DESIGN AND CONSTRUCTION OF A
SINGLE PHASE MODIFIED MCMURRAY INVERTER:

Dilip Mukhedkar

A Dissertation
in
The Department
of
Electrical Engineering

Presented in Partial Fulfillment of the Requirements
for the degree of Master of Engineering at
Concordia University
Montreal, Quebec, Canada

March 1979

© Dilip Mukhedkar
March 1979
ABSTRACT

DESIGN AND CONSTRUCTION OF A SINGLE PHASE MODIFIED MCMURRAY INVERTER

Dilip Mukhedkar

The concepts involved in the design and implementation of a single-phase Modified McMurray inverter are presented and discussed. The operation of the inverter commutation circuit is explained and is analyzed. The procedure for the design of the power circuit is formulated and the practical design considerations are discussed. The protection circuits of the inverter are presented. A digital firing circuit of the inverter is designed permitting a precise inverter control. The circuit also implements an electronic 'Start-Stop' procedure. Based on the design described in this report, an 8 KVA Single Phase inverter was constructed and it was successfully tested for various operating conditions. The experimental results are also included in this report.
Résumé

Conception et réalisation d'un onduleur monophasé de type McMurray modifié

Dilip Mukhedkar

Ce texte décrit les problèmes fondamentaux liés à la conception et à la réalisation d'un onduleur monophasé de type McMurray modifié. Le circuit de commutation de l'onduleur est tout d'abord décrit. Par la suite, les diverses étapes de la conception du circuit de puissance ainsi que leurs implications pratiques sont expliquées. Un circuit digital d'allumage des thyristors permet d'obtenir un contrôle précis et une mise en route de l'onduleur. Finalement, les résultats expérimentaux obtenus avec un onduleur de 8 kVA, sous diverses conditions de charge, sont présentés.
ACKNOWLEDGEMENT

I wish to express my gratitude to Dr. V. R. Stefanovic for his valuable advice and expert guidance during my studies. I wish to acknowledge my deep sense of appreciation to Dr. P. D. Ziogas for his valuable suggestions and whole hearted co-operation during the preparation of this dissertation. The whole Electrical Engineering department has been most helpful and co-operative during the course of my entire study and especially I would like to acknowledge my gratitude to Dr. M. N. S. Swamy and Dr. A. Antoniou for providing me necessary facilities and help, which enabled me to complete my studies. I am deeply indebted to Dr. V. Ramachandran for his valuable advice and guidance during my entire studies. I would like to thank Dr. J. F. Lindsay for his help and co-operation during my stay at this University. Heartfelt thanks are extended to my friends Subhash Rakeja, Alam Iftekhar, Guy Oliver and Cris for their friendly co-operation and help.

I wish to record sincere appreciation of my dear friend Pradeep Bhagwat, who shared with me his insight and practical knowledge. Very special thanks to to Mrs. Monica Etwaroo for her excellent typing job when it was most needed. I am thankful to my brother Dinkar and my sister-in-law Usha for their valuable help and encouragement. Finally I wish to thank, in a very special way, my wife Kunda for her companionship, help, co-operation and uncomplaining patience throughout my studies.
TABLE OF CONTENTS

TITLE

ABSTRACT

ABSTRACT

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES AND APPENDIX

CHAPTER 1 - INTRODUCTION

1.1 INTRODUCTION

1.2 VOLTAGE AND FREQUENCY CONTROL IN INVERTERS

1.2.1 VARIABLE DC LINK

1.2.2 FIXED DC LINK

1.2.3 COMPARISON OF VOLTAGE CONTROL TECHNIQUES

1.3 APPLICATION OF PWM INVERTERS

1.3.1 UPS APPLICATIONS

1.3.2 AC MOTOR DRIVES

1.4 INVERTERS SUITABLE FOR PWM

1.5 OBJECTIVES OF THE PROJECT

1.6 REVIEW OF THE PREVIOUS WORK

1.7 BRIEF OUTLINE OF THE PROJECT

CHAPTER II OPERATION AND ANALYSIS OF COMMUTATION CIRCUIT

2.1 INTRODUCTION
<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 DESCRIPTION OF THE POWER CIRCUIT</td>
<td>20</td>
</tr>
<tr>
<td>2.3 BASIC INVERTER OPERATION</td>
<td>22</td>
</tr>
<tr>
<td>2.4 OPERATION OF COMMUTATION CIRCUIT WITH INDUCTIVE LOAD</td>
<td>22</td>
</tr>
<tr>
<td>2.5 ANALYSIS OF THE COMMUTATION CIRCUIT</td>
<td>37</td>
</tr>
<tr>
<td>CHAPTER III: DESIGN OF POWER CIRCUIT</td>
<td>46</td>
</tr>
<tr>
<td>3.1 INTRODUCTION</td>
<td>46</td>
</tr>
<tr>
<td>3.2 REQUIREMENTS OF POWER CIRCUIT FOR PWM</td>
<td>47</td>
</tr>
<tr>
<td>3.3 SELECTION OF COMMUTATION CIRCUIT COMPONENTS</td>
<td>47</td>
</tr>
<tr>
<td>3.4 DESIGN SPECIFICATIONS AND CALCULATIONS</td>
<td>52</td>
</tr>
<tr>
<td>3.5 COMPONENT SELECTION</td>
<td>55</td>
</tr>
<tr>
<td>3.5.1 COMMUTATION CAPACITOR</td>
<td>55</td>
</tr>
<tr>
<td>3.5.2 COMMUTATION INDUCTOR</td>
<td>59</td>
</tr>
<tr>
<td>3.5.3 DAMPING RESISTOR</td>
<td>59</td>
</tr>
<tr>
<td>3.5.4 MAIN THYRISTORS</td>
<td>60</td>
</tr>
<tr>
<td>3.5.5 AUXILIARY THYRISTORS</td>
<td>62</td>
</tr>
<tr>
<td>3.5.6 FEED-BACK DIODES</td>
<td>64</td>
</tr>
<tr>
<td>3.5.7 CLAMPING DIODES</td>
<td>65</td>
</tr>
<tr>
<td>3.6 A NOTE ON INVERTER LOSSES</td>
<td>66</td>
</tr>
<tr>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>CHAPTER IV PROTECTION CIRCUITS</td>
<td>68</td>
</tr>
<tr>
<td>4.1 INTRODUCTION</td>
<td>68</td>
</tr>
<tr>
<td>4.2 THE PROTECTION OF THYRISTORS AGAINST EXCESSIVE DI/DT</td>
<td>68</td>
</tr>
<tr>
<td>4.3 PROTECTION OF THYRISTORS FROM EXCESSIVE DV/DT AND VOLTAGE SPIKES DUE TO SWITCHING TRANSIENTS</td>
<td>70</td>
</tr>
<tr>
<td>4.4 PROTECTION OF THYRISTORS FROM FAULT CURRENTS</td>
<td>75</td>
</tr>
<tr>
<td>CHAPTER V DESIGN AND IMPLEMENTATION OF THE FIRING CIRCUIT</td>
<td>77</td>
</tr>
<tr>
<td>5.1 INTRODUCTION</td>
<td>77</td>
</tr>
<tr>
<td>5.2 BASIC REQUIREMENTS</td>
<td>77</td>
</tr>
<tr>
<td>5.3 GUIDELINES FOR THE DESIGN</td>
<td>81</td>
</tr>
<tr>
<td>5.4 IMPLEMENTATION OF THE CIRCUIT</td>
<td>81</td>
</tr>
<tr>
<td>5.4.1 INTERFACE CIRCUIT</td>
<td>84</td>
</tr>
<tr>
<td>5.4.2 CONTROL CIRCUIT</td>
<td>87</td>
</tr>
<tr>
<td>5.4.3 OUTPUT CIRCUIT</td>
<td>92</td>
</tr>
<tr>
<td>CHAPTER VI EXPERIMENTAL RESULTS</td>
<td>97</td>
</tr>
<tr>
<td>6.1 INTRODUCTION</td>
<td>97</td>
</tr>
<tr>
<td>6.2 DESCRIPTION OF THE EXPERIMENTAL SET UP</td>
<td>98</td>
</tr>
<tr>
<td>6.3 EXPERIMENTAL PERFORMANCE</td>
<td>98</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Figure 1.1</td>
<td>VOLTAGE CONTROL USING A PHASE CONTROLLED RECTIFIER</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>VOLTAGE CONTROL USING DC CHOPPER</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>VOLTAGE CONTROL USING PWM</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>SINGLE PHASE-HALF BRIDGE</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>MCMURRAY INVERTER CIRCUIT</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>SINGLE PHASE-HALF BRIDGE MODIFIED</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>MCMURRAY INVERTER CIRCUIT</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>SINGLE PHASE-HALF BRIDGE MODIFIED</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>MCMURRAY BEDFORD INVERTER CIRCUIT</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>SINGLE PHASE-HALF BRIDGE COMPLEMENTARY</td>
</tr>
<tr>
<td>Figure 1.11</td>
<td>COMMUTATED INVERTER CIRCUIT</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>POWER CIRCUIT OF MODIFIED MCMURRAY INVERTER</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>VOLTAGE AND CURRENT WAVEFORMS FOR DIFFERENT TYPES OF LOAD</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>GATING SIGNALS FOR THE INVERTER</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>EQUIVALENT CIRCUIT OF THE INVERTER DURING STARTING</td>
</tr>
<tr>
<td>FIGURE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>PATH DURING THE RETURN OF EXCESS CHARGE ON THE CAPACITOR C_c (DURING STARTING)</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>EQUIVALENT CIRCUIT DURING FIRST PORTION OF THE COMMUTATION CYCLE</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>NATURAL FIRING AND ADVANCED FIRING</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>COMMUTATION WAVEFORM FOR INDUCTIVE LOAD (NATURAL FIRING)</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>EQUIVALENT CIRCUIT OF INVERTER DURING SECOND PORTION OF COMMUTATION CYCLE</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>EQUIVALENT CIRCUIT DURING THE THIRD PORTION OF COMMUTATION CYCLE</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>PATH DURING RETURN OF OVER CHARGE ON CAPACITOR</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>COMMUTATION WAVEFORM FOR INDUCTIVE LOAD [ADVANCE TRIGGERING]</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>RLC SERIES CIRCUIT WITH DC SOURCE E USED FOR ANALYSIS OF COMMUTATION CIRCUIT</td>
</tr>
<tr>
<td>CHAPTER III</td>
<td></td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>COMMUTATION CIRCUIT DESIGN CURVE</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>COMMUTATION CIRCUIT DESIGN CURVE</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>EQUIVALENT CIRCUIT OF A CAPACITOR</td>
</tr>
</tbody>
</table>
FIGURE | DESCRIPTION | PAGE
--- | --- | ---
Figure 3.4 | APPROXIMATE CURRENT WAVEFORM OF CAPACITOR DISCHARGE CYCLE | 58
Figure 3.5 | CURRENT WAVEFORM FOR PURELY RESISTIVE LOAD | 61
Figure 3.6 | APPROXIMATE CURRENT WAVEFORM OF AUXILIARY THYRISTOR | 63

CHAPTER IV

Figure 4.1(a) | TRANSIENTS DUE TO REVERSE RECOVERY OF FEED BACK DIODES | 72
Figure 4.1(b) | TRANSIENTS DUE TO REVERSE RECOVERY OF FEED BACK DIODES | 73

CHAPTER V

Figure 5.1 | PWM WAVEFORM | 78
Figure 5.2 | PULSE TIMING DIAGRAM | 82
Figure 5.3 | BLOCK DIAGRAM OF FIRING CIRCUIT | 83
Figure 5.4 | INTERFACE CIRCUIT | 85
Figure 5.5 | INPUT AND OUTPUT WAVEFORM OF INTERFACE CIRCUIT | 86
Figure 5.6 | SCHEMATIC DIAGRAM OF CONTROL CIRCUIT | 88
Figure 5.7 | CONTROL CIRCUIT TIMING DIAGRAM | 89
Figure 5.8 | TIMING DIAGRAM OF MASTER CLEAR CIRCUIT | 93
Figure 5.9 | SCHEMATIC DIAGRAM OF OUTPUT CIRCUIT | 94
Figure 5.10 | CIRCUIT DIAGRAM OF PULSE AMPLIFIER | 96
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 6.1 & 2</td>
<td>EXPERIMENTAL SET-UP OF SINGLE PHASE MODIFIED McMURRAY INVERTER</td>
<td>100</td>
</tr>
<tr>
<td>Figure 6.3 & 4</td>
<td>CLOSE-UP VIEW OF POWER CIRCUIT</td>
<td>101</td>
</tr>
<tr>
<td>Figure 6.5 & 6</td>
<td>INTERFACE & CONTROL CIRCUIT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OUTPUT CIRCUIT (PULSE AMPLIFIER CIRCUIT)</td>
<td>102</td>
</tr>
<tr>
<td>Figure 6.7</td>
<td>CLOSE-UP VIEW OF SNUBBER CIRCUIT</td>
<td>103</td>
</tr>
<tr>
<td>Figure 6.8</td>
<td>FIRING SEQUENCE OF SINGLE PHASE MODIFIED McMURRAY INVERTER FOR REGULAR OPERATION</td>
<td>104</td>
</tr>
<tr>
<td>Figure 6.9</td>
<td>OUTPUT OF PULSE AMPLIFIER CIRCUIT</td>
<td>105</td>
</tr>
<tr>
<td>Figure 6.10</td>
<td>COMMUTATION CAPACITOR CURRENT & VOLTAGE WAVEFORM</td>
<td>106</td>
</tr>
<tr>
<td>Figure 6.11</td>
<td>COMMUTATION CAPACITOR CURRENT & VOLTAGE WAVEFORM</td>
<td>107</td>
</tr>
<tr>
<td>Figure 6.12</td>
<td>VOLTAGE AND CURRENT WAVEFORM ACROSS LOAD</td>
<td>108</td>
</tr>
<tr>
<td>Figure 6.13</td>
<td>DV/DT ACROSS MAIN THYRISTOR T 1</td>
<td>109</td>
</tr>
<tr>
<td>Figure 6.14</td>
<td>DV/DT ACROSS AUXILIARY THYRISTOR TA 1</td>
<td>110</td>
</tr>
<tr>
<td>Figure 6.15</td>
<td>VOLTAGE & CURRENT WAVEFORM ACROSS LOAD</td>
<td>111</td>
</tr>
<tr>
<td>Figure 6.16</td>
<td>DV/DT ACROSS MAIN THYRISTOR T 1</td>
<td>112</td>
</tr>
<tr>
<td>Figure 6.17</td>
<td>DV/DT ACROSS AUXILIARY THYRISTOR TA 1</td>
<td>113</td>
</tr>
<tr>
<td>Figure 6.18</td>
<td>VOLTAGE & CURRENT WAVEFORM ACROSS LOAD</td>
<td>114</td>
</tr>
<tr>
<td>Figure 6.19</td>
<td>DV/DT ACROSS MAIN THYRISTOR T 1</td>
<td>115</td>
</tr>
<tr>
<td>Figure 6.20</td>
<td>DV/DT ACROSS AUXILIARY THYRISTOR TA 1</td>
<td>116</td>
</tr>
</tbody>
</table>
FIGURE | DESCRIPTION | PAGE
-------|--------------|-----
Figure 6.21 | DV/DT ACROSS MAIN THYRISTOR T1 | 117
Figure 6.22 | DV/DT ACROSS AUXILIARY THYRISTOR TA1 | 118
Figure 6.23 | COMMUTATION CAPACITOR VOLTAGE WAVEFORM | 119
Figure 6.24 | COMMUTATION CAPACITOR CURRENT WAVEFORM | 120
Figure 6.25 | COMMUTATION CAPACITOR CURRENT & VOLTAGE WAVEFORM | 121

APPENDIX I

Figure [A] | SCHEMATIC DIAGRAM OF AMPLIFYING GATE THYRISTOR | 129
Figure [B.1] | SNUBBER NETWORK | 131
Figure [C.1] | GRAPH OF $I_{pk} (DC)$ vs L/R | 132
Figure [C.2] | GRAPH OF $I^2_t (DC)$ vs L/R | 132
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table 1.1</td>
<td>COMPARISON TABLE FOR THREE METHODS OF VOLTAGE CONTROL</td>
<td>7</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>GENERAL COMPARISON OF INVERTERS SUITABLE FOR PWM</td>
<td>15</td>
</tr>
<tr>
<td>List of Appendix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPENDIX I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>AMPLIFYING GATE THYRISTORS</td>
<td>130</td>
</tr>
<tr>
<td>B</td>
<td>DESCRIPTION, OPERATION & SELECTION OF SNUBBER CIRCUIT</td>
<td>130</td>
</tr>
<tr>
<td>C</td>
<td>FUSE SELECTION PROCEDURE</td>
<td>136</td>
</tr>
<tr>
<td>APPENDIX II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DETAIL SPECIFICATIONS OF THE COMPONENTS</td>
<td>144</td>
</tr>
<tr>
<td>APPENDIX III</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPUTER PROGRAMME & FLOW CHART</td>
<td>182</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1.1 Introduction:

A new era in the field of Power Conversion started with the introduction of thyristor in 1957. Since then immediate attention was focussed on the application of thyristors in inverter circuits. In recent years, thyristor technology has made a significant progress, permitting the operation of sophisticated inverter circuits in variety of applications.

A thyristor cannot be switched off (commutated) by a gate control. In thyristor converters operating from AC voltage sources, the commutation is provided by the reversal of the applied voltage (phase commutation). When a thyristor converter operates from a DC supply, an additional circuit, called commutation circuit has to be generally provided to turn off thyristors (forced commutation). Consequently the thyristor inverters are very often classified according to the kind of the associated commutation circuit [1], [2], [3].

One should note that inverter applications require much better thyristor dynamic characteristics; such as short turn-off times, high dv/dt and di/dt capabilities etc; than in the case of phase commutated converters. However, Inverter graded thyristors are now commercially available, thus making possible increasingly sophisticated inverter operations.
1.2 Voltage and Frequency Control in Inverters

In many inverter applications, it is necessary to obtain an AC output voltage with variable frequency and amplitude. Frequency control is readily accomplished by controlling the frequency at which various thyristors are turned "on" and "off" (i.e. fired and commutated). Several methods are available for controlling the output voltage of an inverter [4]. Most of these methods fall into one of the two broad categories, namely;

Variable DC Link and
Fixed DC Link.

1.2.1 Variable DC Link

For methods in this category, the output voltage is controlled indirectly by varying the level of the DC input. This is usually accomplished by one of the two following techniques: Controlled Rectifier and DC Chopper.

1.2.1(a): Controlled Rectifier

Three phase AC supply is rectified by a controlled full wave, three phase rectifier which produces a variable DC level which is filtered and then fed to the inverter [5]. The block diagram of this system is shown in Fig [1-1].
Fig [1.1] Voltage Control using a Phase Controlled Rectifier.

Note: The thyristor symbol enclosed in a circle represents a thyristor that may be turned "on" and, if necessary commutated by means of circuit elements not included in the diagram.
1.2.1. (b): DC Chopper:

A fixed DC voltage (from a battery, DC bus, or diode rectifier) is converted to a variable DC level by DC Chopper, which is filtered and then fed to an inverter [5]. The block diagram of this system is shown in Fig. [1.2].

1.2.2. Fixed DC Link:

This category includes all methods in which both the amplitude and the frequency of the output voltage are controlled within the Inverter itself. The most commonly used method in this category is referred to as pulse width modulation or PWM. PWM, when applied to inverters, can be described as a method of controlling the amplitude of the output voltage by varying the interval during which the load is connected to supply. The result is that the output consists of a train of discrete pulses. The width of these pulses is controlled by varying the instants at which various thyristors are fired and/or commutated [6]. The block diagram of this system is shown in Fig [1.3].

1.2.3 Comparison of Voltage Control Techniques:

A comparison Table for the three methods of voltage control (mentioned above), indicating which of desirable characteristics are possible with each technique, is given in Table [1.1]. Thus, from this comparison, it can be seen that the PWM
Fig. [1.2] Voltage Control using DC Chopper.

Note: Same as given in fig. [1.1].
TABLE 1.1

Comparison Table for three Methods of Voltage Control

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Desired Characteristics</th>
<th>Controlled Rectifier</th>
<th>DC Chopper</th>
<th>PWM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Good Input Power factor and Harmonics</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Can be Fed by AC or DC</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>No Additional Components</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Restriction on Design of Commutation Stage</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>Low output harmonics</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>Minimum Number of Communications per cycle</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Simple Control Circuit</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Note: Detailed explanation of above is given in [6].
Inverter system has advantages over other two systems. The distinct advantage is that the control of output voltage and frequency is achieved with one power controller and special control logic. The disadvantage of this system is that the control circuitry of this system is usually complex and is largely determined by the application requirements.

The availability of microprocessors is now making the control circuit design easier, resulting at the same time in controllers with an improved performance.

1.3 Application of PWM Inverters:

Main applications of PWM Inverters include the following:

1) Uninterruptible power supplies (UPS) for stand by power sources for computers, medical equipment etc., where Inverter is controlled to provide constant output voltage and frequency.

2) AC motor drives where the variable voltage/variable frequency capability of PWM Inverters is utilized.

1.3.1 UPS Applications:

The following are the prime requirements of the Inverters used for UPS applications. The Inverter has to perform the basic conversion from DC to AC, eliminate unwanted harmonics, provide a stable output frequency, regulate
for load and line variations and include some means for protecting the Inverter from over loads on its output. Such a performance is extremely important. PWM Inverters offers such performance and in addition they have some district advantages over other types of Inverters used for the same purpose [7]. Therefore PWM Inverters are prefered for UPS applications.

1.3.2. AC Motor Drives:

The induction motor has been one of the most widely used motors in the industry. Before the advent of thyristor, Conventional methods (voltage variation, pole change, etc.) where used for its limited speed control. However its application was mainly limited to drives with constant or near constant speed. Whenever a process required a wide speed range, the dc motor was used. Now, with availability of thyristor Inverters, the speed of the induction motor can be effectively controlled by controlling the motor input frequency. The induction motor has advantages over dc motor in terms of mechanically robust construction, decreased maintenance, reduced cost, etc. Thus the use of induction motor in variable speed drive is gradually increasing. However, one should not conclude that the induction motor will entirely replace the dc motor in the foreseeable future. The main reason is that the cost of the accessories (like Inverters) associated with induction
motor drive is usually 2-3 times higher than the cost of power supplies for variable speed dc motors and in addition, the control circuitary of the induction motor drive is usually complex as compared to its dc counterpart. The AC motor drive will be selected only when a particular application makes it more economical [4], or, when critical performance requirements make the dc motor drive unsuitable.

Among the inverters suitable for AC motor drive applications, PWM Inverter is one of the often considered choice. It fulfills the drive requirements [5] and offers superior performance [8].

1.4 Inverters suitable for PWM

The selection of a particular type of Inverter for a PWM operation is largely dictated by the application requirements. Within PWM class of Inverters, there are different types available. Among those, the following are often considered:

- McMurray Inverter, fig. [1.4];
- Modified McMurray Inverter, fig. [1.5];
- Modified McMurray Bedford Inverter, fig. [1.6];
- Complimentary commutated Inverter (CCI), Fig. [1.7]
 (This is similar to McMurray Bedford Inverter).

A general comparison of these inverters is presented in Table 1.2. This comparison is based on commutation component ratings, efficiency, number of components in the circuit, thyristor protection and complexity.
Fig. [1.4] Single Phase - Half Bridge McMurray Inverter Circuit
Fig. [1.5] Single Phase - Half Bridge Modified McMurray Inverter Circuit.
Fig. [1.6] Single Phase - Half Bridge Modified McMurray Bedford Inverter Circuit.
Fig. [1.7] Single Phase - Half Bridge Complimentary Commutated Inverter Circuit.
<table>
<thead>
<tr>
<th>Parameters</th>
<th>McMurray Inverter</th>
<th>Modified McMurray Inverter</th>
<th>Modified McMurray-Bedford Inverter</th>
<th>Complimentary Commutated Inverter (CCI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutation Component ratings</td>
<td>Lowest</td>
<td>Next lower</td>
<td>Relatively higher</td>
<td>Relatively higher</td>
</tr>
<tr>
<td>Efficiency of Commutation circuit</td>
<td>Highest</td>
<td>Highest</td>
<td>Next Highest</td>
<td>Next Highest</td>
</tr>
<tr>
<td>No. of Components in the circuit</td>
<td>Lowest</td>
<td>Next lower</td>
<td>Relatively higher</td>
<td>Relatively higher</td>
</tr>
<tr>
<td>Voltages Stresses & dv/dt on thyristors</td>
<td>Highest</td>
<td>Next highest</td>
<td>Lower</td>
<td>Lower</td>
</tr>
<tr>
<td>di/dt in the thyristors</td>
<td>Highest</td>
<td>Next highest</td>
<td>Lower</td>
<td>Lower</td>
</tr>
<tr>
<td>Complexity of Control Circuitry</td>
<td>Complex</td>
<td>Complex</td>
<td>Relatively simpler</td>
<td>Relatively simpler</td>
</tr>
</tbody>
</table>
of control circuitry.

1.5 Objectives of the Project:

In many applications, the inverter is an important building block of the total system. The development of the power electronics laboratory requires several inverters, all to be used as building blocks in various drive applications. Therefore a single phase - half bridge modified McMurray Inverter was designed and fabricated. The modified McMurray Inverter was selected on the basis of its advantages over other inverters in terms of commutation component ratings, efficiency of commutation circuit, no of components etc. The design and fabrication of this inverter was the objective of this study and is reported here. Before presenting a brief outline of the project it will be appropriate to review the previous work.

1.6 Review of Previous work.

Research work on Inverter circuits started as early in 1920 when Alexanderson and Price in the United States announced the parallel Inverter (with which two alternating working thyatrons were turned off by a capacitor) [10], [11].

The research on inverters continued from this period onwards. The important research developments on Inverters from 1920 to 1957 are mentioned by Klemens Heumann [12]. Thus the basic theory for inverters was developed in the era of mercury arc devices [13].
The introduction of thyristor (silicon Controlled rectifier (SCR)) in 1957 gave a great impetus to Inverter technology. In 1961, McMurray and Shattuck published the first inverter circuit with thyristors [14].

Since then, the inverter technology progressed rapidly and now there are several efficient Inverter circuits available. McMurray's auxiliary impulse commutated Inverter circuit was reported in 1964 [15].

Carlton et al have presented practical design considerations for this Inverter circuit [19].

Mokrytzki [9], Pollack [5] and many others have recognized the advantages of this Inverter for PWM.

Sahili reported the use of McMurray Inverter for traction applications [20]. Finally Plunkett and Plette reported the use of Modified McMurray Inverter in induction motor drive for transit cars [21].
1.7 Brief Outline of the Project:

In this section, a brief outline of the project is presented.

The operation and analyses of commutation circuit is described in chapter 2. The operation of the commutation circuit for inductive load condition is explained. The triggering of the next main thyristor plays an important role in the commutation process and is explained here. Finally, the analysis of the commutation circuit is given and is used in sizing of the commutation components.

The design of the Inverter power circuit is described in chapter 3. Practical design considerations are discussed. Requirements of the power circuit for PWM are outlined. Then the selection of the values for the commutation circuit is presented. Finally the determination of the ratings of components and component selection are given.

The protection circuits for the inverter are described in chapter 4. The protection of thyristors against di/dt failures, excessive dv/dt and voltage spikes due to switching transient, and the protection of thyristors from fault currents are discussed. Then the solutions to the above problems are presented.

The firing circuit of the Inverter is described in chapter 5. The firing circuit generates the required triggering pulses to the thyristors and also controls the starting and stopping operation of the Inverter. The requirements for the design of the firing circuit are first outlined and the design implementation is presented.
The firing circuit is realized using digital scheme. The salient features of the firing circuit include the precise adjustment of delay between firing the auxiliary and the main thyristors; as well as the electronic 'start-stop' operation of the inverter.

The experimental performance of the Inverter is presented in chapter 6. The obtained results indicate a satisfactory inverter operation.

Finally, the conclusions are presented in chapter 7.
CHAPTER II

OPERATION AND ANALYSIS OF COMMUTATION CIRCUIT

2.1 Introduction: The operation and analysis of the commutation circuit of the modified McMurray inverter is presented. This is an auxiliary impulse commutated circuit which is distinguished from the original McMurray inverter by the addition of two diodes and a resistor fig. [1.4] and [1.5]. They are used for the return of the overcharge on commutating capacitor to the DC voltage source. The circuit and its operation is described next followed by the analyses of the commutation circuit.

2.2 Description of the Power Circuit:

The power circuit of the single phase modified McMurray inverter is shown in fig. [2.1]. This circuit uses a centre tapped DC supply. T-1 and T-2 are the main thyristors which carry load current. D-1 and D-2 are the feedback diodes associated with T-1 and T-2 respectively. TA-1 and TA-2 are the auxiliary thyristors used to commutate T-1 and T-2. DA-1 and DA-2 are the clamping diodes, which are used for the return of the overcharge on the commutation capacitor (C_c) to the DC voltage source. They also serve to commutate the auxiliary thyristors TA-1 and TA-2. R_c is the damping resistor which controls the undershoot of the capacitor voltage. L_c is the commutation inductor and C_c is the commutation capacitor. L_1 is the inductor used for limiting rate of rise of load current (di/dt) in the thyristors.
Fig. [2.1] Power Circuit of Modified McMurray Inverter

[Single Phase - Half Bridge with centre tapped DC supply]
F_1 and F_2 are high speed fuses C_F. C_F is the dc filter capacitor which is considered as a part of the dc supply.

2.3 Basic Inverter Operation:

The main thyristor T-1 and T-2 are gated to conduct during alternate half cycles. When the load is reactive, the feedback diodes D-1 and D-2 conduct during part of each half cycle to return the magnetic energy stored in the load inductance to the dc supply. Commutation of the main thyristors is accomplished by means of auxiliary thyristors TA-1 and TA-2 in conjunction with the capacitor C_c and the inductor L_c.

The voltage and current waveshapes for different types of load are shown in fig. [2.2] while the gating signals for starting and regular operation are shown in fig. [2.3].

2.4 Operation of Commutation Circuit With Inductive Load.

Commutation process is explained on the assumption that the load current remains constant during the commutation process and commutation components are ideal.

The inverter is started by triggering thyristors T-1 and TA-2 simultaneously. T-1 starts conducting the current from the DC supply. This current consists of a load component (I_L) and an oscillatory current i_c. i_c starts to charge the commutation capacitor. When the capacitor gets fully charged (with y side positive fig. [2.4]) the i_c falls to zero. At that moment, capacitor is charged to voltage,

$$e_c = -2ED \ [\text{See Sec. (2.5)}]$$

and TA2 turns off (as it becomes reverse.
Fig. [2.2] Voltage and Current Waveforms for Different Types of Load.
Fig. [2.3] Gating Signals for the Inverter.
Fig. [2.4] Equivalent Circuit of the Inverter During Starting.
biased). The equivalent circuit for this interval is shown in fig. 2.4. Since the capacitor voltage exceeds the supply voltage, the excess charge on the capacitor is fed back to the DC supply through the path shown in fig. 2.5. The capacitor discharges to the level set by the DC bus [i.e. \(e_C = -ED \)]. The polarity of the capacitor voltage is such that it is ready to commutate T-1.

Commutation of T-1: In order to commutate T-1, TA-1 is triggered. The equivalent circuit of the inverter, after TA-1 has been fired, is shown in fig 2.6. The capacitor \(C_C \) starts discharging. The discharge current \(i_C \) starts increasing sinusoidally through TA-1, \(L_C \), \(C_C \). Since \(I_L \) is assumed constant, the current through T-1 decreases as \(i_C \) is increasing. When \(i_C \) is equal to \(I_L \), the current through T-1 is reduced to zero and the entire load current is transferred to TA-1. However, the capacitor current continues to increase and the excess of \(i_C \) over the load current \(I_L \), now starts flowing through D-1, thereby putting a reverse voltage on T-1 (essentially equal to a forward diode drop). The discharge current \(i_C \) reaches its peak and starts decreasing thereby changing polarity of the voltage across \(C_C \).

For safe circuit operation, T-1 must remain reverse biased for a time interval \(t_{0 \text{ min}} \) larger or equal to the specified turnoff time \(T_q \) (i.e. \(t_{0 \text{ min}} \geq T_q \)). T-2 can only be fired (turned 'on'), when reverse bias interval for T-1 equals or exceeds \(T_q \).
Fig. [2.5] Path during the return of excess charge on the capacitor C_C (during starting).

Note: $I_1 = I_L - i_c$ for $i_c < I_L$ and $I_{D-1} = 0$

$I_{D-1} = i_c - I_L$ for $i_c > I_L$ and $I_1 = 0$
Fig. [2.6] Equivalent Circuit During First Portion of The Commutation Cycle.
Here two different cases can occur, as follows:

Case I: T-2 can be fired \(\pi / L_C C_C \) seconds after TA-1 is triggered (i.e. T-2 is fired at or about the time the \(i_C \) would fall to zero during the no load operation).

This is called Natural triggering [Fig. (2.7 a)].

Case II: T-2 can be fired, when \(i_C \) is equal to \(I_{L_{\max}} \) (where \(I_{L_{\max}} \) is the maximum load current, which the inverter can commutate successfully). This is called Advanced firing; [fig. (2.7 b)].

Now considering Case I, one recalls that the capacitor discharge current \(i_C \) starts falling after reaching its peak, thereby changing the polarity of the voltage across \(C_C \). In this process when \(i_C \) is equal to \(I_{L_{\max}} \), D-1 stops conducting and the commutation interval for T-1 ends [fig. (2.8): I portion of commutation cycle].

Also, when \(i_C \) is equal to \(I_{L_{\max}} \), the capacitor voltage \(e_C \) is less than ED. D-2 now tends to conduct but it can not conduct unless \(e_C \) is equal to ED. Therefore the voltage on the capacitor is built at a constant current \((i_C = I_{L_{\max}}) \) till \(e_C \) is equal to ED. [22]. [fig. (2.8): II portion of commutation cycle and fig. (2.9)].

When \(e_C \) > ED, D-2 conducts, the voltage across load changes polarity and \(i_C \) continues to decay sinusoidally through the path shown in fig [2.10] until it falls to zero. At this point \(e_C \) is greater than
Fig [2.7]
Fig. [2.8] Commutation Waveform for Inductive Load (Natural Firing).
Fig [2.9] Equivalent Circuit of Inverter during second portion of commutation cycle.
(Capacitor C_c is charged with constant current $i_c = I_L$).
Fig. [2.10] Equivalent Circuit during the third portion of commutation cycle.

Note: Please note that net current in D-2 is in forward direction (i.e. \(I_{D-2} = I_L - I_c > 0 \)).
ED because of the initial current in the inductance \((L_1 + L_c)\).

[fig. (2.8): III portion of commutation cycle].

Since \(e_c > ED\), the overcharge on the capacitor is fed back to the DC source through the path shown in fig [2.11] and in this process, the voltage drop across \(R_c\) and DA-1 reverse biases TA-1 and ensures its safe commutation. Finally the commutation process ends when exponentially decaying \(i_c\) falls to zero. [fig. (2.8): IV portion of commutation cycle].

Now consider case II. As mentioned earlier, the capacitor discharge current \(i_c\) starts falling after reaching its peak, thereby changing the polarity of the voltage across \(C_c\). With this scheme T-2 is fired when \(i_c\) falls to \(I_L max\). Since \(e_c\) is still smaller than ED (D-2 is reverse biased), T-2 starts conducting. Since D-1 would be still conducting at that moment for all load currents smaller than \(I_L max\), the current in D-1 is transferred to T-2. D-1 stops conducting when current in D-1 is fully transferred to T-2. Thus the commutation interval for T-1 ends [fig. 2.12: I portion of commutation cycle].

Since \(e_c\) is still less than ED, \(i_c\) starts increasing again through T-2 till \(e_c\) becomes equal ED. When \(e_c\) is equal to ED, \(i_c\) starts falling again while the capacitor voltage continues to build up. When \(i_c\) becomes equal to \(I_L\), \(e_c\) is already greater than ED, so that D-2 starts conducting (thereby commutating T-2) [fig. 2.12: II portion of commutation cycle]. From this point onwards, the operation
Fig. [2.11] Path during return of over charge on capacitor [IV portion of commutation cycle].
Fig. [2.12] Commutation Waveform for Inductive Load
[Advance Triggering].
of the commutation circuit is identical to one described in case I and the commutation waveforms for third and fourth portion of the commutation cycle for this are given in fig. [2.12].

Thus, at the end of the commutation cycle for T-1, the polarity of the capacitor voltage is such that it is ready to commutate T-2 and the process of commutating T-2 is analogous to that described for T-1.

2.5. Analysis of the Commutation Circuit:

In the analysis of the commutation circuit, the capacitor voltage and current can be calculated at each instant during commutation. The analysis is useful for sizing of the commutation components.

For analysis purpose, the commutation circuit can be modeled as a RLC series circuit connected to a DC source E. The circuit is shown in fig. [2.13] and consists of a capacitor C, inductor L and resistor R (representing losses). Connected in series to a source of DC voltage E. The initial voltage on the capacitor is E_i and the initial current is I_i, with polarities as indicated in fig [2.13]. The differential equation for the circuit is given by

$$E = E_i + \frac{1}{C} \int_0^t i(t) \, dt + L \frac{d}{dt} i(t) + R \cdot i(t)$$

Eqn. 2.1

with initial condition $i_c (+0) = I_i$.

Using Laplace Transform, the Laplace transform of equation [2.1] is
Fig. [2.13] RLC Series Circuit with dc source E used for analysis of commutation circuit.
given by

\[
\frac{E - E_1}{s} = \frac{1}{sC} i_c(s) + L \left[s i_c(s) - I_1 \right] + R i_c(s) \quad \text{Eqn. 2.2}
\]

Solving the equation [2.2] for \(i_c(s) \), the Laplace transform of \(i_c(t) \),

\[
i_c(s) = \frac{E - E_1 + sI_1}{L \left(s^2 + \frac{R}{L} s + \frac{1}{LC} \right)} \quad \text{Eqn. 2.3}
\]

Assuming the oscillatory case the inverse transform of equation [2.3] is

\[
i_c(t) = \frac{E - E_1}{\omega L} e^{-\alpha t} \sin(\omega t) - I_1 \frac{\omega}{\omega_0} e^{-\alpha t} \sin(\omega t - \phi) \quad \text{Eqn. 2.4}
\]

where:

\[
\omega_0 = \frac{1}{\sqrt{LC}}, \quad \text{or} \quad \omega^2 = \frac{1}{LC}
\]

\[
\alpha = \frac{R}{2L}
\]

\[
\omega_0^2 = \omega_0^2 - \alpha^2 > 0,
\]

\[
\phi = \tan^{-1} \left(\frac{\omega_0}{\alpha} \right) \quad \text{and we define}
\]

The expression for voltage e_c on capacitor C is obtained in a similar manner and is given by

$$e_c(t) = E - (E - E_1) \frac{\omega}{\omega} e^{-\alpha t} \sin(\omega t + \phi) + \frac{1}{\omega C} I_1 e^{-\alpha t} \sin(\omega t)$$

Eqn. 2.6

The equations [2.4] and [2.6] are valid for all modes of commutation cycle and only the initial conditions and some parameter values are different for each mode. These equations are now applied to the specific conditions of the commutation circuit of the inverter of fig [2.1] with inductive load (natural firing) and R_0 will represent the lumped resistance in the commutation circuit (i.e., R_0 is the equivalent total resistance of series combination of L_c and C_c).

During the starting of the inverter, the equivalent circuit of the inverter is shown in fig [2.4]. Here the initial conditions are

$I_1 = 0$ and $E_1 = 0$ and the parameters are

$$E = E_0$$
$$L = L_1 + L_c$$
$$C = C_c$$
$$R = R_0$$
The capacitor voltage and current any time during this portion can be calculated using equations [2.6] and [2.4]. At the end of this portion, when i_c falls to zero, the final voltage on capacitor e_{c_1} (starting) will depend on Q [Eqn. 2.5] and will be approximately equal to twice the supply voltage E_d.

Since capacitor voltage is greater than supply voltage, the excess charge on capacitor is fed back to the DC supply. The equivalent circuit of the inverter during this portion is shown in fig [2.5]. Here the initial conditions are

$$E_i = E_{c_1} \text{ (starting)} \quad \text{and} \quad I_i = 0 \quad \text{and the parameters are}$$

$$E = E_d$$

$$L = L_1 + L_c$$

$$C = C_c$$

$$R = R_0 + R_c$$

The capacitor voltage and current any time during this portion can be calculated using equations [2.6] and [2.4]. At the end of this portion, when capacitor current falls to zero, the final voltage on capacitor e_{c_2} (starting) will depend upon Q [Eqn. 2.5] and will be slightly less than supply voltage. Now the polarity of the
capacitor voltage is such that it is ready to commutate T-1.

In order to commutate T-1, TA1 is fired and the first portion of commutation cycle starts. The equivalent circuit of the inverter, after TA-1 has been fired, is shown in fig [2.6]. During this portion of the commutation cycle, the initial conditions are

\[E_1 = E_{c_2} \text{ (starting)} \] and \[I_1 = 0 \] and the parameters are

\[E = 0 \]
\[L = L_c \]
\[C = C_c \]
\[R = R_o \]

The capacitor voltage and current any time during this portion can be calculated using equations [2.6] and [2.4]. The capacitor current \(i_c \) after reaching its peak value starts falling and when \(i_c \) is equal to load current \((I_L) \), D-1 stops conducting. This marks the end of the first portion of commutation cycle. The capacitor voltage \(E_c(t_1) \) at this time is less than the supply voltage \([E_D] \) and the time \(t_1 \) (at which \(i_c = I_L \)) depends on load current \((I_L) \). During second portion of commutation cycle, since the capacitor voltage is less than the supply voltage, the capacitor starts charging through the load. The equivalent circuit of the inverter during this
portion of commutation cycle, the initial conditions are

\[E_i = e_c(t_1) \text{ and } I_i = I_L \] and the parameters are

\[E = E_D \]

\[L = L_1 + L_C + L_L \] [\(L_L \) is inductance in the load]

\[C = C_C \]

\[R = R_0 \]

The capacitor voltage any time during this portion can be calculated from equation [2.6]. This portion of commutation cycle ends when the capacitor voltage \(e_c(t_2) \) is equal to supply voltage \([E_D]\). Since capacitor voltage is equal to supply voltage and capacitor current is equal to \(I_L \), D-2 starts conducting and the third portion of commutation cycle starts. During this portion of commutation cycle, the equivalent circuit of the inverter is shown in fig [2.10]. Here the initial conditions are

\[E_i = e_c(t_2) = E_D \text{ and } I_i = I_L \] and the parameters are

\[E = E_D \]

\[L = L_1 + L_C \]

\[C = C_C \]

\[R = R_0 \]
The capacitor current \(i_C \) continues to decay through the path shown in fig [2.10]. When \(i_C \) falls to zero, this marks the end of this portion of commutation cycle. The capacitor voltage \(e_C(t_3) \) at this time will depend on the load current and will be greater than supply voltage \(E_D \). Since capacitor voltage \(e_C(t_3) \) is greater than supply voltage \(E_D \), the excess charge on the capacitor will be fed back to the DC supply and the fourth portion of commutation cycle starts. The equivalent circuit of the inverter during this portion of the commutation cycle is shown in fig [2.11]. Here the initial conditions are:

- \(E_1 = e_C(t_3) \) and \(I_1 = 0 \) and the parameters are

\[
E = E_D \\
L = L_L + L_C \\
C = C_C \\
R = R_O + R_C
\]

Finally the whole commutation process will stop when capacitor current \(i_C \) falls to zero. The capacitor voltage \(e_C(t_4) \) at this time will depend upon \(Q \) [Eqn. 2.5] and now the polarity of capacitor voltage is such that it is ready to commutate T-2.
Thus the capacitor voltage and the current can be calculated at each instant during the entire commutation process.
CHAPTER III

Design of Power Circuit

3.1 Introduction: The principles involved in the design of the power circuit are presented in this chapter and practical design considerations are discussed. The power circuit [fig 2.1] consists of the following components.

- Main thyristors T-1 and T-2
- Feedback diodes D-1 and D-2
- Auxiliary thyristors TA-1 and TA-2
- Clamping diodes DA-1 and DA-2
- Commutation capacitor C_c
- Commutation inductor L_c
- Damping resistor R_c

The determination of ratings of these components and the selection of these components are important for reliable, economic and efficient operation of the circuit. The packaging of the power unit is also an important part of the successful design [16]. It plays an important role in the efficient operation and maintenance of the inverter and therefore, it should be planned carefully. The location of the components and wire runs are important to minimize the noise pick up at high frequency. The requirements of power circuit meant for PWM are first outlined, then followed by the determination and selection
of the ratings of the components.

3.2 Requirements of Power Circuit for PWM (Pulse-Width Modulation).

The power circuit intended for pulse width modulation should satisfy the following requirements.

1) Low energy loss per commutation.
2) Low stored energy in the commutation capacitor.
3) Commutating ability is to be adequate at all operating conditions.
4) Have a low output impedance.

The first three requirements relate to commutation circuit, while the fourth one relate to power circuit.

3.3 Selection of Commutation Circuit Components.

This involves the determination and selection of the ratings of C_C, L_C, and R_C. The commutation circuit is designed by assuming that commutation circuit has high quality factor (Q). For efficient design, Q should be at least equal to Ten [24]. As shown in section [2.4], the successful commutation of main thyristors require that the L_C C_C discharge current should exceed load current for an internal which is longer than the turn-off time of the main thyristors. Selection of commutation circuit components is based on a set of design curves, given in fig [3.1] and fig [3.2], [16]. In fig [3.1], the independent
Fig. [3.1]: Commutation Circuit Design Curve.
\[I_2 \left(\frac{\omega_0}{I_p} \right) \]
\[\omega_0 = \frac{1}{\sqrt{L_C C_c}} \]
\[I_p = \frac{E_D}{\sqrt{C_c L_c}} \]

Damping Ratio \(\rho = \frac{R_c}{2} \sqrt{\frac{C_c}{L_c}} \)

Fig. [3.2] Commutation Circuit Design Curve.
variable is the commutation parameter (ψ), which is defined as

\[\psi = \frac{\text{Maximum load current to be commutated}}{\text{Peak commutating current}} = \frac{I_o}{I_p} \leq 1 \]

The dependent quantities are the value of \(L_c \) and \(C_c \), the trapped (stored) energy (W) and the no load RMS current in the commutation thyristors (\(I_R \)). The RMS current in \(L_c \) and \(C_c \) is equal to \(\sqrt{2} I_R \). One approach leading to efficient circuit design is to minimize energy stored in the commutation capacitor \(C_c \). As illustrated in fig [3.1], this can be achieved by selecting \(\psi \) values corresponding to the minimum commutation capacitor value. Therefore a value of \(\psi \) equal to 0.7 is selected in this case.

From curves [fig [3.1]], for \(\psi = 0.7 \),

\[C_c \left(\frac{F_D}{E} \right) = 0.9 \]
Eqn. 3.1

\[i.e. \quad C_c = \frac{0.9 \cdot I_o}{E_D} \]
Eqn. 3.2

and

\[L_c \left(\frac{F_D}{t} \right) = 0.4 \]
Eqn. 3.3

\[i.e. \quad L_c = \frac{0.4 \cdot E_D}{I_o} \]
Eqn. 3.4
where the values of components are

\[C_C = \text{Value of commutating capacitance in micro farads (μF).} \]

\[L_C = \text{Value of commutating inductance in micro henries (μH).} \]

\[E_D = \text{Value of dc supply voltage in volts.} \]

\[I_o = \text{Value of Max. load current in Amps.} \]

\[t_o = \text{Value of circuit turn off time in microseconds (μS).} \]

The dc supply voltage \(E_D \) is fixed by the available power source; the maximum load current \(I_o \) is defined by operating conditions (over loads, harmonics etc.); \(t_o \) is the available time for turn off (circuit turn off time) is determined by the 'turn-off' time (\(t_q \)) of the thyristor selected for the circuit. \(T \) is the period of switching frequency (chopping frequency). Knowing these quantities, \(C_C \), \(L_C \) and \(I_R \) can be calculated. At this point, the currents, voltages and frequency needed for specifying the capacitor (\(C_C \)) and inductor (\(L_C \)) are known. Other considerations require that discharge path during fourth portion of commutation cycle [Section 2.4 & 2.5] be adequately damped so that the thyristors [Aux.] are not subjected to high voltages. The value of damping resistor \(R_C \) (in ohms) can be calculated from...
\[P = \frac{R_c}{2} \sqrt{\frac{C_c}{L_c}} \]

Eqn. 3.5

where \(P \) is damping factor.

There are some trade offs to be made in the selection of \(R_c \). Figure [3.2] is a graph of \(\frac{V_f}{V_i} \) and \(\frac{V_R}{V_i} \) as a function of the damping factor. The voltage \(V_i \) is the magnitude of the over shoot of the capacitor voltage \(e_c \) above \(E_D \). \(V_f \) is the magnitude of the undershoot of capacitor voltage \(e_c \) below \(E_D \). \(V_R \) is the peak voltage that appears across resistor \(R_c \) during the energy return portion of the commutation cycle. The curve \(\frac{V_f}{V_i} \) shows the effect of the voltage undershoot \(V_f \) as a function of \(V_i \). The purpose of the resistor is to minimize the voltage undershoot. As the damping factor increases, the voltage \(V_R \) across the resistor \(R_c \) increases. This voltage adds directly to the supply voltage \(E_D \), thereby increasing the forward voltage on the auxiliary thyristors. Also, as the damping factor increases, the time required for completion of the discharge portion of the commutation cycle also increases. For PWM operation, the inverter should complete a commutation cycle as rapidly as possible.

3.4 DESIGN SPECIFICATIONS AND CALCULATIONS

Design Specifications:

- Single phase half bridge configuration.
- Rated output: 8 KVA
Design Calculations

The design calculations can be done by assuming that the load is purely inductive. The inverter operating under this condition can then operate safely for any other type of load. For purely inductive load, the current waveform is triangular in shape [fig. 2.2]. Therefore for a 75 amp RMS continuous load current, the value of the peak load current is approximately 130 Amps \((\sqrt{3} \times 75)\). Now fixing the maximum commutating capability of the inverter taking into account the overload and a factor of safety 1.7, the inverter should be able to commutate successfully a max load current of 225 Amps. i.e. \(I_0 = 225\) Amps.

Next step for design calculation is to fix \(t_0\), the circuit turn off time. Thyristors for inverter applications having a guaranteed turn off time \((t_q)\) of 20 microseconds are presently available in the market at a reasonable price. Therefore for reliable commutation, choose \(t_0 = 25\) microseconds. This is because during commutation, the feed back to D-1 and D-2 which are connected antiparallel with T-1 and T-2 limit the reverse voltage applied across thyristors T-1 and T-2 to its forward voltage drop and thereby increases the turn off time of thyristors. Finally the value of \(E_D\) can be fixed. A DC power supply of 240 volts \([\pm 8\%]\) with centre-tap is available. Since the commutation capability diminishes with input supply, the value of \(E_D\) can be fixed at minimum value of power supply, i.e. \(E_D = 220\) volts.
Now the required values of C_c and L_c can be calculated from equations [3.2] and [3.4]. Therefore,

$$C_c = \frac{0.9 \times 25 \times 225}{220} = 23.01 \ \mu F$$

and

$$L_c = \frac{0.4 \times 25 \times 220}{225} = 9.77 \ \mu H$$

Hence the values of C_c and L_c can be selected as follows:

$$C_c = 25 \ \mu F$$

and

$$L_c = 9 \ \mu H$$

Now with these values of C_c and L_c selected, we can once again check for I_o, i.e.

$$I_o = \frac{C_c \times E_D}{0.9 \times t_0} = \frac{25 \times 220}{0.9 \times 25} = 244.44 \ \text{Amps}$$

and

$$I_o = \frac{0.4 \times E_o \times E_D}{L_c} = \frac{0.4 \times 25 \times 220}{9} = 244.44 \ \text{Amps}.$$
Thus, we are sure that, with selected values of \(C_c \) and \(L_c \), we can
commutate the required \(I_o \). Now keeping in view the trade-offs
mentioned for selection of the value of \(R_c \), a damping factor of
\(P = 0.7 \) is selected from curves [fig [3.2]]. This gives the value of
\(R_c \) as 0.84 ohm.

In order to verify that the commutation time offered by the circuit
\((t_c)\) is within specified limit (i.e. \(t_o \geq t_q \)), a computer programme
was written. The selected values of \(L_c \), \(C_c \), \(R_c \), \(E_D \) etc were used
in the computer programme. The programme calculated the values of \(i_c \) and
\(e_c \) at each instant during entire commutation. Programme results verified
the suitability of selected values for above components. The computer
programme is included in the appendix [III].

3.5 COMPONENT SELECTION

3.5.1 Commutation Capacitor.

For the selection of commutation capacitor, the
following points are important. Fig [3.3] represents
a simplified equivalent circuit of a capacitor where
\(C \) is the capacitance of an ideal capacitor; \(R_s \) is the
ESR (Equivalent series resistance) of the plates,
leads etc; \(R_2 \) is the insulation resistance sometimes
measured by measuring a leakage current and \(L \) is the
equivalent series inductance of the plates. Capacitors
Fig. [3.3] Equivalent Circuit of a Capacitor.
used in commutation circuit should have minimum ESR and minimum L (Equivalent series inductance). The commutation losses depend on ESR thus to minimize the losses, ESR must be minimum. The ESR determines also the capacitor time constant RC and thus the speed by which a capacitor can discharge. Since for high frequency operation, commutation periods are short. One again should minimize the ESR. Therefore, when selecting capacitor for commutation, one has normally to select capacitors specially made for thyristor circuit applications. Hence commutation capacitors made by G.E. Co. (General Electric Company) were used in this design.

The following are the specifications of the commutation capacitor required:

- Capacitance: 25 μF (microfarad)
- RMS Current: 105 Amps [Fig (3.4)]
- Peak Current: 325 Amps
- Peak voltage (AC): -600 volts

On the basis of the specifications for the commutation capacitor, two 10 μF capacitors (G.E 28F5723FC) and one 5 μF capacitor (G.E 28F5122FC) were selected for the purpose. The capacitors were connected in parallel to form a capacitor bank of 25 μF with a capability of 150 Amps RMS.
Fig. [3.4] Approximate Current Waveform of Capacitor Discharge Cycle.

\[I_{\text{peak}} = \frac{225}{7} = 321.43 \]

\[t_o = \frac{\pi}{\sqrt{L_c R_c}} = \frac{\pi}{\sqrt{25 \times 9}} = 47.12 \mu s \]

\[= 50 \mu s \]

\[T = 500 \mu \text{sec} \]

\[I_{\text{RMS}} = I_{\text{peak}} \sqrt{\frac{t_o}{T}} = 325 \cdot \sqrt{\frac{50}{500}} = 102.77 \]

\[= 105 \text{ Amps RMS} \]
3.5.2 Commutation Inductor.

The commutation inductor operates at high frequency and carries commutation current. Commutation losses depend on Q of the inductor. In order to minimize losses, Q should be high (i.e. resistance of inductor should be low). The cable or wire used for inductor should be preferably stranded. This is to minimize the effective resistance at high frequency. Air core inductor wound with stranded wire was used in this design. The calculations showed that an inductor of 9 (nine) microhenries is required. The air core inductor was obtained by using a number 2 phillips cable. This cable has 1633 strands and can carry 160 Amps. of RMS current continuously. Two layers of 6 (six) turns in each layers on a 3 (three) inch diameter plastic core gave the value of 9 (nine) microhenries. While mounting this inductor, care should be taken so that no magnetic material is placed in the path of the inductance loop.

3.5.3 Damping Resistor.

From the calculations, the value of the damping resistance required is .84 ohms. An ohmite adjustable vitreous enameled resistor of one ohm (type 210) was
selected for this purpose.

3.5.4 Main Thyristors.

In addition to carrying the load current, the main thyristors carry also the current pulse for charging the commutation capacitor during the inverter starting. Under the maximum commutating capability, the main thyristor carries a current of 225 Amps plus the charging current of 325 Amps for about 50 microseconds \(\pi \sqrt{\frac{L}{C}} \). Thus, in this period the thyristor peak current is 550 Amps for about 50 micro seconds.

The peak inverse voltage to which the thyristors will be subjected, is equal to \(e_C \) peak. In addition to this, we have to consider the repetitive reverse recovery transients which occur every time the feed back diode recovers [chapter 4]. With proper protection (Suppression), the peak reverse voltage of the main thyristors can be limited to 550 volts and therefore the thyristor PRV rating should be at least equal to 600 volts. The turn off time requirements of the thyristors is 20 microseconds. Under the worst case, the current waveform of a main thyristor is shown in fig [3.5].
Fig. [3.5] Current Waveform for Purely Resistive Load.
(For Main Thyristor) duty cycle = 50%.

\[t_0 = \frac{T}{2} \]

\[I_{peak} = 225 \text{ Amps} \]

\[I_{av} = I_{pk} \times \frac{t_0}{T} \]

\[= 225 \times \frac{1}{2} = 112.5 \text{ Amps} \]

\[I_{RMS} = I_{pk} \sqrt{\frac{t_0}{T}} \]

\[= 225 \sqrt{\frac{1}{2}} = 225 \times 0.707 \]

\[= 160 \text{ Amps RMS}. \]
The following are the principal specifications for the main thyristors.

Peak reverse voltage = 600 volts.
Average current = 112.5 Amps.
RMS current = 160 Amps.
Peak (Max) Current = 550 Amps for 50 microseconds.
Turn-off time \(t_q \) = 20 microseconds.

On the basis of the above specifications, GE (General Electric Co.) C-365M Hockey Puk model was selected for the main thyristors (i.e. for T-1 and T-2). The detailed specifications of this thyristors are included in appendix [II].

3.5.5 Auxiliary Thyristors.

The auxiliary thyristors carry capacitor discharge current and load current during commutation. Figure [3.6] shows the current waveform of an auxiliary thyristor. The following points are important in the selection of the auxiliary thyristors.

The auxiliary thyristor conducts a high peak, narrow current pulse.

For successful PWM operation, the auxiliary thyristor should recover quickly and it should have low switching losses.
Fig. [3.6] Approximate Current Waveform Of Auxiliary Thyristor.

\[t_0 = 50 \ \mu \text{sec.} \]
\[T = 5000 \ \mu \text{sec.} \ (f_{\text{chop}} = 2000 \text{ Hz}). \]

\[I_{\text{RMS}} = I_{pk} \sqrt{\frac{t_0}{2T}} = 75 \text{ Amps} \]

\[I_{\text{Average}} = \frac{2I_{pk}t_0}{\pi T} = 25 \text{ Amps}. \]
Since the commutation circuit tends to ring, the auxiliary thyristors are often required to have a high voltage rating. Specifically, the blocking voltage requirement of the auxiliary thyristors is equal to the capacitor voltage e_c (peak). Normally a 30% safety margin is used for the thyristor voltage rating. Keeping above considerations in mind, the same thyristor model (GE C-365M) was selected for auxiliary thyristors. One of the main reasons behind the selection is that the packaging of the complete (power) unit becomes more efficient and compact with both auxiliary and main thyristors having the same case (hockey puck case).

3.5.6 Feed Back Diodes

During the commutation of a main thyristor, the feed back diode carries the difference between the commutation current i_c and the load current I_L [section 2.4]. When selecting a feed back diode, it is extremely important to specify those with short turn off time and with soft declination current characteristics. The reason for this is that the diode with short turn off time and soft declination current characteristics minimizes the transient
(L \, \text{di/dt}) \text{ voltage in the external circuit, } L \text{ being the inductance in the external circuit. By this way the transients and re-applied } dv/dt \text{ to which thyristors are subjected is reduced to a great extent. A discussion on the need to use the fast recovery diodes in inverter circuits is well documented in [25] and [26]. Therefore a fast recovery diode with a blocking voltage of 600 volts and a current carrying capability of 100 Amps (average) at full load is required in this design. However, since a diode with this current rating is not available in a hockey puck case, a fast recovery diode with 400 Amp (average) has been selected. It has a voltage rating (blocking) voltage of 600 volts. By specifying a hockey puck case rather than a stud type, the inductance between the main thyristors and feedback diodes can be minimized. Furthermore, the consistency in the case type means the packaging of the entire assembly (power unit) much more compact.}

3.5.7 Clamping Diodes.

During the fourth portion of commutation cycle [section 2.4], the overcharge on the commutation capacitor is returned to the dc supply through the clamping diode. The current requirement of this
diode should be such that it can withstand I^2t of the maximum current pulse. At the same time such diodes should be of fast recovery type, so as to reduce the transients due to reverse recovery. The fast recovery diodes IR-12FL60 made by International rectifier Co. was selected for this purpose. It has a current rating of 12 Amps (Ave.) and a blocking voltage of 600 Volts. This selection has been found to be satisfactory.

3.6 A Note on Inverter Losses.

The losses in the inverter are due to

1) Losses in the semiconductors.
2) Losses in the snubber circuit.
3) Losses in the commutation circuit.

1) Losses in the semiconductor: These losses are caused by thyristor switching, forward drop across the thyristors and diodes and by the reverse recovery of the solid state devices.

2) Losses in the snubber circuit: Each thyristor and diode has a snubber circuit connected across it for protection against dv/dt. [chapter IV] Losses
associated with snubber circuit are given by

\[P_{\text{snubber}} = f c E_c^2 \]

where

\[f = \text{frequency of operation in HZ.} \]
\[c = \text{capacitance in the snubber circuit in farads.} \]
\[E_c = \text{Peak switching voltage in volts.} \]

As the switching frequency increases, losses also increase. Losses in the snubber circuit can be reduced by optimizing the value of the snubber components. [chapter IV].

3) Losses in commutation circuit: Losses in the commutation circuit depends on quality factor \(Q \) of the commutation inductor. To minimize losses, \(Q \) should be high (i.e. resistance of the commutation inductor should be low).

NOTE: Specifications of components is included in appendix [II].
CHAPTER IV

PROTECTION CIRCUITS

4.1 Introduction: The protection circuits of the inverter are discussed in this chapter. The protection circuits can be grouped as follows:

1) Protection of thyristors against excessive di/dt.
2) Protection of thyristors against excessive dv/dt and voltage spikes due to switching transients.
3) Protection of the thyristors from fault currents.

These are considered below.

4.2 The Protection of the thyristors against Excessive di/dt

Conduction of anode current in the thyristors commences in the immediate neighborhood of the gate connection and spreads from there across the whole area of the junction. Thyristors are so designed that the conduction area spreads as rapidly as possible, nevertheless if the current density at the gate junction during 'turn-on' is too high, local hot spots will be formed in the neighborhood of the gate connection. This localized heating may result in failure of the thyristors or, in the absence of failure, can cause a high switching loss. It is for this reason that the maximum value of di/dt below which the thyristor will not be damaged, is specified by manufacturer.
Di/dt values may be limited to a safe range by adding a small inductance (di/dt inductance) in the anode circuit. Further more, the problem can be minimized by using fast rising, maximum amplitude (hard-drive) gate pulses to trigger a thyristor. Such pulses increase the speed by which the conduction spreads across the junction and thus minimize thyristor 'turn-on' time. The details regarding the design of hard-drive gate circuits are documented in [23]. Finally the di/dt problem can be further minimized by selecting a thyristor with an amplifying gate. Thyristors with an amplifying gate have a high built-in di/dt withstand capability. Further details on thyristors with an amplifying gate are documented in [2]. However a brief note on thyristors with an amplifying gate are included in appendix [IA].

All three di/dt protection measures mentioned above have been taken in this project. Both auxiliary and main thyristors have been selected with an amplifying gate structure, resulting in a very high allowed value for di/dt. Hard driving gate pulses, with a rise time of 0.1 microsecond and an amplitude of about 20 volts are used [chapter V]. Finally a small (5 μH), saturable inductor is connected in the circuit as shown in Fig [2.1]. The inductor is designed to saturate just below the rated current, so as to minimize the voltage drop during normal thyristor conduction [27]. Note also that this inductor contributes to the short circuit impedance and this plays an important role in the fuse co-ordination.
4.3 Protection of Thyristors from Excessive dv/dt and Voltage

Spikes due to Switching Transients.

Thyristors are very sensitive to fast rising forward applied voltages either during turn-on or commutation interval. There is some inherent capacitance between junctions of the thyristor. A fast rising voltage impressed on this junction capacitance results in a current, \(i = c \frac{dv}{dt} \). If this current is sufficiently large, a regenerative action may occur causing the thyristor to switch to the "ON" state. This regenerative action is similar to that which occurs when gate current is injected to turn the thyristor 'on'. This is called dv/dt turn on and is explained in [2]. This dv/dt turn on is non-destructive but in certain circuits, may result in malfunction of the circuit. This is especially true for the case of the inverter described in this project. Thyristors in this inverter circuit experience transients due to fast commutation and due to reverse recovery problem of feed back diodes.

Transients due to fast Commutation.

During commutation, when the capacitor \((C_c)\) discharge current \((I_c)\) exceeds the load current \((I_L)\) and reaches peak, it starts decreasing there by changing its slope. If the stray inductance between main thyristor and (feed back) diode is significant, creates a steep rising positive voltage across the main thyristor. This voltage might turn on the thyristor again resulting in commutation
failure, there by causing short circuit across dc supply. Next the transients due to reverse recovery of feedback diodes are explained in the next paragraph.

Transients due to reverse recovery of feedback diodes.

The transients due to reverse recovery of a semiconductor junction diode can be explained briefly as follows: In a semiconductor junction diode, forward current is carried by minority carriers being injected from the junction. During the conduction, there is a certain amount of 'pile-up' of these carriers in the vicinity of the junction. This represents a stored charge. If the current was to stop flowing suddenly, the diode can not recover its reverse voltage blocking capability instantaneously because of this stored charge. Therefore a current flows in the diode in the reverse direction until all the stored charge is swept away. Depending on the circuit parameters and the amount of stored charge, the cessation of reverse recovery current may be very abrupt, in which case a very high di/dt induces large voltage transients across the inductances in the path of the reverse recovery current. This type of transients due to reverse recovery of the (feedback) diodes are experienced in this inverter circuit and this is explained in the next paragraph.

During the commutation of the main thyristor T-1, the difference between the capacitor (C) discharge current (i_C) and the load current (i_L) is carried by the feedback diode D-1. At a point, \(i_C = i_L \) \[\text{fig 4.1a and fig 4.1b}\], the current in diode reduces to zero and diode momentarily conducts in reverse direction \[\text{fig 4.1b}\].
Fig. [4.1a] Transients due to reverse recovery of feed back diodes.
Fig. [4.1b] Transients due to reverse recovery of feed back diodes.
Now $I_L = I_C + I_R$ where I_R is the recovery current. When I_R reaches its peak in the negative direction, it changes its slope and at that point the current $[I_C + I_R]$ drops to the value less than I_L. Therefore the load voltage changes its polarity.

$[L_{\text{stray}} \frac{dI_D}{dt} \text{ and } L_{\text{Load}} \frac{dI_L}{dt}]$ are applied across the main thyristor in a fraction of a microsecond. Such a high rate of rise of voltage (dv/dt) can cause a thyristor to turn on again resulting in a commutation failure which causes a direct short circuit of the dc supply.

It is also important to keep dv/dt of the thyristor as low as possible even when a thyristor may be capable of a much greater dv/dt value, since the fast rising voltages (dv/dt) represents a high powered noise signal which is coupled to low level signal circuitary through stray capacitances between the two circuits [28].

As a solution to dv/dt problem, it is generally necessary to connect a snubber circuit across a power diode and a thyristor to absorb the energy associated with the recovery current of the device and to limit dv/dt. Various snubber circuit configurations are available but the basic one consists of a series RC network. Another solution to dv/dt turn on problem is to select a thyristor with higher dv/dt capability. For example, thyristors with Shorted-Emitter structure have a high dv/dt withstand capability [2]. The dv/dt withstand capability of the thyristor can be also increased by applying a
a negative bias on the gate of thyristor. There are circuits which
apply a negative gate bias only while dv/dt is being applied. The
basic idea of these circuits is to differentiate the dv/dt applied
to the anode, invert the polarity and then apply it to gate. The
details of negative gate bias techniques are documented in [2] and
[23].

Therefore, considering the above facts, the problem of reducing
dv/dt on thyristors in this inverter circuit can be solved by using
the RC network or negative bias. RC networks are excellent for
dv/dt suppression at low switching frequencies but when the frequency
is increased above 400 HZ, the losses become significant. Thus the
RC network alone will not solve the problem effectively for frequencies
above 400 HZ. In such cases the combination of RC network and the
negative gate bias techniques can be employed. This protection method
is employed for the inverter in this project. The circuit which
combines both techniques is fully described in [29]. However both
description, operation and selection of components for this circuit
are included in appendix [I B].

4.4 Protection of Thyristors from Fault Currents.

It is very important to protect thyristors from fault currents due
to short circuit and commutation failure. Commutation failure can be
due to dv/dt turn on or due to an overload beyond the stored energy
capability of the commutation circuit. The thyristors will be carrying
a short circuit current and therefore they have to be protected by a proper fuse. It is a well known fact that semiconductor components have a relatively small thermal storage capacity and therefore they can not be overloaded beyond the maximum device ratings. Due to high values of a fault current, a non-uniform current distribution is formed at the function of the semiconductor. The junction then gets damaged either because of these abnormal current densities or because of high junction temperature, which is proportional to the product I^2t. Because of this effect, very rapid removal of fault current is essential. This necessitates the use of high speed fuses. The basic function of these fuses is to limit the rated continuous current allowed to pass through the device and to interrupt, safely very high prospective fault currents.

The protection to the thyristors from fault currents is provided by selecting fuses of proper rating. Details on fuse operation and selection are included in appendix [I C].
CHAPTER V

DESIGN AND IMPLEMENTATION OF THE FIRING CIRCUIT

5.1 Introduction: This chapter describes the design and implementation of the firing circuit. The firing circuit generates the required triggering pulses to thyristors and it also controls the starting and stopping operation of the inverter. The input signal (PWM waveform) comes to this firing circuit from a PWM controller. This waveform is timed and processed so as to generate the required triggering pulses. For design of the firing circuit, the basic requirements of the power circuit are first outlined and then the design implementation is presented.

5.2 Basic Requirements: The inverter power circuit is shown in fig. [2.1]. The commutation circuit operation is explained in chapter II. Referring to that figure (i.e., fig. (2.1)), Thyristor T-1 and T-2 are alternatively turned on to connect point 'A' to the positive or negative side of the DC supply. This inverter has then only two fully controllable states that can be utilized to generate an alternating voltage across the load. With thyristor T-1 'on' and thyristor T-2 'off', \(v_{AO} \) is positive and with thyristor T-1 'off' and thyristor T-2 'on', \(v_{AO} \) is negative. Thus this inverter can be used to generate any waveform consisting of only these two states. Fig. [5.1] shows a typical PWM waveform that can be generated by this inverter. Such a PWM output can be generated at power level by feeding the same PWM reference signal to
the input of the inverter firing circuit. This reference signal is
provided by a PWM controller. After receiving the reference signal,
the firing circuit has to perform three basic tasks.

They are as follows:

- Initiation of the operation (i.e., starting of Inverter)
- Regular (Sequential) operation.
- End of operation (i.e., stopping of Inverter).

Initiation of Operation: The inverter can be started at the
beginning of the positive cycle of the reference waveform. When the
'start' command is given, the firing circuit waits to sense the
beginning of the positive cycle of the reference waveform (i.e. it
"catches" the first rising edge of the reference waveform, after 'start'
command is given). Thus, the firing circuit senses the beginning of the
positive cycle of the reference waveform and then sends the triggering
pulses to thyristors T-1 and TA2 simultaneously. This ensures that the
inverter starts always on the positive edge of the reference signal and
that the commutation capacitor \(C_c\) is charged with correct polarity for
commutation of T-1. Then the commutation of T-1 at the end of positive
cycle (of reference waveform) and T-2 at the end of negative cycle (of
reference waveform) during 'starting' operation is same as in regular
operation which is given next.
Regular (sequential) Operation: In the regular (sequential) operation, when T-1 has to be commutated at the end of positive cycle (of the reference waveform), triggering pulse should be sent to thyristor TA-1 (i.e., the triggering pulse to TA-1 should be sent at the beginning of the negative cycle (of the reference waveform)). Then after the required delay, triggering pulses should be sent to thyristor T-2 so that T-2 can conduct on negative cycle (of the reference waveform). For commutation of T-2 at the end of negative cycle (of the reference waveform), triggering pulse should be sent to TA2 (i.e., the triggering pulse to TA-2 should be sent at the beginning of the next positive cycle (of the reference waveform)). Then after required delay, triggering pulses should be sent to thyristor T-1 so that T-1 can conduct on next positive cycle (of the reference waveform). Thus in this way, the inverter starts operating in regular mode.

End of Operation: Since the inverter operation is stated at the beginning of the positive cycle (of the reference waveform), the inverter operation can be terminated at the end of negative cycle (of the reference waveform) by commutating T-2 (i.e., it should be stopped by firing TA2 and afterwards no pulses should be sent to any other thyristors). When the 'stop' command is given, the firing circuit waits to sense the beginning of the positive cycle of the reference waveform (i.e., it "catches" the first rising edge of the reference waveform, after "stop" command is given). Thus, the firing circuit senses the beginning.
of the positive cycle of the reference waveform and then sends triggering pulse to TA-2 only. Fig. [5.2] shows the timing diagram of the required pulse during starting, regular and stopping operation of the inverter.

5.3 Guidelines for the Design: A firing circuit which satisfies the requirements outlined above, can be realized either by analogue or digital scheme. However, the digital scheme has the following advantages over the analogue scheme:

- Immunity against noise
- High reliability

Therefore it was decided to use digital scheme in the design. The design of the firing circuit is simple and straightforward. While designing the circuit, the following criterion was kept in mind:

- The logic circuitry should be simple
- The circuit should be realized by using low cost standard IC chips.

5.4 Implementation of the Circuit: The block diagram of the digital firing circuit is shown in fig [5.3]. It consists of three basic functional blocks. They are

- Interface Circuit
- Control Circuit
- Output Circuit
Fig. [5-2] Pulse Timing Diagram.
Fig. [5.3] Block Diagram of Firing Circuit

- OUTPUT CIRCUIT
- CONTROL CIRCUIT
- INTERFACE CIRCUIT
- START/STOP COMMAND
- Reference waveform

TO THYRISTOR GATES.
The description and realization of each block is given below.

5.4.1 Interface Circuit: - The interface circuit is shown in fig. [5.4]. It receives the reference waveform (signal) and produces four output signals to be processed by the control circuit. The circuit is realized by using one inverter (7404) and two edge triggered mono-stable multivibrators (74123). They are connected as shown in fig. [5.4]. The first and second outputs are the non-inverted and inverted versions of the input waveform. These two signals serve also as the inputs to the two monostable multivibrators. The outputs of the monostable multivibrators (signal 3 and 4) are the adjustable duration pulses. In this application, the pulse duration can be varied between 25 and 60 microseconds by varying the connected 20 K ohms variable resistors, fig. [5.4]. The outputs from monostable multivibrators are used to trigger the auxiliary thyristors and to produce a required delay in triggering the main thyristors. Thus the triggering pulses are generated at either low to high or a high to low switching (transition) of the input waveform. The input and output waveforms for the interface circuit are shown in fig. [5.5].
5.4.2. Control Circuit: This circuit controls the firing of the main and the auxiliary thyristors. The schematic diagram of this circuit is given in fig. [5.6] while the timing diagram is shown in fig. [5.7]. The control circuit receives the input signals from the interface circuit and creates the appropriate triggering pulses which are then processed by the output circuit. The control circuit is the heart of the system, fig. [5.6].

It is comprised of the following:

- (a) A start-stop switch with its debouncing circuit (gates 14, 15, 16, 17)

- (b) Two synchronizing Data flip flops.

- (c) Control logic (Gate no:1 to 13).

- (d) A master clear circuit.

The operation of these sections is as follows:

- (a) A single pole, double throw switch is used to start and stop the entire operation. This switch is debounced by a latch consisting of gates 14, 15, 16 and 17. It gives a bounceless low to high transition at the output of gate 17, when the operation is started and a high to low transition when it is ended (stopped).
Fig. [5.7] Control Circuit Timing Diagram.
(b) The two positive edge triggered "D" flip flops (7474) are clocked with the reference waveform, which also forms the system clock. Flip-flop no. 1 is synchronizing the asynchronous 'start-stop' waveform with the clock fig [5.6] and [5.7]. This means that it "catches" the first rising edge of the reference waveform after the operation has started and the first rising edge of the same waveform when it is ended (stopped). Flip flop no. 2 is clocked from the same clock but its "D" input is receiving data from the output of the first flip-flop. Thus it will "catch" the rising edge after one cycle of the reference waveform has elapsed. In other words, its output (Q2) will be the same as the output of the first flip flop (Q1) but it will be delayed by one clock period. These waveforms can be readily seen in the timing diagram, fig. [5.7].

(c) The control logic has the following triple task. First, when the operation starts and only for the first cycle (i.e., starting cycle), it has to trigger thyristors T-1 and TA-2 simultaneously. Second, during the regular operation, the four thyristors are fired, one after another, in the sequence - TA-2, T-1, TA-1, T-2. Third, when the operation stops and for the last cycle only, TA-2 has to be triggered while all other triggering pulses are disabled.

To fulfill the above requirements, the control logic operates in the following manner. Inputs 3 and 4 are passed straight to the
output circuit (through enabling gates 6, 5) to form the triggering pulse for thyristors TA-2 and TA-1 respectively. Inputs 2 and 4 are exclusive-ored (gate 1) to create the triggering pulse (through enabling gate 7) for thyristor T-2. Inputs 1 and 3 are exclusive-ored (gate 2) to create the triggering pulse for thyristor T-1 through the enabling gate 8. Thus, with the use of exclusive OR gates (1 and 2), the required delay in triggering thyristors T-2 and T-1 can be obtained. For example, if a delay of 25 microseconds in triggering the main thyristors T-2 and T-1 is required, then the widths of output pulses of monostable multivibrator [in interface circuit] should be adjusted to 25 microseconds. Gates 10, 11, 12, 13 form a multiplexing circuit which selects either, output of gate 2 during the regular operation, or input 1 during the start-stop operation [first and last cycles]. The selection signal to the multiplexer is the output Q1 of the first flip-flop, exclusive-ored with the output Q2 of the second flip-flop through gate 3. Gates 4 and 9 are controlling the output enabling gate 6 while Q1 is controlling the other output gates (5, 7, 8). The purpose of this distinction in the control of the output gates is that gate 6 has to be disabled one clock period after the other gates are disabled. Thus, at the end of the operation, thyristor TA-2 will be triggered once more, while all others will not.
(d) The purpose of the master clear circuit is to clear the two "D" flip flops, when power is turned on. This is accomplished through a resistor-capacitor as shown in fig [5.6]. The timing waveform of this circuit is shown in fig [5.8]. When power is turned on, capacitor C behaves momentarily as a short circuit. Until it charges to about 3.5 V, it presents a logic low to the clear input of the flip flops and thus clearing them. When the capacitor voltage exceeds the value of 3.5 volts, it presents a logic HIGH to the clear inputs and therefore does not affect flip flops any more.

5.4.3. Output Circuit: The schematic diagram of the output circuit is shown in fig [5.9]. The triggering pulses for thyristors TA-1 and TA-2 are directly fed to the pulse amplifier through the opto couplers while the triggering pulses for thyristors T-1 and T-2 are first converted into a train of pulses before being transferred to the pulse amplifier through opto couplers. The necessity for passing a train of pulses on thyristors T-1 and T-2 was already explained in chapter II, while the need for pulse amplification arises from the fact that the triggering pulses from the control circuit are TTL [5v logic] signals, obviously they do not have sufficient power to drive the thyristor gates, and the pulse amplification becomes necessary.
Fig. [5.8] Timing Diagram of Master Clear Circuit.
Fig. [5.9] Schematic Diagram of Output Circuit.

Diagram shows a series of components connected as follows:
- Pulse Amplifier connected to Thyristor Gates.
- Components labeled with symbols and values indicating connections and specifications.
- Connections are indicated with lines and arrows.

Legend or annotations for symbols and parts are not visible in the image provided.
Opto-couplers are used to isolate the pulse amplifier from the control circuit. The reason is that the supply voltage required for the pulse amplifier is 20 volts while the control circuit is connected to 5 volt supply. In addition, opto couplers also minimize the noise propagation problem.

The required train of pulses [pulse-burst] for triggering T-1 and T-2 is obtained by using synchronous oscillator [74124]. The frequency of this oscillator is set at 50 KHz.

Fast rising gate pulses with high amplitude are generally used for proper triggering of thyristors. These type of pulses become essential requirement in case of high di/dt operation. There are various pulse amplification circuits available for obtaining such pulses [23] and the one used in this project is shown in fig [5.10]. It uses a direct amplification to obtain gate pulses with fast rise time and high amplitude. With this circuit, typically, gate pulses having a rise time of 0.1 microseconds or less and an amplitude of 20 volts, are obtained. The output of the pulse amplifier is fed to the thyristor gate.
Fig. [5.10] Circuit Diagram of Pulse Amplifier.
CHAPTER VI

EXPERIMENTAL RESULTS

6.1 Introduction: A prototype of a modified McMurray inverter was actually built following the design outlined in chapter III. The inverter was subsequently tested for all types of passive loads (R, RL, L-loads), with a square wave supplied as the reference input to the firing circuit. The experimental results obtained during these tests are presented and explained in this chapter.

6.2 Description of the Experimental Set-up.

A DC supply of 220 volts with centre-tap was used for experimentation. Photographs 1 and 2 show the experimental set-up of the inverter. The details of the power circuit module are shown in photographs 3 and 4. The power circuit was built in a compact module form as explained in chapter 3. Firing circuit was assembled on bread boards and shielded cables between the logic circuit and the pulse amplifier circuit were used to avoid noise pick up. Photographs 5 and 6 show the details of the firing circuit. Photograph 8 shows the firing pulses during the inverter regular operation while photograph 9 shows the output of the pulse amplifier circuit (for thyristors T-1 and TA-2). RC snubber circuit combined with negative gate bias technique (as explained in chapter 4) was used for dv/dt protection. The details of the snubber circuit are shown in fig 7. Saturable inductors for di/dt protection and high speed
fuses for short circuit protection were used (Photograph 1). The performance of the protection circuits was satisfactory.

6.3 Experimental Performance.

The oscillograms recorded during the inverter testing are presented in this section (oscillograms 10 to 25) - oscillograms 10 and 11 show the commutation capacitor current and voltage waveform for no load (natural triggering) and inductive load (advance triggering). Oscillograms 12, 13, 14, 15, 16, 17, 18, 19, 20 show the waveforms of load voltage and current, dv/dt across main and auxiliary thyristor for different load conditions (L, RL, R load). Oscillograms 21, 22, 23 and 24 show the dv/dt across main thyristor, the dv/dt across auxiliary thyristor, commutation capacitor voltage and commutation current for no load. Finally oscillogram 25 shows commutation capacitor voltage and current waveform for no load (Advance triggering).

Under different load conditions, the load voltage (waveform) remains same (constant) while the current wave shape changes depending upon the nature of load (oscillograms 12, 15, 18). The calculated peak capacitor current was 325 Amps and the actual peak capacitor current (oscillogram 25) was approximately 330 Amps which closely corresponds to one calculated. The calculated peak capacitor voltage was about 390 volts and the actual capacitor voltage was approximately 360 volts. This difference can be attributed to the Q factor of the commutation inductor [18] as explained in chapter 3 and Section 2.5]. Thus the inverter performance was.
satisfactory under all loading conditions.

Note: The bottom traces in oscillograms 14, 16, 17, 19, 20, 21, 22 are capacitor current traces and they can be ignored.
1 & 2: EXPERIMENTAL SET-UP OF
SINGLE PHASE MODIFIED MCMURRAY INVERTER
3 & 4: CLOSE-UP VIEW OF POWER CIRCUIT
5 & 6: CLOSE-UP VIEW OF FIRING CIRCUIT.

5: INTERFACE & CONTROL CIRCUIT.

6: OUTPUT CIRCUIT (PULSE AMPLIFIER CIRCUIT).
7: Close-up view of snubber circuit.
8: FIRING SEQUENCE OF SINGLE PHASE MODIFIED McMURRAY INVERTER FOR REGULAR OPERATION.

(OUTPUT OF CONTROL CIRCUIT).

1st Trace from top: Pulse on TA 1.
2nd Trace from top: Pulse on T 2.
3rd Trace from top: Pulse on TA 2.
4th Trace from top: Pulse on T 1.

Scale: 5V/cm.
9: OUTPUT OF PULSE AMPLIFIER CIRCUIT.

Top Trace: Pulse on T1.
Bottom Trace: Pulse on TA 2.
Scale:

5 V/cm.
50 μs/cm.
10: COMMUTATION CAPACITOR CURRENT & VOLTAGE WAVEFORM

AT NO LOAD. (f = 60 Hz.)

Scale:

100 A/cm.
100 V/cm.
20 μs/cm.
11: Commutation Capacitor Current & Voltage Waveform

For Inductive Load (30 A, rms.), (F = 6 Hz.)

Scale:

- 100 A/cm
- 100 V/cm
- 20 μs/cm
12: VOLTAGE AND CURRENT WAVEFORM ACROSS LOAD.

INDUCTIVE LOAD. (10 A, r.m.s.)

(f = 60 Hz).

Scale:

100 V/cm
10 A/cm
5 ms/cm
13: DV/DT ACROSS MAIN THYRISTOR T1.

INDUCTIVE LOAD (20 A, rms.)

(f = 100 Hz).

Scale:

100 V/cm

1 μs/cm
14: $\frac{dv}{dt}$ ACROSS AUXILIARY THYRISTOR TA 1

INDUCTIVE LOAD (20 A, rms.)

($f = 100$ Hz.)

Scale:

100 V/cm

2 µs/cm
15: VOLTAGE & CURRENT WAVEFORM ACROSS LOAD

(R, L LOAD.) (7 A, rms.)

(f = 60 Hz.)

Scale:

100 V/cm
10 A/cm
2 ms/cm
16: \(\text{DV/DT across main thyristor T1} \)

\((R, L \ \text{load}) \ (7 \text{ A, rms}) \)

\((f = 50 \text{ Hz}) \)

Scale:

100 V/cm

2 \(\mu \)s/cm
17: $\frac{dv}{dt}$ ACROSS AUXILIARY THYRISTOR TA 1

(R_L LOAD.) (7A, rms.)

($f = 60$ Hz.)

Scale:

100 V/cm

2 μs/cm
18: VOLTAGE & CURRENT WAVEFORM ACROSS LOAD.

RESISTIVE LOAD. (5 A).

(f = 100 Hz.)

Scale:

100 V/cm
5 A/cm
2 ms/cm
19: DV/DT ACROSS MAIN THYRISTOR T1

RESISTIVE LOAD. (5 A)

(f = 100 Hz).

Scale:

100 V/cm

2 μs/cm
20: DV/DT ACROSS AUXILIARY THYRISTOR TA'1

RESISTIVE LOAD. (5 A)

(f = 100 Hz.)

Scale:

100 V/cm

2 μs/cm
21: \(\frac{dV}{dt} \) ACROSS MAIN THYRISTOR T1.

NO LOAD. \((f = 100 \text{ Hz.})\)

Scale:

- \(100 \text{ V/cm}\)
- \(1 \mu s/cm\)
22: DV/DT ACROSS AUXILIARY THYRISTOR TA 1

NO LOAD (f = 100 Hz).

Scale:

100 V/cm
2 µs/cm
23: COMMUTATION CAPACITOR VOLTAGE WAVEFORM.

NO LOAD (f = 60 Hz.)

Scale:

100 V/cm
5 ms/cm
24: COMPUTATION CAPACITOR CURRENT WAVEFORM.

NO LOAD (f = 100 Hz.)

Scale:

100 A/cm
10 µs/cm
COMMUTATION CAPACITOR CURRENT & VOLTAGE WAVEFORM
FOR ADVANCE TRIGGERING.

Scale:

100 A/cm
100 V/cm
20 μs/cm
In recent years, the thyristor technology has made a significant progress and as a result thyristors with short turn-off times are commercially available. This has enabled the design of sophisticated thyristor inverters for a variety of applications. In applications requiring control of output voltage and frequency, PWM (pulse width modulated) control of inverters is used. In these inverters, regulation of output voltage and frequency is achieved within the same power controller by a special control logic. The power circuit of PWM inverters is simple but the control circuit is relatively complex. Main applications of PWM inverters include variable speed induction motor drives and uninterruptible Power Supplies (UPS).

The modified McMurray inverter described in this report is suitable for PWM. This inverter has the advantages in terms of low ratings of commutation components, minimum number of commutation components and high efficiency of circuit. However, the dv/dt and di/dt stresses experienced in this inverter circuit are critical.

In the design of commutation circuit, the values of peak commutation capacitor voltage, peak commutation current, turn-off time of thyristors and the damping factor are important parameters. Commutation losses depend on the Q factor of the commutating inductor.
Proper selection of components in the power circuit is essential for efficient, reliable operation of the circuit. The packaging of the power circuit is also one of the important parts of successful design.

When designing the inverter (thyristor) protection circuit, the following features were included.

The protection against di/dt failures is provided by connecting the necessary di/dt inductance in the anode circuit of the thyristor and selection of thyristors with amplifying gate structure ensures high di/dt withstanding capability.

The protection against excessive dv/dt and voltage spikes due to switching transients is provided by the snubber circuit. Since dv/dt stresses are critical in this inverter, combination of RC snubbers with dynamic negative gate bias provides the necessary protection.

The protection from fault current is provided by selecting proper high speed fuses.

The firing circuit of the inverter can be realized through analogue or digital scheme. The digital scheme which has advantages of higher immunity against noise, better accuracy of control and high reliability has been implemented in this design.

A prototype of the modified McMurray inverter was actually built following the design outlined in this report. The salient features of this prototype model are:
The compact modular form of the power circuit which simplifies maintenance, trouble-shooting and minimizes stray inductances in the path of main thyristors and feedback diodes.

The digital firing circuit which include the electronic 'start-stop' operation of the inverter as well as the precise adjustment of delay between triggering the auxiliary and the main thyristors.

The inverter was subsequently tested for all types of passive loads (R, RL, L loads). The obtained results indicated satisfactory inverter operation.

Thus the prototype inverter becomes an important building block of the three phase inverter system. This report provides the necessary information and guide lines for the future designs of the modified McMurray type inverters.
References

APPENDIX I
APPENDIX I

A

AMPLIFYING GATE THYRISTOR

This type of thyristor has an internal arrangement for gate current amplification. Schematically the amplifying gate thyristor is shown in fig. [A]. This amplifying gate thyristor behaves like a main power handling thyristor triggered by a small 'pilot' thyristor. In this type of thyristors, double switching is employed i.e. the main thyristor portion switches immediately after conduction is initiated in the pilot portion of device. The anode current of the pilot portion of the device causes rapid turn on of a significant portion of the main current carrying portion of the device. Therefore to initiate 'turn-on', only a relatively small amount of gate current is required and thus, with this type of gate arrangement (construction), a high built in $\frac{di}{dt}$ withstand capability is ensured to the thyristor.

B

DESCRIPTION AND OPERATION OF THE SNUBBER NETWORK

The circuit diagram is shown in fig [B.1]. In this circuit, part no: 30 is the thyristor, which is to have the snubber network connected
Fig. [A] Schematic Diagram of Amplifying Gate Thyristor.
across it. The points number 31, 32, 33 are its anode, cathode and gate terminals respectively. The normal gate signal to turn on thyristor is applied to terminals 34 and 35 through a fast recovery diode (part no. 50). Connected in series pointing from the cathode to gate of the thyristor is series of diodes (parts no. 45, 46, 47). These provide a clipping of the negative bias on the gate. Part no. 48 is simply a current limiting resistor to avoid any measurable gate current from flowing into the suppression network and to limit the current from the suppression network through diodes. Part no. 41 and 42 are the primary and secondary of a pulse transformer. Part no. 49 is a free wheeling diode connected across secondary of pulse transformer. Part no. 44, is a diode which blocks any positive signal from flowing out of the pulse transformer through the gate. Part no. 40 is a differentiating capacitor and part no. 28 is a damping resistor. They are connected in series with the primary of the pulse transformer across anode (31) and cathode (32) of the thyristor as shown in fig. [B.1].

OPERATION OF THE CIRCUIT

The circuit works as follows: when there is a forward rising voltage across the thyristor (30), this voltage is differentiated by capacitor (40). The current flows into this capacitor being in series with winding (41) of the pulse transformer. Accordingly, a voltage is introduced in winding (42) of the pulse transformer. The voltage is proportional to the rate of rise of voltage (dv/dt) across the thyristor (30) and this voltage is then
applied to diode (44) across the diodes (45, 46, 47), which are in parallel with the gate circuit including terminals 32 and 33. Diode 44 is a fast recovery diode to prevent any reverse recovery current from triggering thyristor (30). Resistor (part no. 48) serves as a current limiting resistance in a closed circuit including pulse transformer winding (42) and diodes (41, 45, 46 and 47). The forward voltage drop across diodes (45, 46, 47) is then applied to gate (33) as a negative bias. As the positive dv/dt in the circuit increases and the demand for more negative gate current increases, the current applied by the circuit increases proportionately. When resistance (no. 48) is small, compared to the impedance of capacitor (40), the maximum available negative current is given by \(I_{\text{max}} \) (snubber) = \(c \) \(\frac{dv}{dt} \).

The volt-seconds applied to the transformer will be constant as the voltage increases at any particular rate to a specified voltage. The number of volt-seconds applied to winding (42) is proportional to the product of capacitance of capacitor (40), resistance of resistor (48) and change in voltage. It should be mentioned here that the selection of the pulse transformer is not critical [29].

Thus with this circuit, it is possible to negatively bias the gate of the thyristor in proportion to the \(\frac{dv}{dt} \) applied to the thyristor with no external power source.
SELECTION OF COMPONENTS

As it was not possible to obtain the necessary design procedure
the values of the components used in this circuit were obtained by cut
and try method. The starting values for the snubber circuit
[R (part no. 28) and C (part no. 40)] were obtained by the guidelines
given in [30] and [31]. The final values were chosen as R = 15 ohm
and C = 1.1 µF by experimentation. The pulse transformer used in
this circuit is of type 612 H made by Hammond Co. The diodes used in
this circuit were of type 114 m fast recovery type made by G.E. Co.
The value of current limiting resistor (part no. 48) used is 560
ohms. With these values, this snubber circuit showed satisfactory
results. The specifications of components are included in appendix [II].
APPENDIX I

C

SOME IMPORTANT FACTORS IN FUSE

COORDINATION UNDER DC OPERATION

In general, when operating from a DC supply, it is more difficult for the fuse to perform its intended function of current interruption following a short circuit because the current through the fuse is not inherently reduced to zero as it is when the applied voltage is AC. Whenever the voltage across the fuse reverses repetitively, the fuse can be considered to be operating on AC. Fuses intended for the protection of semiconductors may be used in both AC and DC circuits. On the other hand, most of the published information for thyristor fuses pertains to their performance in AC applications; very little published information pertains to operations on DC [32].

During the time, the fuse is clearing the fault, rapid interruption of large (fault) currents leads to creation of high overvoltages called arcing voltages. If a semiconductor is subjected to such a high overvoltage, it will fail due to breakdown phenomenon. Thus, while selecting a fuse, precaution should be taken to see that arcing voltage during fault interruption, should not exceed
the blocking voltage capability of the semiconductor.

The major factor which determines how a fuse will operate in a dc circuit is the time constant \(L/R \) of the dc circuit [32]. The maximum voltage that can be applied to the fuse and still enable it to clear will be less in the case of dc operation. With many current limiting fuses designed for the protection of semiconductors, the dc voltage rating will be about 75 percent of the ac RMS voltage rating when the rate of rise of current through fuse is high (i.e. \(\frac{L}{R} \) is small, (up to 20 milli-sec.)). For low rate of rise of current (i.e. \(\frac{L}{R} \) is high (20 milli-sec or more)), the maximum voltage which the fuse can interrupt is still less. Therefore, the maximum DC voltage rating of a fuse operating in a dc circuit depends on \(L/R \) of the circuit and the graph of circuit \(L/R \) versus DC voltage rating is usually supplied by the fuse manufacture.

The instantaneous peak let-through current for dc operation can be related to the value published for ac operation in a low power factor circuit and is dependent on the dc circuit \(L/R \). This is shown in fig [C.1]. [This curve was supplied by fuse manufacturer]. The let-through \(I^2t \) for dc operation can also be related to the value published for ac operation and again shows dependency on the dc circuit \(L/R \). This is shown in fig [C.2]. [This curve was also supplied by fuse manufacturer]. Thus, these curves [fig (C.1) and (C.2)] are useful for selection of fuse. Other information pertaining to fuse operation and selection
\[
\frac{I_{pk\ DC}}{I_{pk\ AC}}
\]

Ratio of Instantaneous Peak Let-Through Current for DC to AC Operation Vs. Circuit L/R.

Fig. [C.1]
Figure C.2: Ratio of Let-Through \(I^2t \) for DC to AC Operation vs. Circuit L/R.
is given in detail in [32].

Location of fuse in a circuit is also an important consideration in selection and co-ordination of fuses. The location of fuse is solely dependent on actual circuit configuration. The proper location of fuse in this inverter circuit is shown in fig [2.1].

STEP BY STEP APPROACH TO FUSE SELECTION

From the above considerations, a step by step approach to the fuse selection for this inverter is given below:

A. Determine the circuit inductance and resistance and find the ratio \(L/R \).

B. Determine the prospective fault current.

C. From the graphs of \(\frac{I_{PK}(DC)}{L/R \cdot V_s} \) and \(\frac{I_{PK}(AC)}{I^2_t(DC)} \), given by fuse manufacturer, determine the values of the above ratios. Using the ratio \(\frac{I_{PK}(DC)}{I_{PK}(AC)} \)

and \(I_{PK}(DC) \) [which is prospective fault current], find the current \(I_{PK}(AC) \) [which is the prospective (Equivalent) AC...
fault current value].

D From the above value of prospective AC fault current, find the value of $I^2t_{(AC)}$. From the value of $I^2t_{(AC)}$ and the ratio of $\frac{I^2t_{(DC)}}{I^2t_{(AC)}}$, find the value of $I^2t_{(DC)}$.

This value of $I^2t_{(DC)}$ is now compared with the 'let-through' I^2t of the semiconductor device. $I^2t_{(DC)}$ has to be less than I^2t of the device under all conditions. Similarly $I_{PK (DC)}$ has to less than peak 'let-through' surge current of the device.

E Finally, from the curve of Peak Arc voltage verses supply voltage, supplied by the fuse manufacturer, check if the peak Arc voltage is less than the blocking voltage capability of the semiconductor device.

SELECTION OF THE FUSE

Thyristors used in this inverter circuit are GE C-365 m type. The subcycle surge rating and sub cycle I^2t verses pulsewidth data are given in its specification sheet, which is included in appendix [II].
The total circuit inductance and resistance of the circuit was estimated to 20 microhenries and .1 ohm. This gives the \(\frac{L}{R} \) ratio as .2 mili seconds. The prospective fault current was estimated to 2200 Amps \([I_{\text{fault}} = \frac{E}{R}] \). For the value of \(\frac{L}{R} = .2 \) m. sec, the ratio of \(\frac{I_{PK}^{(DC)}}{I_{PK}^{(AC)}} \) is equal to 1.5.

This gives \(I_{PK}^{(AC)} \) as 1500 Amps (approximately), which is prospective AC fault current. Again for the value of \(\frac{L}{R} = .2 \) m. sec, the ratio of \(\frac{I^2t^{(DC)}}{I^2t^{(AC)}} \) is equal 1.

Sub cycle \(I^2t \) pulse width data was plotted on the graph of 'let through' \(I^2t \) verses prospective AC fault current.

From above, it was seen that for the given fault condition, fuse rating (current) could go as high as 175 Amp, because the 'let through' \(I^2t \) for 1500 Amps of fault current for 175 Amps fuse was far below the \(I^2t \) of the thyristors, under all conditions.

However, under normal (rated) operating condition, the inverter demands a (RMS) current of 75 Amps (approximately), therefore the current rating of the fuse can be 80 Amps. Similarly the operating voltage of the fuse can be 220 V (DC) and therefore AC
voltage rating can be 250 V (AC, RMS). Finally, the peak arc voltage for the fuse [for 250 V, AC rating] is below the blocking voltage capability of the thyristor.

Hence a high speed fuse [SF 25 x 80] manufactured by International Rectifier Co. is recommended for the purpose. It has a current rating of 80 Amps [RMS] and a voltage rating of 250 volts [AC, RMS]. The data sheet of the fuse is included in appendix [II].
APPENDIX II

SPECIFICATIONS OF COMPONENTS
HIGH SPEED
Silicon Controlled Rectifier

C364/C365

600 Volts 275 A RMS

AMPLIFYING GATE

The General Electric C364 and C365 Silicon Controlled Rectifiers are designed for power switching at high frequencies. These are all-diffused Press-Pak devices employing the field-proven amplifying gate.

FEATURES:
- Fully characterized for operation in inverter and chopper applications.
- High dv/dt ratings.
- High dv/dt capability with selections available.
- Rugged hermetic glazed ceramic package.

MAXIMUM ALLOWABLE RATINGS

<table>
<thead>
<tr>
<th>TYPES</th>
<th>REPETITIVE PEAK OFF-STATE VOLTAGE, $V_{DMM}\uparrow$</th>
<th>REPETITIVE PEAK REVERSE VOLTAGE, $V_{RMM}\uparrow$</th>
<th>NON-REPEATED PEAK REVERSE VOLTAGE, $V_{RMM}\uparrow$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$T_J = 40^\circ\text{C} \pm 62^\circ\text{C}$</td>
<td>$T_J = 40^\circ\text{C} \pm 125^\circ\text{C}$</td>
<td>$T_J = 125^\circ\text{C}$</td>
</tr>
<tr>
<td>C364/C365A</td>
<td>100 Volts</td>
<td>100 Volts</td>
<td>200 Volts</td>
</tr>
<tr>
<td>C364/C365B</td>
<td>200 Volts</td>
<td>200 Volts</td>
<td>300 Volts</td>
</tr>
<tr>
<td>C364/C365C</td>
<td>300 Volts</td>
<td>300 Volts</td>
<td>400 Volts</td>
</tr>
<tr>
<td>C364/C365D</td>
<td>400 Volts</td>
<td>400 Volts</td>
<td>500 Volts</td>
</tr>
<tr>
<td>C364/C365E</td>
<td>500 Volts</td>
<td>500 Volts</td>
<td>600 Volts</td>
</tr>
<tr>
<td>C364/C365F</td>
<td>600 Volts</td>
<td>600 Volts</td>
<td>720 Volts</td>
</tr>
<tr>
<td>C365S</td>
<td>700 Volts</td>
<td>700 Volts</td>
<td>840 Volts</td>
</tr>
<tr>
<td>C365N</td>
<td>800 Volts</td>
<td>800 Volts</td>
<td>960 Volts</td>
</tr>
</tbody>
</table>

\(\uparrow\) Half sine wave, 10 usec max. pulse width.

RMS On-State Current, $I_{ON(MS)}$: 275 Amperes
Peak One Cycle Surge (Non-Repetitive) On-State Current, $I_{PM (60\text{ Hz})}$: 1800 Amperes
Peak One Cycle Surge (Non-Repetitive) On-State Current, $I_{PM (50\text{ Hz})}$: 1700 Amperes
f_1 (for fusing) for times ≥ 1.5 millisecond: 9,500 (RMS Amperes)f_1 Seconds
f_1 (for fusing) for times ≥ 8.3 milliseconds: 13,500 (RMS Amperes)f_1 Seconds
Critical Rate-of-Rise of On-State Current, Non-Repetitive: 800 A/usec
Critical Rate-of-Rise of On-State Current, Repetitive: 500 A/usec
Average Gate Power Dissipation, $P_G(V_A)$: 2 Watts
Storage Temperature, T_{ST}: -40°C to $+150^\circ\text{C}$
Operating Temperature, T_J: -40°C to $+125^\circ\text{C}$
Mounting Force Required: 300 Lbs. ± 10%

\(\uparrow\) dv/dt ratings established in accordance with EIA-NEMA Standard RS-197, Section 3.2.2.6 for conditions of max. rated V_{DMM}, 20 ohms gate trigger source with 0.5 μs short circuit trigger current rise time.
CHARACTERISTICS

<table>
<thead>
<tr>
<th>TEST</th>
<th>SYMBOL</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNITS</th>
<th>TEST CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive Peak Reverse and Off-State Current</td>
<td>I_{RRM} and I_{RRM}</td>
<td>-</td>
<td>5</td>
<td>12</td>
<td>mA</td>
<td>$T_J = +25^\circ C$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V = V_{th} = V_{th}$</td>
</tr>
<tr>
<td>Repetitive Peak Reverse and Off-State Current</td>
<td>I_{PRM} and I_{PRM}</td>
<td>-</td>
<td>12</td>
<td>17</td>
<td>mA</td>
<td>$T_J = +125^\circ C$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V = V_{th} = V_{th}$</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>R_{JCS}</td>
<td>-</td>
<td>12</td>
<td>135</td>
<td>°C/Watt</td>
<td>Junction-to-Case (Double-Side Cooled)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V = V_{th} = V_{th}$</td>
</tr>
<tr>
<td>Critical Rate-of-Rise of Off-State Voltage (Higher values may cause device switching)</td>
<td>dV/dt</td>
<td>200</td>
<td>500</td>
<td>-</td>
<td>V/sec</td>
<td>$T_J = +125^\circ C$; Gate Open, $V_{th} = $ Rated Linear or Exponential Rising Waveform</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V_{th} (6.32)/μsec</td>
</tr>
</tbody>
</table>

Higher maximum drain selections available — consult factory.

Holding Current	I_H	-	40	1000	mAdc	$T_C = +25^\circ C$; Anode Supply = 24 Vdc.
						Initial On-State Current = 2 Amps
DC Gate Trigger Current	I_{GT}	-	70	250	mAdc	$T_C = +25^\circ C$; $V_D = 6$ Vdc, $R_L = 3$ Ohms
						$T_C = +40^\circ C$; $V_D = 6$ Vdc, $R_L = 3$ Ohms
						$T_C = +125^\circ C$; $V_D = 6$ Vdc, $R_L = 3$ Ohms
DC Gate Trigger Voltage	V_{GT}	-	3	5	Vdc	$T_C = -40^\circ C$ to 0°C, $V_D = 6$ Vdc, $R_L = 3$ Ohms
						$T_C = 0^\circ C$ to $+15^\circ C$, $V_D = 6$ Vdc, $R_L = 3$ Ohms
						$T_C = -125^\circ C$, $V_{th} = 0.15$ Vdc, $R_L = 10.0$ Ohms
Peak On-State Voltage	V_{th}	-	1.9	2.6	Volts	$T_C = +25^\circ C$; $I_D = 500$ Amps. Peak
						Duty Cycle ≤ 0.1%
Turn-On Delay Time	t_D	-	0.5	-	μsec	$T_C = +25^\circ C$; $I_D = 50$ Amps, V_{th}; Gated Supply: 24 Volt Open Circuit, 20 Ohm, 0.1 μsec min. max. rise time; 1 μsec delay time.
Conventional Circuit Committed Turn-Off Time (with Reverse Voltage)	I_D	-	8	10	μsec	(1) $T_C = +25^\circ C$
						(2) $I_D = 150$ Amps.
Faster Maximum Turn-Off Times Available, Consult Factory	C_{364}	-	15	20	μsec	
Conventional Circuit Committed Turn-Off Time (with Feedback Diode)	$I_D(dio)$	-	15	-	μsec	(1) $T_C = +25^\circ C$
						(2) $I_D = 150$ Amps.
						(3) $V_H = 1$ Volt
						(4) $V_{th} = $ (Reapplied)
						(5) Rate-of-Rise of Reapplied Forward Voltage (I=200 V/sec) (lin)
						(6) Conduction/diode = 5 Amps/μsec
						(7) Repetition Rate = 1 ppm
						(8) Gate Bias During Turn-Off Interval = 0 Volts, 100 Ohms

*Consult factory for specified maximum Turn-Off Time.

††Delay time may increase significantly as the gate drive approaches the I²t of the Device Under Test.

†††Current rise-time is measured with a current probe, or voltage rise-time across a non-inductive resistor.
1. **Maximum On-State Characteristics**

2. **Gate Trigger Characteristics and Power Ratings**

Sine Wave Current Rating Data

3. **Maximum Allowable Peak On-State Current vs. Pulse Width (Tc = 65°C)**

4. **Maximum Allowable Peak On-State Current vs. Pulse Width (Tc = 90°C)**
RECTANGULAR WAVE CURRENT RATING DATA

DUTY CYCLE = 50%

DUTY CYCLE = 25%

6. MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT VS. \(\frac{di}{dt} \) \((T_0 = 60^\circ C)\)

7. MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT VS. \(\frac{di}{dt} \) \((T_0 = 90^\circ C)\)

8. MAXIMUM ALLOWABLE PEAK ON-STATE CURRENT VS. \(\frac{di}{dt} \) \((T_0 = 60^\circ C)\)
10. ENERGY PER PULSE VS. PEAK CURRENT AND PULSE WIDTH (di/dt = 100 A/sec)

11. ENERGY PER PULSE VS. PEAK CURRENT AND PULSE WIDTH (di/dt = 25 A/sec)

12. ENERGY PER PULSE VS. PEAK CURRENT AND PULSE WIDTH (di/dt = 5 A/sec)
High Speed

Fast Recovery Rectifier

1500 Volts 400A Avg.

The A397 series is General Electric's highly reliable, all-diffused, Press-Pak, 400 ampere, fast recovery, silicon rectifier diode. These diodes are designed for use in high frequency applications or where a fast recovery diode is a necessity. These diodes provide a superior combination of speed, blocking, voltage capability and soft recovery, which is required in such demanding applications as:

- Inverter Feedback Diode
- Free Wheeling Diode
- High Frequency Rectification
- Low EMI Power Supplies

FEATURES:
- Published Current Ratings Up To 20,000 Hz
- Soft Recovery With Low Recovery Charge
- All-Diffused
- Package Reversibility
- Rugged Glazed Ceramic Hermetic Package

MAXIMUM ALLOWABLE RATINGS AND SPECIFICATIONS

<table>
<thead>
<tr>
<th>TYPES</th>
<th>REPEATED PEAK REVERSE VOLTAGE (VRMM) Tj = -65°C to +125°C</th>
<th>NON-REPEATED PEAK REVERSE VOLTAGE (VRMM) Tj = 25°C to 125°C</th>
<th>DC REVERSE VOLTAGE, VDC Tj = -40°C to +125°C</th>
<th>REPEATED PEAK REVERSE CURRENT, I(PEAK) Tj = 100°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A397A</td>
<td>100 Volts</td>
<td>700 Volts</td>
<td>100 Volts</td>
<td>25 mA</td>
</tr>
<tr>
<td>A397B</td>
<td>200</td>
<td>400</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td>A397C</td>
<td>300</td>
<td>500</td>
<td>300</td>
<td>25</td>
</tr>
<tr>
<td>A397E</td>
<td>400</td>
<td>500</td>
<td>400</td>
<td>25</td>
</tr>
<tr>
<td>A397F</td>
<td>500</td>
<td>600</td>
<td>600</td>
<td>25</td>
</tr>
<tr>
<td>A397J</td>
<td>600</td>
<td>720</td>
<td>700</td>
<td>25</td>
</tr>
<tr>
<td>A397K</td>
<td>700</td>
<td>840</td>
<td>900</td>
<td>25</td>
</tr>
<tr>
<td>A397L</td>
<td>800</td>
<td>950</td>
<td>1000</td>
<td>25</td>
</tr>
<tr>
<td>A397M</td>
<td>900</td>
<td>1075</td>
<td>900</td>
<td>25</td>
</tr>
<tr>
<td>A397N</td>
<td>1000</td>
<td>1200</td>
<td>1000</td>
<td>25</td>
</tr>
<tr>
<td>A397P</td>
<td>1100</td>
<td>1300</td>
<td>1100</td>
<td>25</td>
</tr>
<tr>
<td>A397PA</td>
<td>1200</td>
<td>1400</td>
<td>1200</td>
<td>25</td>
</tr>
<tr>
<td>A397PB</td>
<td>1300</td>
<td>1520</td>
<td>1300</td>
<td>25</td>
</tr>
<tr>
<td>A397PC</td>
<td>1400</td>
<td>1600</td>
<td>1400</td>
<td>25</td>
</tr>
<tr>
<td>A397PD</td>
<td>1500</td>
<td>1700</td>
<td>1500</td>
<td>25</td>
</tr>
</tbody>
</table>

Peak Forward Current, If (Tj = 65°C, Half-Sine Wave Pulse Width = 8.3 msec., D.F. = 50%) 1200 Amperes
Peak One-Cycle Surge (Non-Repetitive), Forward Current, I(PEAK) 5000 Amperes
Minimum P1 Rating (See Curve 11), t = 1 minute (Non-Repetitive) 44,000 (RMS Amperes) 2 Seconds
Thermal Resistance, RθJC (D.C.) 0.99°C/Watt
Storage Temperature, Tst 40°C to +110°C
Operating Junction Temperature, TJ 40°C to +125°C
Mounting Force Required 800 Lbs ± 10%
3.56KN ± 10%

NOTES:

1 Assumed a heat sink thermal resistance of less than 2.0°C/Watt.
2 Non-repetitive voltage and current ratings, as contrasted to repetitive ratings, apply for occasional or unpredictable overloads. For example, the forward surge current ratings are non-repetitive ratings that are used in fault coordination work.
3 Assumed a heat sink thermal resistance of less than 1.0°C/Watt.
1. Maximum Forward Characteristics

2. Maximum Allowable Peak Forward Current Sinusoidal Waveform ($T_J = 85^\circ C$) Double Side Cooled

3. Maximum Allowable Forward Current Sinusoidal Waveform ($T_J = 90^\circ C$) Double Side Cooled

4. Sinusoidal Pulse Energy ($T_J = 125^\circ C$)

5. Maximum Allowable Peak Forward Current Trapezoidal Waveform ($T_J = 85^\circ C$) $\frac{dV}{dt}$ (Rising & Falling) = 100 A/s Double Side Cooled

6. Maximum Allowable Peak Forward Current Trapezoidal Waveform ($T_J = 90^\circ C$) $\frac{dV}{dt}$ (Rising & Falling) = 100 A/s Double Side Cooled

DEVICE SPECIFICATIONS
SUGGESTED MOUNTING METHODS FOR PRESS-PAKS TO HEAT DISSIPATORS

When the Press-Pak is assembled to a heat sink in accordance with the following general instructions, a reliable and low thermal resistance interface will result.

1. Check each mating surface for nicks, scratches, flatness and surface finish. The heat dissipator mating surfaces should be flat within .0005 inch/inch and have a surface finish of 63 micro-inches.

2. It is recommended that the heat dissipator be plated with nickel, tin, or silver. Bare aluminum or copper surfaces will oxidize in time resulting in excessively high thermal resistance.

3. Sand each surface lightly with 600 grit paper just prior to assembly. Clean off and apply silicone oil (GF SFL 154 200 centistoke viscosity) or silicone grease (GE 122L or Dow Corning DC 3, 4, 340 or 640). Clean off and apply again as a thin film. (A thick film will adversely affect the electrical and thermal resistance.)

4. Assemble with the specified mounting force applied through a self-leveling, swivel connection. The force has to be evenly distributed over the full area. Center holes on both top and bottom of the Press-Pak are for locating purposes only.

MOUNTING THE A307, ONE HALF INCH PRESS-PAK USING THE SERIES 1000 CLAMP

CLAMP FEATURES:

- Hardened Steel Bolt insuring constant pressure in rugged applications over long periods.
- One-piece phenolic insulator gives added 1/2" creep distance.
- Use of special Force Indicator Gauge eliminates need for torque wrenches, inaccurate "feel" gauges and guesswork.
- Various bolt lengths available to accommodate most mounting situations.
- No loose parts to complicate assembly.
- Stiffening brace to reinforce heat sink available upon request.

MOUNTING PROCEDURE:

With the semiconductor positively located in place on the heat sink(s), place the clamp in position with the bolts through the holes in the heat sink(s), and proceed as follows:

2. Tighten the nuts evenly until finger tight.

3. Tighten each bolt 1/2 turn, using a 7/16 socket wrench on the bolt heads.

4. Place the Force Indicator Gauge firmly against the springs, as shown on the Outline Drawing, so that both ends and the middle are in solid contact with the springs. The holes of the gauge will then indicate the spring deflection, or force; correct mounting force is indicated when the holes coincide.

Examples:

- Less than rated force. Tighten nuts alternatingly 1/2 turn at a time until points coincide.
- Correct Force. Excessive force. Loosen nuts and start over. NEVER try to adjust spring force by twisting off the nuts. Spring friction will produce false readings. Always start at Step 1.

To Calibrate Force Gauge:

If the gauge is suspected of being out of calibration due to wear or damage, check it on a flat surface as shown below.

Examples:

- If the points are not 0.300 ± .010 apart, calibrate the gauge by filing the bottom contact points.
1N3889-93, 12FL, 12FT & 12FV SERIES

12 Amp Fast Recovery Rectifiers

- Soft Recovery Characteristics
- For use in: Inverters, Sonar Power Supplies, Ultrasonic Systems and as Free-Wheeling Rectifiers
- Available to 1000 volts @ 350 nanosec
- Available to 600 volts @ 200 nanosec
- Data Sheet includes curves of recovery characteristics over wide range of operating conditions
Electrical Specifications

<table>
<thead>
<tr>
<th>Part Number</th>
<th>112888</th>
<th>12FPL</th>
<th>12FT</th>
<th>12FV</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF(AV)</td>
<td>12"</td>
<td>12</td>
<td>12</td>
<td>A</td>
<td>TC = 100ºC, 1 phase operation</td>
<td></td>
</tr>
<tr>
<td>max. forward current units</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>A</td>
<td>60 Hz half wave rectified sin wave, rated load condition, non-repetitive</td>
<td></td>
</tr>
<tr>
<td>VFM</td>
<td>1.4"</td>
<td>1.4</td>
<td>1.4</td>
<td>V</td>
<td>IR = 12A DC, TC = 75ºC</td>
<td></td>
</tr>
<tr>
<td>max. forward voltage drop</td>
<td>1.5"</td>
<td>1.5</td>
<td>1.5</td>
<td>V</td>
<td>IC = 12A average, 25.6A peak, TC = -65ºC to 100ºC</td>
<td></td>
</tr>
<tr>
<td>IRNAV</td>
<td>5"</td>
<td>-</td>
<td>-</td>
<td>mA</td>
<td>TC = 100ºC, VBA = rated</td>
<td></td>
</tr>
<tr>
<td>max. reverse current, VBA = 80 to 800V</td>
<td>10</td>
<td>10</td>
<td>-</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBA = 80 to 1000V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max. reverse current, VBA = 80 to 800V</td>
<td>25"</td>
<td>25</td>
<td>-</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBA = 80 to 1000V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tRR & tR & (recovery)</td>
<td>200"</td>
<td>350</td>
<td>500</td>
<td>ms</td>
<td>TC = 25ºC, IR = 1A, VBA = 30V</td>
<td></td>
</tr>
<tr>
<td>max. reverse recovery time, Typical reverse recovery time</td>
<td>200</td>
<td>350</td>
<td>500</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBA = 80 to 1000V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>max. peak reverse recovery current units</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical peak reverse recovery current</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermal Mechanical Specifications
- **Tj**: Junction operating temperature range: -55ºC to 150ºC
- **Tstg**: Storage temperature range: -65ºC to 175ºC
- **RoJC**: Max. thermal resistance, junction-case: 2.0ºC/W
- **Rpea**: Thermal resistance, case-to-ambient: 0.9ºC/W
- **Mounting**: Mounting face: flat, smooth, and ground
- **Maximum Current**: 12 Amps
- **Approximate Weight**: 6 oz.

Voltage Ratings

<table>
<thead>
<tr>
<th>Part Number</th>
<th>VRRM - Max. repetitive peak reverse voltage (V)</th>
<th>VRM (UIS) - Max. RMS Reverse Voltage (V)</th>
<th>VR Peak - Max. DC Blocking Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>112888</td>
<td>12FPL</td>
<td>12FT</td>
<td>12FV</td>
</tr>
<tr>
<td>12F75</td>
<td>12F75</td>
<td>12F75</td>
<td>12F75</td>
</tr>
<tr>
<td>12F10</td>
<td>12F10</td>
<td>12F10</td>
<td>12F10</td>
</tr>
<tr>
<td>12F20</td>
<td>12F20</td>
<td>12F20</td>
<td>12F20</td>
</tr>
<tr>
<td>12F30</td>
<td>12F30</td>
<td>12F30</td>
<td>12F30</td>
</tr>
<tr>
<td>12F40</td>
<td>12F40</td>
<td>12F40</td>
<td>12F40</td>
</tr>
<tr>
<td>12F50</td>
<td>12F50</td>
<td>12F50</td>
<td>12F50</td>
</tr>
<tr>
<td>12F60</td>
<td>12F60</td>
<td>12F60</td>
<td>12F60</td>
</tr>
<tr>
<td>12F70</td>
<td>12F70</td>
<td>12F70</td>
<td>12F70</td>
</tr>
<tr>
<td>12F80</td>
<td>12F80</td>
<td>12F80</td>
<td>12F80</td>
</tr>
<tr>
<td>12F90</td>
<td>12F90</td>
<td>12F90</td>
<td>12F90</td>
</tr>
</tbody>
</table>

1. Multiply by 0.86 for t < 1.5 ms.
2. Standard polarity — Stud at cathode. For reverse polarity, add "R" to part number: 112888R, 12FPLR.
3. JEDEC registered value.
dividohm type 210 adjustable vitreous enameled resistors

MOUNTING METHODS:
- Flat base or stud type.
- Stud type has a 0.18" hole with a 0.15" clearance for mounting.
- Studs can be soldered or fastened with special threads or by tapping holes.

SIZE DESIGNATION:
- The size designation indicates the type and size of the resistor.

RESISTOR MATERIALS:
- Resistors are made of high-grade vitreous enameled wire.

SPECIFICATIONS:
- Resistance values are given for various wattage ratings.
- Rated maximum power and efficiency are also specified.

<table>
<thead>
<tr>
<th>Wattage</th>
<th>Core Diameter</th>
<th>Max. Amperage</th>
<th>Core Length</th>
<th>Max. Amperage</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.06</td>
<td>2.5</td>
<td>3.0</td>
<td>2.5</td>
</tr>
<tr>
<td>50</td>
<td>0.08</td>
<td>5.0</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>75</td>
<td>0.10</td>
<td>7.5</td>
<td>5.0</td>
<td>7.5</td>
</tr>
<tr>
<td>100</td>
<td>0.12</td>
<td>10.0</td>
<td>6.0</td>
<td>10.0</td>
</tr>
<tr>
<td>150</td>
<td>0.14</td>
<td>15.0</td>
<td>8.0</td>
<td>15.0</td>
</tr>
<tr>
<td>200</td>
<td>0.16</td>
<td>20.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>250</td>
<td>0.18</td>
<td>25.0</td>
<td>12.0</td>
<td>25.0</td>
</tr>
<tr>
<td>350</td>
<td>0.20</td>
<td>35.0</td>
<td>14.0</td>
<td>35.0</td>
</tr>
<tr>
<td>450</td>
<td>0.22</td>
<td>45.0</td>
<td>16.0</td>
<td>45.0</td>
</tr>
<tr>
<td>550</td>
<td>0.24</td>
<td>55.0</td>
<td>18.0</td>
<td>55.0</td>
</tr>
<tr>
<td>650</td>
<td>0.26</td>
<td>65.0</td>
<td>20.0</td>
<td>65.0</td>
</tr>
<tr>
<td>750</td>
<td>0.28</td>
<td>75.0</td>
<td>22.0</td>
<td>75.0</td>
</tr>
</tbody>
</table>

STANDARD WIRE SIZES:
- Wire sizes range from 18 to 6/0, with corresponding conductor capacity.

QUANTITY PRICES ON REQUEST

All prices are in U.S. dollars.
New 28F Series Capacitors
For SCR Commutation Applications

Standard Ratings Range from 25 to 150, 1,200 to 3,000 Volts Max.

GENERAL ELECTRIC
Industry's most complete line of SCR capacitors

CAPACITOR SELECTION (Cont.)

2. Pulse width less than 50 μ sec (Given) Capacitance: 5 MFD ± 10 percent Voltage: 65 VAC, 16.6 KHz continuous sinewave

- Temperature: 60 C
- Select a 5 MFD unit with an 80 C current rating near 34 amps RMS. 2H1245FC has a current rating of 30.6 for 50 microseconds.
- The current multiplier for 16.6 KHz (pulse width = 50 microseconds) from Fig. 5 in 1.2.
- Allowable current for Cat. No. 2H1245FC at 16.6 KHz is (1.2) (30.6) = 36.7 amps RMS.
- Since the allowable current of 36.7 amps is greater than the required value of 34 amps RMS, this unit is adequate.

The following two examples are typical of SCR commutating applications involving unidirectional or bidirectional square waveforms such as those found in variable AC and DC motor speed controls, power inverters, and other low-frequency applications with short voltage rise times.

![Square Wave Diagram](image)

1. Unidirectional square wave

Given:
- Capacitance: 5 MFD ± 10 percent Voltage: 60 Vp-p square wave 100 KHz rep rate
- Current: Half-sine wave pulses 60 microseconds wide
- Temperature: 60 C ambient

a. Determine RMS current:

\[I_{RMS} = \frac{1}{\sqrt{2}} \times \text{Peak Current} \]

\[V_{RMS} = 60 \text{ Vp-p} \]

\[C = 5 \text{ MFD} \]

\[f = 100 \text{ KHz} \]

\[I_{P} = \frac{V_{RMS}}{Z} \]

\[Z = \sqrt{R^2 + X^2} \]

\[R = 0 \text{ (resistive load)} \]

\[X = \omega L \]

\[\omega = 2\pi f \]

\[L = \frac{V_{RMS}}{I_{P}} \]

\[I_{RMS} = \frac{1}{\sqrt{2}} \times I_{P} \]

\[I_{RMS} = \frac{1}{\sqrt{2}} \times \frac{60}{0.01} \]

\[I_{RMS} = 21.21 \text{ A} \]

b. Determine RMS voltage:

\[V_{RMS} = I_{RMS} \times Z \]

\[Z = \sqrt{R^2 + X^2} \]

\[R = 0 \text{ (resistive load)} \]

\[X = \omega L \]

\[\omega = 2\pi f \]

\[L = \frac{V_{RMS}}{I_{P}} \]

\[L = \frac{60}{21.21} \]

\[L = 2.82 \text{ H} \]

\[Z = \sqrt{0^2 + 2.82^2} \]

\[Z = 2.82 \Omega \]

\[V_{RMS} = 21.21 \times 2.82 \]

\[V_{RMS} = 59.92 \text{ V} \]

<table>
<thead>
<tr>
<th>Component</th>
<th>RMS Voltage</th>
<th>RMS Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>21.21</td>
<td>59.92</td>
</tr>
<tr>
<td>B</td>
<td>21.21</td>
<td>59.92</td>
</tr>
<tr>
<td>C</td>
<td>21.21</td>
<td>59.92</td>
</tr>
<tr>
<td>D</td>
<td>21.21</td>
<td>59.92</td>
</tr>
<tr>
<td>E</td>
<td>21.21</td>
<td>59.92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>RMS Voltage</th>
<th>RMS Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>21.21</td>
<td>59.92</td>
</tr>
<tr>
<td>G</td>
<td>21.21</td>
<td>59.92</td>
</tr>
<tr>
<td>H</td>
<td>21.21</td>
<td>59.92</td>
</tr>
<tr>
<td>I</td>
<td>21.21</td>
<td>59.92</td>
</tr>
<tr>
<td>J</td>
<td>21.21</td>
<td>59.92</td>
</tr>
</tbody>
</table>

See "Max. RMS Volts AC" column for a-c Rating.

Based on 50 microseconds pulse width.

This number is given for purposes of derating only. In no case may capacitor be operated at currents in excess of 30 amps RMS.

This number is given for purposes of derating only. In no case may capacitor be operated at currents in excess of 30 amps RMS.

These designs use stranded copper straps instead of braided cable leads as the RMS current ratings make the use of cable unnecessary.
Fast Recovery Rectifier

2.0 Amps 200-600 Volts

-163-

THE GENERAL ELECTRIC A114 IS A 2.0 AMPERE, AXIAL-LEADED, FAST RECOVERY RECTIFIER. DUAL HEATSINK CONSTRUCTION PROVIDES RIGID MECHANICAL SUPPORT FOR THE PELLET AND EXCELLENT THERMAL CHARACTERISTICS. PASSIVATION AND PROTECTION OF THE PN JUNCTION OF THE SILICON PELLET ARE PROVIDED BY SOLID GLASS. NO ORGANIC MATERIALS ARE PRESENT WITHIN THE HERMETICALLY-SEACHED PACKAGE.

absolute maximum ratings: (25°C unless otherwise specified)

<table>
<thead>
<tr>
<th></th>
<th>A114B</th>
<th>A114C</th>
<th>A114D</th>
<th>A114E</th>
<th>A114M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Voltage (-65°C to +150°C, T1)</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>Working Peak, VWM</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>Repetitive-Peak, VWM</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>DC, VDC</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>Average Forward Current, IA</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75°C, ambient (see Rating Curves)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak Surge Forward I Current, ISFM</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-rep., .008 s at + half sine wave, 25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full load, EEDC method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-rep., .001 sec., half sine wave, 25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full load, @ +150°C, T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st (for fusing), RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.001 to .01 seconds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction Temperature Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating, T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage, TSTP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mounting: Any position. Lead temperature 290°C max., to 1/8" from body for 5 seconds max. during mounting.

electrical characteristics: (25°C unless otherwise specified)

<table>
<thead>
<tr>
<th></th>
<th>A114B</th>
<th>A114C</th>
<th>A114D</th>
<th>A114E</th>
<th>A114M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Forward Voltage Drop, VFM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1FM = 1.0A, T1 = 25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Reverse Current, IRM @ rated VWM</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>T1 = 25°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical IRM 25°C</td>
<td>300</td>
<td>300</td>
<td>500</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Typical Reverse Recovery Time, t9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Reverse Recovery Time, t99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery circuit per MIL-S-19500/226C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

559
CIRCUIT DESIGN INFORMATION

MAXIMUM ALLOWABLE DC OUTPUT CURRENT RATINGS

SINGLE PHASE, RESISTIVE AND INDUCTIVE LOADS

CAPACITIVE LOADS

Current Derating (in percentage load)

Average forward current as specified under maximum ratings, page 1, and derating curves for high temperature operation, above, must be corrected for applications with capacitive loads. As the current conduction angle, \(\alpha \), is decreased, the peak current required to maintain the same average current increases. \(\alpha \), the peak-to-average current ratio increases from 2:1. Figure 3 gives the derating required based on this increase in peak to average current ratio for sine wave operation. For more complete information consult Application Note 200.30.

METHOD:

1. Determine conduction angle \(\alpha \) in degrees for particular circuit as desired.
2. Enter Figure 3 for the particular conduction angle and read corresponding percent of forward current per cell.
3. Multiply the rated average current for resistive load from figures 1 and 2 for the actual ambient or tie point temperature required.

See Typical Examples Below

<table>
<thead>
<tr>
<th>TYPICAL EXAMPLES (25°C Ambient Temperature)</th>
<th>Example No. 1</th>
<th>Example No. 2</th>
<th>Example No. 1</th>
<th>Example No. 2</th>
<th>Example No. 1</th>
<th>Example No. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduction Angle ((\alpha))</td>
<td>170</td>
<td>110</td>
<td>130</td>
<td>70</td>
<td>Degrees</td>
<td>Degrees</td>
</tr>
<tr>
<td>Rated Average Current (Resistive Load)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Amp.</td>
<td>Amp.</td>
</tr>
<tr>
<td>% of Average Current</td>
<td>0.96</td>
<td>0.96</td>
<td>0.92</td>
<td>0.73</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Rated Average Current (Capacitive Load)</td>
<td>0.96</td>
<td>0.96</td>
<td>0.92</td>
<td>0.73</td>
<td>Amp.</td>
<td>Amp.</td>
</tr>
</tbody>
</table>

DERATING FOR SHORTEST CONDUCTION ANGLE

FORWARD CURRENT

PEAK

AVERAGE

\(\theta' \) = SHORTENED CONDUCTION ANGLE

OSCILLOSCOPE PRESENTATION
Steady State Thermal Resistance

Lead Length (inches) vs. Thermal Resistance (°C/Watt)

- Infinite Heat Sink Typical

Outline Drawing

All dimensions are in inches and (metric).

* Hold and solder flash fit
 * Controlled Permeability
HAMMOND PULSE TRANSFORMERS 610

- Available in 3 different mounting types.
- Rise times and insulation suitable for use in SCR firing circuits.
- Special types up to 100KV and high powers available on special order.

610 SERIES
- Epoxy cast with printed circuit pins.
- Weighs only 0.5 oz.
- These may be produced to MIL-T-27 on request.

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Ratio</th>
<th>Voltage (max.)</th>
<th>I_p</th>
<th>D.C. Res. (Ω)</th>
<th>Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>610 A</td>
<td>1:1</td>
<td>250</td>
<td>5.2 mH</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td>610 B</td>
<td>1:1</td>
<td>250</td>
<td>4.8 mH</td>
<td>2.1</td>
<td>1.85</td>
</tr>
</tbody>
</table>

NOTE - 610 A is replacement for old part #64287 and 610 B for #70303.

611 SERIES
- Open bracket frame with printed circuit pins on 0.1 grid.

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Ratio</th>
<th>Circuit</th>
<th>Voltage (max.)</th>
<th>I_p</th>
<th>D.C. Res. (Ω)</th>
<th>Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>611 A</td>
<td>1:1</td>
<td>125</td>
<td>8.6</td>
<td>0.45</td>
<td>0.55</td>
<td>1000 0.7</td>
</tr>
<tr>
<td>611 B</td>
<td>1:1.1</td>
<td>125</td>
<td>17.2</td>
<td>1.36</td>
<td>1.0</td>
<td>1.53 1.0</td>
</tr>
<tr>
<td>611 C</td>
<td>1:1</td>
<td>250</td>
<td>56</td>
<td>3.31</td>
<td>4.46</td>
<td>1500 1.2</td>
</tr>
<tr>
<td>611 D</td>
<td>1:1.1</td>
<td>250</td>
<td>17</td>
<td>2.26</td>
<td>1.31</td>
<td>2.12 1.2</td>
</tr>
</tbody>
</table>

612 SERIES
- Open horizontal bracket mounting with 4" flexible leads.

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Ratio</th>
<th>Circuit</th>
<th>Voltage (max.)</th>
<th>I_p</th>
<th>D.C. Res. (Ω)</th>
<th>Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>612 G</td>
<td>1:1</td>
<td>600</td>
<td>6.6</td>
<td>0.57</td>
<td>0.57</td>
<td>4000 8.0</td>
</tr>
<tr>
<td>612 H</td>
<td>1:1.1</td>
<td>600</td>
<td>1.5</td>
<td>0.45</td>
<td>0.42</td>
<td>4000 8.0</td>
</tr>
</tbody>
</table>

Supersedes previous issue. We reserve the right to revise this design without prior notice. Effective February 1976.
250 Volt ampfklip Semiconductor Fuses

- Designed specifically to protect semiconductor devices
- 250 volts RMS, 10 to 600 amps RMS
- Ceramic body — can't burn
- Pure silver links
- Links welded to contacts
- Rated by semiconductor specialists
SF25X Series, Data Sheet No. PD-8.002

Fuses are rated in RMS current. Rectifier circuit designs are often based on average current. During steady state operation the fuse must not be operated in excess of its maximum RMS current rating.

ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>SERIES</th>
<th>SF25X</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum RMS voltage</td>
<td>250</td>
<td>V RMS</td>
</tr>
<tr>
<td>Maximum peak voltage</td>
<td>363</td>
<td>V</td>
</tr>
<tr>
<td>Maximum dc voltage (refer to Fig. 18)</td>
<td>210</td>
<td>V dc</td>
</tr>
<tr>
<td>Maximum ac voltage</td>
<td>410</td>
<td>V</td>
</tr>
<tr>
<td>Interrupting capacity</td>
<td>230,000</td>
<td>A Peak</td>
</tr>
</tbody>
</table>

THERMAL-MECHANICAL SPECIFICATIONS

- Forced cooling current rating factor, 500 LFM: 1.2
- Maximum ambient temperature: 150 °C
- Maximum dynamic axial loading: 5 lb

DEVICE RATINGS

PART NUMBER

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>NOMINAL RMS CURRENT RATING (A)</th>
<th>FUSE RESISTANCE</th>
<th>MELTING (A)</th>
<th>CLEARING (IN)</th>
<th>MAX. TIGHTENING TORQUE (LB-FT)</th>
<th>WEIGHT (OZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF25X10</td>
<td>10</td>
<td>23</td>
<td>19</td>
<td>18</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>SF25X20</td>
<td>20</td>
<td>39</td>
<td>34</td>
<td>34</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>SF25X30</td>
<td>30</td>
<td>57</td>
<td>50</td>
<td>50</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>SF25X40</td>
<td>40</td>
<td>78</td>
<td>65</td>
<td>65</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>SF25X60</td>
<td>60</td>
<td>115</td>
<td>100</td>
<td>100</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>SF25X100</td>
<td>100</td>
<td>196</td>
<td>250</td>
<td>250</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>SF25X300</td>
<td>300</td>
<td>380</td>
<td>300</td>
<td>300</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>SF25X500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>SF25X1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>11.0</td>
<td>11.0</td>
</tr>
</tbody>
</table>

- See Figures 5 and 6 for RMS current ratings vs. ambient temperature.
- ±10% tolerance.
- As maximum rating shown on Figures 5 and 6 for $T_a = 25^\circ C$.
- Typical (θ_J) values for normal circuit conditions. See maximum clearing (θ_J) curves for values under specific operating conditions.
- Dimensions (See Drawing, Page 1)

DIMENSIONS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF25X10 to 10</td>
<td>2.000</td>
<td>10.8</td>
<td>2.038</td>
<td>14.3</td>
<td>0.069</td>
</tr>
<tr>
<td>SF25X10 to 30</td>
<td>2.188</td>
<td>80.9</td>
<td>2.488</td>
<td>61.9</td>
<td>1.587</td>
</tr>
<tr>
<td>SF25X10 to 40</td>
<td>2.125</td>
<td>76.7</td>
<td>2.376</td>
<td>70.7</td>
<td>1.826</td>
</tr>
<tr>
<td>SF25X10 to 50</td>
<td>2.085</td>
<td>73.6</td>
<td>2.316</td>
<td>70.7</td>
<td>1.926</td>
</tr>
</tbody>
</table>

- Tolerance is ±0.002 inch (±0.06mm)
- Tolerance is ±0.01 inch (±0.25mm)
Fig. 3—Pre-Loaded Melting Time Vs. Current—For Fuses Rated 10 to 30A

Fig. 4—Pre-Loaded Melting Time Vs. Current—For Fuses Rated 40 to 600A
Fig. 5 – Maximum RMS Continuous Current Vs. Ambient Temperature – For Fuses Rated 10 to 60A

Fig. 6 – Maximum RMS Continuous Current Vs. Ambient Temperature – For Fuses Rated 70 to 600A
Fig. 7 — Peak Let-Through Current Vs. Fault Current —
For Fuses Rated 10 to 30A

Fig. 8 — Peak Let-Through Current Vs. Fault Current —
For Fuses Rated 40 to 800A
Fig. 9 - Maximum Clearing I2t Characteristics - 250V Supply - For Fuses Rated 10 to 30A

OPERATING CONDITIONS:
1. ZERO INITIAL LOADING
2. 250V RMS, 60 Hz
3. LOW CIRCUIT POWER FACTOR (15% OR LESS)
4. 20°C AMBIENT

Fig. 10 - Maximum Clearing I2t Characteristics - 250V Supply - For Fuses Rated 40 to 600A

OPERATING CONDITIONS:
1. ZERO INITIAL LOADING
2. 250V RMS, 60 Hz
3. LOW CIRCUIT POWER FACTOR (15% OR LESS)
4. 20°C AMBIENT
Fig. 11—Maximum Clearing I^2t Characteristics—130V Supply—For Fuses Rated 10 to 30A

Available Fault Current (Symmetrical RMS Amperes)

Fig. 12—Maximum Clearing I^2t Characteristics—130V Supply—For Fuses Rated 40 to 600A
Fig. 13 — Clearing \(I^2t \) Characteristics Vs. Circuit X/R —
For Fuses Rated 10 to 30A

Fig. 14 — Clearing \(I^2t \) Characteristics Vs. Circuit X/R —
For Fuses Rated 40 to 600A
Fig. 15 - Maximum Arc Voltage Characteristic

Fig. 16 - Maximum DC Voltage Rating Vs. Circuit L/R
MPS-U05 (SILICON) MPS-U06

NPN SILICON ANNULAR AMPLIFIER TRANSISTORS

- Designed for general-purpose, high-voltage amplifier and driver applications.
- High Collector-Emitter Breakdown Voltage:
 - $V_{CEO} = 60$ Vdc (Min) @ $I_C = 1.0$ mA (Max) – MPS-U05
 - 80 Vdc (Min) @ $I_C = 1.0$ mA (Max) – MPS-U06
- High Power Dissipation – $P_D = 10$ W @ $T_C = 25^\circ$C
- Complements to PNP MPS-U55 and MPS-U56

MAXIMUM RATING

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>MPS-U05</th>
<th>MPS-U06</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Emitter Voltage</td>
<td>V_{CEO}</td>
<td>60</td>
<td>80</td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Base Voltage</td>
<td>V_{CB}</td>
<td>60</td>
<td>80</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter-Base Voltage</td>
<td>V_{BE}</td>
<td>4.0</td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Current – Continuous</td>
<td>I_C</td>
<td>2.0</td>
<td></td>
<td>A (max)</td>
</tr>
<tr>
<td>Total Power Dissipation @ $T_A = 25^\circ$C</td>
<td>P_D</td>
<td>1.0</td>
<td></td>
<td>W (max)</td>
</tr>
<tr>
<td>Emitter dissipation @ 25°C</td>
<td>I_E</td>
<td>8.0</td>
<td></td>
<td>mA (max)</td>
</tr>
<tr>
<td>Total Power Dissipation @ $T_C = 25^\circ$C</td>
<td>P_D</td>
<td>10.0</td>
<td></td>
<td>W (max)</td>
</tr>
<tr>
<td>Emitter dissipation @ 25°C</td>
<td>I_E</td>
<td>80</td>
<td></td>
<td>mA (max)</td>
</tr>
<tr>
<td>Operating and Storage Junction</td>
<td>T_J</td>
<td>-55 to +150</td>
<td></td>
<td>℃</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>T_J</td>
<td>-55 to +150</td>
<td></td>
<td>℃</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>$R_{J(A)}$</td>
<td>12.5</td>
<td>125</td>
<td>℃/W</td>
</tr>
<tr>
<td>Thermal Resistance, Junction to Ambient</td>
<td>$R_{J(A)}$</td>
<td>125</td>
<td></td>
<td>℃/W</td>
</tr>
</tbody>
</table>

(1) $R_{J(A)}$ is measured with the device soldered into a typical printed circuit board.

CASE 152:02
MPS-U05, MPS-U06 (continued)

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-Emitter Breakdown Voltage</td>
<td>BVCEO</td>
<td>80</td>
<td></td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter-Base Breakdown Voltage</td>
<td>BVCEO</td>
<td>80</td>
<td></td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>Collector Cutoff Current</td>
<td>ICBO</td>
<td></td>
<td></td>
<td>100</td>
<td>mAdc</td>
</tr>
<tr>
<td>ON CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC Current Gain (1)</td>
<td>rFE</td>
<td>80</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collector-Emitter Saturation Voltage (1)</td>
<td>VCE(sat)</td>
<td></td>
<td>0.18</td>
<td>0.4</td>
<td>Vdc</td>
</tr>
<tr>
<td>Emitter-Base On Voltage (1)</td>
<td>VBE(on)</td>
<td></td>
<td>-0.74</td>
<td>12</td>
<td>Vdc</td>
</tr>
<tr>
<td>SMALL-SIGNAL CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current-Gain–Bandwidth Product (1)</td>
<td>FT</td>
<td>50</td>
<td>170</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_{ob}</td>
<td></td>
<td>60</td>
<td>12</td>
<td>pF</td>
</tr>
</tbody>
</table>

(1) Pulse Test: Pulse Width ≤500 µs, Duty Cycle ≤2.0%

FIGURE 1 – DC CURRENT GAIN

FIGURE 2 – "ON" VOLTAGES

FIGURE 3 – DC SAFE OPERATING AREA

FIGURE 4 – CURRENT-GAIN–BANDWIDTH PRODUCT
Photon Coupled Isolator H11A1-H11A2

GaAs Infrared Emitting Diode & NPN Silicon Phototransistor

The General Electric H11A1 and H11A2 are gallium arsenide infrared emitting diodes coupled with a silicon phototransistor in a dual-in-line package.

Absolute maximum ratings: (25°C)

<table>
<thead>
<tr>
<th>INFRARED EMITTING DIODE</th>
<th>MAX.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>100</td>
<td>milliwatts</td>
</tr>
<tr>
<td>Forward Current (Continuous)</td>
<td>40</td>
<td>milliamperes</td>
</tr>
<tr>
<td>Forward Current (Peak)</td>
<td>3.0</td>
<td>amperes</td>
</tr>
<tr>
<td>Pulse with 1 microsecond</td>
<td>100</td>
<td>milliamperes</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>6</td>
<td>volts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHOTO-TRANSISTOR</th>
<th>MAX.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>150</td>
<td>milliwatts</td>
</tr>
<tr>
<td>Collector Voltage</td>
<td>30</td>
<td>volts</td>
</tr>
<tr>
<td>Vceo</td>
<td>70</td>
<td>volts</td>
</tr>
<tr>
<td>Collector Current (Continuously)</td>
<td>100</td>
<td>milliamperes</td>
</tr>
</tbody>
</table>

Storage Temperature: -55 to 150°C
Operating Temperature: -55 to 100°C
Lead Soldering Time: 200°C for 10 seconds

Individual electrical characteristics (25°C)

<table>
<thead>
<tr>
<th>INFRARED EMITTING DIODE</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage (Ie = 10 mA)</td>
<td>1.1</td>
<td>volts</td>
<td></td>
</tr>
<tr>
<td>Reverse Current (Vce = 3 V)</td>
<td>10</td>
<td>microamperes</td>
<td></td>
</tr>
<tr>
<td>Capacitance (Vf = 50 ± 1 MHz)</td>
<td>50</td>
<td>picofarads</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PHOTO-TRANSISTOR</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown Voltage (Vbc)</td>
<td>50</td>
<td>volts</td>
<td></td>
</tr>
<tr>
<td>Collector Current (Ic)</td>
<td>70</td>
<td>milliamperes</td>
<td></td>
</tr>
<tr>
<td>Collector Current (Ic)</td>
<td>50</td>
<td>nanoamperes</td>
<td></td>
</tr>
<tr>
<td>Capacitance (Vbc = 10 V, f = 1 MHz)</td>
<td>3</td>
<td>picofarads</td>
<td></td>
</tr>
</tbody>
</table>

Coupled electrical characteristics (25°C)

<table>
<thead>
<tr>
<th>DC Current Transfer Ratio</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ie = 10 mA, Vce = 10 V</td>
<td>50</td>
<td>20</td>
<td>%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SATURATION VOLTAGE</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ic = 10 mA, Ie = 0.5 mA</td>
<td>0.1</td>
<td>0.4</td>
<td>volts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INPUT TO OUTPUT CAPACITANCE</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vce = 10 V, f = 1 MHz</td>
<td>2</td>
<td>2</td>
<td>picofarads</td>
</tr>
</tbody>
</table>

Switching Speeds

<table>
<thead>
<tr>
<th>RISE/FALL TIME</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vce = 10 V, Rl = 300 Ω, RL = 100 Ω</td>
<td>100</td>
<td>200</td>
<td>nanoseconds</td>
</tr>
<tr>
<td>Rise/Fall Time</td>
<td>2</td>
<td>300</td>
<td>microseconds</td>
</tr>
</tbody>
</table>
TYPICAL CHARACTERISTICS

OUTPUT CURRENT VS INPUT CURRENT

OUTPUT CURRENT VS TEMPERATURE

INPUT CHARACTERISTICS

OUTPUT CHARACTERISTICS

SWITCHING TIMES VS OUTPUT CURRENT

OUTPUT CURRENT (IQO) VS INPUT CURRENT
APPENDIX III

COMPUTER PROGRAMME

and

FLOW CHART
PROGRAM INVERTER INPUT OUTPUT

ANALYSIS OF COMMUTATION CIRCUIT OF MODIFIED MCUMRAY
INVERTER CIRCUIT.

This program calculates the instantaneous values of
commutation capacitor current and voltage during entire
commutation process. It also calculates the total time for
charging of commutation capacitor and discharging of excess
charge on the capacitor during inverter starting and the
total commutation time for entire commutation process.

PHONENCLATIRE

Lc is the value of commutating inductance in microHenries.
L is the value of d/dt inductance in microHenries.
C is the value of commutating capacitance in microFarads.
R is the value of damping resistance in ohms.
Ed is the value of the supply voltage in volts.
Cil is the value of maximum load current to be commutated in
amps.

O of the commutation inductor is taken as 10.

DIMENSION T(E,5)
REAL L(C),L(R),C,R
READ *L,C,R
READ *E0,C1

L=LC
R=RC/R1/R2
ALP1=ALP1/R1/R2
ALP2=ALP2/R1/R2
\[W1=W2=0.1/\sqrt{L/C} \]
\[E1=E0 \]
W20=0.1/\sqrt{L/C}
EC1=0.

STARTING CYCLE

INITIAL CONDITIONS AND PARAMETERS

GO TO 10,20,30,40,50,60

PRINT 11

11 FORMAT (1H1,30X,1H STARTING CYCLE ***)

70 PRINT 21
RETURN OF EXCESS CHARGE ON CAPACITOR

INITIAL CONDITIONS AND PARAMETERS

\(EI = E1 \)
\(ALP = ALP1 \)
\(EC1 = 1 \)
\(GO TO 40 \)

FIRST PORTION OF COMMUTATION CYCLE

INITIAL CONDITIONS AND PARAMETERS

\(E = 0 \)
\(EI = E1 \)
\(L = LC \)
\(W = W20 \)
\(ALP = ALP3 \)
\(EC1 = 0 \)

GO TO 60

SECOND PORTION OF COMMUTATION CYCLE

INITIAL CONDITIONS AND PARAMETERS

\(E = ED \)
\(EI = E1 \)
\(CII = CIL \)
\(L = LC1 \)
\(W = W10 \)
\(ALP = ALP2 \)
\(EC1 = 0 \)

GO TO 60

THIRD PORTION OF COMMUTATION CYCLE

INITIAL CONDITIONS AND PARAMETERS

\(E = E1 \)
\(EI = E1 \)
\(ALP = ALP1 \)
\(EC1 = 0 \)

CALCULATE \(\Phi_M, \text{CTR}, (\text{COMMUTATION CURRENT}), E\text{C}(\text{COMMUTATION CAPACITOR VOLTAGE}) \)

\(W = \text{SORT}(W2^* + 2\cdot ALP*2) \)
\(\Phi_M = \text{TAN}(1/A_{PL}) \)

PRINT 51

\(W = \text{SORT}(W2^* + 2\cdot ALP*2) \)
\(\Phi_M = \text{TAN}(1/A_{PL}) \)
\(CII = (EI - E1)/(W2L) \cdot \exp(-ALP*2) \cdot \sin(A_{PL}) \cdot CII = (W0/4) \cdot \exp(-ALP*2) \cdot \sin(A_{PL} - 3\pi/4) \cdot \phi_0 \)
115 \text{IF}(\text{CIC} > 0.5) \rightarrow \text{GO TO 110}
120 \begin{align*}
\text{CHECK FOR FINAL CONDITION} \\
\text{GO TO (110, 110, 110, 110, 110, 110, 110, 110, 110)}
\end{align*}

125 110 \text{IF(CIC) } 200 \rightarrow \text{100} \\
130 \text{IF(CIC) } 100 \rightarrow \text{100} \\
140 \text{IF(CIC) } 10 \rightarrow \text{100} \\
150 \text{PRINT 71} \text{IC}=\text{CIC} \text{FORMAT (10X, F5.2, 10X, F10.5, 10X, F10.5, 10X, F10.5, 10X, F10.5, 10X, F10.5)}
160 \text{GO TO 70} \\
170 \text{K} = \text{K} + 1 \\
180 \text{IF(K} \leq 5) \rightarrow \text{GO TO 80}

190 \begin{align*}
\text{CALCULATE TOTAL TIME FOR CHARGING OF COMMUTATION CAPACITOR} \\
\text{AND DISCHARGE OF EXCESS CHARGE ON CAPACITOR DURING INVERTER STARTUPS (KSTP) AND TOTAL COMMUTATION TIME (TCT).}
\end{align*}

195 \text{KSTP} \text{= TIME(111), TIME(2)} \\
\text{TCT} \text{= TIME(3) + TIME(4) + TIME(5)} \\
\text{PRINT 201, KSTP} \\
\text{PRINT 202, TCT}
200 \text{FORMAT (30X, CHARGING TIME OF CAPACITOR = *F9.2, MICRO SECONDS*, /)} \\
201 \text{FORMAT (30X, TOTAL COMMUTATION TIME = *F9.2, MICRO SECONDS*, /)} \\
202 \text{STOP}
203 \text{END}.