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ABSTRACT

This' thesis is concerned with an elegant method of decoupling
a pair of lossless coupled nonuniform transmission lines (CNUIL), and
its applications to a study of directional couplers and all-pass

networks using CNUILs.

A theory is developed whereby a pair of lossless CNUTLs (similar
or dissimilar) with a common return and supporting only TEM waves, is
decoupled into two lossless nonuniform transmission lines (NUTL).
This theory is quite general, and is independent of the port termina-
tions, éﬂy symmetry conditions, etc. The method directly relates
the line parameters of the CNUTLs to’ those of the decoupled

lines and vice versa;further, the matrix parameters of the

CNUTLS as a four-port, are explicitly expressed in terms of those

of the decoupled lines as two-ports.

—

The above theory is utilized to study two applications of

CNUTLs, namely, as directional couplefs and all-pass networks.

Tt is shown that for CNUTLs to behave as a codirectional coupler,
each of the decoupled lines should be a proportional line, while
for contradirectional coupler action, the two decoupled lines have
to be duals of each other. Further, such cqntradirectionalﬂ(co—
directional) couplers have the property 813 = 824(813 = 824 and

S, = 523) for their scattering parameters. The coupling response

14
of the codirectional coupler is found to be periodic, while the phase

xxiii



shift between coupled and transmitted signals varies linearly with
" frequency. Contradirectional couplers are found to exhibit differ-
ent characteristics depending on the distributions of the decoupled
lines. It is shown that a 90° phase shift is obtained by choosing
symmetric NUTLs as decoupled lines, while 0° or 180° phase shift

may be obtained by choosing one decoupled line to be the same as the
other, turned around. The coupling response of various contra-
directional couplers, for which the decoupled lines are ''basic NUTLS
with hyperbolic sclutions", are studied in detail. It is shown that
all these couplers have a high-pass response and that the CNUILs with
"hyperbolic cosine squared" lines as decoupled lines, have the best

response of all the CNUTLs considered.

Three different types of CNUTL folded all-pass networks are
studied by converting the CNUTL four—port into a two-port by proper
port terminations. The requirements to be satisfied by the chain
parameters of the corresponding decoupled NUTLs as two ports are
derived. It is shown that these conditions are always met if dual
1ines are chosen as the decoupled lines for two of these types, while
for the third type, the decoupled lines are, in addition, propor-
tional, The phase and delay characteristics of the above three
types are investigated, when the decoupled lines are basic lines with
hyperbelic solutions. It is shown that these characteristics can
be controlled by changing the taper of the lines. Further, these

networks can provide delays larger than that obtainable from a single

xxiv



uniform line of twice the length. Of the lines considered, the
peak delay is found to be maximum when the decoupled lines are chosen

to be "trigonometric" or "hyperbolic sine squared" lines.



CHAPTER 1

INTRODUCTION

1.1 General:

In UHF and microwave systems, the frequency is very high, causing
the wavelength to become quite small (cf the order of centimeters),
thereby making the network elements comparable in size to the opera-
ting wavelength. This causes the elements to deviate from their low
frequency characteristics, and consequently their lumped models
indicating that the distributed nature of the network elements must
now be considered; for example, the distributed capacitance associated
with the winding of an inductorcl’z). Thus the representation of the
system by a lumped model is no longer adequate, and must be replaced
by the more accurate distributed parameter model, This being the
case, it is desirable to introduce distributed effects into the system
systematically and by design, rather than to have them as an un-
avoidable consequence. Thus it is logical to construct UHF and micro-
wave systems with distributed elements whose electrical properties
can be easily and precisely predicted. Transmission lines and wave-
guides are some of the distributed elements which has been in use
for many years in UHF and microwave systems(2’3). Waveguide compo-
nents have the advantage of high power handling capacity without
radiation. However, for each waveguide, there exists a band of
frequencies over which the transmission of energy takes place, This
band is required to be above a cut-off frequency of the waveguide,

which depends on the waveguide dimensions as well as on the mode of



propagation. On the other hand, transmission lines can support
propagation of frequencies starting from zero frequency (d.c.).
Further the bandwidth of transmission lines operating in TEM mode

is greater than that of corresponding waveguide components. Conseq—
ently, they have found applications in wideband systems with bandwidth
requirements of up to one decade (4). A more significant advantage
of transmission line networks is that at low microwave frequencies,
waveguide components become very large while transmission line type

device remain reasonably small(B’S).

1.2 Lossless Transmission Lines:

The lossless lines are of particular interest since it is
desirable to transmit energy from source to load with a minimum loss.
It has been found, in fact, that most UHF and microwave transmission
systems in existence do approximate the lossless condition. Lossless
uniform transmission line (UTL) has been extensively studied and its
(6

properties are firmly established These lines support TEM waves

and are widely used as transformers, resonators, filters, phase
(3,6-10)

equalizers and matching stubs However, in these applica-

tiods, the UTLg can be used only in a limited range of frequencies.
On the other hand, many microwave communication systems require
components to operate over a wide band of frequencies, so that; they
can handle signals at various frequencies without degrading the
system performance. In order to achieve wider bandwidths, cascaded
sections of UTLs having different characteristiec impedances have
(11—13)'

been employed Though this technique extends the frequency



band of operation to some extent, the resulting networks are larger in
weight and ;ize. To obtain superior characteristics with reduction
in size and weight, attention has been given in recent years to the
possibility of using lossless nonuniform transmission lines (NUTL)

) {9)

. (14 .
as various acoustics and microwave components .

A lossless NUTL is a lossless transmission line, whose nominal
characteristic impedance varies continuously along the length of the

line according to a prescribed law and is described by the following

distributions:
L(x) =T £(x)
: o<x <2 .. (1.1
c(x) = ¢ 8(x)
where
L(x) = series inductance per unit length at a distance x
1
from the transmitting end,
C(x) = shunt capacitance per unit length at a distance X
from the transmitting end,
and Lo, Co = arbitrary scaling factors.

Considerable work has been done on obtaining the solutions of telegra-
pher's equations for NUTLs as well as their properties(ls—l7). A
comprehensive bibliography on NUTLs is given by Kaufman(ls). These - authors

have also found various microwave applications of NUTLs as microwave

components. Some of the NUTLs which have been investigated for micro-

22) (23)

wave applications are Bessel(19_21), hyperbolic( , parabolic



(24-25) (20) (27).

exponential » Klopfenstein and Chebyshev Of various
NUTLs, exponential line, in which £(x) and g(x) are inverse and
exponential functions of x has received a great deal of investigation
mainly because of the ease of construction and the simplicity of
obtaining voltage and current solutions. This line has been extensively
used as resonators, filters, transformers and other microwave compo-

(3’28). It has been found that these components designed with

nents
exponential lines exhibit better characteristics than those of UTLs.
Nonuniform transmission lines with various other parameter distribu-—
tions have also been used as pulse transformers, matching sections,

filters and broad band terminations(29-33).

1.3 Lossless Coupled Transmission Lines:

Applications of a pair of lossless coupled transmission lines in
microwave frequencies have been investigated by many authors to obtain

. . . . (35-37)
superior properties which are unobtainable from uncoupled lines .
Directional couplers, delay networks, impedance transformers, radiation
launching devices and slow wave structures are to name but a few of

such applications. A pair of lossless coupled nonuniform transmission

lines (CNUIL) with common return is schematically shown in Fig.1.1, and
can be described by the following distributions:
Ly @0 = Ly £1,60
Lzz(x) = Ly fzz(x) 0<xz<s 2 .. (1.2a)

Lia(0) = Ly () = Ly,0 £4,00



Line A
VA(s,x)
Line B
x =0 f X =
Vg (s,x)

Fig. 1.1: A Pair of Lossless Coupled

Lines with Common Return



and

C11() = Cpyg 8y, ()

In
[

A
o

C22(y\ ;. C220 g22(x) 4] .. (1.2p)

C1a() = €y ) = € pp 81,0

where the line parameters per unit length at a distance x from the

transmitting end are

self-inductance of line A,

L1160
L22(x) = self-inductance of line B,

le(x) = mutual inductance between lines A and B,
Cll(x) = self-capacitance of line A to ground,
sz(x) = self-capacitance of line B to ground,
Clz(x) = mutual capacitance between lines A and B.

The parameters le(x) and Clz(x) represent the distributed electro-
magnetic coupling between the lines. The distributions of the line
parameters are contained in fij(x) and gij(x), which are non-dimensional
while the quantities LijO and Cijo are dimensional (where i=1,2 and j=1,2).

For a pair of lossless coupled uniform transmission lines (cutL),

£500 = 5,60 = 1,
that is, the distributions are independent of x. Coupled uniform

transmission lines become identical when in addition they also have

Li10 = La0e

C110 = €220



In order now to distinguish clearly between various kinds of loss-

less CNUTLs so far investigated in microwave.applications, following

terms are introduced:

(1) Identical coupled lines: Coupled lines having parameters

such that

£1000 = £,5(x) , Ly19 = Lyyg
0<x <2 .. (1.3)
811 = 85,0 , Gy = Cyyg

(1i) Similar coupled lines: Coupled lines having parameters

such that

£ = £, 5 Ly * Lyyg
0<x <28 . (1.4)

811 (%) = 823 5 Cpy4 ® Cyyq
(iii) Dissimilar coupled lines: Coupled lines having parameter

distributions such that

fll(x) z fzz(x)
0<x <2 .. (1.5)

g1,(®) = 8y, (¥)

Thus dissimilar coupled lines have distributions independent of

each other while the scaling constants may. be same or different. There

exist a number of methods to construct CUTLs, using strip lines, at micre-
. . . (38-50)
wave frequencies for various values of electromagnetic coupling .

Some of these configurations are shown in Fig. 1.2. Recently Arndt(SI)

has shown how in some cases, these techniques can also be employed to

(52)

construct CNUTLs. Oliver was the first to exploit the presence of
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Fig. 1.2: Various Strip Line Configurations



electromagnetic coupling in transmission lines as directional couplers.
Since then, many authors have studied identical CUTLs as directional-
couplers(34’35’53’54). It has been found that these couplers have
infinite directivity with 90° phase difference between coupled and
transmitted signals and require all the ports to be matched.

Cristal(SS) considered the directional couplers with similar CUTLs.

These couplers demonstrate directional coupler action along with impedance

transformation between certain ports. A severe limitation of CUTLs as
directional couplers is their restricted bandwidth? which is often

inadequate for wide band microwave systems. With a view to increasing
the bandwidth, directional couplers are comstructed by cascading CUTLs,
(56—58).

with different characteristic impedances Using the analytical

equivalence(59) between the directional coupler and that of stepped

(60) gave a general synthesis procedure

quarter wavelength filter, Levy
for asymmetric multi<element CUTL directional couplers. While

achieving a greater bandwidth, these couplers suffer from the fact that
the electromagnetic coupling is discontinuous at the junction of

sections, which degrades the coupler directivity and other charaéteristics
appreciably. In order to eliminate the discontinuity effects and to
further increase the coupler bandwidth, CNUTLs are used as directional
couplers. These couplers are fabricated by either employing coupled
(44,51,61,62)

NUTLs or are approximated by a cascade of coupled UTL

segments of short lengths, whose electromagnetic coupling values match
(63,64)
with those of the taper at one end of each of the segments .

Lossless coupled NUTLs when used as directional couplers eliminates

the electromagnetic discontinuity along the line and makes it possible
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to obtain zero electromagnetic coupling at least at one of the ends ‘ ;

(34). Consequently, the smooth transition of

of the coupled lines
the reactive coupling obtained‘at the end not only simplifies the
construction of these couplers, but also provides better terminal
matching conditions. In addition, these couplers possess the advant-
ages of small size and high-pass coupling response in the frequency

range of interest(34).

Another widely used application of lossless coupled UTLs is 3
folded all-pass networks. These networks are often employed as phase
or delay equalizing components in microwave systems. These are also
used widely at microwave frequencies as filters(7’9). As delay equal-
izers, these have been used in broad band and PCM transmission

(65_67). Further these networks have found applications as ;

(34)

systems

phase equalizers in 'Magic T'(68_71). Recently, Yamamoto et al

T

have employed coupled NUTL with exponential taper as folded all-pass
networks. These tapered all-pass networks havg the advantag;s of
smaller size in addition to providing control-on phase character-
istics and peak time delay through their tapers. Apart from

these applications, coupled transmission lines are used in micro-

(72-75) (76,77)
?

wave systems as hybrid junction , balun transformers

and resonators(7’9'77_79).

While the lossless coupled lines have been used in a large number

of applications as mentioned before, the problem of analyzing such net-
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works is complicated due to the presence of distributed electromag-

netic coupling terms present in their telegrapher's equations.

(

89) described a method of analyzing two coupled identical
(81)

Vlostovsky
uniformllines by determining characteristic roots. Amamiya
has analyzed the coupled identical UTL in the time domain by using
the concept of matched termination networks. Using this approach,
he studied the crosstalk on transmission lines and the properties of

(82) studied wvarious ele-

directional couplers in time domain. Youla
ctrical properties of multiwire identical lines, while using them as

synthesis building blocks in microwave systems.

A simpler approach to the problem of analyzing identical uniform
coupled line metworks without solving coupled line equations has been
taken by several authors. The concept of even and odd mode is used

(53)

for solving this problem by Jones and Bolljhan The even mode

is generated by applying voltage signals (Ve) of equal amplitudes (5V)
with same phase at ports 1 and 2 respectively as shown im Fig. 1.3(b).
On the other hand, the odd mode is obtained by exciting the ports

1 and 2 with voltage signals (Vo) of equal amplitudes (4V) but with
opposite phase as shown in Fig. 1.3(e). It may be shown that the
plane of symmetry TT' can be replaced by a magnetic wall.(infinite
impedance plane) for the even mode and by an electric wall (zero
impedance plane) for the odd mode. The coupled line network of Fig.
1.3(a) can now be analyzed by superposing these two modes. However,
it is necessary that the coupled line network including the termina-

tions be absolutely symmetrical about the axis TT'. Reed and Wheeler(SA)
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excited.

(b) Even mode port conditions

(c) 0dd mode port conditions

Fig. 1.3: Even and 0dd Mode Circuits for a Symmetrical Coupled

Line four-port.
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applied this method to waveguide and co-axial networks, where apart from
satisfying the symmetry condition, the size of lines has to be very
small as compared to the operating wavelength. Using this method, the
networks consisting of coupled identical uniform lines embedded in an
inhomogenecus dielectric material (e.g. suspended, substrate, micro-
strip) have also been analyzed(BB). These conditions of symmetry has
been medified by Ozaki and Ishi(84) to allow a class of non~identical
uniform lines to be analyzed. Recently Yamamoto et al(34) have
extended the even and odd mode principles to the analysis of tapered
coupled lines, The lines, however, have got to be identical; din
addition, the phase velocities of the even and odd mode signals must be
equal and constan* at every point along the lines. Hence this methed
is not applicable to lines in a suspended substrate configurations(83),
where the even and odd mode signals must propagate with unequal phase
velocities. Further, the coupled line networks including the terminaz-~
tions are required to be symmetrical about the axis. It may also be
worthwhile to mention that in all the above methods, except in the case

of identical uniform lines(ss)

» it is not clear as to how the coupled
line parameters such as self-inductance per unit length at any point
on the transmission line etc. can be related to those of even and odd

mode lines.

In addition to the methods cited above, Sharpe(Gl) has given a
technique of analyzing CNUTLs as contradirectional couplers by suitably
decoupling the lines. However, his method assumes double symmetry of
the scattering matrix;further, his results apply only for the case of®

CNUTLs having an absolutely continuous characteristic impedance matrix.
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Thus it appears desirable to investigate the possibilities of
developing a new method of analyzing CNUTLs. To be useful, this method
should be simple to apply and be general in its scope of applications.
One of the ways to approach this problem is to decouple the coupled

line telegrapher's eguation without any apriori assumptions.

1.4 Scope of the Thesis:

The aim of this thesis is firstly to obtain a general theoxy for de-
coupling a pair of lossless coupled lines (similar ox dissimilar) with common
return, and .supporting TEM mode of propagation. This new theory is then

employed to investigate in detail the applications of lossless CNUTLs as:

(i) Contradirectional couplers,
(ii) Co-directional couplers, and finally,

(iii) Folded all-pass networks.

A theory for decoupling of the coupled lines is developed in Chapter
2. This reduces the problem of analyzing lossless CNUTLs as a four-port
network to that of analyzing two 2-port networks. This theory if quite
"general and is independent of port terminations, symmetry conditions, etc.
Further, the method is applicable to identical or non-identical, similar
or dissimilar coupled lines. Another feature of this technique is that
it directly relates thé coupled line parameters to those of the corres-
ponding decoupled lines and vice versa. The matrix parameters of loss-—
less CNUTLs are also determined in this Chapter in terms of the de-

coupled line matrix parameters.

Chapter 3 deals with contra-directional and co-directional couplers

using coupled lines with or without impedance transformation. Con-
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straints on decoupled line distributions for these coupler actions
are derived. The characteristics of contradirectional couplers for
different decoupled lines including "Basic lines" with hyperbolic
solutions are investigated. In addition, properties of codirectional

couplers are also studied.

Chapter 4 presents tapered folded all-pass networks, Various
folded all-pass networks are analyzed using the theory of Chapter 2,
and the constraints on corresponding decoupled line distributions
are obtained. Phase and delay characteristics of these networks
using "Basic lines" with hyperbolic solutions as decoupled lines

are investigated,

Chapter 5 summarizes the results of the thesis and makes some

suggestions for further studies.
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CHAPTER 2
DECOUPLING OF LOSSLESS COUPLED NON-UNIFORM TRANSMISSION LINES

2.1 Introductions:

As mentioned in Sec. 1.3, the analysis of coupled lossless lines
with common return, supporting only TEM waves may be simplified by decoupl-
ing the coupled lines. In this Chapter, a simple methed of decoupl-
ing a pair of coupled lossless lines into two pairs of uncoupled lines
is introduced(ss). Treating the coupled lines as a four-port network,
the immittance and chain matrices are obtained in terms of the corres-
ponding decoupled line matrices. Transfer scattering matrix of the coupled
line four-port is obtained in terms of the decoupled line chain para-

meters.

2.2 Decoupling of Coupled Lines:

Consider a pair of lossless coupled lines with common return and
supporting TEM waves as shown in Fig. 1.1. Let the per unit length

parameters of these lines be

L (®) 5 Ly, = Loygg £9p () .o (2.1a) ‘

11 = B0 f11

c x) Cyp = C590 g22(x) o (2.1D)

11 = C110 B12

.. (2.1e)

L, = Lygg £12(0) 5 Cpp = Cypg 812

where

Self inductance of line A,

Ly, ()

Self inductance of line B,

Ly, (x)
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le(x) = Mutual inductance between lines A and B,
Cll(x) = Self-capacitance of line A to ground,
sz(x) = Self-capacitance of line B to ground,
C12(x) = Mutual capacitance between lines A and B.
For TEM wave propagation, it is known(61> that these coupled line
parameters satisfy the relation
[LG)ICE] = 53— (U] .. (2.2)
v (x)
where v(x) is a positive function, [U] is a unit matrix, and
L) L)
[L{x}] = .. (2.3a)
L1200 Ly (0
Cll(x) +’Clz(x) —Clz(x)
fcx)] = .« (2.3b)
i —Clz(x) sz(x) + Clz(x)
having
Lij(x) =0 , Lii(x) > Lij(x) . C:Lj(x) z 0 .o (2.3¢)
From (2.2) and (2.3)
Lip® Ly 60 __ LpW . eum
Clz(x) sz(x) + C12(x) Cll(x) + Clz(x)
and
- 1 '
v(x) = .. (2.5)

L5 G 16,00 + €, G} = L, G €, &)
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Thus a pair of coupled lines supporting TEM waves have the line para-

meters which satisfy the requirements (2.4) and (2.5). Telegraphers

equations for these lines are:

[V'(s’x)] = - [2(s,x)][I(s,x)]
[1'(s,x)] = ~ [Y(s,x)1[V(s,x)]
where
VA(s)x) IA(s’x)
[V(s,x)] = 3 [I(s,x@)] =
VB(s,x) IB(s,x)
[Z(s,x)] = s[L(x)] [Y(s,x)] = s(C(x)]
and ) -

s is the complex frequency.

(2.62a)

(2.6Db)

(2.7a)

o (2.71)

In order to decouple the coupled lines, the following linear transforma-

tions are introduced:

[V(s,x)] = [Q(x)I[E(s,x)]
[I¢s,x)] = (M(x)1[J(s,x)]
where
a b e £
[Q(x)] = i [M@x)] =
c d g h

a, b, ¢, d, e, £, g and h are arbitrary functions of x.

Using transformations (2.8), equations (2.6) may be reduced to

[E'(s,)7 = ~[Q'2MILI(s 0] = ~LZ,1[3(s x)]

.. (2.83)

.. (2.8b)

(2.9)

.o (2.102)
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[3'(s,%)] = -[M L¥ol[E(s, x)] = ~[Y_I[E(s, %) .. (2.10b)
where
dLyje + T8 d(Ly f + L ,h)
. -b(lee + Lzzg) —b(lef + Lzzh)
[Zm] = Klf v
a(lee + Lzzg) a(lef + Lzzh)
:c(Llle + leg) —c(Lllf + lehw
- : 1
Bfa(Cpy + Cpp) = Cppel  h{b(Cy; + C;,) = Cy,d}
. ~£{e(Cyy + Cpp) = Cppal  =£{d(C,yy, + Cp,) = Cp,b)
0l =+ .. (2.11b)
) :
e{c(C22 + Clz) - Clza} e{d(C22 + ClZ) - Clzb}
"e{alCyy + C1p) = Cpel  -g{b(Cyy + Cpy) - Cppd)
Al = ad - be 3 A2 = e¢h - fg ee (2.11c)

In order to make the off diagonal terms in (2.11) equal to zero, it

is required that,

d{fL;, + hL,,} - b{fL,, + hL,,} = 0

a{eL12 + gL22} - c{eLll + ngZ} =0 oo (2.12b)
bih(Cyy + Cpp) + £01,} - dlE(C,, + €,) + G} = 0 .o (2.12¢)
alg(Cy; + C1p) + eCy,) - ele(c,, + C;,) + gCy,} = 0 .+ (2.124)

Solving (2.12) for ¢; d in terms of a and b, and g,h in. terms of + ..

e and f, and substituting the requirement (2.4) for TEM wave propagation,

the matrices [Q] and [M] reduce to

1 1 1 1
[Qx)1 = s [M(xX)] = .. (2.15)
P 3p +(1/p)  F(1/p)

. (2.11a)

o (2,1223)
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Substituting (2.15) in (2.11)

Lyp & (Lyp/0) 0
[Zm] = g (2.16a)
0 Lyp % (@yy/e)
and
[cll + @ Fo)c, 0
[?m] =s .. (2.16b)
0 Cll + (1 % p)C12
From (2.10) and (2.16), the transformed telegraphers equations are
reduced to
Lyp * @pp/e) 0
[E'(s,%x)] = ~s (I(s,x)] .. (2.17a)
0 Lll + (le/p)
C1l + {1 + p)C12 0
[J'(5,x)] = -5 [E(s,x)] .. {2.17b)
0 C11 + (1 & p)C12

Now the equations (2.17) may be considered as the telegraphers equa-
tions of two decoupled lines, say, line 1 and line 2. Associating the
upper signs for line 1 and lower signs for linme 2 in (2.17), the per

unit length parameters of these lines are:

[

Ll(x) =L, + (le/p) s Cl(x) Cp, + @ - p)c12 .. (2.18a)

Lz(x) =Ly, - (le/p) s Cz(x) = c11 + (1 + p)c12 .. (2.18b)
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where Ll(x) and Lz(x) are the per unit length inductances while Cl(x)
and Cz(x) are the per unit length capacitances of lines 1 and 2
respectively. Knowing the parameters of the decoupled lines, the coupled

line parameters may be obtained as

Ll(x) + Lz(x) D2
Ly =5 . Ly, =5 [Ll(x) + LZ(X)] .. (2.19a)
Ciq = %bE(p+l)Cl(x) +‘(p—l)C2(x)] » Cyy =‘;l§[(p+1)cl(x) - (D-l)Cz(X)]
p .. (2.19b)
A C,(x) - C,(x)
2 1
L, =5 (L&) - L], ¢, = % .o (2.19¢)

Thus, a pair of lossless coupled lines have been decoupled into
two pairs of lossless lines, as shown in Fig. 2.1. This decoupling
is independent of the port terminations and does not require the = -
coupled lines to have any form of symmetry. It is noted that in
view of the way the signs have been associated in (2.18) for lines
1 and 2, the Q and M matrices reduce to

1 1 ‘ 1 1

{Ql = . Ml = e (2.20)
P -p (1/0) -(1/p) '

2.3 Coupled Line Immittance and Chain Matrices:

Considering the coupled lines of Fig. 2.la as a four-port’ network,
the impedance matrix will now be obtained in terms of those of the
decoupled lines. Using (2.18), the distributions of the decoupled
lines may be calculated from those of the coupled lines. Once these

distributions are known, the impedance matrices of the decoupled lines
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2.1: A Pair of Coupled Lossless Lines and the
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may be obtained by any of the known techniques(87-89). Let these
matrices be.
ER | L2 2
11 12 11 12
[z], = , Lzl, = . (2.21)
1 2'1 o1 2 z2
21 %22 a1 %22

where [z]l and [z]2 are respectively the impedance matrices of the
decoupled lines 1 and 2. For the four-port network formed by 'those de-
coupled lines as shown in Fig. 2.1(b), the voltages and currents at various

ports are related as

. 1 - -
E, (0) . [ 3. (0)
1 [p,3 [P, 1 W
E,(0) 3,(0)
= .. (2.223)
[p,,] [Py,] :
| E (1) | j {szcz)_
where
1
(2,41 O]
= . (2.22b)
[Pij] , (
[0l [zij}
Substituting (2.8), (2.20) and (2.21) in (2.22a)
[V, (0) _ 1 [ 1, ]
4 fe1 ro1|lte, 1 [pp,1|[at  ro3 A
VB(O)_ IB(O)
(2.23a)
v, (2) _ _ -1, (%)
4 (01 [al|[teyy1 [py,1|| L3 ot || ®
vB(z) -IB(l)
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or

[ v (1
1[ fol fol] ftry,1 rp,1] [t rog 1
v I
2] . 2 .. (2.23b)
Vg -1 |13
[0] [qI [P21] [P22] [0l ]
| ] 4

where the V's and the I's correspond to the port voltages and currents
of the coupled line four-port network in Fig. 2.1(a). From (2.23),

the impedance matrix of the coupled line four-port is

1 2 1 2 1 2 1 2
{(211 ) el -z (215 + 2150 oz, - Z12)

1 2, 2, 1 1 2. 2, 1 2
P2y = 210) (2 + 2110 Plagy = 25) 0 (2, + 212)

L2y ,% . (2.28)

1 2 1 2 1 2 1 2
(zp1 * 291> olz,] - 210 (2py + 25 oz, - Z99)

2, 1 2

1 1
(295 + zzz)J

2 2
(zp1 + 2,7) 0z, - Zyg) P

1

2 2
p(ZZl - 221) o

. . 1_ 1 2 _ 2
It should be pointed out that since 2y, = Zy1» and Zyy = Zo1s that is,

' - (87)

the decoupled lines are recipiocal 2-ports » the impedance matrix

[z] given by (2.24) is symmetric and hence the coupled line four-port

is reciprocal.

Similarly, the admittance and chain matrices [y] and [a] of the
coupled line four-port may be expressed in terms of the corresponding

decoupled line matrices as:



[y] =

N

where

Lal =

where
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it - ) Col-vD
S Y11 7 Y11 .} s 2, Y12 7 Y12
Y11 7 V11 0 Y12 7 Y12 )
1 2 1 2 1 2 1 2
: 2
3 o ) o2
(2.25a)
.1 2) (v L 2,
ool g2 Yo1 7 Yo1 L1 y2 o9 = Yoo
Y21 T Y21 P Y22 T Va2 0
1 2 1 2 1 2 1 2
(}'21 = ¥pq) (yop + Yp1) (¥55 - Yo9) (¥, + Yool
2
p n P p2
1 1 2 2
Y11 Y12 Y11 Y12
[y]l = s [y]2 = .. (2.25b)
1 1 2 2
Yo1. Y22 21 Y22
are the admittance matrices of the two decoupled lines, . and
oy 'oc?_/p Bl sz
2
a,p o B,p B.p
2 1
i 2 L .. (2.26a)
Yy Y2/p 61 620
LYZ/D Y1/P 8,/p S,
A By 4, B
[a]r = R [a]2 = .. (2.26b)
¢, Dy Cy Dy

are the chain matrices of the two decoupled lines, and
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il
1

(A1+A2) » Gy = (Al—Az)

i

.o (2.26¢)

= (°1+C2) s Yo = (cl—cz)

(D1+D2)

-
O
I

2 = (0;7Dy)

2.4 Coupled Line Transfer Scattering Matrix:

For a four-port network with port terminations as shown in Fig.2.2, the

transfer scattering matrix [T] in terms of its chain matrix {[a] is (Appendix 3)

where

[z,]

[x.]
1

~
1l

(T3 = 2 [x]-[a][X"] .. (2.27a)
[EREch
_1
[x) =[x, 177 = " |, .. (2.27b)
| Lul E [z,]

(1223 © C2e]

(7 = [r, 7% ). . ¢ - .. (2.27¢)
-[ul + (ul

= dia Ezl,zzj s fzzl = dia [23,243 .o (2.274)

= Re [Zi] , [rg] = Re [22] - (2.27€)

Complex conjugate of z
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(2.27£)

.. (2.27g)

(2.27n)

Substituting the coupled line chain matrix [a] given by (2.26) in (2.27),

the coupled line transfer scattering matrix may be expressed in terms

the decoupled line chain parameters in the form

1
N

0
-1
(rl = 7
1
£
0

This becomes

o

!

S

|

S
N

Do

al
I

Y2
B

1 BoP

2
Bzo Blo

z.
3 0
53

z
OFli

4
_L 9
7oy
0 -1
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2.7 Conclusions:

A simple method of decoupling a pair of similar or dissimilar
coupled transmission lines with common return and supporting only TEM
waves into two pairs of decoupled lines has been introduced in this
Chapter. This method does not require any symmetry conditions to
be satiéfied by the coupled system nor does it depend on the port
terminations. In fact, -the method is quite general since the coupled
telegrapher's equations are directly decoupled without any assumption.
~ This method also enables us to obtain the parameters of the coupled
lines as well as the matrix parameters of the coupled pair as a

four-port from those of the two decoupled lines.

For identical coupled lines, p = 1. In this case, the relations
between the voltages and currents of the coupled and of the decoupled
lines, are the same as those between the coupled lines and the even
and odd mode lines(53). For non-~identical ccupled lines, the method
in this Chapter gives two decoupled lines as compared to four un-
coupled lines in the even and odd mode method(84). Further, the
method described in this Chapter, contains as a special case that

given by Dvorak(ss), for identical CUTLs.

This theory of decoupling is applied in the next Chapter to
study the codirectional and contradirectional couplers with or

without impedance transformation.
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CHAPTER 3

COUPLED NONUNIFORM TRANSMISSION LINE DIRECTIONAL COUPLERS

3.1 Introduction:

The theory described in Chapter 2 will now be applied to investi-
gate the behaviour of a pair of lossless coupled lines as codirectional
and contradirectional couplers without or with impedance transforma-
tion and having an infinite directivity. Starting with the scattering
matrices of the directional couplers, the corresponding conditions to
be satisfied by the elements of the transfer scattering matrices are
first obtained. These conditions are then used to obtain the rela-
tions between the matrix parameters of the two decoupled lines, so that,
the given coupled line may behave as a codirectional or a contra—
directional coupler;the corresponding distributions of the decoupled
lines are also obtained. The characteristics of codirectional and
contradirectional couplers using various coupled NUTLs are investiga-

ted(ss).

3.2 A Four-Port Codirectional Coupler:

Consider a lossless reciprocal four-port with terminating resist-
ors as shown in Fig. 3.1. This four-port will behave as a codirectional
coupler if, when terminated in prescribed resistances, it is matched
at all ports with (1) and (2), and (3) and (4) mutually isolated(Ay).
There may or may not be impedance transformation depending upon the
values of the terminating resistors. The scattering matrix of this

codirectional coupler is
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0 0 513 5S4
0 0 533  Sg4
[sl = .. (3.1)
513 523 0 0
514 Sa4 0 0

.Now the corresponding conditions to be satisfied by the elements
of transfer scattering matrix of the reciprocal lossless four~port
will be obtained. The scattering matrix of any four-port, in texms of

its transfer scattering matrix, may be obtained as (See Appendix B)

i _ 1 r - _ ] _
[ t1atas|| Faatas, [ F3aCuatastrated| [ F32(f1a%us tlataa)l
“tiatas|Ttistas] 11 [FEar(t14tasmtistaa)| 12 [Ft42(t14%337135)

] A :
taatus ][ f24%33],, [ 31¢23%4aT24%0d) €35 (9380424 %43)
t Atzz-

Artaatas | Faataul 2 #5415 245337523 4) #t45(245337E23534))
[8]= 3
b | "t (tyqt34~ts4t31) CVTRITPY
i “t43 a3 (t3t31~t33%,) (t,3t35"t33t42)
(3.2a)
where tij are elements of transfer scattering matrix and
.. (3.2b)

B = (e38447t34543)
Frdm (3.1) and (3.2), the conditions to be satisfied by the elements

of the transfer scattering matrix are:



thy = Btyy = tay(Eygtymtyatys) = tyy(t),tagmtygta,)

tyg = ~Btyy totgy(tyqty mty st a) + bty Eygmty5tg,)
tgy = ~BEyp + tgy(tyqt, =t tyug) + g (Ey,taqmtygEg,)
gy = Ay, = tap(tyaty =tostyg) = t,p(ty,tagmtysty,)

due to the symmetry requirements in (3.1), and

(E1at4y = t14%43) = 0
(Eygtsy = taatay) = 0
(€1834 ~ tagtsy) = O
(t43tqp = 33849) = 0
(E14%a3 ~ E13F34) = O
(Ea3tyy = tatss) = 0
(Eautyp = E44t3) = O

=0

(£43t31 = E3384)

due to the zero terms in (3.1). From (3.2a), it is required that

tyg 0, £ 0, £y, F0 , £y *0

A= (bgat,, = tatus) = 0

Equations (3.4) are satisfied if

=t23=t32=t24=t42:0

B13 = B31 T T4 T fan

Substituting (3.4a), (3.4b), (3.4e) and (3.4f) in (3.3)

Chg = Atyp 5 B3 = TAL1y 5 By = ALy 5 Egg = ALy,
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. (3.

(3.

. (3.

. .

(3.

. (3.

. (3.

. (3.

(3.

. (3.

3.

. (3.

. {3.

. (3.

. (3.

3a)
3b)
3¢c)

3d)

4a)
4b)
4c)
44d)
be)
4£)

4g)

4h)

5a)

5b)

6)

7
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From (3.5) and (3.7), the transfer scattering matrix also has

tyy # o , ty, 20, tyy # o , oy # 0 +» (3.8)

Thus, from (3.5), (3.6) and (3.8), the transfer scattering matrix

should have

13 7 B31 T By4 T G4p T Tpy T Eyp T fy, =y, =0 -+ (3.9a)
tll 20 , thy * o , tgy # o ., tyy * o , tast, * t34t43 «. (3.9b)
ty ® 0o , tyy ® o , tg, * o , thg * 0 «+ (3.9¢)

and should satisfy the equality conditions in (3.3). Substituting
(3.9) in (3.2), the scattering matrix of the codirectional coupler

in terms of its transfer scattering matrix is

0 0 tll t12
0 0 t21 t22

[s] = .. (3.10a)
fas tas 0 0
A A
t t
43 33

_- > A 0 0
with
t t t t t
11 22 J12 21.. 22

3.3 Coupled Lines as Codirectional Coupler:

Consider the four-port network of Fig. 3.1. to be that of lossless

coupled lines shown in Fig. 1.1. Using the theory of Chapter 2, the
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transfer scattering matrix of the coupled line four-port, in terms of
the corresponding decoupled line chain parameters, may be obtained as

in (2.29). Using (2.29) and (3.9a), it is required that

(Dl+D2) . (Bl+B2)

(B, A, - cppepF, =0
1273 Py N 1772731
(D.+D,) (B,+B,)
12 12 -
(A+HA,)pg 5 - T%r +(CpHCpgry =0
3 31
(A-A,00 _ (Dl—DZ)D . (B,-B,)P ) (C1'02)°4r1 .
P P, PLEL P
(A;~A,)0P 5 ) (D;-Dy)Py ) (B,-B,)P . (€1=CxIP P 5Ty - o L G.D
Py P04 PP T P
(A =A,)0 4P _ (D;-D,)p,  (By-By)P ) (C4=C5)P 4P 5% .
Py (N PoPqTy P
(A-Adpy, (0-Dy)e (B,-B,)P . (C1=C,)P Ty 0
o Py Phta- e
2
(A +a)P, ) (D, +D,)P, (B,+B,)0 ) (C1+C))PoP,Ty 0
Py Py AT o2
2
(A1+A2)p4 _ (D1+D2)p2 ) (B1+B2)p . (C1+C2)0294r1 6
Py Py PoP4TY p?

orx



38

2 2 2
r,log (A +A,) - (@ +0,)1 + [(131+132) - (€ +C ), r, T_ 0
T [0 2(AAA) ~ (D.AD )1 = [(B4B.) = (C.+C.)p.2r.2] = 0
1-"3 1 72 172 1 72 1 7273 "1

2 2 2 2.2 ~

2 2 2 2 2 2 2
(A — - - - - - - =
T lp Py A - 0, (®;-D,)1 - [p (8, B,) - py Py Ty (C1 C,)1=0
(3.12)
2 2 2 2 2 .2 2 _
4 2 2 2.2, _
2 2 4 2 2 2 _
2 2 4 2 2 2 _
It is known that for lossless lines, the A and D parameters are
real, while the B and C parameters are imaginary for s = jm(87’88).
Noting these properties for decoupled lines, the real and imaginary
parts of (3.12) may be separated as:
0, 2(A+A)) ~ (D.4D.) = 0
3 Y1772 172
2 2 _
( 3.13) gy
2 2, 2 _ :
02(A+A)—02(D+D)=0
4 12 2 12

and
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2 2
(Bl+B2) =Py T (Cl+Cz) 0
2 22
P (By-By) - p, r;7(C=C) = 0
(3.14)
2 2 2.2
P (By=By) = 0y, Ty (C=C)) = 0
4 2.2
o (B1+B2) =Py P, Ty (C1+C2) =0
From (3.13)
2
A, 1 Py
D.+D, 2 _ 2 .. (3.15a)
172 o3y
2
I )
5,73, b= = > .. (3.15b)
1 Py PP
From (3.14)
T 2(C +C,) 4
21 -1 et 1 e (3.16a)
(B, +B.) 2 22 ce W2
12 Py~ Py Py
.2~y 2 2
1127 _pt e .. (3.16b)
(B.-B.) 2 2 2 .
12 Py Py Pj3
Equations (3.15) and (3.16) may be combined as
(A+A,) 1. 2(C +C,) 0.2 4
1752 1 "1t 1 P2 p (3.17a)
SRS 2 e

.40y _ (B.+B,) 2
12 12 Py Py Py Py
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2 2
G N e U o2 _ P2 o (3.17b)
®,-5,) (8,-B,) ) 7 2 7 2 RIS
94 P 93 92 93
From (3.17a)
2 2 2
b, =Py Py .. (3.182)
2 2 24
P, Py =Py P .. (3.18b)
Solving (3.18)
0 2
2 _ 2 . 2 _ 4
92 =P E p3 - 2 .e (3.19)
o
_ .2 . = o2
or r, =6 Ty 3 T, = P Tq .. (3.20)
Substituting (3.19) in (3.17)
.2 _
P3 (A1+A2) = (D1+D2) .. (3.21a)
2 =
P4 (Al—AZ) = (Dl—DZ) .. (3.21b)
Solving (3.21)
D
2 _ 1
Py =% .. (3.22)

1

As p32 = (r3/rl) is a ratio of two resistances, it is independent of

frequency and hence may be evaluated at s = 0. For lossless lines, the

values of D and A, are unity at s = 0.  Thus,
2
p = 1 .. (3.23a)
3
r, =T s r,=r, = 2, (3.23b)
1=%3 3 T2t EaTPR

Thus, the terminating resistances and the taper of the coupled lines

A and B are constrained by (3.23) for a codirectional couplex action.



Now,. from (2.14), p2 =
ent of x from (3.23b).

have the same taper).

[Lzz(x)/Lll(x)].

41

However, p should be independ-

Hence the lines A and B must be similar (that is,

Substituting (3.23) in (3.17) and solving, the

chain parameters of the two decoupled lines are found to be related as

A, =Dy,

A, =D

2 2

where Ty is independent of frequency.

in (2.29), the transfer scattering matrix is

(B, +8,) (8,~B.)
B8, 173,
(A~ ()= -
(8.-B.,) (B,+B,)
) 1+,
e N N T
- 1L
[T] = 2
0 0
0 0
.
with

. - s
b= (tagty, = tautyg) = (A + rl)(AZ

B

(Bl+Bz)

(A1+A2)+ =

(3;-B,)
12
A=A+

B
)
1

Since the decoupled lines as two-ports are reciprocal,

(AD, - B,C)) =1 ,

(A2D2 - 3202) =1

.. (3.243a)

(3.24b)

Substituting (3.23) and (3.24)

(B,-B,)
12
(8,-4,)+

(B,+B,)
172
(A1+A2)+ -

oo (3.25a)

.. (3.25b)

.. (3.26)

Using (3.24), (3.25b) and (3.26), it may be shown that the equality
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conditions in (3.10b) are also satisfied by the various elements of

the transfer scattering matrix (3.25a). Thus, the transfer scatter-—
ing matrix (3.25) satisfies all the required conditions for the

coupled line four—port to behave as a codirectional coupler.
Substituting (3.25) and (3.26) in (3.2) and simplifying, the scattering

matrix of the coupled line four—port may be expressed as

] (B,+8,) = (8,-B,)]
12 : 172
0 0 (A1+A2)- - (Al‘Az)" "
1 1
(B,-B,) (B.+B,)
172 12
0 0 (A8 ,)- o (A +A,)- =
s =% ( ) ( )
B.+B,] B,~B
2 oy L2 0 0
(Ag+hy)- =) (Ay=hy) I
(B,-B,) (B,+B,)
17%2 152
L(Al—AZ)— (A, Hh,)- = 0 0
.. (3.273)

It is noted from (3.27a) that 513 = 824, Sl4 = 823. Hence, co-

directional couplers formed from a pair of lossless coupled lines always
have the property that

S., =8 S

13 20 =85 | .. (3.27b)

14 “23

Thus, a lossless reciprocal four-port using coupled lines. with

Ty = T4 and r, = T, = pzrl, will behave as a codirectional coupler, if

the corresponding decoupled line chain parameters satisfy (3.24).

The expressions for the various characteristics of the codirectional

,

coupler from the scattering matrix (3.27) are
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ﬁ' - (3.282)

€ - 20 105, 2 - .. (3.28b)
' Lh-w, - '
A, - - @, -2
1 T, 2 ry
(B.-B.) -(B.+B.,)
-1 271 -1 172
¢~m = tan Ty -~ tan T o————— +. (3.28¢c)
CcT Jrl(A1 AZ) ir; (A1+A2)
where
‘ S41
25 = Coupler directivity = 20 log - .+ (3.29a)
10 S21
rf = Coupling of the coupler = 20 log L +» (3.29b)
10 S41
S41
¢CT = Phase shift between coupled and transmitted = T
31

It is shown in Appendix C that a lossless line whose parameters

are related as

A=D , B-=r"C .. (3.30)

with r independent of s and x, should have proportional distributions,

that is,
L = Lo F(x) , €= C0 F(x) .« (3.31a)
with r=/@L_sc) .. (3.31b)

Using this result and the conditions (3.24) to be satisfied by
the two decoupled lines, it is seen that for a codirectional coupler,
the distributions of corresponding decoupled lines 1 and 2 are required

to be of the form
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Ll = LlO F(x) , Cl = C10 F(x) «o (3.32a)
and L2 = L20 G(x) |, C2 = 020 G (%) .. (3.32b)
where

ry = V(LlO/ClO) = (LZO/CZO) s 'Llcl z L202 .. (3.33)

From (2.19), (3.32) and (3.33), the coupled line parameters are:

L F(x) + L G(x)
_ 10 20 2
Ly, = 5 » Ly, =pLy, .. (3.34a)
, =
11 20 22 202
<. (3.34b)
_ P _ (YT =L -
L, = 2LLlO F(x) Lyg 61 Cip = 29[020 G(x) 10 F(x)].f (3.34c)
2
Ty =Ty = /(LlO/ClO) = /(LZO/Czo) s Ty =1, =071 v (3.34d)
‘\\\\n
From (3.34c), it is noted\thgt for these lines, smooth transition
in the electromagnetic coupling é&féﬁéﬁa may be obtained by making
LlZ(O) and ClZ(O) equal to zero, tha; is,
LlO F(0) = L20 G(0) .. (3.35)

3.4 Codirectional Coupler Characteristics:

For the codirecctional coupler, the decoupled line distributions
are as described in (3.32) and (3.33). From these distributions, the
, . . (87-91)
chain parameters may be obtained from well known techniques as

A . jsinel
170y 7 088 5 By = gz, (0)sing; ; C) = 71000 v+ (3.37a)
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jsinKel
A2,= D2 = cosKGl 3 B2 = 3220(0)31nK81 H C2 = ;;;Tay— .. (3.37b)
where Al’ Bl’ Cl, D1 and A2, BZ’ Cz, D2 are respectively the chain
parameters of decoupled lines 1 and 2, and
L
61 = wyLlOCIO fo F(x)dx .. (3.37¢)
2
Lio / =20%20 Tp S0 :
r, =2,.(0) =z, (0) =V =— | K= .. (3.374)
1 10 20 C10 LlOCIO 2
[ F(x)dx
0

It is assumed that K # 1, since otherwise the lines given by (3.35) are
no longer coupled. Substituting (3.37) in (3.33), the coupling of

codirectional coupler is

ﬁ = 20 log 2
10 (cose1 - cosKGl) - j(sinel - sinKBl)
= 10 log 1 .o ( 3.38)
10 [ {1 - cos(K—l)el} : .

From (3.38), it is found that the variation of coupling of codirectional
coupler, with frequency, is periodic. Substituting (3.37) in (3.28c),

the phase shift produced between coupled and transmitted signals is

=X

From (3.39), it is noted that the phase difference between coupled and
transmitted signals varies linearly with frequency, because K is inde-
pendent of frequency. Thus, for lossless coupled line codirectional

coupler, the coupling response is periodic with frequency, while,



46

the phase shift between coupled and transmitted signals varies linearly

with frequency.

For identical coupled lines, p = /TE;;?EIIT is unity, showing that
the codirectional coupler ports must be terminated in equal resistances,
thereby exhibiting codirectional action without any impedance transfor-
mation. When the coupled lines are non—-identical, p is not equal to
unity and an impedance transformation of pz between ports (1) and (2),
and between (3) and (4), may be obtained as the port resistances
r, = T, = pzrl. Hence, for a codirectional coupler with impedance
transformation, the port pair (1,3) should be terminated with equal
Tesistances, with a similar statement holding for the port pairs (2,4),
while, an impedance transformation between the port pairs (1,3) and (2,4)
may be achieved. It 1s further noted from (3.33) that the expression
for codirectional coupler directivity, coupling and phase shift, do not
depend on the impedance transformation ratio p. Thus the various
coupler characteristics £ ,(ﬁaand ¢CT remain unchanged when non-identical

coupled lines are used to have an impedance transformation along with

the codirectional coupler action.

3.5 A Four-Port Contradirectional Coupler:

Consider a lossless reciprocal four-port with terminating resistors
as shown in Fig.3.2. This four-port will behave as a contradirectional
coupler if, when terminated in prescribed resistances, it is matched
at all ports with ports (1) and (4), and (2) and (3) mutually isolated(3).

There may or may not be impedance transformation depending on the values
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of the terminating resistors. The scattering matrix of this contra-

directional coupler is

.

0 s, S, O
s,, O o s,

[s] = S14 0 0 S, .o (3.40)
| 0 Sa Sy 0|

The scattering matrix of any four-port network in terms of its

transfer scattering matrix is given by (3.2).

Now the corresponding conditions to be satisfied by the elements
of the transfer scattering matrix of the lossless reciprocal four-port

will be obtained. Comparing (3.40) and (3.2), it is required that

(B4t337t13E54) = (E938,,7C58,3) -+ (3.41a)
(E3utyamtyatan) = (E4385)7E33%,) .- (3.410)
Ehy = D1y = T3y (Eqgtyymtigtyg) =ty (t4Ta37T385,) (3.42a)
Eyg = Btgy = E3p(tysty,mtautsg) = t,p(t),ts37n380,) -+ (3.42D)
(tl3t44-—tl4t43) =0 .o (3.43a)
(t24t33—t23t34) =0 .. (3.43%)
(talt%—tMtﬂ) =0 .. (3.43¢)
(t43t32—t33t42) =0 ' .o (3.43d)
t,,=t,, =0 .. (3.443)

43 34



Atgr = Dtgp(Egytyymtogtys) + £y (Eptag=tyaty )T = 0
Atyg = Lgp(tyatyymtatys) + (8 4 t5mt5t5, 0] = 0
b= (tg3t,,mty,t) # O
From (3.44a) and (3.44d)
tyy # 0 » 3320 , A=yt #0 .

Substituting (3.44a) in (3.43)

t13t44 T 2434 T F44%31 T Fa3bsn T
From (3.43), (3.45) and (3.46)

B13 T B3y = By =ty = 0

Substituting (3.44a) and (3.46a) in (3.44b) and (3.44c)

0 0

E33%44%21 = 9 5 E33fyetyn T
Equation (3.47) requires from (3.45) that t21 = t12 = 0, Thus the

contradirectional transfer scattering matrix elements should be such

that
Byg = Bpy = ty3 = gy = Ly, = b, =ty =3 =0
Ba3 05 B3y F O, £y, 70, £y F 0, Ey3 20, 6, %0 .
B1pg ¥ 0, by 0, £,,05 B4ty > tagtoy * Egptys .

Substituting (3.48) in (3.41) and (3.42), the scattering matrix of the

contradirectional coupler is

48

(3.44b)
(3.44c)

(3.44d)

(3.45)

(3.46a)

(3.46b)

(3.47)

(3.48a)
(3.48b)

(3.48c)



] .
: 14 C41814
0 T O B 0
44 &4
ik t35F23
t 0 0 (b =T )
33 33
[S] =
t
tl 0 0 _ t32
33 33
0 1 t41
T, T 0
44 A |
with
——t:33 = —-—-t23 = _t32 = 1 = (t t ~t t )
t44 t14 tél (tllt44 - t14t4l) 22733 32723

3.6 Coupled Lines as Contradirectional Coupler:

Consider the four-port network of Fig.3.2 to be that of lossless
coupled lines shown in Fig.2.1. Using the theory of Chapter 2, the
transfer scattering matrix of the coupled line four-port in terms of
the corresponding decoupled line chain parameters may be obtained as

in (2.29). Using (2.29) and (3.49), it is required that

o 0, P,y P
(4,-4,)00, . (0,-D,)p, _ (Bl—Bz)p_ (€ =Cylp,p4Ty o
Pa 993 9203171 p
(D#D,) (B{+B,) o

(A+Ay)pg = = (Cy+Cylogry

P P3Ty

49

(3.49)

(3.50)
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(D #D,)  (By+B,)
(A1+-A2)p3 - 5 B (Cl+02)93rl
3 371
2
(A, +A,)p, _ (D#D,)p, (B +B,)p _ (C1+CyP P,y
P2 P4 P2°4%1 o?
2
(A1 +A,)p, ) (D,+D,)p, i (B,+B,)0 (C1#Cy)0 0 ,1;
Py f4 PP 4Ty p2

(Al-Az)p4 (Dl-Dz)o (Bl~B2)p (Cl—Cz)p4rl
+ + +
o Py PyTy p

(Al—A2)003 N (Dl—D2)?2+ (Bl—Bz)p (Cl—Cz)pzpBrl
Py PP PoP3Ty P

or

2 2 2 2
Tiley (Amay) + 07 (D=Dy) 1 = [p™(By-By) + o, "r; (€1-Cy)]

2 2 2 2 2 22, ..
r1lp7p3 (Ay=Ay) + 9, (D1=D;) 1 ~[p"(By=By) + py py x; "(C)-C,) ]

2 2 2
r1loy (AHA,) = (Dy+D,)]1 + [(B+B,) - p, ry“(Cy+C,) ]

2 2 2 .
rl£p3 (A1+A2) - (D1+D2)] - [(Bl+BZ) - p3 Tg (C1+Cz)]

2 2 \ 2 4 2 2 2
pxylp, (A1+A2; D) (D1+D2>J + [p (Bl+B2) TPy Py (Cl+Cz)]

2 2 2 4 2 2 2

2 2 2 22

2 2 2 2 2
r,le57p (Al-AZ) + 0, (Dl—Dz)] + [p (Bl~32) + 0,70,

2

2
Iy (Cl—CZ)]

[l

1l

i

51

(3.51)

(3.52)
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For lossless lines, it is known that Al’ Dl’ A2 and D2 are real, while

Bl, Cl’ B2 and C2 are imaginary for s = jw(87’88). Using these pro-

perties for decoupled line chain parameters in (3.52) and separating

real and imaginary parts respectively

|
o

2 2
2 2 2

(3.53)

|
(=]

2

|
(=]

2 2

and

2 2.2

i
o

2 2 22 )
P (By=By) + Py P4 E (C1=C))

i
o

(3.54)

2 2
(B,+B,) = 037" (C +Cy)

I
O

|
o

4 2 22
P (By¥By) - b, Py r (C+C,) =
From (3.53)

A+
L2 1 Z (3.55a)

2
2 1 P
-0 2 .. (3.55b)
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2
r, (G +C,) o1 o4 y s
(B+3,) 2 2 2 ++ (3.56a)
P3Py Py
r.2(c.~C.) 2 2
127 ot
GrEy C > .. (3.56b)
1 Py pg

Equations (3.55) and (3.56) may be combined as

(aprhy) r12(c1+cz)
(D1+D2) (Bl+32)

=—%=—22-= p oo (3.573)

2 2
_ -C 2 '
(A,-8) U f1 e _ 0% P2 et (3.57b)
(D.-D.) (B.-B) 2 2 2 3 2 T
172 172 Py P Pg Py Py

From (3.56)

2 2 2
04 = 92 03 ‘e (3.58a)
2 2 2 4
Py Py =p3 p .« (3.58b)
Solving (3.58)
o 2
2_ 2 2 _Pg
P, " = p N .. (3.59a)
)
or
= o2 ; = 2
r, =p L T, =p ty .. (3.59)
Substituting (3.59) in (3.56)
2 -
Py (Al+A2) = (D1+D2) .. (3.60a)
2 .
Pg (Az—Al) = (Dl_DZ) .. (3.60b)
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Solving (3.60)

2

Py .. {(3.61)

>| =
N |

Since p32 = (r3/rl) is a ratio of two resistances, it is independent of
frequency, and hence, may be evaluated at s = 0, For lossless lines,

values of Dl and A2 are unity at s = 0. Thus

2.1 .. (3.62a)

r, =t s r, =1, = pzr .. (3.62b)
3 4

Equation (3.62) puts constrains on the terminating resistances as well

as on the taper of coupled lines A and B. Since p2 = [Lzz(x)/Lll(x)]

is now required to be constant, the lines A and B have got to be similar

(that is, have the same taper). Substituting (3.62) in (3.57) and

solving for decoupled line chain parameters

A, =D, , D, =A .. (3.63a)
B, =1,%C, , C =-% .. (3.63b)
where T, is indepehdent of frequency.

Substituting (3.62) and (3.63) in (2.29), the transfer scattering

matrix reduces to
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l‘(A +D. ) (El+c ) 0 0 (A,-D )+(E:L C ‘
1717 TR R R
B 3
0 (A1+D1)—C;i+Clrl) (Al“D1)+6;i—Clrl) 0
[r1 =%
B !
0 (Al_Dl)—(?l—Clrl) (Al'l‘Dl)'F(';l-FClrl) 0
Bl Bl
(Al-—Dl)-(; —Clrl) 0 0 (A1+Dl)+(; +Clrl)
1 1 ]
.. (3.64)
From (3.64), it is found that the elements of this transfer scattering
matrix satisfies the conditions (3.48). Using the fact that the
decoupled lines as two-ports are reciprocal, that is,
(AlDl - Blcl) =1 |, (AZDZ—BZCZ) =1 .. (3.65)

it may be shown that the equality comditicns in (3.50) are also:

satisfied by the ‘various elements of the transfer scattering matrix

(3.64).

Thus, all the required conditions for the four-port contra-

directional coupler are satisfied by the transfer scattering matrix

(3.64).

Substituting (3.64) and (3.65) in (3.49) and simplifying, the four-

port scattering matrix may be expressed as:



56

r -~y
(a,-D,) +
0 B, 2 0
G,
(A.-D.) +
o 0 0 2
1
1 | G0y 1
[51 = 5 1
5
{ (A1+Dl)+(;1+clrl) }'
2 0 0
By
(?l'clrl)
(A,-D.) -
0 2 171 0
By
(?l'clrl) |

.. (3.66)

It is noted from (3.66) that 813 = Sy,  Hence, contradirectional
coupler formed by a pair of lossless reciprocal coupled lines always

have the property that 513 = 824. Thus, the conditions 313 = 524, as
well as the interrelations (3.63) between the matrix parameters of the
two decoupled lines, apply to a more general case of coupled line contra—
(61)

directional coupler than that considered by Sharp , since his results

apply only for the case of CNUTLs having an absolutely continuous

characteristic impedance matrix.

Thus a lossless reciprocal four-port using coupled lines, with
T, = Ig and I, =1, = pzrl, will behave as a contradirectional coupler

if the corresponding decoupled line chain parameters satisfy the



57

requirements {(3.63). The various characteristics of the contra-

o))

directional coupler, from the scattering matrix (3.66), are

D = (3.67a)
51
£ _ (Al+D1) + G; +C1rl)
= 20 log 1
10 E .. {3.67b)
) 1
(A.~D.) + (==-C,r )
11 r, 17
B
L _
-1 (rl Clrl
¢ = tan = ST .. (3.68)
CT 3(84-Dy)
where
Sa1
ja = Coupler directivity = 20 log - (3.69a)
10 Su1
Zf = Coupling of contradirectional coupler = 20 loglol 1 «o (3.69b)
Sn
¢CT = Phase shift between coupled and transmitted signals
S
=Z§E .. (3.69¢)
31

It is shown in Appendix C that two lossless lines, whose para-—
meters are related as in (3.63), should have dual distributions, that

is, if line 1 has distributions

L

1= LlO r(x) , 91 = C10 G(x) 0 <cx< ? .. (3.70)

then line 2 will have for its distributions

(3.71)

A
b

A
o

L2 = L20 Gx) , 02 = C20 I (%) 0
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where

x, = /(Llo/czo) =./(L20/Clo) .. (3.72)

Thus, for a coupled line four-port to behave as a contradirectional

coupler, the corresponding decoupled lines should be dual lines with
distributions as given in (3.70)-(3.72). Also from (2.19), (3.70),
(3.71) and (3.72), the coupled line parameters are

- L - = o2
Lll =3 [LlOF(x) + LZOG(X)J . L22 = p Lll .. (3.73a)

C =%p;clo(p+l)c(x) + Czo(p-l)F(x)], Cpy = -2-51-2-[(p+1)(;(x) - (p'l)CZOF(X)]

11
.. (3.73B)
] - =L _
le = 2[LlOF(x) LZOG(x)] , C12 = zpECZOF(x) cloc(x)] .o (3.73¢)
— — —-— ’ — — 2.
T; =Ty = JTLlO/CZO) = /(LZO/ClO) s Ty =T, =0Ty .. (3.73d0)

From (3.72), it is seen that for identical coupled lines, .
p = /?ﬁ;;?fl;} is unity, which makes all the terminating resistances
equal. Under this condition, the coupled line four—-port exhibits
contradirectional characteristics without impedance transformatiom.
Wheﬁ the coupled lines are identical, p is .not equal to unity and impe-
dance transformation of p2 between ports (1) and (2), and between
(3) and (4) may be achieved by using non-identical lines.  Thus, if
a contradirectional coupler is designed using coupled lines, the

port pairs (1,3) should be terminated with equal resistances, with a

similar statement holding for the port pairs(2,4), while there may be
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an impedance transformation between the port pairs (1,3) and (2,4).

From (3.67), it is observed that the characteristics of the contradirec-
tional coupler are independent of the transformation ratio p.- Thus

the characteristiciﬁék, £ and $op are unchanged when non-identical

coupled lines are used to have an impedance transformation along with

the contradirectional coupler action.

From (3.72c), it is observed that for these couplers, smooth
transition in the electromagnetic coupling at x = 0, may be obtained

by making L12(0) and C12(0) equal to zero, that is,

LlO F(0) = L20 G(0) .. (3.74a)

Clo G(0) = C20 F(0) .. (3.74b)

Now, since Bl and Cl have units of impedance and admittance
respectively, the coupler characteristics (3.67) are unaffected with
a change in rl;hence the terminating resistances may be normalized

with respect to r; = 1 ohm. For this condition, from (3.73d), the

decoupled line parameters should. have

Lo = Cog » Ly =Cyp - 3.75)

that is
Ll = L10 Flx) , Cl = ClO G (x) .. (3.76a)
L, =Cp 6() , Cp=LFx) .. (3.76b)

For a coupler with terminations normalized to one ohm and having smooth

transition at x = 0, it is required from (3.74) and (3.75) that
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L.on=6C,h=L,,=¢C F(0) = G(0) o (3.77)

10 10 20 20

From (3.76) and (3.77), the decoupled line distributions become

|

L F(x) , C G(x) , T(0) = G(0) .. (3.78a)

1~ Lo 1 = C10

Ly=L;y6(x) , Cy=CyF& , Ly =Cp .. (3.78b)

Also, when the terminations are normalized to one ohm, the coupler

characteristics € and ¢CT given by (3.67) reduce to

(A1+Dl) + (Bl+Cl)

Z =20 log .. (3.79a)
10 | A;-D)) + (B,-C)
(8,-C.)
I R st |
¢CT tan [3731:517] .« -(3.80)

In the next section, characteristics of such contradirectional
couplers for which the decoupled lines are different, ''basic lines

with hyperbolic selutions" are investigated.

3,7 Coupled Line Contradirectional Couplers with Decoupled Basic Lines:

Swamy et al(gz) have shown that all nonuniform lines having
hyperbolic solutions are contained in fivz classes of lines and their
duals. They have also shown that for any given class of NUTLs, there
exists always an electrically equivalent "inverse line", for which
the distributions of L(x) and C(x) are inversely proportional(gz).
Thus the study of networks containing NUTLs with hyperbolic solutions

may be carried out in terms of their inverse lines, which they have

called as the basic lines of the different classes of NUTLs. In
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this section, the characteristics of contradirectional couplers for
which the decoupled lines are different, basic lires with hyperbolic

solutions will be investigated.

The chain parameters for the basic lines and their duals for the
five classes, which have hyperbolic solutions, are knowﬁ(BB’go).
Tables 3.1 and 3.2 list the chain parameters of these lines with the
basic lines and their duals as decoupled lines 1 and 2 respectively.
Using these chain parameters in (3.79), the coupling € for the differ-
ent contradirectional couplers having basic lines with hyperbolic solu~
tions as decoupled lines may be obtained. These are tabulated in
Table 3.3. In order to determine the taper of the decoupled lines
for a required value of coupling € , the limiting value of € , as BL + ®
is obtained from (3.80), and these are also tabulated in Table 3.3.
Using these limiting values, the decoupled line tapers for varilous
commonly used coupling valueé are calculated for the different contra-
directional couplers and are given in Table 3.4. The coupling
response of these couplers, with normalized frequency, are calculated
and plotted by using digital computer CDC 3300. These plots are
shown in Fig.3.3 to Fig.3.7. On examination of these plots, it is
found that all these contradirectional couplers have high-pass
coupling response; this is in conformity with the results of Yamamoto
et al(34) for exponential lines. Further, to determine the couplers

having best coupling response, the sensitivity of the coupling € with

respect to normalized frequency B2 is calculated using
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gL ~ ARL °

Q2

L.
s o= 2t —@é& .. (3.81)

The variation of sensitivity for different couplers are obtained as

shown in Fig.3.8 to Fig.3.12. It is noticed from these Figures that

for couplers with 'Trignometric' or 'lyperbolic cosine squared' lines

as decoupled lines, the peak value of thé sensitivity Sgg reduces with
frequency. Thus the best coupling response is exhibited by the
contradirectional coupler, for which the decoupled lines are trignometric

or hyperbolic cosine squared lines.

As the coupling responses of these couplers are functions of the
taper m%, a variation in the taper due to fabrication or otherwise
may affect the coupling € . Hence, to investigate the effect of a
variation in taper on the coupling, the sensitivity of coupling € with

respect to taper is obtained for each coupler using

<2
s, = ?a;Tez e .. (3.82)
Fig.3.13 to Fig.3.17 show the sensitivity Sii as a function of the
normalized frequency for the various contradirectional couplers. On
an examination of these curves, it is found that for the coupler
for which the hyperbolic cosine squared lines are decoupled lines,
the coupling t? is less affected by variation in taper as compared
to that of the coupler for which trignometric lines are decoupled
lines. Thus, the contradirectional coupler with hyperbolic’ cosine
squared lines as decoupled lines have the best coupling response and

is less affected due to taper variations. Even though the variation
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of the sensitivity g:; with frequency is least for the coupler with
exponential decoupled lines, as shown in Fig.3.13, it suffers from
the disadvantage of having a coupling response which is not smooth

wlth respect to frequency.

From (3.68), it is observed that for all these couplers, the
phase shift between coupled and transmitted signals changes with
frequency, and hence cannot be maintained at a constant value at all
frequencies. However, it is possible to obtain a phase shift of
00, 90° or 180° over a band of frequencies, from coupled line contra-
directional couplers by choosing properly the decoupled line distri-

butions., Such couplers are considered in the following section.

3.8 Coupled Line Contradirectional Couplers with 0, 90 or 180 degrees

phase shift:

The phase shift between the coupled and transmitted signals of
the tapered line contradirectional coupler may be made with either
900, or zero or 180° over a band of frequencies. These two couplers

are congidered next.

Case A:

Consider the contradirectional coupler for which the decoupled
lines are symmetric lossless lines formed out of lossless NUTLs with
(33)

back to back or front to front connections For the case when

the decoupled lines are the symmetric lines with back to back connec-

tion and its dual, the distributions are of the form
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Ll = L10 F(x) Cl = Clo G(x) 0<x< 28 .« (3.83a)

L1 = L ¥(28-x) , Cl = ClO G (28-x) 0< x< 22 .. (3.83b)
and

L2 = L20 G(x) , C2 = 020 F(x) 0sxs 2 .. {(3.83c)

Ly = Loy G(22-x) , C, = Cop F(28x) 2 <x< 2% .. (2.83d)

For the ease when the decoupled lines are the symmetric lines with

front to front connection and its dual, the distributions are of the

form
Ll e L10 F(e-x) , C1 = C10 G(8~%) 0<x< 2 (3.84a)
Ll = Llo F(x-2) , Cl = C10 G(x-2) L x< 28 .. (3.84b)
and
L2 = LZO G(a-x) , 02 = C20 F(2-%) 0< x5 '2 .. (3.84c)
L, = Ly, G(x-2) , C, =Cy F(x-2) 2< xs 28 .. (3.84d)

The coupled line parameters of these couplers may be obtained from

(2.19), (2.83) and (2.84).

For the above decoupled lines, the chain parameters may be expressed
in terms of those of the nonuniform transmission line given by (3.83a),
and then used to obtain the scattering matrix of the corresponding
contradirectional couplers. These are tabulated in Table 3.5, where

A, B, ¢ and D refer to the chain parameters of NUTL (3.8a). The

characteristics , € and ¢, may now be obtained using scattering
cT

matrix and (3.69); these are also shown in Table 3.5. It is noted
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from this Table that these couplers have a phase shift of 90° between

coupled and transmitted signals at all frequencies.

that these couplers provide smooth transition in electromagnetic

It may be shown

coupling at both the ends, when the decoupled line distributions are

such that

L, (0) = 1,(0) , € (0) = C,(0)

The coupling responses with frequency for these two types of
contradirectional couplers, when the line (3.83a) is an exponential

line [F(x) =e™1, are obtained as shown in Figs.3.18 and 3.19.

.. (3.85)

It is noticed from these plots that both the couplers have band pass

coupling responses.

Case B:

Consider two nonuniform transmission lines for which the distribu-

tions are of the form

L, = L10 F(x) , Cl =

1
and
L, =L F(-x) , c,
with F(x) = G(2-x)

It is noted that line 2 is nothing but line 1 seen from

ClO G(x)

= C10 G(2-x)

.. (3.86a)
.. (3.86Dp)

.. (3.86¢)

the other end. For these lines, it may be shown that their chain para-

meters are related as

.. (3.87)

Also, if the lines 1 and 2 correspond to the decoupled lines of a contra-
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directional coupler, then from (3.63)
A ='D . D=4, , B =xC, , B,=1x7C .. (3.88)

where Ty is indepentent of frequency. Thus, if a contradirectional
coupler is to be obtained using (3.86) as decoupled lines, then these

lines should have their B and C parameters such that

r, = yTBl/cl) = /(B2/C2) .. (3.89)

is independent of frequency. For such a contradirectional coupler,

the scattering matrix may be obtained using (3.66) and (3.87) as

[ 0 (a,-p)) 2 0
s8] = _____—__——_EE_ .o (3.90)
1 2 0 0 (D,-A.)
(A1+Dl) + T 171
i 0 2 (Dl—Al) 0

Also the coupler characteristics from (3.90) are

b == .. (3.91a)
28,
(A1+Dl) + T
£ =20 10g,, ey .. (3.91b)
1™
- 00 or 1800 .o (3.91C)

¢CT

where

S
/Ea = Coupler directivity = 20 log10 [E&EL’ .. (3.92a)
41
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f? = Coupling of coupler = 20 log - (3.92b)
10 s
21
¢CT = Phase shift between coupled and transmitted signals
S
=/ .. (3.92¢)
31
From (2.19) and (3.86), the parameters of the coupler are
Lo 2
Lll = 7 [F(x) + F(.Q,—X)] ) L22 =P Lll .t (3'933)
€10 €10
Cy; = 5o LO+DF(E-x) + (-1)F(x)1, C,, = —=5[ (p+1)F(&-x) - (p~1)F(x)]
11 2p 22 2p2
«v (3.93b)
LyoP 10
Ly =7 [FG) - FO-x)1, €y = 571F(x) = F(-x)] .+ (3.93¢)
_ _ _ _ 2
r; =¥y = i(Bl/Cl) » Xy =T, =07ry .+ (3.93d)
where r; is independent of frequency. From (3.91), it is found that
these couplers have a phase difference of 0° or 180° between the
coupled and transmitted signals at all frequencies. Further, the
coupler characteristics 052 {f and ¢CT are independent of p, hence
are same for couplers using identical or non-identical coupled lines.
Again, in this case, it is possible to obtain smooth transition in
electromagnetic coupling at x = 0 if the decoupled line distributions
have
F(0) = F(8) o (3.94)

An example of a coupler with a 0° or 180° phase differénce, is
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the one which has exponential decoupled lines, that is, have distribu-

tions:
_ mx _ ~m(2-x) _ . ' -mx
Ll = Lloe s Cl = C10 e = C10 e .. (3.95a)
_ m(2-x) _ mx _ ' o-m(2-x%)
L2 = Lloe , C2 = ClO e = ClOe .. (3.95b)
with
mg
Y ey e A T
Ty = LlO/clO e = LlO/CIO .. (3.95¢)

The coupling response of this coupler is shown in Fig.3.20, where the
terminations are normalized to one ohm. It should be pointed out,
however, that this coupler cannot have smooth transition, since (3.94)

is not satisfied.

3.9 Conclusions:

Using the theory developed in Chapter 2, the tapered coupled line
codirectional and contradirectional couplers with and without impedance
transformation have been analyzed. It is shown that a coupled line
four~port behaves as a codirectional coupler if each of the correspond—-
ing decoupled lines are 'Proportional lines', while it behaves as
contradirectional coupler when the decoupled lines are 'Dual lines'.
The conditions required to be satisfied by the decoupled lines for
obtaining smooth electromagnetic transition at one of the ends of a
codirectional or contradirectional coupler are obtained. Using non-
identical coupled lines, it is possible to obtain codirectional and

contradirectional coupler action along with an impedance transformation
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between certain ports. It is found that the coupling response of
codirectional coupler is periodic in nature with frequency, while

the phase shift between coupled and transmitted signals changes linearly
with frequency. Coupling characteristics for contradirectional couplers
" using 'Basic lines' with hyperbolic solutions as decoupled lirnes,

are investigated. Further, the sensitivities of coupling for

these couplers with taper are obtained to study the effect of variation
in taper on coupling. It has been found that contradirectional
couplers, with hyperbolic cosine squared lines as decoupled lines,

have the best coupling response which is least affected due to taper
variations. Finally, tapered coupled line contradirectional couplers
with a zero, or 90° or 180° phase shift between coupled and transmitted

signals, are obtained.
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CHAPTER 4

COUPLED NONUNIFORM TRANSMISSION LINE FOLDED ALL-PASS NETWORKS

4.1 Introduction:

As mentioned in Chapter 1, lossless CUTLs have been used as
folded all-pass networks. These networks are often employed as
phase or delay components in microwave systems. Recently, Yamamoto(34)
et al have employed CNUTLs with exponential taper as folded all-pass
networks.' These have advantages of smali size, in addition to

providing control on phase characteristics and peak time delay

through their tapers.

In this Chapter, CNUTLs are considered as two=port networks
ana various folded all-pass networks are analyzed using the theory of
Chapter 2.. The decoupled line distributions for these networks
to exhibit all-pass action are determined. The phase and delay
characteristics of different CNUTL folded all-pass networks are
investigated, when the decoupled lines are basic lines with hyper-

bolic solutions.

4.2 Lossless All-pass Two-~Port Networks:

Consider a lossless two-port network shown in Fig. 4.1. if

this network is matched at both ports (1) and (2), then

5. =s._ =0 , L. (4.1
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However, for two-port lossless networks

2
T[S, (Gu)|%= 1, 1=1,2 e (4.2)
RALTED]

Thus, from (4.1) and (4.2), whether the network is reciprocal or not

[5Gl = 8, Gw)] =1 v (4.3)

which are the conditions for an all-pass network. Thus, if a lossless
two-port network is matched at all frequencies at both the ports, then

it exhibits all-pass action.

It is known that a two-port network with chain parameters A, B, C

and D, may be matched at its two—ports, if the terminating impedances
_are(94)

= /AB/CD, Z, = YBDJ/AC o (4.4)

Zy 2

at all frequencies. With these terminations, the scattering matrix

of the two-port may be written as

0 vAD - JEC
(s} = 1 . .. (4.5a)
"/AD +. /BC
where . |/BD -~ VEC| =|VBD + /BC| =1 v (4.5b)

from Eq. (4.2).

If the network is reciprocal, Egs.(4.5a) and (4.5b) reduce to
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0 YAD - ¥BC
[s] = .. (4.6a)
JAD - V/BC 0
with
|/7AD - /BC| = 1 <« (4.6b)

If the network is in addition symmetric, then it behaves as an all-pass

network, when the termipating impedances are

Z. = 2. = VBJC .. (4.73)

o
»>
I
b
N
|
-

<. (4.7b)

with

A - A%-1] =1 . (4.7¢)

4.3 Coupled Lines as Folded All-pass Networks:

The four-port network formed by a pair of coupled lines may be
converted inte a two-port network by properly terminating the ports.
Some of these two-ports may be used as folded all-pass networks, which
exhibit different phase and delay characteristics depending upon the
terminating conditions. Analysis of these networks will be performed
by applying the decoupling theory described in Chapter II. Consider
the four-port network of Fig.4.2 to be consisting of a pair of idemntical

coupled lossless lines of length £. From (2.31), the voltages and
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currents at various ports of the coupled line four-port network are

related through the decoupled line chain parameters as

a - -
I
[ Vl Al + A2 Al - A2 Bl + B2 Bl - B2 V3
V2 A1 - AZ Al + A2 B1 - B2 Bl 4 B2 V4
=% . (4.8)
Il Cl + C2 Cl - 02 D1 + D2 Dl - D2 —13
I2J Cl - C2 Cl + C2 Dl - D2 Dl + DZJ —I4

where Al, Bl’ Cl’ Dl and A2, BZ’ CZ’ D2 are respectively the chain
parameters of the decoupled lines 1 and 2. Different folded all-pass
networks are next obtained by converting the coupled lime network into

a two-port network.

Type I: The four-port network of Fig.4.2 is first converted into
a two-port network either by shorting ports (3) and (4) or Ports (1) and (2);
these will be considered as Types IA and IB respectively as shown in
Fig.4.3. For these networks, the voltage at the shorting ports are
equal and in phase, while the currents are equal in magnitude but

opposite in phase.

Type TA: The network is excited at port (1) with the.output taken at

port (2), and the shorted port voltages and currents are related as
vV, =V I, = —I4 .. (4.9)

Substituting (4.9) in (4.8),

= AlV3 - B2I3 .. {4,10a)

2 AlV3 + 3213 ..(4.10b) -

<
]
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Tyee : Folded All~-pass Network
Z
1
4%—%:EZ>—JVQAA (1L (3)
A
2
AW (VA) 4)
IA .
Z1 = ZZ’ V3 = V4, 13 = -I4
(1) 3 % C |
(2) (4) %4
H
- AW
Vi=Vy I; =71 Z3=2,
VAN eD) (3)1
'Il’"-\f\l 4
. ;
z A
vll'—/\fv%\:\ §2) (ID
IIA _J_
V3 = -Vﬁ’ 13 = 14, Zl = 22
1:1(1) 3) MZ/\%—@—h-
E—{h . 7z °
. (2) (4) J\N{&Nv__“,
IIB . .

Fig. 4.3: CNUTL Folded All-pass Networks of Types I and II
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—
]

ClV3 - D213 .. (4.10c)

2 clv3 + D213 .. (4,104)

=i
1

Eliminating V., and I, from the above equations,

3 3
Vl L A1D2 + BZCl 2Ale V2
- oo (4.11)
A D, - B,C
172 271
Il 2ClD2 AlD2 + BZC —12
Hence, the chain matrix parameters of this transformed two-port
in terms of the decoupled line chain parameters are
A.D, + B.C
A=D =gt eo(4.122)
172 271
po 1P I .. (4.12b)
— 3 = -—
(4305 = ByCy) (4,0, = B,Cy)
From (4.12), it may be noted that this two-port is reciprocal and
symmetric. Hence, from (4.7), this network will exhibit all-pass
action provided
Zl = 22 = YAlBZ/CID2 oo (4.13)
at all frequencies; further, its scattering matrix will be
B -
YA.D, - VB,C
0 172 271
YA1D2 + YBZCl
[s] = . o (4.14a)
IhPy = IBYGy 0
_VAlD2 + .;’BZCl ]
where YAlD2 - fBzcl
=1 .. (4.14b)

VAlD2 + YBZCl
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Also, the phase shift between the output and input ports is

[VAlDz - J/BZC1

.. (4.15)
[JAlDZ + /Bzcl

%91

It is to be noted that since the network is reciprocal and symmetric,
the characteristics of this network are unchanged when the excitation

is changed from port (1) to (2); that is 651 = $q9

It can be shown (See Appendix C, Theorem 2) that for the lossless

lines having dual distributions

L, = L., F(x) .o (4.16a)
1 10 0<sx< 2

Cl = C10 G(x) .+ (4.16b)

and L, = L,. G(x) .o (4.162)
2 20 0<x=s %

C2 = C20 F(x) e (4.16d)

with LoCi0 = Ly0C20 .. (4.16e)

the chain parameters are related as

A =D, D, = 4, .. (4.17a)
B, = r2C C, =B /1'2 (4.17b)
1 22 C; =By RASE
where r = VL19/Cog = "Lyp/Chy .. (4.17¢)

If thé two decoupled lines. for Type IA neiwork are chosen to
be the dual lines given by (4.16), then it is clear from (4.13) and

(4.17) that Type IA network will behave as an all-pass network provided

Zl = 22 = VEIO/CZO ..(4.18)
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Thus the Type IA network having dual lines as decoupled lines will
behave as an all-pass network provided the the two terminating impedances

Z, and Z

1 o are purely resistive, say ¥y and Ty, and

£, =T, = YL;/Coq = YLy0/Chy .. (4.19)
Furhter, from (4.7) and (4.12), its scattering matrix is

i i )
A; - Gy

A1 + Clrl
[s] = .. (4.20)
A = Cyry

_Al + Clr1

It is seen that in (4.20) |821(jw)| = 1 is automatically satisfied,

since Al is real and C1 is imaginary for s = jw.
Also, from (4.15) and (4.17), the phase shift

$yy = 2 tan (€ x/i4)) Lo (4.21)

Type IB: In this case, the network is excited at port (3)
with the output taken at port (4), while the shorted port voltages

and currents are related as

Vl = VZ’ . I1 = —I2 .. (4.22)

Substituting (4.22) in (4.8),

I
[=]

AWV,-V

23 4) .+ (4.232)

- BZ(I3 - 14) =

i
o

Cl(V3 + V4) - Dl(I3 + 14) = .. (4.23b)
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or

V3 ‘ A2Dl + B2 1 2B2Dl V4

1 .
= ———— .. (4.24)
(A2Dl - BZCl)
13 2A2C1 A2D1 + BZCl —14

Hence, from (4.22), the chain matrix paruameters of thils transformed

two—port in terms of the decoupled line chain parameters are

hopa 201t B .. (4.25a)
- ° " AD, - B,C
2P1 =BGy

R i ¢ .. (4.25b)

(A,D; = B,Cy) (A,Dy - B,C;)

From (4.25a) it is seen that this two-port network is also reciprocal
and symmetric.  Hence, from (4.7a) and (4.25), Type IB network will

exhibit all~pass action provided

Z, =2

3 4 = VBlelAzcl oo (4.26)

at all frequencies; further, the scattering matrix is

271 271

YAZD1 + VBZC1

F YA - ¥B,C -

[sli=1| ____ . «.(4.273)
/A2Dl - ,/Bzcl

7B D; + /BTy

0

YA Dy = ¥ByCq
with 21 21i_, . .. (4.27D)
/Ale' + /B0,

Also, the phase shift between ports (4) and (3) is
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J/AD, - /B.C
¢4q = —]_2—_%—7_'2“& .. (4.28)
B,y + 7B,C)

Again ¢43 = $q, since the network is reciprocal and symmetric.

Following the procedure used in the case of Type IA network, it
can be shown that Type IB network, having dual lines given by (4.16)
as decoupled lines, will exhibit all-pass action provided Z3 and Z4

are real, say Ty and T, such that

Ty =T, = VLlO/C20 = VL20/010 .s (4.29)

The corresponding scattering matrix and the phase shift are tabulated

in Tables 4.1 and 4.2 respectively.

From (4.19) and (4.29), it is noted that if dual lines are used
as decoupled lines, then the corresponding CNUTL will behave as an
all-pass network in both Type IA and Type IB configuration, provided
the terminating resistances are each equal to /5157623; however, the

phase characteristics will, in general, be different.

Type II: The folded all-pass networks considered in this type
are obtained by converting the coupled line four—port network of
Fig.4.2 into a two-port network, such that the currents at the
shorting ports are equal and in phase, while the voltages are edual
in amplitude but opposite in phase. These configurations require
ideal transformers, as shown jn Fig.4.3. The shorting of ports (3)
with (4) and (1) with (2) are considered as Types ITA and TIB

respectively.
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Type ITA: The four-port network is excited at port (1) with
the output taken at port (2), while shorted port voltages and

currents as:
Vy=-V,, - Iy=1, .. (4.30)

Substituting (4.30) in (4.8)

V, = AV, - BI, .. (4.31)
V, = -AV, = BT, .. (4.31b)
I, = C¥y - DI, .. (4.31c)
I, = =C,V, - DI, .. (4.31d)

Eliminating V, and 13 in (4.31)

3
Vl A2D1 + B102 ZBlA2 V2
1
e T . (4.32)
BlCZ AZDl
I, | 2¢,0, A, +B,C,[-I,

Hence the chain parameters of this transformed two-port in terms

of decoupled line chain parameters, from (4.32), are

A D, + B.C
A=D=52_Cl——AlD2 .. (4.333)
172 271 )
2A.B 2C.D
271 271
B = i C =g : +» (4,33b)
Blcz A2D1 BlCZ - AZD].

From (4.332), it is observed that this two~port network is
also reciprocal and symmetric. Hence, from (4.7) and (4.33), this

network will exhibit all-pass action provided

Zl = Z2 = VAZLFSI/CZDI .. (4.34)
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at all frequencies; further the scattering matrix is

r -
YB1Cy — YAD;

VBlC2 -+ YAZDl
[s] = .. (4.35a)
VB1Cy = YA5Dy
VBIC2 + VAZDl J

. JBlc2 - /AZDl
with _— =1 .. (4.35b)
/Blc2 + %Aznl

o

Also, the phase shift between ports (2) and (1) is

¥YB,C, - YA,D
¢21 -/ |12 21 .. (4.36)
YBlC2 + YAle

Again, ¢21 = ¢12, since the network is reciprocal and symmetric.

Following the procedure used in the case of Type IA network,
it can be shown that Type IIA network, having dual lines given by
(4.16) as decoupled lines, will exhibit all-pass action provided Zl

and Z, are real, namely r; and r, such that

r, =1, = /LlO/C20 = vL_ ./ <. (4.37)

20/ €10

The corresponding scattering matrix and the phase shift are tabulated

in Tables 4.1 and 4.2 respectively.

Type IIB: Now the network is excited at port (3) with output

at port (4), while the shorted port voltages and currents are related
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as
Vl = —V2, Il = IZ .. (4.38)
Substituting (4.38) in (4.7) and simplifying

V3 A]_D2 + BlCZ ZBlD2 V4

1 .. (4.39)
B,C, ~ A.D
172 172
13 ZAlC2 AlDZ + BlC2 —I4

Hence, from (4.39), the chain parameters of this transformed two-port

in terms of decoupled line chain parameters are

AD. + B.C
A=D=-B_1(Hﬁ_2- .. (4. 40a)
182 = A0y
2B.D 24.C
1P2 1%2
B=o—— ™2 €= =uit . (4.40b)
B,Cy = 844Dy A1Dy = ByCy

Again from (4.40a), it is noted that this two;port is also reciprocal

and symmetric., Hence, from (4.7) and (4.40), this network will
exhibit all-pass action provided

23 = Z4 = r’BlDz/AlC2 .. (4.4)

at all frequencies; further the scattering matrix is

[(s] = .. (4.423)
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YB,Cy = ¥ADy
with 1z 121 . .. (4.42D)
/B C, + /A D,

Also the phase shift between ports (4) and (3) is

[VBlC2 - .VAlD2 .
¢43 = .. (4.43)
lVBlC2 + )’AlD2
Since the network is reciprocal and symmetric, ¢43 = ¢34.
Again, following the procedure used in the case of Type IA
network, it can be shown that Type IIB network, having dual lines
given by.(4.16) as decoupled lines, will exhibit all-pass action
provided 23 and Z4 are real, namely Ty and Ty such that
ry =T, = /LlO/CZO = /f;b/clo .. (4.44)

The corresponding scattering matrix and the phase shift are given in

Table 4.1.

From (4.37) and (4.44), it is noted that if dual lines are used
as decoupled lines, then the corresponding CNUTL will behave as an
all-pass network in both Type IIA and Type IIB configurationms, provided
the terminating resistances are each equal to JEIS7EZE; however, the

phase characteristics will, in general, be different.

Type III: The folded all-pass networks considered in this type
are obtained from the coupled line four-port by grounding ox open-—

circuiting the two ports of the same line as shown in Fig.4.4; the
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Type Folded All-Pass Network
(1) 3)
2 O
||f—<::>~4A%VL(2) —kﬁffv———4h
IIIA
Il = I3 =0, Z2 = Z4
gl
! &% ©) I
Z pA
1 )—vAn-2 B AW ——fr
IIIB
Vi=V3=0 5%

Fig. 4.4: CNUIL Folded All-pass Networks of Type III.



11r

former will be referred to as Type TIIA, while the latter as Type IIIB

.network.

Type IITA: The network in this case is excited at port (2) with

the output at port (4), while ports (1) and (3) have

I1 = I3 =0 <o (4.45)
Substituting (4.45) in (4.7) and eliminating V3
v, A1C,HA,Cy [(Bl+132) (cl+cz) ~ v,
o (A;-A,) (@;-D,) 13
= .. (4.46)
¥y
I, - 2c.c, C,D,#D,C, -1,

Hence, the chain parameters of this transformed two-port in terms of

decoupled line chain parameters from (4.46) are

AlC + A,C

2 T A0 '
Ao .. (4.47a)
(01+C2)
5o (B,+B,) (C,+C,) ~ (81-4,) (D4-D,) (4.47b)
2(C1+Cz)
2e.¢
C=ci_cz oo (4.47c)
1772
C,D, + D,C
_"172 172
. = .. (4.47d)

From (4.47), it is seen that the network is recirprocal, but

non-symmetric. Hence, from (4.4) and (4.47), this network will
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exhibit all-pass action provided
. =/[(A102+Azcl){(}31+}32) (C,+C,) - (Al—AZ)(Dl—Dz)}] (‘4 4803
1 4C,C, (C,D,+D.C,)
and
. =/E(ClDZ+DlC2){(Bl+B2) (€ +C,) - (A;-A,) (Dl—DZ)}] 4. 485
2 4C1C2(A1C2+A201)
at all frequencies. From (4.6) and (4.47), the scattering matrix
and the phase shift for this network may be obtained; these are
tabulated in Tables 4.1 and 4.2 respectively.
In general, it is not possible to synthesize the NUTL, which
satisfies the requirements (4.48). However, these conditions are
satisfied when proportional lines distributions ,
L1 = LloF(x) , Cl = ClOF(x) 0 <sx=s 8 .. (4.493)
and
L, = LZOF(X) » Cy = CZOF(X) 0<x<8 oo (4.49D)
with
L L
10 20 -
L..C,.=1L,C , = A= .. {&.49¢)
10710 20720 . ClO CZO
are chosen as the two decouﬁled lines. In this case, from (4.49),

it is seen that the corresponding CNUTL is also a proportional line.
Using the result that a proportional CNUTL is nothing but a CUTL of
a different 1ength<92), it is seen that this folded all-pass network

exhibit the same characteristics as obtained by Jones and Bolljahan(53)
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for CUTL folded all-pass networks.

Type IIIB: The coupled line four-port in this case is excited at

port (2) with output at port (4) while voltages and currents have

V. =V, =0 «s (4.50)

Following the procedure used in the case of Type IIIA, it can be
shown from (4.50) and (4.7) that the chain parameters of this trans-

formed two-port network, in terms of decoupled line chain parameters,

are
A B, + A_.B
A= 1123_+B?-_3L .. (4.51a)
1782
2B.B
B = iBz .. (4.51b)
118

) (B1+BQ(C1+CZ) - (Al—AQ(Dl-D2)

c .+ (4.51¢)
2(31+B2)
B.,D,+B,D
_ ByPytBeDy
D= —YEI;EET— .. (4.514d)

From (4.51), it is seen that this network is also reciprocal

but non-symmetric. Hence, from (4.4) and (4.51), this network will

exhibit all-pass action provided

4B.B, (A_B_+A _B.)
1721722
Z, = / .. (4.52a)
3 (B, D,+B,D ) {(B+B,) (C,+C,) = (A;-A,) (D;-D,)}
and
. / 48,8, (B,;D,+B,D, ) sy
4 (Ale+{&2Bl){(3l+Bz)(c1+cz) - (a;-A)) (D;-D,)}
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at all frequencies. From (4.6) and (4.51), the scattering matrix
and the phase shift for this network may be obtained, and these are
tabulated in Tables 4.1 and 4.2 respectively. Again, in general,

it is not possible to synthesize NUTLs satisfying the requirements
(4.52). However, these are satisfied by the chain parameters of
proportional decoupled lines described in (4.49). In this case,

as in case of Type IIIA network, the folded all-pass network consists
of a CUTL, and hence exhibits characteristics similar to that

obtained by Jones and Bolljahan(53).

4.4 Folded All~Pass Network with Basic Decoupled Lines:

In the previous Section, it was shown that if dual lines are
chosen és decoupled lines, then the corresponding CNUTLs will
exhibit all-pass characteristics in both Type I and Type II configura-
tions, provided the ports are suitably terminated. In the follow-
ing two subsections, the characteristics of such all-pass networks
are studied in detail using basic lines with hyperbolic solutions

as the decoupled lines.

4,4,.1 Phase Characteristics:

The chain parameters of the basic lines with hyperbolic solu-
tions are given in Tables 3.1 and 3.2. Using these parameters: and
Tables 4.1 and 4.2, the phase shifts of folded all-pass networks of

Type I and Type II are obtained and are shown in Tables 4.3 and 4.4,

where



115

1Ca-lo) v-lyy - Coro) Gty Ta s - 1 (Tlalale Calvebaly) 15

0
o1
("g+d) aI1I
Carly)
Ehnuﬁa AN‘TH&& - AN0+H8 %mﬁmi«mﬂﬂ\. - _”AHQN?NQH@ Aam~<+mmﬁs 1r 0
"o Cv-Ty) - ooy Calny 1olor e [(Cata%a%o) (Dolwelolyy 1
0
71
. ("o+70) VIII
(“o+Fo) .
ria-"o) Cv-Tv) - Corlo) (Carlay 19%014- [¢% wlalo) (FoPvloly) i
0 {Talvalay s (Taly-Tgyy
411
tCalvilyy /(Taly-Tgy 0
0 {(TalarTa) /(TaTa-Tgyy
. VII
{(Td'Tg) s (Tqla-Tgyy 0
0 {Fatorlay (FaTp-Tgyy
a1
{(MatoiTqy /(FaTo-Ty} 0
0 {(TaTo4Ty) /(TaTp-Tyy )
VI
((tauTy) /(TaTp-Tyy) 0 ‘
XTIIB}] Surislleog 2dAy,

SYMOMIAN SSYd-TIV QIQIOd SNOTAVA d0 XTHIVW ONIIILIYOS

T°% 4714V




118

EAN?HE AN.«,-H.& = ANo+.H8 Aum.ﬂ..ﬂmimmﬁm”_\? ZHQN?NQHB A.Hnuﬁwmﬂ& 3/ \ V4
C Lz,
(Ca+la)
z. 1 4111
L ("g+ 1) 72,
rialo G- - Corlo) Carlwialay- (de’d’e) Aﬂmufmmﬁsp\_\
fCa-to Go-Twy - Corlo) Carle) 1oty L (alasbaln) (olvboln ¥ \ 7z
[ Lz,
) Co+to) .
[ ) o,
riCeto Gv-Tn - Corlyy Carlmboboy - rolediny Colwlon ¥
(Talyt/Tay_weaz - u = ¥ = o | am
) mﬂuaow\ﬂmuﬂlnmuN TR 4 F S, A 'Y V1T
m.ﬁmm\.ﬁuao“_ _ueig- = iy _ 1T, -
mH¢n\HkHouH|cmuN| = Cly = T8y -
3ITYS 9seyg dAL

SYYOMILAN SSYd-TTIV GITIOL SNOTYVA ¥0d IJIHS FSWHJ

Ty TIEVL




117

T88°0 = U
bg
(ou ¢ [FAurs ym yuez w - A] (p)ud paden
[F% UUB] © 4 yAURY Al ot - 2UTS0)H
.uENnmou [yW Yuel w 4 yAuel A A oTToqxedAn
[yAuea uyjoo w 4+ Aj] {Ou 9 [Fhuel(usym)yzoo w - AJ (Q)ug paaenbg
[{uyaoo - (u+Fwyyjcolw + Aa+aEvN.£Gﬁm [{uy200 - (T+¥w)yrooluw - U yuys autg
Fh we3{(uym)y3lod uyiod NE+N>: Fhuea{ (T+¥W)y3od uy3zod NE.Tm»: uﬂop.um&nm .
) d(p)u gruey guuey w4 1 (Q)U
[yu ue3 w — yi-uel nu.ﬂ-ﬂmm TR T T OTIjewouodTa]
Tyg vrs .m+ ygsoa]}(o)u [¥9 vrs m - %9800 (¥u+T) 1(0) U
g Nm g . 2TRAqe 3TY
300 e = (e o 200 —=e = (=- u
(t: 778 Ams + 92 + T) 18 Tt Ame + %0+ T)
[(Z/W) - 304392 17 (O)u [(z/®) + 31429211, (0)U :
e g T 5 TeTIusuodxy
faf/fafo1 = 4 (ye/TaTo1 = 4
flﬁmuwl = Nae aHtEwuN.. - NHe supT paTdnod2Q
g1 V1

g1 NV VI TdAL 0L SXMMOMIAN SSV4-TIV QHAT0L ANIT WIOJINANON ¥0i IJTHS HSVHA

gy T1gvL "




118

[(Yu yuel @ - ¥A300 AJyum_ysod A poaenbg
4 T T JUTS0)
g(oyu ¥h uea 9(0) oTToq19dLy
[(WHm)U300 W - 34300 AJ(W4qW) UUTS | [UY30D W + ¥A309 Aju yus paaenbg
d(o)u g(o)u 2uTs oTToqxadAH
[gri3o0 i 4 guuel Euqsmmoo d S
g(o)u 7guel ¢ g(0)u
Lu - 79202 (1) 91 (34T [m + ¥9309¢] oTRIqR3TY
gt g(o)u
mm 470 U309 mm =¥1 4309717 ,
— * d(0)u * (Q)u TeTUsucdxy
E) T
da
(falye/tay = 4 (taar/Tay = @
_.?hlcmuw -y = dme 9H|dmuu -y = qme sauy] patdnooag
qgI1 VII

911 NV VII ddAL A0 SHEOMIIN SSVA-TIV @104 INIT WIOJINANON ¥0d LATHS HSVHA

4 ETEVL




119

.+ (4.53)

n{0) being the sqaure root of the ratio of characteristic impedances

of lines 1 and 2 at x = 0. These phase shifts are plotted with

frequency for various values of taper mf and n(0) and are shown in

Figs. 4.5 to 4.24. On examination of the phase characteristics

for Type IA and 1B, it Is found that:

€

(1)

The frequency at which the phase shift is 180°'may be
controlled by varying the taper, while the variation of
n(0) controls the phase shift at other frequencies.

Hence, when these networks ave used for phase compensation,
the frequency at which a phase shift of 180° is required
may be controlled by the taper, while the phase shifts

at other frequencies may be adjusted by éhanging n(0).

It may be mentioned that in order to obtain the same
property with CUTLs, cascaded networks are employed.
However, these are larger in size with a consequent

degraded performance(gs).'

The phase shift is fairly constant over a band of fre-
quencies, when 'Trigonometric' or 'Hyperbolic Sine
Squared' lines are employed as decoupled lines in
Type IB configurations. The required amount of phase
shift can be obtained by properly adjusting the values

of mf and n(0). Thus, these networks can provide
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A
/(’ S -
/ zt;/ A m2=1.0, n(0)=5-

=R=1.0, n(0)=10

4
A3

l . ’ . '.
2 ¥ g

Fig. 4.5: Phase Characteristics of Type IA CNUTL Folded All-pass Networks

with ELs as Decoupled Lines
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m=0, n{0)=1

mf=-1.0, n(0)=1.
me=-1.0, n(0)=5

mz;—l.d, n(0)=10

1 ' 2

Fig. 4.6: Phase Characteristics of Type IA CNUTL Folded All-pass Networks

with ALs as Decoupled Lines
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Fig. 4.7: Phase Characteristics of Type TA CNUTL Folded All-pass Networks

with TLs as Decoupled Lines
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Fig. 4.8: Phase Characteristics of Type IA CNUTL Folded All-pass Networks

with HSéLS as Decoupled Lines
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constant phase shift compensation over a band of

- frequencies.

It is also noted from these plots that for Types IB and ITA
networks with 'Trigonometric' lines as decoupled lines, as well -as
for Type IA and IIB network with 'Hyperbolic Cosine Squared' lines

as decoupled lines, the frequencies at which the phase shift of 180° and 0°

respectively occurs is always less than that for a CUTL network. . However,
for Types IA and IIB networks with 'Trigonometric' lines as decoupled
lines, as well as- for Type IB and TIA with 'Hyperbolie Cosine Squared'
lines as decoupled lines, the frequencies at which the phase shift of 180°
and 0° respectively .occurs, 1s always larger than“that for a CUTL Network.
In particular, constant phase.shift over a band of frequencies can be
obtained by using "Algebraic', 'Trigonometric' or 'Hyperbolic Sine
Squared' lines as decoupled lines in Type II networks. However, as
mentioned earlier, the practical realization of Type II networks require

the realization of ideal transformexrs, which are difficult to build.

4.4.2 Delay Characteristics:

The delay characteristics of CNUTL folded all-pass networks
will now be considered. The delay versus frequency function is,

by definition(34)

-t
t dw

where w and ¢ are respectively the angular frequency and phase shift.

Let the normalized delay function t* be defined as



141

™ = o .. (4.55)
0

where To is the delay produced when TEM wave propagates along a
single uniform transmission line of length 2% (twice the length

of the folded network), and is given by

_ 22 .
0 =3 .. (4£.56)

v being the velocity of propagation of the TEM wave. From

(4.54)-(4.56), the delay t" may be expressed as

*
T =

Nl

d
E?%ET .o (4.57)

For the various Type I folded all-pass networks, the normalized
delsy with frequency are obtained as shown in Figs. 4.25 to 4.34.
From these plots, it is found that all these networks provide a larger
delay around the frequencies at which the peak delay occurs, than is
obtainable with a single uniform delay line of twice the length.

The variation in peak height may be accomplished by wvarying n(0),
and the position of peak delay by changing the taper. Further, it
is found that the folded all-pass Type IB networks provide larger
peak delay than that of Type IA. It is also found that Type IB
networks with 'Trigonometri;' or 'Hyperbolic Sine'Squared’ lines as
decoupled lines provide a larger peak delay than the ones which use
other basic lines as decoupled lines. It may also be shown that
the delay produced by the Type II networks can easily be obtained

by the networks of Type I which do not require ideal transformers
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and hence their delay characteristies are not included.

Thus, by properly selecting n(0) and m, CNUTL folded all-pass
networks can be effectively used as delay equalizers, which ara

extremely compact.

4.5 Conclusions:

Various folded all-pass networks have been obtained from a pair
of identical lossless CNUTLs by converting them into a two-port net-
work. For these folded all-pass networks, the required conditions
to be satisfied by the corresponding decoupled lines have been
determined. It has been found that the requirements for Type IIX
networks may be satisfied by using proportional decoupled lines;
however, the phase characteristics exhibited by such networks are
‘similar to those of CUTL folded all-pass networks as obtained by
Jones and Bolljahan(53>. It is shown that 1f dual lines are
chosen as decoupled lines, then the corresponding CNUTLs will
exhibit all-pass characteristics in both Type I and Type II
configurations, provided the ports are suitably terminated.

The phase and delay characteristics of such all-pass networks
are studied in detail using'basic lines with hyperbolic solutions

as the decoupled lines. The phase chracteristics of Types I

and II networks have the following properties:

(1) The frequency at which the phase shift is 180° may

be controlled by changing the taper, while the
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phase at other frequencies, by changing n{0).

(ii) The phase shift is fairly constant over a band
of frequencies, when Type IB network has 'Trigonor-
metric' or "Hyperbolic Sine Squared' lines as
decoupled lines. Fairly constant phase shift over
a band of frequencies may also be obtained
from Type II networks by using 'Algebraic' 'Trigono-
metric' or 'Hyperbolic Sine Squared'! lines as
decoupled lines. The amount of phase shift can be

’

adjusted by properly selecting the taper and n{0).

Further, it has been found that all thesé networks provide a
larger delay around the frequencies at which the peak delay occurs,
than is obtainable with a single uniform delay line of twice the
length. The height of peak delay may be controlled by wvarying n(0)
while the position of peak delay, by changing the taper. The net-
works with 'Trigonometric' or 'Hyperbolic Sine Squared' lines as
decoupled lines in Type IB configuration provide the maximum amount

of peak delay.
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" CHAPTER 5
CONCLUSIONS

A general theory for decoupling a pair of lossless CNUZLs
and supporting TEM mode of propagation has been developed. This
theory has been applied to study the applications of CNUTLs as

directional couplers and folded all-pass networks.

The theory that has been developed reduces the problem cf
analyzing lossless CNUTLs as a four-port netwerk to that of analyzing
two two-port networks. This theory is quite general and is inde-
pendent of the port terminations, the ratio of wavelength to line
size, any symmetry conditions etc. Further, the method is applicablé
to identical or nonidentical, similar or dissimilar coupled lines.
This method also directly relates the line parameters of CNUTLs
to those of decoupled lines and vice vérsa; further the matrix
.parameters of CNUTLs as a four-port, are explicitly expressed in

terms of those of the decoupled lines as two-ports.

Utilizing this theory, CNUTL codirectional and contradirectional
couplers with and without impedance transformations have been studied.
It has been shown that for CNUTLs to behave as a codirectiomal coupler,
each of the decoupled lines should be proportional line, while for
contradirectional coupler action, the two decoupled lines have to be
duals of each other. Further, such codirecticnal (contradirectional)
couplers have the.property 513 = 824 (Sl3 = 824 and‘;Sl4 = 523)' .

It has been found that the coupled line four-port using nonidentical
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lossless CNUTLs exhibits an impedance transformation between cértain
porfs along with the directional coupler action. Further, the
conditions to be satisfied by the decoupled lines for obtaining
smooth electromagnetic transition at one of the ends of a codire-

ctional or contradirectional coupler have been obtained.’

The coupling respcnse of codirectional coupler is found to be
periodic, while the phase shift between coupled and transmitted
signals varies linearly with frequency. Contradirectional couplers
are found to exhibit different characteristics depending on the
distributions of the decoupled lines. It is shown that a 90° phase
shift is obtained by choosing symmetric NUTLs as decoupled lines,
while 0° or 180° phase shift may be obtained by choosing one decoupled
line to be the same as the other, turned around.  These couplers with
exponential decoupled lines exhibit band pass coupling response.

The coupling response of various contradirectional couplers with
smooth transition at one end, for which the decoupled lines are
*basic NUTLs with hyperbolic soclutions' have also been studied in
detail. It is shown that all these couplers have a high pass
response and that the CNUTILs with 'hyperbolic cosine squared),,
lines as decoupled lines have the best response of all the CNUTLs

considered.

Three different types of CNUTL folded all-pass networks have

been studied by converting the CNUTL four-port into a two-port by
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pProper port terminations. The requirements to be satisfied by the
chain parameters of the corresponding decoupled NUTLs as two-ports

have been derived. It is shown that these conditions may always be
met for the first two types, if dual lines are chosen as the decoupled
lines, while, for the third type; the decoupled lines are, in addition,
proportional. The phase and delay characteristics of these three

types have been investigated, when the decoupled lines are basic lines
with hyperboliec solutions. It is found that, in Types I and II networks,
the frequency at which the phase shift is 180° may be controlled by
changing n(0). Further, these networks can provide delays larger than
. that obtainable from a single uniform line of twice the length. Of all
the lines considered, the peak delay is found to be maximum when the
decoupled lines are chosen to be 'trigonometric' or "hyperbolic sine

squared' lines.

As has been pointed out above, it was possible to obtain only a
partial solution regarding the decoupled line distributions, for the
corresponding CNUTL to behave as an all-pass network. It should be
interesting to see if a general solution should be obtained for the
same. The author also feelsthat further worthwhile investigations
could be carried out in the area of coupled nonuniform tramsmission
line networks. The coupling response of CNUTL contradirectional
couplers with exponential symetric lines has recently been obtained(34).
The coupling response of other CNUTL contradirectional couplers

having 'basic symmetric NUTLs® with hyperbolic solutions as decoupled
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lines should be investigated in an attempt to find the response which
yields optimum results. It is also worthwhile to study the phase and
delay characteristics of folded all-pass networks with other symmetric
NUTLs as decoupled lines. It should be worthwhile to investigate the
possibility of using CNUTLs as other TEM components such as Magic-T,
filters, hybrid networks, etec. Finally, it should be possible to
extend the decoupling theory described in the thesis for a pair of
CNUTLs, to n-pairs of CNUTLs and consider its applications to

multiport TEM networks.
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APPENDIX A
DETERMINATION OF SCATTERING MATRIX FROM THE
CHAIN MATRIX FOR A FOUR-PORT
Consider the four-port network of Fig.A.l, where Zj’ Vj, Ij’
aj and bj are respectively the terminating impedance, voltage,
current, incident and reflected wave amplitﬁdes at the jth port.
The equation relating the voltages and currents of input ports
(1) and (2) with that of voltages and currents at the output
ports (3)'and (4) is
[v v
.in ~out
see |= [a] seces ..(A.la)
~in —Eout
where [al dis the chain matrix of the 4-port and
Vl x V3
v = s V = .. (A.1b)
. ~in v ~out v
2 4
4 I3
I. = H I = s (A-].C)
~in I ~out I
2] L4
Using complex normalization(gﬁ), the incident and reflected wave
amplitudes are related with the voltage and current at that port
as
_ 1
a, = v, +2z, 1,) .. (A.2a)

T 1
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b

where

Re

Writing (A.2) for this four-port in the matrix form

where

- Yy 17
[N, = 5lr,]

Ezi]

tzzl

o -

in

bin

From (A.3a) and

-t
1

17, Wy =2y I
Zj = rj >0

§in

b
~in
L

L gl
[NL] = 2[r£]

n

diag

1]

Yin
= [N1] L
~in

Yout

zout

o
ku] -[Z,]

(Ul @ [z

(vl --[Zj

Z,,2) 5 [xy] = Re [2,]

diag (Z3,Z4) s [rjl = Re [ZZ]

Il

diag (rl,rz)

diag (r3,r1)
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. (A.2b)

. (A.3a)

. (A.3b)

(A.3¢c)

(A.3d)

. (A.3e)

(A.35)

(Ag3g)

(a.3h)
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a, v
~in ~out
eeo| = [N,1lall.... o (ALB)
b T
~in ~out
The above equation may also be written as
20 [ul . [o0] . 2t
ool = [Ni][a] U 1.FY -
bin [0l .-[ul Pout
or
Bin| |C01: [UI [ul: [0] 2out
Sl Rl R [ R 1% ce A5
“in {ul :fo] fol -ful “out
The transfer scattering matrix of this network is defined by
b'in r‘filout:
= [T feers .. (A.62)
2in ]-J-out
where
R ta2. Fi3 €14]
[Tlll . [lel oy tope tog Eoy
[T] = C 0t ] = Jiee ese see een .. (A.6b)
[Ty 1 "[Tgp1]  1®31 T32- T33 T34
| Ea1 Ta2t Ba3 Cas

From (A.5) and (A.6), the transfer scattering matrix is gxpressed as

ol | vl [ul. ol _i
[l = |- - |[NIal [- ...~ [N, ] .. (A7)
[ul o] [01 -[ul
From (A.3)
f‘.lout = %[rjl,]-;s{Yout + [zL] !out} .e (A.8a)'
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=L 1% - [z
b =5l Ay (2,1 I ¢! .. (A.8b)

By subtracting and adding (A.8b) with (A.8a), and simplifying

_ %
Tout = ETgd “{ague ~ Boue!
v =[x ]“35{['2" la__ +[Z,b__ 1}
~out 2 27 ~out L~ ~out
or
' [Z,1: [2,]
v 2 2 a
[??‘.“.‘ = [rzl—}i R [T?‘.’?] ) : S (A9
;out (vl < ~[u] bout
Hence, from (A.3b) and (A.9)
o s [Zz]: [22]
[N£] = [rzl . . .. (A.10)
[u] .-[U]

Substituting (A.10) in (A.7), the transfer scattering matrix in terms

of four-port chain matrix [a] is obtained as

[1] = %[xna][x*;] .. (A.11a)
where
[ul -—[iiz
_!5 -
[x] = [z,] e . .. (A.11b)
(U3 2]
and
L | Pl
[X*] = [r,] . . . (A.11lc)
-Lul - [U]
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APPENDIX B

SCATTERING MATRIX FOR A FOUR-PORT IN TERMS OF THE TRANSFER
SCATTERING MATRIX PARAMETERS

Consider the four-port network of Fig.A.l. The scattering matrix

of this four-port is defined as

b a
Pnolopgy|ie .. (B.1)
13out éout

where the scattering variable vectors gy Pin’ 2ut and bout are

defined by (A.3). The transfer scattering matrix of the four—port is
described in (A.6). From (A.6) and (B.1), the scattering matrix in
(97)

terms of transfer scattering matrix is obtained as

-1 -1 .
[Typ IlTo5l = ¢ [Ty = [Tppl " [Ty
S1=1{ - . - . .. (B.2)

-1 -1
[Tyql “Ey) TEag

-1
.Substituting for ETllJ,ETIZJ,CTzﬂ from (A.6b), and for [T, from
(B.2), the scattering matrix of the four-port may be expressed in terms

of transfer scattering matrix parameters as:

t13 44][ 14 33] _[%1“13'544*14"433 I se. | 3252354 14 ta3 ]
SN 1 ST e S P CHTNE RN | B £ (Tt a3mt gty
rsqe 1ff 23 44” 24 33] _["31("23t44't24t43)] it __[%2“23%4‘%4“43’)]
Blrtastas| [t23tas Fal” [ty (e tantyata )] AR e (e e ey,
. t41t347 4 31 t34%42 44532
i "t43 t33 L4331 t33%1 t43t32" 33840

.. (B.3)



APPENDIX C

THEOREMS CONCERNING PROPORTIONAL AND DUAL LINES

The following three theorems concerning NUTLs with proportional

and dual distributions will now be proved.

Theorem 1:
The necessary and sufficient conditions for the chain parameters
of a lossless NUTL }f of an arbitrary length £ to be interrelated
as
A=D

B = r?(2)c

[}

r being a constant independent of s, is that L bea proportional

line (99)  that is, 1f the distribution of L(x) is given by

L{x) = L0 F (x)

then, the distribution of C(x) is
Lo
Cc(x) =~;E F(x) = C0 F(x).

Necessity:
For a lossless line with distributions per unit length L(x)

and C(x), where L(x) and C(x) are positive integrable functions of x,
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it 1s known that the chain parameters are(87’88):
} 2n
A___;__,.lans .o (C.1)
v .
2n+1
a I .
B=Ib s . .. (c.2)
N .
c=%c g2ntl .o (.3)
n



where

I 720 73 72
a =79 C(xZn) 0 L(xzn_l) .0 C(xz) 0 L(xl)dxldx2 .. dxzn

.

2 X x x
_r fent+l 73 72
bo=0 L&y Clxy)ee g€y o7 Lixp)dx dx, .. dx
L x
_r Fon+l #3 F2 .
ch =0 C&gnyn) o L0y -ogLlxp) 7 Clxpddxpdny w0 dpyy oo
2 X, X X
_r J/2n T3 T2

Let for a line of length £(0 s £ < &), the total inductance and capa-

citance be related as

E
P = ue) § o

Now, since A =D, and B = rz(z)C, it iz seen from (C.1)~(C.8) that

it is necessary that

a; = dl
and
by = T2 ()ey
Hence
ézc(xz) zzL(xl)dxldxz = ézL(xz) 22 C(x,)dx,d
and

IE 2 fl
0 L(xl)dxl = r () 0 C(xl)dxr

X

2
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(C.4)

(c.5)

(C.6)

c.7)

(C.8)

.9

(C.10)

(c.11)

(c.12)

(c.13).
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where x, ranges from 0 to R%.

Substituting (C.9) in (C.12)

it 72 * 72
0 C(xz) u(xz) 0 C(xl)dxldx2 =0 L(xz) 6 C(xl)dxldx2

or

7+ 5
Fle@m(e) - L] § olx))dx;dg = 0

Since the above expression should hold for any arbitrary %,

c(E)u(g) - L(E) =0 D<E=<?

hence

L(E) = C(EIn(E) ve (c.l14)
Thus

L 2
IL(e)dg = Je@ua .+ (C.15)

From (C.14) and (C.13)

A : £
SeEm@ae = x2() § e

for any arbitrary length. Hence

u(E) = ¥
That is, the function u should be independent of E. Therefore, from
(C.14), it is seen that if the distribution of L(x) is
L(x) = LO F(x) : .. (C.1l6a)

then the distribution of C(x) is

cx) = c0 F (x) B .. (C.16b)

where
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r = iEO/CO .. (C.16c)

Hence, the necessity of the theorem is established.

Sufficiency:
Assuming the distributions of the line ¢£ to be given by (C.16),

it is readily seen from (C.5) and (C.8) that

A =D,

while from (C.6) and (C.7), it is seen that

b c

n n
P e I Y 0,1,2,....
Lo "G S Lo

or

Hence
B = rZC

Thus the sufficiency is proved.

Theorem 2:

The necessary and sufficient conditions for the chain parameters
of two lossless lines L‘l and LZ of equal but arbitrary length £ to

be interrelated as

A= Dy » Py = Ay
B
2 2

B, =r (£)02 y Cy =



r being independent of s, is that Ll and '52 be dual lines; that is,

if the distribution of [.l are

i Ll = L10 F(x) , C, = ClO G(x) 0 sx S—E

1

then the distributions of ﬁz are

L2=L20G(x) s 02=020F(x) 0<x=< 2

where

r = JLy6/Cg =MLy /C1g

Necessity:
Let Ll(x) and C, (x) be the distributions for line A , and Lz(x)
and Cz(x) for line ,62, where Ll’ Cl’ L2 and C2 are positive integrable
functions of x. Then the chain parameters of lines ‘51 and f,z may

be expressed in terms of the uniformly convergent series in the form

- b 2n .
Av =1+ i 3. S .o (C.17)
P 2n+l
Bv = 5 bnv 8 .. (C.18)
_ T 2n+l '
Cv =5 S 8 .. (C.19)
_ ; 2n '
Dv—1+1dnvs .. (C.20)
where
2 X X2
=/ J2n )
a, =0 Cv(x2n) 0 Lv(x2n-l) >+ D Lv(xl)dxl .o dx2n .. (C.21)
fg' 7‘{2'14-1 }{’5
v = 0 Lv(x2n+l) 0 CvCXZn) S S Lv(xl)dxl .o dx2n+1 .. (C.22)
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2 X xz
=/ T2n+l i
Cv=0 Cv(x2n+l) 0 Lv(XZn) ‘0 Cv(xl)dx1 .o dx2n+l .. (C.23)
% X
_ R 72n T2
dnv = 6 Lv(XZn) 0 Cv(x2n-1) -+ 0 Cv(x1>dxl .. dx2n .o (C.24)

and v= 1,2 respectively corresponds to the line £ 1 and 'ﬁz. For a

length of £(0 < £ < 2), let the total inductance of /£ , be related to
the total capacitance of f 5 in the form
st 75
o L1(8)as = u; (8) 5C,(E)aE .+ (C.25)

vhile the total inductance of ﬁ 2 and total capacitance of fil be

related as
8 I :
0 LZ(E)dE =1, (&) o C;(8)dg .. (C.26)

- - _ .2 .
Since A1 = D2’ A2 = Dl’ Bl =1 (E)C2 and B2 =r (z)cl, it is necessary

from (C.17)-(C.24) that

. a1 = d12 .. (C.27)
aj, = dll .. (C.28)
by, = r(2)ey, .. (C.29)
byy = T2 (2)eg .. (C.30)

From (C.21)~(C.24) and the above equations, it is seen that

e oy 12 1o (. yax.ax. = L4 .y 12 ¢ (x, )dx, dx (C.31)
0 “1%2’ p P/ 9xy T g La(xy) i Colxpddxidx, ee (L
X X

2 }A
S 72 =/ s2
0 Cz(xz) o Lz(xl)dxldx2 0 Ll(xz) 0 Cl(xl)dxldx2 .. {C.32)
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2 2

! e w200y S :

0 Ll(xl)dxl = r (R) 0 Cz(xl)dxl .. (€.33)
2 2

/ = 2

J L, G ddx; = £7(0) 6 ¢, (x;)dx; .. (C.34)

where X, ranges from 0 to 2.
Substituting (C.25) in (C.31)

X

£ G () 12 o e ydxdx, = L1 ) L2 c. (k. )dx,
0 U1 FlH(Ho) g Lplxp)dx iy = g LpXg) Lo Xy JAX Gy

or
fz[ ] s
J7le (0 (@) - L, (6)] €, (x;)dx dE = 0
Since the above expression should hold for any arbitrary length £

Gy (8) 1y (8) = Ly(8) = 0 0sgs2

or

L, (E) = u; () G, () .. (C.35)
Similarly, using (C.25) in (C.32), it can be shown that
Ly (€) = uy(€) Cy(E) . (€.36)

Integrating (C.35) from 0 to % and using (C.34) for any arbitrary £,

it 1s obtained that
2 3 ) 2
s =T = r2e0y L

Hence

ul(E) = rz(n) .. (€.37)

Similarly, from (C.36) and (C.33), it can be shown that
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1, (&) = (%) .o (€.38)
Thus, from (C.37) and (C.38)
uy (8) = uy(E) = r2(2)

and hence both ] and u2 are independent of £. Therefore, from

(C.35), (C.36) and (C.37)

L, (&) = r(2) ¢ (8)
L, (® 0<gsy

Hence, if the distributions of f 1 are

Ll(x) = LlO F(x) , (.:1,(x> = Cl0 G(x) O0sx=<2 .. (C.392)
then the distributions of f, are

Lz(x) = L20 F@x) , Cz(x) = CZO G(x) O0sx <2 .. (C.39b)
where

r = »"Llo/C20 = '/LZO/ClO _ .. (C.39c)

Thus the necessity is proved.

Sufficiency:
" Let the line L , and [2 have distributions as given by (c.39).

Then the various jth coefficients in the different series (C.17)-(C.20)

are:
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= (L, .C )j flc( ) ?Zj F( ) ?QF( );x dx {c.40
%31 7 Y10%10?” 6 257 0 ¥23-17 tc 0 TV - »+ (C.402)
R Lo [ ) 23+ 2 '
bjl =Lio 10 —6F(x2j+l) (f) G(xzj) .. 6 F(xl)dxl .. dx2j+1 «. (C.40b)
j+L 3 2 x2j+ X
cjl = C10 LlO 6G(x2j+l) 6 1F(x2j) .. 62 G(xl)dxl .. dx2j+l .o (C.400)
d.. = (L, c.)3 [hex ) }‘sz(x ) .. D26 )ax ax (C.40d)
31 10°107 " %2357 0 2517 *- 0 1/ o0 “ognn .- L
and
.8
- ir T3 > .
ajz = (LZOCZO) 0 F(xzj) 0 G(ka_l) “+ 0 G(xl)dxl .o dx ¥ .. (C.41a)
j+x 3 A X .
_ s Fa34+1 F
biy = Loy Cho b G(x2j+l) A F(xzj) o+ p? Glxpdax; .. dXpiq +o (C.41D)
_ o3, F25+1 T2
ey = Coo Ly 6 F(xzj_u) § G(xzj) .. 6 F(x)dx .. dxpipy e (C.4le)
2
- ir 23 72
dip = WpgChd? § G(xzj) . F(xzj_l) g Flxddx, .. dx,, .. (C.41d)

From the above expressioms, it is readily seen that

jl j2 j1 32
b = Llo c c E;g b
) 3 .
31 7T, “12 i1 T I, P12
Hence
By
Ap=Dy » Dy=4, , B =17C, ,C =3

Thus, the sufficiency 1is established.
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Theorem 3:

The necessary and sufficient conditions for the chain parameters
of two lossless lines £]_and LZ of equal but arbitrary length £,
to be interrelated as

Ay =4y 1D
B rZ(L)C B, = rz(z)c
2 1

1 2

r being independent of s, is that if the distributions of f-l are

Ll = LlO F(x) , Ci = ClO G(x)

then the distributions of f o are

L, = L20 G(e-x) , C2 = C20 F(&-x)

2

Proof:

It is well known that if (A,, BZ’ C2’ D2) are the chain para-
meters of a line of length 2, having distributions Lyg G(x) and
C20 F(x), then the chain parameters of the line of length £ with
distributions LZO G (2-x) and C20 F(4~x) are (Dz, Bz, CZ’ A‘z)’ since

the latter line is nothing but the former looking from right to

left. Hence Theorem 3 readily follows from the above result

and Theorem 2.





