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, .t ABSTRACT.

This thesis -is conce;nEd with Sensitivity Anmlysis
'es applied to Optimal Control Systems. ' Sensitivity tech- Lo
_.niques are_presented as important design tools to‘ensnre . :
good system performance. It is conc1udedvthat by‘applying’

these techniques to analysis and des?gn prob]em, valuable

information about system behaviour can be obtained., These ,.
) techniques are readily applicable to'computer—aided system
desjgn.‘ They can- be used to find the optimal system con-~

figuration, subject to variations in system parameters such%\\\\&~‘_

as system order or the values of some system component o

The optimal control prob]em is defined for deter-

-

m1nistic systéms. The different teohniques for finding
the control law that optimjzes a given system performance
index are oescribed. The case of 1inear models is stressed

because many practié&i”systems behave 1inearly within the

range of interest or can be clbsé]y approximateﬁ by a linear
model. The imp]ementat1on of the control law can be .

either open- loop ‘or closed- loop using a contro]ler.

o . In the design of optimal control systems, noninal

!

. \_ .
.values are usua!ly assfgned to ‘the different “zraaeters SR

e

“-*-s_...

_such as_ system components, initial states«mnd systen“order.
Due,to physica] factors sUch as aging or envihonmenta)
,conditions, many parameters tend to deviate from their

P .

Erners 1nduced due to these deviltions

aﬂ.a -y

;r.

’xanominaT values._




- wdee S I

. different system configurat1ons. If a system_ is suscept1ble
to variat1ons “in parameters, a’ conflguration which is 1ess‘
& . sensitive to these variations is cohs;dered.sup,rior. In

.. particular, it is shown that open-loop and closedxloop

1mplementat1ons have equivalent perﬁormance indeXNsensi- . N

Q N
tivities. However, éxamples.show the superIOrity of

v

qust-loop cdnfiguratﬁbh from a practica] poﬁnt of view.

. -~

Design techniques . used to reduce system sensi-
tivity are presented. jThey are‘classified;into three main;: :
- categories, namely: adaptive, choice of'performance'index'.
and use of dynam1c compensators. In the adaptive EEChnique,_
. the contro] system 1S modified through the incliusion of a
correttive term to compensate for the output (State) error

o

due to parameter variations. One form of the second tech-

nique is to augment the performance index by adding‘terms . T
‘weighing the sensititity coefficients to variat;ons in-so-e '
parameter. Alternat%ve]y. mu]tiplying the 1ntegrand. in.a -
quadratic .cost functional by an. exponential term Ieads to -
a less sensitive’ closed-loop systenm. "Dynamical compensa-'
tors are being used 1ncreasing]ﬁ\dn control systems to_
serve different purposes such as system stabt]izatton or S

decoupltng.- Their use in sensitivity reduction seems aéﬁu;.;f;

¢
B et ’

natura] and it forms the third category. ;.
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© 'CHAPTER 1 - - o
. INTRODUCTION: L

<~ . YW,

¢ 1.1 Géneral ' | AR

v . : .- , ,

{ - o _ In engineering, we are,usually faced with two
o ) main types -of problems.. The first is to anal{ee a given» LT .
system in order to improve some of its desired ch&recter—
istics, suppress others which are undesirable, or have this .
; | ‘ system execute A given task. The second is'to;design and
_— build a system~to'do a specific function. 1In both ‘cases, we
| try to find a suitable mathematical modei(]) ‘that represents -t
the system as c]osely as possible or as needed for our intended

. use. No matter how compltcated this ‘mathematical’ mode] is, i

. there exist discrepancies between its response and that o? the .

s

physica1 system to a given input. ‘ ) ~

. o "~ In engineering anaiysis and design, it f; a common - - .
‘ _practice to look for the simpleet model that represents ade-
? - . e 'quately the system for a particular’ purpnse.(2 3) A simple “,

: : . ' model results in a simplewmathematical problem-that-nfces-
itsitates use'pftuncomggicated mathematical toels. In practice, L:t:
~'a more aceurate modei leads. to mathemat;cal problens,that ‘
e : E 'mtght'be more complex; e;g. higner‘order-systems, or nonlinear
e . eystems; However one usua]ly finds out that this extra _com~

plication is not: justifiable, because the results obtained fron

. the latter model could be within permissib1e lfmtts of to]er- ,

ances. On ‘the otber hand. any physical phenomena ca ,'rarelrf




Normally systems are de51gned to serve a Specific

i8]

.function and consequent]y many parameters are known to- vary
i

e within a priori known nges, e.g. a motor for a. home appli-
ance will operate at an input of 110V # 10 Volts. o

In many cases) the nature 6f the expected input to )

!

2 the system is known. Typical types of inputs are impu]se,

©

step, ramp and sinusoidal. A model that represents the

system "closely"” under normal operating conditions can be

. f v

considered adequate for design as well as for analysis.

3

However a system may be described by more than one
mathematical model. To select the best modei a measure .
should be available t judge the quality of the possible
modeis under operative conditions. One p0551bie measure is _ R
“Sensitivity". (4) Sensitivity could be simply defined as

the rate of change of response with respect to change in- sone

a

parameter, Inputs as well as initial conditions could ben

dealt with as parameters. ; o

Sensitivity anaiysiS'deals ith the calculation of -

.-

the expefted differences bepween ‘the physica] system and its

—

mathematical model; when operating cOnditions are slightiy : 1

altered from the?r nominal values. By defining a cost func-~

tiona]. one can measure how-accurate the mode1 represents the .

'

system. The dhoice of a particular cost functional depends

upon the particu]ar applioation,for which the system is. used,'i3-
and our understanding of the process. It is nevertheless an :
arbitrery chz;?e, and this point should be kept in ntnd vhen

Levaiuating the system. Using sensitivity anaiysis. the engineer



Ecan interpret, with pﬁ{i:t, the results obtained using an

approximate'ﬁode1. He n predict the extent'of the differ- ~

ences that might exist between the respdnserf the model and'
that of the system. If these differences are within'the;limif
of tolerance; the model cat/pé/considered adequate, otherwise /-

a different model or a different cost functional should bé.con-

sideéedL. Thus,'sensitivity analysis enaﬁ]és the engineer f
assess the Valid%ty of a model and to apply-the results ob
tained from @odel analysis to the physical system with fa
greater confidence. In this report, sen;itivity aﬁalysﬁ as

applied to control systems is discussed.

1.2 Control Systems N

A control system EonsiSts‘of“two major parts,-a
p]ant and a controller. A plant “is an object assembled to
perform a given task, while operating within limitations, ‘
usually 1mpqsed by physkcal cbnstraiqtg. such as accelera-"
'tion,:vﬁltage. etc.(s) 1@ many instanges the perforﬁance of -
the plant could be impro#%dlby the employment of another sys-

teﬁ connected to it in a particular fashfon. This system is
) L ’

called.the "Controller". - -
The specific choice of';he’contrbl]er for a gﬂveﬁ
- plant dehends,uponxthe desired objeciiVéé'fq be achieved, '({,»

such-as:™ -

. (5) Optimization with reSpect to some “Perfor-ance

Index' &) ,‘ LT . ;f{ {1
(b)) Mtpimization of the’ effect of undesirnble

Yf;'-'disturbances.(7’8) L ;sg.ff?}ﬁ{
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< {¢) Reduction of the sensitivity of the system

_to parameter variations.-

o 3 [

"’ . _ (d) To meet ydesign specifications.

¢’

A controller can be roughly classified as being either open-
loop or{closed-loop. Open-loop control]ers are feeding the

plant mainly with a priori determined 1hforma;ion. They are .

- in general simple and cheap from the practical point of view.-

" In the abserce of appreciable disturbances and errors or nﬂgn
~

the natural stable operational ‘mode of the”sysiem coincides

»

_with the desired operating mode, open-lqop con%rol caq.be ~
applied successfully. A closed loop ‘controller is processing
measured informatiéﬁ from the plant to modffy; ts action upon
the plant. This could be easily achieved bywc mparjﬁg the
desired operating point (input) of the system to the actual g

'“operating point (oufput) and feeding back‘the.difference (érror)

[} . . . . o

.. . to the input to drive the actual operating.-point tqwaras the
'égsired one. aﬂﬂﬂﬂfyzz,,,;f’ , n IR
) 1.2.1 Mathematha%”Fbrmulation of the Control Problem -
) /.—/J - .
- Y In control pr&B]ems. usually we are given the’ plaht -

whose characteristics are fixed. For the moment we will

‘assume that the plant can be representéﬂ by a continuous model

. . ad

., . of the form(g) o ' NN - ° .

.t ' Tk = ¢ (x, u, t), x{te) = %0 -

= ';' - where © X i state vector of dimension n':

: input vector of dimension.m

o

'E,time;



¢ : an mw vector function of its arguments

. . L N
_In 1.2 some functions of the contraller were stated. The'
. , :

determination of the function of the controller i§_eqq1valent .

to finding the control u (t) over a given peyQOd of time T

0N

(to,tf).(ﬁ) If u is' generated as a function'ofMtimET—the‘con-

troller is.-of the open-loop type. . This obviously does not. ... .
necessitate the knowledge of the state vector x(t). ~ On the

other hand, u might be expressed as a function of the state

vector x(t}), i.e.

u=u (x,t) T TR A I
In this case the controller is of the feed back type. A con-
tinuous estimate of x- (t) is necesgéry to generate u. If some
of the cBmponents,of the state vector x are not directly
accessible (measqreable), an observer m%; be upeful if éhe
’system is observab]e.(]q'lz)

1.2.2 Plant Identificationt!3)

A
of
4

o

. 'In case the model of the plant is not supplied by its
manufacturer or if some modi fications were iﬁtrddqﬁéd"ﬁo the. |
original plant, a mathematical model will be s&ught. ”The pro-
cess of deriving a model iS'calle& “plant identification®.

Jhe basic form of the model is first assumed,‘bégéd on previous
?experience with similar plants. .The nature of the:ﬁodel is a
function of the way the plant operates and the typé.of controller
to be used.. The blant‘matheméticalhmodel car be of the form

of eithér:

c . "

- ’ ot

' ~(a). An ordinary differential equation (0.D.E.) - -
- . (b) A difference equation (D.E.) B

[



ﬁ\ 7 . . o ,‘. . .’ _“ - ) -' "
- T (c) "A partial differential equation (P.D.E.) or - *’

(d) A cohbination of some of the above types;‘with;

- « v

*

; . _ possib]e time delays. ' . ‘

v K

[ ‘a !

1f-a digital computer is used as a contro]]er or 1f

the plant is 1ntrins1ca11y of discrete nature, a difference

f equat1on representation is mos t suitable, and" 1s derived either

, directly, or by dlscret1z1ng a continuous model.

“Lhnear mode]s form an impartant class of plant repreh

P 4 . i

sentation. They are ﬁhe most extensively used‘form of model.

This is due to the fact that. many systems can be adequately

13

represented by such models and many of the non-linear systems‘
g can be approxlmated by 11near onesfwithin a g1ven range oﬁ
input var1at1ons. This type of model is s1mp1er to work with

o '

for ana]ysis or synthesis purposes.

) 1.2.3 Linear Models - _ , _h\\" ‘
. CL A continuous inear model is usually represented hy
- &(t) = A(t)x(t) + B{t)u(t), x(ts) = xo A
: y(t) = c(t)xf) + D(t)u(t) N (].(L/' o
where X Lo '
.
. u
XL.

— t

D




L4

. -.,\ . . ) 4 N . . '
\ ' I’?disc_rete linear time-invariant model has the &l

L2

| | ; x (k+1) = Ax(k) + Bu(k) . .. (1.5)

r . 7 , .
‘ -y (k) Cx(k)/+ bu(k) .. (1.6)
Lfyfl' , where k is the samp]ing 1nstant and all other Var1ab1es have

» .« -~

similar definitions as above.

B

i

Two important properties of linear systems are
"controllability" and "observability". They, play a major -

r6le in establishing the existence and uniqueness of the op-

timal control. They may be defined as follows. : = -
. 1.2.4 Contro]]ab?lity(g’]a) ‘ ‘ -

| : .
| < _ " ) f

+ A system is said to be controllable if for each

Yewr

i ’ L
i . : initial state Xo and a final state X; there exists a®piecewise

E " continuous control uft)-oh [t ,T] such that the application of

.this eontrol to the system will drive it fromlo at 30 to 5]”

: at To ' - \:7' . ) ) ’ R A
f . ' 4 . *

°

)
Y P

. | It has been shown that(]3), for ‘1inear time-invariant '
- continuous systems, the fo]lowing condition is necessary and .

'sufficient for a system to be controllab]e

¥
™~

| Ramk [B } AB 3 . ....... ATl glan ... (1.7)

.

1.2.5 Observability’ ~ : Y

A system is said to be observable if for any ini {al -

}7 . : jstate Xo"at to there exists a time t12to such that a knpwledge

§11near time- 1nvariant continousxsystems. this is equiva!
ﬁ Rank [C* 3 U USRI A'““ CJJ =




‘1.2.6 The State Tramsition Matrix(1#) = = -~ 7
A contjnnous linear system 1s'representeo!by the

1 . v
| " . L4
- . ;

equations: ‘ ' : o d
- T R(E) = ACE) X(£) '+ B(£) u(t), x(to) = x
Y(t) = C(t) X(t) -+ D(t} u(t) N e - (19) "
To determine the output (or the state) at any time t > t,, it

is sufficient to know the cont&ol gii) over the interval [to,t].

| The autonomous system corresponding,to (1.9) is obtained by

putting u=0 to get: v
X(t) = A(t) X(t), X(to) = xo ... (170)
The solution of (1.10) is of the form :
X(t) =¢(t, to) x (to) , , . {1

The matrix ¢(t, to) satisfigs the following conditions 4

%? o(t, to)~=‘A(t)¢Qt,toi : -
(to:tO) = I !ﬁ '

r;-usizxﬁ_wfﬂ
. L.e (18 E

. ¢(t,to) is known as the state transition matrix. .
The complete solution of (1.9) is now given by

X(t) d(t, to)x(to) + jt ¢(t 2) B(<) u(t) dt . (1.14)

~

\In case of time-invariant systems
o(t, tg) = ehlt-ted o o .'(1.15)
and the system transfer matrix G(S) can. be obtained from (1.9)

"and (1.10) by taking the Laplace transform of both sides of

each equation, assuming zero 1n1t1a1 conditions ‘ : o {f
a(s) = [c(s1-A)T 8 + o Lo 18y T

and ¥(s) = () u(s)



; . ' % ]
1.3 Optimal Control Systems (6) ¢

‘_4_....._.'._.—w.,w.,._,.
e,

A control system is called "optimal" if it- optimfzes
'(maxim1zes or minImizes) a prespecif1ed "index of perfbrmance”
This index of performance cou]d be a funct1on of the contro]ler,
system parameters. and.time, and its choice is arbitrary and .

LA

based ypon the nature of the purpose that the system serves.

Therefoxe the word "optimal” has to be interpreted as. being‘

a "relative optimal",-since it is optimal for a.specific index
. ' R L}
of perfokmﬁn&e. In practice. the model of the system is used
a

to arrive the coqtro] that optimizes. the "index of per- .

—_the model, the control obtained using the hodel might not be N

| X

’ ’ . fernance“. However, due to differences between the@system and
| ) / A k

! the optimal one for the sxstem. These differences are due to.

parameter variations, intial condition variations and control

I - I R

rifn variations from. the nominal values—used while finding the

«

response of the modeﬂ

E ) a 1:3.1 'Ma&hematical Formu]ation'of the Opt} e]écéntrol Problem

i . : MathematicalI}. the&eﬁtimal cont, i‘prob}em can be -
! stated as follows: : f?n%\%m |

? ' “given a continuous plant rgpresented by

- ‘ X = olx.ust), x(to) = xe . (1. 18)

Find the piecewise continuous control u(t) over the

. " interval [to,T] which minimizes the scalar cost funptional

-

given by o | ..

) . . T , N L
3= FIxft), 11 #fp Naau,t) et o La L (119)

v
."

é: i

T

F.*. i N
.

3




Under special conditions on ¢,N.and F, a unique optimal con-
trol u*(¥) that minimizes J, exists. It is very difficult to
show that a unique solution exists. quther: finding a closed

form expression for the_solutioﬁ is 5 very large problem.

"Gften it is necessary to search for an acceptable suboptimal

~

\
A

\
\\,,;

‘This giveS‘ihe.system dynamics (1.18). ‘

This gives a differential equa

solution. Numerical techniques are then used to find u*(t) or

its sub&ptimum. Gradient techniques, dynamic programming and

techniques based on necessary conditions of optimality are

commonly used to find u*(t).

i

1.3.2 The Maximum Principle

The control problem as defined above has some simi-

D

15;5tiestwith the calculus of variations, which has beéniextended

by Pontryagin(16) in his well known "Maximﬂm’Principle'.{ By

defining a Hamiltonian H as: )
\ Ho= N(x,u,t) + ATo(x,u,t) : . . (1.20)

ere A is a time varying vector called the costate, Pontryagin

LY

showed that the optimum u*(t) would satisfy the following set

of necessary conditions:

(2) -‘g—ﬂ-*=° , . L {1.21)

Tﬁis’js the ' case only 1?_9 is unconstrained. This normally

gives an'expressionnfor“gf(t) fn terms of the other yariables. .

(b) Mo g e =mxe . .‘,(1?22-)‘.‘;

o

(c) 94 . _ = FIx(T),T
R TR A %{tf) axETS =

tion for A(t) with:'

..




(Transyersality) cdndition at tf.~

) * The so1ution of (¥.22) and (1 23) constltutes a two ’
,pownt boundary value problem (TPBVP) since ha]f the boundary

' - onditions are given at t to and the other half is. given at
t = tf This prob]em is normally solved by assum1ng an 1nitia1
control uy (t) over [to,T]. X(t) is integhateg over_[to,T]
using u](t) The value of xl(t/)‘correéponﬁing-fh u1(t) is -

- | compared to A(tf) glven by (1.23).  If A](tf) # Ait), u](t)‘is

mod1f1ed to get uz(t). This process is repeéted iteratively. ’

|
{ -ti11 satisfactory results are obtained. o . .
? 1.3.3 Linear Systems with Quadratic Cost Functionals(s) : ¥'
E ‘ It has been shown that finding the opt1ma] control
E' ’ u*(t) might be~%edigg§_g£ggg§§.” One special case 1n‘yh1ch.a
simple expression for gf(t) is guaranteed, is that of a _
lfnear system with quadratic cost functiona].:<1n thi§ case;_'
one -can prové that the optimum control gf(i{ is uhiqhe and can
. ) ‘be obtained by direcf{féédback from the state _vector x (t) to
h u the input, with an appropriate t1me~varying transformation.
Since this closed-loop control does not depend upon the initial
conditions, this Teads to substantial simpiification ihQimplee
menting thefcdntrol.law. Simplicity is even g;ehter in _the
case hhen.all states are'accegsihre;

- ﬁ The particular choice of the cost functional deffnés

the nature of the desired control system response.' ln the case

- of a terminal controJTer, we: choose ‘our functiona] as ‘a sunma~,

tion of a term.measuring the state/deviatidn from it; desirad

'va]ue and’an 1ntegral wefghing the stahe deviation and control
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! . :

energy eXpehditure'over the control interval. The particular -

choice of the weighting matrices S R and Q 1s~reached as a

?

'compromise between costaof control energy and the stafe devia-

.

tion f%om zero. A largewR 1ndicates that energy is expens1ve
99
and results 1n Tow energy expendi ture. - However, the corres-

pondlng deviations will be. relatively large.
4
- An important special case of the terminal controllers

v

is that of a regulator. In this case the final time is large
and there is no clear mot1vat1€w for choosing a part1cu1ar
value of T, consequently, T 1s chosen as o.

An 1mportant advantage of 11near regu]ators is that

the resulting feedback gain is time invariant. In this case,

—the_plant is represented oy: _ .
X = Ax + Bu ‘ .. (1.28)

and the cost functional J is

"3 = 1/2 g(_T.(T) S(T) X(T) © ~ = - ... (1.25)

»

LIS S T S
w172 o 1aT(e) are) () + uT(t) R(E) w(t)] at

“ ©

where S(T) and Q(t) are positivo'semidefinite symmetric real '

3

matrices. | ' : ,
R(t) positive definite symmetric matrix. .

CKa man(]4) showed that a unique control u(t) exists which
Limizes the cost (1.25) if: ,,ﬁ g . YRR

}i (a) The pair (A B) s controllable. T :‘:L“Z‘LAJf“’
“:fﬂ” Vo (b) Nriting Q = Y, the pair (A,0) As observabie.ﬁ-\‘
”f‘ﬁuonham (17) showed that a. control/Q*(t) mightaexist 1f 1&

=~
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. J— ’ ' l ' i ,]3 \ )
N - X . I I - ’ \ - . ’ o
v . 'To use the maximum principle, we define the Hamil-
e tonian H as: | ; ' ' T R '
] H = 1/2 (xTQx'-i- ‘uT’Ru) * )\T (Ax + Bg_)_\. e (1.26)
! - The necessary cond1tions for ‘a mauimum are ' . n
: (a) 'o=-g—’i=Ru+BTA _— Cee (12 L
. This gives ,, L
ut = R BT ) L. (1.28)
R™! exists since R is positive definite. -. L o
- (b) —g—g—=_)'_<_"= Ax + Bu S . (1.29)
fe) M 5= qn+ AT J (1.30) - )
Putting A = Px, (1.28), (1.30) and (1:.24) become ]
x . ocwr= kT 8Tex L. L (3
. T px-p xe=Qx :'AT p X L . (1.32) o
N ., . ) N s ’ N
(n - B RV BT P) X R ¢ I ) 3 ‘
Consequently ghe diffe?eﬁtial equation for the matrix :!
P (t) becomes : " ) . - _ ]
P(t)=-aTp - Pa+pBRTBTP -0 . ... (1.38), |
This is the well known matrix Riccati equation. The trans- .
versality condition gives L 13 ". - ;
_ P(T) ='S ' . . (1.35)
so equation (1.34) can be integrated subject to thé\boundaty ‘~?l_;;
, : k" L f N X :“ S E;,
conditions. ' ; ‘

An 1mportant case. 1s _that of infinite final time.i‘f;
In this case equatiOn (I 34):“-

This is called Regulator problem‘



‘.

' reduces ‘to the following algebraic matrlx equation..

-constant feedback from the state x&t).

_control. In bang- bang control of type (1. 39). control- co-po- G,

(SRR L ¥ t * L. .
’
\"

0= ATF+ pa-pBR YT P S .. (1.36)

In'general,this equation nas more than one solutiqn.~

The solution we are interested in is the one'that‘stabdii;es .
the closed 1d/p/system given by (1.33). This is the uniquef .

positive def1n1te solution of (7. 36). In this case P is a

constant and the controlqu given by Ql,éf) is obtained by

](6:]5.)' ‘

1.§.4 Ineqya]1ty Constraints on the Contro

-5

For many systems the control vector u is bounded., ' .

- v . N

Physica] limitations normally impose constraints of the form:
) [Jull T E v . (1. 37)

s ,
~I ui I iyit i =':‘J? 29 *; v a. ¥ ) . s . (].38)

Constraints of the_form;(fm38) are frequently encounteréd‘in . .'5":

practice: The sqlution of the optimal control problem subject .

R
)

<

to such constrai&ﬁs can be obtained using the maximum princigléu
Equation (1. 21),(rowever, is not app11 able since u is con- :j

strained . In this case, it can be shown that for nonsingular

)
~
. T - &

prob]ems, the control u(t) will be such that : o S

1. |u,(t)| =ypi=1,2, 0w (1.39)

ER) ' b

A control _of the form (1. 39) is called 'bang-bang ST

nerits ui(t) change from +y; 'to -71 (or vice versa) at ti-es ﬁ' S

tij ca]led the switching times.n The number of switching

times depend upon the order nf the system and-the 1n1t1a1



i . a-
ey .
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. -~ ’ * In bang Fang contro] systems the state space is

divided by sd?tchihg curves, switching surfaces or hyper-

.

) §urfaces.. If the initial state x, does not lie on the- S

nx)

sw1tchigg surface, the initial contro] u(to) must be chosen
to move the system toward the sw1tchihg curve. Hhen the.'state
x(t)lhits the switching curve at_time t some contfoi com-
ponents switch signs. The state space traaectory fhen iies-
in the sw1tch1ng surface till another switching surface is -
met, where some controls switch sign‘ng the trajectory
“follows the new switching surface.. The process contipues ) .
tit1 the final state is “reached. I BT g
1.3.5 Suboptimal Controi”a -21) ' ‘ s ;

- ! N .

o If the form of the optimal control u*(t) is diffi- o

cu]t to implement or generateJ gpﬁoptimai control might be . .

RN

sought. The form of the suboptimal controi should be chosen o

‘so: as to simplify the synthesis of the controller. For - ,'"
. instance, if the control‘u*(t) is obtaineduin the form ‘of a , .

f~time varying feedback u*fx,t), a time invariant feedback,

L

!

f

ER - us(x) can be considered .
| .

-

N - : It is obvious that the suboptima] control 1s not . 3
A . unique. - However, one may limit the choice of u, to 'u s€Us | ~ 5

LA o where U is the class of all admissible controls that satisfy .

some additional conditfons. For example, U may be the class E f

L)

of al¥ controis of the form . S .
) = k() k(e um

. ) where K(t) is const:::n;d/to the set of afi\matgiges uhose - J;

Kij elements are pi ewise conStant.ﬂi'“l,




Subpp imal - -control might be conSidered in case of

c

[

t .~ 1inaccéssible states. One wouid like to generate the control .
E as a function the available output only.. In prattice, high
i

order é?%%ems re often approximated by iower order mode]s.
S - -The optimal control is obtained using the modei This contro] o
however, cannot 6& considered opt1ma1 for the original systel. :

L
Y

This is definiteiy a suboptimal controi Inaccurac1es in the

,
N S

respect to the ectua}~system.

}e] parameters lead to a controi which is suboptimal.with -

The quality of. suboptimal contr01 resuiting from

system or controllerﬂsimpi1fications shou]d be assessed. It -

[N

can be considered satisfactory if the heterioration in system -

performance due to departing from the optimal control lies ..
. J ; :

within permissibie'iimits of tolerance for the particular

application. - . . | ' .

[+

“1.4 Scope o “.- , .‘ o n
| . The term sensitivity arises in many mathematica]

and engineering applications. In numericai anaiysis. for , P ‘
exampie, one studies the sensitivity of the roots of a ‘poly- , ' .
nomial to changes in its coefficients or sensitivity of : v
eigenva]ues of a matrix when its eiements are perturbed. ln‘“  .. }
circuit theory, sensitivity of circuit reponse to variations‘
in the circuit components ig studied extensiveiy. In fact
some: mathematical representations are preferred to others
because they lead to: louer sensitivity coefficients.

R . .
3 R

In industrial applications. system parameters chenge ;



-]

‘countered due toAthe bove mentioned variations. Methods and

to contro] errors 1is assessed.

- “ ! | N ]7

of tne raw material used. \fhis applies almost to‘any indnstry
but it is particuiariy obrions in the petrochemical ibdustries;
cement plants, pulp and.paper mi]]s and stee] mills. ‘ )

In this reportwe shall confine ourselves to the
application of sensitivity‘analyejs to find the errors_en-
techniques usEd to render the system optimal subject to these
variations are also reported.and ana]yzed. Numerical examples
illustrating the different techniques are given; The struc-
ture of this report is as follows: } v

¢ J

In Chapter II the sensitivity to parameter varia-

“tions is considered. ‘This includes sensitivity to errors, in

the initial conditions which can be treated a?’parameters,

s

A comparison between open-leop and closed-loop implementations°

is given.

5 . -

Chapter III treats the problem of sensitivity toé .

control Mariations. Limits of tolerance on the cpntrol'signal

In®
‘v

are found so that the target set will be reached using any

_control within tolerance. The degradation of performance due

-

. ‘cnapten V deals with the design of low‘sensitivity*
systems. Severai niques are. reported and cla§§€#ied'

according~to the design philosophy. The different approaches

;:*wf" .
-are cempared on the uasss4;§W?é@i@%“@ﬂaﬁtﬁeﬂsﬁﬁnﬁmcdkrs.:,f ‘_,J'» X
PR



Gk e SNt L ) AeT ) Rlcn S TE L RN T F o2 SRR R S A AR a0
. v . . K L

od " A ”
v . . f Lo . e .o . L.t . N N
y . ) L s ; o } o R .
Yo i e B S ce . A ) ‘

MR ’ P T

, - o 18

CHAPTER II ‘ L.
SENSITIVITY 10 PARAMETER VARIATIONS.

e — N

- - -

. 2.1 Introduction

L ~ To.analyze a given system.or to design a new one, - .
the control engiJEers deal with the mathematical model of ) N
- ' thefsystem rathei than the physieal system, Many of the.
- parameters of the mathemetical model are assigneo nominal
values. For'exampie, a non]inear process may be linearized~i :
about an operating point and the parameters of the linear-
ized model are ca]cu]ated for this specific operating point. '”5
In practice, however. the actual operating point might be .
_ different from the desfgned one. ‘ this chapter we will .
- present some of the‘sensitigjtgfen;:;sis techniques that cani*;'- '

- . be applied to estimate the errors due to parameter variations.

. o , .~ Optimal control proh]ems represent another domain

i ]
! . . -

}of interest for sensitivity analysis. . They are often.formu- - .

" lated and ‘solved as open-loop;'that i1s, the control is upre;‘

: prOgrammed function of time, depending or not on‘particular - - ' f;

fnitial conditions. Such’ a control is, of course, not respon~: u;.,;;

e ‘sive to actual errors in the initiai state and to subsequene~ v ’\’:

LY

disturbances of the system s trajectory To account forwthese

automatically a- closed ~-loop- configuration becomes desirab?e***

whereby the optimal«control is expressed and. implementedeas“-3“-
‘A

‘a function .of the current. state., Theftwo~configurationsﬂare:
:"Qequiveient vn tﬁe‘sense that 1f: both '

- -.—-l < “—n...-w-...»«\—.,s -r
"

under




«/ parameters at nominal values the state trajectories of both
systems will be identical. . !

It is well known from the theory of lihear control

systems that feedback may reduce the sensitivity to parameter

\ variations of the controlled plant. -

Therefere dis&seem.thaf is insensitive to parameter

‘g(. var1at1%hs is considered desirable. A measure of sensitivity
“  should be established. Trajectory and performance sensitivities

are the _most practical measuees of system response to parameter
k changes. If paraﬁeter‘veriafions are of infinitismal nature, |
' F i.e., very small compared to their nominal ve]des, the con- - T
| cept of differential trajectory sensitivity ane d%fferential )
E gperfgrmancé‘index sensitivity should ‘be considered.
t These sensitivies are respectively, the first;
} order variation Gx(t) of the state trajectory x(t) and fhe ; =
. . first-order variation &J of the performance index J, eue to

- »>

a\first-order variation 3u(t) o?ﬁe parameter u(t). A treat-

ment'of»;hese concepts is given in-Sections 2.2 ahd\2.4.

T It is worth mentioning here that trajectory and

,
i oo berformence eensitiyities.are—ﬁy~no means the only concepts ,
; | of sensitivity available. There Ean-beand universaf defini-
E ' tion or measure of sensitivity since each class of systems
| suggests jts pwn suitable definition. In‘qn oscillator.~fbr.“
example, the sensitivity of the frequency and aypli#ude qf: o ,‘@d
the oscilléiiJnSzis”e more sditable concept by far.§Nanltra-}

| ¥

jectory or performance sensitivity.-._ ' F;f' T,

\

4

If the changes 1n paramaters are large with respect,f;. L

.to their nominal va]ues. the concept of p- sensitivtty (glob&lQ%*
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sensitivity) introduced by McClamroch et a1(46) should be
5 used. This technique is discussed in Section 2.5.

Appiipations of these concepts to optimai control .

problems are g$Ven-in’section 2.5. . .. g

2. 2 Tra;ectory Sen51t1vi§y Functions and Sen51t1VTty Equations .

Differential equations for the trajectory sensitivity

. functions may be obtained readily from the system equations.

"Suppose a system is described by . ' T,

N Sy X = f(x‘n t) . . .. (2.]5 )

<

wheré the n- dimen51onal vector x is the state vector, and the p-

,dimfgiioﬂiT/iector u represents a set of p parameters. We M

fﬁ/ggsume that unique solutions exist for all initial conditions

’

and for all values of u. Furthermore, we assume f is contin- .

uously twice differentiable with respect to x and u-(22’23) (‘, -

Any solution of (2.1) may be qonsideréd'a function - o

‘of the parameter vector : . .

» x = ¢(t,u) L. (2.2
This solution satisfies the initial condition ‘ '. s
= ¢(to,u) ‘ . . .- (2 3) .

For a particu]ar value of u, the "nominal® value/n’ﬂ.we obtaiu

s

the nominal solution . - - .

Xy =40t ) : e (2

L\ n

" He wish to study perturbations in this solution
ﬁye to perturbatibn in u. The "variation Gx" is defined by s:k’
A ¢(t,un) “ Mt.u) |

3 . e

o~ e

Pl l-and is due o a paramete{ variatian

R , e
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(2.6)

'

o By using Taylor s theorem (2.5) may be written

| = (%), ou+ ol [sul N2 - Coo (2.7

‘where . . . , . \ -

( %ﬁ ), is an nxp matrix of sensitivity functions 5

: ' X ap. (t,u)
- | v sy - _;L____J ‘ ST
’ C ' ’ . j n a_uj u-.;un ' ‘ * * (?.8) H '

e ¢

{ - - * evaluated for nominal X, the ij componenf of which is
|

-

' , ' The existence of these sensitivity functions is

guaranteed by our asSuﬁptions on f given above.(zz) The :

columns of the sensitivity matrix, ( %% )n are the vector

-

sensitivity functions

a
.

// ’ ‘ fé 'g—xﬂ" J‘ = ]’. .« . -"P ’ . ’ ‘e ‘ . (209).

. ¢ . .z
.

|

|

| : . .

' . ~ : .
i

=~

. —— TFe différentia] equations for the vecto¥ SenSitiVit!

- - . -\

| :

i functions may be found eithen by Taydorﬂsdseries expansion or t

& ) o
| by direct differen iation of (2.1). In either case, the .
E'. | necessary mathematica] operations are justified by our assunp- . "f
|

tions on_f. The resul;ﬁis______"

o
Y

.
x

3 '~, ) " ] , . ! [ . . ,
L | - BT - (z zo)
O R ' These gquations are called the .

"‘:&

The nxp matrix ( Jn withlij cqnpoqgnt




/

is the jacobian m3trix evaluatéd on:the'nominai splution.‘ It

i . o o

is noted that (2.10) is a linear differential equation, with

time- Varying coefficients. in general. Thusdthe effects of n
small perturbations du on a linear system may be ‘evaluated,
to first order, by saolving a linear eguation.

The initial conditions for (2.10) may be obtained -

from (2.3)
. ¢t ,u)  ax | .
J o o0 a0 . .
% T o ‘ . on (2.11)

] ’ . »

Sensitivity functions for variables_other than

state variables (such as outputs) may be obtained readily

from the equations relating these variables to the state:
= g(x,u,t) ~ IR S ¢ 12)

‘Then

. S I ARRES R %% ), a3+ ( %%;')n . C. . (z,lsj

If an input or control variable u is present dependtng on u,

2

| x = £ (xuamet) L L L. (2.14)
. Then : ) . |
(33 o (3 4d . 2fy Bu . 3f pe
, A= ax )n AT+ “( 3u )n au’j .+ (o '5';]3' )n . °‘.( .15) ,
an¢) 1f . ::‘ A L . : 4 o - 1

Ly = g (x,u.y.t)_,




‘2.3 Comparison Sensitivity- : “

® - -For single-input single-output linear time:invariant
y//

_——"systems, Bode(24).proposed the logarithmic derivative of the

~

s

"

system transfer function T with respect to a parameter u as

a sensitivity function _ - o .

\ T 3 1In T (s, u) '
5, (s) = s ... (2a8)

The sensitivity of one trans fer function T-with ot

i ) respect to some other transfer function P, such as the plant

transfer function, was then defined as
\

5T (s) =2 }g 5Pl ) .. (2219)

-.

©

If S; is d neai number, it can. be interpreted as -

i

the ratio ‘of the percentage change in T to the percentage change .

in P for differentiai]y smal] changes.

< If S; is ‘not real or the system is- multivariable

¢

or time-varying, the above definitions can not be applied.

Cruz and Perkins (25) proposed "Comparison'%ensitivity“ as a -

4

i

- means of measuring sensitivity fbr mu]tivariabie. time- o

varying and even nonlinear: systems.
Let the system be described by - o

¢ . F S

(0 = AL K1)+ BUEY 0D, X(rg) = Ky Sz

As mentioned in Chapter I, a control, lan Uy (t). might
-be selected to ‘achieve.some given objectives. This control
law is normaliy cclculated using the nominai values A (t) and

B (t) of the systen parameters. 1f u (t) is applied in gn

A-.-,‘ '

open-loop fashion to the‘nominai system, the,correspondfn



sy . P

trajectory will be’ | . | i :

X, (t) = ¢n§t,‘to) X(tO;:+»[§6¢n(t;r)‘Bn(r);udtf).dy - :;g

»

L. (2.
J/fwhere ¢n(t,t0) is the state transition matrix corresponding to
An(t). If hﬁ(gl%fan be expressed as a 11near funotioo of}tﬁe

current state‘%éj;

u (t)

C(£) x(t) . ‘

where C(t) is an

system is’ ' : : L L | . ,,'
X(E) = [A(E) £ B(£) C(8)] X(), X(tg) = X5 .
and the closéd-}ooo trajectory will be given by - I
X (t) = ¢, (t,ty) X(t) N ¢ 2 22) ‘
where ¢ is the statestransition matrix corresponding to S ,':;

A () + sn(t) ct)l '

o
o

Under the assumption that the initial states of both the
open-loop and closed-loop systems are identical and system T
parameters are at nominal values, the open~loop and closed-

loop trajectories given by (2. 21) and (2.22) are identica]. r

The two: systems are called “nominal]y equiva]ent“ (25)

Let the actual systéem parameters be A{(t). and B(t)

The” open loop trajectory becomes ' ) Do ff

.

| t
f_..? . xo(t) = ¢(t to) x(to) + I? o(t.r) B(t) u(r) dt

=where o(t to) s the state transition'ﬁatrix correspondina‘toi

: / - }1
R » .:,,u'g,r .

\‘r (k?‘ .“ "‘
for s{‘i«éw& ;V,z‘eﬁt .~r—
k



~_ . . ,
[ ) . ) . - 25
. oL | | he . ,
° ¢ Let eo(t) be the error51n the open- loop traaectory )
o due to changes: in- parameters, i e.
. ) EO(t) = Xn(t) - XO(t) ) . . . (2024)
Similarly we define the'c]osed Toop trajectory‘brrof as
U, [ " . ‘
‘ec(t)‘s xn(t)' - xc(t) ‘ ) .- (2.25) :

(25)

e F - Cruz and Perkins suggest system sensitivity

!
comparison in terms of a functional involving a quadratic form
in parameter-induced errors

¢ I )
Performance Index = It] eT(t) q(t) e(t) dt . . (2.26)
tg ol

The feedback structure of Flg. 2.1(a) is said to be less sensi-

tive than that of the nom1na11y equivalent open-loop struc-

- ture of Fig.2.1(b), if, for.a fixed positive semidefinite
E" matrix Q@ . | .
i[ o b eT (t) q e (t) dt < |V el(t) Qen(t) dt ]
?. ' ' ’ to C ) [ - to 0 0, .
I a R X7 )

. " for all inputs r(t) such that’

\
4 - € ' o

”[t] ’ ' N - o
’ ¢ r(t) Qr(t) dt < = : e
0o - ,

) ‘ - . - o
and for all ty e [0;=]. The inequality(z z7)can be expressed

in terms of a.frequency domain criterion as follons
(25) . LB . i . .
Theorem - ' -

L]

e A'sufficieﬁt'condition for

R

T(t) Q e (t) dt < Ito eo(t) Q eo(t) dt
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1ndex sensit1v1ty for the nonc - K'reindlar ‘

for all r-such th“a't' N

=y

1 L}

and all t e[0,=) fis

© Q- sT(=3u) Q- S (-jw) 20 TN UL L (2.29)
for all real w. i | L

2

2.4 Performance Index Sensitivity . - oL

N

Another approach to the problem of comparing the rae' | .

performance of closed-loop to open- loop conf1gurations is th\.- {

sensi tivity of the performance index to paramtter variations.

It should be.no,ted however that the value of the perturbed :

performance index J* + GJ*(Gu, p*) will not be in general

optimal and ‘may be either higher or Tower than J*(u*) ) :
Pa?urek(zﬁ) considered the case of a Hnear systen

and'a quadratic cost .functional with free end point x(tf)

He proved that for this formuation the vari ation in performance T

1ndex is the same for both open- loop and closed- ‘loop, f.e. .

§3g(6u,u*) = 83 (Suaw*) =~ - . . . (2.30) ?
-For all. continuous parameter variations sp(t) :
Witsenhauser(27) proved that the same result holds for ons . -

Hnear systems and a more general iclass of cost functionals and

constraints. deotovic et a1(28). and Kokotovic and Heller ‘29)
(30) :

onsi dered compa rati ve performnce

‘‘‘‘‘ « 2

and’ You'la and Dorato

m’ e



. S | ~ - -
- both the instantaneous inequality constraints and the iso- {

'perimetric 1nequality‘constra1nts.’ The Pagurek Witsenhauser

result (2.30) a]so emerges as a special case of expfeesion

of the peérformance index for optimal- adaptive control in

Werner and Cruz. (32) ’ ‘ ' :

-~ .

* Equation (2.30) 1mp11es that feedback does not

-—

improve system sensitivity to parameter varlations, a result °i

which appears to contradict most of what,w5 have proved

(
earlier. This contradiction can be explained by the fact.

‘ that all the previous results are based on trajectory sen- f

‘ b

| : sitivity rather. than perfo}mance sensitivity. Actually (2.30) -

E .o Ahas a simple intuitive explanation. - For a cost functional of S
- ©  the form : | . - - . 4

| . a A

) t : :
| . J = g(tfax(tf)) + Itf h(i_‘.,x,u) dt « s o (2,3])
) i o o0 e

w , ; ,' : (33) showed that the variation 8J of J

Kreindler

due to variations su(t) ahd Gx(t) As given by o S

s

’

n ‘ -, : P

t | .
83 = g ox(tg) + It; (h] 6x + hl'6u) dt . .. (2.32) ¢

For open-loop systems.‘éu(t)-zero and Eonsequently X <o
_the second term in. the integrand (2. 32) vanishes. In the - LY
closed-Toop system Gu is given by ) \ . ( -} :*

sult) = -k By x(t),u*), ] sx(t) = - IR ¢ 33)
2 , RS
In the optima] system J* is stationary with respect R

-

| to a]l\admis51b1e control variations, jncluding the one given

by’ (2.33). Therefore the part of GJ* due to 6u vanishes and
(2.30) follows..' ,



[}
L

o - J f h(t,y) dt

For the case of performance index sensitivity to

wvariations in the initial state Xg equation (2.30) does not .

/

©

hold. - The reason is that the .nominally equivalent systems

are derived on the basis %hat their respective initial states

vt |

are identical. [t is» expected that if

~

‘yvaries from its—~ ~ -

ies will be differ-

nominal .value XO’ ‘the subsequent trajecto

ent even if other parameters are kept identica

_ By optimality

of the closed-1o p system, it follows that ] )
0oH*) > AJE (Axg,u*) - cooo. (2.30)

Ada (4>

The rellation (2.30) is quite general and ‘includes
discontinuous and bang-bang optimel contro]s. It is valid
provided 6J given|by (2. 32) exists. In particular (2.30) is
violated when the p]ant is. unst\Bie and the. upper iimit of
the 1ntegrdq in’t e performance ihdex is tf -®, Then
6J3 = oo, whiie.the closed-loop system is stable 5017?3 nite, o

T~

systems is qu1te logical in principle, in practice, however,
\

The use of performance sensitivity for optima]
it is for\severai

a weighted sum reflecting several

easons of \somewhat limited value. Quite
oftén the performance\fndex )E\

design objectives, and the 0ptimization is merely a design
device. The optimai“values and sensitivxties of the components

of J, rather than of J itself, are then of interest. Perfor-

_mance sensitivity iskinapplicable for the éase uhere J fs

independent of x(t), thﬁﬁ»is.

to.




as in theominimum time (h=1) and minimum effort (h=1). and
m1n1mum effort (h= IuIP P> 1) problems, which are-pr me
examp]es for the cas; where the optimal value of J 1is nf .
interest. Th1s is so because in these cases. 6J = 0 for the
~open- -1o0p system, and the on]y effect of parameter variation
is a terminal error. In general, &J is not (by 1tself) a.
valid sensitivity eoﬁcept, in cases where x(tf)-is nq; free;~

»In such syetems, meeting the terminal condition. oe x(tf) is

part of the control obaective, and, ‘tnless special methods

are used, one cannot eXpect Sx(tf) to be zero (or equa] for.

«both ;;lems compared) for all Su. Therefore,-in syetems

where x(tf) is not free, some combination»of‘dJ and 6x(tf)

is an appropriateéﬁLns;tivity concept. Often a terminal :
condition on x(b?) is’ handled by appendinb 1t to the perfor-
‘;gnce index.as a heavin weighted additiona] term. In this
case of the use o? 48J 1s applicable and result holgg, howbver.
the“presence of an arbitrary weighting coefficient in &
‘rengﬁfs the va]ues of J* and 6J*>un1n§erest1ng in practice.

tion of Errors Due to Large Parameter Varfations

Pe;;EEtequa%iations are not always of infinitesiml
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reasons there will be discrepancies between any physical -

process and the mathematical model which-is chosen as its-'

- .representation.
There have been .various t4chniques in the 1itera-
ture to develop theoretical methods to study this problem.

The so- called "performance index sensitivity vector as B} 4f’

¢ - ' discussed in the previous section,-was proposed'by‘Dorato(34) -

(27) (36)

AL

has been used by Pagurek(zs), Witsenhausen and Dunn®

@

to investigate the change in a performance index due’ to | ':?
sufficiently’ sma]i changes in the system parameters.’ In o
particuiar, for a certain c]ass of problems {t has been shown
‘that various impimentations of the optimal control, e.qg. feed-
ot - -hack or open loop, lead to the same performance index sensi-_
tivity vector. However, this approach has, certain inherent-
disadvantages due to the fact that the sensitivity vector is
defined as the gradient of the performance index with respect
to a parameter vector. Thus, this approach can yfeld inforla-

AT

~.. - tion only of a locai nature. Several other approaches based~

R . on the c0nsideration of essentially finite changes. in the

. '“:ssystem characteristics have been. considered Howard and
Rekasius(37) have considered the worst possib]e parameter" )
i‘riations uithin some: c]ass in the sense that>the perfor\\nce

index is maximized. In addition. Risshnen(sa) ~and HcCiamroch(3’) :,f

have consfﬁ%:ed the probiem of . specify ng an,upper bouud on

’the change in the performance indaz~m



) . . S ' . :
(40) and Sarma and ‘ ,'

in papers by Rissanen and Durbeck

Deékshatulu(4]).’ i - o )

F-f , ) -
The related problem of determining the admissible

parameter variatioﬁs so that the value of the performance index
, : s - ' ’ '
does not change has also been studied. Various results have

been reported in papers by Barnet and étorey(4z), by MtClamroch

and Aggarwa1(43’44)

McClamroch et a1(46) defined the concept of p sensi-
tivity, for linear systems with quadratic type cost functiona},

-to Targe parameter variations. For some rea] number p the/é

exists a class of parame er‘yar1ation e for which“the system
is p sensitfvé;"

p- Sensitivity occurs if the value of the cost func-
tional.does not increase by more thanxa factor of p.for.aﬁy
change 1n:the class ¢ in comparison with .a nominal or error-
less system. For fixed p several methods are'develdped ihiéh.

allow determination of certain ‘error classes e for which p-

.

sensitivity occurs. Analogous resuits are abtained for both.

the finite fime problem and the 1ﬁf1nite time prop]éu.
(46)

2,5.1 Development of the Technique

LY
o
.

: ,The‘system is treated as a linear regulator probién..‘

The plant ifs represented by the linear differential systel.- ‘
x = F(t)x + B(t)u x(to) =Xy _ S (2 36)

,He wish to chbose the conprol u from the set of al] bounded

piecewise conzinuous functions defined on the.time interva1

[to,t,], so that the value of the perfornance 1ndex gifen b&hﬁ'

» and by McClamroch, Aggarwal, and Clark(45).



: . It
3= 5 xt () Ax(ty) + %-It;‘{x-(t) H(t) x(t) :

’
l

+ u'(t) R(t) u(t)} dt : . e (2.37)

is'a minimum with respect to all admissible controllers.
. The usual.assumptions on vegtor and matrix dimen-
sions as well as controllability are assumed. It is well

known that the optimal control, in feedback form, is given

<

-

©

by © g ' }
' u*(t) = -R7T(t) BT(t) P(t) x(t) | i (238)
and the optira] va]&e of the performance index is given by

AN

? = 1] P(tg) g T : ... (2.39)
whare P(t) is a s&mmetric nxn matrix which is the uﬁthe solu- .
tion to | ' )

b+.pF+Fp-pBRIBIP 4 H =0 - e
P(E) =A ... (2.40)

'V/. ] -

that the djffereqtfa] system (2.36) chanéez\as N
x = F(t)x +B(thu* + E(t)x ... (2.41)

Due to variations in the paramete?s. it is assumed

'where the nxn matrix E{t) répeesents the chahge or error in

‘the systemc(i.36). The matrix E(t) could corbeshohg to a
'veriation n- either the matrix F{(t) or B(t). For physical

” reasons there is no need to assume that the patrices A, H(t). Tf

;m" C or R(t) chiange. Thus the value of the- performance index (2¢37)

e .changes,be ause the trajectory changes.‘ Note also that since‘:,;:? ;
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o Now consider a s]ighf]y more general problem in

7

. | ‘ |

B which the control does not appear explicitly. The linear

-

differential system is given by

: = AE)x + E(t)x, x(tg) = xg . o . . (2.82)]

o

"and /the performance index is

-——t"

o

' ' C S
C e T Ax(ty) + [ T(t) Bee) x(e) at . . (2.43)"

P

where A is non-negative definite and Q(t) is positive definite.
'The natrix E(t) is,aQain considered "to represért the systen’
_error, the errorless or nominal system being given by (2.41)
with E(t) = 0. ~If the optimal feedback control (2.37) is

.substituted into (2.37) and (2.41) then we obtain ;z??s) with

. &
"A=F - pBR™187P and q = H + pBR™'BY

P.  In fac
(2.40) can be obtained by using any linear fegdback control
for (2;37) and (2.38) optimal or not. Thus/it suffices to

‘consfder only the system (2.41) with the performance measure
(2.38). T . \ . //

e

Since the matrix E(t) represents an error its valuew////
1s not known exactly; it is assumed that the error 1s a,ue&ber
of,some appropriate class of errors, j.e.~Eee. In nrder to
include the possibility ef an erreFless sxsteﬁ 1t is.also .

. e .

‘assumed that Oec. _ _ PR

With these preliminaries the following definition

makes clear the concept of sensitivity. o .'.’M,

o Definition* For some real numbers p and Some cllss

~

of errors the systeu (2 41) and the perfurw@nce neusure

(2 43) areusafd to. be p-sensitive 1t far e?Ch xogh“ﬂgm,}

A, N
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'JE < pdy for all Ece. .. (2.84)

P - . -

Here JE denotes the value of the performance index

(2. 44) evaluated along the solution of (2. 4l). assuming an
error matri{x Eee. Jq .denotes the value of the performance '
. measure for no system error. ' , . C SN
) Since Oee by assumption. it is sufficient to consider
‘ * only p > 1. It should be noticed that if Oee], Oeez and p'
sensitivity holds for the class €1 then €5°€y implies that.
p-sensitivity holds for' the class of errors e,. Thus these
_various classes can be ordered by.inclusion. It would be = 'Tﬁn:

desurable to know the maximum ¢lass under the above ordering,

however for practical reasons the definition is in terms«of~

.anJarbitrary error class €..

- —— ‘.

-/ 2.6 Applications

| .

| 2.6.1 Traj:étoinensitiv1ty of an Open Loop Linear Time~ i
o ‘Invariant System(47 48) . . L ,‘~ .

|

| \ .

: ' - As mentioned above, many control-systems are con-

{ . . N .

E ~, trolled in an open-loop fashion. The main advantages of this
' " type of control are its low cost\and ease of application.

However such a-.cantrol is inherently irresponsive'to varia-

tions in initial conditions or system parameters.e§0ne uay 3 L

still apply an open-loop control to a system if the errors

i*‘) ~ resulting from parameter  variations could be tolerated The

limits of tolerance are dependent upon the specific application. figxé

For. any given system, ‘there are: certain outputs (orr"

frou nominal values should be kepts
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| ' within pre-assigned Timits.. Variationsﬁin other outputs (or .
states) may be allowed without any serious degredation of ' '
performance. - There;Nie the control engineer usua]]y computes

¥ the maximum deviations for only a few important outputs. -

| fhese”deviations are iunctions of the expected; variations in !

’ “system components and'of the sepsitivity'fqpct ons wpioh‘are i

-, dependent upon plant configuration. Iﬁ'is a cha11en§ing |

engineering problem to optfmize a plant-)ayout SO As to mini—'
mize the‘sensitivity functions of some particular variab]es.
Consider a linear time-invariant system'nith para-

L3

E meter vector p described in state form py : _' .

x = Seix(tow) = A(w) x(t;u) +B(w) u(t) . . . (2.45)
' with the initial condition [ | »
0 x(0,u) = xg(u) : | . - - A{2.46)
| The oqutput is related to the state and the 1nput by | _ ’ ‘
N T L I (O TGRS T TG S Y S
R ST The functional dependence of\the state and'the out- ‘

. put on both t.and u has been shown explicitly The input

~— uft) is considered to be independent of .u although p—dependent
. inputs may~be considered by a simple modificatipn of the

- following derivation. Differentiating (2.45) with hespéct

| . to u (assuming such derivatives exist). and interchaning the ' 4£;

]

. | Wy and t part1a1s on the left hand side, we obtain .f'f N

M

b

A* = [d Al (t,u) = A(u)l (t,v) +’§—(ﬂ )!(t»v) * 5','.{'!"




(2.49)

,e

“ The coefficient matricés'A, aA/aui and aB/aui are to -
be evaluated at nominal u, u L yield the. trajectory sensitivity
functions for small changes about u=un '

similarly, differentiating (2.47) we obtain

' (taw) = §§§Bl x(t) + o) A () N
. 3D(y) - . I
+ T u(t) i\ - (2.50)
The initial conditions for (2.48) may be obtained as
follows \ ’

8 ,i - ax(t,u)
LI § (tsU) t=0 ~ aui |t=0" ) .

i
Ao

Assuming appropriate continuity conditions,'we ‘may

»

interchange the order of the partial with respect to u_ and

the substitution of t=0. Thus.

N [ (él )| 3 e (2 éi)
= x .u [ QS . . . ‘
9 5“1 . =0 oy .

Equations (2 48) and (2.50) define ‘the sensitivity

.

model. The equations have a very interesting form, as is

displayed pictorifally in the matrix block diagram of Fig

2 showing both the system model, described by (2. 45) and .

- (2:47) and the sensitivity model (for a single-parameter n*}. ,~f'\'
described by (2’48) and (2 50). " | SR
The system modei and the sensitivity model both

L}

have the same A matrix, and thus the same state tran;ition
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Fig. 2.2 -Simglation of System’ and Associated Sensitivity Hodél

.
.
.
; .

'~ . BVAty
il . e X R
" ‘i

e -

PR

L e

T ey
RS,

e ls ey

MDA

a4 RONIRNE
PN

A
g

.

) ,Af N 2 t(’. -
:}‘j”“‘m:"’%"r
<

TR P o
R AT




J

Figure 2.2 could represent an analog simulation of

[+

the system and the sensitivity model,

matrix.

The partial derivatives

are obtdined as analog outputs with no arithmetical calcu]a—

tions gj;fiffergnces being required. If K parameters are
varying, guations of the form of (2.48) and‘(2.50) describe

the situation; thus sen51t1vity models may be used to obtain

\;\’J

,/

’
-

ai] the sensitivity functions.

Wilkie & Perkins(48) proposed a technique.by'which
only one sensitivity model in‘addition to that of the originol
system are needed to obtain all the sensitivity functions.
The overall dimensions of such configuration is 2n which

leads to a big saving in computational time or simulation'

ps

?equipment.' N
We can, therefore, using the above technique, find
the differential equations and the initial conditions for

the sen51tiVity functions for each component of the state ...

o

.

vector with respect to each component of the parameter vector.
{We showed that the sensitivity differential equdtion is '
‘always linear even if the origina] system is non]inear uhich
makes the solution quite straightforward. The solutions of"
these differentia] equations give us an indication of the o
degree of sensitivity: of an Xy with respect to an "j |
The expected variations of the.parameters should. _
now be considered. It is well known'that some stntes*(e 9.

the outputs) are more important than others and therefore we.

.

have to. ensure that.their axpected variations should be ﬁithih”“

!

’ i



o \ .
A; is . founa\to be h1gh and if x is an 1mportant state and’ ) o

a

Uy 1s expected to vary widely, it is reasonab]e to assume
that xj will vary excessrve]yt In this case we can conc]ude
that the design is unsatisfactory and alternatives should be

2

sought. One such e]ternetive is implementing the control law o

in closed-loop form. If this turns out to be unsatisfectoryu

too, fhe des{gn techniques of Chapter 1V shiould -be considered.
;(31,33)

i}

2.6.2 Nonlinear Systems with Constrained Centro

Comparison sensitivity can be applied\toplinear as

W

well as nonlinear systems. Even the case of constrainté on -
the control can be handled without adding much to the complex-
ity of the problem.- In‘this case we assume fﬁat the controls‘

ofgboth the nominal and the perturbed systems satisfy tﬁe“‘

’~“5N\w

mathematical equations representing the constraints.

Let, the plant be described by vector differential .
equation ‘ . D“ . . _
K= F(tixuu), X(tg) = X ) . (2a82)
where the scalar t is time, x is- the n- dimensiona1 state,

u the r-dimeénsional control function and p a p-dimensional
cont{nuously time~-varying parameter. Theﬁfuntgion E isla§sggeg | “,
to be twice continudus]y differentiable in t, x, u and.u. The_‘ <
nominal values of aIl variables are denoted by a subscript n. |
, The control u(t) will be considered piecewise con-

y tinuous.,and the’ values of u(t) may be considered to - be 1n a

1possibly t1ne-vany1ng region of r-space given by

¢(t.u) A (¢ . @ . ¢3



4
where ¢ is twice continuously differentiable. |[u]<l is a .
special‘case'of‘(2.53) with R . : L w
- |
o' =u-1 and ¢%F u 1 7 P

N -

The objective of the control is to tKansfer the state x from

/ an initial pdint x(to) = Xg to some point x(t ) = x] in a

——

smooth m-dimensional terminal m %ifold in. (t X) space m= =n - l

‘given by

oltax) =0, w=l, w8 u3 L L™ (2.54)

. i
while minimizing the performance index -

s : o t ‘ ‘ . X - n
L I = glty, x(t;)] + [t;'h(t,x,u) ¢ .. (2.5

where g and h are spaiér functions twice continuously differ--

entiable in.t, x and u, and where to is a fixed initial time
n and t1 is-either fixed or free termihal time. ' - ‘ ‘

|
! ' : ’
' The system is subject to-another constraint .of
} . . ’ . . ) i P
‘ . > - T

the form
- % S S - o
SV " Ito o(t,u) dt <E \ | . . . (2.586)

" where 0 is a continuously differentiable scalar functfon. - <ﬂ
T , 1
| . , THe optimal control u*(t) |can be found as an expli-

@5 D . : fcit function of time’ for a specific t, and Xg; that is, it
L is an open-loop contro]. If the dependence on to and xo 1s
e1iminated and*h;(t) is éxpressed as a function of the current
t and Xy that is S L |
u*(t) =« k (t.x) LR

I's

then ve. have a closed loop or feedback control



Consider the effect of differential parameter
variations from their nominal value§ U, For sma]l time- "
varying, multivariable parameter Qarnations, Au(t) we can

, write
u(t) - u,(t) = au(t)

From (2.52) we can write : i

L -
bl

for the open ]oop system, uis 1ndependent ‘of u, and thus- -
§u = 0 and from (2.58) it follows’
= fy-eg * T 81 e0 (tg) = 0 , C .. (2759)

€0
In the closed loop system, u(t) is gieen by (2.57) and there-. .

-

fore .

e, = f e, + f Gu - f k

c : ec. e (to) =0 . ..(2.60) .

Let ¢(t, to) be the state trénsition matrix corresponding to .

\‘6
’fx, then the solution of (2. 59) is _
S t v : , ) ' : 3 -
eg(t) = [, o(t,t) £, ou () dt. - . .. (2.61) .
. 02"% It .u T )
and hence from (2.60) - o ' L j .

7

L .
eg(t) = [ ettir) £, uleddr - [o a(ea0) fukeeg (o) de

|
. . - A
h¢ ’
‘ ' (2.62)
< Lo . , o e . . e
- ' . N h
E

!

Kreindier(3]) gives the follow1ng lemma.
o For the pair of nom1nally equivalent open loop-and
closed -loop - systems giveﬁ\respectfvely by - = o ﬁxgil

: X = £t x, u(t)] .. x(ty) =xg -

.‘F‘
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. the open-loop one according to the inequality

T -
M i - * 03
. : 'y . S . 4
. 3 - - . P ¥
' . ) N N Sl
- E) . . » 4

~ ’ - 43
- ,‘
a ‘
\ _

T

where the feedback function k(t,x) s assumed to be.continu-
oué]y differentiable in t and x. The open-loop and closed-
loop trajectory sensitivitiés givep by (2.61) and (2.62)

respectively are related by . R . .
1 . p‘.

‘ .ot ' )
eg(t) = e (t) +.,ft0 $(£:7) £, ky ec(t) dr . . (2.65)

Fugﬁhermore, the closedsyloop sxstip is 1kss sgﬁ;jiive than

i

©

t! ’ . &
fto eI _‘F) .? e (t) ft < ftmo(t) z eo(t) dt (2.66)
ﬂ » ’

. where t' is;an~arbi£rary time t' > ;0, 'if and only if

- .
\ . ~
. ' . 4
. .
' L) [ .
.
* ' . . . . ¢

t' ) T
It [Zleg(t) Z v(t) + v T(t) Z(t) v(t)] dt > 0 (2.67) -
0 . R L .

L

where Zt) is gome[continuiysTy\Sifferenfiab]e,Jnon-negativg

definite symmetric mhtrix and
k,,\‘\ ' t ) o . ! . ( ‘ - ' r
v(t) = [t B(eaT) £, K ec(n) dr e

0 . \ .

The inequality in (2. 66) holds if and onfgyjf (2. 67) is satis- ’

4 o -

fied with an equality. . "
: AN »
A result similar to the aboxs Temma, for time- A

?nvar\#nt linear systems was first giyen by’

kins(49 50) and has been extended and gg ralized by the# and
’ (51-58) .

by atﬁérs in severa] direcgions. ‘ )
: ' A special case o e aboye-is:ﬁﬁénjthe.sygten

dyqamics can- be written in the form

“ M ' é’




., “ ‘ ‘.
S . : \ : 9

© X=alt, X, ul+bltyu, u]l . .. .(2.68)
and - 0 o Lo R
. CUK(tg) = xg s wltys X(E))T =0 s ... (2.69)

Lo .Y
and the performance index to be optimized is

: t o
[t x(0)] + [ [alt.0) # r(t,0] a6 . (2.70)
: 0

. . -
« . . . -

E ) . 1f'a11 the functions a, b, q and .r are to satisfy the smoofh-
ness coanfion'(LegendrquIebsch sufficiency conditions), the
| ’ ~ nominally equivalent closed loop system is less sénsitive than
fhe open loop system to continuous fir%t order parameteér

. r - .
\ variations according to the inequality RS " )

0

Y

. t' - tl i :
T T . .
- . ‘ ft e. Z dt < Ito e, Y eq ? o \
. ' J(2.ny -~
for all  t; <'t' < t4 ’

-

where Z is .a continuously differentiable non-negative symmetric

matrix given by

fa) =where H is the Hami]tonian of the optimization problem. L
" 2.6.3- Linear Regulator Problem

AN

The linear regulator problem is again a special case. -

of tﬁé nonlinear problem treated above. Inﬁthis case the: ' - :f

system dynamics are ’ R o "j"\\ PN
e O X(E) = ACt,u) X(t) + B(t,u) U(t); x(to) "% N
) . ’ ) M, | i ' . \_,\'~i ( . o \ ' :\' ~\;‘W ‘
- | : . ' B . , Gﬁ-_a (2 13)

- )'3 ‘
,and the performance 1Hﬁex to be mfnimized 1s gfven by fnﬁfk
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| S 5 , |
J = %:XT(ti) G X(t) + % ng IXT Q(t)X + ut R(t) U] dt ‘(?5?4)

1
l"

The matrices A, B, Q and R‘are continuously
differentiable in t and u. R(t) is a positive definite
symmetric matrix, G and Q(t) are non—neéative definite‘and

symmetric matrices, t; is some fixed terminal time. In this

case ' | - ] ' ‘
Hy, = -K(T) X . .. (2.75)

. ‘ ' - e \

where <ﬁ£/1 ’ ; |
K(t) = RIT(ENBT(t) P(t) ... (2.76)

where P is the solution of the matﬁix ricatti equation.

( (31)

Kreindler proved that for the Tinear optjmal

¢egu1ator problem, the*nominally equivalent closed-1oop

system is less sensitive to continuous first order parameter
variations than the open-loop system, according to the

inequality
[

¢! ' 5 _ ~
e el zedt < i el ze, dat for all t', toctict; . (2.77)

e
to to 0

‘where Z is a non-negative definite symmetr matrix given by

\

2(t) = KT(t) R(t) K(t) |
The inequality sign:in (2.77) occurs if and only if

- ot o )
vI(t') P(t*) v(t') +’[to viqv dt =0 .. ... (2.78)

where

, v(t)-.[t Jo(tn) B KD egln) dr L (2 79)

if Q(t) is positive definite. th§ inequaiity sign n. (2.77)

/ t

s
3




. — I

K]

; o ! , , ' .
‘ "can occur if and only if . : : L . . \w

K .
. (2.80).

Py

eg(t), tg<ts< f} <

T e;(t)

This applies, of course, to the time-invarfant case,

where all the matrices in (2.73) and (2.74) are'

ime-invariant

£ and in the performance index G =0, t = 0 and 1:-l

.of X = AX. Then the feed back matrix K and consequ ntly Z .
are time-invariant. For thls case, the nominal valu s of
the parameters must be, of course, time-invariant, but the -
differentiel parameter rariatiops can be time-varying.;

Inequalwty (2.77) is now -

| > . tl T ’ tl T )
| - . . ~f0 Z e dt < IO e V4 eg dt e o .« (2.81)

- For the further special case of a single-input plant;(i.e.;

where u is a scalar) in phase-variable form we have the

F ‘ “. fo]iowing result. ‘ S

L ‘ (59)

. ‘ Kreindler also shpwéd that for a single-input,

time-invariant, linear regulator where ih?iplant equation§

are in ‘the form

£

. dexd*, a2, 0 a1 . . (2.82)
% x" = a'x1 + a2x2b+ oo+ s u ;: . « (2.83) .
o ~and the performancemindex s »4@@ | : _ )
\ ) ’ o SN
S IR V7 [T 0xT ax + (0?1 gt - L (2

2

The closed-looﬁ'system is less sensitive than the nominally ”35}
quivalent open-loop system io,czatinuuus first order paraueter ¢7I?f



‘v

variations according to‘[
' > - R ' . fe
ft'(el)z dt i‘!t (eh)? at . L. . (2.88) .
0 0 . ‘ : )

Forall t' <0 , 1 =1,2, .. .,n S
2.6.4 Sensitivity of Time Varying Linear Systems-to Large

Parameter- Variations.

Cons1der the general t1me -varying prob]em for the ’

state equation (2. 41) and performance measure (2. 43). f%e ps

4 . T -

generic matrix E(. )ee dehotes the unknown system rror in

-~

(2.41). The follow1ng theorems are based on the p?seositivity _—

; .technique developed in section 2.4. ’
- | ~ .Theorem 1. The system (2.41) and (2.43) is p-

- » ‘sensitive with’ respect to € if and only if faor each E( )ee.
(p 1) Py (tg) - Piltg) 0 - SO . (2.86)

™ ‘ where Po(‘) and P](t) satisfy

- s .
i .

T = , . = . . X .
Py + P’(A4EJ"+ (AT+ET)P + PLE +'ETp =0 - Tt
o ,] ] : - ‘l ' 0 o . ‘
: Pa(tp) = o - | .. (2.88)
The conditions of Theorem I define the maximum -~

~

. cless'of p-sensitive“errors. _However, from a practical view- -
point Theorem l'ist&erywd1ff1cuft to apply. The following:‘
Pt theorem is easier to apply, but- the conclusion is weaker '

ﬁ°'than that of Theorem i. ‘
p Theorem 2. The system (2:41) and (z 43) 1s p-'”
seooitive with respeq; to € if for each E( )‘e“’\',
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(o=1)0(t) - ppogt)r-:(t) - PET(8) Po(t) 20 . ¢ (2.89)
for all to <ttty _ .
where Po(t) satisfies (2.87). o

If a class of errors ¢ consists oni& of matrices -
which satiéfy condition (2.89), then we are guaranteed that
the systéh (2.41). and (2.43)(15 p-sensitive with respect  to
e. It is ;traigh;forward to qu]y Theorem 2 sigce, as a
resﬁ]t of Sy]vester's criterion, (2.89) represé;%s n inequali-
ties to be satisfied'for all t, E_t t]: Further the matrix
Pg(t) is determined solely from knowledge of the nominal
system.- Condition‘(z.sg) in Theorem 2 is on1y~9ne coqditibn
which guarantees p-sensitivity. It is possible to determine
other conditjons; however, conditions (2.89] represents a
‘ ‘s1mp1e as. well as a re]atlvely’strong condition. o

The above.. resu]ts can be direct]y applied to the
situation where the nomina1 system is optimal. Using"the

",

optimal feedback COQtrol (2.38) 'in..(2.41) . the state

| equation fis .
= [F(t) - B(t) R°T(t) BT(¢t) P(t) +

x(to) =Xy . C .
and the performance measure is given by

1 Ty 18T,

J “"2- X (tl) Q.X(t]).'?’ ¥ to X (U)[H(,O')

¥ P(o) B(o) R"(o) 87(0) Plo) x(o)ldo . ... . (z 9):

Theorem 2 apolfed to (2. 38) and '(2.41) yields L
E Theorem 3. The optima] system (2 90)and(2 91) is ‘*i:

——-—d--—




p-sensitive with respect to-e if for each E(.)ée

4

(p-1)(H + PBR™! BTP) - oPE - pETP >0 .. . (2.92)
(for all t5 <t < t4

where P(t) satisfies{(2.40). . . - o
_@_a_mg"lg_“ﬂ c . . )

For example "consider the linear time-varying

*
i

N
(Y=}
w
—

Xy = X2 S : .

- {t)x; - ap(t)x, a e f2a08)

[}
°

’ Xz

with the nominal system given by | o . _
a(t) = ap(t) =0 - . ... (2.95) -

‘The Performance measure is given by o "
S LEL R S , ! s
A T J . (2.96)
S T T - ‘

_In order to apply Theorem. 2 PO(t) 1s first obtained fro-

(2 87) as - o o . SN | .

-t . 1/2(1- t)z :
1/2(1-¢)2. (1-t)2. + 1/3(1 t)3
ApplyingQSylvester (3 conditions for (2. 89) obtain

“ A «%
- «{p=1 S h, ’ ,
“ ?-“&%F;% o, e

o Polt) = | (2. 97)




\geometrical coristraints in-a three- d1mensional a]‘f a, =t

which if satisfied for a1l 0 < tz< 1 0 guarantees that-the

e

system is p sensitive, where-

Ppylt) = %,(1 -2 . .- . (2.100)
Pspt) = (1-02+3a-t3 C:o. (201)
: ' | { o

The two inequalities can be thought of as representing two
space. In Figs. 2.3(a) and (b) the EWQ cases ay =0, and .
z G are consider}d The indicated curves are the Yower

bouqu for the corresponding errors. Note that an error for

which the conditions of Theorem 2 are not satisfied but for

— »

which the system is p- sensitive ig aiss\indigated. i o )
. ‘\\-\\ . . .

1 - . e
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RN " Therefore, we ‘are left in this chapter with the j-“’}

f- u*(t) cannot be precisely geneifted Instead a different

e .7 CHAPTER 3

-

- 'SENSITIVITY TO CONTROL VARIATIONS °

3.1 Introduction

In optimal contr01 proh]ems, a mode] and an index
of performance are defined for the system and.a theoretical
value for the ogtimal'control u*(t)'over the interval
[to, T] is computed using a suitable numerical technique,
Forl11near systems, the optimal contro] can ‘be
implemented-either in an Open-Toop‘or a closed-loop form.

If the control is to be implemented in the form of clesed-’

loop, the feed back gadins are found and‘generated by qnpii-‘
fiers or compensators. Amplifiersﬂare used for static gains
'whiTe compensators are needed for dynamic gainr*ﬂ?ln case of .
state feed back, all components.of the state vector x(t) | —
should be observable. - ,

In case’of close;44;op control,/errors may be
introduced either in the process of observation or by the .
feedback “Toop 1mplementation due to- inaccuracies in the oo
values of'the components used. The latter could be conshdered
as a variation in system parameters which was studied 1nL< ,
Chapter 2. The errors due to observers are beyond the seope

&y

of this report. ,

case of" open 1oop control In practice, the optim&l control

.-‘,‘

(suboptima]) contro] u(t) is obtained.. The error)n*(t) - u{t)




1 ‘ ‘ - . -
¢ M . ‘g 5 ‘.
— .
. T .
. K

coo ~ The effects of control vafiatiops are twofoid;

o ‘ (a) If the‘objeét af the cdntro] task is to transfer-tne ; ' 
- \ . state of the system to some target set; variations in
| the control may cause the target to be missed. _

(b) if a cost fua;tion is defined, variations in the control

will produce cost variations. ’ L
Garvilovic, Petrovic’ and SilJak(Go) treated the

..problem of sensitivity to control variation by considering'
the relation between com{rol variat1ons and variat1ons on the
initial condit1oas of the adjoint system. In this wayfthe - -

| . .
problem becomes one of in1tia] conditions variation treated -

I M K

in Chapter 2.

A direct approach.is due to Belanger(ﬁl) He con-

\.

sjdered the case of continuous and bang-bang types of control.

" Our treatment will be based mainly on the results of this

‘work. ’ . " i

: 3:2 Types of Control Variations and Tolerances

3.2.1 Continual Variations - ‘ L -

Suppose the desired nominal contro1 Function u(t)

v

is continbous and let the- generated u(t) vary from the s R

=Py

optimum u*(t) by an 1nfin1tesima]‘amount. More,pyecisely ' -.k“{ 5
Cu(t) 4 u*(t) + en(t) - o RN R}

-

where € is: 1nf1n1tesma11y small over the uhole/control inver—i

va]. Ihis type of variation 1s called "conf/;uous ana 1s

o

illustrated in Fig.-3 1.0 e uf ;~,f;-1

¢

In the classical calculus of variations. tnis typgi,

4, . L
a&c&«”'@w Wi

&,A.&%M‘ﬂm’ﬁﬁh



Tolerance limits
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Fig. 3.1 .,T_he Continual Variation -
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o

of variation is called "weak" variation. €
, The tolerance pi%ced on tﬁe controi function is .
defined as a limix of the magqitude of the yariations. This .
is the. only physical consgraint that can be imposed on the
\;control variations. X - ‘ S _ /
To impose a~to]erapce on a continual variation is | :w

to. Timit n(t) in some sehse; one way for instance, requires

that | [n(t)]] <k, or that ‘ o T o
e ' n' < k.‘ * j = ]’ 2 3; » » LA | r'. } - » - 3.‘2 ‘
’ where_||,|| is the Euolideaﬁ norm. T : ' L 'f:gﬂ

5.2.2 Intermittent Variations

§ 5

On the Other hand, when the desired nominal control .,

a

‘ function u(t) is of the “"bang- bang“ type, u(t) takes on a

1th

discrete set of values. _If the component of u(t). ui(t)

y has switching timés at ti}’.ti2f « . tmi e ..
Ll o \The-i?h"componeot of u(t) might hage its switching -

L]

' where e is a suitably small positive number. The varfation ..,

T e e

cdn the ith component is then: ' o .

"*(tji+) "f(gji')' ié.:

:ind if tj1+35tji'< t <

LI - uplty+), 17 $t420 (3.3

'“a)-d‘.if tig St <ty ¥ sty

0 otherwise



~

this variation i’é'mqstrateq in 515. 3.2. ‘It is
clear that yf(t) and u(t) differ by large amounts.but dﬁring
infinitismal intervals of time. fhis is called “inte?mittenf'
variation and ¥t is a special type of strong variation. in
‘the language of the classical calculus of variation. To
impose a tolerance on an intermittent varfation is to 1imit

1

the size of the thifs.i S ) ‘ :' T :

3.3 Contro]:Variations‘and the Control Proh]em

fet the system be repreésented by the vector differ- =

ential equatien . ' . . B )
x= f (x.u) , YL (3.8)

where x and f are n vectors and u is an r vector. The plant

"is assumed to be completely known. The control problem is

At
¢

‘to tgansfer the system state from 56 at time ty) to some tar-

jet set S at time tg, described by *1 B
alx(te)) =0 - L S ¢ X

s ! . -

where g is an m vector. 1t is'assumed that g’futfjlls_the
condition that makes S a smooth manifold "
It 1s also assumed that a nominal contro1 u*(t)

exists which solves the control problem. A tolerance is

%

“then p]aced on the size of_ the variation betueen u* and {tsv.
imp]ementation u. It is necessary to ensure thav/;he target
-set S be reached using any control within tolegnnce To -

achieve that the effect of control yariation on the;state o
- 7 lo

. » =
 Space trajectory be evaluated. S - ©a

J' -t

oo

Let x*(t) be the state space trajectoﬂy corre#pondiug




&

.

.~ Fig. 3.2




to u*(t) wish x(t5) = x,. Let x(t) .be the-system response
- , ;. to u(t)ﬂwitﬁ,l(to) = Xg- For aj.continual varja;iop to .

| te o p . ! . , .
. first order 1$ " 4

. . ) o '
~— coT x(t) - x*(t) = edx(tg L : 'i);.. (3.5) -

where x(t) is the’ solution of

4 . , . z -f- «r - o ’ af i} - B
. c, sx(t) = ap[x*, %] 6x ——-(xf,u*) ﬂ(t) T (3.7)
(' A. v ' .t ). -j ) ‘- - y . . ) P !
: w1th x(to)(' 0. = ‘ ’ R
: : ' ! - . y ) . "_
The‘ﬁotﬁ?« df/a is) the Jacobian matrix with- ij L
L : component as 3fi/3xj. The matri 3f/3uis SInIIarly deffned o

NPT It is assumed that }he various de ivatives exist. . In the .

- -

case of an 1ntermittent variation
- : N &

B4

o~ . ) . ‘ . » Y s ~
* - L 2ex(t) = jz} ii ¢ ‘fiim 5. LEEx (t i), !d‘tji))

w ot
L4
l

£ (xm(E4) 0wl imlestﬁl JRPE E X'

. - . ? , ’ N z )
: o yhere‘vjfiijo qnd w(t i) are y-vectors defined as follows
LI L ' , ' + . . :
» ’i . i Gti < 0 ‘) ‘ j “h;‘“('tjji“) k#j ‘ ,
Y N . S, 0 . oo k . UE (tj,"") ksj ) - . . ‘ "'
o .o N . "(tji’ = u*(tji-) -
14 . ‘e
cosbp >0 [ upleg ) ke
T R . . .( vj(}"'\ii)a T g o . e : '>: . '.*‘
S IR SN '.'.;;(f*-m) kgt ‘
Ao <i;ib .
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’ This equation implies that Gx(t ) must 1i{e in the inter-

P

”in general, some contr 1 within tolerances which wi]! cause .

”the target set to be-missed.’ ~ . .- oo

Y

) [N
N 59
If the matrix ¢(t, t') is the state transition matrix of ?’ ;
7 the'system ' ‘// \ . LT
- sk(t) - (x*(t), ux(t)) &x(t) 7 . . . (3.10)

From (3. 7) br from'(3 8), Gx(tf) can be found - Since'tf is
free, it is required that s be.reeched at some time_t%+§6tf;

Assume u(t}) be constant at t., then to first order )

Sx(tpr0t) = Sx(tg) + Flxe(tp), uH{(tp))ot, . (3.77)

If,x(tf+6tf) is to 1ie on S one ﬁave L : - : ‘ R
5 < gﬂilﬂx*(tf); Sx(tgtste)> =0 .. (3.12) ' i

o

If there exist an a, such that <3g /34.‘f> # 0, then th . s

can be-obtained iﬁ\terms ‘of Gx(tf) and 9g [ax. .This yields

1 .
1 , 4

29, g 3g; - 39, - R
Ut g g Tt b 6¥(tf)’ 7 0

-

. (3.13)

a

-~

‘ ‘section of m-l hyperplanes. "1t may then be calculated that

in general, only a target set described by one equation my

[

be reached usind a]l.controls within tolerdnce. .

’ n
3 4 The Ideal and Actual Target Sets -

FR

I? the control task is to take’ the system from an

1nitia] state to some éarget set,’ it can be %hown thaﬁLno

matter how tight the ¢ ntrol tolerances,’ there is always, -

-
. i ”

i

An exception 1s the<ga$e where the target 1s of

PP
i 1
g Tape#



dxmegsionality one Tess than that of the state - time space.

design as idea]izat1on of actual target sets, e.g. a point

is used 1nstead of a small sphere. - ) R

If the target set S 1s of dimensionality less

|
} o Target sets not falling fn this latter class are used 1n
)
l
|
r
|
7

kR than n-1, a target set- T of d1mensxonal1ty n-1 1is 1ntro-

——— —

duced whose points are close to, i.e. points of T'ate one
| - . order of e/éway from s. It is required that if u* takes_"
, ‘the systeﬁ/from xo(to) to x*(tf)eS then u(t) takes xo(t )

to x(t, +6tf)eT»and u lies within the spec1fied toTerance.

\«

g

Converse1y that max. tolerance that ensures the target set

L T to be readQed can be found - Co- ,

ey o - o If x x*(tf) 8x, T may be described Byf
: - h(6x). = . T

. , © -a.small ne1ghborhood of x*(tf) If x(t +6tf) s
T, then, to first order, . L

n(x(tf+§tf).& x*(te) = h}&xu(t%+6t )»
B ‘ = h(sx(tf)h’(x*(t

7
- . \

I from this, th can be found in terms of Gx(tf).. Since ctf
: * must be real, a condition on 6x(tf) of t\\\form -

.
'+
i
{
q .
i
e
r

Ay
'

.
- -

| ,a1.§_g(dk(tf?? < ay - g I .
‘will result. . | S SN

- — - . !
i "



3.5 Examp1e§(6]) ° ) T
. & ’ R P
Example 1. ° 3 ”
. < o . . ' “« LN .
e 2 , U let ‘
| X] = Xy R . (3. 17)
e - . 4 . - . : ) ‘
b Xg = =2Xy = 3xy + u T _ (3 18)
~ with x;(0) = 10, x,(0) = ’ '
'& . Théﬁtask,is toﬁdri&e‘;he sfafe to ‘the origin in one second. . .
- A control function u which~berforms this task.is - §oet T
S u(t) ='88e’"%0 t 4 4 gge1-90 't _ jgue 1.8t T
EY b . - R " .
: ~ ’ - 11.8e71-18 t o . (3:19)
; -~tet T be the ETrs\e x] +: x% = ﬁz, and let tbe final time be
R "free“, t.e., let t, = ]+6tf, where’ 6te 1s.small. . _,/’/, .
N , T T
¥ sinee T SO SRS
: i(x.*( t,,f)" U*(ﬁtf)) = ’ - ’ .. - (3.20)
. N -7/ .o ‘ .
pe w;_._‘ "" t‘ i ) . :

s

--it is seen that 6x(tf) must lie in the sét W describngby_
(1)]<R (see Fig. 3.3). The l1nearizéﬂ”sy§¢emwis“”1wm

\$L (3 21) .

.,(3ﬂzz)~

%y = 8xp . T

- ’ h

.ze = ‘stl.’ 36xé +.3

with 6x140) = 6x,(0) =0, : iy .
o SR RO

p

If In! <k, the’ maximum prin{':iple can; kuségﬂl\»t‘tz,maxiw’f o l -

. lax](l)l <-0.206K . fﬂf‘l‘jw»"f. [ UH3.23)

}3 Therefore. the - toleranae in this case uouId be
| lnl X 4.86 R L
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. is the cy11nder described by the equation- Gx] + ze

g Let B
Xy-= Xy - - N e .-{(3.28) - .
Xp = x5 . SN . . (3.26)
Xg = =3%x3 = 2x, +u - , .. (3.27)

. with x;(0) = -39, x,(0) = 84.5, x5(0) = -174, it is required

to drivé,the'sfate”to the origin, the final time bgihg free. -

" A piecewise-constant'céntrol;éequence [1, -1, 1] with

- switchings at t = 1.1, 2.2 is used to acbomp]ish';he task.

The final time 4s 2.89. If the actual target T is a small A
sphere of radius R centered at the drigin, what deviations
in the swwtching points -can be tolerated HF T is still to
be reached? |

- Since the velocity vector at the final time and
state has a‘component in the 3 directions only, the set W _
2 _ RZ "
whlch is shown in Fig. 3. 4.* ‘ "- "j ,4,/;

* Applying (3.8)
. Gx(tf) ¢(tf:‘t]) b (V(t]) - H(t]))Ithl

,“ ®, -
.+ (b(tf, tz) b (V(tf) - W(tz))latzl . (3-;&)
where b is the vector '
o
0‘ g . -
LI o !

}nd whe;g'ﬁiis the statevtransition matrix of system (3. 25 27)
ﬂusing (3§9) g - b', L o '

» O . . -
. . . .o
N B * ot .
~ . (O ' N . ‘
. - - » ~ SEE T N ol ¢
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ITlystrating T and W for Example 2

7,

-

a

. 3.4

Fig

B
-
»



.
-
.
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.
4 AY
L)
. (ll.
H s,
.
>
° » *
.
A}
\
A\
5,
,
-
s
¥ .
>
.

AN
3

- 20 (tgity) Bot,.

(e§29i — -

e (e ) m 28 g Y T a0
GX] (,tf) -‘-" T Gt] - -I‘Gtz . E \(3.30) .
. o 65( (tg) = 5 t -] st h : (3‘/31)“
" 2'Cf1T 18 (1 T 7 OF2 , . £
~ 5X3(t’f’) = -3 Gt] . . .. (3.3.2)
and | -, o S -
o ex? (ty) + 6x2 (t;) = 0.5588t2 - 0.6248t.6t,
- 1 X2 {tg7 = 0. 1 -0 1%%2
+ 0.315£§-< RZ . L .. (3 33)
If tolerances of the. form Iet | <. A] nd |6t2] < A2 are:
required then SR S
0. 558 A% - 0. 624 ain, +%0.31 22 < Rz . (3.34)
) 1 182 2 < _ .
Any- tolerances satisfying (3. 34) are acceptable. . @ )
R I .
. ) . . ‘ . - _t, ! /’

¢




CHAPTER 4 - .
ossrsn OF LOW sensmvnv svsrsns LT : ‘

4,1 introduttion

- ' o In phapterfé we studied Sthe analysis of system
sensitivity to parameter variations. - It was shown. that ‘ 'y

when the plant parameters deViate from their nominal values,

H

—e—- o ——_the_ System characteristics are expectedrto change. These

characteristics are obtained to achieve specific obJectives.

—— e

i' C " .Any deviation from the design characteristics w111 degrade -
- ‘ ) . the system performance. In some cases the parameters of .
‘the p]ant are known to-vary from their nominal vaiues or
only approximate values ‘af some parameters are available.
o In designing controi]ers for such pTants, it is desirable
. that pl; t parameter variations will have minimum effect on
the res Ttigg system formance. A design that leads to '
‘.; . low performance sen51tiv1ty is considered superior.
| ’ ‘ Several techniques for the desipn of minimum '
. e sen51tivity systems_hage,heen reported in. the literature.-
There are basically three main techniques, namely |
——%*f;”’ : . (a) -Adaptive ' LT C
. | (b) .Choice of the Performance jndex ’ ‘
(c) Use of Dynamié—éompensators. . . T
Many researchers, however, have investigated the possibiiitx

. of combining more than one of the above techniques to obtain

i
i

v T,

T~ .o~ ‘ I
]

)
Y

1 better results. ' .

. In this chapter the above mentioned techniques - ;'}g;;;ii

»

- A will be -discussed.




4.2 The Adaptive Technique .

" Kelley

solve the optimization prob]em. The resulting optimal

“This approach to the problem was introducéd by C-
(62’63), Bryson et a]}(sq)” Werner and Cruz(sz?'and :
Tay]or(ss) . : . ' \\\J
rayla .

The main first steps of this . techn1que is to.

" control and state trajectories are stored'(sometimes the

trajectory of the costates might also be needed). In the

actual operat1on of the system. the magn1tudes of the

different states are cont1nuous]y measured (or sampled -at.

reasonab1e intervals and compared with their nominal values).

. corrective signal, which is app]i d to the 1nput., It can

Parameter 1nduced errors are used to. generate a.

be shown that the resulting contrel_signals render the

system close to optimum for paramet !ariations‘thatﬁlie . ' LY

N

" within g1ven regions. L . . ' . ‘"‘ ;»,u

A (t) are expanded in a Taylor series around their nomina]

The.state x(t), the contro] u(t) and the,costate

traJector1es. Truncating the series to a finite number of

terms, 11near,,quadrat1c, cubic, etc., feedback signals can

-

be computed. - ) . ' oo ' _ . .

The Method of Kel]ey(ss)

Kelley formilated his approach to solve the -

optimal guidance prob1em. The parameters that -are succep- So.L

tible to, variations in this problem are the nagnitudes of
the initiaL states. He -has also shown that paraneters tbat |

are not initial states~can~st111 be handled by treating the-




¥

.

- P

as extra states whose 1n1t1a1 va]ues are subJect to errors.

" In this technique traaectory comparison is used to. 1dent1fy

" the actual vaIues of theé parameters by estimating their

d1fferences from the assumed values. - .

Ke]ley 1ntroduced°the concept of transverse com- -

par1son which is very usefu] for prob]ems w1th free end time.

. Transverse compar1son means that points on the actual tra-

jectory are not compared to points on the nominal traJectory

for the same value of time t. Rather the corresponding

points on the nominal trajectory is the one with the same

;///— increment of the functton’to be- minimized. For tne'minimun .

tlme‘prob]em, where tf is to be minimized, a point A at time

t has an 1ncremant of A = tf - t‘wnich is the time to- go. L

The nominal problém fias a|minimum time tf " The point on -

the nomlna] traaectory that corresponds to A shou]d be at -

/£

time t such that tf - t;, = A
Ke]]ey considered bath 11near and quadrattc feed-

3

‘bagf. The results of his work show that quadratic feedback

"ddées not necessarily improve the system performance. However,i

a

o when used with transverse comparlson, excellent results were

obtained : . L.
_ 4. 2 2 Mathematical Formu]ation

The system to be cOntrolled is represented by

- S 3 ‘ u
s - x = f(x.q.t,v) I ' 2 e .'(4.})
o % PR . e .
}n(tosvz = xglv) . -~ { R Lo (4.2) -
and - - . T St .
L y=glx,u, t,y) R L )
L ~ . N




the n-vector function g are known analytic functions in all

.denoted by u, (t,v). / For simplicity of discussion will be

“‘to obta?n

"where Xx TS an n- state vector. Yy 15’ he n-output vector, u

is-an n- contro] vector, t is time and v is an n-vegtor of
unknown constant parameters. The Jvector function f and ™
the arguments. The initial condition x(to,v) is a known
analytic function xo(v) of v. The termhna] state may or

:

may not be specified. -All dimenSIOns Nys ny, ny and n,. -
are assumed to be known. However, there-isja system un-
certainty'because \/ ispnot known. The onTy information
about v is that.it lies in a given domain. Some‘components

of v may be unknown initial conditions. It is’desined to-

minimize the scalar performance index. ‘ ‘ /

- i | . t | . . .
. J(U’V) = G(x)t)V)l - .+ I f L(x,u,t.V’)dt . (4‘4) -' .
. . t tf to . - . " .. N

with respect to uqfor al)l v where G and‘L'are scalar RS
analytic functions of their arguments. The optimal control

ui]l be calTed "optima]]y adaptive" contro] and it will be ;

-9 N -

« i . I~

assumed to be unique,Aand analytic in v.. - i »j -
The ba31c idea for the determination of Uy (t,v)

will be‘d\veloped o'
4‘?: 2

n=1. The generalization for a vector

~

may be.easfily seen” . r ‘the basic procedure for nv=1 is g’a;“ R
_established. f T /f R
“Let the ny state differential equation \be appended ?

_in (4. 4) with Lagrange mu]tipliers li(t,v)- . ]? P nx { ' .




>\\l , .. t : PR ‘ . ‘ . i . ’
‘\ J*(QQV) = Gt=t + It'f‘ {‘L+AT[f-XJ}dt ] “ oL (405)
( f 0 T b . S o, ’
ety "Ltf S .
= (,Xs f’v £=t + It L-(;,Z,’t,‘V) dt
. . L f 0 . .
’ where ' - N Y
2(t, v)<= [uT(t,v) xT(t N T(E, RS LT (4.6)

. \ -~ 4
~2" - s a (2n+1) d1mens1onal vector. . .. ’ ;
) . Let-z (t v), tostite b‘ew]utwn that minimizes -

2. J for Ty Vev and let ya(t,v) be the’ corresppnding output. B
‘Then, ,v) must satisfy the Euler- Lagrange eqz:ation
b - 3
%'%{1‘5’_] =07 (4.7)
32‘ ° . 4—/‘ ’. < I
. for toststs and X, (t,v)= =xg(v) for every eV is specified S
o _'for:,s.ome, i, then z, must satisfy . ‘ ~~.— __‘ i
xa:i'(tf’v) = xi (tf) ) " . (Im) T
. - ’ . . g ’~ - . " | ' T a
. - If xj(tf) is free (‘unspeciﬁed), ‘tjhen z, mst (\j
' '-s\’a‘t\iffy ’ 7 _ ' “ J ]} S L "’
N & it It 2 (4.9
03 /axj ' . ) ‘ '
at z = z2 a_nd t = tf for@everr veV. IR e
- | . In the case when n_=1 so that v is sca]ar, the h i ;.'
® ‘ e
" Taylor series for z,(t,v) about an arbitrary vo ds
| « e 0., . 1.0 T R RIS
2a(tv) = 259 + zal(\-vg) Yz zaé(_"f’o) Ve 1
s : b‘s e
- “where




rr .

'vary1ng ﬁay]of ser1es‘%oeff1g1ents . The optlmai output
“vector ya(t v) = g(x (t, v), u, (t v),(t~v)) can S1m;1ar1y \\\j§

. ' ‘0 e
\// The vectors Zak = zzk(t), k=0 1,. . -, are time-~

$ ¢
- 14

e !
*y

,be expressed as a Tay]or 'series 1n v about gﬂ.ﬁ J/‘. v
The method of finding the opt1ma1 Tayl ﬁ series

coefficients success1ve1y for k= 0 1,2,. ‘ J,'1s briefly

summar1zed in the\f0110w1ng steps. | | | oy

(agn COmpute the opt1ma1 nom1na] so]ut1on z (t vo) = zoa Qﬁa .
A

by settlng y=vg in. the éu1er Lagrange equatlon (4 7)

and theiboundary‘equat1ons (4:2) (4 8) and (4. 9) .

" This 1s'tne usual optimal cohéro] prob]em
‘(b) xTake the total der1vat1ve w1th respect to v of (4. 2),
(4. 7), £3. 8)§§nd
’ a’dlfferent1a] essatjon 1n zo0 and 20] Snbstitdte ' ;

,y~ zg] from step (l).. The resuit is a 11near d1fferent151

(4.10) and set v—v0 The¢resu1t is

equation in zg] with appropriate boundarg conditions:

&it ty and t.. - . . ‘ €4
0 0o - 0 ‘
(c) Assune that zaO’ za], e e ey za(n 1 are now ava1}ab1e.

1

Take: the nth tota] derlvative with respect to v of (4. 2), :
04 7Y, (4 8) and (4.9) and set V=vg. Substitg}e the
previousTy dbtained zgo; ng,'. ._:szg(a 1" * The: |

result is.a linear d1fferent1a] equation in z0 with

) appropriate boundarywcondjtions. Computer Zgn By

0 .0 0. )
- -induction ZaO‘ 23y o0 0 -2, ar? computed successivelye,

Observe that by using the prech1ng three steps it

&7 ¢

is nmt necessary to solve for all of the Taylor series co- . g \;

-?ff+c§F"Fs sinu}taneaus1y ‘Each zgk depends only on zoao: . .



. "' - ‘z a],.,.’ . .’!ﬁp tO Za(k -l)

oy TN 42,3 Examg]e(53) , P |
0pns1der a system dEfiﬁed by .o T

S T Ty "

x = - ——-\;—*—\”fo," x(o,) 1. 0, x( ) = free ‘/;(‘-'\--_(‘4-!?-)

.=x\ v - LI ' - ’. l / ‘ “
Y . . : e . i . N -

v <D o S U ey

@

‘The- performance index is . P L : v , ‘AF
13 / 3 Al » . ’ B - . . R ) / , ) .

2 . - . 3 . - . , ,
. ‘ . .. o |, - , . - e, . ,
L F :?§2v); [ (x2+u2)(dt?; - T ;.(4.Jﬁf

3 0 o ) .“‘ A, - " > ’ -~

Then * - -, -: . . L o o Tt 34 ' T b

Iuiv) [u [x2+ulsr(u -
’ ;‘.‘ , 0 F B

+

+

—x)] d .- (a:15)

"
I—o ‘
.

ot
o , , -,“ s /j
denoting [u:x:x] by Z,- the Eu]ereLagranggeequa ion becomes -
.. P . £ X ‘h" > ’ . )
#”%;%%=Ni‘w¢g~“; , (4.16)
o # 3z L s @
L [2u+r, 2x - ]v A+A, u - lel x-x] =07 -, . . (4.17).
--’/ . p ) B * Q . .

;'The’nomiquf yéiue vd'of -2 is phpSeh,'frﬁm step (a), “
. no s : N ’ i - § R .. - - .
- ‘ I ‘ : ' '
T a0 T O (4.18)
B - 4 Vg G~ . ’ - 2 '
> '} ’ ' { 4\‘ . " - s - !

N o
]
~N
ied
o
N
[
4

v » . . - N ".
,‘D 4 -, ! " ‘. ¢ ay ' -~ . v "’!\.t
-, . T, - ‘.
. Thie boundary conditions vl S . o

. o v s ) »
- . . ,
p , \ \ e , .
S - o = 1. b » Y S - g
L . [ 0 Lo - \ e Con .
. .‘1 a ‘ - - \ A - . . ~
.. . . . NS © . ;
. v'- B4 el D ) . » . .
- . . ' R . .o By . ” . DY T | "4
. f " : . . e . . T
: P Ty R s
d (w) e BTN -
L . . . -
and- a AU A Sl geatie
R ', . + ? ' ot g, d gay s e .
' ” - .
e ¢ . - ’ .
. » ¢ - .
v - M “ , ©
At “ . ’ ' .
a R , ~ . . .
3 . ¢ P b a0 N
r N { e et > ' oy
¢ x . H
o W L oy b 4 . —— W - £ ey ., Rl




L
. L

The solutions for (4.18) and (4 19) are .
O(t) exp(-/5t/2) : T

i Aaolt) = (/5-1) exp(-/5t/2) - ; (4.22)
. - ‘
: ugb(t) = (1 /31/2) exp (- #5%/2) . .
' . R a L . T
‘Forﬁnél step (b) leads to .- J - : 07
ua T r Ay \ e s 23

50 0 ,1 .0 1.0 - ST s
‘Aa] -2 xa] ‘:" 2‘ Aa]’ - I Aao . R ‘ . ) - (’4-25)
: ) r " < . ’ ‘ . ‘ . . ', . ' )
Mith ihg’boundary cdnditibns T X J
e g se
[ K : Coe & "

The solutions for x°0 and AOD from (4 18) and’ (4.19) ,
. (\,1 . ..
B ;are substntuted in (4 24)r Then.the d\fferential equations . '

- # . '
.- may be 1ntegrated to y1e1d the so]utions for (%/ .f > o
| a](t) 20 (t) | and ual(t),‘ . AR L
These are . S b | ‘ ’ -
, 1(t) -ﬂemm & (- YT RSN (R
R . , S P
: ki ' )' : R P
& ‘.;Aa,(E) = ((yﬁlt)/zVK)(1+t/2)exp(-y5%/z) . . .4a.28)
and * . a,(t%,& ((1 ¢574/F)(1+t/2) exb( /5%/2) ~.'t4129)~' §
» 5 ‘ i’ . \:‘
'[Step {c) with n=2 yie]Js a set of differential equations 1n "'qﬂ |
- 0 oo
5 a2’ A2 and "aZ ‘Thu§\4}0, 20 al”: z Z* ol can be obtainhd cl
W ) ! \.vv.
!t, . -~ \‘,‘ -‘: ] . b3 . . . v ‘“.
a c,\* ,,' / o ':. - \ | , ~‘
N - N ! 'r - ."’ e o ~ﬂn"" ; ¥ ; X N \ N ,:‘ i 9‘:




" used. It is g1ven by L .)- -
L ’; j o n L
v dz , .-
T o2 sy O .
, z (t V) z, (tyvg) + 2y 395 (i-vr+ L

v . /)) R -"‘ﬂ vo ,: Ii . i‘ . ;. ‘
Lo My Bzia ' ( O)C . 0) Lo )
+ oL , V-V v .-vs:)/2, . .
i:j vy aYJ v ¥ ii J j .. & ©

.
! N , . . .
. . .
0 N ‘ Le
p
» . N . . . .
’ - i . . + N
. " v 7 i .
o N . . .
. - . . . . .
- L4 o
3 .

= ./\ ¢ R ‘- U\', ) 832 oA o 0 , o " s
5 BT . > a — oyl
2N P AU ‘—""av 3V av‘"' (vi-vid v "-"”."k "k)’:”
., . ., . . - i!J k k 0 ..
AT + L (430)
L s - . . . ., , l ﬁ ﬁ

. derivatives{Qn (4. 30)/

. PR ‘ ) \\r (3)\‘ \' » b IR
'////’4t3' The Method of, Werner (32 [ S S

. .
.
. — PEEN R , ..
v . . o
‘ A 4
-~ . .
, i . ..
o b - . ' ; 4
\, © -

.(using'steps (a) through. (c) for n=172, 3 ;') .. - Y
_ - Having found these time -yarying coefficients, |
b4 (t v) and y“(t v) = xa(t,v) can be expressed as Taylor~
series in (4.10). . ’ ': o .“ﬁxt

-The procedure for mu1tid1mens1onal v 1s similar- e

except. that a Tay]or ser1es in several variables must be-

A A <
) - . - & ~

. l
- Steps "analogous .to steps (a) through (c) are’ used
_to compute the Tay]or ser1es‘coeff1cients. The mixed partia]

}may be computed in successive order
tou , '.9

1 A

starting from zaO' . h p S

D

£

o Ke]ley S techﬁ*ouegwdquires an explicit 1dentifi-
ation of v. which is assumed to be unknoun. This might be .
I ¢ .
an expensive process in terms of compute# time and storage. ’[h, ,

(32)

f c1rcumvent this, werner and’ Cruz suggested a tech-

\‘nique that geofrates the feedback contrgl -as a fuuotion off"'
Tt e output only and does not explicitly depend on o Tﬁ‘Eeg .

confrbl wi]l be denoted by«t (t,y and.js obtained,bvad_ S ;N
* ‘, .o ® T v o . f ;r'A"\s




we represent1ng uc as;é'Taylor series in y about:yg which ‘cop- ;= * -

responds to ‘the optima] contro] for Vo The‘undeterhined

S

coeff1c1ents in the series are obtained'by equating the

ser1es to Tay]on series o u, (t,v) obta1ned by Ke]ley.

¢
i

| - For -a. sca]ar parameter v on]y one output ¥y is . (
Leeded for feedback and therefore u (t,y) need only be ’L.:

T ) \

o expressed in terms of Yy- Thus® \ : . y ) ;

T owe el e .
. . e‘ “"

u (t,y])ﬁ u (t"xa]) ay l 0 (y‘] ya'l) + 's‘;' '%lx T e
i3 R TR

« ‘ et
' B

o

[ 4 =

. . . a u - ) . . .
X . 1 C n . e

T ay]nl 0 (y,-ya,) L dean)
. I o 'Y a1 - e .

. . e , [
R . ) } v

“ ¢+ 7 " Denote the kth

’L)

order senstt1v1ty fﬁnction co-" . -

) that (4 31) becomeS', IR

2

efficfents in (4. 31) by uck

L e G 0y 1 0,042 )
oL ueltyg) = ugg g vy ) v g "czcy]"yall) *
P ) [ ) ) " : j. P ’ ‘ ". - ’ R “. e .
e EEIEE ) 1 (y, DL - 32)

.
~
-

PR oy

) . ‘ . | .\ s
*t L e " The oﬁjegegws ta- compute the ﬁ;:??ﬁcients "cﬁ for

r

. k=0 1,2,. . Once these ‘time-varying coefficients are’_
,' ; determ1ned the feedback control function 1§:obtained from

& e

- tbe sgries in (4 32). o

o . "N\ The control function u (t.yl) is not’ an- explic*t

function of vr.but since y1mdepends on v,‘u depends on v . [y
through y] °If ug it ya,) is to equal u (t v) for-all t eQd
. ,all v, all the total devivatives of u (t v) with reeﬁect to ,“"i

4
w-_ ¢ bl

v.must match those of . u (t,v) for v-vo Starting with\{?e R

‘. .’ « ' . 4 . " i




\ T " " 3 . o e
. .o ‘

ﬁ T }groth derivative, R e ST ‘ g '
SR (t,ya])*~ 0(t) ua(t;yo).*”u_go(t)"‘l L (4.33)
o © 77 - Hence, - ' ’ - : _%’ S BN

VU e 7 L 0 0 T / C«, ' - - LI
I ' Ve - : 9 . uco(t) = u o(t) . v e e c . . 9 (4’034)
m » K ’ g ) 5 : ’ ‘

. | " The fif%t dqrivétire wgbh respect to v of u (t,ya]) Is
2,

. ~. . . . . ' "\:" tl(.‘& i ‘ ‘ - " ’, o
‘ | ;“ f .-- -/J ‘. ' .c a’uc . aya] ’]' = uo :( ’aya] ’; y\"tn‘ - (4‘ 3’5) '
. < 3.4 1 9V el oV S : :

i R 'a ’ VO VO ‘

e Note that fﬁr V= v yaT y al . which is- a}so the first component

«
..
AW
.

Pl  of y The«first derivative of u,. with respect t° v ‘5 A

. ~T

e ,'vvgq

; .
o . q ., . v . - * -
AFS . , . )

: ¢ X ’ . J ‘ .
.’ N , S "o »‘ /‘ '::;,fvo / . ' , . 5. o . g . .
. ‘ % Lo , . . )
- .Since. /ﬁﬁ e g i L y :
. : B - M e du du ) ‘ . : °~ ‘ . . ) '[‘H- . <
‘\& ) , - \ .. . v ‘ ) s i N |
- al,

0,4' O ’ “ ‘1" o ‘ . ’ ' \3

» ’” , ‘ > . . » s
i

!}':— . '.rw.must hold, (4. 35) and (4 35) yield .7 L

S T I P e R T T S
LT "pfoyidgd (?yég{ay)vofg.- Forﬂt?e segon¢qdi;jvat1ve of:uc(g.y;]) \

P ’\*"g " - wit’hjrespect tq -y . ' ' s _/ ,’ . . ‘ - ' . f ? )

; - .

. i 3w & y ou O Y.y .® , s ;
EE L N ¢ )( a‘)2+=( S (—3L) ... (4.39). |
. ‘,‘ T . ‘ ; . '3& . a % - av, ) ‘ay‘lt K avz . ) . o ‘;‘
L ] . . . L “ . .

= co . , . . 3 . R . , ‘ ) ,.," NS o :', s ,”;. . ‘ -
FOr R RERT .. Evaluating (4.39) at v=vy and setting it equal . = " ..:
L ERUEE I S e . : - L T B R P s



0 042 . 0 (04 o0 . R
Uc2 (yal}l'+ "cl.‘yaZ)l - 9a2 ot et (4‘49)

'-whgre.(ygk)] denotes

K : o ~ . .o
G O T P (31}
. ) av VO. yak ] - .. - ; . ¢t .’- ¢ .

\Hence, solving»(4 40) 4 . o ”
"0 ' L : .

on -'uaz ‘l(.y 2)" ' . ’ g ’ ° Y § .

ez T 67 .. e )

v . (yal) - RRE
provided (ya])]fo _ I
The sensitiv1ty functions “aZ’ (yaz)}. (ya])I are :
0 L

.avaiIable from the‘expansion of Za(t”V) and‘y,(t,v) and u.q

| . o .
has begn prev1ous]y calculated. Thus, the‘cojfficdénts,may‘ ’

" be ca]cu]at%d successively from ‘ - ERETRE .
g . k k . ‘ - .‘ . , X /r ’ ’ ; -
ey (-—k—a 2, | L e
\:, N . ‘ . P . . o & .43 ; ”
' DL vavE Vo %k T& . S '
\aﬁy.lzy'a] ‘fo‘r k"'-ﬁo’l.z’ o e o FOT examp]e. —'k=3 . - ,‘,,‘ :‘M ‘:u . '/ ‘.
L . \ A { . B .~ . o __e., o
- ug 3(¥a1) + 3u 2(ya])(ya2)1 +u 1(’c3)1 ;A

R . v
‘o v | - o s
R o T e

R “ o, ¢ . <, L - . ’
e e ' N ) @_ \

2 4

a'.

‘.r" C4 45)

P

1-Ya3 = 3ucp(vay )1 Wanly < Wy tyag)y
o =03 .
\,‘ ® g (ya])] .

‘-
2 >

g

whene all the factors in. the right- hand side of (4 45) are #

- ,,v,-.c

known frdm previous calcu]ation for k=0.l. and 2 in&(Q 43) ”gjf

<% o

The procedure forgpultiple feedback and multi- ,'r ’

dimensiona] is similpr, but 2 Taylor series for sevcral




variables must be employed Instead ‘of a single, feedback v

signal Y “several or even al] components of y must be fed-
)

£ h »

; . back. . - , . | -
If the dimension of the‘parameter vector v is
’-greater than that of tgg output vector,‘y, the output (_____

vector has to be augmented . wﬂi . -

- i“' N ] | . In th1s case,’ 1nstead of a control u (t,y),p‘ t,
" control u(t W) is sought where W is a vecton cons1sting of

y augmented by sagna]s based on y. ‘For example, may be Ty e

taken as - A . N B ,
o W= EyEItd y dt]’ - . . i."(4”46)
Higher order lntegrals may be USed for augmentation to 1n-

- £ Y 4 e
crease the dlmension of w further. - T.

4.3.1 Fﬁ%mcatidﬁ of u (t v) ‘and u (t,w) o L o

,f'i n . For pract1cal considerdtions. in the 1mp1nentation

“of the contro]]er, it is: des1rabTe to truncate the series

e .

: ma and w’. The effect of such a truncation on the,perfor- ' -

L, mance 1ndex J(u, v) is examined

./

7

Let J(u, v) as given by (4 4) be exbanded 1n the e

5
s . .. - 3 A:'_ . : N )
Iaylor series in v: T C, e;, ’. A U

T T duag) (a—) (vovgl

\!’

L p 1 23 . 9 ' oo .
- + 7 Z)V (V"vo) “" - ‘. . vat .. ‘Hﬁo o
. ‘ d o v LT . .

Ir.‘ ) k . -r\. : . - ’)A 5, o "‘ ¢
Lv—vo) + i . (4 47)
f; o oL ) \ . .. ? ) » . ," / . 'i
- 'where v. s assumed to be scalar for simplicity 1n dbtation.' f_ 7;5

VCf nenote the nth order approximation of ua’by u" L fﬁ':i u?', S
o N . , L M A SN S

Yy

. . N I v M .
B N ’ ‘ ’ . - > . *
' ) . A 4 ) . )X I . ]

Geen o
(R




7 ‘92 = ugd +'ug]{v-v0) IR %r.qgn(#-vo)“t . (4.@?57
| h and .the nth-order epproximation for u_(t,w) by u2 - t
T ———— ' S . ’ .
Bt = % 1y ) 6 :
. . S o A ;
T SRR ugn_“('w-wg)" BT R '(3.49) i
. / . . °
' . _ Let the system equatIOns be as given in (4 1), (4 2) :
- :.}. ' and (4. 3) with the f1nal state free. ,He*hayef
k - k k .
- g’;k' (u W |y=v, %;ﬂ- (ug.v) Vnvg -::—;‘%— (ugyV)!,;,o
s S | o | L. (d.s0)
F et . ."fon k=0,1,2, iﬁ .. (2n+r) - -: o ; H ‘ '
| ’ . This 1mplies that an nthaoroer“truncation ;)/ihe‘ :.3
f o éonfro1 res" s in a (2n+1)¢h'ord§r approx;yation of the ' .é' ;
fi L 0'" L opttmally adaptive performance index. B E .
SR .w,_§.4 Choice of Perfonmancé Index B
| s n’f'» _ . Cass1dy(56)&jddsﬂ1ggxnbotham(67) proposed a@}ech- S
. .‘ . 'A nique by which system sensitivity can be, Teduced. It repre— S
gh“i?’ﬁ' ‘;?r_ sents an extension of the optima] contro1 approach to the - 0\
. iw,i ' design problem. They considered the linear regu!/gnf | |
| P *,problem reformulated so ‘that the sensftivity is controlled .
o i ‘léf} by the resultfng control system configupation.‘ - o
) ”j‘L{ | f:;l - The ‘desigh steps are: .- PR ;ﬁm,‘—‘éy K "' ';
E"\‘, SRR e (a) Augment the state vectoruby i set of semst-" - s
f ;;: T 'At,: . _r,;; ‘o tivity vectbrs. i‘{"”j"' “aov ;':{ ?k" "”fi ‘{5
E .“>i; '.‘.f/’”””:‘J (b) Aqgment the contr01 vector'by vectors which éjif'[’ﬁ
RPN I . PORATE : o
ety o o v PR [ ; ! T




B

AN ’ v
. are functions of sensitivity .variation.

'(E) Minimize a duddratic,cost funcfionai in

i

4 the augmented space.

-

.

The resulting optfma] control 1s obtained by linear

feedback from the’ statexand the set of sensitiv1ty vectors. \
(67) , o

]

4.4.1. Higginbotham B Technigye

\\Let the system dynamics be . o ]

-

) = At x(2) + B(t,u) u(E), X(E5) = xg” (4.51)

where pois a constant .vector of p pTant parameters \\

o, State sensitivity dynamics are ‘established by first

o

. defining a set‘of sensitivity vectors. R ",; ]

() = ax(t) ;e AT L sé)
3 L -

Then . from equation (4 51). the sensit1v1ty equations become

:_". .

vi(t)= A(t.ug) vi(t) + 28Ltou) x(t)
e 0 )

#

,., ’,' ) . + B(tpllo) auj,_'_ agf‘t,}l_) u(t)r

wnérefvj(fo) = 0 and g s the vector u evaldaied using

nominal values. Since  the ‘optimal state control law u(t),_ ;/;} B
. : ’

“will be a function of state and sensitivity -expansion of

2

du/ 3u; yields, " ‘ 'Z1£/»~**~-~Qg A SR |
oA P vy e
grj' [J ul, vj(t) + fz [:l J -ﬁ-‘-’- | 4.;‘."..,0_“@944),
Z,Where’j"u énd J are Jacebian m;irices substituting»equatéon
(4 54) ‘and (4. 53; yie'lds S A ' ,
) "?ud \ o \ _,' s ) S ‘r':f




Bt

[

i

-
Let °

\

..
-

‘ . .« % . “

vj(t) = [A(tsuo) + B(t.uo) J u] v (t) u
T8 . . -,
. . i . A av
. 3B . o P 9Vy
+ u(t) + B(t;ug) & [I, u]l ==
Py 0" 4=y Tvq T By
: p BV.' . ’ . K
mg(t) = = [0, u] o~— ' co
. j i=1 'Vi .agj L

”»

where:the d1mens1on of each ms is Yo Also. Iet z(t) be§

J-

defined as the (p+l) n- d1mensiona1 composfte vector of.the ..

vstate and- sens1t1v1ty vectors, that is, z(t) =

vp

EQuat1ons (4. 51) and ¢4, 55) can be written as’
. .. (4 §7)

" z(t) = A (tsn) z(t) + By(t,u): duy ()

®
©

K

-y

| u,(t)?E'[u-(t), m{ty, <. (t)]

‘- .

[X (t)! ’](t)’

(t)] where the pr1me ( ) denotes the transpose.

©

A quadratic cost functiona] is assumed .to correspond to the N

' performance requtrements. Thus - .

P

- PR

‘q.;\ z (tf) Fzty)+ } [ f g (t)Qz(t)

+ (e R(t) u](t)] at .

-

: -

’
3

-

. .
i

‘.(4.58)

R > 3
where the terminal time ty is fixed ahd,speciﬁded F and Q(t)

are symmetr1c positive semidefin1te.(p+l) n x (p+1)n matrices.

and “R(t), is a symmetric positive definite (p*1) r, x (p+])r

matrfx.

* A +

’ o, T, !

In summary. the problem is to find the optimal

state controI law u(t) and the set of optima] sensit{vity

>
(4

rtbhtrol laws\that mjnimize the quadratic cost of functdono] f:
. . : - 1) S

&Q




P 7 ~ , . N ¢
- M A

3

Figure 4. 1 ‘shows the structure of the optimal

'sens1t1v1ty and state controHed regulatlng/ system.

L f

, It.is c]ear that th1s technlque requires the -

generatlon of the sensitivity dynam1cs wh1ch adds to the

—

’memory requlrements. Another drawback IS that the optlmiza- L

. tion process is done in an augmen ed space with the di-en-

pected to vary ,
(66) A ‘

~

.4 4.2 Cassidy s Technlque

8

~

Cassidy treated the specif1c optimal controlQprobieu

~

(s o C. J. This is the Fise of systems wi th inaccessible
states—where feedback,1s ava11able only from the outputs. .~
To. achlevq/the Zkytrol goals the elements of the ma trices

.of the cost fun onal have tu satisfy certain conditions.

, These condittons guarantee that gains corYesponding to—

3
»

. s

unavailable states wil] be zero.- - L e
\The cost functional is chosen as - ;{ :
','1 _d f‘% IO [szx f\rTSx +‘xIwu +‘u7gu] dt .‘.’:,(4;59)
Subject o . . . Loty S e
.. @ . g f "',:’, ’ "a"ﬂ' “‘ c‘ s . N
/ o y=Cx o L T - (8. 50)

o ‘ 7

-‘-f _ Ax +. Bu . x(to) =fc//

s “

where x is an NS e1em§ﬁf state uector‘and u 1s a NC“%lenent
; control vector. The“nec%ssary tgndttiqns defjnfng~the

- optimum are ., ~ . ST e T

(4 61)

-
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. o | » R < (4.62) - |
\ . Tt . ,
; . (4063) - i

i ; ) \, structuref is obtained and simpht)the reduced necessary " N "

3 ~ . T i
ATP +PA+'s + § - (PB + "*“) ! (BTP + !—53—9 X

.

oy . w271 (8T 4 E—§!—;,x - C. .

CX=iAx + Bu, x(0) = S . (4~64) :
P . . R o ' S ~ |
" R . Assume thﬁt the last L states on the state vector
L L2 . o 7.
: , :

are unavailable; G [INS L,O}'Jand consider the fol'l(owing oo Y

45/ " definitfons of s and W ° o : A o
A . : , .o . Lo i

~
W

) = -2 Z(PB + 2') - . i [ ' ~ ., ‘. ‘o' (-4\6‘!5) k .
' s = ((w+w)ch + ch(wT+wT)) D - ' "‘.‘.‘,-.‘ (4.66) O
. . _ ’.‘0 : O , _‘ ':.&’
: P 12 = cecede 1s a NS b_y NS matmx and IL and’ - .
: ’ B N " - v ’ O‘: IL o - a2
¥ : ¢ - <° ) . . ’ '
; \ ' ~" . « . L ,‘ o , ,."’ :l I - y . .
» C INS L are the L b,y L and l‘%identity matriee@ respectively.
?‘f " In addit1on define ' . . \.'- N i "L B "1 .
r . - ,, i EE P . /l ‘ [
N =1 - I, .. ' A (4” 57)‘
R “,’ .:‘4; j ‘ 4:, ., . " \ . , . '
) '_.' o . These defmitmns insure that the desired cont?ol t'ﬁ

°

\ condit’wns which result from ehminating w and. s fron S _““ .

- -
# [

f equat1on§g (ﬁ .62) to (4 63). “ ',"'”, “p’ SIS [: . mi‘ -,;

o - o This technique is superior to that of Hi gginbothu
_in that d1mensionath g themp“rdblem can be red@d T "“
"&,,. s The reduction of dimensionality is a result of the,

¢ fact that ‘the resu1t1ng Ricatti equation gan be partitioned "., 3
¢« into b\otks with dimensions equa'& to that\of ﬁhe oriqinal ‘

A , ' A \\'-' ‘ l oo ey
DT S LI R U
° - . I Lo <y . i., - 5 P .
. . 1\-/ \ . ; -y e i .
\ . \ . \ .

*
I

i
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o
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TN DT T
! o system and if the Newton-Raphson approach is used, ‘the com-
| : ", . LRy a )
{i' . ‘ putattonal effort:increases only iineariy with the number .
,' - of parametérs c0rrespond1ng to a dramatic reduction in ' )

yooee, =* . . [

. computationa] time. . .

: Lo To obtain starting values for the matrices in the
RN ¢ Y o
’ ‘cost functional,\an 1nit1a1 gain that stabilizes mhe syste-

- . - is assumed., The reverse SOC\probiem is E\En so]ved This

) S “is defined as' . T . : -,

; * Given a linear system and feedbac« corresponding

to a stable closed-looP system, .find a -SOC index for which

NG

the given gains are optimum. ‘ .-

e ' . After‘the reverse prob]em.hés beer’solved, a new !
. |
. . SocC problem may be obtained by perturbing the, reverse

- L

prob]em weightings S, Q and 'W.' For any values of S, Q,
‘ “and W in some neighborhood of the reverse problem weight- T

ings, the.new pﬁoblem has a unique soiution.

¥y . ‘\A .- \ 1
~—— N

\ R e The desﬁgn procedure is summarizedwen the fol]ow-

I ing steps: B ) ’\\\. o

(a) For ghe‘given system determine an appropriate’

|
|

l

. . féedback structure and calqulate a stabie.sef»ZN‘- {
of feeoback‘gains. ) ‘ ' ‘5 | |

(b) Solve the reverse SOC problem to obtain a

- benchmark set of weighting matrices.

~ (€) Perturb the weighting matrices and solve the

~
(d) Evaiuate system performante,via‘sinuiaticn..e

T _,;,;;,e ¢ ,qprresponding S0C problems.\.; S *“'c;=




-

pole hdsitions, brﬁcost index calculation. ‘
.(e) Repeat steps (c) and (d) 1f necessary. ‘

¥ S 4 4.3 The Exponentialﬂy W819hted Quadratic Cost Functional
(68)

’

- ' ' Anderson .and Moore introduced a cost functional R

which is bdsically the same as the usual qué&ratic cost
. —_

B .. functional for linear system. The only gifference is that’ \

“the intergnand is multiplied by an exponentiai term.

Th1S leads to results simildr to those oﬁiainab]e -
fon a usual quadratic cost with the only excepti/y that A _ 3
is replaced by (A+a]). The contro] is still generated by

ear feedback from the.states.“ One of the ‘advantages of
a choice of cost is the reduction of trajectory sensi-

ot yity ue to parameter variations. In fact it can be shown
\ -
that sensitivity is inversely proportional. to a. S

| -

l 3
.4.5 Use of Dynamic Compensators '

In tantrol systems. if all the states of the p]ant : <
“'are availabie for measurement or are re-constructible. through'

the use’ of an observer(10 ]2). Nonhamcl7) showed that arbi- ) ‘

g
HRTIN ¢ -
b » . o

trary pole a\location can be achieved through ‘constant
- i e

.feedhack from ail states. In)pabticular a system can be

N stabiiized by placing‘all poles in the ieft hand side of - 1 ii
';J the complex p]ane excluding the imaginary axis. It {s 0;‘\ _‘;i
obvious that there exists more than one gain that canﬁ‘ DR

' achiEVe this objectiye.‘ Specific feedback. gain can b :
cﬁhgsen to stabilize the system and at the same time reduce
the system sensitivity.“ | ' L 4
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The existence of a dynamic compensator that can

. ?tabﬂize a p]ant by acting-on the. avai'lable mutputs only

(59). The neéessany

.\ Y Uwas established by Potter and ‘VanderVelde
. o and sufficient conditions for the existence of such a

compensator are_ that the unstabie modes of the plant_should

be observabie and conbro]iabie. There w111.exist'a-c1ass « o
) . of ‘cempensators that canlstabiiize a given plant. .The -

- \ , .
particular choice can-be made so as to reduce system sen- - .

s -

Csitivity. R :
. . \
N The problem of sens1t1\\j& reductinn u51ng dynamic
. o controi]ers was studied by Sims & Meisa(7°) for the case of

‘Tinear. and‘non]inear “time- invariant systens. Perkins, Cruz

R (71)

and Gonzales approached “the prnbiem from a minimax point

’ “ e K ‘(‘ - . - . '

of view. ) : ) ‘ ’ | ) ‘ |
. 4.5.1 Sims-Melsa Technique(70) g
S o : The specific optimal controi probiem is COHSidered

‘here. This is the fixed structure contr@]ier prbbiem in

*

" which the configuration of the controller are’ preespecified ‘ S

and the values-of the paremeters are to be found to optimize \

- P - « .

‘ -, . -.a given functional. St . .

R . robiﬁg1§ atement . - L | s ' . -

— v — oy .

The problem is to obtain a closed ~-Toop control e ,‘?ﬂf
for the dynamicai system L CoL -‘f~ > ,”i
| j ;o ox = f(x.u t)’ ' | :
based on the avaiiab{e butput




i = . \ ) . 88 "

| R , , L - p F -

r "1 . such that the integral performance index: '

i - . tf ) . o I , ’
J’=_[tb~L(x,u‘;t)dt L. (470)

’ - . l -~

.

" - for fixed values of t; and t; is minimized. 'In the usual
‘ . ' specific thimalvcontrol formu]ation; u is chosen as: ‘ o
‘ u = h(y,a) - . | . . . (a.71)

Wwhere a is a set of coﬁétant pardeters which are selected
to min}ﬁize J. Figure #.2 ~illustrates the usual structure
of the specific'optimal control problem, while Figure 4.3

presents the'su§gested structure for the.dynamical approach

to-specific optimal control. - >
1

&

In the’dynamiéa] controller form of Speﬁifig

optimal control, involves an intermediate dynamical sysien:

L z= k(z,y.u.g.&) s z(tg) = d C Lo (472
and is written as ¢ ' g O =
u = m{y,z,b) o, ' .. . (4.73) )
5, : e

.. The elements of ¢ may be thought of'ag'interpal '
gains, those of b as control cqeffj%ients, and the elements .
of d are the initial conditions of the intermediate dyhgmicall
structure of (4.72). The constpnt,paramefers b, ¢ ahd d are ;,
_.chosen to minimize the ﬁerformande index, J.- The motivatiom
‘%or the dynamical éoptfoIier structdre 1§‘derfved“frop a - "}Sw

r;_:‘.

knowledge of the nature of the solutions of stochastic -

¢ -

f'dynapfcé

control problems.’

It is,;hbyn‘that,use o

~ e v

1 controller cam .. .

- W
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" achieve lbwer'séﬁsﬁgivity and a lower Va1ﬁe for the cost

‘ fdnctional. ﬁowever, no systematic procedure is given f;r ‘ .
the choice of the. dynamics of the controiler. In the éx- o |
amples worked out in the paper, the controller was chosen.
éo act.as an Qbserver of the given ;%ant '
| It is felt. that if a ¥1xed order controller is
chosen with parameters to be selected so as to ninimize
sens1t1vity, better results would have been obtained.

~‘However{ this wi]l increase the dimensionality of the |,

minimization process. . L

4 5.2 Method of Gonzales(7]) ' R RS

In th]S technique the desired overall transfer

’ .

funétion of the system is f1rst found so as to satisfy a

sbec@fic.objectivé. In thé~examp]e given, the transfer
function is chosen in a diagona$form SO that the system

1s decoupled The diagonal elements are chosen so tha&// T

‘x
'\.-1’

.each channel will be of second order with a danping ratio -

- - 1

of 0.707. | o S ..
‘ A two degree qf.frgedom struéture'iﬁ proposed
" where by two coniro{lers G éé;\ﬁ\ire\tg\be se]ected as shonn
in F{gure‘hg.t;. The “con;e_,trai'ntga and H .a:;e.L:hat. |

(a)- 6 and H must represént parame erkindepeydént..—

: (fixed) stable compens fng systens. ( f{; ;
g ','3.(b)l It may be desirable to Avold differentiatiou w#j”fg
- ":.u‘“‘., ‘ 3‘" . "' ! 1" Efther 6 or Hb iR o o, ". .‘. " é :: ;

ll(c) The final valuekof the paraueter-induced ‘
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 (d) The number of poles and zeros-of G and H may . :
’ ) - be fugther restricted for:simplicity of -
.design, desiref asymptotic frequency behaviour.

- . o

avoidance of infinite gain, etc. .

The problem can be stated as follows: ‘ ,
Consider the linear time- invar1ant mdltiv;\?;b]e

contro] system shown in th.\4.4. -The p]ant !s character- -~ . .

jzed by the transfer function matrix P(s,u) whioh’is‘ratidnaI

‘in's;cwhére s is the complex Laplace transform variab]e, andi

H is a plant parameter whose components are unknown, but |

time-invariant. The compensating networks, represented by

the transfer function matrices G(s) and H(s) are parameter-
1nvariant and rational in s. It is. supposed that the.

system transfer function matrix T is specifled to be T ‘ ..

when the—p]ant parameters are at their nominal values 11l TS
| T = T(s.mg) L

= [T +P(saug) e(a.uo) H(s)3” .P(s.ud) e(s)
{/ , . . (4.78)

The matrix T could be specified to obtain some

desired time reSponse, or. to optimize some performance index,

- . ~

i
-

for example. oL : o . S

. - -

‘

In any physical realization of’this system.‘
wili differ from Mo and, thus. the output will differ fro- |
the des i red' output. The output error induced by the para~l{1hgl

Ly

meter variation is .
E’(S:Ul = C(S'uo) - c(fiﬂ) ‘

“":‘T“.’ , \/-'1_1‘;..;.‘?,:...?1(:
LAY flo. e
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C ey g+ by T e
N . , 4 . ’

o
s -

A measure ‘of the: effectébof thts parameter varia-

tion is the scalar sensit1v1ty 1ndex, o

: ’ o . . ﬂ' o ' "
J =’f‘-e'(t,u)'Q e(t,n) dt - e . .. (4.77) -
0 ST S o
' A . .
where e(t,u) is the lnverse Laplace transform of E(s,u), Q
is a positive aef1nite weighting matrix, and the prime e . "

denotes of the matrix transpose. Using Parseva]fs‘tﬁeorem,‘

(4.77) becomes: . ’
} - : TR, B lt’ I E'k-s ) Q E(s,u) ds B :(4 }8)

3
>

a ‘ In (4.78) the pa}ameeer induced erro}'is evaluated for a
] e Specffié system input R. LNotice‘thet'J is-a fdncfiodel of
; B & and H. G and H are to be selected to minimize (4 718) '

| subJect to certain restrictions. These restrictions depehq
- o on the details of'the specified system beihejdesigheJ;

| 4.5:3 Design Procedure ” -

»

S e' ‘ COnsider an open-loop systen, Fiy- (4. 5) having

the same nominal plant input and the same no-1nal output ' ‘iy;v

"« as the closed loop system of Fig. 4. 4 Such systems ‘are

_called noninaily equivalent. It has been shoun that the Lo
parameter variation errors are related hy )
. E(S.u) = SEO(S sll) "‘j'

n

. where
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is the open-lgop parémeterrinduced error, E(s,u) is as .

o defined in (4.75) and where the sensitivity~matri§ S is .

. N
hd - P 1

| Q - 'given by o R , -
N < L1+ Pls.u) 6ls,w) H(s)T” A .. (8.81)
‘ ' In the fo]lowlng only d\fferentlally sma1l parar
e metér‘variations Au = du will bé considered. - For this

" case Ej and E are differentially small: Thus, to first

order, (4.79) becomes: : S
E(s,m) = [T + P(ssug) 6(s) H(s)]’1 Eo(s,u) . (4.82)

Therefore, the Eensitivitx matr1x depends only on the nominal
E" ' ,,b]ant:" o 'j ’ ' L - , St
’ I ,
o B 1 I-j Eo( S.u) S (-S) Q S(S) EO(S.p) ds’ o
o ‘ L . (4.83) -

C The sens1t1v1ty indexni/;ow may be regarded as a .

funct1onal of the sensitivity matrix, S to be mini.ized by
choice of S. Recall that the input R is f1xed. 3pcq\f.is“
" obtained, G -and H can be found frpm (4.81) and (4 4) " .
- PG = S™IT S C . (4.82)
-+ and , o |
S CTHa1-5S 1 o . (4. 85) N
In the event (4 84) and (4.85) have nonusique . -

qy.‘

>,

. .solutions for G and H the desfgner has additiona1 freedou

"in the choice of'compensation‘netuorks., Equatfons (4.84)

and (4 85)also allow physical realizability conditions on

:6 and H to be 1ncorporated easily iﬁ%o 5-:' | o
However. S 1s not: completelyﬂat the desfgner's

vi;;““ xw.,;_' PR
A AT T



N )s the same as the denominator polynominals of ail entries f .

- ) ES S

o 1n the specified system transfer function mabrix’ T _namely,

’

I det(I+PGH). Thus, on]y the numerator pofynéminals in the’ _" -
‘. .. matrix, S'are freé._ The minimum sensitivity problem, then,

has been expressed as one of parameter optimization, the

. parameters being. the coeffic1ents in the nUmerator poly-

__nominals in 5, and the performance index optimfzee-being-

‘the scalan sensitivity index (4.83). ' _ . i ;

. ¢ .
i

s o the denominator poiynominai,of d11 entries in the matrix S L
t . , . f the plant parameter variations are representfd

. ', . by duea and \if ‘the S'matrix numerator coefficients.are

Iy

rebresented y the vector B with BeB, then the. sensitivity’

‘index J may” be regarded as a function J(B, du) of the ,
, , i . .- Lo S
. plant parameter deyiations and the sensitivity numerator -

"

coefficients. Consequently the optimization of (4 83)

] proposed here. may be indicated.by O S o
] S R A min { max [a(s, d,u)] ) e e (i.qs) " 1,
R 7. BeB. duea~ | . '
‘ N | .: " Foir a singie input singie-outp;t system case. o ,
’:i¢, - , ' the sensitivity matrix (4.81) becomes the familiar Bode T (

Lo " | " transfer function sensitivity. If the ant contain§ on]y

idenedsby L
because the

- " “one parameter u, ‘the prob]em becomes that co

(72)

‘ﬁ ‘ Mazer This case simpiifies considerabi

scalar sensitivity index (4. 83) is homogeneous~in (dg)z L-r,\
A Thus, the optimum parameters s are independent of (du). lnﬂ e o
- the mininum of J- with, respeet to ‘8 way be fdund without

first maxinizipg yith respect t? du. The mcst ccnplicate&

.-":' AN R !
."i%,%:ﬁ%s

: H 5 ¢:3 ik, LS .f,‘“ R
P ’ﬁﬂaﬂéﬁ%& m‘%




»

’ situationlﬁf several variable plant parameters, but still
%jﬁgie-input single-outpui,'havé been studied by Gonza]es(73).
. The key to simplicity of the procedure is (4.79)
which ex;resses thé c]oSed-lJ%p error as the output of a _
.~ system wﬁose transfé}ffunction matrix is S and whqse input
is the open-looﬁlg;rp; of the siructurelofJFig. I.SL. The
matr{x S is {ndependent of'du,'while,the input EO is inde-
Ypepdent of B. Sensitivity models are ehp]oyed fo$generate . v
Eg- The numérator coefficients in S are then adjusted w
ite?ative]x until (4.83) is minimaxed, i.e., maximized |
ove}'du anhnliﬁiﬁﬁaéd ove}vﬁhe numberator coefficients"of
S. ‘The‘procédurp is‘re]atiVQIy,simple fo 1mpfeﬁent-on a

digital computer.

. -
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CHWPTER v oo o E

v ‘ SUMHARY AND CONCLUSIONS ¢

- . We have {presented the Sensitivity Analysis o
o ¢

, hecnniques as applied to Optimal Control Systems. We
. - Qheve/shown‘tna} these techniquéslare readily applicable
. ) to design as well as analysis probIEms, to ensure good
. o system performance. ° =
It is conc]uded that by applying these tech-
. ; : - niques to analysi¢l and design, the control engineer éen
| | obtain extra 'valuable informatipn about system behavtoor.
Many‘apparently simplie design problem;, if overlooked
. might lead to serious defic1encies in system performance
o '9 Ct . under operating conditions.‘ Optimal contro] system.design .
S o o shou]d therefore be backed up by sensitivity analysis

to guarantee a»near-optimal performance under the expected.

ff‘-, . varying conditions. “ S v s o ' |
RS . [In ana]ysis and design, the control engineer e

deals with a mathematical model of! the plant rather than

the plant itse]f } Usually, the model form is assumed
~and the va]ues pf the ‘model parameters are computed nsing‘
the relevant identification techniques or imperical forn-

R PN

ulas. The optimal. control 1aw for the .plant is then :?fﬁ‘

ootained based on the\model. In practice, houaver. the
‘values gf the plant parameters wiH differ fron tnose of
the uode1? Consequently,,the control laﬁ'obtainﬁégfor

’to 0 .‘J,

ASﬂQS& the qoality'bijtqe




o BT | - oo
;(, . . ' . _. ; O
the computed cdntro]'to‘the plant, sensitivity ana]ysié

|
R _ . s

' ' techﬁiqges are used. The errors induced in system tra-

o ‘jectory and/or performance index, due to deviations ih- .
{ plant parameters or ipitial states from their nominal

|

- | " values ang obtained. | B I—
- A qomparfsdn between open-lqop and closed- )
| loop fmplemen%ationé of the control law is'prasénted
from the pqint,of view of sensitivityi It is,shown.thai'
tha sensitivity measure is an essential part of the
analysis and‘use of different measures might lead gb
;contradfctory resu]@s._.Thisacontfadiction canbe
eas%ly reso]éed‘if'the measare is stated explicitly.

Since large parameter variations are to be ex-

pected in some plants, the p-sensitivity technique 1s

s
. 7 presented to‘%nalyze thi's .important ‘case.” This technique -
- . ' . LT~ . —~ ‘-. N

.{ ' ' . compares the magnitude of the performance index at extreme

conditions to that obtained at nomina¥ parameter vaiues}
In design, thg\va]ue of p, which can be toleqated, is -
- assumed and the, corresponding parameter variations range
' i§ computed. This serves asga quality control criterion ¥
. _in choosing thecompenents to e used to buﬂd the plant. Ql
On the other hand, if the parameter variatians® are knawn. "

!‘% . . the corresponding value of p could be evaluated.

. . «

IR

control law are treated., It is shown that 1n casa af_

Lu) _\'

u’mtn' ‘

A

S Errors due ‘to erroneous. 1mplmentation of the ffpﬁf.“'i
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analyzed and performance degradation is estimated.

w If the performance degfadat%on due to expegted : \%
parameter variations is unacceptable, some measﬁres
should be taken to.improvg the s}étem: This could be - ’
achieved by using hidﬁer quality compbnents or change of -
system configupqtions. In Chapter IV some design tech-
n{ques used to réduce,systeﬁ sensitivity ar; éiscusseg.
They are c]as;ified into three main categories némeiy,
a&aptfve, choice of performance index‘and use of ?ynamic
compensators.' Techniques using a coﬁbidation of these .
categories can be rewarding, which is nﬁrth inve%tfgsting:

In:this repbrt, only detérministic'cpnfinuousn

systems have been considered. Many excellent papers have

‘appeared in the literhture treating the stochastic-énd

discrete cases. These aré, houever,ibeyond the shobe’of

thi$ report. '~ . B R : oL
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