

wear pads from the wall and run-out of the tool. 

This pressure is limited to a value that permits 

a hydrodynamic lubricating action between the 

supporting pads and the hole-wall; 

(c) 	 The pressure variation between the supporting pads 

and the hole-wall caused by the hole size varia­

tion is controlled in the same manner, as in 

single-edge cutting tools. 

The distribution of the cutting force on the cutt ­

ing edges is formulated in terms of the fundamental cutting 

parameters and mechanical properties of workpiece material, 

utilizing a combined three-dimensional metal cutting theory 

in conjunction with empirical test data. 

To achieve the design requirements stated above, a 

multivariable, nonlinear, objective function is formulated, 

and subsequently, modified to an unconstrained type with 

bounded decision variables. A numerical direct search method, 
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accelerated in distance, is selected to minimize the objec­

tive function. This procedure essentially minimizes the 

pressure difference among cutting-edges corresponding to a 

predetermined wear pad force required for tool self-guidance. 

The wear pad forces are estimated. through an upper limit re­

sulting from the hydrodynamic oil film lifting capacity of 

the wear pads and a lower limit established from a statisti­

cal analysis of the dynamic fluctuations of cutting forces. 

To examine the validity of the developed optimiza­

tion program, several case studies are undertaken for 

staggered tools known to be performing satisfactorily in 

industry. The theoretically computed design parameters 

compared very well with the design data of the tools examin­

ed. The optimization procedure developed is used to design 

two trepanning head prototypes. The unsymmetrical double 

and triple-edge BTA trepanning tools are then manufactured 

and tested on the production line. The test results showed 

good tool guidance and stability. Much higher material 

removal rates are possible compared to those achieved with 

single-edge tools without any loss of hole accuracy, straight­

ness or surface finish. 

An economical analysis conducted shows that the 

machining cost per unit length of a hole using multi-edge 

cutting tools is significantly decreased. Thus implementa­

tion of these tools in production should increase producti­

vity at decreased cost. 
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Extension of this analysis to tools with a higher 

number of cutting edges requires a rigorous investigation of 

stresses and a study of the dynamic behaviour of the machine­

tool-workpiece system. 
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CHAPTER I 

INTRODUCTION 

Hole machining operations are employed extensively 

in industry and constitute an important phase of manufactur­

ing. As in other areas of metal cutting, the search for 

improved hole machining methods which remove material at 

higher rates without loss of accuracy and machined surface 

quality, continues. This work presents a new development 

in this field which exploits the advantages of multi-edge 

cutting action. 

Results of this research work show that such an 

approach is feasible technically, as well as economically. 

1.1 HISTORICAL BACKGROUND 

Historically, men first used hand drills during the 

New Stone Age (about 4,000 B.C.). The device was a bow-

drill consisting of a wooden shaft tipped by a sharp piece 

of hard stone. The shaft was rotated in a wooden frame and 

loaded by a heavy piece of stone to provide the thrust. The 

rotation was produced in alternate directions by a bow-handle 

with a cord fixed to the ends and wrapped around the shaft 

in the middle [IJ. Egyptian stone carvings reveal that 

hole-making was not an unknown operation to the ancients of 

Egypt as early as 2,700 B.C. Basically, the latter device 

produced holes via the grinding effect of a hand-rotated 
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stone [2J. 

The problem of producing holes of a depth exceeding 

the hole diameter by many times, known as deep-hole machin­

ing, has existed for many centuries. It was first faced in 

the Middle Ages when holes had to be drilled in the center 

of logs which were used as water mains until replaced by cast 

iron pipes late in the l7thth Century. Such drilling was 

performed by long hand drills in logs erected vertically. A 

deck built around the upper end of the log was employed to 

facilitate access during the operation [2J. 

The machine shown in Fig. 1.1 was designed about 

1495 by master artist Leonardo da Vinci. The design has been 

saved in a collection entitled. "Codex Atlanticus (393r-b)" 

owned by the Ambrosiana Library in Milan. This machine re­

markably resembled a modern deep-hole machine and may be 

considered as its earliest prototype. The machine often mis­

taken for a lathe was designed to drill holes in the center 

of logs. The drilling mechanism is in the foreground but 

the novel aspect is the set of automatically adjustable 

chucks which clamp the log in the four radial positions. 

The chucks ensure that the axis of the log always remains in 

the center of the machine regardless of the log diameter. 

It is not known, however, whether the machine had ever been 

actually constructed or whether it was simply an example of 

Leonardo's own inventive genius [2,3J. 
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Deep-hole drilling in metal was first attempted in 

the production of gun barrels. During the period between 1500 

and 1750, the town of Suhl in Thuringen, Germany was known as 

the center of deep-hole drilling. At that time a water mill 

was employed as the machine tool with spade bits as the 

cutting tools. Two barrels could be drilled simultaneously 

by two parallel boring splindles. The feed and the thrust 

were produced by the operator. An appropriately designed 

lever developed a certain force amplification and an infinite­

ly variable feed. The drilling was performed at 80 rpm and 

it required 8 to 10 tool bits to complete a barrel. with 

current technology 15 to 18 such barrels can be manufactured 

without regrinding the tool [l,2J. 

It seems that the machine tools we find in modern shop 

practice have been developed in the relatively short span of 

about 400 years, beginning in the 16th century and that the 

lathe was one of the earliest machine tools [4J. Little 

information is available about the gun-boring machines used 

before 1700, except for those mentioned. The earliest re­

liable information on methods and machines relates to the 

first half of the 18th century. In 1713, a vertical gun­

boring machine is said to have been invented by a Swiss 

named Maritz who later worked in Holland, which seems to have 

been ahead of other countries in regard to gun-boring machines 

during the early years of the century. One of the illustra­

tions given by Diderot in his encyclopedia is believed to re­
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resent Maritz's machine. A cut~er head mounted on the end 

boring bar was rotated by animal power and a downward 

motion was given to the gun barrel. The frame of the 

made almost entirely of wood and formed part of 

the structure housing it. The use of the structure of a 

building to form part of a machine tool continued well into 

ththe second half of the 19-- century [5J. 

The first boring machine in which the gun was rotated 

and the feed motion was given to the boring tool appears to 

have been produced about 1758 by Verbruggen, in collaboration 

with Ziegler. This machine, in which the axis of rotation of 

the gun is horizontal, was of massive construction and is 

regarded as the first example of a machine tool for engineer­

ing applications, as distinct from ornamental and artistic 

use [5J. 

The cutters used in these gun-boring machines consist­

ed essentially of a spade drill with two boring cutters suit­

able for drilling a hole in the solid. The other cutters 

employed were suitable for enlarging and cleaning up exist­

ing holes. It is of interest to note that the actual cutting 

portions are separate replaceable bits [5J. 

Although it seems probable that some other form of a 

drilling machine in addition to the bow-drill type had been 

produced before 1700, no conclusive evidence has been unearth­

ed. The first example of a drilling machine seems to be a 

small unit made prior to 1782 by Vaucanson, a French engineer, 
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achieved fame in several fields of engineering and made 

advances in machine-tool design and construction. 

well as his lathe, mark the transition from 

older wooden-bed machine to the all-metal 'engineering' 

type of machine tools [5J. 

The invention of the twist drill in the united 

States in 1860 provided important steps in the field of 

drilling. Available evidence confirms that Morse in 1862, 

commenced in a very limited way, to make twist drills in 

Bridgewater, but did not secure the aid of capital until the 

summer of 1864, when the Morse Twist Drill and Machine 

Company was formed and its works moved to New Bedford [6,35J. 

1.2 REVIEW OF PREVIOUS WORK 

The earliest known study of the mechanics of cutt­

ing processes is that made by a French investigator, 

Cocquilhat, in 1851. He investigated the work required to 

remove a given volume of material in drilling iron, brass, 

stone and other materials. Other pioneers in the area of 

cutting mechanics and chip formation were Joessel, Tresca 

and Reuleaux in France, Time, Zvorykin and Briks in Russia, 

Mallock in England and Taylor in the United States - in the 

area of tool wear and tool life [24J. 

The first significant scientific. gathering in 

America on drilling occurred at the XII Annual Meeting of 
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