. * l National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A ON4

NOTICE

The quality of this microformis heavily dependent upon the
quality of the original thesis submitted for microliiming
Every eflort has been made to ensure the highest quahty of
reprcduction possile.

!l pages are missing, contact the university which granted
the degree

Some pages may have indistinct print especially if the
original pages were typed with a poor typewriter ribbon or
it the university sent us an interior photocopy.

Reproduction in fun or in part of this microformis governed
by the Canadian Copyright Act, R S C. 1970, ¢. C-30, and
subsequept amendments.

NL J39 (r BRO4)C

AVIS

La quahté de cette microtorme dépend grandement de la
quahté de la thése sourmise au microhimage Nous avons
tout fait pour assurer une quahté supérneure de reproduc
tion

S manque des pages, veullez communsquer avec
funiversit’: Qui a conféré le grade.

La qualté d'impression de cenaines pages peut lsser a
désirer, surtout si les pages onginales ont é1é dactyloqra
phiées a l'aide d'un ruban usé ou st f'université nous o fau
parventr une photocopie de qualité inféneure

La reproduction, méme partielie, de cette microforme vl

soumuse & fa Lot canadienne sur le drot d'auteur, SRC
1970, ¢ C-30, et ses amendements subséquents

Canadi

High-Level Synthesis of
Bundled Delay-Insensitive Circuits from

Occam Program Specifications using Time-sharing

K.J.Venkatesh

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal , Quebec , Canada
February 1992

© K.J. Venkatesh , 1992

oy

ode

National Library
of Canada

Bibliothéque nationale
du Canada

Canadian These< Service

Ottawa, Canada
K1A ON4

The author has granted an irevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in hisfher thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Canadi

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliotheque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
intéressées

L'auteur conserve la propnieté du droit d'auteur
qui protege sa these. Nila thése ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
autorisation.

Abstract

High-level Synthesis of
Bundled Delay-Insensitive Circuits from

Occam Program Specifications using Time-sharing

K.J.Venkatesh

This thesis presents techniques for synthesizing bundled delay insensitive circuits
from high-level occam programs using time-sharing to reduce the area of synthesized cir-
cuits. A semantic model, called intermediate form (IFORM), is presented for a subset of
occam. Syntax directed translation from a occam program specification into an IFORM,
and from IFORM into bundled Delay-Insensitive circuits are presented. The idea of time-
sharing is used in the translation. Time-sharing refers to the use of the same circuit to carry
out the computation described by different instances of an operation in a program. To
improve the degree of time-sharing, the control flow of the given program is changed by
performing augmentations on the intermediate form of a given program. Augmentation by
data flow extraction to increase concurrency has been presented. The intermediate form is
also used for the performance evaluation of the translated circuit. Some discussion on the
applicability and limitation of previously published performance evaluation mcthods for
asynchronous systems is provided. Finally, a strategy for exploring the optimization
search space is outlined. The technique is applied to the synthesis of an elliptic filter. A
software program has been developed to implement the synthesis methodology presented

in this thesis.

-1if -

ACKNOWLEDGEMENTS

I would like to thank Dr. R. Jayakumar, my thesis supervisor and Prof. H.F. Li for all their
help, understanding, and guidance. Their constructive criticisms and keen ability to pinpoint
important issues and weaknesses have been a major part in *he shaping of this thesis. I would also

... 10 thank the members of the DI group S.C.Leung and Ping N. Lam.

Figure 1:

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:

Figure 2.9:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 4.1:
Figure 4.2:

Figure 4.3:

Table of Contents

List of Figures

An implementation of (f(a) A f(b)) using time-sharing
Input operation

Output operation

Assignment

SEQ construct

PAR construct

WHILE construct

IF construct

ALT construct

Circuit for realizing the communications over channel a
between multiple input/output processes

An example occam program and its parse tree
Circuit for realizing Time-Sharing

Circuit for realizing Time-Sharing
Augmentation by data flow extraction
Augmentation by serialization

Illegal augmentation

14

15

16

17

17

18

18

19

21

29

30

21

33

34

35

Figure 4.4:
Figure 4.5:
Figure 4.8:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure B.1:
Figure B.2:
Figure B.3:
Figure B.4:
Figure B.5:
Figure B.6:
Figure B.7:
Figure B.8:
Figure B.9:
Figure B.10:

Figure B.11:

Circuit for realizing Time-sharing

Merging of Input/Qutput transitions

Unfolding of loops for merging Input/Output transitions
Occam specification of an Elliptic filter

IFORM for the Elliptic filter

The layout of the optimized elliptic filter
Augmenting the IFORM by serialization
EDIF Netlist of the circuit with four multiplier modules
Fork

C-element

XOR

Toggle

XOR

Select

Call

Bcall

Arbiter

ATS

De-multiplexer

36

38

38

51

54

58

59

60

78

78

79

79

79

80

80

81

82

83

83

Table 1:

Table 2:

I.ist of Tables

Synthesis results

HAL synthesis results

1. Introduction

2.

3.

1.1
1.2
1.3
1.4
1.5

1.6
1.7

1.8
1.9

High-level synthesis

Delay-Insensitive (D]) circuits

Bundled Delay-Insensitive circuits

Specification

Intermediate form

Translation

Performance evaluation of Asynchronous
concurrent systems

Analysis of Distributed Communicating Processes

Contribution of the Thesis

Intermediate Form

2.1 Requirements

2.2 The Intermediate Form

2.3 Relating Program and Intermediate Form
2.4 Relating Intermediate Form and Circuit
2.5 Correctness of Implementation
Time-Sharing

3.1 Abstract Requirements

50

51

+ B4 B

®

11

11
13
14
21
24

26

26

3.2 Time-sharing Conditions in Intermediate Form
3.3 Procedure for Identifying Time-Sharing Candidates
3.4 Circuit for Realizing Time-Sharing

Augmentation, Performance Evaluation, and
Optimization Strategy

4.1 Augmentation by data flow extraction
4.2 Augmentation by serialization
4.3 Performance Evaluation

4.4 Optimization Strategy

Software implementation

5.1 The Elliptic Filter Example

Conclusion

References

Appendix A: Occam Subset: Syntax and Sematics

Appendix B: Basic circuit building blocks

Appendix C: Basic DI Cell Library

26
28
30

32

32
33
37
38

41

50

65

67

71

78

83

Chapter 1

Introduction

As VLSI systems become larger and more complex, managing their complexity
becomes a major part of the design process. One method of taming their complexity is to
use automatic (systematic) methods for generating circuits from behavioral descriptions.
This allows the designer 10 abstract away details of the low-level circuits and think of sys-
tem behavior in terms of high level programs. In recent years there has been a trend
toward automating at higher levels of the design hierarchy. There are a number of scasons
for this: (1) shorter design cycle: if more of the design process is automated, a design can
be completed faster, which in turn can lower the cost significantly; (2) fewer errors: if syn-
thesis process can be verified to be correct - by no means a trivial task - there is a greater
assurance that the final design will correspond to the initial specification; (3) the ability to
scarch the design space: a good synthesis system can produce several designs from the
same specification in a reasonable amount of time, which allows the developer o explore
different trade-offs betyveen cost, speed, power etc. in choosing one of several designs pro-
duced by the automated design system. In this thesis, a systematic procedure to synthesize

VLSI circuits from the behavioral description of a system is presented.

1.1, High-level Synthesis

The synthesis task is to take a specification of the required behavior of a system
and a set of constraints and goals to be satisfied, and to find a circuit structure that imple-
ments the behavior while satisfying the goals and constraints. By behavior we mean the
way the system or its components interact with the environment, i.e, the mapping from
inputs to outputs of the system. Structure refers to the set of interconnccted components
that make up the system, typically described by a neuist. Ultimately, the structure must be
mapped into a physical design, that is, a specification of how the system is actually to be

built. Behavior, structure, and physical design are usually distinguished as the th.ce

domains in which hardware can be described.

Just as designs can be described at various levels of detail, so can synthesis take
place at various levels of abstraction. The hierarchy of levels [1] generally recognized as
applicable to digital designs are system, algorithm, register-transfer, logic and circuit.
High-level synthesis, as we use the term, means going from an algorithmic level specifica-
tion (o a register-transfer level structure. The specification, at the algorithmic level, gives
the required mapping from sequences of inputs to sequences of outputs, where those
inputs and outputs may communicate with the outside environment or with another sys-
tem-level component. The specification should constrain the internal structure of the sys-
tem to be designed as little as possible. From the specificaticn, the synthesis system
preduces a description of a data path,, that is, a network of registers, functional units, mul-
tiplexers, and buses. If the control is not integrated into the data path, the synthesis system
must also produce the specification of the control part.

Usually there are many different structures that can be used to realize a given
behavior. One of the tasks in synthesis is to find the structure that best meets the con-
straints, such as limitations on time, area, or power, etc. while minimizing other costs. For
example, the goal might be to minimize area while achieving a certain required processing
rate.

While most of the work in high-level synthesis has been done for synchronous sys-
tems, there is a considerable interest to move away from totally synchronous systems to
self-timed asynchronous systems. As VLSI systems become larger, clock skew becomes a
more serious problem. Using a longer clock period alleviates the clock skew problem; but
the overall sysiem throughput will be reduced. Self-timed signalling [34] was advocated as
an approach to VLSI systems design. However, asynchronous circuits are known to be dif-
ficult to design correctly [39]. One method for making asynchronous/self-timed systems
casier to design is 10 use automatic (systematic) methods for generating circuits from

behavioral descriptions.

1.2. Delay-Insensitive (DI) circuits

There are various forms of asynchronous circuiis. Delay-insensitive (DI) circuits
[29, 38] are the most robust form whose functional correctness is unaffected by delays in
the components and by delays in wires connecting the components. Delay insensitive sys-
tem are composed out of hicrarchy of DI modules. The communication between two DI
modules is based on self-timed signalling protocol, such as 2-phase or 4-phase handshak-
ing. The 2-phase handshaking (also called 2-phase transition signalling) is based on transi-
tion signalling where either rising or falling signal transition signifies an event. The “two-
phase ' part of this name indicates that only two phases of operation arc distinguished: the
sender’s active phase and the receiver’s active phase. An event terminates each phase: the
requesi event terminates the sender’s active phase, and the acknowledge event terminates
the receiver’s active phase. In 4-phase handshaking protocol, the first two phases are the
same as the 2-phase handshaking protocol. The other two phases refers to the request and
acknowledge signals returning to a low level before the next communication can take
place between the sender and the receiver. Speed-independent (SI) circuits |12, 23, 24] are
closely related to DI circuits in that they allow arbitrary component delays, but zero wire
delays are assumed. Classical asynchronous circuits [39] require various delay compensa-
tions for correct operation. Because of the lack of design tools, they are usually designed
to operate in the fundamental mode: only one input signal transition is allowed at a time
and an input signal transition can be sent in only when the entire circuit has stabilized (no
signal transition takes place within the circuit).

Other than purely asynchronous circuits, some approaches use local clocks within
circuit modules while communications among circuit modules are asynchronous [33].
Systems using this approach are usually called globally asynchronous locally synchronous
systems. Selective clocking approach [11, 26, 42] is another onc that also involves the usc
of clocks. Clocking is done at some of the state transitions of a finite state machine specifi-
cation of the circuit. Synchronous systems always have clocking when there is a state tran-
sition, while there are no clocking at all in state transitions for purely asynchronous

circuits.

1.3. Bundled Delay-Insensitive circuits

Since truly DI implementations of data manipulating circuit modules, e.. adder,
multiplicr, etc. require very large areas, a compromise between robustness and ar a-effi-
ciency is adopted and such circuits are named as bundled delay-insensitive circuits. Data
manipulating circuit modules are designed using classical boolean techniques. Data path
from one circuit component to another is bundled with a control wire. When a circuit com-
ponent produces a data value to be consumed by a receiving component, the data values is
put onto the data path and a signal transition (rising or falling signal transition because in
two phase handshaking, rising and falling signal transitions mean the same) is sent along
the control wire. It is assumed that by the time the signal transition along the control line
arrives at the receiving component, the data valus at the data path is valid and the receiv-
ing component can consume that data value. This assumption can be guaranteed by intro-
ducing delay clemc ats in the control line. The delay introduced by the delay element has
to be more than the total delay of the gates in the data path. The producer of the data value
must not produce another data value again until it receives an acknowledgment directly or
indirectly (i.e. from some other circuit component other than the receiving component).

The control circuit is a DI circuit.

1.4. Specification

The system to be designed is usually represented at the algorithmic level by a pro-
gramming language such as Pascal{37] or Ada [14], or by a hardware description language
that is similar to a programming language, such as ISPS[7], CSL[8], MIMOLA[43] or
behavioral VHDL(9], CSP[5, 23], Occam[2, 3, 4, 41]. A realistic specification language
should contain mechanisms to specify hicerarchy, usually procedures, and a way of specify-
ing concurrent tasks.

Essentially, asynchronous circuits are synthesized from two kinds of specifica-
tions, namely, signal transition ievel specifications and concument programming language
(c.g. vccam, CSP) specifications. Signal transition level specifications are more suitable

ior specifying control circuits inside systems. Data manipulating circuit components, e.g.

adder, have very big signal transition level specifications and are not feasible to be imple-
mented using purely DUSI circuits.

When a whole system is to be implemented, a high level concurrent programming
language specification is more appropriate than a signal transition level specification.
CSP/occam based concurrent languages are popularly used for such system description.
Synchronous communication is required to achieve delay-insensitive communication
between processes, and the communication primitive constructs provided by those lan-
guages captur. exactly this requircment. The designers are free from worrying how to
realize synchronous communication in terms of signal transitions.

In this thesis, the specification language is a subset of occam {17], a language
based on CSP. An occam program is the description of a computation in terms of the order
in which instances of some cperations are performed. The operations include the primitive
operations supported by the language, e.g. +, *, input/output operations, and user-defined

functions/procedures.

1.5. Intermediate form

Since program and a circuit are at two different levels of abstraction there is a nced
to use an intermediate representation which forms a bridge between these two levels, The
first step in high-level synthesis is usually the compilation of the formal language specifi-
cation into an internal representation. Most approaches in synchronous design use graph-
based representations that contain both the data flow and the control flow implied by the
specification, although parse trees are also used [25]. In this thesis, an intermediate form is
proposed (chapter 2) as a semantic model for occam programs and as a tool to examine the

issues in time-sharing circuits among instances of the same operation in a program.

1.6. Translation
The simplest of all the translation methods is syntax-directed translation. Each of
the syntactic construct is mapped into a corresponding circuit entity. The circuit entitics

are connected in the same way the syntactic constructs are composed in the program. Thus

in syntax-directed translation, the computation described by each of the instances of oper-
ations in a program is done by a physical circuit component. The circuit components in the
translated circuit are activated in exactly the same order as the instances of the operations
during the exccution of the program.

Martin [23] at CalTech has succeeded in compiling specifications in a language
based on CSP into gate-level circuits. Required program specifications are first decom-
posed into many smaller processes initiated by signals on new communication channels.
These simpler processes are expanded to include details of the four phase handshake used
for control signals and then mapped into a set of production rules that define when the
handshake signals are set and reset. These production rules are strengthened to enforce
sequencing, and then mapped into a library of gates to construct the circuit. Various ways
of shuffling signal transitions to obtain different circuits were presented in [23]. In [5] a
syntax-directed translation for compiling a CSP-like language specification into SI circuit
is described. Translation of occam programs into bundled DI circuits [36] has been con-
sidered in [1, 3, 4, 41].

Syntax-directed translations of programs written in CSP like languages are pre-
sented in |1, 3, 4]. In [4] some post-translation optimizations by replacing sub-circuits
with simpler sub-circuits is proposed. The optimizations are limited. Optimizations for
reducing the arcas of the synthesized circuits are also mentioned in [1, 3]. However, [1, 3,
4] did not give any systematic approach to carry oui the optimizations, nor did they pro-
vide any evaluation on the space-time trade-off when such optimizations are carried out. A
preliminary report on the work presented in this thesis is discussed in [41]. Sutherland
demonstrated the synthesis of a special class of bundled DI circuits called micropipelines
[36]).

In [35] the synthesis of DI circuits from “synchronized transitions” which is simi-
lar to the UNITV [10] programming language is considered. However, correct operation
of the synthesized circuits depend on the isochronic fork (the delays in the forked wires
are the same) assumption [23].

Basic components for bottom-up design of DI circuits/systems is presented in [19,

33]. In [33] a basic module called the Q-module for designing globally asynchronous
locally synchronous systems is presented. Each Q-module has a local clock while commu-
nication between Q-modules is asynchronous. Lam and Li [19] described a set of basic
building blocks and an approach based on signal transition graphs for designing DI cir-
cuits.

In this thesis, the idea of time-sharing is uscd to reduce the area of the synthesized
circuits. Time-sharing refers to the use of one physical circuit component to perform the
computation described by different instances of an operation (the circuit component is said
to be time-shared among the instances). Such time-sharing is considered because a major
cause for the large area of circuits obtained by syntax-directed translation methods is that
each instance of an operation in the program is mapped into a separate circuit component.
For a big program, the area of the translated circuit will be prohibitively expensive. Fig. 1
is an example on time-sharing. The C-element makes sure that a transition will be initiated

iis output only after signal transitions occur at both “a” and “b” inputs. For the correct

operation of the circuit, signal transitions at a and b should never happen together. The

» R f(a)

- R —— f(b)

Fig. I Animplementation of (f(a) A f(b))
using time-sharing

evaluations of f(a) and f(b) are done by the same circuit module f. The multiplexer X mul-
tiplexes the bundled “a” and “b”. The Toggle elecment initiates a signal transition, at one of
its outputs alternatively, each time it receives a signal transition at its input. The two Reg-
ister elements (R) latches the data values computed by the “f” circuit module for the data
values “a” and “b”. If the boolean function f{) takes 1000 transistors to implement, then

the saving will be about 20%. The circuit elements used for the control circuits are similar

to those in [36].

Given an occam program, an intermediate form representation of it is first
obtained. Removal of some of the control sequencing in the original program is consid-
ercd 1o improve concurrency in the resulting circuit. Instances of the same operation are
then chosen to time-share a physical circuit component. Some concurrent operations may
be serialized so that more time-sharing can be carried out provided that such serializations
do not result in unacceptable performance degradation. An area optimization strategy
based on a greedy algorithm is outlined. Finally, the optimization method is illustrated
with a fifth order elliptic filter example.

Time-sharing will result in less hardware in the synthesized circuit if the overhead
(additional hardware) for time-sharing is less than the hardware required to implement the
operation. The removal of unnecessary control sequencing in the original program and the
serialization of concurrent operations allow more time-sharing while minimizing the

impact on reduction in throughput of the synthesized circuits.

1.7. Performance Evaluation of Asynchronous Concurrent Systems

Performance evaluation of asynchronous concurrent systems appeared in [6, 22,
30]. Ramamoorthy and Ho gave a performance measure called cycle time for decision free
Petri nets [30]. The cycle time is the asymptotic average time between successive firings
of a transition in the net. For a decision free Petri net, the cycle times for all the transitions
in the net are the same. Given the firing time of every transition and the initial marking, a
lower bound on the value of the cycle time can be estimated. Magott provided a tighter
lower bound for the cycle time [22].

Burns and Martin [6] used an event-rule system for the performance evaluation of
asynchronous circuits. A network of circuit components and the specification imple-
mented by it are assumed given. To achieve the performance requirements of the overall
circuit, the performance requirements on individual circuit modules are identified. These
requirements are then used to guide the internal design of the circuit modules (e.g. sizes of

transistors inside the circuit modules}. Only a method for deterministic computation was

presented.

These performance evaluation methods are of limited use in the analysis of occam
programs (and in general, network of processes that communicate synchronously). All of
these methods assume the classical transition firing rule, i.e. when (and only when) all the
input places of a transition are marked, the transition is fired and tokens are put at the out-
put places. The dynamic behaviors arising from the constraint imposed by synchronous
communication cannot easily be captured by the static structure of an analysis model for a
given occam program, especially in the presence of non-determinism. Thus, some modifi-
cations of the published methods are required, or some new performance evaluation meth-

ods have to be developed. More on this aspect will be discussed in chapter 4.

1.8. Analysis of Distributed Communicating Processes

Approaches for data flow analysis of distributed communicating processes have
been presented in {13, 27, 31]. The methods in {13, 27] are based on some invariant proof
systems. Reif and Smolka [31] suggested event spanning graphs for analysis. However,
constructs like the alternation statcment in occam are not modeled. In this thesis an inter-
mediate form is presented which models alternation statement and synchronous communi-
cation in occam. Data flow extraction is done on the intermediate form in such & way that
the producer-consumer data dependency and the control sequencing among input and out-

put transitions are preserved

1.9. Contribution of the Thesis

This thesis provides a semantic model, called intermediate form (IFORM), for a
subset of occam programs (programs that do not contain the WAIT or STOP process). No
such intermediate form was used in [1, 3, 4] to allow more systematic optimization of the
synthesized circuit. Syntax-directed translations from a given occam program into an
IFORM, and from the IFORM into bundled DI circuits are presented in chapter 2. While
describing the intermediate form we also show how some of the stated requirements are

met. Other requirements are shown to be met in chapters 3 and 4. By means of the

IFORM, a formal definition is given for correctness of implementation (“a circuit imple-
ments an occam program”). Sorne time-sharing results are presented and proven in chapter
3.

To improve the degree of time-sharing, the control flow of the given program is
then changed by performing augmentations on the intermediate form of a given program.
Some augmentation strategies are explored in chapter 4. The intermediate form is also
used for the evaluation of the performance of the translated circuit. Some discussion on
the applicability and limitation of previously published performance evaluation methods
for asynchronous systems is provided. Finally, a strategy for exploring the optimization
search space is outlined. A fifth order elliptic filter [14] is used in chapter 5 as a demon-

stration of the proven as weil as the conjectured resulls.

10

Chapter 2

Intermediate form

An intermediate form is proposed to be the semantic model for a subset of occam
programs. All the constructs in [17] «re allowed except the WAIT and STOP processes. It
is not possible to implement the WAIT process in DI circuits since the process behavior
depends on the time-out mechanism. A STOP process will suspend the process for ever.
Since we are interested in deriving hardware circuits which are non-terminating, STOP
processes are excluded in the occam subset. To establish delay-insensitive communication
between processes, the communication is required to be synchronous. Occam (or CSP-
based languages) provide such synchronous communication primitives. Furthcrmore,
occam has the alternation construct which allows interesting non-deterministic behaviors
to be specified easily. As a result, occam-based or CSP-based languages are commonly
us.d for describing concurrent systems that are to be implemented as DI circuits [1, 3, 4,
5, 41].

2.1. Requirements

The intermediate form is supposed to be a semantic model for occam as well as a
tool for exploiting the space-time trade-off optimizations and proving correctness. Hence,
it should have the following characteristics: (1) modeling of arbitration, (2) modeling of
synchronous communication, (3) modeling of concurrency, (4) allowing the detection of
transitions that can time-share a circuit, (5) allowing the detection of transitions between
which augmentation can be performed, (6) evaluating the effect of time sharing and/or
change in control flow on the performance of the synthesized circuit, and (7) proving cor-
rectness.

The justification for the above criteria on the intermediate form are as follows. As
a semantic model for occam programs, the intermediate form must be able to capture the
main features of occam programs, namely arbitration (altcrnation statement) and synchro-

nous communication.

11

Two instances of an operation in a program can time-share a circuit if the two
instances are performed sequentially under all possible behaviors of the program (note
that the outcomes of choices can affect the way in which an occam program is execuled).
Some tool is needed to analyze the program behaviors (detection of operations that are
executed sequentially under all possible program behaviors) in order to identify potential
candidates to time-share circuits.

In time-sharing a circuit, additional multiplexing circuvits are needed at the input
and additional de-multiplexing circuits are needed at the output. For example, in fig.
1(page 7), there are data multiplexers (bundled with the XOR) at the inputs of the circuit
that implements (), and there is a toggle at the control output of the circuit. The execution
time will also be increased. The trade-off between space and time has to be examined
carefully. Also, the mapping from the instances of operations in a program into physical
circuits has to be captured.

Another optimization aspect is whether to maintain the control flow specified in
the original program or not. Removing some of the control flow in the original program
allows faster execution of the program. There is a nced to analyze the data dependency in
the original program in order to find out which control sequencing can be removed. Serial-
izing the execution of some concurrent operations allows them to time-share a circuit so
that further savings in area can be achieved. The time-sharing example in fig. 1 involves
the scrialization of the two instances of f(). When such augmentations are carried out, the
original exccution semantics of the occam program must be preserved. Also, effects on the
performance (according to some meaningful measures) due to augmentation have to be
evaluated.

Finally, there are issues on correctness: what is meant by “a circuit implements an
occam program’? Correctness can be established more easily for syntax-directed transla-
tion because the correctness of each of the translation: rules (i.e. whether the execution in
the circuit level faithfully preserves the execution semantics of the corresponding program
construct) can be judged separately. When optimizations are involved, the mapping from

programs 1o circuits is not one-to-one. Furthermore, occam programs and circuits are at

different levels of abstraction, and the behaviors of the circuit elements cannot be
expressed in an occam program. As a result, there is a need to define correctness in terms

of some intermediate form so that all optimization tricks can be proved correct.

2.2. The Intermediate Form

The proposed intermediate form is a marked graph [32] with modified semantics.
Marked graph is a Petri net. A Petri net is a directed graph G = (P, T, E) with a set of verti-
ces P, called places, a set of vertices T called transitions and a set of directed edges EC (P
x T) W (T x P) connecting places to transitions and vice-versa. The input and output scts
for each place and transition are defined as

I(p) =1{y!(py€ E},

Oy ={y1(p.y)e E},

I ={p1(p.y) € E},

Oy ={p;! (4 pp€ E}.

A Petrinet G = (P, T, E) is a marked graph if

1 1(pj) 1=10(pj) | = 1, V pj, € P. Thus in a marked graph each place has exactly one
input transition and output transition. Marked graphs are able to explicitly represent con-
currency expressed in the original program. Thus the intermediate form meets the require-
ment (3) stated in section 2.1. To account for the if-then-else statement, the while
statement, and the alternation statement in an occam program, special kinds of transitions
with specific firing rules are introduced to model the desired behaviors. To simplify the
presentation, no vectors of variables or channels, or replicators (FOR) are used in the
examples.

The syntactic constructs of a program are represented in the intermediate form by
places, transitions and edges between places and transitions. Program behaviors are mod-
eled by firings of transitions in the net. Similarly, the places, transitions, and edges corre-
spond to physical circuits and interconnections among them. Firings of transitions

correspond to activation of the circuit component represented by it. Occam has three types

13

of primitive processes, shown in fig. 2.1 - 2.3, which are composed to form a program
using five types of control constructs, shown in fig. 2.4 - 2.8. Each of fig. 2.1 - 2.8 shows
the primitive processes or how to compose processes using the control constructs, the
intermediate form, and the corresponding circuit. Because each place immediately pre-
cedes only one transition, the places are not explicitly shown except for the initial (labeled

“start”) and final (labeled “end”) places.

2.3. Relating Programs and Intermediate Forms
The intermediate forms for the primitive processes are considered first. An input

process is represented as shown in fig. 2.1, The control point immediately preceding (fol-
lowing) the input process in the program is represented by a control place labeled “start”
(*end”) in the intermediate form. Execution of the input process involves an input opera-
tion over channel a and the return of a data value for variable x. The input operation is rep-
resented by a data transition labeled with the channel name (i.e., a?). That transition is
called a data transition because firing of it produces a data value for some variable. The
control bundled with that data value for x is represented by a data place labeled x.

Fig. 2.1 Input operation

IFORM

Program Circuit

a¥x

a.req

a.ack
start

A token represents program control or data availab.lity. When a control place is
marked with a token, it means that the execution of the program has come to the control
point represented by the control place. When a data place is marked with a token, it means

that the data value represented by the control place is available. The control bundled with

14

the data value obtained as a result of the input operation is used to generate the control fol-
lowing the input process using a data-fo-control transition (transition labeled “DC” in the
intermediate form).

An output process is represented as shown in fig. 2.2. The control point immedi-
ately preceding (following) the output process in the program is represented by a control
place labeled “start” (“end™) in the intermediate form. Execution of the output process
involves an output operation over channel a and the sending of a data value of variable x.
The cutput operation is represented by a data transition labeled with the channel name
(i.e., a!). That transition is a data transition because firing of it consumes a data value of
some variable. The control bundled with that data value of x is represented by a data place

labeled x. Itis generated from the control preceding the output process using a control-to-

, .
Program IFORM Circuit
alx start O
E start——p=a.req
x ' a.aCk-e——end

15

data transition (transition labeled “CD" in the intermediate form).
Fig. 2.3 Assignment

IFORM L
Program Circuit

x :=(a+b) * (a+c)

For an assignment statement, the expression on the right hand side is expanded
into a “data flow graph”. Fig. 2.3 is an example. Each transition, which is a data transition,
represents a data manipulating operation in the expression. A data transition is labeled by
the operation, ¢.g. +. Input and output places of the data transition are data places. A data
place between two data transitions represents the value produced by one transition to be
consumed by the other transition. If a data place represents some value of a variable, then
it will be labeled by the name of the variable. When the data place is marked with a token,
it means the data value is produced and is ready to be consumed. A control-to-data transi-
tion is used to generate from the control enabling the assignment statement the controls
necded to bundle with the data values needed to activate the network of data transitions.
Likewise, a data-to-control transition is used to generate from the controls bundled with
the data values eventually produced by the network of data transitions the control repre-
senting the completion of the execution of the assignment statement.

Data places are introduced as a means to exploit the data dependency among data

16

transitions obtained from expanding primitive processes, especially when they are com-
posed by a sequence construct. Extracting the data dependency relation [18] between these
data transitions allows more concurrency. The anti-data-dependency and output depen-
dency relations [18] can be ignored because values of the same variable are produced by
distinct circuit components (if no time-sharing is applied) and are not written into a regis-
ter for storing the values of that variable. When time-sharing is applied, production of val-
ues corresponding to firings of different data transitions in the intermediate form will be
carried out by the same physical circuit. Appropriate control circuits will be used to route,
from the output of the physical circuit, the values that correspond to the firings of the same
data transition (different data transitions) to the same register (different registers) for stor-
age. Consequently, only the data dependency relation between the data transitions needs to
be considered.

Composition of processes using the five types of control constructs is now consid-
ered. Control transitions, which represent the four basic control operations, Branch (B),
Fork (F), Join (J), and Merge (M), are used to “glue” the intermediate forms for the pro-
cesses being composed. The processes are composed from primitive processes of compos-

ite processes using the types of control constructs. A transition labeled Q in fig. 2.6 - 2.8

Fig. 2.4 SEQ construct Fig. 2.5 PAR construct
Program Circuit Program IFORM Circuit
SEQ start PAR
P| Pl
P, P,] P,

represents the network of data transitions corresponding to the boolean expression Q in

17

the program. Edges between control places and transitions represent the control flow in the

program.
Fig. 2.6 WHILE construct Fig. 2.7 IF construct
Program IFORM Circuit Program IFORM Circuit
start
tart start (@
WHILE (@) § F©Q
Pl P‘ Q gf """ Q
TRUE :
p B R S
2
p] 7] LB R
end M);
end end

A distinct feature of occam is the ALT statement. Ezch ALT statement consists of
several guarded commands (blocks of statements). A guarded command is enabled if the
boolean expression in the guard is true and the input channel is ready. One and only one of
the erabled commands will be executed. Each guarded block of statements is represented
by transitions in the intermediate form. For each block, when all the statements in the
block are expanded fully (i.e. even the primitive processes are also expanded and no fur-
ther expansion can be done) the first transition is named the entry (N) transition and the
last transition is named the exit (X) transition, as shown in fig. 2.8. Such explicit naming
of entry and exit transitions avoids the use of a shared place and the firing rule to simulate
the mutual exclusion among blocks. This results in & clearer flow relations among the enti-
ties in the intermediate form. The intermediate form thus meets the requirement (1) of
IFORM (see section 2.1).

The intermediate form captures the static structure of a given program. The
dynamic behaviors of a program are captured by transition firings in the intermediate
form. Firing rules of transitions (except the entry transitions of ALT and the transitions

that represent input/output processes) follow those in Petri nets. Only one token at one of

18

the input control places separated by @ is needed o fire a transition. Only one of the out-
put control places separated by @ will have a token after the firing of a transition,

Consider the intermediate form of the WHILE construct (fig. 2.6). The merge con-
trol operation (the transition labeled by M) is fired when there is a token at the control
place “start” or at the control place between the transitions labeled M and Py. The transi-
tion labeled Q is then fired, which comresponds to the evaluvation of the predicate Q. After
that, either a token is deposited at the control place “end” or at the control place between
the transition labeled B and the transition labeled Py, depending on the boolean value of
the evaluated predicate. Firing of the transition labeled Py results in the predicate Q being
evaluated again.

For the entry transitions from the same ALT statement, when all the input control
places are marked, one and only one of the entry transitions that have the corresponding
predicates evaluated to be true will be fired and the tokens at the input places of all the

entry transitions will be removed.

Fig. 2.8 ALT construct
Circuit

Program

b.ack

a.ack

19

To model the behavior of synchronous communication, the transitions representing
the input and output processcs communicating over the same channel must be fired
together. Thus, even if a transition representing an input process (note that there can be
more than one input process in the given occam program communicating over the same
channcl) communicating over a channel is enabled (i.e. the input control place of that tran-
sition is marked with a token), that transition cannot be fired until an output process com-
municating over the same channel (similarly, more than one output process in the given
occam program can communicate over the same channel) is also enabled, and vice versa.
When an input process and an output process that communicate over the same channel are
enabled, the transitions representing them are fired together. If an input/output process
communicates over a channel with the environment of the system described by the pro-
gram, then, assuming the environment of the system is ready to communicate, firings of
{ransitions representing those processes can be performed as soon as they are enabled.
Thus the IFORM models synchronous communication which is one of the requirements of
an intermediate form.

2.4. Relating Intermediate Forms and Circuits

The mapping into circuits from the intermediate forms of the primitive processes
of occam is first considered. A data place represents a control line (a physical wire). The
control line is bundled with the data path carrying the data value of the variable whose
name is used to label the data place. A token corresponds to a signal transition. When a
token is at a data place, it means a (rising or falling) signal transition takes place at the
control line represented by the place. Edges between places and transitions represent the
control lines (as well as the data paths) connected between sub-circuits. A ¢ ta transition,
c.g. labcled by +, corresponds to a circuit that performs that function, e.g. adder. A net-
work of data transitions is mapped directly into a network of circuit components of corre-
sponding functionalities. A control-to-data transition is mapped into a fork of appropriate
number of outputs, and a data-to-control transition is mapped into a C-element of appro-
priate number of inputs.

Transitions representing input/output processes require special treatment. A chan-

nel is implemented using two wires. Synchronous communication between the two ends
of a channel is accomplished by means of handshaking. One end (input or output) takes
the initiation while the other end waits. The end that initiates (waits) is called active (pas-
sive). For each channel, either one of the two, (input passive, output active) or (input
active, output passive), has to be determined. The circuits shown in fig. 2.1 - 2.2 are of the
former choice. A passive input operation is carried out when there is an initiation from the
corresponding output operation (a signal transition at the wire a.req) and the input opera-
tion is enabled (a signal transition at the wire start), which are acknowledged (a.ack and
end) when the data value is received. In this thesis, it is assumed that all output processes
are active (i.e. they initiate the communication) and all input processes are passive. Since
transition signalling [36] is used, one transition at each of a.req and a.ack will complete a
channel operation.

Consider two processes Py and P, that communicate over channel a. If there is
only one input (output) process communicating over a in Py (P;), then the two circuits in
fig. 2.1 - 2.2 can just be put together to realize the synchronous communication between
Py and P,. If there are multiple such processes in Py and P, (the number of input processes
in Py may be different from the number of output processes in P,), then additional control

circuit will be needed, as shown in fig. 2.9. Note thatin fig. 2.9 P} consists of three output

g Stary
start, —»-

»‘E—Q—» end,
end, - a.re CALL

Element
start,—s{ CALL o Startg p
Py end; <@ gloment ’E— ends 2

staxlg—-ﬂ tt X
end, -e— a.ack

Fig. 2.9 Circuit for realizing the communications over channel a
between multiple input/output processes

21

processes and P; consists of two input processes where start; and end; (i=1, 2, 3) denote
the starts and ends of the output processes in Py, and start; and end; (j=4, 5) denote the
starts and ends of the input processes in P,. The CALL element is from [36], and it allows
the output processes that initiate (the input processes that wait for) the communication to
be properly acknowledged.

The mapping of composition constructs into circuits is now considered. A control
place represents a control line (a physical wire). When a token is at a control place, it
means a (rising or falling) signal transition takes place at the control line represented by
the place. Edges between places and transitions represent the control lines connected
between sub-circuits. The control transitions labeled B (branch), F (fork), J (join), and M
(merge) correspond to the circuit elements select, wire-fork, C-element, and XOR, respec-
tively. Behaviors of these circuit elements can be found in appendix A and in [36].

The circuits shown in fig. 2.4 - 2.8 are the control circuits for the corresponding
intermediate forms. Consider fig. 2.6. A merge transition (labeled M) is mapped into an
XOR gate which produces an output signal transition when there is a signal transition at
either one of the inputs. For safe use of the XOR gate, there cannot be two input signal
transitions without an output transition in between. The transition Q is mapped into a cir-
cuit that evaluates the predicate. The circuit is also labeled Q. The branch transition
(labeled B) is mapped into a select circuit element which generates a signal transition at
one of its outputs from the control signal from Q, depending on the boolean value evalu-
ated by the circuit obtained from Q. The use of the boolean value is shown by the dashed
line. The control corresponding to a “true” boolean value from Q is used to activate the
circuit block for Py while the other control signals the end of execution of the while loop.
After the computation described by Py is finished, the predicate is evaluated by the circuit
labeled Q.

The implementation of mutual exclusion among blocks of transitions is shown in
fig. 2.8. The boolcan expressions in the guards are evaluated by circuit blocks By and B,.
A *““token ring"” similar to that in [3] is used to select the command whose boolean expres-

sion in the guard is true and the associated input channel is ready. The Arbitrating Test and

Set (ATS) block is the same as that in [3]. The de-raultiplexer is the same as that in [21].

Behaviors of these circuit clements can be found in appendix A.

For data transitions obtained from processes composed by the five types of control
constructs, data paths are connected according to the producer-consumer relations on the
data values involved. A data value produced by a circuit component may be consumed by
different circuit components, depending on the transition firings in the intermediate form.,
However, the data outputs of the producer circuit component are connected to the data
inputs of all potential consumer circuit components. The dynamic behavior is captured in
the control circuit which will generate the appropriate control signal to the consumer cir-
cuit component when the system is activated (i.e. when transitions in the intermediate
form are fircd or when the program is run).

On the other hand, a consumer circuit component may receive data value produced
by different circuit components, depending on the transition firings in the intcrmediate
form. Appropriate circuits, e.g. data multiplexers, are used to bridge between the data out-
puts of the potential producer circuit components and the data inputs of the consumer cir-
cuit component. The dynamic behaviors are also captured in the control circuit. When the
system is activated, control signals will be generated appropriately to route the data value
produced, through the data routing logic, e.g. data multiplexer, to the consumer circuit

component.

2.5. Correctness of Implementation

Previously published synthesis methods [1,3,4,5] for occam or CSP-like languages did
not address the correctness directly. Most of them are syntax-directed translation methods.
The correctness of the synthesized circuit is built upon the correctness of the translation
rules. The correctness of each translation rule is established by checking intuitively that the
execution semantics of the program construct are carried out faithfully in the circuit level.
As a result, not much optimization can be carried out as it is difficult to check that a signif-

icant change in the circuit level preserves the execution semantics to be realized.

To achieve more signiticant optimizations, there is a need to formally prove that the

23

optimized circuit can still execute whatever is described in the original program. The inter-
mediate form proposed in this thesis serves such a purpose. Optimizations are carried out
in the intermediate form level. Correctness can be established by showing that the interme-
diate form for the optimized circuit (which is obtained by translating the intermediate form
using the rules stated in chapter 4) faithfully preserves the execution semantics of the inter-
mediate form that represents the original program. Since the intermediate forms are in the
same level of abstraction, it is possible to define a correctness criteria. The requirements on
the correctness criteria are that if the conditions stated in the correctness criteria are valid,
then one intermediate form (from which a circuit is obtained) will preserve the execution
semantics of another intermediate form (which represents the given program). Chapter 4
gives the relation between programs and intermediaie forms and the relation between inter-
mediate forms and circuits. Correctness of the two relations can be judged intuitively, Thus,

it is possible (o assert that some circuit implements an occam program.

Moreover, since the intermediate form is in a higher level of abstraction than circuit
level, more global optimizations can be examined than those presented in [4] which con-
sidered optimizations in the circuit level. On the other hand, at the intermediate form level,
the freedom to change the control flow originally specified in the program and the ability
to apply time-sharing allow more control over area/performance efficiency of the synthe-
sized circuit than optimizations performed in the program level where the optimized pro-
gram remains a valid occam program.

The correctness criteria in the intermediate form level arz given below. A run of an
intcrmediate form is a sequence of data transition firings in the intermediate form. A
sequence of data transition firings can be obtained abstracting away all non-data transi-
tions from a sequence of transition firings in the intermediate form. Firings of transitions
forming a synchronous communication are replaced with a single communication transi-
tion in the sequence. Given two intermediate forms A and B, and there is a bijective map-
ping f between the sets of data/communication transitions in A and B, A is said to realize
B if (1) every run of A is isomorphic to (under f) a run of B, and (2) for every run of B in

which a datw/communication transition is fired k (k can be finite or infinite) times, there

24

exists a run of A in which the corresponding data transition (under f) is fired exactly k
times. A bundled DI circuit is said to implement an occam program if the intermediate
form from which the circuit is obtained realizes the intermediate form of the program. For
example, it will be shown later that the IFORM (b) in Fig. 4.2 is an implementation of the
IFORM (a). Whereas IFORM (b) in Fig. 4.3 is an incorrect implementation of IFORM (a).

Thus the IFORM meets the requirement on proving correctness.

25

Chapter 3

Time-Sharing

In this chapter, conditions for time-sharing a circuit between two data transitions in a
given intermediate form are considered. Extension to multiple data transitions is straight-

forward.

3.1. Abstract Requirements

Consider the execution space. Two instances of an operation are said to occur serially
if the values produced as a result of executing one instance of the operation are all con-
sumed before every data value required for executing the other instance of the operation is
produced. If the instances occur serially, then it is possible to time-share a physical circuit

among them.

Consider two data transitions Ty and T, (that represent the same type of operation P) in
an intcrmediate form. When transition firings are allowed to occur from the initial marking
of the intermediate form, each of T and T, will be fired a number of times. Each firing of
T, or T, comresponds to an instance of P in the execution space. If all the instances of P in
the execution space duc to firings of Ty or T, are to time-share a circuit, then it will be
required that execution of any two instances of the operation, regardless of whether the two
instances are due to firing T} twice, T} once and T, once, or T, twice, occur serially. Tran-
sitions T and T, are said to be able to time-share a circuit if all the instances of P due to

firing of T or Ty occur serially.

3.2. Time-sharing Conditions in the Intermediate Form

The time-sharing condition asserted over the execution space has to be transformed into
some condition asserted over the generator space (intermediate form) so that time-sharing
candidates can be identified by just examining the intermediate form of a program. It is

assumed that only the data dependency within an assignment is exploited. That is, the orig-

26

inal control structure described in the given program is maintained. When the control struc-
ture is changed, either by removing some control sequencing originally described in the
program or by augmenting additional control sequencing, some adjustments to the time-

sharing condition stated below may have to be made.

The intermediate form of a program is obtained by repeatedly applying the rules in fig.
2(a)-(h) until a network of data and control transitions is obtained. Some terms are defined
concerning the data transitions in the network obtained by these expansions. A data transi-
tion T is said to be from a process P if T is a data transition in the network obtained by
expanding P according to the rules in fig. 2(a)-(h). Processes P4 and P; are said to be com-
posed by the SEQ(PAR) construct if the control dependency between them is as shown in
fig. 2(d) and 2(e). Compositions involving predicates, e.g. IF, WHILE, ALT can be defined
similarly. Two data transitions Ty and T, are said to be mutually exclusive if T and T, are,
respectively, from P and P, that are composed by the 1F or ALT construct. Two data tran-
sitions Ty and T are said to be sequential if Ty is from Py, T, is from Po, and Py and P are
composed by SEQ (fig. 2(a)). From this it is clear that Ty and T, will not be enabled
together at any of the reachable marking from the initial marking and after the firing of T}

only T, can fire.

Two transitions are also said to be sequential if they belong to one of the following four
classes: (1) if transition Ty is from Py composed by a WHILE construct, T, is from the bool-
ean condition Q of the WHILE construct (fig. 2(c)), (2) T, is from Py or P which arc com-
posed by IF constru~t, T, is from the boolean condition Q (fig. 2(d)), (3) Ty is from P (Pp)
and T is from Q; (Qp) within an ALT construct (fig. 2(e)), or (4) T} and T, are from an
assignment statement or a predicate (e.g. Q in fig. 2(c)-(e)), and every output place of Ty

precedes every input place of T.

Theorem 1. (Time-Sharing Theorem) Instances of two data transitions that are sequen-

tial or mutually exclusive can time-share a circuit.

Proof: If data transitions T and T, are sequential, then T and T, will be either (1) from
assignment (or predicate) statement or (2) from statement other than assignment (or predi-
cate). In the former case, it is clear, from the flow rclation in the net, that all tokens at the

27

output places of T are consumed before a token is put at an input place of T,. For a valid
occam program, the assignment statement will not be enabled again until it is completed.
Thus, all tokens at the output places of T, will be removed before any one of the input
places of T, receives a token.

In the latter case, by definition, there exist processes Py and P, (or some predicate Q,
but the proof will be similar) from which T and T, are obtained such that Py and P; are
 omposed by the SEQ control construct. (For the case that Ty is from a process and T, is
from a predicate, the control construct that composes them can be WHILE, IF or ALT.)
Since all the data transitions in Py are fired before any one of the data transitions in P, is
fired, and, for the intermediate form of any valid occam program, all the data transitions in
P, are fired before any one of the data transitions in P is fired again, it follows that the
instances of Ty and T, occur serially and so they can time-share a circuit.

If data transitions T} and T, are mutwally exclusive, then, by definition, there exist pro-
cesses P and P, from which Ty and T, are obiained such that P; and P, are composed by
the IF or ALT construct. Since, for the intermediate form of any valid occam program, all
the data transitions in Py are fired before the same instance of the control construct that
composes Py and P; is enabled again (and hence any one of the data transitions in P, can
have a chance to be fired), and vice versa, it follows that the instances of Ty and T, occur
serially and hence they can time-share a circuit.

3.3. Procedure for Identifying Time-Sharing Candidates

Theorem 1 gives a condition which is to be checked against the intermediate form to

identify time-sharing candidates. An abstract procedure is described below.

Given an occam program, a parse tree of the program can be constructed along with the
compilation of the program into the intermediate form. A node of the parse tree is labeled
with some control construct. The children of the node are labeled with the components that
constitute the control construct. For example, for the WHILE construct, a node labeled
WHILE in the parse tree has four children which are labeled M, Q, B and P;. They corre-
spond to the transitions in fig. 2(f). The node labeled Q will be the root of a sub-tree. The
children of the node labeled Q are the data transitions as a result of expanding Q. The node
labeled Py will be the root of a sub-tree for the process Py. Suppose Py is 1.2 PAR compo-

sition of a set of processes, then the node labeled Py will only have a child labeled PAR.

Cross-references between data transitions in the intermediate form and the leaves of the
parse tree are maintained.Consider the occam program in fig. 3.1(a). The parse tree for the

occam program is given in fig. 3.1(b).

Fig. 3.1 An example occam program and its parse tree

WHILE TRUE J
SEQ WHILE

i7d
i%7e SEQ TRUE

lfc:!zfd*e A‘
i/}i/\e /\ /'\
A

(b) d e

Given any two data transitions T; and Ty, if they are from a predicate or an assignment

(a)

statement, then whether they are sequential can easily be checked using the intermediate
form. If they are from neither a predicate nor an assignment, then it is possible to get the
smallest sub-tree of the parse tree such that T} and T, are leaves of the sub-tree, and the
root of the sub-tree is labeled with the name of a control construct. The conditions stated in

the definitions of sequential and mutually exclusive transitions can then be checked.

Correctness of the procedure is established as follows. If T; and T, are from a predicate
or assignment statement, then it follows that the checking done in the procedure is just what
is stated in the definition for sequential pair of data transitions. Otherwise, they arc from
some predicate or processes that are composed using one of the control constructs (as the
intermediate form is obtained by rccursively applying the rules in fig. 2(a)-(h)). That par-
ticular control construct is given by the label of the root of the smallest sub-trce mentioned
in the procedure. Once it is identified, the rest are just checking whatever stated in the def-
inition. IFORM thus meets the requirement on allowing the detection of transitions that can

time-share a circuit.

29

3.4. Circuit for Realizing Time-Sharing

The circuit for routing data values to the physical circuit being time-shared is similar to
the circuit required for routing data values (corresponding to output processes communi-
cating over a channel) to the same physical channel. As a result, use of the CALL element

in fig. 2(i) is still valid in this context.

Fig. 3.2(b) provides a circuit for realizing time-sharing corresponding to the IFORM in
fig. 3.2(a). The transitions T} and T, are labeled with the same number 1 to denote that they
have to be mapped into a single physical adder circuit. The C-elements make sure that the
required data values a and b/ d and e are available. The output of the C-elements are used
to de-multiplex the data inputs. Once the data values have been de-multiplexed the addition
operation is performed by an adder circuit module. The return transitions from the CALL

. wJule is used to latch the output data value from the adder module.

Fig. 3.2 Circuit for realizing Time-Sharing

30

If the transitions which are time-shared in the circuit implementation are fired alterna-
tively at all times, then a simpler circuit could be provided. Fig. 3.3 provides a circuit for
realizing time-sharing. It has a TOGGLE circuit module instead of a CALL module. The
alternating output signal transitions from the TOGGLE module is used to latch the output

data value from the adder in one of the registers alternatingly.

Fig. 3.3. Circuit for realizing Time-Sharing

2

DMUX
;C} >

R I
—>
— ADDER] R-———:» f

2

DMUX

(b)

Time-sharing of large data manipulating circuit modules will reduce the arca signifi-
cantly. Since the data transitions which are only sequential or mutually exclusive are
labeled for time-sharing, the performance of the circuit does not reduce much. If area of the
circuit has to be reduced further, then the IFORM could be modified in such a way more
transitions could be chosen for time-sharing without violating the correctness criteria. The

next chapter discusses this aspect further.

31

Chapter 4
Augmentation, Performance Evaluation, and

Optimization Strategy

The intermediate form could be modified by adding or removing edges, transitions
and places so that the performance of the derived circuit can be improved or the area of the
circuit can be reduced without violating the correctness criteria. The firing rules of the
transitions can also be changed so that concurrent transitions can be mapped to a single
physical circuit by time-sharing. Suc’. modifications to an intermediate form are called
augmentations. In this chapter augmentation by data flow ex' uon and by serialization

arc presented.

1. Augmentation by data flow extraction

The intermediate form could be augmented by removing some of the control
sequencing in the original program. While performing sequential composition of
IFORMs, data flow could be extracted. The extracted data flow can be used to merge
dircctly the output data place of a transition (producer) with the input place of another
transition (consumer) without the need for “DC-CD” and “CD-DC” transitions. Such aug-
mentation also increases concurrency. However, control flow among the input/output
operations must be maintained.

Consider the IFORMs (a) and (b) in Fig. 4.1. The IFORM (a) is augmented by data
flow extraction to get IFORM (b). The output place of the i? is merged with the input place
of the + transition. Similarly the output place of the j? transition is merged with the input
place of the + transition. Such merging preserves the producer-consumer data dependency.
To keep the control flow among the two input transitions, an additional output place is

added to the i? transition which also forms the input place of the j? transition.

32

4.2. Augmentation by serialization

Instances of data transitions that are neither sequential nor mutually exclusive can not
time-share a circuit in the physical implementation. If they are to time-share a circuit, then
special provision will have to be made. Otherwise, new input data values will be given to
the (data manipulating) circuit before the values produced are all consumed, and there will
be a potential danger for data contamination. This section describes some augmentation
strot>ei2y tor modifying the intermediate form so that data transitions that are previously

.ier sequential nor mutually exclusive become so, and time-sharing can then be applied.
Consider the IFORM (a) in Fig. 4.2. The + transitions are ncither sequential nor

Fig. 4.1 Augmentation by data flow extraction

i?

oui:

end

a (b)
end (a)

33

mutually exclusive. By adding an edge from one of the transition to another forces the
transitions to become sequential. The augmented IFORM (b) is then derived by including

a JJOIN) transition to join the two edges coming to the + transition.

Fig. 4.2. Augmentation by serialization

“ P

F
cop e D
a d d
b /b
!
Tl + T2 +
I
|
[}
a ‘.' a
e D
J

(a) (b)

The augmented IFORM is a correctness preserving implementation of the IFORM
() in fig. 4.2. Obscrve that in both of the IFORMs a token will be put in the end place only

34

after the two + transitions have fired once. A proof of correctness is as follows: For each
causal relation between any pair of data transitions in (b) there is a causal relation between
corresponding pair of data transitions in (a). However, the reverse is not true. As a result,

every possible execution sequence of data transitions in (b), the set of sequence of execu-
Fig. 4.3. Illegal augmentation

start (@ sum@?
F
N\

F

\

Q Q Q Q
B B B B
® ® ® ®

(b)

35

tion of data transitions is {T1T2}, while that in (a) is {T1T2, T2T1}. Thus, by definition,
IFORM (b) realizes IFORM (a).

If unchecked, adding an edge between arbitrary transitions may result in progress
violation. Consider the IFORM in Fig. 4.3. Transitions T, and T3 are neither sequential
nor mutually exclusive. By adding an edge between transitions Ty and T3 will result in
progress violation if transitions T} and T3 are enabled after the firing of the B(BRANCH)
transitions. Thus the IFORM (b) in Fig 4.3 is an incorrect implementation of IFORM (a).

Transitions T, and T3 can be serialized by labelling them with the same label. To
differentiate this type of labelling from other types mentioned in this thesis, the label name
is chosen {rom the greek alphabets. Transitions T2 and T3 can be labeled with the letter
“o”’, The firing rules for the labeled transitions are modified as follows: whenever only
onc of the labcled transitions is enabled that transition will be fired. When all the labeled
transitions are cnabled only one of the transitions will be fired while all other transitions
will still remain enabled. After the firing of the transition another transition is chosen arbi-

.1y for firing. Note that an enabled transition can be re-enabled only after it has fired.
Thus the IFORM meets the requirement on allowing the detection of transitions between
which augmentation can be performed. While translating an IFORM into circuit, transi-
tions which are serialized by labeling can be mapped into a single physical circuit compo-
nent along with the use of an arbiter. Fig. 4.4 gives a circuit for realizing time-sharing

corresponding to transitions T2 and T3 in the IFORM (a) in Fig.4.3. A signal transition

Fig. 4.4. Circuit for realizing Time-sharing

end] c——o Rla | D e —
ARBITER

2 ——>1R2 62—+
end?2 -<———R2a D2

can occur at startl only after an acknowledge transition has been initiated at endl for the
previous, if any, startl signal transition. The output signal transitions of the adders are
used by the arbiter to initiate the acknowledge signal transitions atend1 and end2.
Augmenting an IFORM by serialization results in more time-sharable transitions.
If the overhead of time-sharing is minimal comapared to using additional circuit module,
then such augraentations will minimize the area of the resulting circuit. Due to serializa-
tion computations have 1o be performed one after the other and this reduce the perfor-

mance of the circuit much.

4.3. Performance Evaluation

A performance measure called cycle time for Petri nets has been discussed in [6, 22,

.. Also, [22, 30] gave some methods for determining a performance measure for an
event-rule system that models some deterministic computation. However, none of these are
generally useful for evaluating the pesiormance from an intermediate form. Furthermore,
[6] did not provide methods for non-d.:erministic computations which are certainly present
in any general occam program. The performance measures in {22, 30] assumecd that there
are no special firing rules in the given Petri net which is not the case for the intermediate
form. The special firing rules for modeling arbitration and synchronous communication

indicate that a different performance evaluation method is required.

For some special cases, e.g. the elliptic filter example in this thesis, the methods in [22,
30) are applicable. When the processes that communicate are deterministic, it is possible o
adopt the performance measure for decision free Petri nets in [22, 30]. As in the elliptic fil-
ter example, the processes that communicate have nonterminating WHILE loops and there
is only input/output process in each of the loops. Thus, it is possible to replace the two tran-
sitions corresponding to the input/output processes by a single transition in order to adopt

the results in {22, 30]. Consider the IFORM (a) in Fig 4.5. Whenever the transition i? is

37

enabled it cannot fire until i! is also enabled. When both transitions are enabled they fire

Fig. 4.5. Merging of Input/Output transitions

i?1!

(b)

simultancously. The 'wo transitions can be merged into a single transition as in Fig 4.5(b)

for the purpose of performance measurement.

In a more general case where the number of input processes communicating over a
channel C in a nonterminating loop is different from the number of output processes com-
ssucating over C in another loop, the loops can be unfolded a finite number of times so
that the numbers of input/output processes in the loops are identical. The transitions that
represent the corresponding input/output processes can then be replaced by a single transi-
tion. Consider the IFORM in fig. 4.6(a). For one iteration of the l,..~ (i? i? M), loop (i! M)
iterates twice. The loop (i!, M) is unfolded as shown in fig. 4.6(b) so that each of the i? tran-

Fig. 4.6. Unfolding of loops for merging Input/Qutput transitions

(:)stan

38

sitions can be merged with a corresponding i! transition.

In general, the dynamic behaviors due to the interaction between non-determinism and
synchronous communication can be quite complicated. Meaningful performance measures

and methods for estimating them are to be explored.

4.4. Optimization Strategy

The optimization problem is defined as follows: Given an IFORM, a circuit imple-
mentation has to be derived such that it has minimum cost. The cost function could be
given as the product of physical area of the circuit (A) and cycle time (T) [23]). Where A is

less than or equal to a Ay, a constant.

Definitions:
In an IFORM, a sequence of places and transitions, p; {; patap3ty. ..
Pp is a directed path from place pj to place p,, if transition t; is both an
output transition of place p; and an input transition of place p(;,p) for 1

<i<n-1. If py equals p, then the directed path is called directed loop.

If ¢y, ¢, . . ., Cy.p are the circuit modules corresponding to transitions
t;, tg, . . . ty.q in a directed loop, then the sum of delay times of the cir-
cuit modules ¢y, €y, . . . €1 is called the loop time.

Algorithm:

stepl: Find all directed loops in the IFORM and find their loop time s by add-
ing the firing times of the transitions in a cycle. Order the loops in the
ascending order of their loop times. Initially none of the transitions arc

labeled for time-sharing.
Following iterations are performed one after another. At any stage if the

area is less than or equal to Ay, or if all the iterations have been done,

the algorithm terminates.

39

Iteration-1: Sequential data transitions from a loop are chosen for time-
sharing in such a way that these transitions are not present in the loop
with maximum loop time. After labeling such transitions for time-shar-
ing the loops containing those transitions should not become critical. A
critical loop is one whose loop time is the maximum compared to other

loops in the IFORM.

Iteration-2: Mutually-exclusive data transitions from different loops are
chosen for time-sharing in such a way that these transitions are not
present in the loop with maximum loop time. After labeling such transi-
tions for time-sharing the loops containing those transitions should not

become critical.

step-2: Transitions are selected for time-sharing which are neither sequential
nor mutually exclusive. The transitions are augmented by any of the
appropriate techniques described in sections 4.1 and 4.2. No new criti-
cal loops should result by doing such augmentations. The loops have to
be extracted after performing the augmentation. Iterations 1 and 2 are

performed again.

Iteration-3: Iterations | and 2 are repeated but with relaxed criteria.
Transitions selected for time-sharing can be present in the critical loop

or even if an non-critical cycle becomes critical after time-sharing,.

The stated optimization method is applied in the synthesis of a fifth order wave
clliptic filter. The results obtained are presented in chapter 5. A software implementation
of the synthesis methodology presented in this thesis has been developed. Chapter 5 pre-

sents details of the software.

40

Chapter 5

Software implementation

A synthesis software (ODIT) has been developed in C++ under SUNOS 4.1 envi-
ronment. The software accepts an occam specification of a system and generates the inter-
mediate form (IFORM). The software provides an uscr interface for the user to provide the
number of data manipulating circuit modules to be used in the synthesis. The software per-
forms optimization based on this criteria and generates the netlist in Electronic Data Inter-
change Format (EDIF). The user is also provided with the estimated performance of the

circuit. As an option the software can be run to get a circuit by syntax-directed translation.

The software has the following modules:

1. Parse tree constructor

The module which takes the occam program as its input is the parser module. The
parser has been written using the yacc unix programming tool. The grammar rules
of occam and actions to perform when a syntactic entity/construct is recognized in
the input programs are provided as input for yacc to generate the parscer. The parser
generator module is invoked in the main function by calling yyparse() function.
The yyparse() function which is generated by the yacc tool, will in turn call
yylex(). The yylex() function when called will return the next token in the input.
The actions peiformed when grammar rules arc recognized include symbol table
creation and parse tree construction. While constructing the parse tree, the pro-
ducer of each data value is also stored with the symbol reference. The module will

pass the head of the parse tree structure to the next module for further processing.

2. Parse tree to IFORM translator module
This module takes the head node of parse tree as its input and generates another
data structure which is the IFORM. While constructing the IFORM the alrcady

stored producer-consumer relations are used in merging the output place of a pro-

41

ducer with the input place of a consumer.
The algorithm to construct IFORM from parse tree consists of two steps. The first
step involves in finding the producers for the data values used with in a composi-

tion constructs IF, ALT and WHILE constructs. The second step builds the IFORM

structure. The first step is as follows:

void scan_tnode(node)

/* function is called with input argument pointing to the head of the parse tree. */

{

if(node !'=NULL)

{

switch(node type){

casc T_PROC: /* Process composition */

scan_tnode(proc_process_list);
case T_INPUT:

scan_tnode(next_node);
casc T_OUTPUT:

scan_tnode(next_node);
case T_ASSIGN:

scan__tnode(next_node);
case T_SEQ:

scan_tnode(seq_process_list);

scan_tnode(next_node);
casec T_PAR:

scan_tnode(par_process_list);

scan_tnode(next_node);

case T_IF:

get all consumers and producers (variables) in both blocks of IF

construct;
case T_ALT:

42

get all consumers and producers (variables) in both blocks of ALT
construct;

cas¢ T_WHILE:
get all consumers and producers in the WHILE block }

The second step is as follows:

void trav_tnode(node)}{
if(node '= NULL){

switch(node type){

case T_PROC:
trav__tnode(proc_process_list);

case T_INPUT:
create input transition;
assign the start event for the transition;
update the current producer’s list and start event list;
set the input transition pointer for the channel symbol to transition;
trav_tnode(next_node);

case T_OUTPUT:
create output transition;
assign the star¢ event and producer for the transition;
update the current start event list;
set the input transition pointer for the channel symbol to transition;
trav_tnode(next_node);

casc T_ASSIGN:
create data transition of operator type;
assign the producers for the data transition;

update the current producer’s list;

43

trav_tnode(next_node);
case T_SEQ:
trav_tnode(seqlist);
trav_tnode(next_node);
break;
case T_PAR:
create fork transition;
create join transition;
while(par_process_list_next_node_not_empty(){
set start event = fork transition;
trav_tnode(cur_node_in_par_process_list);
insert current start event to the list of start events for join;
next_node_in_par_process_list;)
case T_WHILE:
while(!is_consumers_list_empty()){
/* Consumers are the variables which has data dependency
with variables used before the while block *
get consumer();
create data_join and data_merge transitions();
assign producer for data values for data_join;
insert data_join and data_merge in the IFORM list;
update the data value producer and the current start event
producer;
nextnode_in_consumer’s_list(); }
trav_tnode(process_list);
assign producer for data values for data_merge_transitions;
trav_tnode(next_node);

case T_IF:

while(!is_consumers_list_empty()){

create a branch tranition and merge transition;
assign the producer and start transitions for branch;
}
trav_tnode(if_branch_node);
set start transition to branch transition;
trav_tnode(else_branch_node);
trav_tnode(next_node);}
case T_ALT:
create alt_fork transition;
create the data join transitions;
create transitions for conditionals;
set entry transition;
trav_tnode(guarded_block);
set start transition to alt_fork;
trav_tnode(skip_block);
trav_tnode(next_node);} })

3. Module to get all simple loops in IFORM:

/* The input and output operations on the same channel are merged together in the
following way: In the symbol table for channel names, pointers for the input and
output process is maintained. Whenever an input object is reached while traversing
the IFORM, the child nodes of a complementary input/output process is also taken
as the child nodes of the current node. All the loops of the IFORM are extracted.
For each of the lnop there is a linked list of transitions (objects). The transitions arc
ordered in their order of firing in the IFORM. ¥/
while(next_channel_in_symbol_table){

if(input and output transitions are set){
append all consumer transitions of input transition to the consumer

transition list of output transition;

45

append all consumer transitions of output transition to the consumer

transition list of input transition;} }

traversc(next_node_in_IFORM(Q)){
check_it_was_in_the_current_loop;
if(in current loop){
check the loop is a duplicate loop;
if(not duplicate loop){
add in to locps list; } }
else {

traverse(consumers);} }

4. Module to sort the list of loops:

/* The loop times of each of the loop is calculated. To calculate such a fig-
ure the operator.h file will have #define entries for each of the basic circuit compo-
nent. Each of the defined names corresponds to the average delay times of the
circuit components. The loops are sorted in the ascending order of their loop time.
*/
while(next loop){

calculate loop time;}

sort loops in the ascending order of loop times;

5. Optimizer module:

/* The optimization function will try to meet the user’s requirement regard-
ing the number of data manipulating circuit components to be used in synthesis.
For example user will provide “-mul 4” as an option while executing the odit pro-
gram. If the number of multiplications operations are more than 4, then the opti-
mize function has to find sufficient number of transitions which could be labeled

for time-sharing in such a way that the number of required circuit component satis-

46

fies user’s requirement. */
The optimization is done in the following steps:
stepl:
while(next loop in the sorted list of loops){
while(next transition in loop){
if(transition type == CURRENT OPTIMIZE OPERATOR TYPE){
calculate the loops times assuming the transition is labelled;
if(! any new critical loop){
label transition for time-sharing;}} } }
set to first loop;
step 2
while(next loop in the sorted list of loops){
while(next transition in loop){
if(transition type == CURRENT OPTIMIZE OPERATOR TYPE
and not labelled for time-sharing){
get similar type of transition from another cycle which is
not labeled and which is mutually exclusive;
calculate the loop times assuming the transition is labclicd;)
if(! any new critical loop){
label transitions for time-sharing;}} }}
set to first loop;
step 3:
while(next loop in the sorted list of loops){
while(next transition in loop){
if(transition type == CURRENT OPTIMIZE OPERATOR TYPE
and not labelled for time-sharing) {
get similar type of transition from another cycle which is
not labeled and which is concurrent;

calculate the loop times assuming the transition is labelled;)

47

B

if(! any new critical loop){
augment the transitions so that the transitions become
sequential;
label transitions for time-sharing;} }})

repeat steps 1, 2, and 3 without checking for new critical loop;

6. IFORM 1o netlist translator module:
/* The IFORM is traversed and for each of the transition, according to the type of
transition a EDIF nellist template is selected. The current instance number of basic
circuit components used and the transitions number of consumer transitions are
used to generate the netlist. */
traverse(next node in IFORM){

increment component number for the corresponding type of component;

get consumer transition numbers;

select EDIF template for the current transition;

if (transition is labeled){

include template for time-sharing circuit;
generate netlist by including the transition numbers;
print the netlist;

traverse(next node); }

Support functions:
1. Function to find transition pair type:
/*This function takes two transitions as its input and returns the transition type
(scquential or concurrent or mutually exclusive or conditionally concurrent).*/
pair_type find_pair_type(transition1, transition2){
while(next cycle){
while(next transition){

if(transition = transition1){

48

check if transition2 is found in the rest of the cycle;
if (found){
relurn sequential;
find_all_least_common_ancestors(transitions1, transition2);
if(all l.c.a are fork transitions){
if(any decisition transtion found)
return conditionally concurrent;
else
return concurrent;

return mutually exclusive;

When the synthesis program “odit” is invoked, it will read the occam specifica-

.. through standard input and output the EDIF netlist of the circuit synthesized by the
syntax directed translation. The program will then list the number of data manipulating
circuit modules like adders, multipliers, etc. used in the syntax directed translation. The
user is asked to provide the number of circuit modules to be used for each type of data
manipulating circuit modules. According to the user’s requircment, the program will per-
form optimization to choose a circuit implementation which performs better and outputs
the EDIF nelist of the synthesized circuit. The program also accepts command line option
*-s” lo perform no time-sharing optimization and to generate EDIF netlist of circuit syn-
thesized by syntax directed translation.

The EDIF netlist generated by the synthesis program can be converted to
CADENCE design environment by the “edifin” utility provided by the CADENCE VLSI
CAD system. The cells corresponding to the basic circuit modules used by the synthesis
program have to be present in one of the system directories for the conversion program (o
work. The CAD system can be used to do automatic place and route and generate the final

layout.

49

5.1. The Elliptic Filter Example

A fifth order wave elliptic lilter [14] is used as a demonstration of the proven as
well as the conjectured results in chapter 4. The occam specification of the elliptic filter is
shown in fig. 5.1. The synthesis software has been used in deriving various circuit netlists
according to different optimization criteria. The IFORM for the elliptic filter example is
shown in fig. 5.2. The places and “CD” and “DC” transitions are not shown in the figure
for simplicity.

Manual synthesis of the elliptic filte' has been performed using the synthesis meth-
odology presented in this thesis. Cadence’s SDA software has been used in performing
automatic place and route to get the circuit layout. While performing routing care is taken
lo ensure the control and data wires are kept parallel to each other. The circuit modules are
also designed in such a way that sufficient delay has been introduced in the control path to
compensate the delay in computing circuit. DI cells developed by the VLSI research group
‘n Concordia University and standard cells from CMC have been used in the design. The
. > were designed using Northern Telecom’s CMOS4S 1.2 [technology.

The layout for 4 muliiplier implementation of the elliptic filter is shown in fig. 5.3.
Table 1 gives the results obtained for three different implementations of the elliptic filter.
The overhead of time-sharing involves additional registers, and multiplexers. Multiplier
circuit modules are the only circuit module found to be helpful in minimizing the arca
when time-shared. The results presented in the literature for the synchronous systems

show the number of cycles taken for different number of multipliers and adders used in the
Table 1: Synthesis results

Multipliers ‘?ﬁ %)a C}’&li t(.:i;ne
8 51,572,432 812
4 37,360,211 956
2 30982359 | 1172 |

synthesis. 1t is assumed that adders take one clock cycle and multipliers take two clock

cycles. Since there is no clock in asynchronous circuits, it is not possible to present our

50

results in terms of clock cycles. Table 2 gives the results obtained using HAL [28] synthe-

sis tool.
Table 2: HAL synthesis results
i cl\)lr‘élgi Multipliers | Adders
17 3 3
18 2 3
19 2 2
20 2 2
21 1 2

Fig. 5.1. Occam specification of an Elliptic filter

PROC ELLIPTICFILTER(in, out)

VAR z1,22,23,24,25,26,77,x,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x 1 1,x12,x 13,
x14,x15,x16,x17,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,
v1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11
iANin,out, a,b,c,d,e, f, g, h,i,j,k

PAR
WHILE TRUE

SEQ
PAR
SEQ
PAR
SEQ
PAR
SEQ
in? x
xl:=zl+x
alyl
x2:=x1+yl
b?y2
X3 :=x2 +y2
c?y3
x4 :=x3 +y3
PAR
d! x4
e! x4
SEQ

51

x5 :=x4 *x4
x6 :=x2+x5
PAR
f! x6
g! x6
SEQ
X7 :=x6 +x2
x8 :=x7 *x7
x9 :=x1 +x8
PAR
h! x9
SEQ
x10 :=x1 +x9

x11:=x10*x10

x12:=x+xll
2l :=x12 +x9
WHILE TRUE
PAR
SEQ
PAR
alz2
b!z3
SEQ
PAR
SEQ
PAR
7y4
e?yS
x13:=y4 +y5
i7y6
23:=x13 +y6
SEQ
PAR
g?y7
h? y8
x14:=y7 +y8
x15:=x14 + 24
x16 :=x15 *x15
24 :=x16+ 24
22 =24 +x14
WHILE TRUE
SEQ
PAR

52

SEQ
j7y9
X17 :=y9 + 25
c!x17
SEQ
d? y10
x18 :=y10 *y10
x19 :=x17 +x18
PAR
i' x19
SEQ
x20 :=x19 + x17
x21 :=x20 * x20
x22 :=x21 +y9
PAR
k!x22
SEQ
x23 :=x19 + x22
x24 :=x23 +z6
Xx25 :=x24 * x24
26 :=x25 + 26
25 1= 264+ x24
WHILE TRUE
PAR
il z7
SEQ
k?yll
x26:=z7 +yll
x27 := x26 * x26
PAR
out! x27
27 :=x27+yll

53

d!

(¢4

Fig. 5.2. The IFORM for the elliptic filter

@ Continued in page 47

start -‘
O @ Continued in page 48

@ Continued in page 49

in? 1zl M
J xl] +
0 x2: +
x3| +
x4 +
x5| * + |x7
x6 & *
x8| * | + + | x10
N
* Ixl
- ay
]]
f! g! T 1x12
J + {2l

54

22:

Fig. 5.2. The IFORM for the elliptic filter (continued)

55

"‘4—4“‘

—

x24

x2S

y10
x18

x19

ixl9

Fig. 5.2. The IFORM for the elliptic filter (continued)

R e £

XV

+\+

26

-

S

Fig. 5.2. The IFORM for the elliptic filter (continued)

c3
M
27| §! ylif x?
X261 +
* 1x27
out ! 7]+
] I M |27

57

vma—n
~u’ dém xS «l«

1 .}"*av ?}"r. £

Fig.5.3. The layout of the optimized elliptic filter

The multiplier data transitions labeled by x5, x8 and x11 {fig. 5.3. page 46) are
sequential and so can be labeled for time-sharing in the circuit implementation. Similarly
multiplication transitions labeled x18, x21, x25 are also time-sharable as they are sequen-
tial. After labeling the above transitions for time-sharing, we require 4 multiplier circuit
modules to implement the elliptic filter. To reduce the area further, the multiplier transi-

tions labeled x11 and x16, and the multiplier ransitions labeled x25 and x27 could be aug-

58

mented as shown in fig. 5.4. After augmenting transitions labeled x5, x8, x11 and x16 can

Fig. 5.4. Augmenting the IFORM by serialization

+ [x15
* Ix1 XJ
 * [xl16
+ |x12 l
+ z4
x26] +
x25] * + |26 ¥¢
U — %* x27

k+ labeled for timesharing. Similarly transitions labeled x18, x21, x25 and x27 can be
labeled for timesharing. Only two multiplier circuit blocks are required to implement the
augmented IFORM.

Further reduction in area could be achieved by timesharing a single multiplier cir-
cuit block by using an arbiter as explained in section 4.2. The EDIF netlist for the 2 multi-

plier implementation is given in fig. 5.5.

59

Fig. 5.5. EDIF Netlist of the circuit wiih

four multiplier modules

(act start (Joined (portRef start)
(postRef OUT (instanceRef start_inpad))
(portRef A (instanceRef xor2_1))
(portRef A (instanceRef x0r2_2))
(portRef A (instanceRef xor2_3))
(portRefl A (instanceRe! x0r2_4))))

(net an (Joined (portRef 1n)
(portRef OUT (instanceRef in_inped))
(portRet A (instanceRef celement2_1))))

(net a1 (joined (portRef OUT (instanceRef xor2_I))
(purtRef A (instanceRef celement2_1))))

(net 02 (juined (portRef OUT (1nstanceRel celement2_1))
(f uetRef A (instanceRef register_1))))

(net 03 (owned (pontRef OUT (instanceRef register_1))
(partRefl A (instanceRef adder_1))))

(net 04 Gomed (portRef OUT (instanceRef register_1))
(poctRef B (instanceRef celement2_1))))

(net n§ (oined (portRef OUT (instanceRef register_1))
(poetRefl B (instanceRef adder_12))))

(net 06 (oined (portRefl OUT (nstanceRef xor2_5))
(portRef B (instanceRef adder_1)))

(net 07 (oined (portRef OUT (instanceRef x0r2_1))
(purtRefl A (nstanceRef celement2_2))))

(net o8 (oined (portRef OUT (instanceRef celement2_2))
(portRef A (instanceRef register_2))))

(net a9 Qomed (portRef OUT (instanceRef register_2))
(poriRef A (iastanceRef adder_2))))

(net 010 Qoined (portRef OUT (instanceRef register_2))
(portRef A (instanceRef celement?_1))))

(et 0l Guined (poctRef OUT (instanceRef x0e2_1))
(postRefl A (1nstanceRef celemen2 _3)))

(net 012 goined (portRefl OUT (instanceRef celement2_3))

60

(portRef A (instanceRef register_3))))
(net 113 (joined (portRef OUT (instanceRef register_3))
(portRef A (instanceRef adder_3)))
(net n14 (joined (portRef OUT (instanceRef register_3))
(portRef A (instanceRef celement2_2))))
(et n15 (joined (portRef OUT (instanceRef x0r2_1))
(poctRef A (instanceRef celement2_4))))
(net n16 (Joined (portRef OUT (instanceRef celement2_4))
(portRef A (instanceRef register_4))))
(net 017 (joined (portRef OUT (instanceRef register_4))
(portRef A (nstanceRef adder_4))))
(et n18 (yoined (portRef OUT (iustanceRef register_4))
(portRef A (instanceRef celement2_3))))
(net 019 (joined (portRef OUT (instanceRef celement2_1))
(portRef B (1nstanceRef celement2_2))))
(net n20 (joined (partRef OUT (instanceRef celement2_2))
(portRef B (instanceRef celement2_3))))
(act 021 (joined (portRef OUT (instanceRef adder_2))
(porRef B (instanceRef adder_3))))
(net 22 (joined (portRef OUT (instanceRef adder_3))
(portRef B (1nstanceRef adder_4))))
(et 123 (joined (portRef OUT (instanceRef adder_4))
(portRef A (instanceRef celement2_9))))
(net 024 (joined (portRef OUT (instanceRef adder_4))
(portRef B (instanceRef celement2_9))))
(et n25 (joined (partRef OUT (instanceRef celement2_3))
(portRef A (instanceRef celement2_5))))
(net 026 (yoined (partRef OUT (instanceRef celement2_3))
(portRef A (instanceRef celement2_6))))
(et 27 (joined (portRef OUT (instanceRef celement_3))
(portRef A (instanceRef celement2_7))))
(et 028 (joined (portRef OUT (instanceRef celement2_3))
(portRef A (instanceRef celement2_8))))
(net 029 (joined (portRef OUT (instanceRef adder_4))
(portRef B (instanceRef celement2_5))))

(net 030 (Joined (portRef OUT (instanceRef adder_4))

(portRef B (instanceRef celement2_6))))

{net 031 (Joined (portRef OUT (1nstanceRef register_5))
(portRef B (instanceRef adder_5)))

(net 032 (Joined (portRef OUT (instanceRef adder_2))
(portRef A (instanceRef adder_5)))

(net 033 (joined (portRef OUT (instanceRef adder_2))
(poriRef A (nstanceRef adder_6)))

(net 034 (joined (portRef OUT (instanceRef adder_5))
(portRef B (1ostanceRef adder_6))))

(net 635 (uined (poriRef OUT (instanceRef adder_6))
(portRef A (instanceRef celement2_10)}))

(net 036 (oined (porRef OUT (instanceRef adder_6))
(portRef B (instanceRef celement2_10))))

(nct 837 (Joined (portRef OUT (instanceRef register. 5))
(portRef B (instanceRef adder_7))))

(net 038 (Jowned (portRef OUT (instanceRef adder_1))
(portRef A (sastanceRef adder_7))))

(net 039 (joined (ponRef OUT (instanceRef adder_7))
(portRef B (instanceRef adder_8))))

(net 040 (Joraed (poriRef OUT (instanceRef adder_1))
(portRef A (mslanceRef adder_8)))

(net nd] (joined (portRe! OL'T (instanceRef adder_8))
(portRef A (instanceRef celement2_11))))

tnet 842 (joined (portRef OUT (snstanceRef adde- _8))
(portRef B (instanceRef celement2_11))))

(oet 043 (oined (portRef OUT (instanceRef register_6))
(portRefl A (nstanceRef adder_9))))

(net 044 (joaned (portRef OUT (ins1anceRef adder_7))
(portkef A (instanceRef adder_10))))

(net 045 (Jomned (portRef OUT (instanceRef adder_9))
(portRef B (instanceRef adder_10))))

(net 46 (joined (portRef OUT (instanceRef celement2_7))
(portRef A (insianceRef celement2_4))))

(net 047 (joined (portRef OUT (instanceRef celement2_.))
(poriRef B (instanceRef celement2_4))))

(net 048 (joined (portRef OUT (instanceRef celement2_3))

61

{portRef A (1nstanceRef celementd _5)H)
(oet 049 (joined (pastRef OUT (instanceRef celementl_6))
(portRef B (instanceRef celementd_5)))
(net 050 (Josned (portRef QUT (nstanceRef celement2_ 1))
{portRef C (instanceRef celement3_5)))
(act 51 (yosned (portRef OUT GustanceRef cclenmentd_S))
(portRef A (anstanceRef celement2_6)))
(nct 052 (joined (partRef OUT (instanccRef adder_10))
(portRef B (nstanceRef celement2_6)))
(ot 053 (joined (portRef OUT (instanceRef celement2_6))
(poctRef B (instanceRef xwr2_21)
(oct 54 (qoined (poriRef OUT GinstanceRef celement2 _S))
(portRef B (nstanceRef 2062_1)))
(net 055 (Joined (partRef OUT (instanceRef celement2 9))
(portRef A (1nstanceRef dmux3_1)))
(net 056 (jowned (portRef OUT (instanceRef celement2_10))
(portRef B (nstanceRef dmux3_1)))
(net 57 (poined (partRef OUT GinstanceRef celement2_11))
(portRef C (instanceRef dmux3_1))
(net 058 (yined (portRef OUT! GinstanceRef dmux3_1))
(portR=f A (instanceRef muluplier 1))
(aet 059 (oined (partRef OUT2 (astaoceRef dmux?_1))
(portRef B (instanceRef muluphier_1))))
(net 060 (juined (portRef OUT GnstanceRefl muluphier_1))
(portRef B (1nstanceRef wggle?_1)
(net 061 (Joined (poartRef OUT G(instanceRef toggle_1))
(porthel A (nstunceRef registes_S)))
(ne1 062 (nned (partRef OUT GinstanceRef toggle3_1))
(portRef A (instanccRef regaster _6))))
(net 063 (oined (poartRef OUT (unstanceRef toggle3_1))
(poriRef A (1nstanceRef register_7))))
(aet 064 (owned (portRef QUT (instanceRef xot2_2))
(ponRef A (instanceRef celement2_12))
(portRef A (instanceRef celement2_13))
(portRef A (1nstanceRef celenment2_14))

(portRef A GinstanceRef celement2_15))

(purtRef B (nswnceRef celement2_6))))

{net 031 (yosned (portRef OUT (instanceRef reguster_S))
(portRef B (1nstanceRef sdder_5))))

(net 032 (Joined (portRef OUT (1nstanceRef adder_2))
(purtRefl A (instanceRef adder_S5))))

(net 033 (poined (portRef OUT (instanceRef adder_2))
(poriRef A (instanceRef adder_6))))

(net n34 (pouned (portRef OUT (instanceRef adder_5))
(purtRef B (instanceRef adder_6))))

(net 035 (jomned (portRef OUT (instanceRef adder_6))
(portRef A (instanceRef celement2_10))))

{net 036 (Juined (portRef OUT (instanceRef adder_6))
(purtRef B (instanceRef celement2_10))))

(net 037 Joined (portRefl OUT (instanceRef register_S))
(partRef B GnstanceRef adder_7))))

(net 038 (qoined (portRef OUT (instaaceRef adder_1))
(portRef A (1nstanceRef adder_7))))

(nct 039 (oined (poriRef OUT (instanceRef adder_7))
(poriRef B (nstanceRef adder_8))))

(net 040 (Juined (ponRef OUT (instanceRef adder_1))
(portRef A (iostanceRef adder_B))))

(net nd] (owned (portRef OUT (instanceRef adder_8))
(portRef A (instanceRef celement2_11))))

wet 042 Quined (portRef OUT (instanceRef adder_8))
(partRef B (instanceRef celement2_11)))

(net n43 (oined (pontRefl OUT (instanceRef register_6))
(portRef A (snstanceRef adder _9))))

(nct ndd (omed (portRef OUT (1nstanceRef adder_7))
{poriRef A (instanceRef adder_10)))

(net 045 (oned (portRef OUT (instanceRef a ider_9))
(portRef B (1nstanceRef adder_10))))

(net 046 (oined (portRef OUT (instanceRef celement2_7))
(purtRef A (instanceRef celement2_4))))

(net 147 goined (portRef OUTT (instanceRef celement2_8))
(poctRefl B (instanceRef celement2_4))))

(net 048 (oined (portRef OUT (instanceRef celement2_5))

61

(portRef A (instanceRef celement3_5))))
(net p49 (joined (portRef OUT (instanceRef celement2_6))
(portRef B (instanceRef celement3_5))))
(net 050 (Joined (portRef OUT (instanceRef celement2_4))
(portRef C (1nstanceRef celement3_5))))
(net aS1 (joined (portRef OUT (instanceRef celement3_5))
(portRef A (instanceRef celeinent2_6))))
(net 052 (oined (partRef OUT (instanccRef adder_10))
(portRef B (1nstanceRef celement2_6))))
(net 053 (joined (portRef OUT (instanceRef celement2_6))
(portRef B (1nstanceRef xo0r2_2))))
(net 054 (joined (partRef QUT (instanceRef celement2_5))
(portRef B (instanceRef xor2_1))))
(net 055 (joined (portRef OUT (1nstanceRef celement2_9))
(portRef A (instanceRef dmux3_1))))
(nct 056 (Joined (partRef OUT (instanceRef celement2_10))
(porRef B (instanceRef dmux3_1))))
(net 057 (joined (portRef OUT (instanceRef celement2_11))
(portRef C (instanceRef dmux3_1))))
(nct n58 (joined (portRef OUTI (instanceRef dmux3_1))
(portRef A (1astanceRef muluphier_1))))
(et 059 (oined (portRef OUT2 (instanceRef dmux3_1))
(portRef B (instanceRef muluphier_1))})
(net 060 (Joined (portRef OUT GnstanceRel multip..ier_1))
(portRef B (1nstanceRef toggle3_1))))
(net 061 (oined (partRef OUT (instanceRef toggle3_1))
(portRef A (1nstanceRef register_5))))
(net 062 {joined (portRef QUT (instanceRef toggle3_1))
(portRef A (instanceRef register_6))))
(net 063 (joined (partRef OUT (instanceRef toggle3_1))
(por Ref A (instanceRef register_7))))
(net n64 (joined (portRef OUT (instanceRef xot2_2))
(portRef A (instanceRef celement2_12))
(portRef A (instanceRef celement2_13))
(portRef A (instanceRef celement2_14))

(portRel A (instanceRef celement2_15))

(portRef A (instanceRef celement2_16))
(portRef A (instanceRef celement2_17))
(portRef A (1nstanceRel celement2_18)))

(net 65 (joined (portRef OUT (instanceRef celement2_18))
(poriRef A (instanceRef register_12))))

(net 066 (joined (portRef OUT (1nstanceRef celement2_17))
(portRef A (instanceRef regista_11))))

{net n67 (joined {portRef OUT (instanceRef celement?_16))
(poriRef A (instanceRef register_10))))

(net 068 (joined (portRef OUT (instanceRef celemeni2_15))
(portRef A (instanceRef register_9))))

(net n69 (joined (portRef OUT (instanceRef celement2_14))
(poctRef A (instanceRef regisier_8))))

(nct a70 (Joined (portRef OUT (1nstanceRef xor2_6))
(portRef B (instanceRef celement?_12))))

(net n71 (joined (portRef OUT (instanceRef xor2_7))
(portRef B (instanceRef celement2 _13))))

(net 072 (joined (portRef OUT (ustanceRef))
{poriRef A (inswanceRef celement3_2))))

(net 073 (Joined (portRef OUT (instanceRef))
(portRef B (instanceRef celement3_2))))

(net 074 (joined (portRef OUT (instanceRef register_%))
(portRef A (tnstanceRef celement2_7))))

(net 075 (oined (portRef OUT (nstanceRef register_9))
(purtRef B (instanceRef celement2_7))))

(ner 076 (Joined (portRef OUT (1nstanceRef register_8))
(poctRef A (instanceRef adder_11))))

(net 077 (jouned (poriRef OUT (instanceRef register_9))
(portRef B (instanceRef adder_11)))

(net n78 (joined (portRef OUT (instanceRef register_10))
(portRef A (instanceRef adder _12))))

(net 079 (joned (portRef OUT (instanceRef adder_11))
(portRef B (1nstanceRef adder_12))))

(net 080 (joined (portRef OUT (instanceRef register_11))
(portRef A (instanceRef celement2_13))))

(net n81 (oined (portRef OUT (instanceRef register_12))

62

(portRef B (instanceRef celemenc2_131)))

(oet 082 (oined (portRef OUT (instanceRef register_11))
(portRef A (instanceRef adder_13))))

(net n83 (joined (portRef OUT (instanceRef register_12))
(portRef B (instanceRef adder_13))))

(pet 084 (Joined (portRef OUT (instanceRef adder_13))
(porRef A (instanceRef adder_14))))

{nct nBS (poined (portRel OUT (instanceRef xoe2_8))
(portRel B (instanceRef adder_14))))

(net 086 (joined (portRef OUT (instanceRef adder_14))
(portRefl A (instanceRef muluphier _2))))

(net 087 (jomed (portRef OUT (snstanceRef adder_14))
(portRef B (instanceRef muluplier _2))))

(oet 088 (Joined (portRef OUT (instanceRef muluphies_2))
(poriRel A GastanceRef adder_15)))

(net 089 (jotned (partRef OUT (instanceRef xor2_8))
(portRef B (tnstanceRef adder_15)))

(net 090 (Joined (portRef OUT (nstanceRef adder_15))
(portRef A GnstanceRef adder_16)))

(net 091 (Joined (purtRef OUT (nstanceRef adder_14))
(portRef B (instanceRef adder_16))))

(net 092 (joned (portRefl OU"T (instanceRef adder_15))
{portRef B (instanceRef celenwem2_12))))

(net 097 (joined (portRef OUT (instanceRef celement2_9))
(portRel A (1astanceRef celement2_12))))

(net 094 (joined (portRef OUT (ipstanceRef celement2_12))
(portRef A (instanceRef xar2_4))))

(net 093 (yusned (poctRefl OUT (instanceRef celement2 2))
(portRefl A GastanceRef celement2_9))))

(net n96 (Joined (purtRef OUT {instanceRef celement2_113))
(portRef B (snstanceRef celement2_9))))

(net n97 (Joined (purtRef OUT (instanceRef celement2 7))
(portRef A GnstanceRef celement2 _R))))

(net 098 (yuined (portRef OUT GinstanceRef register_10))
(portRef B (instanceRef celement2_8))))

(net 899 (joined (putRef OUT (instanceRef celementd_2))

(portRef A (instanceRef celement2_9)))

(net n100 (Joined (portRef OUT (instanceRef celement2_13))
(portRef B (instanceRef celement2_8))))

{net 10! (joined (portRef OUT (instanceRef adder_12))
(pariRef A (instanceRef celemen2_10))))

(net p102 (oined (partRef OUT (instanceRef celement2_9))
(portRef B (instanceRef celement2_10))))

(net 8103 (Joined (portRef OUT (instanceRef celement2_10))
(postRef A (nstanceRef x0t2_7))))

(net 0104 (jouned (portRef OUT GnstanceRef adder_16))
(portRef B (instanceRef celemen2_11))))

(net n105 (Josned (portRef OUT (instanceRef celement2_9))
(portRef A (instanceRef celement2_11))))

(net 0106 (oined (portRef OUT (instanceRef celement2_11))
(portRef A (instanceRef xor2_6))))

(net n107 (joined (postRef OUT (instanceRef xor2_3))
{portRe! A (instanceRef celement2 _14))))

(net n108 (oined (portRef OUT (instanceRef xor2_3))
(portRef A (stanceRef celement2_15))))

(net 0109 Goined (portRef OUT (nstanceRef celement2_14))
(portRef A GnstanceRef register_13))))

{net n110 (joined (portRef OUT (nstanceRef celement2_15))
(portRef A (instanceRef register_14))))

(et alll Gowned (portRef OUT (instanceRef regsster_13))
{portRef A (instanceRet adder_17))))

(net n112 (oned (portRef OUT (instanceRef register_14))
(poriRef A (instanceRef celement2_23))))

(net 113 (oined (portRef OUT (1nstanceRef register_14))
(portRef B (instanceRef celement_23))))

(net n114 (oned (portRef OUT (instanceRef adder_17))
(partRef A (instanceRef adder_19))))

(net 0115 (oined (portRef OUT (instanceRef register_13))
(portRef A (instanceRef celement_23))))

(net 0116 (jorned (poaRef OUT (instanceRef(adder_17))
(portRef B (instanceRef celement_23))))

(net 0117 Gowned (portRef OUT (instanceRef))

63

(portRef A (instanceRef celement _19))))

(net n118 (joined (portRef OUT (instanceRef register_15))
(portRef B (instanceRef celement _19))))

(net 0119 (joined (portRef OUT (instanceRef celement2_19))
(portRef A (instanceRef celement2_17))))

(net 0120 (Joined {portRef OUT (instanceRef adder_18))
(portRef B (instanceRef celement_17))))

(nct 0121 (oined (portRef OUT (instanceRef adder_18))
(porRef B (instanceRef adder_20))))

(net 0122 (joined (portRef OUT (instanceRef adder_19))
(portRef A (instanceRef celement,_24))))

(net 0123 (joined (portRef OUT (instanceRef adder_19))
(portRef B (insianceRef celement_24))))

(net n124 (joined {portRef OUT (instanceRef czlement2_14))
(portRef A (instanceRef adder_21))))

(pet n125 (oined (portRef OUT (instanceRef register_16))
(portRef B (1nstanceRef adder_21))))

(net 0126 (joined (portRef OUT (1nstanceRef adder_21))
(portRef A (instanceRef celement2_18))))

(vet 0127 (joined (portRef OUT (nstanceRef celement2_18))
(portRef A (instanceRef celement2_20))))

(vet 0128 (joined (portRef OUT (instanceRef celement2_17))
(portRef B (instanceRef adder_20))))

(net 0129 (joined (ponRef OUT (ustanceRef celement2_20))
(portRef A (instanceRef celement2_22))))

(pet 0130 (joined (portRef OUT (instanceRef adder_25))
(portRef B (instanceRef celement2_22))))

(vet 0131 (joined (portRef QUT (:nstanceRef adder_21))
(poriRef A (instanceRef adder_22))))

(net 0132 (Joined (portRef OUT (instanceRef adder_18))
(portRef B (instanceRef adder_21))))

(net 0133 (joined (portRef OUT (instanceRef adder. 22))
(portRef A (instanceRef adder_23))))

(et 0134 (joined (ponRef OUT (instunceRef xor2_9))
(portRef B (instanceRef adder_23))))

(pet 8135 (joined (portRef OUT (instanceRef adder_23))

(portRef A (instanceRef celement2_25))))

(net n136 (joined (portRef OUT (instanceRef adde:_ 23))
(partRef B (instanceRef celement2_25))))

(net 0137 (joined (portRef OUT (instanceRef celement2_25))
(poriRef A (instanceRef register_17))))

(net 0138 (joined (portRef OUT (instanceRef register_17))
(poctRef A (instanceRef adder_25))))

(net n139 (joined (portRef OUT (instanceRef xar2_9))
(portRef B (instanceRef adder_25)))

(net 0140 (joined (portRef OUT (instanceRef adder_25))
(portRef A (instanceRef adder_24))))

(net 2141 (joined (portRef OUT (instanceRef register_23))
(portRef B (instanceRef adder_25))))

(netn142 (joined (portRef OUT (nstanceRef celement2_23))
(portRef A (instanceRef dmux3_2))))
.43 (Joined (portRef OUT (instanceRef celement2_24))
(portRef B (instanceRef dmux3_2))))

wnet 0144 (joined (portRef OUT (instanceRef celement2_25))
(portRef C (instanoc Ref dmux3_2))))

(net 0145 (joined (portRef OUT1 (instanceRef dmux3_2))
(portRef A (instanceRef mulupher_3))))

(net n146 (joined (portRef OUT2 (instanceRef dmux3_2))
(portRef B (instanceRef muluplier_3))))

(netn147 (joined (portRef OUT (instanceRef multiplier_3))
(portRef B (instanceRef toggle3_2))))

(net n148 (Joined (portRef OUT (instanceRef toggle3_2))
(portRef A (instanceRef register_15))))

(net 0149 (oined (portRef OUT (nstanceRef 10ggle3_2))
(portRef A (instanceRef register_16))))

(net 0150 (joined (portRef OUT (instanceRef toggled_2))
(portRef A (instanceRef register_17))))

(netn151 (Joined (portRef OUT (instanceRef xar2_4))

(portRef A (instanceRef celement2_26))))

(netnl52 (joined (portRef OUT (instanceRef xar2_16))

(portRef A (instanceRef celement2_26))))

(net 0153 (Jorned (portRef OUT (instanceRef xord_4))

(portRef A (instanceRef celement2_27))))
(net 0154 (joine (poctRef OUT (instanceRef celemeni2_27))
(portRef A (instanceRef register_18))))
(net n155 (joised (portRef OUT (instanceRef register_1¥))
(portRef A (instanceRef sdder_26))))
(net n156 (joined (portRef OUT (instanceRef adder_26))
(portRef A (instanceRef mulupher_4))))
(net 0157 (Joined (portRef OUT (instanceRef adder_26))
(portRef B (instanceRef muluplier_4))))
(nct 0158 (joined (portRef OUT (instanceRef muluplier_4))
(portRef A (instanceRef celement2_30))))
(net n159 (joined (portRef OUT (instanceRef celement2_30))
{portRef A (instanceRef celement2_28))))
(vet 0160 (joined (portRef QUT (instance Ref multiphier_4))
(portRef A (instanceRef adder_27))))

(net n156 (oined (pontRef OUT (instanceRef xor2_16))

(portRel B (instanceRef adder_27))))

Chapter 6

Conclusion

A subset of the occam language has been chosen as a specification language for
high-level synthesis. To bridge the program level and circuit level of abstraction, an inter-
mediate form (IFORM) has been used in the synthesis. A set of requirements has been
< .or such an IFORM. The IFORM of representation, a marked graph with modified

..antics, has been presented as a semantic model for occam programs. The IFORM cap-
tures arbitration (alternation statement) and synchronous communication. By means of the
IFORM, a formal definition is ¢ iven to “‘a circuit implements an occam program”. A time-
sharing theorem with proof has "ecn presented. Techniques to find time-sharable candi-
dates has been provided with the: use of parse tree and the IFORM. Augmentations of the
IFORM by data flow extraction has been presented. Such augmentations have been found
useful in removing some of the control sequence without violating the correctness criteria.
Transitions which are neither sequential nor mutually exclusive cannot ime-share a circuit
component. Augmentation techniques to serialize concurrent transitions have been pre-
sented. Care must be taken in scrializing transitions. Possible violations of incorrect aug-
mentation have been provided. The intermediate form is also used for the evaluation of the
performance of the circuit synthesized from it. Since the firing rules have been modified,
previous approaches for measuring performance of concurrent systems cannot be
extended to the IFORM. For a sub class of IFORMs a method based on the previous
approach has been presented. Finally, a strategy for exploring the optimization search
space is outlined. A fifth order elliptic filter is used as a demonstration of the proven
results as well as the conjectured results, A synthesis software has been developed as an
implementation of the synthesis methodology presented in this thesis. The software has
been used in the synthesis of a fifth order wave elliptic filter. The EDIF netlist generated
by the soltware can be uscd along with a basic cell library, to generate circuit layout for
chip fabrication. CADENCE's CDS design system has been used in generating the layout

for the elliptic filter example by the place and route utility.

65

As future extension of this thesis, more correctness preserving sugmentation strat-
egies can be explored. A micthod for measuring performance which takes care of modified
firing rules in the IFORM has to be worked out. Translation and optimizations methods
could be extended for circuits derived for other architectures from an occam program.

Other specification languages can be explored.

66

Chapter 7

References

(1]

12}

(3]

14

[5]

[6]

[7]

[8]

[9]

(10]

C.G. Bell and A. Newell, Computer Structures: Readings and Examples. New York,
NY: McGraw-Hill, 1971,

C.H. van Berkel and R. Saeijs, “Compilation of Communicating Processes into
Delay-Insensitive Circuits”, International Conference on Computer Design, 1988,
pp. 157-162.

G.M. Brown, “Towards Truly Delay-Insensitive Circuit Realization of Process Alge-
bras”, manuscript.

E. Brunvand and R.F. Sproull, “Translating Concurrent Programs into Delay-Insen-
sitive Circuits”, International Conference on Computer-Aided-Design, 1989, pp.
262-265.

S.M. Burns and A.J. Martin, “Syntax-directed Translation of Concurrent Programs
into Self-timed Circuits™, Advanced Research in VLSI, 1988, pp. 35-50.

S.M. Burns and A.J. Martin, “Performance Analysis and Optimization of Asynchro-
nous Circuils”, Advanced Research in VLSI, 1990, pp. 71-86.

M.R. Barbacci, “Instruction Set Processor Specifications (ISPS): The Notation and

its Applications,” IEEE Trans. on Computers, vol. C-30, no. 1, pp. 24-40, Jan. 1981.

R. Camposano and W. Rosensticl, “Synthesizing Circuits From Behavioural

Descriptions,” IEEE Trans. on CAD, vol. CAD-6, no 6, pp. 1098-1112, Nov. 1987.

R. Camposano and R.M. Tablet, “Design Representation for the synthesis of Behav-
ioral VHDL Models,” in Proc. of the 9th In’l Conf. on CHDL. New York, NY:
Elservier/North Holland, June 1989.

K.M. Chandy and J. Misra, Parallel Program Design: A Foundation, Prentice Hall,
1989.

67

[11] 1.S. Chiang and D. Radhakrishnan, “Hazard-free Design of Mixed Operating Mode

Asynchronous Sequential Circuits”, International Journal of Electronics, Vol. 68,
No. 1, 1990, pp. 23-37.

[12] T.-A. Chu, “Synthesis of Self-timed VLSI Circuits from Graph-theoretic Specifica-
tions™, Intemational Conference on Computer Design, 1987, pp. 220-223.

[13] P. Cousot and R. Cousot, “Semantic Analysis of Communicating Sequentia! Pro-

cesses”, Lecture Notes in Computer Science 85, 1980, pp. 119-133.

[14] P. Dewilde, E. Deprettere, and R. Nouta, “Parallel and Pipelined VLSI Implementa-
tion of Signal Processing Algorithms”, in Chapter 15, S.Y. Kung, H.J. Whitchouse,
and T. Kailath (eds.), VLSI and Modern Signal Processing, Prentice Hall, 1985.

[15] J.C. Ebergen, Translation of Programs into Delay-Insensitive Circuits, Ph. D. The-

sis, Eindhoven University of Technology, 1987.

f16) E.F. Girczcy, *Automatic Generation of Microsequenced Data Paths to Realize ADA

Circuit Descriptions,” PhD Thesis, Carleton University, Ottawa, Canada, July 1984,
{171 INMOS Limited, Occam Programming Manual, Prentice Hall, 1983,

[18] D.J. Kuch, R.H. Kuhn, B. Leasure, et. al, “The Structure of an Advanced Retargeta-
ble Vectorizer”, COMPSAC 80, 1980.

[19] PN. Lam and H.F. Li, “Hierarchical Design of Delay-Insensitive Systems”, [EE Pro-
ceedings, Part E: Computers and Digital Techniques, Vol. 137, No. 1, Jan. 1990, pp.
41-56.

[20] L. Lavagno, K. Keutzer, and A.L. Sangiovanni-Vincentelli, “Synthesis of Verifiably
Hazard-Free Asynchronous Control Circuits”, Advanced Research in VLSI, 1991,
pp. 87-102.

[21] HF. Li, S.C. Leung, and P.N. Lam, “Synthesis of Delay-Insensitive Circuits by
Refinement into Atomic Threads”, International Conference on Computer Design,
1991, pp. 180-186.

68

(22]

(23]

[24]

[25]

[26}

[27]

(28]

[29]

[30]

(31]

[32]

J. Magott, “Performance Evaluation of Concurrent Systems using Petri Nets”, Infor-
mation Processing Letters, Vol. 18, 1984, pp. 7-13.

A.J. Martin, “Compiling Communicating Processes into Dclay-Insensitive VLSI
Circuits”, Journal of Distributed Computing, Vol. 1, 1986, pp. 226-234.

T.H.-Y. Meng, R.W. Brodersen, and D.G. Messerschmitt, “Automatic Synthesis of
Asynchronous Circuits from High-Level Specifications”, JEEE Transactions on

Computer-Aided-Design, Vol. 8, No. 11, 1989, pp. 1185-1205.

G. De Micheli and D. C. Ku, “HERCULES: A System for High-Level Synthesis,” in
Proc. of the 25th Design Automation Co+,. New York, NY: ACM/IEEE, June 1988,
pp. 483-488.

S. Nowick and D.L. Dill, “Synthesis of Asynchronous State Machines Using a Local
Clock”, International Conference on Computer Design, 1991, pp. 192-196.

W. Peng and S. Purushothaman, “Towards Data Flow Analysis of Communicating
Finite State Machines”, Symposium on Principles of Distributed Computing, 1989,
pp. 45-58.

P.G. Paulin and .P. Knight, “Force-Directed Scheduling in Automatic data path syn-
thesis”, Proc. of the 24th Design Automation Conf. New York, NY: ACM/IEEE,
1987, pp. 195-202.

D.K. Probst and H.F. Li, “Modeling Reactive Hardware Processes using Partial
Orders”, Semantics for Concurrency, Workshops in Computing, July 1990, pp. 324-
343.

C.V. Ramamoorthy and G.S. Ho, “Performance Evaluation of Asynchronous Con-
current Systems using Petri Nets”, IEEE Transactions on Software Engineering, Vol.

6, No. 5, 1980, pp. 440-449.

JH. Reif and S.A. Smolka, “Data Flow Analysis of Distributed Communicating Pro-

cesses”, International Journal of Parallel Programming, Vol. 19, No. 1, 1990, pp. 1-
30.

W. Reisig, Petri Nets: An Introduction, Springer-Verlag, 1985.

69

(33]

(34]

[35]

[36]

(37

[38])

(391

[40]

[41]

[42]

{43}

EU. Rosenberger, C.E. Molnar, T.J. Chaney, T.-P. Fang, “Q-Modules: Internally
Clocked Delay-Insensitive Modules”, IEEE Transactions on Computers, Vol. 37,
No. 9, 1988, pp. 1005-1018.

C.L. Seitz, “System Timing”, in Mead & Conway, Introduction to VLSI Systems,

Chapter 7, Addison-Wesley, 1980.

J. Staunstrup and M.R. Greenstreet, “Designing Delay-Insensitive Circuits using
Synchronized Transitions™, IMEC IFIP International Workshop on Applied Formal
Methods for Correct VLSI Design, 1989, pp. 741 - 758.

LE. Sutherland, “Micropipelines”, Communications ACM, Vol. 32, No. 6, Junc
1989, pp. 720-738.

H. Tricker, “Flamel: A High-Levcl Hardware Compiler,” 1EEE Tran. on CAD, vol.
CAD-6, no. 2, pp. 259-269, Mar. 1987.

J.T. Udding, “A Formal Model for Defining and Classifying Delay-Insensitive Cir-
cuits and Systems”, Journal of Distributed Computing, Vol. 1, 1986, pp. 197-204,

S.H. Unger, Asynchronous Sequential Switching Circuits, Wiley-Interscience, 1969.
P. Vanbekbergen, F. Catthoor, G. Goossens, H. De Man, “Optimized Synthesis of

Asynchronous Control Circuits from Graph-theoretic Specifications™, International

Conference on Computer-Aided-Design, 1990, pp. 184-187.

K.J. Venkatesh, S.C. Leung, H.F. Li, and R. Jayakumar, *Optimizations in the Trans-
lation of Occam Programs into Delay-Insensitive Circuits™, Canadian Conference

on VLSI, 1990, 4A.4.1-4A.4.8.

0. Yenersoy, “Synthesis of Asynchronous Machines Using Mixed Operation Mode”,
IEEE Transactions on Computers, Vol. 28, No. 4, 1979, pp. 325-329.

G. Zimmermann, “MDS-The Mimola Design Method,” J. Digital Sytems, vol. 4, no.
3, pp. 337-369, 1980.

70

Appendix A
Occam Subset: Syntax and Semantics

The source language used in this thesis is a subset of occam [5], a language based
on CSP [8]. Occam programs are built from processes. The simplest process in an occam
program is an action. An action is either an assignment, an input or an output process. The
STOP process is not included in the occam subset as the program is being translated into a
non terminating circuit implementation. Since the target architecture is delay-insensitive,
WAIT process is not included in the occam subset. Repetitive constructs, functions and

procedures are also not included ir the occam subset.

7.1. Data types:

The data types have to be declared for all the variables used in the program using
the VAR construct. The types supported are BIT, BYTE, INTEGER 16, INTEGER32.
Only one variable declaration is allowed in a program. VAR declaration has to be included
if there is at least one variable to be declared. The subscript index specifies this require-
ment.

Syntax of variable declaration:

variable_declaration = VAR {;, <variables_type_list>}

<variables_type_list> = <variable_name_list>

<data_type>

<variable_name_list> = {;, <variable>}

<data_type> = <BIT> | <BYTE> | <INTEGER16> | <INTE-

GER32>

7.2. Channel declaration

All the channels used in the occam program have to be declared using the CHAN
declaration statement. Along with the channel names, the types of those channels also

have to be specified. Only one channel declaration is allowed in a program.

71

Syntax of channel declaration:
channel_declaration = VAR {1, <channels_type_list>}

<channels_type_list> = <channels_name_list>

<data_type>

<channels_name_list> = {1, <channel>}

7.3. Assignment

An assignment process assigns the value of an expression to a variable. In the
occam subset we do not consider array variables and multiple assignment. Expressions
may contain one or two operands operated by one unary or one binary opcrator. Consider
the following example:

X:=y+X

The expression y+x is evaluated and its value is assigned to the variable x.

Syntax of assignment process:

<variable_name> = <unary_operator> <variable_name> |

<variable_name> = <variable_name> <binary_operator>

<variable_name>

<unary_operator> = - | NOT

<binary_operator> = +, -, *, /, <<, >>, AND, OR, XOR, <,

>, =, <=, >=, <>

7.4. Communication

Communication is an essential part of occam programs. Values are passed between
concurrent processes by communication on channels. Each channel provides unbuffered
unidirectional point-to-point communication between two concurrent processes. Commu-
nication is performed by an input action at the receiving process and an output process at
the sending process. Communication without value passing can also be done by input and

output actions by substituting the variable name with the keyword ANY.

72

7.4.1. Input action
An input action receives a value from a channel and assigns the received value to a
variable. Consider the following example:
keyboard ? char
This process receives a value from the channel named keyboard and assigns the
value to the variable char. The input action waits until a value is received.

Syntax of input action with ‘alue passing:
input = channel ? variable
Syntax of input action without value passing:

input = channel ? ANY

7.4.2. Output action
An output action transmits the value of a variable (o a channel. In the occam subset
only a variable can be used in the output process. Consider the following example:
screen ! char
“this process transmits the value of the variable char to the channel named screen.
The output action waits unti} the value has been received by a corresponding input.

Syntax of an output with value passing is:
output = channel ! variable
Syntax of an output without value passing is:

¢ 1tput = channel ! ANY

7.5. SKIP
The primitive process SKIP starts, performs no action and terminates.

Syntax of skip process is:
skip = SKIP

7.6. Control Constructs

Processes are composed from the primitive processes or some composed processes

73

using the following constructs.

7.6.1. sequence

A sequence construct serializes the exccution of the composing processes in the
order in which they are specified. Consider the following example:
SEQ
keyboard ? char
screen | char
This process combines two actions which are performed sequentially. The input
keyboard ? char receives a value which is assigned to the variable char, then the following
.. screen ! char is performed.
Syntax of sequence construct:
Sequence = SEQ
process;

process,

process,

The keyword SEQ is followed by zero or more processes at an indentation of two

spaces.

7.6.2. Conditional

A conditional combines two processes. One of which is guarded by a boolean vari-
able and another guarded by TRUE boolean constant. When the boolean variable holds a
value TRUE the process guarded by it is performed. Otherwise the process guarded by
TRUE is performed.

Syntax of conditional process:
IF
boolean variable
process
TRUE

process

74

using the following constructs.
7.6.1. Sequence
A scquence construct serializes the execution of the composing processes in the
order in which they are specified. Consider the following example:
SEQ
keyboard ? char

screen | char
This process combines two actions which are performed sequentially. The input

keyboard 7 char receives a value which is assigned to the variable char, then the following
. screen ! char is performed.
Syntax of sequence construct:
Sequence = SEQ
process;

process,
process,

The keyword SEQ is followed by zero or more processes at an indentation of two

spaces.

7.6.2. Conditional
A conditional combines two processes. One of which is guarded by a boolean vari-
able and another guarded by TRUE boolean constant. When the boceican variable holds a
value TRUE the process guarded by it is performed. Otherwise the process guarded by
TRUE is performed.
Syntax of conditional process:
IF
boolean variable
process
TRUE

process

74

Processes are indented by two spaces.
7.6.3. Loop

A loop repeats a process while an associated boolean variable is true. Consider the
following example:
WHILE not_eof
SEQ
in ? buffer
out ! buffer
This loop repeatedly copies a value from the channel in to the channel out. The
copying continues while the boolean not_geof is true. The sequence is not performed if the
boolcan is initially false. Since the process behavior will be implemented by circuit, the
1 program will be expectea to contain at least one WHILE construct with boolean
constant TRUE. For the purpose of performance estimation, no nested WHILE loops are
allowed in the occam subset and Lue boolean variable has to be the boolean constant
TRUE.
Syntax
loop = WHILE boolean

process

7.6.4. Parallel
The parallel combines a number of processes which are performed concurrently.
Consider the following example:
WHILE TRUE
SEQ
X := next
PAR
in ? next
SEQ
Xi=x"*x
out! x

The parallel inputs the next value to be processed from one channel while the last

75

value is being processed and output on another.

Syntax

parallel = PAR
process;
process,

The keyword PAR is followed by one or more processes at an indentation of two

spaces.

7.6.5. Alternation
An allernation combines two processes. One process is guarded by a boolean and
an input. Another process is guarded by the SKIP primitive. The alternation performs the
process associated with the guard which is ready (SKIP is always ready) and the boolean
which is true. If both guard input is ready and boolean is true, then only the input/SKIP (if
that is the guard) and the associated process is performed. Consider the following exam-
ple:
ALT
bool & in ? data
out ! data
SKIP

out | no_data
SKIP is treated as though it where a ready input, and may be selected immediately.
If the input in ? data is also ready, only one of the processes is performed, which process
will be performed is undefined.
Syntax of alternation construct:
ALT
boolean & input
process
SKIP

process

76

7.7. Program

An occam subset program is given a name using the keyword PROGRAM. After
the program name declaration, the VAR and CHAN declarations are specified one after the
other without any indentations. After the declarations the occam process is specified.

Syntax of an occam program:

program = PROGRAM program_name

variable declaration
channel declaration

process

Example Occam program:

PROC ELLIPTICFILTER(in, out)
VAR x1,x2,x3,x4,x5,x6,x7,x8,x9
CHAN in,out, a, b, ¢
PAR
WHILE TRUE
SEQ
in? x1
x2:=x1*xl
out ! x2
WHILE TRUE
ALT
out 7 x3
IFx3>0
alx3
TRUE
al'l
b ? x4
in!x4

11

Appendix B

Basic circuit elements

A.l. Fork
A forked wire performs corresponding to the fork F transition. The graphical rep-

resentation of forked wire is:

Fig. B.1. Fork

A.2. C-element

The C-element (also called as Muller C-element) performs like an AND element
tor transition signaling. When both inputs of a C-element are in the same logical state, the
C-clement’s state and its output are copies of that state. When the two inputs differ, the C-
element uses internal storage to retain its previous state and holds its output unchanged.
Thus only after an event takes place on both of its inputs will a C-element produce an
event at its output. The C-clement generalizes easily to three or more inputs, requiring that
all of them reach a new logical state before copying that state as output. The graphical rep-

resentation of a C-element is:

Fig. B.2. C-element

78

A.3. Exclusive or (XOR)

The exclusive or (XOR) circuit acts as the OR element for events. When either
input of an XOR circuit changes state, its output also changes state. Thus an cvent
received on either the first OR the second input of the XOR will produce an output event.

The graphical representation of an XOR is:

=) >—

Fig. B.3. XOR

A.4. Toggle
The toggle circuit produces events alternately on its two outputs, starting with the

dot, in response to events at its input. The graphical representation of a toggle element is:

« >
T
>

Fig. B.4. Toggle

A.5. Select

The select element steers an incoming event to one output or the other depending
on the value of a data input. The boolecan value must be available before the incoming

event that it steers. The graphical representation of a select element is:

|

2]
—> SELECT
true false

Voo

Fig. B.5. Select

79

A.6. Register

A register is used in the translation of data input process. It is also used while time-
sharing data manipulating operators. A signal transition at its input latches the data value
bundled with that wire and initiates a transition at its output. The graphical representation

of a register is:

Fig. B.6. Register

A.7. CALL

The call element remembers which of its inputs most recently received an event,
...d returns an event to the matching output terminal after a called procedure has finished.
The call element operates properly only if each call completes before a subsequent call

oecurs. The graphical representation of a call module is:

__SJTi
<— D1
Rl >
<—{D2
Fig. B.7. Call

A.8. BCALL

BCALL is a variant of the call module. It provides the called procedure with the

opportunity to return a boolean value with its acknowledgment by choosing among two

80

acknowledgment signals. The graphical representation of a BCALL module is:

— i Areq
< Aackl

——>» B.req
<——{ B.ack0

<—{B.ack1 BCALL

Creq pt—>
C.ack(j=——o
C.ackl fe—

Fig. B

A.9. Arbiter

.8. Beall

The arbiter decides between two events whose arrival sequence is unknown, pro-

ng a grant event for only one of them even if they arrive at very nearly the same time.

Like a semaphore in programming, it delays subsequent grants until after receiving an

event on the done wire (D) corresponding to an ¢

arlier grant so that only one grant at a

time is ever outstanding. The graphical representation of an Arbiter module is:

—>iR1 Gl
< Rl.a D1
ARBITER

—>1 R2 G2
<———R2.a D2|

___.9

le———

-

e

Fig. B

A.10. Arbitrating Test and Set (ATS)

.9. Arbiter

The state of an Arbitrating test and set (ATS) module is initially 1 and is resct to 0

81

by a transition on its R input. The current state is tested and set to 1 by a transition on its T
input. An ATS can be constructed using arbiters and de-multiplexers. The graphical repre-

sentation and finite state machine specification of an ATS module is:

r

Finite state machine specification

Fig. B.10. ATS

A.11, De-multiplexer

A de-multiplexer is used as a storage unit for events. The graphical representation

and finite state machine specification of a de-multiplexer module is:

A de-multiplexer and its finite state machine specification

Fig. B.11. De-multiplexer

82

Appendix C

Basic DI Cell Library

The basic DI cells were designed by the VLSI research group in the computer sci-
ence department of Concordia University. The cells were designed under CADENCE
CAD system environment using NT's CMOS4S 1.2 micron technology. In building the
layout for elliptic filter, apart from the DI cells, basic cells from CMC have also been used.

The circuit layouts for the DI cells are given in pages 76-77

83

ZJox

S NI A NN NN
= & o a4 M

et Bl
WA AT H

paw. vy

t
§™
]

indiasi el |
R

T
NN P S NN N

2
7,
$
/1
/A
7
7
1S

<
,.{
gl
[t

1)
W
\
2
A
14
y

!

M|

)
1]
A
v
R
A
'l
a
A
A
e
A
/)

>
le>
’ s

'

.
o) N
3

Rl AT
f!
\:{L
§
N
\
W
N
N
!
"
N i
N
i
N
N
AN
N
=

TRiE Wy
i‘s..f
A

x
AN
\ -

—a 11}
@:ﬁ%
fnk
J;Eil
Ny,
A
]
t{

i
e T\
0

N
=

o
]
\f'

[3

i

1d
ol
()

R
s

-
==

iﬂ”@ﬂ\
N
N
3
1
J\
NN
M
B
M N
N
N
NN
h
o
\
o

1
NN

&=

/.
7z
/
7
2
b
M
M1
£
;’l
‘s
7
M
1Y
N
[
l‘
":b:i
W
=
"
14
V\
g
U
gt
k/
4
g
)
&
N
Ko
>
/.
v,
4
A
/
V4

84

3192901 JUBWBI3D

TR S PARAY I S—
L a e 4 \N.nx.\q = NN N RTINS N ey MR
/] e PR :
3. 3 * affe} TN X N 1
- < V. - & E - v {1
e b nr\..; s NN = 3
g Ertig | BT I N LG
% ‘.77, o —m + 3 v/ / SIS u\: ¢
i
|, i : M |
1 HY T H 7
r @ = Ay N = R\j 1]
) g 4 KF ! ~
3 2 1. e R \ L
! w wJ (S _ 1 1.
' : \ A4 ' 4 !
1 e =K A } [
' t b ' ; _
i b :f/ S5 1N) 4
\ s 4 =7 N of ¥ \ ! "
1 | M \./\ N ' NN
! S C Y AENMENES (i 1
i L e e S e S A AN B] |
L e e e e e e m e . - — . — - J £lad 1
XNW3Q
7z \)1\1& S I S S S L S B S LT S G S > ok e I ST T ST LT I i A A S merey e I PR PATAD Selr dries P ~— . ﬂkﬂxlr41\1\1/\ -
b o g e DA RSP T LR GRS E Gl & NGl N ,{J(v\/.qi, /\l\/ N i > ERANANG ¥ MAr % < ..nWN\) = NS A il Py > N AN
> N 1 _ N N Lﬂlﬂ[w bt SN ~4 \ N
j.\/ R R el 7 . 17 4 = 7 | AP e N l <In 137 LA o 7/ 7
b » 1) — 7 /. 2l —H S lilim} 4 4 -
i 1 PHE || g IeT) e w1 b b JIEETIHTY 1%
5 Fhu < b w] s gL G T KM : 1 Va3 At
N “; ._) <2 3 L A T 2w / 7 N Nroamad A7 7 ‘ﬂ § Knlu.,m_nu v.\, \1 R
4 U -4 y h . . |
= o £ | g i LIy & Je W rt i I
N . 4 Th 4 WMw NG {m] | _ Ly Y § N Nl
m AT 1L A wn.ymwi e il o e e
B R ZEEA =1 = e S Te -
S i e e 2 S T i el e e e
) m f % J‘\l d ‘/. .\W,.. {0 MP\&. .N\ ol 18 i.. Uw.u‘..u V L)
N ﬁﬂ q\\ HNH w et /ﬁux a N IR uﬁl/ WG e \4 1]
N g L A b A N, a N 3 AR 8 S
/ w&] mvn “ ‘/l . ‘./‘. 4 % - »’ ‘/“ m y‘/ - 4 |#] - 1
z i Gam At SOEA N ik YA NG NI Y-) R
AR : T ; ¢l
Q| AR 2 Vg 0 4z] < Heli (g1 1 £/ § Pl A AP
% JARE! : 3 < 4 = 4 L& = 7 " 4 /.
T] e e e e e B s A AL L S P PP AP PP P AR LSS

TTTTETSs T s T

85

