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ABSTRACT

Modelling and Control of Thermal Deflection
in Machine Tool Structures

Steven Fraser

A significant limitation on the fabrication of precision parts is the inherent
inaccuracy of the machining process due to the thermal deformation of the
machine tool structure. The problem has begun to receive considerable
attentiorn as the threshold for machining tolerances has dropped, and automated
machine tools have become widespread. At the present time, the only
commercially viable method of reducing the operational thermal deformation of
a machine tool structure is fluid showering, a costly and inconvenient process
that is only available for exceptional applications.

This thesis presents a technique for reducing thermally induced
machining error by measuring the structural deformation of the machine tool
while it is in operation, and compensating for it on-line. The structural thermal
deformation is indirectly measured by relating it to point temperatures on the
structure through a process model. A technique for determining the
approximate analytical form for the temperature distribution in the structure will
be developed in the thesis.

The thermally induced deflection of the structure is compensated by an
array of artificial electric heaters, att~~hed to the surface of the struciwure, and
controlled by a PC based numerical control system. The control system
manipulates the artificial heaters to calibrate a deflection pattern in the
structure that eliminates the natural deformation at key points.

The performance of the control system is evaluated using a finite-element
test model of a simulated machine tool structure. The control system approach
tested in this thesis provides a reduction of thermally induced error that is
comparable to the commercial method of fluid showering, but at a fraction of

the cost and complexity.
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CHAPTER 1: INTRODUCTION

The development of achievable machining accuracy over the last 100 years has
been led by the ever increasing demands of the industrial environment for greater
precision in machine tools. The present threshold of achievable dimensional tolerances
has been reduced below 0.01 um for ultra precision machining processes, and is on the
order of 5-10 um for ‘normal’ machining processes such as precision lathes, grinding
machines, and lapping machines. It has been predicted that the ultra precision machining
threshold will drop below 0.001 um by the turn of the century, and the threshold for
normal machining processes will be below 1 um.

Before the turn of the last century, structural imperfections in the machine tools
was the primary source of machining error. As production capabilities improved, and
normal machining tolerances were reduced, the mechanical effect of static and dynamic
deflection came to be the dominant source of machining error. Now as mechanical effects
are gradually being reduced, the problem of thermal deflection is receiving more
attention. The widespread introduction of automated NC machine tools has aggravated
the problem further, because the human operator has traditionally been the primary
source of compensation.

Compensating for thermal deflection is a relatively new aspect of machine tool
design. The problem can be significantly reduced by designing the structure for optimal
thermal stability, and by simple measures like cooling fluid, chip removal, and external
location of heat sources. Although the problem can be reduced at the design stage, there

will always be some residual thermal deformation of the machine tool and work piece
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because of the thermal loading that is inherent to the machining process. When high
precision tolerances are required, it becomes necessary to employ active compensation
for thermally induced error. The only commercially viable method for actively
controlling thermal deformation available today is fluid showering of the machine tool
structure and cutting tool. Fluid showering of the structure is expensive and inconvenient.
The machine tool must usually be located in a sealed cubicle, and a refrigeration source
is required.

There has been a significant amount of research in the area of active measurement
and compensation for thermally induced machining error, but the work has not yet led
to a practical solution to the problem. The major obstacle to active measurement and
compensation is the problem of measuring the thermal deflection of the cutting tool while
the machine tool is in operation. Sensitive deflection measurement equipment is easily
damaged in the machining environment, and the readings are often obscured by the
cutting process. Most attempts at measuring the thermal deflection have focused on the
development of process models which relate the thermal deflection error to some other
variable which is more easily measured. The problem with modelling a machine tool
structure is that the geometry and boundary conditions are complex, and resist accurate
modelling. Most of the models that have been developed by the researchers have either
been too simple and inaccurate, or too complicated and slow to incorporate into a real
time control system. Thermal deflection modelling of the machine tool structure and
cutting tool is presently the effective barrier which must be overcome before a

commercially viable deflection control system is possible.
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The objective of this thesis is to develop a multi-axis feedback control system to
reduce structural thermal deflection error in machine tools to a level comparable with
fluid showering. The control system must be universal, flexible, applicable to real
machine tools of any type, and insensitive to all kinds of measurement and actuation
errors. The problem of measuring the deflection error will be solved by developing a
process model to relate it to another variable which is more easily measured.

The first part of the thesis focuses on the problem of modelling the thermal
deflection in a machine tool structure for control purposes. The model must be accurate
and reliable enough to predict the thermal deflection in the structure to an accuracy
greater than 1 um, for an arbitrary load condition. The model must also be
computationally simple enough to keep up with a control system with a cycling frequency
in excess of 0.1 Hz. These are conflicting requirements that demand a new approach to
the modelling process. A new method of determining the approximate analytical form of
a model to represent a complex -hysical process will be developed in this thesis. Once
the approximate analytical form of the solution is determined, it serves as the
approximate mathematical base on which to curve-fit the solution to the real problem.
It will be shown that this method of generalizing an analytical solution is able to mecet
the stringent requirements of the thermal deflection control model better than any other
type of model, including finite-element models, analytical models, and empirical models.

Once the thermal deflection models have been developed, they will be assembled
into an operational control system, the effectiveness of which will be tested on a finite-

element test model of a simplified machine tool structure. The numerical controller will
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be a 486-PC, and compensation will be effected through an array of artificial electric
heaters attached to the surface of the structure. The numerical controller generates a
deflection field with the artificial heaters that counter-balances the deflection error of the
disturbance heat generation, and yields a net deflection error approaching zero at key
points on the structure. It will be shown that the accuracy and reliability of the method
is comparable to some of the commercially available methods of fluid showering, but at
a fraction of the cost and complexity.

A number of original procedures and mathematical derivations will be developed
in the course of this thesis. and these are listed here:

-A new method of determining an approximate analytical model for a real process
will be developed, called the generalized analytical solution method. The generalized
model meets the requirements of real time control better than any other type of model
for complex real problems.

-In order to implement the generalized analytical method on the structure of a
machine tool, the analytical solution for a thin infinite plate with a convective boundary
condition on its face, and a circular heat source at its centre, will be derived for the first
time in this thesis by the method of the modified Hankel transformation.

-The analytical step solution to the infinite plate model will be transformed to a
Laplace system of variables analytically, by complex integration.

-A generdl numerical procedure will be developed to use the Laplace
transformation to solve the inverse problem of heat conduction. The method allows the
Laplace method to be extended to complicated and numerically defined functions that do
not have an analytical transformation.

-A new method of solving the exponential integral at extreme points will be
developed based on methods of variational calculus.

-A new method of numerically transforming complex functions from the Laplace
domain to the time domain will be developed. The new method is faster and more
reliable than the numerical methods previously available, and it allows for the
transformation of singularity functions which do not satisfy the existence theorem of the
Laplace Transformation



PART I: THE LITERATURE REVIEW

CHAPTER 2: LITERATURE REVIEW OF THERMAL DEFORMATION IN
MACHINE TOOL STRUCTURES

2.1 The Problem of Thermal Deformation of Machine Tool Structures

2.1.1 The Sources of Inaccuracy in Machine Tools

The accuracy of a machine tool is described by its ability to correctly position a
cutting tool relative to the work piece, and maintain the correct position during the
cutting operation. The sources of inaccuracy derive from i) structural imperfections, if)
measurement effects, iii) mechanical effects, and iv) thermal effects:

i) Structural imperfections include deviations in the uniformity of guideways, and
the imperfect alignment of the spindles, chucks, and bearings. This is often called
kinematic inaccuracy, because it derives from positioning errors that occur in the absence
of any thermal or mechanical loading. The accuracy of the machining can be no greater
than the accuracy of the machine itself, so much depends on the production capability of
the manufacturer.

ii) Measurement effects are the uncertainty in the measured positions of the
cutting tool and workpiece. The accuracy of the machine is limited by the ability of the
operator to correctly position the cutting tool. This is especially true for numerically
controlled machine tools, where the cutting path is programmed from a computer model,
and the tool is positioned automatically without any conventional reference point.

iii) Mechanical effects include the static and dynamic compliance of the machine

structure and cutting tool, and the wear of the cutting tool. Mechanical effects have
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received a considerable amount of attention over the past twenty years, as industry has
demanded greater and greater accuracy from the machine tools.

iv) Thermal effects are the changes in the relative position between the cutting
tool and work piece that derive from the thermal loading of the machine tool. Thermal
effects are an inevitable consequence of the machining process because of the thermal
loading and large physical dimensions of the structure. The sources of thermal loading
include changes in the ambient temperature, and steady and quasi-static temperature
gradients due to internal sources of heat generation. In contrast to the problem of
mechanical loading, thermal loading has not been extensively studied, for a number of

reasons, primarily [1]:

- A general lack of interest due to inadequate understanding of the problem by the
general user.

- The need for no load tests.
- The need for a described ‘duty cycle’ appropriate to each test.

- The requirement for instrumentation not normally found on the shop floor.

The focus of this thesis will be the problem of the thermal deformation due to the
thermal loading of the machine tool. This only addresses part of the inaccuracy problem
discussed above, but it is a significant part, especially since researchers and

manufacturers have successfully reduced many of the other sources of inaccuracy.



2.1.2 The Sources and Nature of the Thermal deflection Error

There are two principal sources of thermal deflection error: uniform changes in
the ambient temperature, and temperature gradients from internal sources of heat
generation. There are three predominant places where the deformation occurs: the
structural frame of the machine tool, the cutting tool, and the work piece. The
cieformation of the cutting tool and the work piece is due to the high intensity heat
generation at the tip of the cutting tool, and from the chips and cutting fluid [2]. The
deformation of the structure is primarily due to internal sources of heat generation, such
as bearings, motor, and gearbox [3]. Changes in the ambient temperature can also have
a serious effect on structural thermal deformation, but this is much easier to control. The
heat of the cutting process and the heat of the drive system are really an ineviable
consequence of the machine’s operation, but environmental conditions are more easily

controlled by air conditioning or air showering, sometimes within a sealed cubicle [4]}.

2.1.3 The Relative Significance of Thermal Deformation

The significance of thermal deformation as compared to other sources of
inaccuracy dcpends on a number of factors, including the size of the machine tool and
the work piece, and the co-efficients of thermal expansion. From an examination of
available test data, Attia [1] was unable to find any conventional machine tool with a co-
efficient of expansion of less than 0.01 mm/m for a temperature change of +1° C. Thus,
thermal deformation can be a significant problem even in relatively small machine tools,

and it is usually a very serious problem in large machine tools [5].
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Opitz (cited in [6]) states that the errors caused by thermal deformations have, in
many cases, the same order of magnitude or higher than the errors due to kinematic
inaccuracy and the static and dynamic compliance. Mottu [7] states that from his
experience, 50 to 60% of the errors in precision parts result from thermal errors. As a
rule of thumb, Weck (cited in [6]) stated that thermal effects in steel parts become
significant at a tolerance of about 2.5 um. For pieces over 25 cm long the threshold is
about 25 um, and for aluminum pieces it can be as high as 125 um. Weck is referring
to the problem of thermal deformation of the work piece, but in most conventional
operations the structural deformation of the machine tool is a greater source of thermal
error. For most machine tools of conventional size, thermal deformation is a significant
source of error for tolerances below 10 pin.

There is a prevailing ignorance among users and manufacturers of the cost and
nature of thermally induced errors [3,8]. While significant progress has been made in
understanding and reducing some of the other sources of error, very little progress has
been made in the area of thermal deformation. Mottu [7] credits this to the adaptive
operator, whose skill and experience allows him to produce an acceptable product in spite
of some impossibly bad thermal problems. Indeed, many machine tools are bought and
sold with so little attention to their thermal characteristics that the only requirement is
that they be warmed up prior to accuracy testing [3].

The situation has been changing however, with the introduction of automated NC
machines. Without the skill and judgement of a human operator to compensate for

thermal errors, the machine tool manufacturers must resort to other means. At the same
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time, high technology fields such as high energy lasers have pushed the threshold of
machining tolerances below 0.025 um. Since thermally induced errors are at least two
orders of magnitude higher than that, the problem of thermal deformation cannot be

ignored any longer [3].

2.1.4 Minimization of Thermally Induced Error
2.1.4.1 Reducing the Thermally Induced Error at the Design Stage

The internal heat sources of a machine tool are the various elements of the drive
and power transmission system, including motors, gears, bearings, pumps, hydraulic oil,
and the machining process itself. It has been indicated in [9] that 60% of the power inpul
to a machine tool is dissipated in the drive and power transmission system, inducing
machining error by the thermal deformation of the structural frame. The remaining 40%
finds its way into the cutting tool and work piece, and into the chips and cutting fluid.
The local deformation of the cutting tool is higher than the deformation of the frame
because of the extremely high temperature of the cutting tool, but the total deformation
is usually less because of the small dimensions [2]. Much of the heat from the cutting
process flows back into the structural {frame of the machine tool, resulting in additional
deformation of the structure.

Much of the thermally induced deformation can be eliminated at the design stage,
by methods as simple as proper chip disposal, and cooling the cutting fluid [6]. Other

techniques include:
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-External location of the major heat sources, like the motor and bearings [10].

-The utilization of thermal symmetry, so that the thermal deformation is symmetric about
some point or axis, and the net deflection of the point or axis is zero [3,11].

-The appropriate positioning and attachment of heat sources, so that the deformation in
critical directions is minimized [12,13].

-The use of structural materials which are capable of rapid and uniform distribution of
heat to minimize temperature gradients.

-Using insulation to control the flow of heat, and direct it away from critical areas [14].

-Direct temperature control of the structure by a shower or bath of cooling fluid [15,16].

2.1.4.2 Compensation for Thermal Deflection at the Design Stage

Optimizing the design of machine tools to protect against thermal error is an
important practice, but there will inevitably be some residual thermal deformation. Also,
structural redesign is not feasible for existing machine tools, only for new designs. Even
at the design stage, it is often preferable to solve a problem electronically rather than by
elaborate mechanical solutions, given the advanced state of numerical measurement and
control technology.

Compensation schemes for thermal deflection are particularly attractive for
numerically controlled machines, because implementing the correction is as simple telling
the numerical controller how much to move to compensate. The major obstacle is the

problem of measuring the relative deflection between the cutting tool and the work piece
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while the machine tool is in operation. It is not practical to measure it directly because
the delicate measuring equipment is easily damaged, and chips and cutting fluid would
obscure the readings. Most compensation schemes measure the thermal deflection
indirectly, by another physical property that is directly related to the thermal deformation
but is more easily measured. The most frequently used property is the surface

temperature of the structure [17].

2.2 The Measurement of Thermal Deflection
2.2.1 Direct Measurement

Tonshoff et al. [18] studied the problem of direct deflection measurement. They
looked at a number of displacement sensors with a resolution less than 1 um, including
touching gauge fingers (resolution 0.5 #m), and non-touching optical sensors (resolution
1 um). The sensors were applied directly to the machine tool, and used to intermittently
sample the relative deflection between the cutting tool and work piece.

Direct measurement establishes the real position of the tool. This allows for the
compensation of all sources of inaccuracy, whether or not they are thermally induced.
It also eliminates the need to model the structure, as is required for indirect
measurement. The disadvantage of direct measurement is that the delicate sensors are
easily damaged during the operation of the tool. Also, their presence is intrusive,
interfering with the smooth operation of the machine tool. Finally, the presence of chips
and cutting fluid in the working environment makes the readings unreliable, especially

for optical type sensors. After thoroughly studying the problem, Tonshoff concludes that
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"The direct and continuous detection of thermally induced displacements in most machine
tools is not possible, because direct working sensors cannot be used during the machining
process.”.

Tonshoff et al. [18] tested another direct measurement technique using integrating
expansion sensors. The sensors are placed at strategic locations on the machine tool
structure between the machining table and the cutting tool. The sensors are tightly fixed
to the machine structure, and directly measure the thermal expansion. The expansion is
integrated in a line from the work to the tool, giving a direct estimation of the thermal
deflection in the structure. the weakness in this method is the relatively low resolution

of the expansion sensors.

2.2.2 Indirect Measurement of Thermal Deflection from a Thermal Deflection Model

Most compensation schemes utilize an alternate physical property to indirectly
measure the thermal deflection, because of the difficulties associated with direct
measurement. Sartori, Balsamo, and Marques [19] use a thermal deflection model that
divides the structure into a number of simpler components, and use a combination of
finite-element equations and polynomial curve-fitting to represent the components. The
model expresses the structural thermal deformation as a function of the temperature
distribution. The measurement scheme requires more than 100 thermocouples, and the
thermal model consists of some 1400 equations. The authors believe that the large

number of thermocouples is a minor problem, because of the low cost of sensors and
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data acquisition cards. The results showed that 80 to 85% of the deformation could be
explained by the model.

The obvious problem with this method is the large number of thermocouples and
the complexity of the deflection model. Many of the thermocouples are located in
difficult positions, around internal bearings and spindles, and the positioning must be
accurate if the model is to yield good results. The control system for the test machine is
updated every 5 to 10 minutes. This is a very large time delay for a control system, and
it is related to the complexity of the model.

In an on-line process there is a compromise between speed and accuracy.
Improving the accuracy of an on-line model may actually cause a deterioration in the
performance of the control system if it increases the computation time of the controller,
and creates a large time delay between the input sampling and correcting signal. With
a 5 to 10 minute time delay, a lot of uncontrolled deformation can occur between
changes in the controller output, and the control system is always 5 to 10 minutes behind

the present state of deformation.

2.2.3 Indirect Measurement of Thermal Deformation from Limited Temperature
Data

The most common methods of indirectly measuring thermal deflection avoid the
data acquisition problems associated with measuring the complete temperature
distribution. They utilize an empirical transfer function that relates the thermal deflection
to a small number of measured temperatures which are representative of the overall

temperature distribution and deflection. Chiappulini et al. [20] use five measured
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temperatures at five points on the structure, one close to each of the major internal
sources of heat in the machine tool. The transfer function relating the measured
temperatures to the thermal deformation is based on an empirical polynomial equation

of the form:

k k
6 = bO + ;biiT} + ZjbijTiTj + e (2‘1)
- i

The empirical parameters are found by optimizing the fit between the empirical equation
and the response of the test structure for a variety of operating conditions. The
displacement response of the structure is measured by three displacement transducers
mounted on the mandrill nose of the test milling machine.

Chiappulini et al. [20] made the assumption that the sources are independent of
one another and the principle of superposition applies. The assumption was necessary to
simplify the calibration of the parameters, which would otherwise require multi-variable
optimization. This assumption was their largest single source of error because of the
practical difficulty of running each of the sources independently in a real machine tool.

Jedrzejewski and Modrzycki [21] used a similar approach and the same empirical
transfer function as Chiappulini and Gianotti, except that they use a finite element model
of the machine tool structure to curve fit the empirical parameters. The model does not
have the same practical limitations as the real structure tested by Chiappulini. The
sources can be operated independently, so that the parameters can be linearly curve-fit
for each measured temperature. Another advantage is that the model determines the

deflection, so it is unnecessary to measure it with a transducer. But the accuracy of the
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empirical transfer function depends on the accuracy of the finite-element model of the
structure. Real structures are difficult to model, especially in the area of the heat sources,
so discrepancies between the transfer function and the real structure are inevitable.

Ichimya et al. [22] used an empirical transfer function to relate discrete
temperatures to the thermal deformation of a milling machine structure. The empirical
constants are determined separately for each input load condition, so the parameters must
be changed each time the loading conditions change. With a continuously variable load,
the accuracy of the results deteriorates rapidly.

The major disadvantage of an empirical transfer function is that the form of the
empirical equation is not related to the mathematical form of the real solution. The
empirical equation can be matched to the physical system for only a small number of tesl
inputs, but the thermal loading of the real structure is infinitely variable. There is no
correlation between the physical form of the model and the physical form of the solution,
so the response to untested inputs is unpredictable. Increasing the flexibility of the
transfer function to accommodate variable loading requires higher order polynomial
expressions, making the transfer function cumbersome and the empirical constants

difficult to determine.

2.2.4 The Mathematical Justification for the Limited Temperature Data Model
The work of Balsamo et al. [19] is based on a clear physical relationship between
the temperature distribution in a solid and its thermal deformation. The work of

Chiappulini et al. [20] and Jedrzejewski et al. [21] does not have a mathematical basis,
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it is based on empirical observations. Nevertheless, there is a mathematical justification
for using discrete temperatures to predict the thermal deformation. The temperature
profiles of discrete points in the vicinity of a heat source are uniquely defined by the
magnitude of the heat generation. Thus, there is a direct relationship between discrete
temperatures profiles in the vicinity of the heat sources and the thermal boundary
conditions of the structure. The thermal boundary conditions define the complete
temperature distribution, which in turn defines the deflection. Hence, there is a direct
physical link between discrete temperatures in the vicinity of the sources and the thermal
deflection [23]. The methods proposed above do not attempt to actually define the
relationship, they only recognize that it exists, and curve fit a polynomial solution. In this

thesis the relationship will be better identified by studying its mathematical basis.

2.2.5 Exact Modelling of Thermal Boundary Conditions to Indirectly Measure
Deflection

The limitation of empirical models is that they do not define the physical
relationship between the input and output variables. A number of researchers, including
Moriwaki [24] and Jedrzejewski et al. [25], have gone another route, attempting to
exactly model the thermal and deflection processes which occur in the machine tool
structure. This is a tedious process for a real machine tool because the geometry and
thermal boundary conditions are complex, and resist exact modelling [26]. The method
is used mostly for the analysis of lathes, because the thermally induced error is mainly
attributable to the thermal elongation of the main spindle, a phenomenon known as

spindle growrh.
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Moriwaki uses the axial symmetry of the main spindle and housing system of a
lathe to represent it by a two dimensional finite difference model. The heat generation
comes from the thrust and radial bearings supporting the spindle. The greatest obstacle
to exact modelling is determining the actual heat generation of the bearings. Jedrzejewski
et al. [25] found a discrepancy of a few hundred percent between the power generation
actually observed in modern bearing assemblies and those predicted by the existing
theories. The large discrepancy is due to the significant improvements is design and
manufacture of bearing assemblies that have occurred in the last twenty years.
Jedrzejewski et al. [25] also found that the power generation of a bearing depends on a
number of parameters, including the speed, the internal mechanical forces, and the
operating temperature. Furthermore, they found that the power generation of a bearing
depends on its age and its condition. Thus, the relationship between the input parameters

and the power generation is not constant over the useful life of the machine tool.

2.2.6 The Difficulties Associated with Exact Modelling Machine Tools
2.2.6.1 Numerical Modelling

Exact modelling of machine tools can only be done numerically, by finite element
or finite difference methods because of the extreme complexity of the g ometry and
boundary conditions. The methods suffer from uncertainty in the boundary conditions,
as discussed above, but there are also problems with modelling real elements ke
spindles and bolted brackets [25,27,28]. In the internal mechanisms of a machine tool,

the heat flux is defined by conduction, but also convection and radiation from one part
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to another because of the proximity of the mechanical elements. This type of heat flux
is d.fficult to model, even numerically.

Harary (cited in [6]) investigated the finite element method against a number of
test structures, and found serious disagreement with respect to the accuracy needed for
machine tools. Hicks et al. (cited in [6]) have also had poor results with FEA codes:
"The finite element method is a very good means of predicting mechanical stress.
However for thermal deformations, we believe that it is only able to predict about 20%

of the deformation."

2.2.6.2 Anaiytical Models

Exact analytical modelling is a difficult, or even impossible solution for most real
problems. Exact analytical solutions are only available for some simple geometriez like
slabs, cylinders, and spheres, for certain prescribed boundary conditions. The models
cannot be readily assembled into more complex structures because the boundary
conditions at the interfaces of the elements would tend to be complex, and could not be
handled analytically.

Sometimes an exact analytical model is used to represent a more complicated
problem, even though the shortcomings of the model are recognized, and certain
inaccuracies in the solution are expected. The Rosenthal solution for the temperature
distribution in a weldment puddle is derived with the assumptions of pure conduction,
constant thermal properties, and a single point heat source [29]. Although ti2

assumptions are not correct for a real welding process, the simplified model is widely
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used as an approximate solution to the real process. Another familiar example is the
lumped heat capacity model of a solid. The exact analytical solution to the lumped model
is treated as an approximate solution to a real problem with a small Biot number, where

Bi=Ih/k [30].

2.2.7 Indirect Measurement By Approximate Analytical Modelling

Analytical models are the most desirable basis for a control algorithm because
they are both flexible and computationally efficient. Finite element algorithms are
normally too slow for control purposes, and the exact modelling suffers from the
limitations discussed in the last subsection [31]. Empirical models are probably the most
cumbersome of all, and the solution is only valid for the limited test inputs for which it
was derived. While analytical models are the most appealing, they suffer from two major
handicaps: the limited number of solved problems, and the difficulty in measuring some
analytical parameters.

In their paper on Weldment control, Bates and Hardt [32] employ an analytical
model to represent the temperature distribution around the arc in a welded plate. The
problem with the analytical model is that two of the analytical parameters defining the
temperature distribution cannot be measured or accurately predicted. Bates and Hardt
solved the problem by treating the analytical parameters as empirical parameters, and
calibrating them on-line to fit the actual solution. Assuming that for some parameter
values the model can predict accurate isotherms, they reduce the problem to an on-line

method of determining the ‘optimal’ values of the parameters. The procedure is as
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follows: 1) measure the temperature at two points on the plate. 2) Adjust the parameters
to get an optimal match between the measured temperatures and those predicted by the
analytical model. 3) Using the parameter values to define the analytical solution, predict
the entire temperature distribution in the welded plate.

The empirical parameters lose their physical identity, so the optimal values do not
correspond to the correct analytical ones. The procedure does more than determine the
values of two unknown analyiical constants, it finds an optimal fit between the solution
to the analytical model and the physical solution, offsetting some of the intrinsic
weaknesses of the analytical model. The method can be extended to other physical
problems, developing a combination analytical/empirical solution that is custom fit to the
physical problem. If the form of the analytical solution is similar to the physical solution,
then the analytical/empirical solution can approach the accuracy of fully analytical
solution. This is a very powerful method that will be developed further, later on in the

thesis.

2.3 Summary of the Thermal Deflection Review

The objective of this thesis is to estimate the thermal deformation of a machine
tool structure, and then compensate for the deformation with a numerical control system.
The deflection of the structure cannot be measured directly, as discussed in section 2.2.1,
so it will have to be measured indirectly by an alternate physical property. The deflection
of the structure is directly related to the complete temperature distribution, but it is

impractical to measure it directly, and the complexity of the transfer function makes it
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unsuitable for on-line control, as discussed in section 2.2.2. Devising a thermal model
of the structure in addition to the deflection model limits the scope of the input to the
thermal boundary conditions rather than the temperature distribution, as discussed in
section 2.2.3. But it is difficult to measure the thermal input directly, because the power
generation of the bearings depends on too many parameters and the relationship is
unstable over the life of the machine tool, as discussed in section 2.2.5. The most
practical input for control purposes is a small number of discrete temperatures at strategic
locations on the structure, as proposed in section 2.2.3. The physical justification for a
link between discrete nodal temperatures and thermal deformation was given in section
2.2.4, but the mathematical form of this relationship has never been determined. An
empirical transfer function based on a polynomial equation was introduced in section
2.2.3, but it must be rejected because it is too awkward, and unreliable for untested
inputs. Exact numerical solutions based on finite element and finite difference models,
like the ones in section 2.2.6.1, must also be rejected because they are too slow and
inaccurate. The best procedure is to determine a combination analytical/empirical
solution, by the method discussed in section 2.2.7. The thermal deflection model relates
the thermal deflection to simplified thermal boundary conditions, but this still leaves the
problem of determining the boundary conditions. This can be done by a similar method
to the one given in section 2.2.7. Measure a small number of discrete temperatures in
the vicinity of a heat source, and then optimize an empirical parameters of the model so
that the model fits the measured temperatures. The general form of this problem is called

the inverse problem of heat transfer, and it will be treated in detail in the next chapter.
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Once the boundary conditions have been identified, the thermal model gives the

temperature distribution, and the deflection model gives the thermal deflection.



CHAPTER 3: LITERATURE REVIEW OF THE INVERSE PROBLEM
3.1 Introduction to the Inverse Problem

The direct problem in heat conduction involves the determination of either the
heat flux or temperature distribution in a structure when the initial and boundary
conditions are known. The inverse heat conduction problem (IHCP) arises when an
unknown boundary condition must be determined on the basis of internal temperature
measurements. The determination of boundary conditions is an important element of heat
transfer because it is often the first step in the analysis of a real syster. when the
boundary conditions cannot be measured directly. There are other problems that are
commonly referred to as inverse problems, including parameter estimation and sensitivity
analysis, and the techniques developed to treat those problems are similar [33].

There are a number of inherent difficulties associated with the inverse problem,
and these are grouped into three major categories: i) the difficulty of expressing the
solution in explicit form, ii) instability, and iii) the non-uniqueness of the solution. These
three difficulties will be discussed in the next section. It will be shown that special
techniques are required to deal with the problem, because it defies the usual methods of
solution. In section 2.2.3, the Stoltz [34] method will be introduced and used as an
example to illustrate the difficulties associated with the inverse problem and the special
character of the solution. More practical solution techniques will be introduced in the

later sections.
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3.2 Special Difficulties Associated with the Inverse Problem
3.2.1 The Difficulty with Obtaining an Explicit Solution

With most problems in heat transfer there is a direct and one to one
correspondence between the input and output variables [33]. For a fully defined input,
such as the heat generation at a boundary, there corresponds a unique temperature
distribution, which is the solution to the direct problem. This relationship can be
reversed: for a defined temperature distribution there must correspond a boundary
condition, which is the solution to the IHCP. A chiral problem is one which is
mathematically similar in the forward and backward directions. The mathematical
expression for a linear spring is chiral because the direct problem F=kx, and the inverse
problem x=F/k, are mathematically similar. A linear differential equation is also chiral
if the input is the forcing function.

Most problems in heat transfer are not chiral because there is a preferred
orientation for the solution. The basic structure of the heat conduction equation makes
it more difficult to obtain an explicit solution for the boundary conditions than for the
internal heat or temperature distribution. The boundary conditions are normally applied
to the general solution once the differential equation has been solved, so the boundary
conditions are integrated into the solution and it is usually not possible to separate them
and solve explicitly. Burgraff [35] derived explicit theoretical solutions to the IHCP for
a number of basic shapes, including a slab, cylinder, and sphere. Burgraff’s method is
to define the solution as an infinite series, such that the problem becomes chiral and an

explicit solution to the IHCP is possible. Burgraff’s procedure is not a practical one
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because it only applies to simple shapes and the solution cannot be stabilized by the
methods that will be introduced in the following sections. The significance of his work,
from the point of view of this thesis, is that it demonstrates that chirality is determined
from the method of solution, and is not necessarily an intrinsic element of the problem.

In most of the methods that will be presented, the chirality of the problem makes
it impossible to express the boundary conditions as an explicit function of the internal
temperature. The problem can only be solved by assuming a functional form for the
boundary condition, and then solving the direct problem [36]. The functional form of the
boundary condition contains some unknown parameters which are solved explicitly, and
this becomes the solution to the IHCP. This creates another problem, because assuming
the functional form of the solution in advance means that the functional form of the input
is defined by the problem, and so the input cannot be specified in advance. This is the

source of the non-uniqueness of the solution which will be discussed shortly.

3.2.2 Instability

The early research done by Stoltz [34] and Burgraff [35] recognized that the
solution to an inverse problem suffers from an inherent instability because of the delaycd
and damped nature of the solution to the direct problem. Attia et al. [37] used the finite-
element method to investigate the stability of the IHCP in machine tool structures. Figure
3.1 shows their finite-element model of a simplified machine tool structure, along with
the steady-state isotherms for a unit heat generation of a source. The model is exposed

to a convective boundary condition on its upper and lower faces. The transient
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Figure 3.1: Finite-Element Model of Machine
Tool Structure Showing Isotherms [37]
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temperature profiles for four nodes on the surface of the model are given in figure 3.2,
when the source is subjected to a unit step heat input at t=0. The distance between the
node and the active boundary increases progressively from node 1 through node 4. The
greater the distance between the node and the generating boundary, the smaller the
temperature rise, but more importantly, the greater the time lag between the step change
in the boundary and the response of the temperature profile. This shows that the gain
between the input and output for the direct problem approaches zero as t-0. If the
problem is inverted then the gain approaches infinity as t-+0. Small measurement errors
can lead to instability because they correspond to large changes in the boundary
generation. A solution is said to be unstable when small changes in the input variable x
produce significant changes in the output variable y. Mathematically, this is the condition

that occurs when:

a , (3.1)
y

x|&

or,

%> (3.2)

%I

where,

X is the input variable
y is the output variable

Murio et al. [38] demonstrated the instability of the IHCP by taking the Fourrier
transformation of a one dimensional infinite slab problem. They showed how the solution
to the IHCP multiplies every Fourier fiequency component in the input by a factor of

exp| [w/2], demonstrating that the IHCP is highly ill-posed for high frequency inputs.
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3.2.3 The Non-Uniqueness of the Solution

The solution to the inverse problem is not unique for discrete input data because
the mathematical form of the input determines the structure of the solution, and with
sampled data the mathematical form is unknown. When solving a direct problem, it is
the boundary conditions that determine the form of the governing equation [36]. To
illustrate this, consider the one dimensional heat transfer equation for a plate in polar co-

ordinates:

1

T”+-;T’-aT=%T (3.3)

If there is no convective boundary on the plate then the last term on the left hand side
of the equation drops out. Thus, it is the boundary conditions that determine what
mathematical form the solution will take. In a direct problem, the boundary conditions
are specified by the problem, so the form of the solution is known in advance. But in an
inverse problem the boundary condition is what must be determined so its form is
unknown and thus the form of the input is unknown also. This can lead to problems in
practical situations where the input is obtained experimentally. Arbitrarily assuming a
mathematical form for the output can lead to inaccurate results, because the form of the
input can be fundamentally altered in the process.

When solving a direct problem, the input js always defined continuously and
uniquely in the time domain [36]. When the input is sampled at discrete intervals, a
functional form for the data is always assumed so that the input is defined continuously

and there is only one possible solution to the direct problem. The input to the IHCP is
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not continuously defined for discrete input data, so there is no unique solution in the
sense of a direct problem. This can be understood by reference to figure 3.3. Figure 3.3
shows how more than one continuous functions can be equal to [T] at each T;. Any [q]
which generates a continuous T(t) that matches [T] at each t; is a solution to the IHCP.
This combined with the inherent instability of the inverse problem can lead to an
unstable, oscillatory solution. This point will be addressed later in the chapter. In the
case of a direct problem, sampled data is used as the basis for a continuous function, say
a series of steps or line segments. Since the functional form of the input is defined

continuously, the solution is a unique one.

TEMPERATURE
00

12

#* Measured Temperature —— Curve! ™= Curve 2

Figure 3.3: Possible Solutions that fit
Discrete Temperature Data
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3.3 The Stoltz Solution

One of the first general methods to solve the inverse heat conduction problem was
developed by Stoltz [34]. His method is based on the Duhammel integral, and is
applicable to any linear problem where the geometric conditions do not change. The
Duhammel integral states that the solution of any linear system to an arbitrary input can
be found through a convolution integral of the input function with the step solution of the
system. Mathematically, the Duhammel integral is expressed as follows:

t
T(z, t)=To+‘£q('r)i‘%iE§il-dr (3.4)
where ®(r,t) is the step solution for T(r,t) and q(t) is the input. For the inverse problem,
it is T(r,t) that is known and q(t) that must be found. But as is usually the case with the
inverse problem, the output variable is not readily available in explicit form. Stoltz
assumes the form of the output q(t) to be a series of constant steps, and expresses

equation (3.4) in finite-difference form as follows:

(7] = [®] [q] (3.5)

where [®] is a transformation matrix, or the finite-difference representation of equation
3.9
[T] is the matrix of temperatures T;
[q] is the matrix of step magnitudes q;

The next step is to invert matrix [$] and solve explicitly for [q]:

(q) = [®]([T] (3.6)
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The inverse matrix [$]! does not have to be solved because it is an upper triangular
matrix. The q; can be found sequentially starting with q,, q,, and so on. Stoltz’s
derivation does not actually use this matrix formulation, he derives the same sequential
algorithm directly from equation (3.4).

Stoltz's procedure is very simple and versatile method for linear inverse problems,
but there is no effort to control the inherent instability of the solution. Furthermore, it
is only required that [q] be a solution to equation (3.6), whether or not it is the desired
solution. At small sampling intervals, random errors in the temperature measurcments
induce wide oscillations in the g, values. The accuracy that can be obtained from the
method is limited by the inability to reduce the sampling interval.

Stoltz uses a solution to a direct problem to solve the corresponding inverse
problem. This is generally true for all of the inverse methods because of the nature of

the heat conduction equation, as discussed previously.

3.4 Regularization
3.4.1 Whole Domain Regularization

Since Stoltz’s paper in 1960, other researcher have sought ways to increase the
stability of inverse problems. There are two specific problems which must be addressed:
1) The inverse problem opens the door to more than one possible solution because the
input function is not defined continuously in the time domain, and 2) measurement errors
and numerical round off errors lead to instability because of the large output gain for

high frequency inputs. Figure 3.4 shows two possible inverse solutions for a hypothetical
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heat generation [q]. The solutions were obtained by the Stoltz method for the transient
temperature profile in a convecting plate. Both satisfy the input function [T] at each time
t, but one is relatively stable and the other is oscillatory. The smooth function is
probably the correct solution to the physical problem, but an unregulated procedure like
the Stoltz method might just as easily produce the oscillatory solution, especially if the
sampling interval is small and the measurement data contains errors. A number of Soviet
researchers, including Alifanov and Artyukhin [39], and Tikanov [40], developed a
method of biasing an algorithm so that it converges to a particular type of solution. This
method is called whole domain regularization, and it makes an algorithm much more
likely to converge to a stable solution than to an oscillatory one [36,39,40]. The method
requires a solution to the direct problem, call it T(t), where T is the temperature at some

interior node in a solid, due to a heat input q(t). If Y(t) are the measured temperatures
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at times t;,, then without regularization the error residual is defined by:
5= (v,-T,)2 (3.7)
T 1T .

If S is differentiated with respect to g, @,,....q,, and each equation is equated to zero,
a system of n equations is generated for n unknown g;. If Y(t) is the Duhammel intcgral,
then the solution is equivalent to the Stoltz method and there is exact matching of Y, and
T, [41]. With exact matching, the method suffers from the same stability problems as the
Stoltz method. To overcome this problem Tikanov introduced an extra term into the error

residual [40]:

n n
S=3 (Y;-T)%+a X g} (3.8)

Iml Ie=1

The extra term is called the zeroth-order regularization term. By minimizing S with
respect to q,,...q,, the optimal solution for q,,...q, accommodates the condition that the
q;’s be as small as possible, as well as minimizing the error residual. Since these are
conflicting requirements, the choice of a is critical. If a=0, then exact matching between
Y; and T, is obtained. As o, the regularization term dominates and q, is zero for all
values of i. A similar method, called first order regularization, minimizes the following

residual [36,39,40}:
S=8 (¥,-T)2+a'D ( )2 (3.9)
= - + -q, .
PRt “1.1 d;.17Q;

In this case, there is a compromise between minimizing the error residual, and the first

derivative of the solution q(t). With both zeroth order and first order regularization, the
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algorithm is more likely to converge to a smooth solution like curve 1 in figure 3.3,
rather than curve 2. Oscillatory solutions tend to have large magnitudes and abruptly
changing slopes. Thus, an algorithm which minimizes these characteristics tends to
converge to the more stable solution. On the other hand, with regularization there is no
longer exact matching between Y; and T;. Second order regularization is biased toward
the solution with the smaller second derivative. It is obtained by minimizing S defined
by the following equation [36,39,40]:

n n-2
S=12 (Y,-T;)2+a B (q;,,-2Q;,,+4d;) 2 (3.10)
-1 i=1

Regularization is an extremely powerful technique which can be applied to linear
as well as non-linear problems. All that is required is a solution to the direct problem,
and the means to solve an nxn system of equations which may or méy not be linear.
Numerically, the most challenging problem is solving the nxn solution matrix. As the
step size is decreased, the size of the matrix increases, and so does the computer time
required to solve it. This is especially true when the matrix is non-linear. Although the
speed of the algorithm is always significant, it is especially critical for the purpose of real
time control because the speed of the algorithm defines the cycle time of the digital
controller. An inversion method which increases the accuracy of the solution will not
necessarily improve the performance of the control system if it increases the computation
time as well.

Alifanov et al. [39] used the regularization method to stabilize a solution to a non-

linear inverse problem. The problem is a generalized one-dimensional heat conduction
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equation corresponding to heat transfer in a porous object with internal heat and mass
evolution. The procedure generates a system of non-linear algebraic equations with a
symmetric, five-diagonal, positive definite matrix. The result illustrates the problem with
the regularization technique. If the time step is small, then the solution to the system of

equations is time consuming.

3.4.2 Sequential Regularization

It is possible to reduce the size of the solution matrix by a method called
sequential regularization [41]). The time domain is divided into segments, and a
regularized solution for each of the time segments is obtained. In the extreme case where
the time segments comprise only one time step t,;-t;, then the matrix for each interval
is 1x1 and no matrix solver is required. Beck [41] concludes that sequential
regularization produces similar results to the whole domain procedure. This statement is
true if there is no future information incorporated into the whole domain procedure. As
an example, consider again the Stoltz inversion method, based on the Duhammel integral.
The solution can be expressed as a linear transformation matrix as in equations (3.6) and
3.7):

[T) =[®] [q]
(3.11)
[@]7[T] = 4]
Where [$] and [®] are lower diagonal matrices. Since the transformation matrix [$]'
is linear and lower diagonal, q; is a linear function of T;, T,,,...T,, but it is independent

of the temperature history following t;, (t;,y, t,+2,...t,). Thus, there is no advantage to be



gained from using a whole domain method rather than a sequential method. In fact, the

matrix [$]” can only be solved in a sequential manner because it is already lower
diagonal.

Physically, [$] must be a lower diagonal matrix because the present temperature
distribution has to be independent of future changes in the boundary conditions. A
machine tool structure cannot anticipate that more heat shall soon be supplied by a heater
or convective surface. However, If [$] is a lower diagonal matrix, then [$]" will also
be lower diagonal. Thus, exact methods are sequential by definition. This is not the case
however, when regularization is used. Each g, is chosen such that the residual S is
minimized. That implies that some property of the whole solution, either the absolute
value, the first derivative, or the second derivative, is minimized also [36,42]. Hence,
there is a communication among all of the q,, past and present. In this case the sequential
solution is not equivalent to the whole domain solution. But if the time segments contain

more than a few time intervals, then the final results will be similar.

3.5 The Function Specification Method

Another important class of whole domain estimation, called the function
specification method, was introduced by Frank [43]. To solve the inverse problem, he
represented the boundary condition b a polynomial with unknown co-efficients and then
solved the corresponding direct problem. He used a least-squares method to best fit the
co-efficients of the direct solution to match arbitrary temperature inputs. These co-

efficients define the input boundary condition. This is a powerful method that works on
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linear or non-linear problems. The stability of the solution is well controlled becausc it
is guided toward a particular form, as with the regularization method. Another factor
contributing to stability is that future information is incorporated into each time step. An
inherent weakness in the method is that the accuracy of the solution is dependant on the
assumed form of the input. It works best when the form of the solution is known in
advance [44].

Raudensky [45] used the function specification method to estimate the heat
transfer co-efficient in hot steel surfaces. He assumed that the relationship between
temperature and the heat transfer co-efficient is a second order polynomial. The co-
efficients were found by minimizing the square of the error residual.

Beck et al. [46] used a function specification method for the analysis of quenching
and heat transfer processes. They devised a code, called the QUENCHID, which can
treat one dimensional non linear problems with a variable number of future time steps.

If the problem is linear, then assuming a polynomial input will yield a linear
solution matrix. If the assumed functional form is exponential or sinusoidal however, the
solution will be non-linear, even if the problem is linear. Hence, the functional form of
the input should be chosen with caution. When dealing with linear problems, most
researchers prefer to use polynomial expressions. This can become cumbersome when
high order polynomials are used to achieve good accuracy. One way to solve this
problem is to divide the time domain into segments and apply the function specification
method to each of the segments separately [44]. This forms a compromise between a

whole domain method and a sequential procedure.



38
3.6 The Beck Method

In the regularization method and the function specification method, it was seen
that the utilization of future information improved the stability of the method. If the
algorithm is only looking as far as the next time step, there is a tendency to
overcompensate for small perturbations. But if the algorithm is looking several time steps
ahead, it is more likely to choose a stable solution rather than an unstable one. Beck [47]
proposed a sequential function specification method which incorporates future
information, but advances only one time step at a time. The procedure is as follows: the
previous heat flux components, q,,...q,,, are assumed to be known, and the objective is
to estimate the next component q,. In order to include future information into the
solution for g, a functional form is assumed for q in the region qu, Guv1s Quezs--Queris

such that q,,4,...Qn+,. are functions of q,. The error residual:

r
S'=121 (mei-l_Tm#i-l) (3.12)

is minimized with respect to q,, and an estimate of q,, is obtained. All of the q values
except q., are discarded, and the procedure is repeated for the next time step. If r=1 then
no future information is used and exact matching of the measured and experimental
values is obtained. If r> 1 then there is no longer exact matching between T, and Y,
but the solution is stabilized because the algorithm sees the whole domain and not just
the next time step. Beck recommended a value of about 3 or 4 for r. The simplest

application of this method is to assume that q,41=qp42= .. = Qi1 =0
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3.7 The Trial Function Method

Another popular heat inversion technique is called the trial function method. This
method combines the function specification method with regularization, and was
developed by Twomey [48]. The basic concept is the same as the function specification
method, except that regularization terms are included in the residual. The method is
useful, especially when higher order polynomials are used to represent q(t) because high

order polynomials are prone to instability.

3.8 Iterative Regularization

All of the methods discussed so far arrive at an explicit solution for the unknown
boundary condition. The next two procedures are classified as iterative regularization.
As before, a method of solving the direct problem is required, but instead of inverting
the problem and solving explicitly for the boundary values, successive guesses are tried
for the input, and the direct solution is used to evaluate the correctness of the guess [42].
If the solution to the direct problem matches the measured data within some prescribed
degree of tolerance, then the solution is found. While the simplicity of the approach
seems appealing, the method requires some kind of guidance to direct the approximations
in the right direction. If solutions are tested at random it would take a long time to arrive

at an acceptable solution [49].
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All methods of iterative regularization require a measure of the correctness of the

solution. The usual criterion is the error residual:

b
s- £ o o2

The second important element to iterative regularization is a mechanism which guides the
successive approximations toward the correct solution. Given two successive
approximations to the boundary condition, the second approximation will be an
improvement on the first if the magnitude of the change in the error residual is negative,
that is if dS=S,-S, <0. If q,(t) is the i® approximation to the boundary condition and S,

1s the error residual corresponding to q,(t), then a negative magnitude for the derivative:

as _ o
dg g (t)-q(t) (3-14)

implies that g,(t) is a better approximation to the solution than q,(t) [49]. In order to
speed convergence, it is desirable that the derivative in equation (16) be as small as
possible. The gradient of a function defines the magnitude and direction of the maximum
slope of the function. Therefore, the direction of maximum decrease is in the direction
opposite to the gradient of the function. Thus, for an initial guess g;, a better estimate to

q is given by [39,42]:

Vs, (q;)

ql'.1=q1‘3m (3.15)

where, ,
Vs;(g;) = The Gradient of S,

B = A positive constant
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The gradient of S is an m-dimensional vector, where m is the number of discrete time

intervals. That is:

gy (t) = [qgy(t), qu(t), q(ty), ..., q;(t,)] (3.16)

Where integer m defines the dimension of the vector q.
The first method of iterative regularization is called the steepest descent method.
This is a logical application of the above theory. If the solution to the direct problem is

given by:
T = Plg(t)} (3.17)
then given an initial guess qi(t), an improved estimate is given by [41]:

Qi1 = gi'Biij(Q1(tj)) (3.18)

where,

= 3.19
L RV, S (g (e )P (3:19)

The new estimate is obtained by moving a particular distance in the direction of
maximum decrease of the error residual. The displacement of this step is defined by the
constant B.

The physical significance of q and Vq in the steepest descent algorithm is
illustrated by figure 3.5. The variables q and Vq are m-dimensional vectors, where m is
defined by the number of time steps t,. Figure 3.5 shows three hypothetical iterations of
the steepest descent method for m=6, along with the exact solution. The first
approximation for q(t) is a horizontal line. The gradient is a 6-dimensional vector, a

multiple of which is added to the previous approximation. The new approximation is
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Figure 3.5: Steepest Descent Example showing
Three Iterations

closer to the exact solution than was the previous approximation. Similarly, the second
approximation is closer than the first. The multiplier B should decrease as the
approximation approaches the exact solution.

LeBrizaut [50] used the steepest descent method to calculate the required heating
boundary condition for a mould to generate a desired temperature distribution in a
thermoplastic material. He uses the finite-element method to solve the direct problem for
the inversion algorithm. The solution is accurate, even for discontinuous solutions.

Kang and Zabras [51] used the steepest descent method to estimate the optimal
boundary heat flux in a solidification process. The model of the direct problem includes
a solid region, a liquid region, and an interface between the two. The algorithm was

tested against the exact solution with impressive results. The solution is accurate for a



43

relatively large time step, and the accuracy improves as the time step is reduced. This
is in contrast to unregulated solutions, even exact ones like Burgraff’s [35] solutions,
where the algorithm becomes unstable for small time steps.

The disadvantage of the steepest descent method is that it requires iteration to
reach a solution. This can be time consuming, especially if the solution to the direct
problem is very elaborate. The advantage is that it can be used for linear or non-lincar
problems, and it is particularly useful when there is more than one boundary condition
to be found.

Similar to the steepest descent method is the conjugate gradient method. 1t is also
an iterative process that utilizes the gradient of the error residual, but it uses a slightly
modified algorithm that considers the previous two estimates q,, and g, ,.

Neto and Ozisk [52] used the conjugate gradient method to estimate the strength
and location of a plane heat source inside a plate. They used the conjugate gradics.'
method instead of the regularization method or any of the other methods because 1 erative
solutions are particularly useful when more than one parameter is required. They pointed
out that regularization is implicitly built into the program, so the procedure is insensitive
to perturbations or measurement errors.

Osman et al. [53] used the conjugate gradient method to solve for the thermal
boundary conditions in a D-shaped ingot. The TOPAZ3D finite element code for heat

transfer was used to solve the direct problem.
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3.9 The Space Marching Method

Another inverse method that has become popular is the space marching method.
Space marching is a finite difference solution to the heat equation, but instead of solving
explicitly for the temperature distribution from known boundary conditions, the space
marching technique works by extrapolating interior temperature data to the boundary.
Space-marching is a risky procedure because it extrapolates the measured data, and
extrapolation is always more hazardous than interpolation. Furthermore, there are a
limited number of thermocouples that can be used to determine the temperature
distribution within the structure. It is also difficult to apply the method to two-
dimensional problems.

Space marching requires temperature data in a structure at distinct space and time
intervals. It is important to accurately know the positions of the thermocouples relative
the boundary condition that is to be measured. The best methods utilize future time data
when space marching toward the boundary. A practical difficulty with space marching
is that the space increments must be equal to the distance between the measured
temperature nodes. Thus the space increment cannot be reduced below the closest
practical separation of the thermocouples.

Raynaud [54] applied the space marching technique to a one-dimensional problem
of solidifying metal. He used a combination of central and backward difference
expressions to represent the derivatives in the heat equation, resulting in four and six
point computational molecules. The mesh size of the finite-difference grid was chosen

so that the advancing solidification front crossed only one node per time step. The results
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were close to the analytical solution, but a large number of temperature measurements
are not convenient in most situations.

The difference between a space marching solution to an inverse problem and a
finite-difference solution to a direct problem, is that the space-marching algorithm must
extrapolate beyond known data, instead of interpolating between known boundary
conditions. Thus the measured temperatures should be as close to the boundary as
possible. Collecting more nodal temperatures improves the reliability of the solution, but

the data is usually difficult to obtain,

3.10 Direct Numerical Solutions

Finite-element and finite-difference methods are often used in the solution of the
inverse problem, frequently as the only possible solution to the direct problem in the
iterative regularization methods. These numerical solutions are sometimes the only way
to obtain a direct solution to a real life problem, such as welding, casting, or thermal
modelling of machine tools. Their application to direct inversion is limited however,
since an exhaustive knowledge of the nodal temperatures in the structure would be
necessary to directly solve the inverted solution matrix. Finite-difference methods are

used however, in the space-marching technique, discussed previously.

3.11 Conclusions of the Inverse Heat Conduction Problem
In section 3.1 it was found that an inverse problem is more difficult than a direct

problem because of three factors: 1) the difficulty of expressing the solution in explicil
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form, 2) instability, and 3) the non-uniqueness of the solution. In section 3.2.1 it was
found that the first factor comes from the chirality of the problem. Furthermore, it was
found that the chirality is determined by the method of solution and is not inherent to the
problem. In section 3.2.2 it was found tha. instability is due to the delayed and damped
nature of the solution to the direct problem, and is therefore an inherent characteristic
of the IHCP. In section 3.2.3 it was found that the non-uniqueness of the solution is a
consequence of the solution methods, and is not necessarily inherent to the IHCP. In
section 3.3 the Stoltz solution was introduced. The Stoltz method is simple and efficient,
but there is no control over the inherent instability of the problem. In section 3.4
methods of regularizing an IHCP were introduced. Regularization is the most widely
used method of dealing with the instability of the IHCP. The problem with
regularization, from the point of view of this thesis, is that it requires future information
and is not readily compatible with classical control theory. In sections 3.5, 3.6, and 3.7,
the methods of function specification, the Beck method, and the trial function method
were presented as alternatives to regularization. These methods suffer from the same
limitations as regularization with regard to control systems. In section 3.8 the methods
of iterative regularization were introduced. These methods are most suitable for non-
linear problems with more that one unknown boundary condition. The problem with the
methods is that they are inherently slow, and therefore not appropriate for real time
control purposes. The space marching method presented in section 3.9 is the inverse

version of the finite difference method. The problem with the method is that it requires
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too many measured nodes, and it is not accurate enough to fulfil the requirements of the

control system.
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CHAPTER 4: LITERATURE REVIEW OF REAL TIME CONTROL OF
THERMAL DEFORMATIONS

4.1 Introduction

A variety of methods of dealing with the problem of thermal deformation in
machine tools have already been discussed in chapter 2. The methods fit into three broad
categories: i) Reducing the propensity for thermal deformation at the design stage, ii)
passively reducing the thermal inputs while the machine is in operation (ie. proper chip
disposal and external temperature control), and iii) active measurement and compensation
of thermal deformation during machine operation. Optimizing the thermal behaviour of
machine tools at the design stage is an essential practice, but it will never entirely
eliminate the problem of thermal deformation under general loading conditions [55].
Some of the passive methods of reducing thermal deformation are also indispensable,
especially when it is as simple as diverting the chips away from the structure. While
sophisticated passive methods like liquid showering are highly effective for specialized
applications, it is an extremely awkward and expensive procedure for general purpose
applications [6]. In the past, liquid showering was the only possible solution where strict
control of thermal deformation was required, such as the precision grinding of ultra-thin
quartz wafers [56]. Active methods o reducing thermal deformation have not yet gained
commercial acceptance because the accuracy and reliability of the methods are not
generally impressive [57,58]. The fundamental difficulty with active compensation is “he

problem of measuring the thermal deformation while the machine is in operation. Indirect
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measurements of deformation rely on tenuous empirical or quasi-empirical relationships
that are slow to evaluate and difficult to implement with existing control theory.

There are three important elements to a real time control system: i) data
acquisition of the input variables, ii) the structural configuration of the controller and
control system, and iii) the mechanism for implementing the control output. Each of

these elements will be considered in the following sections.

4.2 Data Acquisition

The problem of data acquisition has already been considered in depth in the
preceding chapters, so only the conclusions will be restated here. The direct on-line
measurement of thermal deformation is not feasible in a realistic machining environment
[18]. The thermal deformation must therefore be measured indirectly, by an alternate
physical property or properties that are directly related to the thermal deformation. There
are three principal groups of properties which have been used to estimate thermal
deformation: i) the operating parameters of the machine tool [24,25], ii) a large number
of thermocouples representing the temperature distribution of the structure [19], and iii)
a small number of discrete point temperatures [20,21].

Indirect measurement requires mathematical models to relate the input variables
to the thermal deformation. The form of these mathematical models defines the form of
the control system, because the models are the essential building blocks of the control
system [32]. Control system designers will frequently try to gloss over the problem of

mathematical modelling, especially when the problem is complex and reliable models arc
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difficult to obtain. But poorly defined models yield complicated, slow, and cumbersome
control systems. When dealing with complicated three dimensional machine structures,
the process of mathematical modelling deserves an extraordinary amount of attention.
The investment in time and effort will certainly pay off at the next stage, when the

models are assembled into a control system.

4.3 The Controller and the Control System

Figure 4.1 shows a schematic drawing of a control system. The input variables
are measured on the real structure, and they define the magnitude of the controlled
variable é through a series of mathematical models. The controller is the brains behind
the control system. It examines the estimated controlled variable, and then determines
an appropriate actuation signal to maintain a predetermined condition of the controlled
variable [59]. It is sometimes convenient to think of the controller as encompassing the
entire operation between the input variables and the actuating signal, as represented by
the dotted box in figure 4.1. The way in which the controller operates on the input
variables depends on the nature of the input variables, and on the mathematical
relationship between the input variables and the controlled variable.

Much of the classical work on control theory is based on mathematical transfer
functions in the s-domain or z-domain. The controller generates a signal based on the
proportional plus integral plus derivative (PID) of the difference between the measured

and desired values of the controlled variable. PID control is fast and reliable, but it
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Figure 4.1: Schematic Drawing of the Control System

relies on well defined mathematical transfer functions that can be transformed to the z-
domain or to the s-domain [60]. When the mathematical models are not sufficiently
reliable, it often becomes necessary to use adaptive control. Adaptive control is the in-
process calibration of the system parameters, which means readjusting the constant
parameters of the mathematical models (ie. the gains K and the time constants 7) {60].
If mathematical models are not available, or if the number of input variables is large,
then classical control theory is not effective and an alternate solution must be found. One
of the most powerful methods of dealing with multiple inputs and poorly defined models
is with expert systems [61]. An expert system involves a statistical matching of the input
to the output variables. One of the most promising new fields in expert systems is the
area of fuzzy logic.

Expert systems are revolutionizing the science of control system design in the
applications where there is no clear and direct relationship between the input variables
and the output, such as pattern recognition [61]. As the availability of these systems has
increased, they are frequently applied to more conventional problems, so as to avoid the
difficult mathematical modelling of the physical processes. But it is not true that an

expert system is always superior to classical control methods. If there is a physically
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direct relationship between the variables, then it is far better to identify that relationship

with a definite mathematical expression, rather than simulate it with an expert system.

4.3.1 Types of Coatrol Systems

The form of the control system is essentially determined by the form of the
mathematical models making up the system. Sata et al. [62] developed a method for
controlling the thermal deformation of a machine tool structure by reducing the warm up
time to bring the structure to thermal equilibrium. The deformation is related to the heat
generation by finite element models of the structure. Finite element models are not
compatible with classical control theory because they cannot be transformed to the s-
domain. Sata et al. used the method of linear programming to find the optimal actuating
signal. Linear programming is a non-conventional method which applies to matrix 1ype
problems like this one. The most serious problem with the method is the long
computation time for linear programming a large solution matrix.

Balsamo et al. [19] developed a combined empirical- finite element model relating
the deformation in a machine tool structure to the measured temperature distribution.
Measuring the temperature distribution required more than 100 thermocouples, as
discussed in section 2.2.2, This model is incompatible with classical control theory, and
Balsamo states that only a control system based on a ‘real proper expert system’ is
capable of handling the complex model for industrial applications.

In their paper on weldment control, Bates and Hardt [63] used a simplified

mathematical model to estimate the temperature distribution in an arc welding process
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from limited temperature measurements. The simplified model is not adequate to describe
the welding process without on-line parameter catibration, requiring an adaptive control
system. Nevertheless, the advantages of a direct mathematical model are the relative
simplicity of the control system, the reliability of the direct relationship, and the speed
and accuracy of the control system.

Ichimiya et al. [64] used a linear transfer function to relate the thermal
deformation to a small number of positional temperatures in a machine tool structure. A
control system based on this model would depend heavily on adaptive control because
the linear constants change with the operating conditions of the machine tool. Ichimiya
et al. did not actually build a control system with their model, but the decision to use
adaptive control with such a primitive transfer function is questionable. Adaptive control
is a powerful method when the form of the transfer function is partially known. Since
the mathematical form of their transfer function is completely unknown, an expert control
system would certainly yield better results.

Adaptive control adds an extra loop a linear control system for the calibration of
the system parameters. Calibration is usually an iterative process and significantly
increases the calculation time for the controller [63]. From the point of view of the
control system, an ideal model is one which accurately describes the relationship between
the variables without the need for parameter calibration. If a problem is inherently lincar
then there theoretically exists a model which is compatible with classical contro! theory
without adaptive control. The challenge, especially for complex problems, is identifying

the form of this ideal model.
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4.3.2 Types of Input Parameters

Three types of input parameters were identified in section 4.2 for the thermal
deformation problem:

i) The thermal deformation is related to the operating parameters of the machine
tool through three mathematical models, as shc ./n in figure 4.2. The first model, relating
the operating parameters to the heat generation of the primary sources is an unstable
relationship over the life of the machine tool, and it is difficult to accurately define
[24,25]. Furthermore, the relationship is generally non-linear, and is thus incompatible
with linear control theory.

ii) Relating the thermal deformation to a large number of temperature
measurements requires only one mathematical model, as shown in figure 4.3. The large
number of inputs and the complexity of the mathematical model makes it necessary to
use an expert control system [19]. An expert system does not take advantage of the direct
relationship between the input and output variables, and it adds to the computational

inefficiency of an already cumbersome model.
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Figure 4.2: The Models Relating the Thermal Deformation to
the Operating Parameters of the Machine Tool
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Figure 4.3: The Models Relating the
Thermal Deformation to a Large Number of
Temperature Measurements

iii) The thermal deformation is related to discrete temperature measurements in
a structure by three mathematical models, as shown in figure 4.4. The first model
represents an IHCP between discrete temperatures and the thermal boundary conditions,
the second model is a direct heat conduction problem relating the thermal boundary
conditions to the temperature distribution, and the third model relates the temperature
distribution to the thermal deformation. A variety of researchers defined this relationship
empirically, as discussed in section 2.2.3, but up until now there has been no general
mathematical treatment of the problem [21,22,23]. Empirical transfer functions are
generally incompatible with classical control theory, even when modified with adaptive
control.

One of the objectives of this thesis is to define the mathematical relationship
behind the three models shown in figure 4.4. The solution to these models will be used
to define s-domain transfer functions relating discrete temperatures to the structural

thermal deformation, and design a PID control system using classical control theory.
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Figure 4.4: The Models Relating the Thermal Deformation to
Discrete Temperature Measurements

4.4 The Compensation System
4.4.1 Types of Compensation Mechanisms

The final element to the control system in figure 4.1 is the activating mechanism
to compensate for the thermal deformation. The compensating mechanism is usually a
physical process or variable which is capable of making fine adjustments to the position
of the tool, and is also capable of being tied in to an electronic control system. If the
machine tool is numerically controlled then a numerically actuated positioning system is
already available, and compensation is effected by adjusting the position of the cutting
tool to neutralise the thermal deformation [20]. Most NC machines have the built in
capacity to accept on-line input from a separate control system.

For NC machines, the numerical positioning system of the machine is the ideal
actuating mechanism for the forward loop of the thermal deflection control system. The

most important advantages are:

-The actuating mechanism is provided by the NC machine so that no additional
hardware is needed [20,57),
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-The execution time delay for the actuating mechanism is small, and the
positioning accuracy is very high [19,20].

-The actuating system does not interfere with the normal operation of the machine
tool [20].

If a machine is not already equipped with an automated position controller then
the compensation is much more difficult to implement. One method of implementing the
corrections for traditional non-automated machines is through the machine tool operator
[20]. When used in this fashion, the electronic part of the control system performs
measurement of thermal deformation only, and it is up to the operator to set the position
of the cutting tool accordingly. This method is very inconvenient because it requires a
high degree of human interaction and attention. The corrections can only be made
intermittently, when the operator is not occupied by other tasks. Furthermore, this
method cannot be implemented in a semi-automated, production type environment, where
there is very little human supervision of the machine tools.

With non-automated or semi-automated machine tools, the compensation is best
effected through an external actuating system. One method is to attach a piezo-electric
transducer between the structure and the cutting tool [24]. This allows for fine
adjustments to the position of the cutting tool when tied in to a digital control system.
The problem with this method is that the transducer reduces the stiffness of the tool
holder, and three-axis compensation is cumbersome.

Another way to effect compensation in non-automated machine tools is to attach

artificial electric heaters onto th. structure [62]. The heating is controlled by a digital
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control system so that the thermal deflection that is induced is opposite to the deflection
of the uncontrolled sources. The controlled sources generate an independent deflection
pattern in the structure that, when superimposed onto the natural deflection field, induces
zero net deflection at certain key points. This method could only work if the controlled
heaters were placed at strategic locations, so that the deflection that they induce tends to
nullify the deflection of the bearings, and the other natural heat sources. Therefore the
artificial thermal deflection distribution has to be carefully tailored by the controller so
that it stays one step ahead of the natural deflection. This is made all the more difficult
by the inherent time lag between the changes in the power generation of the heaters, and
the development of the resulting temperature and deflection distributions. The controller
has to consider the long, as well as the short term effects of a change in the heat
generation. This is in contrast to the case of a numerically controlled machine tool,
where all that the controller has to do is move the cutting tool by an equal and opposite
distance to the measured deflection error. There is practically no time lag between the
signal from the controller and the full execution of the instruction.

Implementing a deflection control system using artificial heat sources has a

number of important advantages:

-It can be applied to any machine, whether or not it is numerically controlled,

-It does not affect the structural rigidity of the frame, or interfere with the
operation or performance of the machine tool.

-the method can be incorporated with existing, as well as new machine tools.

-It is simple to construct, and inexpensive to implement.
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The disadvantage of using artificial heat sources is that it requires a very sophisticated
controller to manage the compensation if acceptable results are to be obtained |62]. The
fundamental problem, as has already been discussed, is that the relationships between the
important variables in the control system are highly time dependant. For the control
system to perform within acceptable bounds, a number of important pre-conditions must
be met:

1) the relationships between the variables must be identified with a high degree
of certainty. This is accomplished through accurate process models that can be quickly
evaluated on-line, as discussed in chapter 2.

2) The action of the controller must be dynamically optimized. This process is
simplified considerably if the transfer functions can be expressed in forms that are easily
integrated with control theory. Thus, it would be advantageous to work with the transfer

functions in the s-domain rather than in the time domain.

4.5 Conclusion

Three categories of methods to deal with the real time control of thermal
deformations were discussed in section 4.1. The method of active measurement and
compensation for thermal deformation is the simplest, cheapest, and most versatile
method, but it has not yet gained commercial acceptance because the existing methods
are not generally accurate or reliable. Methods of indirectly measuring the thermal
deformation were discussed in section 4.2. The most convenient input variable is a small

number of surface temperature measurements. This requires an elaborate system of



60

physical models, as discussed in section 4.3. The emphasis of this thesis will be on
devising powerful models that accurately represent the physical processes, and eliminate
the need for expert systems and adaptive control, as discussed in section «.3. In section
4.4, a number of methods of implementing compensation were discussed. In this thesis,
compens .ion will be effected by artificial electric heaters because of the low cost, ease

of installation, and general applicability of the method.
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CHAPTER §: CONCLUSIONS OF THE LITERATURE REVIEW

5.1 The Problem of Machine Tool Error
5.1.1 Sources of Machining Error

In section 2.1.1, four primary sources of inaccuracy in machine tools were
identified: 7) structural imperfections ii) measurement effects, iii) mechanical effects, and
iv) thermal effects. Thermal error is especially significant for large machine tools and
precision parts, sometimes comprising more than 60% of the total error [7], as discussed
in section 2.1.3. While the other sources of error continue to be significant, thermally
induced error has traditionally received the least attention, a fact which must now change
because of the widespread use of NC machines and increasing industry demands for high
precision parts.

In many applications the thermal deformation of the structure is cignificantly
greater than the thermal deformation of the cutting tool, as discussed in section 2.1.2.
Structural thermal deformation is concerned with i) a large structure and a small
temperature increase, ii) a conv.ctive boundary condition, and iii) a linear problem. The
deformation of the cutting tool is concerned with i) a large thermal strain that is local in
nature, if) a radiation boundary condition, and jii) a non linear problem. The deformation
of the cutting tool is a very different problem to that of the structural deformation, and
it requires a different formulation and a different method of solution. Even though
structural deformation does not account for all thermally induced errors, it is usually the

dominant source when the physical dimensions of the ructure are large [65].
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Section 2.1.4.1 discussed a variety of methods of reducing thermally induced

error at the design stage. These methods have become indispensable to the design of
precision machine tools, but they cannot eliminate all thermally induced error and they
cannot be used to retrofit existing machine tools. An alternate or additional solution is
to measure the thermal deformation of the structure while the machine tool is in
operation and compensate for it with a real time control system. On-line compensation
is an attractive solution, but it has not yet met with commercial acceptance. The most
serious obstacle is that the deformation cannot be directly measured while the machine
tool is in operation. Tonshoff [18] tested a variety of direct measurement methods, but
he was forced to reject them because of the practical problem of implementation.
Section 2.2 discusses a variety of methods for indirectly measuring the thermal
deformation of the machine tool structure. The general procedure is to devise a
mathematical model or a series of models relating the thermal deformation to another
variable which is more readily accessible. A variety of methods were discussed, but the
models all fall into one of four categories: 1) empirical models, 2) finite-element models,
3) exact analytical models, and 4) approximate analytical models. A brief summary of

the conclusions drawn from these models will now be presented.

5.1.2 Finite-Element Models
The finite-element method is a powerful tool for the solution of thermal and
structural deflection problems. The method can accommodate many complex geometrical

structures and boundary conditions, and the results can usually be made accurate within
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any practical tolerance by increasing the fineness of the mesh. But even with a powerful
computer, the finite-element algorithm is a slow solution for real time control. The
solution is not in a closed form, so the entire solution procedure must be repeated for
every change in the load or boundary conditions. This makes it too cumbersome to use

with a control system, unless the structure is represented in a highly simplified form.

5.1.3 Analytical Models

An exact analytical solution has the advantages that it is general for any input
load, and it indicates the functional relationship between the variables. It usually takes
the form of a single mathematical function or equation that can be evaluated quickly for
any numerical values of the input variables. But although the analytical mode} is
computationally simple and ideal for use with an on-line control system, one must usually
make unrealistic assumptions in order to get the solution. The complicated geometric
characteristics of a real structure cannot be accommodated by an analytical model as well

as they can by a finite-element model.

5.1.4 Empirical Models

Empirical models have no physical affinity to the mathematical form of the
problem. The relationship between the input and output variables is curve-fit onto an
arbitrary basis function, often a polynomial. The empirical equation statistically matches
the input and output variables for a limited number of test inputs, but the models are

cumbersome, especially as the order of the polynomial is increased to improve the
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accuracy. The advantages of an empirical model are computational efficiency for low
order polynomials, and there is no complicated modelling required, only curve fitting the
empirical constants. The disadvantages are that the solution is cumbersome, not generally

accurate, and unpredictable when used with untested inputs.

5.1.5 Approximate Analytical Models

Exact analytic solutions are only available for simple geometries like spheres,
cylinders and slabs, and not for more complicated problems like machine tool structures.
But analytical solutions are more general in the sense that the approximate structural
form, or skeletal shape of the solution can be extended to a wide variety of similar
problems. Hardt [32] took the analytic solution to a simple model which was solved
analytically, and then calibrated the parameters until it adequately represented the
solution to a complex welding process, as discussed in section 2.2.7. The solution was
not exact because the functional form was not exact, but the functional form was an
adequate basis on which to curve-fit a solution. This is very powerful concept that will

be developed further, later on in the thesis.

5.2 The Inverse Heat Conduction Problem

When working with mathematical models where the actual boundary conditions
are unknown, the first step is to determine the boundary conditions. Solving a thermal
model explicitly for the boundary conditions is a special case of the heat conduction

problem because it is an inverse problem, the nature of which was discussed in chapter
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3. The preferred orientation of the heat transfer equation is from boundary condition to
internal temperature, as discussed in section 3.1, so solving the problem in reverse poses
special problems. The problems associated with inverse problems are i) the difficulty of
expressing the solution in explicit form, ii) instability, iif) non-uniqueness of the solution.

A variety of methods of dealing with the IHCP were discussed in sections 3.3 to
3.10. These methods are primarily designed to measure the temperature or heat flux 1n
inaccessible regions, but the temperature data is usually collected in a previous
experiment so the entire temperature history is known at the outset. There are four
additional problems that arise when the IHCP is used for real time control, and these are

summarized here:

1) Future information is not available to stabilize the solution, because the data
is collected on-line. The regularization and function specification methods can still be
used, but only if a block of past data is taken to stabilize the solution at the present time.
This limits the effectiveness of the methods, because the solution at the last time step is
the least accurate, and that is the only one that is used. Space marching is not a viable
solution when future data is not available, because the numerical extrapolation is

unreliable without it [54].

2) The calculation time of the IHCP algorithm determines the cycle time of the
control system, so the performance of the control system depends on the calculation time

as well as the accuracy. The overall effectiveness of the method is a compromise between
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speed and accuracy, making the iterative methods unattractive. Regularizatior: and
function specification methods are also too slow if a large amount of past data must be

incorporated into the solution.

3) It is essential that the inherent instability of the solution be controlled, because
even a small amount of instability in the IHCP can cause greater instability in the control
system. This is especially true if the cycle time is small, and is frequently aggravated
when accurate data is not available in the on-line environment. Unregularized methods
like Stoltz’ method and space marching produce large oscillations with noisy data,
limiting the stable region of the controller gain, and severely affecting the performance

of the control system.

4) The design and optimization of the control system is simplified if the IHCP
algorithm can be characterized in terms of control theory. None of the existing
algorithms can be transformed to the s-domain or z-domain, with the exception of Stoltz’
method. The other methods would be seen as a ‘black box’ in control theory, unless the

control system were designed in the time domain.

Unfortunately, most of the research into the IHCP is not relevant to the control
environment, so the limitations of the methods become apparent when they are
considered for that purpose. Because of the growing demand for the thermal control of

machine tools, there is an urgent need for an IHCP algorithm which is specifically suited
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to real time control. Such an algorithm must be computationally simple, stable for noisy
data, not dependant on future data, and preferably in a form which is compatible with
control theory. The major weakness of the available methods is that they stabilize the
solution by controlling the form of the solution to the THCP, and do not deal with the
inherent instability of the problem itself. The only methods that are stable and accurate

enough to be used for control require too much computation time to be viable.

5.3 The Control System
5.3.1 The Structure of the Control System

Three general types of control system were discussed in section 4.3, and are
summarized here:

i) Classical linear control systems based on well defined mathematical transfer
functions.

ii) Adaptive control systems, using approximate mathematical transfer functions
and on-line parameter calibration.

iiiy Expert systems which use statistical matching of the input and output
variables, and do not require mathematical modelling of the physical processes.

Expert systems are a powerful control method when there is no clear relationship
between the input and output variables. An expert system fills in the blanks, anticipating
the response to an unpredictable input. When there is a definite relationship betwecn the

input and output variables however, the best solution is to mathematically identify the
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relationship and avoid the statistical uncertainty of an expert system controller. Increasing

the number of rules of an expert system increases the time factor by a power of two.

5.3.2 The Mechanism of Compensation

A number of methods of compensating for thermal deformation were considered
in section 4.4. For NC machine tools the compensation is effected through the numerical
positioning mechanism that is already present in the machine tool. For non-automated
machine tools, compensation is a much more difficult problem because additional
hardware is required. The method of compensation by artificial electric heaters was used
by Sata [23] ana Ichimiya [23]. The advantages of electric heaters are 1) that they do not
interfere with the performance or operation of the machine tool, 2) they are inexpensive
and easy to install, and 3) they can be applied to any type of machine tool. The
disadvantage of compensation with artificial heaters is that it places a heavy burden on

the control system to produce an acceptable response.

5.4 Objectives
The objectives of the thesis are as follows:

-Develop a multi-axis feedback control system to reduce structural thermal
deflection error to a level comparable with the method of fluid showering.

-The measured variable on the structure must be readily accessible and easily
measured.

-The control system must be universal and flexible to be applied to real machine
tools of any type, and must be insensitive to all kinds of measurement and actuation
errors.
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5.5 Overview of the Thesis

5.5.1 Broad Outline of the Thesis

This objective of this thesis is to reduce the thermal deflection of key points on
a large structure by means of a feedback control system. A number of researchers have
previously attempted the problem, as discussed in chapter 2, but the work has not yet led
to a commercial benefit. In order to be commercially viable, the method must be easy
to implement on a real machine tool, it must be accurate and reliable, and it must require
minimum maintenance by the user.

A broad outline of the thesis is as follows: 1) determine an accurate mathematical
model that relates the thermal deflection of a machine tool structure to a small number
of measured temperatures, 2) create a suitable test structure on which to evaluate the
effectiveness of the mathematical models, and 3) use the models to build an opcrational
feedback control system which measures thermal deflection on the test structure and
compensates for it.

The modelling sequence which relates thermal deflection to a small number of
point temperatures was given in figure 4.4, and is repeated here as figure 5.1. The
sequence of the models is as follows: 1) an inverse thermal model relates discrete
temperatures on the surface of the structure to the thermal boundary conditions, 2) a
thermal model relates the thermal boundary conditions to the complete temperature
distribution in the structure, and 3) a thermal deformation model relates the
temperaturedistribution to the thermal deflection of key points, which on a machine tool

structure is the relative displacement between the cutting tool and work piece. The
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Figure 5.1: The Models Relating the Thermal Deformation to
Discrete Temperature Measurements

relationship in figure 5.1 has already been defined empirically, as discussed in the
literature review, by Chiappullini et al. [20] and others, but a complete mathematical
treatment of the problem has never been done. Parts II and III of the thesis focus on the
problem of mathematically modelling the constituent blocks of figure 5.1. Part IV of the

thesis is concerned with using the models to build a control system.

5.5.2 Detailed Outline of the Thesis

In chapter 6, a systematic method for determining an approximate analytical
model to simulate an actual process is developed. The method is similar to the
approximate analytical method that was used by Hardt [32], but it is formalized into a
general procedure called generalized analytical modelling. The procedure is based on the
fact that physically similar problems have structurally similar solutions. If one problem
can be solved analytically, then it serves as a reliable mathematical basis on which to
curve-fit the solution to a more complex problem.

In chapter 7, the generalized method is used to find approximate analytical models

of the thin walled shell of a machine tool structure. The mathematical form of the
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generalized solution for a thin walled structure is based on the analytical solution for a
thin, infinite plate with a convective boundary and a central heat source. The thermal and
thermal deformation analytical solutions for the infinite plate are not available in the
literature, so an original solution is derived in chapter 7 by the method of the Hankel
transformation. At the end of the chapter, the generalized analytical solutions are
transformed to the Laplace domain where they are turned into Laplacian transfer
functions.

In chapter 8 a thermal test structure is created using the finite-element method.
The test model is similar in form to the structure of a machine tool, and so it is used to
evaluate the effectiveness of the generalized thermal model. A numerical method is
developed for optimally curve fitting numerical data onto an analytical base function. The
method is based on the least-square principle, and is used to curve-fit the generalized
solutions.

Chapters 9 through 12 are concerned with the first block in figure 5.1, the inverse
heat conduction problem relating point temperatures to the thermal boundary conditions
of the structure. In chapter 10 a new method of solving the inverse heat conduction
problem is developed, called the method of inversion by a convolution integral. The
laplacian transfer function model derived in chapter 7 is algebraically inverted in the s-
domain, defining a new transfer function for the thermal inverse problem. The new
transfer function is numerically transformed back to the time domain, where the solution
to the problem is expressed as a convolution integral in time. This method of solving the

THCP eliminates the problem of non-uniqueness, and it significantly reduces the problem
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of instability by eliminating much of the inherent instability from the problem itself.
Special techniques are developed to numerically transform the variables to and from the
Laplace domain. A special problem arises when the transfer function is transformed to
the time domain, because it contains singularity functions which cause the numerical
transformation procedure to fail. None of the known methods of numerically
transforming from the s-domain will work when singularity functions are present because
singularities do not satisfy the existence theorem of the Laplace transform. A new
method is developed which accelerates the convergence of the inverse transformation,
and also filters singularities out of the solution. The new method acceleratcs convergence
by two orders of magnitude over the numerical methods that are available in the
literature. The singularity functions themselves are transformed analytically by solving
the exponential integral exactly at extreme points. This solution is also not available in
the literature.

The method of solving the IHCP by the convolution integral is compared to three
other methods. In chapter 9 a new method of solving the problem based on a Laplacian
transfer function is derived. In chapter 11 another new method called proportional
inversion is derived. Finally in chapter 12, a modified version of the regularized Stoltz
method that can be used in real time is tested.

In chapter 13 the thermal deflection finite-element test model is introduced, and
is used to test the effectiveness of the generalized thermal deflection models.

In chapter 14 the control system is designed and optimized by methods of classical

control theory. The structure of the control system is feedback PID with feedforward
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loops from the disturbance inputs. The compensation mechanism employs simulated
electric heaters on the surface of the finite-element model. The relationship between the
generation of the heaters and the deflection of the test structure is represented by the
same generalized model as the disturbance heaters. The performance of the control
system is evaluated by applying simulated disturbance loads and calculating the resulting
deflection with the thermal deflection finite-element algorithm. The response of the

control system to simulated errors is also investigated.
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PART II: THE PHYSICAL PROCESS MODELS

CHAPTER 6: THE GENERALIZED ANALYTICAL SOLUTION TO A REAL
PROBLEM

6.1 The Performance Requirements for an On-Line Solution

Modelling for control systems is the most demunding modelling environment,
because an on-line mathematical solution must be accurate, reliable, and computationally
efficient. These requirements are best accommodated by a compact functional expression
or mathematical equation, ideally defined by an exact analytic solution. Most real
problems do not have a defined analytic solution but that does not necessarily mean that
such a solution does not exist, it only means that it cannot be represented in mathematical
form. Most control systems require an analytic expression to meet the time and accuracy
demands of the controller. If the exact solution does not exist in analytical form, the next
best thing is to find the closest analytical representation of the solution that does exist.
In this chapter, a method of determining an approximate analytic representation of a

general physical problem will be developed.

6.2 Determining the Approximate Analytic Form of a Non-Analytic Solution

As the geometry and boundary structure of a problem change, there is a gradual
change in the functional relationships among the variables of the problem. The form of
the solution to a complex problem that has no mathematical representation is similar to
other problems that have similar geometry and boundary conditions, but where an

analytical solution is available. In this way, the approximate analytical form of a complex
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solution is anticipated by the analytical solution to a simpler problem with a physically
similar form. An analytical solution is generalized by lumping the analytical parameters
together and treating them as empirical constants. The generalized solution is adapted to
another problem by adjusting the empirical constants to fit the new solution. An arbitrary
functional form could also be used as a basis for the solution, but the greater the
similarity between the assumed form and the actual form, the better is the agreement and
reliability of the solution. It is the physical compatibility of the generalized analytic

solution that makes it the ideal basis for a more complex problem.

6.3 A Conparison of The Generalized Solution with Exact Methods
6.3.1 Modelling the Thermal Boundary Conditions

The largest source of error with exact thermal modelling is identifying the
boundary conditions, and accurately representing them in a mathematical model. In the
case of a machine too! structure, the therma! loading comes from all of the moving parts
inside of the structure, including motor, bearings, spindles, belts, and pulleys, and the
way in which these sources interact with the structure is not easily established. The motor
is attached to the structure through bolted brackets with an unknown thermal contact
resistance. The bearings are usually supported well inside of the structural casing, and
it is difficult to model the exact path that the heat flux follows as it moves through the
structure. The working parts of the machine are particularly difficult to model because
in some places there are physical connections, and in others there are small separations

between them. This makes the mode of heat transfer a complicated combination of
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conduction, convection and radiation. A generalized model is not concerned with the
details of the generation process, it is only concerned with the form of the temperature
response of the structure.

In the case of a machine tool structure, the simplified analytical model would
contain lumped heat sources to approximate the heat generation of internal bearings and
electrical components. The heat generation of the simplified sources is not intended to
correspond directly to the conditions in the real structure, the simplified sources are
designed so that the overall effect on the temperature distribution is similar to the effects
of the actual heat sources in the real structure. It is the large scale effects of the solution
that are relevant, and not the fine details of the actual generation and conduction process.
In other words, it is better to lump all of the fine details into a simplified source, and
find the equivalent heat magnitude that duplicates the temperature distribution in the real
structure. Attempting to accurately represent the fine structure of spindles, bearing, and
motor in an exact model, and duplicate the details of how they are connected to the

frame would inevitably lead to gross inaccuracies in the final temperature distribution.

6.3.2 Determining the Relationship between the Input and Output Variables

An exact solution uses information at the boundary to obtain a solution at the
interior of the structure. The solution is highly sensitive to flaws in the model, becausc
the governing thermal equations are the only physical link between the boundary
conditions and interior solution. With a generalized analytical solution the model only

defines the basis of the solution, the complete solution is found by fitting the base to the




77

measured physical res~onse of the system. Thus, the generalized solution is interpolatory,
because it uses measured interior information, as well as measured boundary conditions
to define the solution. This makes the solution less sensitive to weaknesses in the model.

The disadvantage of the generalized solution is that it must be possible to measure
the actual response of the system in order to calibrate the analytic base equation. For a
linear problem it is only necessary to measure the response to a single input to fully
define the generalized solution. Nevertheless, this is sometimes difficult or even
impossible to measure in a real system and furthermore, the errors in the measurement
are carried into the generalized solution. The generalized solution is most powerful when
the actual solution can be measured directly under certain conditions but not others, or
for certain inputs and not others. For the control problem, if the response of the system
can be measured under controlled conditions to calibrate the generalized equation, then
the generalized solution is used on-line to estimate the response under arbitrary loading
conditicns. This is the situation that applies to the present problem, and that is the

method that will be use in the thesis.

6.4 Determining the Generalized Analytic Model for a Machine Tool Structure
6.4.1 The Requirements for the Model

The therma! deflection of a machine tool structure cannot be measured directly
during the normal operation of the machine, but it can be measured under controlled, no
load conditions. It was concluded in [1] that the difference between the thermal

deformation in the load and no-load conditions is not significant.
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6.4.2 The Simplified Model of the Structural Frame of a Machine Tool

The approximate thermal model of a machine tool structure is a large, thin plate
with a convective boundary condition on the upper and lower surfaces. The physical form
of the model is similar to the form of the real structure, and the thermal solution for such
a plate can be analytically derived, as shall be seen in the next chapter. Folding the plate
into three dimensions does not change the model because the folds do not affect the heat
flux. The wall thickness of the machine structure usually varies from one place to

another, but the simplified model has a constant thickness.

6.4.3 Modelling the Heat Sources of the Machine Tool Structure

The heat sources in the real machine structure are located inside of the external
shell, connecting to the shell through bolted brackets or the internal recesses of the
shell’s casting. The heat is generated by the machine’s internal mechanisms, and is
distributed internally through a complex sequence of parallel thermodynamic processes.
But the mechanism through which the heat flux ultimately enters the external shell is by
conduction through an internal arm or bracket. If it were possible to separate the
structural shell from its internal mechanisms then, from the point of view of the
structural shell, the heat is generated at localized sources on the internal surface. The
shape and size of the sources is arbitrary, but they are usually small relative to the size
of the frame.

In the generalized model, the heat source is represented by a thin, circular source

of heat generation, located around the centre of the continuous plate at radius r=r,, as
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Figure 6.1: Plate Model of
Structure

shown in figure 6.1. The plate continuous and all of the heat generation is assumed to
occur within the infinitely thin ring of material that encircles the origin at r=r,. Although
the sources are not very similar at the point of heat generation, the solutions are similar

in their large scale effects on the structure.

6.4.4 The Boundary Condition at the Edge of the Plate

The final element of the model to be determined is the boundary condition at the
edge of the plate. In a real structure, the ends of the plate are joined, but this cannot be
accommodated by the model. Insulating the edges is not the best solution because in a
real structure there is no such constraint. If the external frame of the machine is large

in comparison to the source, as it usually is, then the best approximate model is an
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infinite plate with the heat flux approaching zero at the ends.

6.5 Accommodating Multiple Sources

If the generalized problem is linear, then it is possible to accommodate multiple
sources by linearly superimposing the temperature fields of several sources. A machine
tool structure behaves as a linear system because the temperature increase of the frame
is not large, and radiation effects are small relative to convection. The deviation of the
actual solution from the generalized one because of radiation is partially eliminated when
the linear generalized solution is optimally fit to the physical response. This is the power

of the generalized method.
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CHAPTER 7: THE ANALYTICAL SOLUTION TO THE GENERALIZED PLATE
MODEL

7.1 Deriving the Differential Equation

Figure 6.1 shows the thermal model of the machine structure. It is a thin, infinite
flat plate with a circular ring heat source at its centre. Since the plate is thin and the
source is radially symmetric, the heat flux is radial and one dimensional. So as to
anticipate potential problems, and to aid the understanding of the problem, the governing
differential equation for the temperature in the plate is derived from basic principles in

appendix 1. The differential equation is:

T/ + L7/ - a7 + L8 = 1T (7.1)
r k a
where:
a = _}l. _1.. = pCp
kw ’ o k (7.2)

and g(r,t) is the internal heat generation per unit volume. The internal generation is zero
everywhere in the plate except for the thin ring at r=r,. If the thickness of the heat

generating ring is Ar, then the internal heat generation per unit volume is expressed as:

glr, t) = %b(r-ro) (7.3)

Where §(r-1,) is the space impulse function, derived in appendix 1. If the plate is at
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ambient temperature at t=0, then the boundary and initial conditions are:
T=0 when t=0
T=0, when r=e (7.4)

Equation (7.1) expresses the internal heat generation as a part of the governing
equation. An alternate method is to make the heat generation term zero in the governing

equation:
T”+-§T’-aT=%T (7.5)

and specify the heat generation as one of the boundary conditions:

dr

= -g(t) when r=r,
dr (7.6)
T=0 when t=0
Tr'=0 when =«

where q(t) is the normalized boundary heat generation.

7.2 Literature Survey of the Plate Model Solution

Equations (7.1) and (7.5) are alternate forms of the same problem, representing
a thin, infinite plate with a central ring heat source, and a convection boundary on its
face. The available texts on heat transfer, such as Heat Conduction in Solids by Carslaw
and Jaeger [65] and Analytical Heat Diffusion Theory by Likov [66], deal extensively
with spheres, cylinders, and slabs, but they do not deal with the geometry of a
convecting plate. Michalopoulos et al. [67] solve the problem of a thin plate with a
transverse circular hole, but the face of the plate is constrained to have zero temperature,

not a convective boundary.
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The only difference in the problem formulation between an infinitely long cylinder
and a convective plate is the aT term in equations (7.1) and (7.5). The standard methods
developed in the texts on heat transfer cannot accommodate the extra term. A thorough
search of the literature was unable to turn up any solutions to this problem. An original

analytical solution has been derived, and will be presented shortly.

7.3 Attempting the Separation of Variables Method to Solve the Problem

If the heat generation is included in the boundary conditions of the problem, then
the governing differential equation is equation (7.5). Equation (7.5) is a linear par:ial
differential equation with constant co-efficients. As a first attempt at a solution, the
method of separation of variables will be tried. Assuming that the temperature is a

product of two functions, one in time and one in space, then:
T =f(r)g(t) (7.7)

Substituting equation (7.7) into equation (7.5) yields:

fllg + -}f’g - afg - -i—f'g =0 (7.8)
This is rearranged to:
£/ 1 £/ - 149
—f—+?—f-a—73 (7.9)

The left hand side of equation (7.9) is a function of r alone, and the right hand side is
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a function of t alone, so both must equal to a constant value:

£l 1 £/ _ _

FrrE @™ (7.10a)
19 . (7.10b)
«a g

The constant parameter + is determined from the boundary conditions of equation (7.10a)
and so, in general, it is a function of the boundary heat generation q(t). But by definition
~ cannot be a function of either r or t. Thus, the method of separation of variables cannot
be used to solve this problem. Nevertheless, obtaining the general solution to equation
(7.10a) will be a useful tool in developing a new strategy to solve the problem.
Equation (7.10a) is a second order differential equation with non-constant co-

efficients, but if one makes the substitution:
u=yTar (7.11)
then it becomes the Bessel equation of order zero:
u?f’ + uf! + u2f =0 (7.12)
The general solution to equation (7.12) is:

f =qJd,(fy-ar) + G, Y, (Vy-ar) (7.13)

where ], is the Bessel function of the first kind of order zero.
Y, is the Bessel function of the second kind of order zero.
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The first boundary condition is that T(t,c0)=0, which means that f(eo)=0. This
condition is imnplicitly satisfied, because both Jo(s) and Y(s) equal zero as s-»co. There
is another condition that T(r,t) remain finite over the entire plate, including at r=0. This
implies that C, in equation (7.13) is zero since Y,(s) becomes infinite at s=0. Since the

second term in equation (7.13) vanishes, C, is arbitrarily set to one, so that:

f=J,(/y-ar) (7.14)

The next step is to determine the parameter . There are a finite number of discrete ,,
corresponding to the solutions for the second boundary condition. The heat generation

boundary, corresponding to the third condition in equation (7.6), requires that:

oT| . Of gy _ -
52 le = 5y ln9(8) = W=a 5, (=2 15,) g(t) = -g(t) (7.15)

where g(t) is the solution to equation (7.10b):

g,(t) = cje™ ™Mt (7.16)

Because of the time dependant boundary condition, the values of +; which satisfy equation
(7.15) are functions of the variable t, which is an impossible conclusion because of
equation (7.10). The method of separation of variables cannot solve the problem, as
predicted. But since the form of the solution in the space dimension is now known, it

follows that equation (7.1) can be transformed by a suitable Hankel transformation.
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7.4 The Solution to the Thermal Model by the Method of the Hankel
Transformation

The Hankel Transform is the polar equivalent to the Fourier transform in
rectilinear co-ordinates. In practice, the method is similar to the method of Laplace
transformation because, as with Laplace, a differential equation is transformed to a new
domain where it is more easily solved, and then transformed back by an inverse
transform.

In order to apply the Hankel transformation, the boundary conditions should be

incorporated into the governing equation through a heat generation term, as in equation

(7.1):
T//+_1_T/..aT+._g_({_‘t_) =-]-'-T (7‘17)
r k a
where, T=0 |, when t=0 (7.18)
T=0 , when I=c .

The aT term in equation (7.1) complicates the governing equation. The first step in the

solution is to apply the transformation:

T = Qe-ast (7.19)
which eliminates the aT term in the transformed equation. The next step is to transform
the differential equation with the following Hankel transformation:

8 (B, t) =frJ°(Br)9(r,t)dr (7.20)
0

where B is a new parameter. The inverse transformation corresponding to equation (7.20)
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is:
e(r,t) = [BJ,(Br)8(B, t)dB (7.21)
0

Taking the Hankel transformation of equation (7.1), and replacing the heat generation
term by the expression in equation (7.3), results in the transformed equation:

ra 18 .l- -aat Z(E) - =18

{(e +18) rJ, (Br) dr+ k[e 20t LE) 8 (r-r;) £, (BR) dr =18

It may be shown [68] that:

f(§”+—}§’)rJo(Br) dr = -B?® (7.23)
0

and the second integral can be evaluated because of the npulse function:

%{e’“‘%%b(r—ro)Jo(Br) dr = L8 gaaty (Br) (7.24)

21 kw
Substituting expressions (7.23) and (7.24) into equation (7.22) results in the following

first order equation in the time domain:

= 28 = ag(t) _aat
8 + aB%8 Srky e*tJ,(Br,) (7.25)

The partial differential equation (7.1) has been reduced to an ordinary linear differential

equation in time. The homogeneous solution is:

6 = Ce-aBt (7.26)

where C is a constant of integration. The next step is to solve the differential equation

for an arbitrary forcing function q(t), and then transform the result back to the time
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domain with equation (7.21). Finally, the expression 1s substituted into equation (7.19)
to yield:

1

Tz, ) = 2nkw

- t
fBJo (Br) JO (BIO) e'("nz)“tfq(t) e"’z"”‘"dr dB
0 0

Equation (7.27) is the analytical temperature distribution for a thin infinite plate with a
convective boundary condition on the face, and a central, circular ring heat source. The
input is an arbitrary boundary generation function q(t). All of the mathematical details

that were left out of the derivation are included in appendix 2.

7.5 The Step Solution

For a linear problem it is not necessary to have a general expression for the
temperature distribution, because the general solution to an arbitrary input can be derived
from the step solution. This is explained by considering the Laplacian representation of

the problem, where the general transfer function H(s) can be derived from:

T(s)

H(s) = g(s)

(7.28)

Where T(s) is the temperature solution corresponding to input q(s). When q(t) in equation




(7.27) is replaced by the step function qU,(t), then the step solution is:

T = 71-33,[171([) - e ™t F,(z, t)]

where,

F,(r) = fBB

2
o P°*a

J, (Br,) J, (Br) dB

B —a tB?
F,(r,t) = Jy (Br,) J,(Br) e~**°dB
-O[B2+a

The details of the derivation are given in appendix 2.
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(7.29)

(7.29a)

(7.29b)

Equation (7.29) is the theoretical temperature distribution for a central heat source

in an infinite plate, with a step heat input applied at t=0. The expression cannot be

simplified any further because the improper integrals in (7.29a) and (7.29b) have no

closed form solution. The integral in (7.29a) is a function of position but is independent

of time, so if the temperature is required at a constant value of r, then equation (7.29a)

need only be evaluated once. The integral in (7.29b) is a function of time as well as

geometry, so it has to be numerically re-integrated at every time step. Numerical

integration of the expression is not always convenient in practice, especially because of

the improper limits for 8. An approximate expression for temperature at a constant value

of r is obtained in the next section by replacing the improper integrals in (7.29a) and

(7.29b) by approximate analytical expressions.
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7.6 Simplifying the Form of the Thermal Solution
7.6.1 The Physical Form of the Solution

The mathematical form of the expressions for F, and F, in equation (7.29) are
important because they determine the physical nature of the solution. If not for the
exponential term inside the integral F,, then F, would equal F, and equation (7.29) would
be the first-order time response to a step input, with time constant 1/(ax). It is tempting
to simplify the solution by neglecting the exponential term inside of F, but this would not
be a realistic assumption, as is evident when the integrals in F; and F, are numerically
evaluated. Figure 7.1 shows a plot of F, versus time, integrated numerically by Gaussian
quadrature for different values of r, with ry (the outer radius of the source) fixed at 2.5
cm. For the purpose of the illustration, the material properties for cast iron were used
to define the numerical parameters of F,. Term F, is not a function of time, and is equal

to F,(t=0), as is seen from equation (7.29). F,(t) is not constant over a reasonablec time

1.2 Fe(t)

o 3 d A, "
0 200 400 600 800 1000

Time (sec)

~— R/R0=2 = R/RO=0 R/R0=10

Figure 7.1: Plot of F, versus Time
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period, and so the response cannot be considered first order.

A further examination of figure 7.1 reveals that the mathematical form of Fyt)
depends on the value of r. For large r, the response goes through a local maximum
before decaying to zero, but for small values of r it does not. The behaviour of F(t) for
small values of time reflects the damped and delayed nature of the temperature solution.

For small values of time, F,(r,t) is approximately equal to:
Fz(r:t)-eaatpl(r) (7‘30)

Thus, the temperature remains close to zero for a considerable time period after the
application of the heat step at t=0. This is illustrated in figure 7.2, where the analytical
temperature profile from equation (7.29) at r/r,=6 is plotted as a function of time. The

temperature at profile r/r,=6 hardly responds at all until nearly one minute after the

e TEMPERATURE (deg C)

° 200 400 600 200 1000
TIME (seconds)

Figure 7.2: Temperature Solution
Corresponding to Equation (7.29) for r/r,=6
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change in q(t). The larger the r/r, ratio, the greater the time lag between changes in the
heat input and the temperature response.

Returning to figure 7.1, the reason for the positive initial slope of F, for larger
1/, ratios is to offset the decaying exponential component in equation (41), and introduce
the time delay shown in the solution in figure 7.2. F, does not have a positive initial
slope for small r/r, ratios because the time lag of the solution is small, and no
compensation for the exponential component is required. Figure 7.3 shows the solution
to equation (7.29) at r/r,=2. The time delay is so small that it is not a factor in the form
of the solution.

The initial time delay in the step solution to the direct problem is responsible for

the instability of the corresponding IHCP, as discussed in chapter 3. If the general
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Figure 7.3: Temperature Solution
Corresponding to Equation (7.29) for
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solution in equation (7.29) is restricted to its stable form shown in figure 7.3, then the
inherent instability of the IHCP is eliminated. The stable form of equation (7.29)
corresponds to the mathematical form of Fy(t) with a small r/r, ratio, shown in figure
7.1. Since the stable form of equation (7.29) is of particular interest, a stable form of the

equation will be derived in the next section.

7.6.2 The Stable Temperature Solution for Small Radii

Presuming that r is small, and that the shape of the curve for r/r,=2 is the
characteristic form of the response, then the integrals in F, and F, can be replaced by
approximate functional expressions. Figure 7.4 compares the time response of Fy(t) with
r/'r,=2 to e™*, again using the material properties of cast iron for the numerical
parameters. Although the F,(t) term and the exponential term behave quite differently,
their time constants are similar, so the approximation has to be accurate ovcr the entire
useful domain of the solution. It does not be acceptable to approximate Fy(t) as a simple
constant or linear function, because it would not fit F,(t) over the whole domain.

F,(t) starts from a constant value at t=0, and decays to zero as time approaches
infinity. The decay is not exponential, but roughly a first power inverse, closely
approximated by the function:

Flt) = =2 (7.31)

where the parameters A and b are determined individually for each value of r. Figure 7.5
compares F,(t) with r/ry=2, to equation (7.31) with A=0.952 and b=0.00603. Equation

(7.31) is a good representation to F,(t), provided that r/r, does not exceed about 4.



1.2

0.6

0.8

0.4

0.2

0 | ) 1 1
0 200 400 600 800 1000

Time (sec)

— F2(t) = e~(-a t)

Figure 7.4: Comparison of F,(t) and e**

0 200 400 800 800 1000 1200
Time (sec)

—— Fz(‘) ........ A/(l"‘bt)

Figure 7.5: F,(t) and Functional Approximation

94



-

95
Replacing F,(t) by equation (7.31) and F,(t) by F,(0) in equation (7.29), and lumping the
analytical parameters into three empirical parameters K, a, and b, then the following

approximate expression is obtained:

'1%‘55) (7-32)

T = gK (1 +
7.7 The Deflection Solution for an Infinite Plate

7.7.1 The Relationship Between the Temperature Distribution and the Thermal
Deflection

If there are no external mechanical constraints, then the thermal deflection is

related to the temperature distribution by the well-known relation:

e = a_(T*-T3) (7.33)
where, € is the strain
o' is the co-efficient of thermal expansion

(T°-T,) is the change in temperature from the stress free reference
temperature.

The differential expression for the strain is given by e=dé/dr, where dé is the differential
thermal deflection, and dr is the differential radius of the plate. If the atmospheric
temperature T,” is also the unstressed reference temperature Ty, then T -T,’ is equal to

T=T"-T,’, and equation (7.33) may be expressed as:

I
3 = ach(r, t) dr (7.34)
(Y]

where T(r,t) is the theoretical temperature distribution in th plate, derived earlier in the

section.
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7.7.2 The Anaiytical Deflection Solution

The temperature distribution in an infinite plate, with a central heat source
subjected to a step input at t=0 seconds, was already derived in section 3.5.5.

Substituting the temperature distribution from equation (7.29) into equation (7.34) yields:

r
= -9 - g-2at 7.35
L ac[ Ty [Fu(x) - e tF, (r, t)]dr ( )
Substituting for F, and F,, and reversing the order of integration, the solution becomes:

qe.

) =m[G1(I)-e-aatG2(I)] (7’36)
where, - r
B
G, = {m%mrg{%(m) dr dB (7.36a)
L] r
_ B -atB? (7.36b)
Gz—[mJo(Brl)e € -[JO(BI‘)dIdB
The integral:
X
I= fJo(Br) dr (7.37)
[+}

appears in the expressions for G, and G,. The integral can be evaluated if the bessel

function inside the integration is replaced by its power series expansion. The
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mathematical details are given in appendix 3. The end result is:

G = {Bha% (Bz,) ,42 Ta(BI) 2m+1 aB (7.38a)

dB

B —aat r
J, (Br,) e-28t T,(Br)
e 2, +1 (7.38b)

G, =
2 B3+a f=1 2m

Of%——y s

where Tm is the m® term of the Bessel series.

7.8 The Simplified Form of the Deflection Solution
7.8.1 The Functional Form of the Solution

As was the case with F, and F,, there is no closed form solution for the improper
integrals in G, and G,. The expression G, is integrated for different r/r, ratios, and the
results are shown in figure 7.6. The function has a finite, non-zero value when t=0, and
decays to zero as time approaches infinity, just like F,(t) from the thermal problem. As
before, the analytical form that best describes the functional decay is a first-power

inverse, that is f(t) =1/t.

7.8.2 The Approximate Solution for Large Radii

The purpose of the deflection solution is to determine the thermal deflection at
discrete points in a machine structure, the points corresponding to the positions of the
table and the cutting tool. These points are always separated by a considerable distance,
so it is only the large scale solution of equation (7.36) that is significant. A simplified

expression for the deflection is derived by replacing the complicated expressions G, and
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Figure 7.6: Plot of G,(t)

G, by functional approximations that are valid at a large radius from the source.

Focusing on the functional form of the r/ro=16 solution, figure 7.7 shows a
comparison between G, and e**. The most significant feature of figure 7.7 is that the
time constant of the exponential term is much smaller that the time constant of the G,
term. As time becomes large, the exponential term approaches zero very quickly, and
so the product G,(t)e™* tends to zero quickly also. Thus, unlike the situation with F,(t),
it is only the first part of G,(t) that is significant, between about t=0 and t=1000. It does
not matter how G, behaves after that, because the exponential term makes it zero
anyway.

In the interval 0<t< 1000, G,(t) can be approximated by a straight line:
G,(t) = A - bt (7.39)

as shown in figure 7.8.
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Since G, is equal to G2(t=0), Gl and G2(t) in equation (7.38) can be replaced

by the functional approximation in equation (7.39) to give:

= 9% 2 _ (a_ -aat 7.
) 2nkw(}; (A-bt) e-2at) (7.40)

This represents the large r deflection response in an infinite plate with a central heat
source, subject to a step input in heat generation. The solution is generalized by lumping

the analytical parameters into three empirical parameters A, B, and a:

d =qg(A- [A - Bt]e®) (7.41)

7.9 Converting the Infinite Plate Step Solutions to the Laplace Domain
7.9.1 The Laplace Transformation Equation
The transformation equation from the time domain to the s-domain is given by the

integral:

F(s) =fe“‘f(t) dt (7.42)
0

where s is the complex Laplacian variable.

Three step solutions for the infinite plate have already been derived in the time
domain: 1) the general step solution for the temperature distribution in the plate, as given
by equation (7.29), 2) the stable step solution for the temperature profile at discrete
points, derived on the assumption that the distance between the point and the generating
source is small, given by equation (7.32), 3) The approximate step solution for the

thermal deflection at discrete points, derived on the assumption that the distance between
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the point and the generating source is large, given by equation (7.41), Each of these
solutions will be transformed to the Laplace domain by equation (7.42) in the following

subsections.

7.9.2 Converting the General Thermal Step Solution to the Laplace Domain
The general thermal solution is transformed to the s-domain by directly

substituting equation (7.29) into the transformation equation (7.42):

T(s) = —2— [F,(r) - e™®tF,(r, t) ™5t dt (7.43)

2nkw

O'\'

where F, and F, are defined by equations (7.29a) and (7.29b). The first term, F,(r), is
not a function of time so it can be brought outside of the integration. The second term
in equation (7.43) is the product of two time functions, F,(r,t) and the exponential e,
The solution is obtained by reversing the order of the integration and applying the
shifting theorem. The mathematical details of the integration are given in appendix 4.

The final result is:

__g |A(D) 7 B 1
T(r,s) 2nkw S [B2+aJ° (Brl)Jo (Br) &s+a{a+B?) dBJ

where Fy(r) is given in equation (7.29a). The result is not fully analytical because the
improper integral has no closed form solution. Obtaining the solution in the s-domain is
a powerful tool however, because it can now be used to define a general solution to the
infinite plate problem. Furthermore, inverting the equation in the s-domain is as simple

as algebraically inverting the transfer function.
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7.9.3 Converting the Stable Temperature Solution for Small Radii to the Laplace
Domain

The temperature solution for small radii that is given in equation (7.32) has two
terms. The term on the left is a simple constant that transforms to a multiple of 1/s. The

right hand term is more difficult, so it will be handled separately. Neglecting the constant

multiplier, the right hand term is:

£(t) = £

7.45
1+bt ( )

The s-domain is a complex plane and s is, in general, a complex variable. Substituting

u=(1-+bt)(s+a)/b, into equation (7.45) results in the complex line integral.

> -u
e feu du (7.46)

The complex integration goes from the point s=(R+a)/b + I/bj to s=o + oo j, as
shown in figure 7.9. Since the complex plane is a conservative vector field, the solution
is independent of the path of integration. The integration will be performed in two parts,
along path 1 from the starting point to s=o <+ I/bj, and then along path 2 from
s=o0+]I/bj to s=oo0+ooj. It can be shown that the integration over the second path is
zero, so the transformation is given by the integration of the function over path one only.

The details of the complex integration are given in appendix 5, and the end result is:

g [r-Ij .1 .
b{ du (7.47)
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which is the s-domain representation of equation (7.32), where R and I are the real and

imaginary components of s, and z is defined by:

R+a 7
= 048
¥4 7 ( )

7.9.4 Converting the Deformation Solution for Large Radii to the Laplace Domain
The deformation solution for small radii is given by equation (7.41). The equation
is composed of simple expressions, and the Laplace transforms are readily available in

standard tables. The Laplace transformation of equation (7.41) is given by:

=gld - _4 B 7.49
6(5) q(s S+a * (s+a)2) ( )
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7.10 Expressing the Solutions in Transfer Function Form
For a linear problem, the solution to an arbitrary input is completely defined by
the step solution in the s-domain. If T,(s) is the step solution in the s-domain, then the

transfer function H(s) is found by dividing the step solution by the step input. Thus,
H(s) = sT,(s) (7.50)

The solution to an arbitrary input q(s) is found in the s-domain by multiplying the input

by the transfer function:

T(s) = H(s) g(s) (7.51)
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CHAPTER 8: THE FINITE-ELEMENT THERMAL TEST MODEL
8.1 The Need for a Finite-Element Thermal Model

The purpose of a finite element thermal model is to provide a standard test model,
through which the performance of the various IHCP algorithms can be evaluated. A finite
element model is a better test model than a physical model for three reasons:

1) There is no physical limitation in applying the heat inputs or accurately
measuring the data.

2) The environment is controlled, so that specific problems can be investigated
independently, giving better insight into the methods, and making it easier to identify the
sources of the problems.

3) The model is easily modified so that a simple model can be used at first, and

then later it can be expanded to accommodate a more complicated structure.

8.2 The Configuration of the Finite-Element Model

Figure 8.1 shows the thermal finite element model of the test structure,
constructed with 1249 three dimensional brick elements. The shape is a hollow
rectangular column, representing part of a machine tool structure. The column has two
small transverse holes cut into it, and there is a source of heat generation on the inside
surface of each hole, labelled Q, in figure 8.1. Q, represents the heat generation of the
main spindle bearings of a milling machine. The two horizontal projections are roughly
equivalent to the arm and table, and the vertical column represents the main column of

a milling machine. There are three additional sources of heat generation on the surface
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of the structure, labelled Q¢, Qc, and Q. These sources represent artificial heating
elements, used for control purposes. Qc; consists of two sources symmetrically located
on the upper and lower surfaces of the arm of the structure.

All of the sliding contacts and internal mechanisms which would be present in a
real machine tool structure have been neglected in the finite element model, as a
preliminary step before applying the method to an actual machine tool. The model is
designed in such a way that the geometry could be easily duplicated by a physical model.
The external faces of the model are exposed to a convective environment, and the
internal faces are insulated. In practice the inside faces would also be exposed to

convection, but since the thickness of the wall is thin in comparison to the dimensions

Q) Qp R
al o} aioil
l 62 ag

Qp

Figure 8.1: Finite-Element Model of Test Structure
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of the column, it is reasonable to assume that there is no temperature variation across
the thickness of the wall. Thus, doubling the co-efficient of convective heat transfer on
the outer surface is sufficient to account for the internal and external convection. The
ambient and initial temperatures are taken to be zero, so that the temperature solution

represents the increase above the ambient conditions.

8.3 The Solution Algorithm

The thermal finite-element model is solved by the super SAP finite element
algorithm, as part of the ALGOR finite element modelling and solver package. The basic
principle of the method is based on:

-dividing the structure (continuum) into a number of finite elements which are
assumed to be interconnected at a discrete number of nodes situated on their boundaries

-within each finite element a function (called the weight function) is chosen to
uniquely define the temperature solution within the finite element in terms of the nodal
values.

Algor has a choice between first, second and third order weight functions for its
three-dimensional brick elements. The models are created in three dimensional wire
frame by a CAD system, and decoded by a mesh generating software package. Boundary
conditions are added prior to decoding, or by editing the solution matrix. The solution
matrix is solved by a block solver, and the output can be sent to a viewing file, or
redirected to a data file. The nodal positions of the thermal model must be identical to

the nodal positions of the thermal deformation model, so that the temperature solution
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can be used in the thermal deformation solution. For a more detailed description of the

finite-element method and how it is implemented, the reader may refer to the references

[69-71].

8.4 The Temperature Solution for the Thermal Model

Figure 8.2 shows the isothermal lines representing the steady state temperature
distribution in the test model, when the heat generation of source Q, is increased from
zero to 164 W at time equal to zero. Figure 8.3 shows an expanded view of Q,,
indicating six points where the temperature is measured, and figure 8.4 shows the
transient temperature profiles at these points as functions of time. The further the position
of the measured point from the source, the lower the maximum temperature rise, and the
greater the time lag between the application of the input and the beginning of the

temperature rise, as expected from the analytical solution in an infinite plate, considered

previously.

8.5 Defining the Input and Output Variables

The temperature profile at each position in figure 8.3 is completely defined by the
model of the structure and the thermal boundary conditions, including the heal
generation. Therefore, it is possible to apply the IHCP to any one of the nodes in figure
8.3 to determine the heat generation of the source, as discussed in section 3.2.4. But a
problem arises when more than one source is independently active at the same time,

because with only one measured point it is impossible to determine how much of the
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Figure 8.3: The Six Measured Nodes
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temperature increase is due to each source. There have to be as many measured
temperatures as there are independent sources in order to uniquely define the generation
of multiple sources. Furthermore, solving for the heat generation of multiple sources is
very difficult unless the IHCP can be decoupled, so that the temperature history of each
input corresponds to the heat generation of a single source. Table 8.1 gives the steady
state temperatures of the nodes in figure 8.3, for a 164 W step in the heat generation of
Q,. The temperatures are not zero, indicating that there is a coupling between the sources
in the IHCP if one of those temperatures is used to define the input.

It is possible to reduce the coupling of the heat sources by defining a temperature
difference as the input to the IHCP, instead of a single temperature. Table 8.1 indicates
that while the point temperatures in the vicinity of Q, do respond to the generation of
source Q,, temperature differences in the vicinity of Q, do not.

Figure 8.5 shows the temperature difference between nodes 3 and 4 in figure 8.3.
Node 3 is 1.4cm from the source, and the distance between the two nodes is 1.4cm. The
position of the measured nodes and the spacing between them is reasonable for an

experimental apparatus.

Table 8.1: Steaay-State Temperatures of Key Nodes in the Vicinity of Q, and Q,, for

ch =2
Temp | Node 1 | Node2 | Node 3 | Node 4 | Node 5 | Node 6
Qa 0.7 0.7 0.6 0.6 0.6 0.6
Q. 45.8 1403 35.9 26.6 15.8 9.7
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Figure 8.5: The Temperature Difference
Profile between Nodes 3 and 4

The temperature difference between nodes 3 and 4 will be used as the standard
temperature input for estimating the thermal boundary conditions of the test structure.
The temperature profile in figure 8.4 is thus the step solution, which will be used to uscd

to define the Laplace transfer function in the next part of the thesis.

8.6 Curve-Fitting the Generalized Thermal Transfer Function
8.6.1 The Curve-Fitting Algorithm

The generalized thermal transfer function given by equation (7.47) is adapted o
a particular problem by curve fitting the empirical parameters of equation (7.32) to the
step solution of the direct problem. There are a number of ways to curve-fit the
parameters, but the best method is to minimize the sum of the square of the error

between the measured data and the analytical basis. If the error residual is defined by the
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equation:

n
S=;(Y(t:j)-T(ti,al,az,..am))2 (8.1)
=1

Where Y(t) is the measured data and T(t) is the analytical base, and a,, a,,...a, are the
empirical parameters of the analytical base. The least square solution is found by solving

the following system of equations:

2 OT(t;,a,,a,,..a,) 2 0T(t;,a,,d,,..4,)
T(t"a ,az,..a)— 1 z L Y(t

i=1 aaZ ! ! m Z1 aaZ !

2, OT(t;,a,,a,,..4 OT(t;,a,,8,,..a,)

) (€430 2 n) T(ty, a,8,,..a,) - — 2 _y(t,

b da, =1 a,
...................... 8.2)

n aTt,a,a,..a 2 oT(t,,a,,a,,..a

Z (¢ 1 z n) T(t;,a,,8,, .8, = Y, > M i n) Yt

1= i=] aam

The function T(t, a,, a,,..a,) is the analytical base that is to be optimally fit to the
measured data. There are m empirical parameters to be determined, yielding m
simultaneous equations in the form of equation (8.2). In general the equations are non-
linear, so the solution requires a method of solving a system of m non-linear equations
for m unknown parameters. Such a program has been written in Fortran code, and this
will be used in all subsequent situations where curve-fitting is required. The major
difficulty that had to be overcome was the problem of false convergence to inflexion

points, especially for the thermal base function.
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8.6.2 Curve-Fitting the Temperature Difference

The generalized solution for a temperature profile is given by equation (7.32):

T(t) = K( 11'3;:) (8.3)

The analytical expression for a temperature difference is found by taking the difference
T,(t)-T,(t), where Ty(t) and T,(t) are the temperature profiles at two distinct nodes. Thus,

K, (1+b, t)e “ K (1+b,t) e ™ (8.4)
2 1 1 2

AT(t) = K,+K;+ (1+b,t) (1+b,t)

There are 6 parameters to be determined in equation 8.4. These are found by curve
fitting each of the temperature profiles to equation (8.3) separately, thereby determining
the parameters three at a time. The problem with this method is that it is the temperature
profiles that are optimally matched, not the temperature difference. Furthermore, six
empirical parameters is very cumbersome, and unnecessary in practice. If the parameters
in equation (8.4) are arbitrarily constrained such that K,=K2, a,=a,, and b,=b,, then
equation (8.4) reduces to equation (8.3). The analytical form of the temperature
difference is similar to the analytical form of the temperature profile, so equation (8.3)
can serve as the generalized solution to the temperature difference, as well as the
temperature profile.

Figure 8.6 shows the finite-element temperature difference between nodes 3 and
4 previously given in figure 8.5, compared to the approximation based on equation (8.3).
The optimal parameters were found by the least square method to be K=17.0, b=0.07,

and a=0.01. Figure 8.6 shows that equation (8.3) is the ideal basis function for
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representing the temperature difference profile. Very little accuracy was lost by accepting
the simpler temperature difference relation in equation (8.3) instead of the more
complicated relation in equation (8.4).

The importance of an analytical derivation is illustrated by the graphs in figure
8.7, in which a number of other analytical functions are curve-fit to the temperature
difference profile. None of the functions simulates the temperature response as well as
equation (8.2). The analytic functions in figure 8.7 cannot be made to exactly fit the
temperature difference profile, because the temperature difference does not physically
resemble any of these standard functiors. Even the functions in graphs E and F, although
they appear to be reasonable approximations, do not match the mathematical behaviour

of the temperature difference curve in its first and second derivatives at critical points
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Figur= 8.6: Finite-Element Temperature

Difference and Analytical Approximation
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in the temperature profile. It is important that the mathematical form of the analytical
step solution be as similar as possible to the actual solution, because it will be used later
to derive a transfer function that extrapolates beyond the step solution.

In contrast to the functions in figure 8.7, Equation (8.3) plotted in figure 8.6 fits
the form of the temperature difference perfectly. This is the advantage of knowing the
analytical form of the solution in advance. It might have taken hundreds of trials before
the form of equation (8.3) were guessed by trial and error, if at all. The analytical step
is essential for a thorough understanding of the physical process, and allows for an
efficient utilization of the empirical data in a simple and accurate expression. The extra
time and effort required to formulate the analytical expression will be justified later on

by the improved accuracy of the transfer function.
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PART III: THE INVERSE HEAT CONDUCTION PROBLEM

Introduction

This part of the thesis is concerned with the first part of the model in figure 5.1,
the transfer function relating discrete temperature measurements to the thermal boundary
conditions of a machine tool structure. This part of the model represents a special
problem because it is formulated as an THCP, and the solution requires special attention,
as discussed in chapter 3. Three new methods of solving the IHCP will be introduced in
this part of the thesis. These methods are:

1) The method of inversion by a Laplace domain transfer function

2) The method inversion of by a convolution integral.

3) The method of proportional inversion.
These new methods will be compared with one of the well known literature methods:

4) The Stoltz method with first order regularization
The three new methods will be tested, and their performance evaluated, using four
performance criteria: accuracy, computational speed, stability, and compatibility with
control theory. The performance of the methods will be investigated by testing them on

a finite-element model of a machine tool structure.
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CHAPTER 9: METHOD 1; SOLUTION TO THE IHCP BY DERIVING A
LAPLACIAN TRANSFER FUNCTION

9.1 The Mathematical Basis of the Method

The Laplace transformation is a powerful method for solving linear Jifferential
equations and corresponding initial and boundary value problems. The transformation
reduces a differential equation to an algebraic expression, which can then be solved
explicitly for the output variable, and transformed back to the time domain. The method
is ideally suited to the IHCP, because the most difficult part of the problem, inverting
the direct problem, is as simple as algebraically inverting the transfer function in the
Laplace domain (s-domain). In this chapter, the Laplacian transfer function relating the
heat generation of a source to the temperature difference in the vicinity of the source will
be derived from the step solution to the direct problem. If AT(t) is the measured
temperature difference, Q(t) is the heat generation of the source, and AT,(t) is the step

solution for the temperature difference, then the procedure is as follows:

1) Transform the step solution from the t-domain to the s-domain, and define the
transfer function corresponding to the direct problem by dividing the step solution by the

input:

AT(S) - ATs(s) (9.1)

H(s) = <505 1/s
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2) Inverse the problem by algebraically inverting the transfer function in the s-

domain:

G(s) = —2 _ = 2(s) 1

" H(s) AT(s) sAT,(s) (9.2)

3) The solution to the IHCP for an arbitrary input is obtained by transforming the
input AT(t)->AT(s), evaluating Q(s) from equation (9.2), and then transforming the

solution back to the time domain Q(s)-Q(t).

The method is conceptually simple, but there are a number of special problems

which must be dealt with in this thesis:

i) The temperature difference and the step solution are measured on the model at
discrete intervals, so they are numerically defined, and cannot be represented as
analytical functions. A numerical scheme is therefore required to convert the input from
the time domain to the s-domain.

ii) Because the input is defined numerically, the solution in the s-domain is also
defined numerically, and a numerical scheme is required to convert the solution from the
s-domain to the time domain.

iii) The Laplace transformation maps the entire space of the time domain into the
s-domain, which means that the entire time history of the input, from t=0to t=00, is

required for the transformation. This poses a problem in real time because the input is
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only defined between t=0 and t=7, where 7 is the present time.

Figure 9.1 shows a schematic illustration of the proposed method. The step
solution is transformed to the s-domain, where it defines the s-domain transfer function.
There are two transformation algorithms from t-»s and from s—t. The problem is solved
in the s-domain by multiplying the input by the s-domain transfer function. The process

of implementing the method is divided into three steps:

1) Devising a numerical procedure to transform the temperature inputs to the s-
domain, as in the t-»s transformation boxes.

2) devising a numerical procedure to transform the solution from the s-domain to
the time domain, as in the s—»t transformatior. boxes.

3) Mathematically defining the solution to the IHCP in the s-domain.

r |

Te(t) Transformation Ts(s)
¢ §
I
) Transformation T(s) | S—-Domain Transfer | Q(s) Transformation | Q(t)
‘Input) te—ts Function -t {Output)

S—-Domain

Figure 9.1: Schematic Drawing of the Laplacian Transfer
Function Method
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9.2 Numerical Transformation from Time Domain to Laplace Domain
The Laplace transformation of a function from the time domain to the s-domain

is defined by the equation:

F(s) = fe"‘f(c) dt (9.3)
o}

The transformations corresponding to a number of analytic functions are available in
tables, but if f(t) is not analytically defined, then numerical integration is the only way
to evaluate F(s). Since the Laplacian variable s cannot be separated from the time integral
in equation (9.3), the integral must be numerically evaluated for every discrete value of
s. Furthermore, for the Laplacian expression to be complete, it must include the complex
behaviour of F(s) as well as its real valued behaviour. Integrating equation (9.3) with
only the real values of s would not provide enough information to fully define F(s) in the
Laplacian domain, so no re-conversion back to the time domain would be possible.
Therefore, s has to be treated as the general complex variable s=R+1j, where R and 1
are the real and imaginary components.

The variable s in equation (9.3) is expanded into its complex representation

s=R+1Ij, to yield the expanded equation:

F(s) = feRte Ttd £(¢t) dt (9.4)
0
Equation (9.4) is simplified by means of the Euler relation,

e = cos (w) + jsin(w) (9.5)
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to yield:

F(s) = fe'"(cos(It:) + jsin (It)) £(¢t) dt (9.6)
0

F(s) is a complex function with real and imaginary components. For the complex input

s=R+1Ij, the components of F(s) are defined by:

R(F(s)} = fe-R= cos (-It) f(t)dt
° (9.7)

SF(s)) = fe‘" sin(-It) f£(t)dt

[«

The transformation of equation (9.3) into equation (9.7) has yielded a form which
can be numerically evaluated. Both the measured temperature input and the step solution
have to be transformed by equation (9.7) in order to obtain a solution to the IHCP in the
s-domain. This conversion is a time consuming process, especially since the integrals in

equation (9.7) must be .e-¢valuated for every discrete value of s.

9.3 Numerical Transformation from the Laplace Domain to the Time Domain

The inverse transformation from the s-domain to the time domain is defined by
the complex line integral:

G*j-
(L) = fe”o(s) ds (9.8)

o-J=

From the nature of the inversion formula, it is clear that Q(s) cannot be converted to the

time domain unless its complex behaviour is known. The integral is especially difficult
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because Q(s) is defined numerically and not as an analytic function, as discussed above.

The numerical evaluation of the inverse transform is based on a paper by K.S.
Crump [72], which uses the trapezoidal rule to numerically evaluate the complex integral
in equation (9.8). Given a complex valued function Q(s), an approximation g(r) to Q(1)

is obtained by computing the partial sums of:

{3000 ol S5 eod 55 ol 51 s )

where the parameters a and T satisfy the conditions T > tand a > «, such that:
|q(t)l < Meat (9 10)

The computational efficiency of the algorithm is improved if T is taken to be 2t. In this

case, equation (9.9) becomes:

g(t)== —Q(a)+2{ﬂio(a+£ti)(-1)k_30(a A2k 1)7‘J)( —1) k- 1}]

"5?
The parameter a is approximated by: 3
a-= < (9.12)

The choice of the parameter a is critical to the convergence of equation (9.11).
Increasing a improves the accuracy of the solution but it also slows convergence by
increasing the required number of iterations. Equation (9.11) is the product of two
functions, one that includes the term e* and the other that includes the infinite series. If
the product {at} becomes large then the first term becomes very large, and the infinite
series becomes very small. Figure 9.2 shows the results of the numerical transformation
for different values of the product {at}. As the product {at} increases, the accuracy of

the solution improves until numerical round-off errors in the summation algorithm cause
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instability in the solution. When {at} is equal to 3.0 in figure 9.2, the accuracy and
reliability of the solution are optimal. Equation (9.12) ensures that the product {at} will
equal 3.0, for any value of the time parameter t.

The process of converting Q(s) to the time domain requires the computation of
enough partial sums in equation (9.11) so that g(t) approximates Q(t) with a sufficient
degree of accuracy. Since Q(s) is defined by AT(s) and AT,(s), and there is a different
value of s for each partial sum, the latter two expressions must be evaluated from
equation (9.7) for every iteration. This is time consuming because each iteration requires
that four numerical integrations with indefinite limits be performed. Figure 9.3 shows

the numerical approximation of g(t) to Q(t), based on equation (9.11), where Q(t) is the

s(t)

-0.51

-0.83

-0.35 |

-0.57

=-0.59

-0.61 1 1 1 1 1 1 L I
1 1.5 2 23 3 3.5 4 4.5 S 5.5

Value of {at}

Figure 9.2: Plot of the Solution to Equation
(9.11) as a Function of Parameter a
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L8 g{t) (Numerical Inverse Transform)
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Figure 9.3: Plot of g(t) versus k for Step
Input

step input U,(t). The approximation is at t=2, and is plotted as a function of k, the
number of partial sums. g(t) converges to the proper value of 1, but it does so in an
oscillatory manner, It is critical that the number of iterations be kept at a minimum, both
for time considerations and because the solution becomes unstable as the number of

iterations increases.

9.4 Obtaining the Solution in the Laplace Domain
9.4.1 Inverting the Transfer Function in the Laplace Domain

The transfer function relating Q(s) to the temperature input AT(s) is defined by

the step solution AT,(s), as in equation (9.2):

If the real part of the step solution is R, and the imaginary part of the step solution is
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(9.13)

8, and s is represented by R+1j, then equation (9.13) becomes:

RR - 31 S+ RT1

-—

(RR-SD)2 + (JR-RD2  (RR-SD? + (SReRD)Z "

G(s) =

With & and 3 defined by equation (9.7), equation (9.14) defines the transfer function of
the IHCP for any s=R-+Ij. The IHCP solution to an arbitrary input is found by
multiplying the transfer function by the transformed temperature input AT(s) in the s-
domain. The solution to the problem in the s-domain is simple compared to the problem
of transforming the variables from the time domain to the s-domain and then back again.

The transfer function for the IHCP is defined in the s-domain by equations (9.14)
and (9.7), but the transfer function must be incorporated into an real time process, and

there two ways to do that:

1) The first is to tabulate values of the function G(s) for different values of
variable s while the system is off-line. G(s) is stored as a table of data, and when G(s)
is needed for a particular value of s, a subroutine ir*erpolates the tabular data. The
advantage of this procedure is that the time-consuming work is done before the system
is put on line, and only an interpolation routine is needed to call up the values of G(s).
The disadvantage of this procedure is that a very large table of data is required. The data
table is two-dimensional because for each value of the real component R, the imaginary

component I must be tabulated through the entire usable range. This is cumbersome and
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requires a lot of memory, especially because the data intervals must be small to give
good accuracy.

2) An alternate procedure is to plug the appropriate value of s=R+]j into
equation (9.7) and integrate it on-line. This is a simpler process, but it is more time
consuming for the controller. Since the input must be transformed on-line anyway, and
since the memory requirements of storing a table of data is considerable, this is the

procedure that will be adopted for this method.

9.4.2 Transforming the Measured Temperature Data

AT(t) is measured on-line and stored as a table of temperature differences. There
is a problem with using equation (9.7) to transform AT(t) because equation (9.7) requires
a function that is defined between t=0 and t=oo, but the entire range of AT(t) 1s not
available to an on-line controller. At any real time 7, only the behaviour of AT(1)
between t=0 and t=7 is known. The future behaviour of AT(t), between t=7 and t=o0,
is not defined. The only way to deal with this problem is to assign values to AT(t) in the
undefined region. Since it is only the value of Q(t) at t=7 that is of interest, it does not
matter what happens to AT(t) and Q(t) when t is greater than 7. Theoretically, the
controller could assume any values for AT(t) for t>7, and it would not affect the
solution for Q(t) where t<7. In practice however, any abrupt changes in AT(7+) would
alter the numerical solution for Q(7). In order to smooth the transition, it will be assumed
that AT(t) is constant between t=7 and t=o0, and that the constant is equal to AT(7).

Figure 9.4 shows how the controller would represent the temperature difference profile
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that was given in figure 8.5 at 7=10 seconds. All of the temperature differences for
t =10 seconds are equal to AT(10).

There is another difficulty that arises when AT(t) is transformed into the s-domain
by equation (7). Since the transformation integral is evaluated from t=0 to t=o0, the
entire time history of the temperature difference AT(t) must be included in the
integration. If the machine were in operation for several hours, then 7 would become
exceedingly large, and the computation of the integrals in equation (9.7) would require
more and more time. But it is not necessary to store the entire temperature time history

of AT(t) in order to get an accurate solution for Q(7). The convolution integral illustrates

5 Temperature (deg C)

Ve

o 1 1 1 1 L
0 5 10 15 20 26 30

Time (sec)

Figure 9.4: Temperature Difference Stored by
The Controller at t=10 seconds
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the mathematical reason behind this fact. The relationship between Q(s) and AT(s) is as

follows:

P(s) = G(s) AT(s) (9.15)

where H(s) is the transfer function. The convolution integral of equation (9.15) is then:

4
o(t) = fG(r-t:) AT(t) dt (9.16)
0

where t is 2 dummy variable.
Since the convolution integral is evaluated from t=0 to t=7, the entire time history of
the temperature difference AT(t) is included in the solution. But not all of the AT(1)
temperatures make an equal contribution to the solution, because of the presence of the
G(7-t) term in the convolution integral. As t becomes smaller, G(7-t) tends toward zero,
and so the values of AT(t) with small t make a small contribution to the integral. Thus,
it is thus the most recent temperatures that make the largest contribution to the integral
and the earlier ones that make the smallest. It is only necessary to store the most recent
part of the temperature time history, without any significant loss in accuracy. This also
makes sense physically. Disturbances that have occurred several hours in tne past have
very little bearing on the present temperature field.

The period of the temperature time history that must be stored by the controller
depends on the time constant of the system. In these experiments, the time history that
is retained by the controller is T, =100 seconds. Initially, AT(t) is equal to zero for all

t, but after each control cycle of Tc seconds, the most recent temperature readings are
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added to T(t) and the earlier ones are discarded. Thus, the controller maintains a constant
‘window’ of the previous 100 seconds of AT(t), and equation (9.7) is always evaluated

over a constant period T,.

9.5 Generating a Solution in the Time Domain
9.5.1 Stabilizing the Transfer Function

The initial time lag in the step solution to the direct problem is the source of
instability in the THCP, as discussed in the literature review. The time lag can be
eliminated by approximating the step solution with an inherently stable analytic function.
Figure 9.5 shows the step solution to the direct problem and the stable analytic
approximation defined by equation 7.32 zooming in on the initial behaviour. Using the
stable analytical function to define the transfer function, instead of the numerically
defined step solution, considerably reduces the inherent instability of the IHCP. In all of
the methods discussed in the literature review, the stability of the problem was controlled
at the level of the input or output. In the present method, the stability is controlied by
redefining the problem in such a way that the stability is increased at the structural level
of the problem. Therefore, uic problem of a non-unique solution does not apply to this
method, and the input can be defined continuously in the time domain. None of the

literature methods have those properties.
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Figure 9.5 Measured Step Solution and
Analytical Approximation

9.5.2 Stabilizing the Transformation from t to s

When Q(s) is transformed to the time domain at t=7, the solution tends to be
unstable because of the way in which AT(s) is determined. As explained in section 9.3,
AT(t) abruptly becomes constant for t = 7, and that interferes with the numerical inversion
at t=7. The interference can be eliminated if the controller calculates the heat generation
at 1 second in the past, at Q(7-1), instead of when t is exactly equal to 7. This does not
present a practical problem because the deformation time constant of the structure is

considerably larger than one second.

9.6 Implementing the Procedure in a Computer Program
A computer program implementing the procedure has been written in Fortran code

to run on an IBM 486 PC. A brief summary of the method and the details of the
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numerical procedure will now be discussed in point form:

1) The transformation from t-»s must performed twice, as shown in figure 9.1.
The transformation equation (9.7) is evaluated by Simpson’s rule with N =80 iterations.
The right hand limit is improper, but it is approximated by the expression 323/(R+1)
where R is the real part of s, because the magnitude of the integrand becomes small
enough to be neglected after that point. Both the analytical step solution and the measured
input are transformed by equation (9.7) on line.

2) The transfer function in the s-domain is defined by equation (9.14). The
solution in the s-domain is obtained by multiplying equation (9.14) by T(s).

3) The transformation from s-»t is evaluated by equation (9.11). Each of the
iterations requires four numerical integrations to transform the real and imaginary
components of the input and step solution by equation (9.7). So as to compromise
between speed and accuracy, the solution is truncated at 16 iterations. Figure 9.3 shows
that for a step input, 16 iterations is where the accuracy of the solution is optimal. For
other inputs 16 iterations is not necessarily an optimal value, but the number is an
acceptable approximation in practice, as will be seen in the next section.

3) The window of previous temperature data that is stored by the controller has
a duration of 100 seconds. While the time step is variable in the algorithm, it is fixed at

1 second for the tests in the next section.
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9.7 Testing the Solver

9.7.1 The Test Input

In order to evaluate the effectiveness of this method, a simple heat generation
duty cycle was applied to the finite element test structure, and the temperature difference
between nodes 3 and 4 in figure 8.5 was determined. This temperature difference is used
to test the algorithm by comparing the solution to the actual input. The duty cycle is
shown in figure 9.6, along with the temperature difference profile. The magnitude of the
heat generation is non-dimensionalized for convenience, so that an input of 164 watts
corresponds to a heat generation of 1.0. The time interval between the measured data
points is one second, and that is the step size for the numerical integration. The total

duration of the triangular input is two minutes, representing a rather high frequency input
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Figure 9.6: Temperature Difference Profile
for a Ramp Input
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for a machine tool, and provides a difficult test for the algorithm. The algorithm will be
tested with exact input data, and with simulated temperature errors superimposed on the
data. The simulated errors have two components: a constant component, and a
component that is proportional to the measured temperature. The sign of the error
oscillates between positive and negative with each time step, representing a worst case
scenario for a given error resolution.

In the test results that follow, the solution at each time step is determined from
a window of 100 seconds of previous temperature data. No future information is used in
the calculation of the heat generation at each time step, so as to simulate the actual
operation of the algorithm on-line. Thus, at 7=50 seconds, figure 9.7 shows the

temperature window that is used by the algorithm to obtain the solution for Q(7). The

16 TEMPERATURE (deg C) Heat Generation (dimensionless) 16
14
12
10
Temperature Window

8

8 -

‘ e

2f <42
o ) [l 1 L 1 i 1 0
-60 -40 -20 0 20 40 60 80 100 120

Time (sec)

Figure 9.7: Temperature Window for 1=50
seconds (Ramp Input)
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temperature difference before t=0 is assumed to be constant at zero. 120 separate

evaluations of the algorithm will be used to generate a curve similar to figure 9.6.

9.7.2 The Test Results
9.7.2.1 The Solution for Exact Data

Figure 9.8 shows the approximation to the ramp input in heat generation for exact
measured data. The numerical solution lags behind the exact solution by about 5 seconds
for most of the interval. Part of this lag is due to the fact that the algorithm determines
the heat generation at 1 second in the past, as discussed in section 9.4.2, but most of the

deviation is due to an accumulation of errors in the numerical transformations:

1) The step size of the numerical integration of equation (9.7).
2) The choice of the right hand limit of equation (9.7) to approximate infinity.

2) The finite nuraber of iterations that were used to evaluate equation (9.11).

These limitations are necessary so that the time required for the solution is acceptable for
an on-line controller. Even so, the average running time for the algorithm was 64.4

seconds, a rather large time value for an on-line process.

9.7.2.2 The Solution when the Data Contains Errors
Figure 9.9 shows the solution for the same ramp input as in the previous test, but

with simulated temperature measurement errors superimposed on the data. The
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measurement error in figure 9.9 is defined by:

The error has a constant component of 0.1 degrees Celsius, and a variable component
equal to 0.5% of the measured temperature. The error oscillates between positive and
negative with each time step, representing a worse case. Figure 9.9 shows that the

response of the algorithm is highly stable for relatively small errors. There are two

reasons for this:

1) Much of the inherent instability of the problem was eliminated by defining the
transfer function with an approximate analytical step solution, as discussed in section
9.5.1.

2) The numerical inefficiency of the algorithm helps to filter out high frequency
input components in the same way that it produces a lag in the exact solution. Since the
solution is not ‘crisp’, the high frequency oscillations become jumbled together and

averaged, reducing the propensity for instability.

Figure 9.10 shows the solution to the test case when the simulated error is 0.1
degrees plus 5% of the measured temperature. Even for very significant measurement
errors, the solution is highly stable, and reasonably accurate. The most significant

weakness is the long computation time.
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9.8 Summary and Conclusions of the Method
This method solves the IHCP by defining a Laplacian transfer function G(s) from

the step solution to the direct problem as follows:

T(s) _ Te(s)
5(s) - “i/s (9.18)

H(s) =

where T,(s) is the step solution to the direct problem. The solution to the IHCP is then
found by algebraically inverting H(s) in the s-domain, to yield the solution in the form

of an s-domain transfer function:
0(s) = G(s) T(s) (9.19)

where G(s) =1/H(s). The Laplace method of solving time variable problems is commonly

used when all of the variables can be analytically defined and their Laplace transforms
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are available in tables. This new procedure extends the method to include problems
where the variables are not defined analytically, such as real time control problems where
the variables are defined by a table of numerical data. The method uses numerical
transformation schemes from t-»s and from s-»t to replace the tables of analytical
transforms, and uses a complex variable representation to manipulate the numerically
defined variables in the s-domain. The end result is a fully general numerical program
for solving the THCP, which requires only one step solution to the direct problem. The
step solution can be defined analytically or numerically. The only limitation is that the
problem must be linear.

The method lends itself well to the real time control problem because the solution
is available in the s-domain as well as in the t-domain to aid in control system design.
The stability of the solution is very good for noisy input data, partly because it was
possible to reformulate the problem when the transfer function was defined so as to
increase the inherent stability. The accuracy of the solution is also quite good, but there
is a 5 second lag in the solution for the test input that was considered. The major flaw
in the method from the point of view of real time control is the long processing time,

64.4 seconds on a 486-PC.
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CHAPTER 10: METHOD 2; THE METHOD OF INVERSION BY A
CONVOLUTION INTEGRAL

10.1 Introduction
10.1.1 The Advantages of Solving the Problem in the Time Domain

The procedure that will be developed in this chapter is similar to the method of
the previous chapter in that the step solution to the IHCP will be transformed to the s-
domain, and a general solution will be expressed as a Laplacian transfer function. The
difference is that in this method the transfer function is transformed to the time domain
while the system is off-line. Thus, there are two representations of the solution, one in
the s-domain to be used for control system design and optimization, and one in the t-
domain to be used for real time solution of the problem. This eliminates the time
consuming processes of transforming the input temperatures and the step solution to the
s-domain, and transforming the solution back to ti.c time domain on-line, as in the

previous method.

10.1.2 The Problems Associated with Transforming a Transfer Function From the
Laplace Domain to the Time Domain

Figure 10.1 shows a schematic representation of this method. Instead of
transforming the input to the s-domain so that it can be multiplied by the s-domain
transfer function, the transfer function is transformed to the t-domain where it operates
on the input in real time. The transformation of the transfer function to the t-domain is
done before the system goes on-line. Since time is not a factor, the transformation

process can be performed with much greater accuracy.
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Ts(t) Off-Line Transformation

of Transfer Furection to
Time Domain

T(t) Time Domain Transfer Q(t)
) Function

Figure 10.1: Schewmatic Representation of Convolution
Integral Solution to the IHCP

The solution is represented in the time domain by a convolution integral of the
time domain transfer function with the temperature input data, as already discussed in
section 9.4.2. In the sections that follow it will be seen that the transformation of the
transfer function from the s-domain to the t-domain is a far more complicated problem
than was the transformation of the solution in chapter 9. The reason is that the solution
to a forcing function is usually well defined in the time domain, but the transfer function
is not. In fact, it is not even required that an s-domain transfer function exist in the time
domain.

The s-domain transfer function is defined by the step solution to the direct
problem, as seen in figure 10.1, and as was the case in the previous method. For the
present method it is essential that the analytical step solution be used to define the

tiansfer function. In order to transform the transfer function its mathematical behaviour
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must be known precisely, and that can only be provided by an analytical solution.
There were two thermal solutions derived in chapter 6, one general solution and
one approximate solution for small radii from the source. The general solution
accommodates the temperature lag that was discussed in chapter 3, but the approximate
solution does not. Since the form of the approximate solution is not lagged, the
corresponding THCP has an inherent stability built into it. Thus, using the inherently
stable form of the thermal solution to define the transfer function forces an inherent
stability onto the THCP, as was seen in the method in chapter 9. For the same reason,
the approximate analytic solution will be used to represent the step solution in this

method.

10.2 Deriving the Laplace Domain Transfer Function of the IHCP from the
Generalized Analytical Solution to the Direct Problem

The Transfer function in the s-domain is derived in the same way as in chapter
9, the only difference is that it is then transformed to the time domain. The procedure

is shown schematically in figure 10.1, and is outlined here as follows:

1) Transform the analytical step solution to the s-domain. This has already been
done in chapter 7, where the s-domain representation of the step solution is given by
equation (7.47).

2) Define the transfer function of the IHCP, as in section 9.4.1, as the reciprocal
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of the transfer function of the direct problem:

1

Gl = AT (s

(10.1)

where, 0(s) = H(s)T(s) (10.2)

3) Transform the transfer function G(s) to the time domain, where equation (10.2)

is expressed as a convolution integral:

T(t) = fG(-r-t)Q(t)dt (10.3)
0

Equation (10.3) is the time domain transfer function shown in figure 10.1. The

expression for G(s) has already been defined by equation (9.14), and is repeated here:

R - QI _ JR+RT

G =
(s) (RR-8I)% + (JR+RTI)? (RR-QI1)? + (JR+RI)?2

J

where, R and & are defined by the real and imaginary components of equation (7.47):

+ "y -u ,
e B ey (7o 5 <u+52+<—zr]J]
The integrals in equation (10.5) do not have a closed form solution, so equation (4) is
too complicated to be analytically transformed to the t-domain. The only alternative is
to use a numerical transformation scheme, and to define the G(t) as a table of discrete
data points. No accuracy is lost by using this approach, since the measured temperature

data T(t) is also represented as a tabular function. The integral in equation (10.3) can

only be evaluated by Gaussian quadrature or Simpson’s rule at discrete points in time,
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defined by the sampling period of the temperature measurement system. The time interval
of the tabular values of G(t) should correspond to the time interval between the measured

temperatures T(t).

10.3 Transforming the IHCP Transfer Function from the s-Domain to the Time
Domain

10.3.1 Difficulties Associated with Transforming the Transfer Function

The numerical transformation equation proposed by Crump [72], given by
equation (9.11), was applied to equation (10.4), but the solution did not converge to a
finite value for any value of t. The transformation of an s-domain transfer function to the
t-domain poses a special problem because of the presence of singularities in the solution.
While singularities (impulse functions, doublet functions, etc.) can also be present in the
response to a forcing input, they are nearly always present in transfer functions, and they
cannot be handled by conventional numerical transformation schemes. The problem of

singularities will now be considered in detail, in the following section.

10.3.2 Transforming the Singularity Functions of the Laplacian Transfer Function

When singularity functions are present in the Laplacian expression, the
transformation formuia in equation (9.11) does not converge to a unique or finite value.
To understand the reason for this, it is necessary to derive the Crump equation (9.11)
from basic principles.

The transformation equation from the s-domain to the t-domain is given, as



148
previously discussed, by the complex line integral:
Rejem

£() = 2 fe"-‘F(s)ds (10.6)
R-jee

where R is an arbitrary value on the real axis in figure 10.1 Integrating along the path

shown in figure 10.2, the parametrized variable s is given by:

s = R+uj (10.7)
and,
ds .
—2 = 10.8
au ( )
“lmaginary T R+ jo
+ R
L 1 I 1 ] 1 1 1 1 1 1
| Ll 1 ] I 1 I 1 I ] T
T Real
R-jo

Figure 10.2: Path of Integration of
Equation (10.6) in the Complex s-
Domain
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Thus, the parametrized form of equation (10.6) is:

+n

1 [atreude ; 10.9
zﬁfe uit p(R+uj) du ( )

Equation (10.9) is expanded with the Euler equation, to yield:

%f”“"’*“j’ Cos(tu) + F(R+uj)Sin(tu)jdu (10.10)

The real part of a complex function is always even, and the imaginary part is always
odd. Therefore, equation (10.10) can be simplified by dividing the complex function
F(R+uvj) into its real and imaginary components, and recognizing that the product of

even and odd functions is zero when integrated from -oo to +o. Thus,

£(c) = <= [R(F(R+uj)cos(tu) - $(F(R+uj)isin(tu) du
0

Crump’s formula, given by equation (9.11), is derived by applying the trapezoidal rule
to evaluate the integrals in equation (10.11). In order for those integrals to be finite, the
real and imaginary components of the function F(R+uj) in equation (10.11) must tend
toward zero as u-»co. The transfer function G(R+uj), as defined by equations (10.4) and
(10.5), becomes infinite as u-»c0, so the indefinite integrals in equation (10.11) are
unbounded. The reason why the transfer function diverges is because it contains

singularity functions.

10.3.2.1 The Laplace Transformation of an Impulse

The impulse function §(t) has an infinite magnitude at t=0 and it is zero
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elsewhere. Furthermore, the integral of the impulse over any domain encompassing the
origin is equal to 1. An impulse function is present in many transfer functions because
it specifies an initial value for the solution at t=0. The Laplace transformaticn of
f(t)=5(t) is well known from tables of Laplace transforms to be F(s)=1. The practical
difficulty with the impulse function is that is does not satisfy the existence theorem of the
Laplace transformation [73]. The expression F(R+uj)=1 does not tend toward zero as
u-»co (it remains constant at 1), so the integrals in equation (10.11) do not converge to
a unique value as u-»oo. Figure 10.3 shows the integrand of equation (10.11) for an
impulse function at t=1 second. The integrand does not decay to zero, so the integrai

never converges to a unique value.

Integrand
1.5 Ll

Figure 10.3: Integrand of Equation (10.11)
for an Impulse
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10.3.2.2 Laplace Transformation of a Doublet

The doublet function is the derivative of the impulse function, so logically it is
represented in the s-domain by the expression F(s)=s. The doublet function does not
satisfy the existence theorem of the Laplace transformation either. For a doublet,
F(R+uj) = R + uj tends toward the value R + ooj as u—»oo. Figure 10.4 shows the
integrand of equation (10.11) for a doublet at t=1 second. Figure 10.4 explains why the
transformation of the transfer function defined by equations (10.4) and (10.5) does not
converge to a finite value: there is one doublet and one impulse present in the transfer
function, as will be shown in section 10.3.2.4. There could also be higher order
singularities present in G(s), but it will be shown that this is not the case. It could also
be possible to have singularities at a point other than t=0, but this is not the case in the

present problem, as shall be seen soon.

0 Integrand

40

20

-20 b

—40

Figure 10.4: Integrand of Equation 2.11)
for a Doublet
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10.3.2.3 Dealing with Singularities

When a singularity is transformed by equation (10.11), the solution diverges for
all values of t, even though the singularities should be zero in the time domain at all
values of t other than t=0. The reason is that the Laplace transformation is a space
mapping equation, so there is no direct correspondence from a point in one space to a
point in the other.

There are two ways to deal with the singularity functions:

1) Identify all of the singularities first, and then remove them from the transfer
function. The balance of the transfer function can be transformed by equation (10.11).

2) Identify the singularities first, and then transform the entire transfer function,
while filtering out the singularities.

Both of the above methods will be investigated in this chapter. For the second
method, a special technique will be used to filter singularities out of a Laplacian function
while it is being transformed to the t-domain.

The magnitudes of the singularities are found by replacing s in G(s) by the
complex variable R+1j, and allowing I->co. If no singularities were present, G(R+1Ij)
would tend toward zero as I=co. If G(R+ o0j) is not equal to zero but is equal to a
complex expression, then that expression is the representation of the singularities in the

s-domain. This point will be clarified in the next section.
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10.3.2.4 Transforming the Singularities

The complete transfer function for the direct problem was derived previously, and
is given by equations (10.4) and (10.5). As discussed above, equation (10.4) has no
closed form solution. However, it is possible to obtain a closed form solution for the
particular value of s=R+Ij, when I-co. This particular expression is useful because it
identifies the singularity functions that are present at t=0.

The analytical representation of the step solution to the direct problem in the s-
domain is given by equation (10.4). Although the I-co solution of IHCP transfer
function could be obtained directly from equation (10.5), it is more convenient to obtain
the transfer function for the direct problem first, and then take its reciprocal. The

transfer function for the direct problem is given by:
H(s) = sT,(s) (10.12)

Replacing s in equation (10.12) by R+1j, and T,(s) by the analytical expression in
equation (10.14) yields the analytical expression for the transfer function to the direct

problem:
H(R+Ij) = Kq((1+IQY-RR) - (RI+IR) T, (10.13)

where i and & are defined by:

(u+z)e™d
bf IR (10.14)
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and,

_ I- eV
S-'B?!:( . (10.15)

There are four elements to equation (10.13) that have to be evaluated. These are, from
left to right, (1+I9), RR, RSY, and IR. The last three elements will be found from the
solutions to R and & as I-»eo. The first element poses a special problem that must be
dealt with separately.

As J»oo:

b
R = _1_2(1+Z) (10.16)

and, g=-1 (10.17)

I
The mathematical derivation of these equations is given in appendix 1.

The first term in equation (10.13) is 1+I3. As I-»o, I3-»1, so the term
1+I3-0. The problem is that 1+I3-0 at the same order as RR-+0, so the term cannot
be neglected. Furthermore, even though the term is approaching zero, it does not
disappear when the reciprocal of equation (10.13) is taken, because it becomes multiplied
by a term that is approaching infinity. A closed form of the solution for 1+IQ as I-»o
can be obtained, but the mathematical derivation is highly complex. The solution is
obtained by differentiating the whole expression with respect to a parameter, rearranging
its structure, and then reintegrating it with respect to the same parameter, by methods

of variational calculus. ‘he details of the derivation are given in appendix 5, and the
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solution is:

1+18 = —?;(zz+2z+2) (10.18)
Substituting equations (10.16), (10.17), and (10.18) into equation (10.13) yields the
equation:
G(R+%j) = -I%-(bzz+(2b-R)z+(2b-R)) - 2 (bz+(b-R))j

Taking the reciprocal of equation (10.19), and replacing z=(R+a)/b yields the equation:

(a+b)R+a?+2ab+2b? , I j) (10.20)

KQ( (a+b)? a+b

Substituting R+1Ij=s into equation (10.20) yields:

2 2
s _ a +2ab+2b (10.21)

T S FISE

as s#R+ oj, equation (10.21) shows that there are two singularities at t=0 in the time

domain: one impulse and one doublet. The magnitude cf the impulse is:

Kq
vy (10.22)
and the magnitude of the doublet is:
_ Kq(a2+2ab+2b2) (10.23)
(a+b)?

The parameters in equations (10.22) and (10.23) are the empirical parameters of the

generalized step solution, given in equation (7.32).
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10.3.3 Transforming the Laplace Domain Transfer Function to the Time Domain
10.3.3.1 The Method of Extracting the Singularities

Now that the singularities in the transfer function have been identified, it is
possible to extract them, and then transform the balance of the expression. The
singularities are extracted by subtracting equation (10.21) from the transfer function in

equation (10.5). Thus, the new transfer function, with the singularities removed is given

by:
G* () =( RR - JI _ (a+b) R+a2+2ab+2b2)
(RR-QI)2 + (IJR+RI)? (a+b)?
_( SR+RT , I )j
(RR-QI)2 + (JR+RI)2  a+b

where ® and & are given by equation (10.5), as before. Since equation (10.21)
represents the residue of G(s) as s=*R+ o], then G'(R+ =j)-0, and the transformation
of G°(s) to the time domain by equation (10.11) converges to a finite value for any value
of t.

Equation (10.11) was used to transform G’(s) in equation (10.14) to G'() for
different values of t, using gaussian quadrature to perform the integration. The result is
shown in figure 10.5. The evaluation of G'(t) by gaussian quadrature took more than two
weeks to run on a VAX mainframe computer. The solution required so much time
because the step size of the integration cannot be larger than the period of the sine and
cosine functions in cquation (10.11). Furthermore, G'(s) decays to zero very slowly as
I+oo. Since the right hand limit of the integration is improper, the right hand limit must

be extended until the contribution of the integrand is negligible. This requires hundreds
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Figure 10.5: Time Domain Transfer Function
Determined by Gaussian Integration

of cycles of the sine and cosine functions for most values of t. Finally, because the
integrand in equation (10.11) oscillates about zero for hundreds of cycles before
becoming negligible, the solution is highly susceptible to round off error. This requires
a very fine interval size for the numerical integration, and that increases the computation
time.

There is another problem associated with direct integration of equation (10.11).
The doublet that is subtracted from the transfer function in equation (10.24) is
proportional to 1. As I-»c0 when equation (10.11) is integrated, the computer must take
the difference between two large r mbers. Thus, the right hand limit of the integration
in equation (10.11) cannot exceed the number of significant digits carried by the
computer. The integration had to be performed in quadruple precision in order to

eliminate the round off error for all values of t.
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10.3.3.2 The Method of Filtering the Singularities

10.3.3.2.a The Crump Method of Inverting from the s-Domain

In the previous section, the singularities were removed by subtracting them from
the transfer function and then numerically transforming the balance of the expression. In
this section, a method will be devised whereby the entire transfer function is
transformed, but the singularity functions are filtered out in the process.

The method of numerical transformation from the s-domain to the t-domain that
was devised by Crump [72] is based on the numerical integration of equation (10.11) by
the trapezoidal rule. It is a simple matter to derive equation (9.9) from equation (10.11)
by replacing the integrals in equation (10.11) by the trapezoidal integration formula. The
assumption that T=2t that was used to derive equation (9.11) is equivalent to defining
the step size of the numerical integration to be one quarter of the period of the sine and
cosine functions. Since one iteration of equation (9.11) integrates one half of the period
of the integrand, the solution oscillates between positive and negative with each iteration.
Figure 10.6 shows the numerical approximation to the modified transfer function G*(1)
at t=1 second, determined by the Crump method, and plotted as a function of the
number of partial sums k. The algorithm converges to the correct solution in an
oscillatory manner, until the accumulation of round off errors causes the solution to begin
diverging at about k=12. The highest accuracy that can be obtained by the Crump
method is 2 significant digits at k=12. Thi level of accuracy is insufficient for the

purpose of a convolution integrai, so the Crump method by itself cannot be used.
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Figure 10.6: Transformation of G'(s) by Crump
Method without Acceleration

19.3.3.2.b Accelerating the Crump Method

Figure 10.6 shows that the Crump algorithm does not converge to a definite value
before an accumulation of round off errors causes the solution to begin diverging.
Defining the accuracy by the range of the oscillations in figure 10.6 gives a misleading
picture, however. By drawing an imaginary line through the centre of the oscillations,
it is possible to anticipate what value the algorithm was converging to before it began
diverging at k=12. In fact, one could even trace a line backwards from beyond k=12,
and still estimate the final value quite well. In this section, a method of anticipating the
final value from a limited number of iterations will be developed.

Figure 10.7 shows the first 8 iterations of H(t=1). Figure 10.7 shows that is
possible to decrease the range of the oscillations by calculating the average of G(t), the

present estimate, and G(t,.), the previous estimate. A plot of the average values gives
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Figure 10.7: First Eight Iterations of G'(t)
from Crump Method and Plot of Average Values

a more reliable estimate to G(t) for the same reason that an imaginary line through the
centre of the oscillations anticipates the ultimate value. This idea is taken further in
figure 10.8, where 3 ‘nested averages’ are taken for the 4 data points. The fourth average
is simply a point (marked by a *) which represents the accelerated solution at N=4. The
more averages that are taken, the smaller the range of the oscillations, and the faster is
the convergence of the algorithm.

The number of nested averages that is possible depends on the number of
successive approximations that are available. At k=2, only one nested average is

possible:

_a,+a,

f (10.25)
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Figure 10.8: Plot of Crump Approximation
without Acceleration and Nested Averages

At k=3, the average of the averages is:

a,*a;  8*a,

Fe 2 2 _ 2a1+_33+2a3 (10.26)
2 4 4 4

Similarly for k=n, the (n-1)" nested average is given by:

£ a,Ty+a,T,+a,Ty+..... a,T, (10.27)

n= b

where the co-efficients a; are given in table 1. The co-efficients in table 2 can be derived
by a recursive formula for any k. Thus, if a, is the co-efficient in column i and row j,

then:

Q4,5 833,51 % 84,5 (10.28)
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Table 10.1: Coefficients for the Accelerating Algorithm

Fl_-j a3 _-—a4 as a61 a7 a8 b
Ll 1 2
1 2 1 4
| TR g
1 4 6 4 1 16
1 5 10 10 5 1 32
1 6 15 20 15 6 1 64
" 1 7 21 35 35 21 7 1 128

For any iteration number n, the (n-1)* nested average of the preceding values is
given by equation (10.28), with the a, given by table 1. This shall be called the
accelerating algorithm,in this case applied to the Crump algorithm. Figure 10.9 shows
how the accelerating algorithm speeds the convergence of G'(t) at t=1 second, compared
to figure 10.6 without acceleration. The accelerated algorithm converges to the correct
value 0.5467206 after 11 iterations. Thus, the Crump method with acceleration is as
accurate as Gaussian quadrature, but many times faster. The accelerated Crump method
required 44 seconds to obtain H(t=1) with an accuracy of 6 significant digits on an IBM
486. The unaccelerated Gaussian quadrature method required more than 4 hours on a

VAX2 mainframe computer to give the same accuracy.
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Figure 10.9: The Convergence of the Crump
Method with Acceleration for G(t=1)

One interpretation of table 1 is that the accelerating algorithm takes a weighted
average of the data points that is heavily weighted on the centre of the data. This leads
2

one to wonder whether another average would also accelerate convergence. If a simple

average of all the data is taken then:

N
f== Za; (10.29)

21
N ja1
This average does not accelerate convergence, in fact it does not even converge 7 the

correct value.

10.3.3.2.c The Effect on Singularities

There is another important advantage to the accelerating algorithm: it filters out
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singularity functions. To understand why this is so, consider the transformation of the
impulse function F(R+uj)=1 by equation (11). Substituting F(R+uj)=1 into equation
(10.11) yields the following expression in the time domain, which should be equivalent

to the impulse function:

£(t) = -"ifCos(tu)du (10.30)
0

When t=0, equation (10.30) is infinite, as expected. When t=0 equation (10.30) should
be zero but it is not, as was shown in figure 10.3. Evaluating the integral in equation

(10.30) when t0 yields:
£(t) = £ sinw (10.31)
nt

which does not equal zero unless o is a multiple of . The problem arises because the
impulse function does not satisfy the existence theorem of the Laplace transform, as
previously discussed.

Figure 10.10 shows the Crump transformation of the impulse function at t=1
second. The solution would oscillate about zero forever without converging, except that
numerical round off error eventually results in divergence. The centre of the oscillations
is zero, however, so the solution that would be anticipated by the accelerating algorithm
is zero. Figure 10.10 also shows the Crump transformation of the impulse function with
acceleration at t=1 second. As expected, the accelerated algorithm converges to zero
Hence, the accelerating algorithm filters out impulse functions that would otherwisc

prevent convergence of the algorithm. The successive approximations to higher order
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Figure 10.10: The Crump Transformation of an
Impulse with and without Acceleration

singularities also centre on zero, so they disappear when the accelerating algorithm is

used.

10.4 The Convolution Integral

Figure 10.11 shows the complete time domain transfer function H(t), as
determined by the Crump algorithm with acceleration, with a time interval of one second
between data points. The singularity functions were determined analytically in equation
(10.21), and are included in the figure. The singularities specify initial values for the
convolution integral in equation (10.3). When the impulse function is integrated it adds
a multiple of T(r), and when the doublet is integrated it adds a multiple of dT(t=7)/dt.
It is therefore the last temperature value (at t=7) that has the largest influence on the

solution. The rest of the temperature history is integrated in convolution with G(t), and



166

0.6 Transfer Function H(t)

0.4 Impulse + Doublet

0.2

0

b
wlf-

-0.8

-0.8 ' . :
0 20 40 80 80

Time (sec)

Figure 10.11: Time Domain Transfer Function
Determined by Accelerated Crump Method
including Singularities

becomes subtracted from the initial values.

With G(t) now defined, the convolution integral in equation (10.3) is the solution
to the JHCP for a measured temperature history T(t). The convolution integral is
evaluated by Simpson’s rule to give the solution for q(t) at t=7. Simpson's rule is used
for the integration because it accommodates equally spaced data points. The time interval
between the measured temperature data points must be a multiple of one second because
that is the interval of the transfer function G(t). It is possible to accommodate any other
sampling interval by recalculating G(t) with the appropriate time interval between data
points.

The limits of the convolution integral in equation (10.3) are from zero to 7. If the

boundary of the integration were allowed to expand as 7 increases with time, the
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numerical evaluation of equation (10.3) would require more time with each cycle. In
order to maintain a constant processing time, a constant ‘window’ of 100 seconds of past
data is included in the integration. As r increases, the new temperatures are added and
the oldest ones are discarded, moving the temperature window one time interval to the
right with each cycle. Truncating T(t) does not seriously affect the solution because for
q(7) because G(t) decays to zero well before t=100 seconds. The same procedure was

used in chapter 9 to define a constant window of input data.

10.5 Testing the Solver

The convolution integral was tested using the same standard inputs as the Laplace
transfer function method in chapter 9. The solution at each time step 7 is determined
independently from a 100 second window of previous data. The solution for the
triangular test case shown in figure 9.6, with errorless data is given in figure 10.12. The
accuracy of the solution is considerably better than the previous method because the
transformation of the transfer function was done off-line, and with greater precision.
Furthermore the average processing time was only 0.14 seconds, or 140 milli seconds.

Figure 10.13 shows the solution for the triangular input with simulated
measurement errors of 0.1 degree plus 0.5% of the measured temperature. The solution
oscillates noticeably with measurement errors because of the precision with which heat
generation is estimated. Figure 10.14 shows the solution for a constant error of 0.1
degrees plus 5% of the measured temperature. The magnitude of the oscillations indicates

excellent stability for a solution that has such high accuracy. The stability is due to the
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Figure 10.13 Solution for Triangular Input
with 0.5% Measurement Error
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Figure 10.14: Solution for a Triangular Input
with Measurement Error of 5%

stable form of the analytical step solution that was used to derive the transfer function.
Even when the measurement errors were increased to 25% of the measured value, the
oscillations of the solution did not cause divergence of the algorithm. Because the
solution is unique and the input is continuously defined, there is no tendency for the

algorithm to mistakenly converge to the wrong solution.

10.6 Summary and Conclusions of the Method

This method of solving the IHCP is similar to the previous method in that it uses
a Laplacian transfer function to express the solution to the problem. The difference is
that the Laplacian transfer function is transformed to the time domain so that there are

two representations of the solution, one in the s-domain and one in the t-domain. The s-
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domain transfer function is represented as follows:
0(s) = G(s) T(s) (10.32)

When equation (10.32) is transformed to the time domain it takes the form of a

convolution integral:

h 3
o(x) = [Glz-t) T(t)de (10.33)
0
where the time domain transfer function is defined by:

G(t) = £G(s)) (10.34)

G(s) has no analytical representation in the s-domain and G(t) has ro analytical
representation in the t-domain, so the transformation from s-»t in equation (10.34) must
be performed numerically. A further complication is that the only available numerical
inverse Laplace transformation procedure, the Crump method, cannot transform a
function when singularities are present. The problem is solved by breaking the s-domain
transfer function into two parts: 1) the singularity functions are transformed analytically
by solving equation (10.34) for the special case when I-»c0 by meihods of variational
calculus, and 2) the rest of the transfer function is transformed by a newly developed
method which accelerates the convergence of the Crump algorithm and filters the
singularity functions out of the solution. The end result is simple convolution integral
with a transfer function G(t) defined partly numerically and partly analytically.

The speed and accuracy of the time domain transfer function method is superior

to the s-domain transfer function method given previously, because the time consuming



171

work of transforming from one space to another is done while the system is off-line.
Only one numerical integration is required to obtain the solution in the time domain.
Because the transfer function is defined by an approximate functional expression, the
inherent instability of the problem has been eliminated, as with the previous method. The
transfer function can also be analyzed by classical control theory because it has a second
representation in the s-domain. The disadvantage of this method compared to the
previous s-domain transfer function method is that the solution is specific to the particular
geometry of a large, thin walled structure. For a different geometry, the transfer function

would have to be compietely re-formulated.
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CHAPTER 11: METHOD3; PROPORTIONAL HEAT INVERSION
11.1 The Method of Proportional Heat Inversion

The method of proportional heat inversion is the simplest of the three methods of
solving the THCP that will be investigated in this thesis. The solution is based on a linear

relationship between the input and output variables:
o(t) = kT(¢t) (11.1)

where, K is a constant. The constant K is chosen such that the solution will be correct

when the steady-state condition is reached. Therefore,

Q=(qi)AT (11.2)

where, T,, is the steady-state temperature difference corresponding to the constant input
q.

The temperature difference profile for a unit step in heat generation at t=0 was
given in figure 8.5. Figure 11.1 shows the temperature difference that results from step
inputs of various magnitudes, from Q=0.1 to Q=1.0. Because of the linearity of the
problem, the values of the temperature profiles at any fixed value of t are proportional
to the magnitude of the input. Since the steady-state temperature is proportional to the
magnitude of the input, equation (11.2) represents an exact solution when the input is
constant and steady-state conditions have been established.

The proportional inverse method is simple, but it is a surprisingly reliable
estimate for the heat generation for the purpose of real time control. It is only strictly

correct in the steady-state condition with a constant input, but in an on-line environment
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Figure 11.1: Temperature Difference Profiles
for Step Inputs of Different Magnitudes

it is often close to correct most of the time. For a step input, such as the centre curve
in figure 11.1, equation (11.2) simply scales the temperature profile so that the steady
state value equals 0.5, as shown in figure 11.2. Thirty six seconds after the change in
the input, the error in the approximation has dropped to 10%, as shown in figure 11.2.
The significance of those 36 seconds depends on the period of the control cycle. Suppose
that an alternate method could recognize the change in the input much faster, say
instantaneously at t=0". If the period of the control cycle is much less than 36 seconds,
then a control system based on the alternate method would respond faster and perform
better than a control system based on proportional inversion. On the other hand, if the
period of the control cycle is much greater than 36 seconds then the advantage is lost.
By the time the controller is ready to estimate Q, both methods are equally reliable, and

there is no advantage to be gained .rom the more advanced method. This example
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Heat Generation (Dimensionless)
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Figure 11.2: Solution of IHCP by
Proportional 1Inversion (Step Input of
Magnitude 0.5)

illustrates the special requirements of a solution when it is to be used with real time
control. An algorithm which approaches the accuracy of figure 11.3 twenty seconds
faster, but increases the control cycle by 30 seconds, would actually produce a

deterioration in the performance of the control system.

11.2 The Test Results

Figure 11.3 shows the solution of the IHCP by the proportional method to the
standard input given in figure 9.6. The accuracy is not as impressive as the other two
methods, but the computation time is less than 1 millisecond. Furthermore, the solution
is exact when steady state conditions at the measured node have been reached, which

takes about 3 minutes following a step change. For many applications in the thermal
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control of machine tools, proportional inversion is all that is required. The structural
deformation of a machine tool requires in the range of 30 minutes to reach steady state,
so it may not be critical to recognize high frequency components in the input.

Figure 11.4 shows the results of the proportional algorithm for the standard input
given in figure 9.6, with a simulated error of 0.1 degrees plus 5% of the measured
temperature. The solution is highly stable, even for excessively bad measurement

problems.

5 Heat Generation (dimensionless)

0 10 20 30 40 50 @60 70 80 90 100 110 120
Time (sec)

@ Approximation — Exact Solution

Figure 11.3: Proportional Inversion of the
Standard Test Input with Errorless Data
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Heat Generation (dimensionless)
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Figure 11.4: Proportional Inversion of
Standard Test Input with Simulated Measurement
Error of 5%

11.3 Summary and Conclusions of the Method

The Proportional Inversion method is the simplest of the four methods tested in
this thesis. The heat generation of the source is estimated by determining the heating
value that would produce a given temperature difference if the thermal system were in
steady-state. While the accuracy of the solution is not very good, especially for high
frequency inputs, the stability and computation time are excellent. Furthermore, the
solution is compatible with classical control system theory. It is an attractive solution for
contro! systems with a large time period between cycles because of the simplicity and

reliability of the method.
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CHAPTER 12: METHOD 4; THE REGULARIZED STOLTZ METHOD

12.1 The Basis for the Method

The Stoltz method is applicable to linear problems and is based on the Duhammel
integral, as discussed in the literature review. The Stoltz method by itself is not a
practical solution to the IHCP because there is no mechanism to control the inherent
instability of the problem. A functional form of the Stoltz solution is the Stoltz method
with first order regularization. The Stoltz method is regularized by replacing the
temperatures in equation (3.9) by the Duhammel solution to the direct problem, and
minimizing the error residual with respect to each of the discrete heat magnitudes q,. The
derivation of the solution matrix is given in appendix 6. The solution is obtained by
solving the matrix by the Gauss-Jordan method. For N data points, the solution matrix

is constructed from:

[®] [q] = [B] (12.1)
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where [®] is given by,

[ N

n n n
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The parameter o in equation (12.2) is the regularization factor. Increasing the

regularization factor increases the stability of the problem, but at the expense of non-
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exact matching of the solution.

The Stoltz method and the rcgularized Stoltz method solve the IHCP for an entire
interval, not just at one point. The interval usually represents the entire temperature
history of the input, and the solution is found simultaneously for the entire interval. But
in real time control, only a partial interval is available. There are two ways to

incorporate the regularized Stoltz method into a real time control process:

1) Collect the temperature data at a faster rate than the period of the controller
cycle, and then process the data one interval at a time. This method requires an auxiliary
mechanism to sample and store temperature data independently of the controller.
Furthermore, a high sampling frequency makes the regularized Stoltz method unstable,

as will be seen in the next section.

2) Another procedure is to use the regularized Stoltz method to solve for a block
of past temperature data, and then use only the solution for the last time step to represent
the heat generation at the present time. The purpose of the previous data is only to
stabilize the solution at the present time. The problem with this procedure is that the

solution is least accurate at the last time interval.

The objective of this thesis is to use a controller with a high cycle frequency so that it
can deal effectively with high frequency thermal inputs. Thus, the first procedure is not

practical because dividing a small interval still further would not yield a stable solution
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to the regularized Stoltz method. Therefore, the second procedure is the only viable
alternative.

The idea of using a block of data to stabilize the solution at one time is not new,
it is the basis of the Beck method, discussed in section 3.6. The Beck method uses future
data so it is not applicable to real time control, but an analogous method is to use a small
interval of past data to determine the regularized solution in the interval, and then discard
all but the last value. The problem with this method is that the solution at each time
interval carries over into the next time step. Thus, if q, is the solution for the heat
generation at time t,, then g,,,=q, + &q,, where q; is the change in the heat generation
from ¢, to t;,,. Errors accumulate with each time step because there is no fixed reference
frame other than the initial heat generation value. The solution algorithm is not stable in
real time because the error will eventually propagate out of control.

The solution can be ‘grounded’ in real time by defining the regularized interval
large enough so that all relevant data is included into the solution with each time step.
This is the same idea as the temperature window that was used in methods one and two,
where it was found that disturbances that occur a long time in the past have a negligible
influence on the present temperature distribution. If all of the relevant temperature data
is processed with each iteration of the method, there is no need to rely on the solution
at the previous time steps and errors do not propagate down the line.

In methods one and two, a temperature window of 100 seconds was used. For the
present method, the longer processing time of the algorithm requires that a compromise

be made between the size of the interval and the processing time per cycle. Thus, a
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temperature window of 50 seconds will be used in the following experiments.

12.2 Testing the Regularized Stoltz Solution

It was stated in the last section that the temperature window for the data is 50
seconds. This generates a 50x50 solution matrix which is solved by Gauss-Jordan
elimination.

Figure 12.1 shows one iteration of the regularized Stoltz method for the standard
test input from figure 9.6 with errorless data and a 100 second interval. The interval
starts arbitrarily at t=20 seconds. the regularization factor « is 1.2, which was chosen
by trial and error to optimally regulate the interval. There is considerable instability at
the beginning of the interval, and a smaller deviation at the end of the interval. The

initial instability is not a concern because it is only the final value that is of interest for

Heat Generation (dimensionless)

25
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Time (sec)

=== Approximate Solution = Actual Solution

Figure 12.1: One Iteration of Regularized
Stoltz Method (T, = 100 seconds)
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the real time algorithm. The solution deviates from the exact curve at the end of the
interval because at that point it is only regularized from one side, while in the rest of the
interval the solution is regularized on both sides.

Figure 12.2 shows the results of method four for a temperature window of 50
seconds and a regularization factor of 1.2. The solution at each time step was determined
independently by determining a regularized Stoltz solution similar to figure 12.1 at each
time step, and then discarding all but the last value. The accuracy of the solution to the
standard test input is good, but the process time of the algorithm is an average of 97.4
seconds per iteration.

Figure 12.3 shows the solution of method four with an input error of 5% of the

measured value.

5 Heat Generation (dimensionless)
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Figure 12.2: Solution of Method Four with
Errorless Data
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Figure 12.3: Solution of Method Four with 5%
Simulated error

12.3 Summary and Conclusions of the Method

Regularization is the most commonly used method of stabilizing the IHCP, and
The regularized Stoltz method is the most common method for linear problems.
However, the method was not designed for a real time environment because it relies on
future data to stabilize the solution, and the calculation time is large. In this chapter the
regularized Stoltz method was adapted to real time by defining a temperature window of
past data to stabilize and ground the solution at a particular value of time. The accuracy
of the solution is good, and the stability is very good, but the processing time is
prohibitively large for real time control, 97.4 seconds on a 486-PC. Also, the solution

is not available in the s-domain and the method cannot be analyzed by classical methods.



Table 12.1: Performance Criteria for the Four Methods
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Absolute Absolute Computation Compatibility with
Error Differences time (sec) Control Theory
Method 1 15.3 1.37 4.4 yes
Method 2 0.81 6.52 0.14 yes
Method 3 51.3 0.526 < 1x10? yes
Method 4 9.21 5.04 97.4 no

12.4 Conclusion of Part III

In order to compare the performance of the four methods, there are four

performance criteria that are used:

1) The cumulative absolute value of the error is defined by:

E = g |Q¢(ti) -Qm(ti) |

(12.4)

where Q, is the actual heat generation, and Q, is the calculated heat generation without

measurement error.

2) The stability is measured by the sum of the absolute value of the differences

between successive time steps for a solution with a 5% simulated measuremernt error.

That is:

n
D= § |05 (£101) =0n(E)) |

(12.5)

3) The calculation time is the time required to evaluate the solution at one time

step on a 486-PC.

4) The final measure is the compatibility of the solution with control theory which
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is a qualitative judgement.

For the four methods, the performance criteria are tabulated in table 12.1. The
best overall performance is given by the Convolution integral method. This is the method

that be used to estimate the heat generation of the uncontrolled source in this thesis.
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PART IV: THERMAL DEFLECTION AND CONTROL

CHAPTER 13: THE MODEL FOR THERMAL DEFORMATION

13.1 Compensating for Thermal Deformation
13.1.1 The Displacement Variables

The goal of this thesis is to design a control system to reduce the thermal
displacement error of key points on the test structure. The compensation is provided by
artificial heat sources placed on the structure, with the magnitude of the heat generation
regulated by the system controller. There are a total of six displacement variables which
define the relative position and orientation between points on the structure: the three
linear displacement variables dx, dy, and dz, and the three rotational variables d©, d¢,

and dy.

13.1.2 The Artificial Heat Sources

It is possible to control all six displacement variables, but that would require
elements that are capable removing heat as well as generating heat. Cooling is more
expensive and more difficult to implement than heating, because it requires an external
source of cooling fluid. The heat transfer rate is a function of the temperature of the fluid
and the temperature of the structure, so there is a dynamic relationship between the
variables, and it is difficult to control the temperature of the fluid precisely. Electrically
activated cooling pads are available but they are large, expensive, have a low power

removal capacity, and there is a non-linear relationship between the input and output.
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Resistance coil heating elements are more convenient because they are compact,
inexpensive, and the heat generation can be exactly controlled by regulating the voltage
input. The problem with resistance coil elements is that only heating is possible, and so
it is not possible to control the position and orientation variables simultaneously. Any
positive heat generation makes the structure deform in the vertical (z-axis) direction, so
the only way to compensate for z-deflection with positive heating elements is to
strategically rotate the structure so that the vertical elevation of one key point is reduced.
There is no way to eliminate the rotation of the points with heating elements alone
because that would reintroduce the problem of vertical deflection. Rotation of the cutting
tool is not a significant problem in most cutting operations because it normally never
exceeds 10 radians. Rotations this small do not change the profile of the cutting too! that
makes contact with the workpiece, so there is no problem with inaccuracy or increased
tool wear. On the other hand, the corresponding linear deformation of 10* meters
significantly affects the accuracy of the machine.

In this thesis, resistance coil heaters will be used to control the linear deformation
of key points on the test structure. The corresponding rotations of the points will not be

considered because it is not an important consideration in most machining operations.

13.1.3 Three-Axis Control
Thermal disturbances generally produce deformation along all three co-ordinate
axes. This requires three independent control systems to handle the deformation in each

direction, and each of these requires at least one controlled heat source. A controlled
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source must be located so that a positive generation tends to reduce the net deflection of
the key points along the direction that is being controlled. It is usually not possible to
position the controlled sources so that they induce a deflection only along one axis, so
the three control systems are linked together by the controlled sources. This is shown
schematically in figure 13.1 where the controlled heat generation for axes x and y are
treated as disturbance inputs by the controller for axis z, and so on. The other
disturbance inputs come from the uncontrolled heat sources, which must be estimated
from temperature measurements.

The controlled heat sources are placed so that they induce defection predominantly
along one of the three co-ordinate axes. The larger the secondary deflection along the

other axes, the larger the thermal disturbance to those axes, and the greater the coupling

- o 5 Qel
- Contro] System L Qe2
Qd
—f X-Axis o> Qcd
3\ I Control System
J 4

Figure 13.1: Schematic Representation of Two-Axis Control
System
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of the control systems. A high degree of coupling means that the steady-state generation
of the artificial sources is large, and the dynamic performance of the control systems is
reduced.

Optimal positioning of the artificial heat sources is another form of the inverse
problem that was discussed in chapter 3 [50]. Neto et al. used the conjugate gradient
method to estimate the strength and location of a plane heat source inside a plate [52).
Finding the location of a source must be formulated as an inverse problem because the
position of the source is one of the boundary conditions of the problem, just like the heat
generation. While this could be the subject of several chapters in the thesis, it is not
necessary to consider the problem at this point because of the simplicity of the test
structure. The optimal locations of the controlled sources can easily be determined by an
investigation of the thermal deformation behaviour of the structure, without a formal
mathematical treatment. If the optimal location of the sources were to be treated as an
inverse problem for a real machine tool structure, additional difficulties would arisc
because there are physical constraints on where the heating elements can be located. This
would have to be taken into consideration by the solution algorithm. The best method for
solving the inverse problem for the optimal location of the sources is by iterative

regularization, as discussed in chapter 3.
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13.2 The Finite-Element Test Model
13.2.1 The Configuration of the Model

Figure 13.2 shows the finite-element test model for thermal deformation. The
geometry of the model is identical to the thermal model discussed in chapter 8. The
finite-element thermal deformation algorithm determines the deformation of the structure
that is induced by the temperature distributions determined in chapter 8.

Figure 13.3 shows a schematic drawing of the model setup. The controlled
position r=xi+yj+zk is shown in the figure. The positional displacement vector dr is
measured from the nodal deflections at d,, and d,. If the box model represents part of a
machine tool structure, then dr represents the relative displacement error between the

cutting tool and the workpiece.

a
—
Qd Qd
Qct Qe2
Qe3
e
Figure 13.2: Finite-Element Model Figure 13.3: Schematic

Drawing of for Thermal Deformation Model Setup
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As stated previously, there are four independent heat sources in the finite-element
model: Q¢,;, Qc, Qg and Q,. The only uncontrolled source is Q;, the disturbance to the
system. The controlled sources are Qc;, Qc, and Q,;, which represent artificial heating
pads applied to the outer surface of the structure. Each of the four independent sources
creates part of the deflection of d, and d,. Because of the linearity of deformation
problem, the deflection from each source can be treated independently from the others.
The total deflection at d, and d, is the sum of the deflection contributions from each
source acting independently. Figure 13.4 shows a comparison between the deflection d,
produced by Q, and Q, acting simultaneously, to d, determined by applying each source
independently and then adding the deflections together. The two curves are so similar
that they are indistinguishable from one another, confirming that the sources are truly

independent and superimposable.

0 Deflection (microns)
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Figure 13.4: Comparison of Theoretical and
Superimposed Deflection Solutions
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13.2.2 Results of the Finite-Element Test Model
13.2.2.1 The Disturbance Input

Figure 13.5 shows the steady-state thermal deformation of the test structure for
a non-dimensionalized heat input Q,=1, and a scale factor of 1:10000 for the
deformation. The deflection of the measured points d, and d, are given in figures 13.6
and 13.7. From figure 13.7, the z-deflection of d, is larger than the deflection in the x-
direction, and the y-deflection is zero. The y-deflection is always zero because of the
symmetry of the structure, so it is not included in any of the figures. Although the
disturbance deflects primarily in the z-direction, that does not mean that the x-deflection
is a less serious problem. The controlled heaters for the z-axis control system produce
significant deflection in the x-direction, as shall be seen shortly, so two-axis control is

required.

Figure 13.5: Steady-State Thermal Deformation of the Test Structure for a
Disturbance Heat Generation Q=1
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Figure 13.7: Deflection of d, for Q=1
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Figure 13.8: Steady-State Thermal Deformation of Test Structure for Q=1

A comparison of figures 13.6 and 13.7 shows that d, dominates the displacement
error d,-d, in both the x and z directions. The deflection d, is so small that it is below
the numerical resolution of the solution algorithm. The dominance of d, means that it is
not necessary to determine separate transfer functions for each of the deflections d, and

d,, instead d,-d, is curve-fit directly onto the generalized transfer function.

13.2.2.2 The z-Axis Control Heaters

Figure 13.8 shows the thermal deformation of the test structure for Qg,=1, and
a scale factor of 1:1000. The controlled heat source produces a negative z-deflection by
bending the upper arm with respect to the lower arm. The controlled source Q, also

introduces a displacement of ¢, in the x-direction, as shown in the figure. Figure 13.9
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Figure 13.9: Deflection of d; for Q=1
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shows the displacement d, and figure 13.10 shows the displacement d, for the same
thermal input Q=1. The z-component of d, in figure 13.9 goes through a local
minimum before settling on a final positive value. This behaviour is due to the fact that
the heat originates on one side of the structure, and then slowly propagates to the other
side. The initial effect is to bend the lower arm downward, but as the temperature rises
on the other side of the column the arm deflects upward. As with the disturbance input,
the deflection in the y-direction is zero because of the symmetry of the model, and d,
dominates the displacement error.

The position of Qc; was chosen so that a positive heat input would produce a
negative displacement error in the z-direction. However, Qc, also produces secondary
deflection in the x-direction that is larger than the corresponding z-deflection, as shown
in figure 13.10. Thus, while Q, corrects the disturbance in the z-direction it actually
creates a greater deflection problem in x. The greater the coupling between the x and z
axes, the worse is the performance of the control system, as discussed in section 13.1.3.
If the control heater for the x-axis also produces a significant secondary z-deflection then
the steady-state values of the controlled heaters will be very large, even for relatively
small disturbance inputs, and the dynamic performance of the control system will be
poor. Fortunately, the x-control heater does not produce significant deflection in the z-
direction, as will be seen shortly. The heater Q, is really the critical control element
because of the problem of producing a negative displacement error with a positive heat
source. It is a much easier to induce a positive x-displacement, as shall be seen when the

response of Qc; is considered.
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Figures 13.11 and 13.12 show the deflections d, and d, respectively for the unit
input Q,=1. The controlled sources Q. and Qg produce deflections that are almost

mirror images because the structure has a certain degree of symmetry in the xz plane.

The purpose of Q, in a control system is to induce a positive z-deflection to complement

Qci-

13.2.2.3 The x-Axis Control Heater

Figure 13.13 shows the deflection d; and figure 13.14 shows the deflection d, for
Qc;=1. The predominant deflection is along the x-axis, with a small secondary z-
deflection. The coupling with the z-axis control system is not very great because most
of the deformation is along the lower arm, as shown in figure 13.13. Qg was
strategically placed near the centre of the lower arm so as to maximize the elongation of
the arm, while minimizing the coupling with the z-axis deflection, just as the positions

of Qg and Qg, were chosen to maximize the bending of the column.

13.3 Curve-Fitting the Generalized Deflection Transfer Functions

In the previous section, the solutions for the deflections d, and d, were determined
for various step inputs, by direct measurement of the test model. In this section, the step
solutions will be used to obtain approximate analytical transfer functions relating the
deflections d; and d, to the four thermal inputs Qc;, Qc;, Qc, and Q, by means of the

stable analytical solution that was derived in chapter 7. The Generalized analytical step



o Deflection (microns)

120

100

80

ol

o/A Iy - 4 Y " n 1 3 3 Sdd Y R S I 1
* Y v T * g T Y T T Y T Y T +* T

0 200 400 600 800 1000
Time (sec)

~+— x-Deflection —¥%— z~Deflection

1200

Figure 13.13: Deflection of 4, for Q=1

Deflection (microns)

2.5 4 1 1 1 1

0 200 400 800 800 1000

—+— g-Deflection —¥ z-Deflection

1200

Figure 13.14: Deflection of d, for Qg=1

199



200

solution was given in equation (7.41) and is repeated here:
3 = g(A-[A-Btle™*) (13.1)

The Laplace transformation of equation (13.1) was given in equation (7.49), which is

repeated here:

5(s) _ _(Aa+B)s+Aa’ (13.2)
(s) (s+a)?

Equation (13.2) is the generalized analytical deflection transfer function, containing three
adjustable parameters, A, B, and a. The generalized solution is adopted to a particular
process by curve fitting the adjustable parameters to the step solution by means of
equation (13.1). There are a total of 16 deflection transfer functions, relating Qc;, Qcz,
Qq, and Q, to d,, d,,, d,, and d,,. It is possible to reduce the number of equations,
however, because one of the two nodal displacements always dominates the displacement
error, as discussed in the last section. The relevant variable for control is the
displacement error 6=d,-d,, which will be curve-fit directly onto the generalized transfer
function. The displacement error & is not strictly a nodal defection because it is defined
by the difference between two deflections, but it does not introduce much error to treat
it like a nodal deflection if d,> >d,.

The generalized deflection step solution in equation (13.1) was curve-fit to the
actual step solutions for & using the least square method, discussed in section 8.6, and
the results are given in table 13.1. There are a total of 8 transfer functions, relating the
four independent heat sources to the two components of the displacement error 6, and 3,.

Figures 13.15 to 13.18 show the actual step solutions for 6, and é,, along with the curve-
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Table 13.1: Table of Constants for the Thermal Deflection Transfer Functions

Transfer Function A B a

5,/Qq 8.5 -0.0197 0.00352
8./Qq 40.5 +0.00731 | 0.00303
8,/Qc, 197. -8.66x10% | 0.00411
6./Qc, -116. -0.0758 0.00356
8,/Qc -187. -0.116 0.00368 I
6./Qc 152. -1.30x10° | 0.00416
0,/Qc -127. -0.109 0.00437

" 6./Qa -2.8 +0.0148 | 0.00270

fit approximations based on equation (13.1). The generalized solution provides an

excellent base for curve-fitting, as seen in the figures. The approximations are so good

that they are difficult to discern from the actual deflection curves. This might be

somewhat surprising since the analytical solution is only valid for a flat plate, and cannot

anticipate the corners of the structure. But the generalized solution only represents the

basic form of the solution, and the actual solution is transposed onto it. Even though the

geometry of the infinite plate is different, the form of the solution is not radically

different in its analytical structure. This is an indication of the power and versatility of

the generalized solution method.
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CHAPTER 14: THE CONTROL SYSTEM

14.1 Block Diagram Representation of the Control System

Figure 14.1 shows the complete block diagram representation of the z-axis control
system, where §, is the controlled variable, Qc, and Qc,; are the manipulated variables,
Q, is the external disturbance input, and Q, is the disturbance input from the x-axis
control system. T, is a temperature gradient input that is measured on the test model in
the vicinity of the disturbance heat source, which defines Q, through the IHCP transfer
function G(s), which has already been developed and tested in part III of the thesis. Qy,
determined from T,, is the only external input to the control system. Qc; is the heat
generation of the x-axis controlled source, which introduces a secondary disturbance in
z. Since the generation of Qc; is controlled by the x-axis controller, its magnitude is
known precisely, but Q, is related to the measured input T, through a transfer function.

The transfer functions T1(s), T2(s), T3(s), and T4(s) are all defined by equation
(13.2) and the parameters given in table 13.1. In order to be consistent with the

terminology of figure 13.1, the deflection transfer functions are defined as follows:

8 )
T1(s) = == T2(s) = ==

Qcs o

3 5 (14.1)
T3(s) = == T4(s) = ==

Oc; Ocz

Figure 14.2 shows the block diagram representation of the x-axis control system. Unlike

the z-axis control system, the x-axis control system has only one forward loop because
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there iz only one manipulated variable Q. Thus, the control system has no capacity to
force a negative x-deflection, except by bringing Qc; to zero. There are two internal
disturbances to the x-control system, Qc, and Q,. The external disturbance is Q,, as with
the z-control system. The control systems are linked together by the controlled heaters
Qc1; Qczy and Qg;. Figure 11.1 shows one disturbance input Qg which originates from
the x-axis control system. Similarly, the x-axis control system in figure 11.2 has the
disturbance inputs Qc, and Q, which are controlled by the z-axis control system. The
disruption created by these disturbances is less severe than the external disturbance Q,
because the controlled heating magnitudes are known precisely from elsewhere in the
control system. Q, is potentially more disruptive because it is estimated through G(s)
from external temperature measurements.

The block diagrams in figures 14.1 and 14.2 determine the deflections §, and §é,
by the linear addition of the stress fields due to each source acting independently. This
is justified by the linearity of the governing equation, as discussed in chapter 13.2. The
control system uses a PID controller with feedforward loops from the disturbance
variables. There is a logical element in the z-axis controller which distinguishes between
positive and negative deflection errors. A positive error activates the Qc, loop because
a positive Qc, produces a negative deflection. Similarly, a negative deflection error
activates the Qc, loop because a positive Qc, produces a positive deflection. The logical
element in the x-axis control system only allows positive control signals to pass, while
negative signals are increased to zero. The purpose of the logical branches is to prevent

negative heating values in the controlled heaters.
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The control systems include feedforward branches from all of the disturbance
inputs. Feedforward branches significantly improve the performance of the control
system because they allow the control system to anticipate deflection errors before they
actually occur. It is possible to take advantage of feedforward loops in this control system
because the intermediate variables are so well defined. The constant gains of the
feedforward branches are chosen so that the deflections due to the control heaters exactly
balances the deflection due to the disturbances in the steady state condition. Thus k, is

defined by the ratio:

8¢z,
ky = 8C3

(14.2)

ss
where 6C2x,, is the steady-state deflection in x due to Q;, and 86C3x,, is the steady-state
deflection in x due to Qc;. The other feedforward constants are defined in a similar way.
The steady-state deflections for each variable are given by the parameter A in table 13.1.

The forward loops of the control systems contain a PID controller which either
increases or decreases the controlled heating values to compensate for the deflection
error. Hence, the feedforward loops estimate the required values of the controlled heat
sources, and the PID controller fine tunes the response depending on the magnitude of

the deflection error.

14.2 Frequency Response of the IHCP Transfer Function
The transfer function G(s) in figures 14.1 and 14.2 relates the temperature

difference measured on the surface of the test structure to the heat generation of the
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disturbance source Q,. The transfer function was derived in chapter 7 and is given in the
time domain by equation (7.32) and in the Laplace domain by equation (7.47). The
transfer function is defined numerically in the s-domain because the integral in equation
(7.47) has no closed form solution, as previously discussed. Figure 14.3 shows a
graphical representation of the real and imaginary components of G(s) in the complex
plane. A static analysis of the transfer function reveals that there are no real poles on the
positive side of the real axis so it is inherently stable for DC inputs. The dynamic
performance of the transfer function is illustrated by cutting a slice along the imaginary
axis and plotting the magnitude and complex frequency of the transfer function in a Bode
diagram, as shown in figure 14.4. The magnitude plot of the Bode diagram shows the
amplitude gain of the transfer function as a function of the frequency of the input. The
magnitude plot shows that the gain of the transfer function is constant and relatively
small for low frequency changes in the input. However, at input frequencies higher than
1.59 cycles/sec (10 radians/sec), the gain increases linearly on a log scale. At an input
cycling frequencies of 159 cycles/sec (1000 radians/sec) the gain of the transfer function
is almost 10. This effectively establishes an upper limit on the cycling frequency of the

control system, and places an upper limit on the proportional gain of the controller.

14.3 Determining the PID Constants
A PID controller generates an actuating signal that is proportional to a constant
plus integral plus derivative of the displacement error. The purpose of adding the PID

controller to the forward loops in figures 14.1 and 14.2 is to alter the frequency
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behaviour of the control systems to meet required performance specifications. The time

domain representation of a PID controller is as follows:

1 de
p-}(c(e-o-ﬁfedt'rTD-a? (14.3)

The representation of a PID controller in the s-domain is:

P=Kc(1 +-T-t-; + Tps) (14.4)
The PID controller shapes the frequency response of the control system by adding poles
and zeros to the appropriate locations in the complex s-plane.

Figure 14.5 shows Bode diagrams of the three forward transfer functions of the
control system. The magnitude plot shows that the gains decreases linearly on a log scale
as the frequency increases, indicating that the control system is inherently stable at any
cycling frequency. This is not the case when the disturbance inputs are considered
however, because of the behaviour of G(s) in figure 14.4. If the cycle frequency of the
control system is too large then the amplitude gain of the disturbance input will produces
large oscillations ana instability.

There are two common methods for tuning the PID parameters, the reaction curve
method and the continuous cycling method. The continuous cycling method is based on
frequency response theory, whereas the reaction curve method is based on transient
response theory. The continuous cycling method requires finding the crirical frequency
at which the phasic angle of the response is shifted by 180 degrees with respect to the
inp;lt. The forward loops of the control system approach a phase shift of 180 degrees

asymptotically, as shown in figure 14.5, so the continuous cycling method is not
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appropriate for the present problem. The reaction curve method tunes the co-efficients
of the PID controller based on the transient step response of the forward loop transfer

function. The suggested settings of Ziegler and Nichols are:

1.2 L
T cv——— = cv— = .5L 14.5
k=312 rn-L 7.0 (14.5)

where S is the maximum slope of the step response of the forward loop of the control
system,and L is the effective delay. The maximum slope of the transfer functions T3(s),
T4(s), and T7(s) are found from the step response curves given in figures 13.15 to 13.18.
The figures show that the effective delay of the deflection transfer functions is zero for
a continuous process. However, the controller processes the input at a finite cycling
frequency, so the real effective delay of the discrete process is equal to the period of the
control cycle. This is the average delay between the time that the input changes and the
time that it is sensed by the control system. The period of the control cycle depends of
the processing time of the numerical controller, and on the maximum allowable cycling
frequency, determined from figure 14.4. A realistic period for the control cycle is one
second. This includes time to evaluate G(s) by the convolution integral in equation
(10.3), and time to evaluate the deflection transfer functions in figures 14.1 and 14.2 by
the method that will be presented in section 14.4.

Figure 14.6 shows the step response for T3(s)=6(s)/Q;(s), along with a line
showing the maximum slope S. For this transfer function $=0.412. The effective delay

L is equal to the period of the control cycle, one second in this case, as discussed above.
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Thus, the Zeigler Nicholls recommended PID constants are:

The PID constants for the two other forward branches are based on T4(s) and T8(s), and

the constants are given as follows:
= 0.5
- 0.5 (14.7)

Figure 14.7 shows the Bode diagrams of the three forward loops including the PID
elements. The PID quickens the response of the control system for all input frequencies
by increasing the gain of the forward transfer functions. The price, however, is that the
gain increases linearly on a log scale as the frequency of the input approaches zero. This

means that DC disturbances in the forward loop generate an unbounded response from
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the controller. Disturbances in the forward loop includes actuation errors in the
controlled heat generation.

The closed loop transfer function relating the disturbance Q, to the z-deflection
error can be derived from figure 11.1 for the positive loop including Qc,. The transfer

function is given by:

8, _ G(s) (T3(s)+T2(s))
Q4 1+T3(s) P(s)

where P(s) in the Laplace transform of the PID element. The Bode diagram of equation
(14.8) is plotted in figure 17.7a. The ideal system gain for a disturbance input is zero.
The gain does decrease linearly toward zero as the frequency approaches zero, but it
increases linearly as the frequency of the input increases. This is the opposite situation
to the forward transfer function which decreases toward zero as the frequency increases,
and increases linearly as the frequency approaches zero. Therefore, there is a band of
stable cycling frequencies for the controller which is bounded by instability on either

side. The stable band corresponds roughly to the flat plateau in figure 14.7b.

14.4 Implementing the Control System

Each cycle of the control system in figures 14.1 and 14.2 requires the evaluation
of eight deflection transfer functions in the form of equation (7.49), one convolution
integral in the form of (10.3), and three PID blocks. The PID blocks are an assembly of
three processes: multiplication, differentiation, and integration. The numerical

differentiation process requires that at least one previous value of the deflection error be
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stored by the PC controller. The integration process requires storage of the cumulative
integration of the deflection error. The convolution integral relating the measured
temperature difference to the disturbance heat generation in evaluated by Simpson’s rule,
as discussed in chapter 9.

The deflection transfer functions are given in equation (7.49) in the form of a
Laplacian expression, but in order to evaluate them in real time a numerical solution
algorithm is required. The convolution integral method developed in chapter 9 could be
extended to the deflection transfer functions also, but since the transfer functions are
available in a well defined analytical form it is easier to reformulate the problem in the
time domain. Equation (7.49) is in a form of one linear polynomial is s divided by
another linear polynomial in s. Thus, it can be converted to a linear differential equation
and solved by ordinary numerical methods. By cross-multiplication, Equation (7.49) takes

the form:

(Aa+B) sQ(s) + Aa?Q(s) = s28(s) + 2asd(s) + a?d(s)

Then the governing differential equation is given by:

(Aa+B) O + Aa2Q =8 + 2ad + a%b (14.10)

Equation (14.10) is solved numerically by the Runge-Kutta method on-line for the
numerical values of the input.

The control system in figures 14.1 and 14.2 is formulated as a Fortran program
called Control.For with one external input T, and three outputs Qc,, Qg, and Qc;. These

variables correspond to the temperature difference and artificial sources of the finite-
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element test model in figure 13.2.

14.5 Testing the Control System
14.5.1 Introduction

The effectiveness of the thermal deflection control system is investigated by
applying simulated disturbance inputs to the finite-element test model. The deflection
response of the test structure is determined with control and without control, and the
performance of the control system is evaluated by comparing the results. For each
simulated thermal disturbance, the input temperature difference profile T, is determined
by the finite-element thermal algorithm, and then the program Control.For is used to
determine the appropriate magnitudes of Q;, Qx, and Q to minimize the deflection
error. The initial tests are done with errorless temperature data and precise regulation of
the controlled heating magnitudes. The consequence of errors in the measurement and
data acquisition system, and in the regulation of the controlled heaters are investigated

in subsequent tests.

14.5.2 Triangular Test Disturbance

Figure 14.8 shows the thermal deflection error of the test structure without control
for the triangular disturbance shown in the figure. The duration of the disturbance is
1200 seconds or 20 minutes, and the amplitude is 2 dimensionless units. The maximum
deflection error approaches 60 microns in the z-direction and exceeds 10 microns in the

x-direction. If left uncontrolled, this deflection represents a serious accuracy problem
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when precision tolerencing is required.

Figure 14.9 shows the net thermal deflection error of the test structure for the
same input, but with the deflection control system active. The maximum deflection error
is reduced to less than one micron in both the x and z directions by the control system.
The maximum deflection error now occurs following an abrupt change in the input,
rather than at the maximum value of the disturbance generation, as was the case with the
uncontrolled deflection error. Figure 14.10 shows how the three controlled heaters
responded to the triangular disturbance input. The heating magnitudes of Qc, and ¢; rise
and fall gradually, following the shape of the triangular disturbance, but the positive
deflection z-control heater Q, never becomes active at all. Q, introduces a deflection
along the positive z-axis, so it is only needed when there is a negative z-deflection error,

which arises when Qc, overshoots the zero deflection point or when there is an abrupt
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decrease in the disturbance generation.

Figures 14.8 and 14.9 show that the control system is highly stable and accurate
when there are no errors in the measurement and actuation processes. The triangular
disturbance input is not a difficult test however, because there are no abrupt changes in
the magnitude of the disturbance and the period is somewhat large, giving the control
system a lot of time to anticipate the changes. A more demanding test occurs when the
disturbance changes abruptly and frequently, and the magnitude of the disturbance is

large.

14.5.3 Three-Step Test Disturbance
Figure 14.11 shows another disturbance input consisting of three step changes in

the disturbance heat generation from zero to two, from two to four, and then from four
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to two dimensionless units. The time period between changes is 40 seconds and the total
period of the input is 120 seconds. This disturbance will be used as the standard test
input for the control system because it represents the most difficult test case that would
be experienced by a machine tool in practice. Figure 14.12 shows how the convolution
transfer function G(s) estimates the heat generation of the disturbance for the three step
input. At the points of the discontinuity, there is a lag of approximately three seconds
before the transfer function responds, and then there is an overshoot of the correct value.
Figure 14.13 shows the deflection error of the test structure for the three step disturbance
without control. The maximum deflection error is over 30 microns in z and less than 5
microns in x. The deflection increases almost linearly between step changes because the
period of the input is short and the deflection response is still in its initial linear mode.

Figure 14.14 shows the deflection error of the structure with the control system
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active. The deflection error is significantly reduced, having a maximum amplitude of just
over one micron following the step change in the disturbance heat generation from four
to zero dimensionless units. Figure 14.15 shows the heat generation of the controlled
sources for the three step input. In this case there is much more oscillation of the
controlled heat sources than for the triangular test input, but the oscillations are not so
large as to initiate instability. This example illustrates the predominance of the IHCP
transfer function G(s) in controlling the performance and stability of the control system.

From the test results so far, it has been proven that the control system is highly
effective at eliminating thermal deflection errors, even in the most extreme load cases.
However, the tests have excluded measurement aqd actuation errors that would be
present in a real machine tool control system. These errors shall now be simulated, and

their influence on the performance of the control system will be evaluated.
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14.5.4 Three-Step Disturbance with Temperature Measurement Error

Figure 14.16 shows how the THCP transfer function H(s) inverts the three step
disturbance input when simulated errors representing 5% of the measured temperature
difference are included in the input. The simulated error oscillates between positive and
negative with each control cycle, similar to the simulated errors that were used to test
the JHCP methods in chapter 12. The simulated errors produce oscillations in the
estimated disturbance, and increase the oscillations that already existed at the transition
points. The oscillations demonstrate why there is a lower limit on the cycle period of the
controller. Figure 14.7b shows that such oscillations would produce instability if the
frequency were above 1.59 oscillations per second. Since it is unlikely that the actual
error of a thermocouple would oscillate between full scale positive and negative with

each reading, the simulated error represents a worst case situation for a thermocouple
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with a 5% accuracy.

Figure 14.17 shows the deflection error of the test structure for the three step
input with 5% measurement error, and figure 14,18 shows the corresponding magnitudes
of the heat generation of the controlled sources. The oscillations of the input are not
amplified by the forward transfer function, as expected from figure 14.7. Although the
deflection error is more oscillatory, the maximum amplitude has not increased very
much, remaining within 1.5 microns. The conclusion from figures 14.17 and 14.18 is
that oscillating temperature measurement errors do not significantly reduce the accuracy
of the control system, in this case from 1 micron to 1.5 microns. The figures also show
that oscillating errors require a greater utilization of positive z-deflection from Q; during
the cooling off phase. Positive z-deflection was hardly needed for errorless data, but is
becomes more essential when only imperfect data is available. Since thermocouples with
better than 5% accuracy are readily available, there is no need to consider the effect of

larger errors.

14.5.5 Three-Step Disturbance with Temperature Measurement Error and Power
Actuation Error

Another potential source of error in an actual control system is the uncertainty in
the power generation of the controlled sources. That uncertainty arises from the dynamics
of the resistance elements themselves, and from inaccuracies in the signal amplification
and actuation mechanisms. The effect of errors in the power actuation mechanism shall
be investigated by applying a simulated error into the heat generation of the controlled

sources. One way to do this is to apply an oscillating error into the controlled heat
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magnitudes, similar to the temperature measurement error. This tends to underestimate
the problem because the forward gains of the control system are relatively small for high
frequency inputs, as shown in figure 14.7. Furthermore, errors in the power actuation
mechanism tend to be low frequency in practice. It is unlikely for the generation of a
source to change abruptly by itself unless there is a physical defect in the equipment. The
power actuation error is simulated for the purpose of illustration by adding a factor of
5% to the intended controlled heat magnitudes, with the sign of the error oscillating
between positive and negative every 10 seconds. Thus, for the first 10 seconds the
magnitudes of Qc;, Qc, and Qc; are increased by 5% above their intended values, and
for the second 10 seconds they are reduced by 5% from their intended values. The
deflection error is shown in figure 14.19 for the same three-step input with 5%
temperature measurement error, and 5% power actuation error with an oscillation period
of 20 seconds. The generation of the controlled sources for this test case is shown in
figure 14.20. Figure 14.20 shows a slight deterioration in the x-deflection error, but a
negligible change in the z-deflection error. The frequency of the error is still too high
to be amplified by the control system.

Figure 14.21 shows the deflection error of the test structure for the three-step
disturbance with a 5% temperature measurement error, and a constant positive 5% power
actuation error. The power actuation error does not change sign, so its frequency is zero.
The maximum x-deflection error has now increased considerably to just under 2.5
microns, exceeding the z-deflection error which has remained relatively constant.

Nevertheless, the deflection error is considerably reduced compared to the uncontrolled
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deflection for the same input in figure 14.13. Furthermore, figure 14.21 represents the
worst possible case for both the temperature measurement error and the power actuation
error. Since the frequency of the power actuation error is zero, the forward gain of the
control system on the error is maximum, as shown in figure 10.5. Also, since the
frequency of the temperature measurement error is equal to the cycle frequency of the
control system, its gain is maximum, as shown in figure 10.4. Also, an accuracy of 5%
for the temperature measurement error and 5% for the power actuation error are
conservative values which would not be so severe in practice. An accuracy greater than
5% of the maximum temperature rise (10 degrees C) can be obtained by calibration, or
by using thermistors. This control system could reasonably be expected to reduce the
thermal deflection error to less than 2 microns for a structure similar to the test model

if the data acquisition and power actuation mechanisms are calibrated correctly.
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CHAPTER 15: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
WORK

15.1 Conclusions

The trend in recent years has been to devote less time to modelling for control
system design because of the availability of statistical matching software, such as expert
systems, and because of the ever increasing complexity of the control problems. The
control systems that do not use statistical matching usually use process models that are
only partially reliable, and use adaptive control to compensate for the weakness of the
models. The goal of this thesis was to develop the closest possible analytical simulations
of the physical processes, so that no statistical matching and no external calibration of
the models by adaptive control is required. This goal was achieved by the development
of the "generalized analytical solution method", and the derivation of analytical solutions
for modelling the temperature and thermal deformation ficlds in a machine tool structure.
The analytical temperature and thermal deformation solutions for an infinite plate in
convection were derived for that purpose.

The Laplace transformation was used to derive transfer functions for each of the
process models. These Laplace transfer functions were used in two ways: 1) to obtain
a solution for the process to an arbitrary input, and 2) to allow the control system to be
designed and analyzed in the s-domain. The Laplace method is an underdeveloped
technique for numerical problems because of the obstacles that were encountered in
chapters 9 and 10, including: 1) the transformation requires knowledge of the entire time

domain, 2) the transformation requires s to be treated as a complex variable, 3) the
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inverse transformation is difficult to evaluate numerically and the procedure fails when
singularity functions are present. Very little work has been done in this area, besides a
few software applications of the Crump method [ref] for inverse transforming analytical
s-domain functions. In order to overcome these problems, a new method of accelerating
the Crump inverse transformation by two orders of magnitude was developed. The
accelerating algorithm makes the Crump solution more reliable because it filters out
singularity functions which would otherwise cause complete divergence of the algorithm.
An alternative to the Crump method based on Gaussian quadrature instead of the
trapezoidal rule was also developed. The new method is slower than the Crump method,
but it is more accurate when greater precision is required, and it can also be accelerated
by the accelerating algorithm.

The power of using the numerical Laplace transformation to solve control
problems was demonstrated in this thesis, especially for solving the inverse heat
conduction problem (IHCP). Transforming the IHCP to the s-domain makes it possiblc
to obtain an explicit solution, eliminating the need for an iterative solution and
eliminating the problems of existence and stability that were of such great concern to the
researchers in the literature review. Furthermore, s-domain plots and Bode diagrams of
the transfer functions are available to show the static and dynamic characteristics of the
process models, allowing for better design and understanding of the control system. The
general numerical version of the Laplace transformation that was developed in this thesis
allows the basic methods of s-domain modelling and control to be extended to complex

real problems, just as the numerical finite-difference and finite-element methods allowed
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the Navier Stokes equation, the dynamic equation, and the heat conduction equation to
be extended to complex geometrical problems.

Two versions of the numerical Laplace transformation method were developed in
this thesis. The convolution integral method uses the generalized analytical process
models to derive a time domain transfer function in the form of a convolution integral.
The method is extremely fast, and it effectively deals with the problem of instability by
defining a stable analytical form for the step solution. The second method is called the
Laplace transfer function Method, which uses direct numerical methods on-line to
transform the measured input to the s-domain, solve the problem, and then transform the
solution back the time domain. This method does not require an analytical solution, only
a numerically defined step solution to the direct problem, which could be measured
experimentally. The method is completely general, requiring only a step solution to fully
define any linear system. Furthermore, the chirality of the solution in the s-domain
makes it possible to solve the corresponding IHCP by algebraically inverting the transfer
function,

The performance of the mathematical models and the Laplace transformation
solution method were tested by designing a control system to control the thermal
deflection for a finite-element test model. In order to make the method applicable to
manual and semi-automated machine tools as well as NC machines, the compensation
was effected through artificial electric heaters on the surface of the test structure. The
control system was found to reduce the deflection error from the order of 150-200

microns, to below 2.5 microns for the worst case combination of temperature
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measurement errors and power actuation errors. The control system is somewhat more
sensitive to errors in power actuation than in temperature measurement at the operating
cycling rate of the control system. Power actuation errors are also easier to eliminate by
proper selection of power generating equipment. The method of controlling thermal
deflection that was developed in this thesis effectively eliminates structural thermal
deflection error for the tolerance requirements of most machining processes. Even greater
accuracy could be obtained for specialty operations by increasing the cycling time of the
control system on a faster computer, and increasing the complexity of the feedforward
branches of the control system. For such an operation, the accuracy of the temperature
measurements could be improved by using calibrated thermistors with an accuracy of

0.05°C.

15.2 Recommendations for Future Work

The next step in the development of the method is to get experimental verification
from a single-component test model. The method should first be tested on a simplified,
single-component structure, similar in form to the finite-element test structure that was
tested in this thesis. The next step after that is to extend the method to a actual multi-
component machine tool structure. A single-component model should be tested first so
as to isolate the effect of the non-linear joint interactions in a real machine tool structure
[1]. Non-linear effects are partially compensated by the generalized analytical method,
but if the non-linearity is too severe in practice, then some form of adaptive control will

be necessary to calibrate the process models.
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Many of the procedures that have been developed in this thesis could be extended

to encompass the thermal deflection of the whole machine tool structure-cutting tool-
workpiece system. The generalized analytical model of a cutting tool would be based on
the solution for a basic shape model such as a hollow cylinder, a solid block, or a
combination of both, depending on which parts of the tool post assembly contribute to
the thermal deflection of the cutting edge. The cutting tool deformation is a non-linear
problem, so the Laplace solution method would not be effective without adaptive control.

It would be interesting to study the feasibility of using heat sinks as well as heat
sources to increase the flexibility of the control system to compensate for bending as well
as linear deflection. Heat sinks could be provided by miniature heat pipes or thermo-
electric cooling units, as discussed in the literature review. Mechanical actuators such as
piezoelectric transducers could also be incorporated into such a multi-mode control
system.

A thermal deflection compensation system based on heating and cooling elements
is versatile because it can be used to retrofit any existing machine tool. It would be
useful to study the feasibility of adapting the method with an intelligent controller, so that
the control system can be installed and calibrated on a machine tool with the minimum

user interaction.
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APPENDIX 1: DERIVING THE GOVERNING DIFFERENTIAL EQUATION FOR
THE TEMPERATURE DISTRIBUTION IN A THIN PLATE

Because of the radial symmetry of the problem, a thin ring of radius r is

considered, as shown in figure 7.1. A heat balance on the ring gives:

q, = -k(2nrw) -%%1 1+ g(r, t)(2nrw)dr
q = -k(2nrw) dT' T Jo + B(T*-T,) (252) dr
d:r* dT* . _me
= -k(2nrw) 2L |1 - k(2nw)( 7t ar )dr + h(2nr) (T°-T°,)d

Where, g(r,t) is the internal heat generation per unit volume
h is the co-efficient of thermal convection on the surface
k is the thermal conductivity
w is the thickness of the plate
T is the absolute temperature of the plate

If the net heat into the element is equated to the change in enthalpy then q,-q, is equal to:

(ank)(r oz ‘ZiT.)dr -2nhr (T*-T*,)dr+2nrwg(r, t)dr=(2nrw)pC
r

This is rearranged to give:

(Al1.1)

" (]:7)(710 TI) + g(l'k; £) _(Pkc)j* =0

Equation (A1.1) can be made homogeneous by defining a new variable T=T"-T",. It can
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Figure Al.1: Heat Balance on a
Differential Element

also be simplified by defining the new parameters:

a = _p_ ..l = pcp
kw ' o k (A1.2)
Thus, equation (Al1.1) becomes:
"oy Lol (z,t) — 1
T+ ST aT+l-";— = =T (A1.3)

The internal heat generaiion term is zero everywhere in the plate, except for the thin ring
at r=r,. Thus, if the thickness of the heat generating ring is Ar, then the internal heat

generation per unit volume is defined by:

alr,t) = —at__ when r=r,
ZRIOWAI (Al.4)
=0, when rer,

Where q(t) is the magnitude of the heat generation.
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As Ar—dr, it is required that:

- Io¢
- g(t) . _qlt) .
[g(r, t) dr ] anowdrdr 2nL W (A1.5)

Iy

Thus, as Ar-+dr, equation (Al.4) can be expressed as follows:

glr,t) = Ega?('%b (r-z,) (A1.6)

Where 8(r-1) is the space impulse function.

The internal heat generation per unit volume is expressed as a heat impulse in the
plate at the radius of the generating ring. There is no generation anywhere else in the
plate. Assuming that the plate is at ambient temperature at t=0, then the boundary and

initial conditions are:

when t=0 (Al.?)

T=20,
T=0, when Ir=e

Equation (A1.3) expresses the internal heat generation as a part of the governing
equation. An alternate method is to make the heat generation term zero 11 the governing
equation:

T”+%T’—aT=—i—T (A1.8)

and specify the heat generation as one of the boundary conditions:

dT

— = -q(t) when r=r,

dr (A1.9)
T=0 when t=0

T=0 when r=e

where q(t) is the normalized boundary heat generation.
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APPENDIX 2: DERIVATION OF THE TRANSIENT TEMPERATURE
DISTRIBUTION IN AN INFINITE PLATE WITH A CONVECTIVE
BOUNDARY ON THE FACE AND CENTRAL CIRCULAR HEAT
SOURCE

Part A: The General Solution
In order to apply the Hankel transformation, the boundary conditions should be

incorporated into the governing equation through a heat generation term, as in equation

(A2.1):
T k e
where, T=0 , when t=0 (A2.2)
T=0 , when I=e

The aT term in equation (A2.1) complicates the governing equation. The first step in the
solution is to apply the transformation:
T = Qe-2¢t (A2.3)
Substituting (A2.3) into equation (A2.1) yields:
g2t/ 4 _% e-aet@ . qo-antg 4 _g(_rl_;_t)_ = _‘1‘_(6-“:9 -aae"2tE)

After collecting terms and simplifying, this results in the somewhat simpler equation:

8"+ 168 + 2£g(r,t) = 16 (A2.5)

The transformation has eliminated the aT term that was present in equation (A2.1).

It was shown in appendix 1 that the heat generation per unit volume can be
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expressed as a space impulse as in equation (A1.6):

glr,t) = %&(r-zo) (A2.6)

0

It was also shown previously that the homogeneous solution is reducible to the Bessel
equation of order zero in the space co-ordinate. Thus, anticipating the form of the

solution, the following integral Hankel transformation is used:

8(B,t) = [rJ,(Br)@(zr,t)dr (A2.7)

0

where B is a new parameter.

The objective of taking the Hankel transformation of the governing partial
differential equation is to obtain a solution in the B-domain, and then inverse transform
the solution back to the space domain. Unlike the Laplace transformation, the form of
the Hankel transformation is variable, so a form must be found which corresponds to a
particular problem.

The inverse transformation corresponding to equation (A2.7) is:

e(r,t) = [BJ,(Br) 8(B, t) dB (A2.8)
0

Taking the Hankel transformation of equation (A2.1), and replacing the heat generation

term by the expression in equation (A2.6), results in the transformed equation:

T 1g/ __1_- -aat G(t) _ .18
{(e +18') £, (Br) dr+k[e set L ELY (r-2,) 77, (BR) dr =18
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It may be shown [68] that:

[(®"+18) rJ,(Bz) dr = -B*8 (A2.10)
0

The second integral can be evaluated because of the impulse function:

%{e‘"%b(r-zo)% (Br)dr = L&) gaaty (Br ) (A2.11)

Substituting expressions (A2.10) and (A2.11) into equation (A2.9) results in the following

first order equation in the time domain:

6 + aB?8 = -az—‘i(—k%)-e“‘Jo (Br,) (A2.12)

The Hankel Transformation has reduced the partial differential equation (A2.1) to an

ordinary linear differential equation in time. The homogeneous solution is:
8 = Co-abBt (A2.13)

where C is a constant of integration. The initial condition T(r,0)=0, is transformed by
equations (22) and (25) to ©(B,0)=0.

The differential equation (A2.12) is in the form:
y+ay=zx(t) (A2.14)

An expression for the complete solution to equation (A2.14), including the forcing

function and the zero initial condition, can be determined by a number of elementary
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techniques, including the method of variation of parameters [70]. The expression for the

complete solution is given by:

t
y(t) = e’“fr(r)e“dt (A2.15)
0
Thus, the complete solution to equation (A2.12) is given by:

-—— e "‘B’

t
t
(a+B?) as A2.16
2M(WJ(,(B.rf,).{q(t) e dt ( )

The transformed variable © is retumed to the space domain by the inverse Hankel
transformation from equation (A2.8):
1T f
= -aB3t {B2+a)ar A2.17
e __ZWW[BJ0 (Br)J,(Bz,) e .((q(t) e didB ( )
Finally, replacing © by the expression in equation (A2.3) and rearranging yields the
expression for the temperature distribution in the plate:
1 T f
= -(asB?)at {B2+a)at
T(z, t) anw{BJo (Br)J, (Br,) e {q(t) e dt dB

This is the analytical temperature distribution for a thin infinite plate with a convective
boundary condition on the face, and a central, circular ring heat source. The input is an

arbitrary boundary generation function q(t).
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Part B: The Step Solution
With q(7) in equation (34) replaced by q(r)=qU,(7), the transformed solution

becomes:

5 - q J, (Br,) [east - s3] (A2.19)
2nkw (B%+a)

As before, the transformed variable © is returned to the space domain by the inverse

Hankel! transformation from equation (A2.8):

8(r,t) =

g ( B aat_ o -aB?t
21tkw.£ Bl+a J, (Bry) J,(Br) [e**f-e~**¢] dB

Finally, © is replaced by the expression in equation (A2.3) to yield the step solution:

=3 '_'B—' - '“t-_B -aB?¢
7= 3 {B2+aJo(Bro)Jo(Br)£ e {Bz+aJ°(Bro)Jo(Br)e dB

This is expressed more conveniently in the form:

T= 2ﬁw[}g(r) - e tF, (1,t)] (A2.21)
where,
F,(r) = O—B-z}i—aJo (Br,) J, (Br) dB (A2.21a)

F,(r,t) = fBia J, (Br,) J, (Br) e-¢tB* 4B (A2.21Db)
0
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APPENDIX 3: DERIVATION OF THE TRANSIENT THERMAL DEFLECTION
DISTRIBUTION IN AN INFINITE PLATE WITH A CONVECTIVE
BOUNDARY ON THE FACE AND CENTRAL CIRCULAR HEAT
SOURCE

If there are no external mechanical constraints, then the thermal deflection is

related to the temperature distribution by the well-known relation:

e=a, (T*-Tp) (A3.1)
where, € is the strain
o, is the co-efficient of thermal expansion

(T"-T,) is the change in temperature from the stress free reference
temperature.

The differential expression for the strain is given by e=dé/dr, where dé is the differential
thermal deflection, and dr is the differential radius of the plate. If the atmospheric
temperature T, is also the unstressed reference temperature T, then T*-T," is equal to

T=T"-T,", and equation (A3.1) may be expressed as:

I
8 = a [Tz, t)dr (A3.2)
0

where T(r,t) is the theoretical temperature distribution in the plate, derived earlier in the
section.

The temperature distribution in an infinite plate, with a central heat source subject
to a step input at t=0 seconds, was derived in appendix 2. Substituting the temperature

distribution from equation (A2.21) into equation (A3.2):

I
= g - @-at .
3 = a".['z_nk_w [Fi(z) - e *tF,(r,t)]|dr (A3.3)
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Substituting for ¥, and F,, and reversing the order of integration, the solution becomes:

qe -
$ = 21tkcw [GL(r) - e722¢G, ()] (A3.4)
w.re, - r
G, = .[.%;JQ(le)[JO (Br) dr dB (A3.4a)
- r
. B -a tB? (A3.4Db)
G, _[mJo(Brl)e at [JO(BI) dr dB
The integral:
I
I = fJo(Br) dr (A3.5)
[¢]

appears in the expressions for G, and G,. The integral can be evaluated if the bessel

function is replaced by its power series expansion:

m=0 m: zzmm!Z

T [ 3 (5

I =
1)” dr ___fE (-1) (Br)2mdr (A3.6)
12 0o Mm=0

The terms of the Bessel series can be expressed more conveniently in the form:

T, = Alm (Br)?" (A3.7)
where,
Alm = 2200
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Evaluating the integral in equation (A3.6) yields:

I=[Y atm (Br)dr=Y" A(m)_‘-l?'-i’_""i_;.l'=2 Alm) <_B;_>2“1‘1.g-0

m=0 frd 2m+1 frrd m+1 B

O'SN

This can be rewritten in the form:

= - 2m Br .
I ;;oA(m) (Br) SYETTSE) (A3.9)

Substituting from equation (A3.8), the summation becomes:

- v r A3.10
I l’%T,,,(Br) TS ( )

where T, is the m® term of the Bessel series, from equation (51).
Substituting equation (A3.10) into equations (A3.4a) and (A3.4b), simplifies the
expressions for G, and G,:

» B d I
G -[-BZ_+£J° (Br,) ,,; Tn(Br) 5o B (A3.11a)

= h B -aat = I
G, [B2+aJ°(Bro)e Y Tn(Br) 52n dB (33.11p)

where Tm is the m® term of the Bessel series.
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APPENDIX 4: CONVERTING THE INFINITE PLATE STEP SOLUTIONS TO
THE LAPLACE DOMAIN

The transformation equation from the time domain to the s-domain is given by the
integral:
F(s) = [e-*t £(¢) dt (A4.1)
0

where s is the complex Laplacian variable.

Part A: Converting the General Thermal Solution to the Laplace Domain
The general thermal solution is transformed to the s-domain by substituting

equation (41) into the transformation equation (A4.1):

= q - m-aat -st A4.2
T(s) 21tkw[F1(r) e-atF, (r,t) et dt ( )

where F, and F, are defined by equations (A2.21a) and (A2.21b). The first term, Fy(r),
is not a fur.ction of time so it can be brought outside of the integration. The second term
in equation (A4.2) is the product of two time functions, F,(r,t) and the exponential e*<,

It is evaluated with the help o. the shifting theorem:

fe'“f(t)e‘“dt = F(s+a) (A4.3)
0
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where F(s) is the transformation of f(t). The transformation of Fy(r,t) is given by the
equation:

- ) - - B i )

_[Fz(r,s) e-*tdt = -[-[-I—BZ;J" (Br,) J,(Br) e-*t¥ e-st dBdt

The integration with respect to time is performed first to yield:

B
2

[Fatz. t) estdt = )Jo(Br) —L_dB  (A4.5)
0

Applying the shifting theorem to equation (A4.5) yields the transformation of the second

term in equation (A4.2):

u':.(mB2

fe'“'-'F (r,t) e-*tdt = fB2 Jo (Br,) J, (Br)

Thus, the general thermal solution is represented in the s-domain by the equation:

_ q F (I)
T(zr,s) = =2 fBz J, (Br,) J, (Br)

soa(aoB’

where F,(r) is given in equation (A2.21a).

Part B: Converting the Approximate Temperature Solution for Small Radii to the
Laplace Domain

The temperature solution for small radii that is given in equation (44) has two
terms. The term on the left is a simple constant that transforms to a multiple of 1/s. The

right hand term is more difficult, so it will be handled separately. Neglecting the constant
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multiplier, the right hand term is:

e-lt

—_ A4.8
1+bt ( )

r(t) =

Equation (A4.8) is transformed to the Laplace domain by substituting in equation (A4.1):

F(s) =fe"°—9:f-dt (A4.9)
0

Making the substitution u=(1+bt)(s+a)/b, equation (A4.9) becomes:

e% 1 et

3 f — du (A4.10)
i)
b

The s-domain is a complex plane and s is, in general, a complex variable. Substituting

s=R+1Ij into equation (A4.9) results in the complex line integral:

wsm]

f el;" du (Ad4.11)

Rea T
—— b
b bJ

Rea

b

57

e ® B
b

The complex integration goes from the point s=(R+a)/b + I/bj to s=o + o j, as
shown in figure 7. 10. Since the complex plane is a conservative vector field, the solution
is inuependent of the path of integration. The integration will be performed in two parts,
along path one from the starting point to s=co + I/bj, and then along path two from
s=o0 + I/bj to s=o0 -+ oo j. It can be shown that the integration over the second path

is zero, so the transformation is given by the integration of the function over path one
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only. The parametric representation for the variable u over path one is given by:

u(() = 220 + 25 (A4.12)

where zeta goes from 1-sc0,

The parametrized form of equation (A4.11) is then:

gea
— - -.....‘.(0_’_1

e ® fe[b b] R;adc (A4.13)
b ] _’%_(4-_;_]

When equation (A4.13) is simplified, and the substitution v={-1 is made, the expression

simplifies to:

Res f[m veal -35]e 2" (A4.14)
R+a [V"'l])2+ (_;)2

The expression can be further simplified for computational efficiency by defining the

parameter:

R+a

= A4.15
z 5 (A4.15)
and making the substitution u=zv, to yield the expression:
“ [u+z] - J
% f I (A4.16)
0 U"Z)2 -,;)

With the transformation of the right hand term in equation (44) now definec, the
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complete transformation of equation (44) can now be expressed as:

-T5 % ([u+z] -£5)e
gA | _R-IJ .lf( 37) du (24.17)
Fosw | 750 L e (3
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APPENDIX 5: INTEGRATION OF THE EXPONENTIAL INTEGRAL AT
EXTREME POINTS

The equation that is to be evaluated as I is given as follows:

(1 + I3 - RR) - (R + IR) J (A5.1)
where,
2- -2u
® == (url) e du AS.2
5[ (zlus1]) 2 +(2) (As-2)
and,

zI e~
= — d .
bz'[ (z[u+1])2+(-§)2 u (A5.3)

The first term in equation (AS.1) is F1=1+Ig. This term tends toward zero as I-»oo,
the task in section i is to determine the rate of convergence. In sections ii and iii, the

solutions for & and O respectively, will be found as I->c0,

Section i
It is convenient to simplify the form of F1 in equation (AS5.1) so that the
derivation is clearer. The simplifications will be removed at the end of the derivation.

The simplified form of F1 is:

- 2y =
1-2zrI .0[ LT

e -ZUu

(AS.4)
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Integrate term 2 with respect to the parameter I, and then differentiate with respect to the

same parameter:
d _ raf__e™™ d (A5.5)
= [fl zI _[ o o I)

This is rearranged to:

dr du] (R5.6)

—&d? [I - “/"ze""

The term inside the square brackets will be integrated seperately from equation (A5.6).

[
(au)2+12?

The integral is:

f I __4r (A5.7)
(au)2+T2 )
Make the substitution:
V2 = (au)?+I?
(A5.8)
vV = &/ (au)2+I1?
and the following equations can be derived:
I = x/vi-(au)?
dr = ———Ldv (A5.9)

,/vz—(au)i
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Substituting equations (AS.8) and (A5.9) into equation (AS.7) yields the integral:

ftm_)—idv (A5.10)
v

Equation (A5.10) can be integrated. The solution is:

+ C (A5.11)

Jvi-(au)? - au Sec? l—v-
au

Substituting for v yields:

j(au)z-bl2 .

au

I - au Sec™? c (A5.12)

Now substitute the integrated expression for equation (A5.12) back into equation (A5.6):

| ca

y(au)2+T2

au

I -~ au Sec™?

'c%[' [I - ]:ze"u

0

The integral is divided into two parts:

+C du

1(au)?+12
au

_i - 1 -zu h -zu -1
dI[I I{ze du+[ze (au) Sec

The first integral on the left can be integrated by parts:

fze“"du = —J; (A5.15)
0

When equation (AS5.15) is substituted into equation (A5.14), the first two terms on the
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left side of equation (AS5.14) cancel, resulting in the equation:

+ C du] (A5.16)

1(au)f+1f
au

_d T -zu -1
a7 [{(au) ze *Y Sec
Rearranging the variables, and bringing the differentiation into the equation:

y(au)2+I12

au

T ew d { a
az lue-t¥ —— \ Sec
.[ dr

T.e differentiation in equation (AS5.17) will now be performed, seperately from the main

equation. The derivitive is:

_dg{Sec-l y(au)é+I? N C} (A5.18)
I au

Making the substitution:

x = Y(au)?+1? (35.19)

au
the solution to equation (AS5.18) is:
1 dx
X\/——X—Tz ar (A5.20)
Evaluating the derivitive:
aX . = (A5.21)

dr au\/ (au)2+12

and substituting equations (AS5.20) and (AS.21) into equation (AS5.18) yields the final



result:
d {Sec" 1(au)f+If + C} - au
ar au (au)2+712

Equation (AS.22) is substituted back into equation (AS5.17) to yield:

z au) 2 -zu
A au)2+I2
The final result is given as follows:
< ety p 2 zu
1 - 2zI? z (au) ‘e
f (au)2+1’2 -[ au)2~~I2
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(A5.22)

(A5.23)

The proper form of equation (AS5.23) is obtained by making the following substitutions:

u-[u+1)
3
Which results in:
_ 21-2] e-zu du - z- (a[u+1] )2e-zu du
2% (aluni])2+(§) o (alusl])2+(L)’

As I+, the first term in the denominator becomes negligible:

312 p
F = z’b f(u +1)2e-%dy
I? o

(AS5.24)

(A5.26)
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Expanding the polynomial yields:

L2
zrbz fu’e'zu + 2ue® + e % duy (A5.27)
0

Each of the integrals in equation (A5.27) can be evaluated by the method of integration

by parts. The result is:

2
F= %(z2 + 2242) (A5.28)

Part ii

The integral to be evaluated is:

z2f_ (us1)e™ d A5.29
b'{(Z[U"'l])z-o-(_z)z u ( )

As I-oo, the left hand term in the denominator becomes negligible, resulting in the

equation:

2 -
z_bf(u+1) e~ dy (A5.30)
I? s

Equation (A5.30) can be integrated by parts to yield:

z’b (._1_ + _1_) (A5.31)
I? \ z2 z
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Part iii

The integral to be evaluated is:

zIf =
b*o (zlus1])2+(£)?

(A5.32)

As [+, the left hand term in the denominator becomes negligible, resulting in the

equation:

Z[e-zu A5.33
I[e du ( )

The integration is performed to yield:

g = —% (AS.34)

Part iv

Equations (A5.28), (A5.31), and (A5.34) are substituted into equation (AS5.1) to

yield:
b(bz2+ (2b-R) z+ (2b-R)) I ,
(bz+ [b-R] )2 Y Bzr (bR ° (A5.35)
Substituting
z= R4 (A5.36)
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into equation (AS5.35) yields:

(a+b)R+a?+2ab+2b? . L 3 (A5.37)
(a+b)? a+b




269

APPENDIX 6: DERIVATION OF THE STOLTZ METHOD WITH FIRST ORDER
REGULARIZATION

First order regularization was defined in the literature review as the minimization

of the following residual with respect to the output variable:
n 2 n-1 2
S:El(Yi—Ti) +a1§‘1(qi+1—qi) (A.6.1)

The variable Y represents the solution to the direct problem, which can be obtained by
any means. For the Stoltz method, the solution to the direct problem is replaced by

Duhammel’s equation as follows:
T, =T, + AP, + ¢, AP, +...+q;AD, (A.6.2)

Substituting equation (A.6.2) into equation (A.6.1):

n n-1
S=1}31 (To+ @ AP, + @, AD, +. . +q,AD,-Y,)2 +a121 (Qy1-Gy) 2

Regularization involves the minimization of equation (A.6.3) with respect to q,. Because
differentiation is a linear operator, the two parts of equation (A.6.3) can be treated

seperately. First consider S,, defined by:

n
5,=%, (T,+q 80+ @A, +.. . +q;Ad, - ¥))2  (B.6.4)

1=l

or.

n i 2
S, = g (To + E ngq,i_j‘l - Y, (A.6.5)

J=1

To minimize equation (A.6.5), the partial derivitives with respect to q;, q,,...q, are
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equated to zero. The derivitive with respect to q, is given by:

as, n 4 (A.6.6)
Bq, 2 — T, + ;qu'pi-Ju - Y AQ; 4, =0

=1

This is rearranged to:

3.5'1 n n (i )
- = T,-YNAD, ;.. + g A, ., |A®; ,,, =0
3a, ;(o AP xa E 2y 98 %1o5a i-ke1

Equation (A.6.7) represents n equations with n unknowns. In matrix form the solution

is:
(@) [g] = [B] (A.6.8)

Where,

[ N n n ]
Y ADA0, Y A AD,, Y ADAD,, .. Y AQAD,
f=n

= 1=2 1=3
n-1 n-1 nl
Y AQAQ, Y A®AD,, .. Y A®AD, .,
= ju2 i=n-1
o - n-2 n-2
[ ] EA¢JA¢J:_1 .. Aq)jA(b)'ﬂ'z
i=l 1=1

Symmetric

=1
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and [B] is given by,

o .
; (Y;-T,) AQ,
=l

n-1
2 Yia-T) A8,
1

[B] =| n-2 (12.3)
; (Y;2-To) AR,
1

1
E (Yion-l-TO) A(bi

=

The second part of the residual is defined by:

n-1
S,=a _El(qi’l—qi)z (A.6.11)
1=

The partial derivitive of S, is then:

S

3 a(( Gy =) (-1) + (@e=Gey) (1)) =0 (A.6.12)
dx

which simplifies to:

05,
g,

a('qku"'zqk"qk-l) ifk=+1,n

, A.6.13
@ (@~ Qx.1) ifk=1 ( )
a(qk’qk_l) ifk=n
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Adding together the minimization expressions for S, and S, yields the regularized solution
matrix:

1

[ N n n n
EA¢1A¢1+“ EAQ1A°1°1-a E A¢1A°1__2 . EA¢1A¢1‘D'1
I=1 1=2

i=3 i=n

n-l n-1 n-1
YA AT, e Y A®AD,  -a .. Y aoa0, .,
1wl =2 i=n-1

n-2 n-2

ADAQ,  +a .. Y ADAD, .,

-
[
]

-

b,

Symmetric




