R+l e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions ot

Bibliographic Services Branch des senvices bibliographiques

395 Wellington Street
Ottawa, Ontano
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.5.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellingtor
Ottawa (Ontano)

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la these soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont eté
dactylographiées a I'aide d’un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

THE DESIGN AND IMPLEMENTATION OF AN
ADVANCED VISION-BASED ROBOTIC SYSTEM

Yoram Bloch

A Thesis
in
the Department
of
Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University
Montreal, Quebec, Canada

March 1994

© Yoram Bloch, 1994

ional Lib
Bl e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquistions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your e A ofre rofedrein e

s i Nt stfedren s o

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Nila thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-90944-7

Canada

ABSTRACT

The Design and Implemen: :ion of an

Advanced Vision-Based Robotic System

Yoram J. Bloch

This thesis describes an architecture for implementing an Advanced Vision-based
Robotic System (AVRS). The AVRS has been designed and implemented as a 1e-
placement for controllers of conventional industrial (*duinb™) robotic systems. The
main goal of this thesis is to show that the proposed system can be implemented on
any 4 degrees-of-freedom manipulator at a very low cost of hardware/software and
maintenance. This can result in considerable saving to the industry in upgrading,
“dumb” robots to “smart” (intelligent) ones.

The new AVRS hardware consists of a master processor PC-AT 486 system op-
erating in a master/slave configuration and a frame grabber card. An approach was
developed for the recognition of symmetric (rectangulai, square, circular and tiiangn
lar), approximately flat ohjects in a 2D environment. A novel approach for translating
an object location in camera coordinates to robot coordinates was developed and im-
plemented on the IBM7545 Robot where the most important variables for video-robot
calibration can be changed on-line to speed up system integration. Au application
to the location of 1Cs, and then using robot “pick & place” operations in real-time,
was developed based on the methodologies mentioned above. This low cost systen

locates 1 object in 0.2 sec., 5 objects in 1.0 sec., and 15 objects in 8 sec.

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor, Dr. R. V. Patel for suggesting the
topic of this thesis, for providing me with the freedom to determine the direction of
the project, for his continuous support and encouragement and for his confidence in

my work during my two years as a graduate student at Concordia.

I would like also to thank my colleagues Nicky Ayoub. Gustavo Vegas, Pierre
Chevrier, Guy Gosselin, Dave Chu and Réal Gagnier. Their professional advice made

this research more productive and much more interesting.

No acknowledgements would be complete without thanking my immediate family
TAMIL SHERRI, JONATHAN, my parents LEON & ROZA and my parents in-law
VIOLET & DAVID BEN-SAMUEL to whom this thesis is dedicated. for the contin-
nous support they have provided me through these vears of study.

A special thanks goes to LONKA and HENIEK BERLACH in Montreal. (‘anada.
to BASHA and YANEK GELBART in Stockholm. Sweden, and to GENIA and LOVA
CHRAKOWSKI in Melbourne, Australia.

Finally, financial support from NSERC is also gratefully acknowledged.

v

Contents

List of Symbols

List of Tables

List of Figures

1 INTRODUCTION

1.1 The Evolution of Industrial Robotic System

1.2 Summary of the Research Work

1.3 Thesis Organization

2 VIDEO SIGNAL PROCESSING - THEORY

2.1 Introduction

2.1.1

2.1.2

2.2 From Theory to Practice

2.2.1
222

4

2.2.3

Thresholding

Pattern Recognition

......

.............

........................

.................

........

Pattern-Recognition of Multiple Objects (Shapes & Sizes)

IC Recognition

Parallax Effect in Determining Locations of 1Cs

........

Vi

xi

xii

9
10
11
19

19

3 HARDWAERE DESCRIPTION FOR THE VISION-BASED ROBOTIC

SYSTEM 27

3.1 Imtroduction L L e 27
3.1 Integration Lo e e 28
3.2 Master Hardware Interface Functions 29
3.2.1 Master/Slave Interface 0 oL, 29

3.2.2 The Lighting Environment Function 37

3.3 Hardware Design of the Slave and E_e Interface 38
4 DESCRIPTION OF THE VISION-BASED SOFTWARE 40
4.1 Introduction L e e e 40
4.2 Procedure to Obtain Parameters. 42

4.3 Translating 1C Orientation from (‘amera Coordinates to Robot Coor-
dinates L e e e e e e e 46
4.4 Translating IC Position from Camera Coordinates to Robot Coordinates 47

4.5 Computing Orientation »ud Center Position of 1C in Camera Coordinates 51

4.6 How Partial Groups of Objects are C'reated 55
4.7 Reducing Computational Cost 57
4.8 Treating Undefined Objects oo oo oo 58
4.9 On-Line Robot-Vision Calibration, 59

5 ROBOT SOFTWARE DESCRIPTION 65
5.1 Introduction e 65
5.2 Dual-Port Ram Utilization 67
52.1 The Gripper i i i i i e e 67

593 Robot Motion o 69

6 CONCLUSIONS 75

vi

BIBLIOGRAPHY

A Calibration of the Robot Vision System

B Master Software Description

C Slave Software Description

vii

78

84

List of Symbols

angl_err(c) The camera is not precisely mounted in parallel to the second link
implying that the camera window is rotated about the axis of the

second link by anglerr degrees.

AVRS Advanced Vision-Based Robotic System.

4.1 The angle between the lines Ref_Point-Tip and Tip-IC Center.

h_angle The angle between the lines Ref_Point-Tip and Link.2 of the robot
manipulator.

box. by The pixel indices which represent the Ref_Point in camera
coordinates.

C_X, C_V Represents {interval in mm/one pixel] for 'i’ and ’j’ axes in camera
cocrdinates.

dy Distance of CCamera to Table.

dyy Distance of 1(* face to Table.

d_c.ic Distance between the Ref.Point to 1C Center.

d.t.e Distance between the Ref_Point to Tip.

ep(N) Desired joint position(N)- actual joint position(N) at a sampling

distance N.

eo(N) :z_Q_Ldel:'_l
E_e End-effector.

viii

ZCr 9.}(’r

Terp s Jery

2.mll’jmll

LifepsJtfep

Tty Jiy

te.Jjc

i jor

Loy ey
1C

The indices representing a location of cornerin (‘amera coordinates.
The new value of 7., j, after taking into account the parallax effect
in camera coordinates,

The middle point of the longest side of a triangle in camera
coordinates.

The first investigated triangle corner point found i camera
coordinates.

The location which decides if the investigated triangle is really
triangular.

The ceunter of the imaginary (external) rectangle in camera
coordinates.

The center of the enclosed rectangle hased on its true corners in
camera coordinates.

The pixel at the center of the camera coordinates (255,211).
Integrated Clircuit.

The angle created between robot "X'- axis and Link_1.

The angle created between robot Link.1 and Link_2.

The longest distance between two skeleton points.

Constant position scalar feedback gain.

Constant velocity scalar feedback gain.

r

Ref_Point

th

Lpd

T,

X, Y
XYy
X Yel

iy

Thy

)

alpha(a)

theta(0)

phi(¢)

gamma(n)

7(.N)

~
~~

of the width of the desired rectangle.

to %

1
5
A point chosen as a reference near the End-effector closest corner
in camera coordinates.

Iimage threshold value.

Propagation delay time.

Robot servo loop sampling period.

Robot coordinates.

Location of 1C center in Robot coordinates.

Location of the End-eflector in Robot coordinates.

The mean value of the background gray level.

The standard deviation of the background gray level.

The minimum distance in pixels between objects in camera
coordinates.

A maximum distauce in pixels within an object.

The angle formed by the ‘i axis and Ref_Point-1C Center in camera
coordinates.

The angle formed by the ‘i’ axis and Ref_Point-E_e in camera
coordinates.

The angle that converts the absolute distance E_e-IC Center to the
proportional movement of the robot e.e in X, Y, in order to move
from the current e_e location to the IC Center in Robot coordinates.
The angle formed by Ref_Point-E_e and Ref_Point-IC Center in cam-

era coordinates.

The joint torque at a sampling instant N.

List of Tables

Sobel convolutions

.............................

.............

Data bus size operation decoding of the Master

tpq of 1Cs involved in the generation of the Busy signal

.........

The lighting system controlled by D0 & D1,

..............

The mechanism which controls the lighting system.

The parallax variables.

..........................

(‘omputation cost of the pattern recognition function

..........

Dual-port RAM register reference table.

................

The gripper register function.

......................

Xi

36

N

39

List of Figures

S
e

[
N

[
-t

3.1

>
| £

3.3

3.4

3.6

3.7

1.1

The four corner poiuts of the imaginary rectangle.
The original picture taken by the frame grabber.
Horizonta! Sobel convolntion applied to the original picture.
Vertical Sobel convolution applied to the original picture.
The original picture after adjustment of range and offset.

Vertical Sobel convolution applied to the adjusted picture.

Description of the Vision-Based Robot Manipulator System.
The 1BM 7545 Robot Manipulator with the CC'D camera and the halo-
gen light mounted on therobot arm.
The Master /86-SYSTEM with the interface Master/Slave board.

The RGB monitor, PC-XT and the power supply for the EV80C196KA
Board. e e
The schematic diagram of the Master/Slave interface and the lighting
environment function Part-A. o 000000
The schematic diagram of the Master/Slave interface and the lighting
environment function Part-B. o 00000

The schematic diagram of the Slave and E_e interface.

Block diagram of the Vision-Based Robot C'ontrol software.

xii

31
31

33

4.3
4.4
4.5

4.6

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

4.18

5.1

5.2

5.3

5.4

Al

Description of pixels/interval measurement.
Description of the parallax effect and the solution. . .
General system coordinates and location of anglerr.. . . .

Translation of IC orientation from camera coorainates to robot coor-

dinates.

Translation of IC position from camera coordinates to robot coordinates.

IMlustration for equation 4.10.0
IC Pins affect the external rectangle.

IC Pins do not affect the external rectangle.

Locating the four I(" corners.

Locating the true center and angle a. .

Explanation for the formation of partial groups inan 1C.
Ilustration of how to reduce computational cost.
Main block diagram of the pattern-recognition function.
This is Section A of the Main Block Diagram.

Section B of the main block diagram. .

Section (' of the main block diagram. .

Section D of the main block diagram. .

.......

Block diagram of the trajectory-following controller. . .
Motion and height of the end-effector above the table as a function of

HMe. & v e e e e e e e e .

General flowchart of the robot modes (first part).

General flowchart of the robot modes (second part)

Description of the two stage measurements when calibrating the vision

systemn.

.................

X111

60

61

62

6.3

6-1

66

A.2 Computationof d.t.cand baangl.o oo oo

xiv

Chapter 1

INTRODUCTION

1.1 The Evolution of Industrial Robotic System

The first electrical robot appeared in the early 60s. Since then, robots have success-
fully performed repetitive work such as assembly. material handling and inspection
for continuous high performance production of identical parts in a fixed antomation
environment. For this kind of repetitive operation, the robot controller is compuosed
of very basic hardware and software with few if any sensors. Controllers for these
systems are therefore based on simple processing hardware and unsophisticated con-
trol and trajectory generation software. These types of robots are generally referyed
to as “dumb” robots since they are not responsive to changes in their environment.
The IBM 7545 robot is representative of a large class of industrial robotic systems
and can be classified as a “dumb” robot. Although the 7545 system is an older
generation IBM system, its kinematic configuration is essentially identical to that of
current IBM robotic systems, the only significant difference being the intelligernec of
the controllers. This is why the first step in our research was to produce an (Advanced

Robot Controller) ARC by bypassing the manufacturer-supplied controller with a

controller possessing sufficient processing power and versatility to execute various

advanced robot control strategies.

However, having a sophisticated controller does not solve the tedious task of pre-
cisely identifying “location” from where an object is to be picked up or at which it
is to be placed. Since frames and tables are associated with an object location, a
little change in its location in robot coordinates could cause serious problems. One
approach to overcome this problem is to incorporate visual ‘nformation. This can be
done by attaching a camera to the robot arm and using it as an “eye”. The com-
puter analyzes the information from the camera and sends control signals to the robot
accordingly. The structure of the system designed to handle this kind of operation
should be based on large memory and high speed processing in order to store and

process the huge amount of data and work in real time.

The goal in the proposed thesis is to create a very low cost vision-based system
based on high processing power and incorporate its operation into the Advanced

Robot Controller (ARC) [1] for the IBM 7545 Robot.

1.2 Summary of the Research Work

The solution for resolving the problems mentioned above involved the following tasks:

1. Increase the speed of the ARC by changing its Master from the PS/2-50 to a
486-PC-AT system, with an option to interface to up to 4 gigabytes of Random

Access Memory (with the OS2 operating system).

2. Implement additional hardware functions to complete the new ARC structure

and create a robot vision environment.

3. Mount a C'CD camera on the robot arm with a frame grabber card on the bus

of the PC AT 486-System.

The above steps were taken in order to perform various robot vision applications,
and to develop an architecture which would support future enhancements. The re-
sulting controller can be programmed for use in an industrial or research environment.

The vision based controller has been designed and implemented based on a Mas-
ter/Slave configuration where the Slave implements robot servo control and takes
over a significant percentage of the computation required. This allows more com-
putationally complex control strategies and pattern-recognition functions for robot
vision applications to be executed on the Master at the same time.

The pattern-recognition function implemented, analvzes the camera iuput and
uses special algorithms (not convolution) developed to find precise locations (posi-
tions and orientations) in a multiple-object environment with different shapes (trian-
gles. rectangles, squares and circles) and sizes. A special Camera-Robot Calibration
algorithm was developed to translate camera coordinates to robot coordinates all in
a 2D environment for application involving almost flat objects (for exainple, elec-
tronic components). The proposed system can be implemented on any “dumb”™ robot
composed with 4 degrees of freedom at a very low cost of hardware/software and
maintenance.

The Real-Time system implemented recognizes up to 15 dual-in-line ICs (rectan-
gles) in one frame grabber operation, and calculates the path to these 1Cs within &

seconds.

Different video-based robotic systems have recently been developed. In [40], the
authors describe a vision-based robotic system with two cameras attached to the

gripper’s end-effector. In order to build a world model it is important. to compute

the depth map of the environment. To compute depth, one needs to find out, with
reasonable accuracy, the relative transformation between the 2-D image and the ref-
erential representing the tool. The solution to this problem is obtained by performing
a calibration of the stereo pair of cameras. As a result of this process, one obtains two
matrices which express the above mentioned transformations. If the transformation
between origins of the two cameras’ referentials is known, then the coordinates of
any point in the 3D world can be calculated by using its projections on the left and
right images. In addition to reference [40], references [20], and [25-28] deal with the
calibration issue. Reference [20], describes 3-I) robot vision calibration under three
different constraint conditions in an eye-on-hand configuration: the calibration ob-
ject is placed in a pre-determined location, and the camera locates the object from
a single frame of measurement. The object location is unknown but the camera is
still able to locate the object from a single frame of measurement. The object lo-
cation is unknown and the camera can only locate certain features of the object.
In [25], a calibration matrix is developed to map the image coordinates of an IRI
D256 vision processor equipped with a ('CD camera directly on to the coordinates
for an IBM 7540- SCARA manipulator. The transformation is obtained by training
a neural network with a set of one hundred data points which relate two dimensional
image coordinates to corresponding two-dimensional robot coordinates. The results
demonstrate the ability of neural networks to ‘learn’ the transformation to reason-
able accuracy, and also form the basis for adaptive self-calibration of robot-vision
system. Reference [26] describes an approach which has some similarities to ours. A
semi-automatic method for calibrating a robot-vision interface is presented. It puts a
small work-load on the operator, and requires a simple calibration jig and a solution
of a very simple system of equations. In [27], the author presents three classes of ex-

trinsic calibration procedures. All use closed-form solutions. The class A calibration

procedure requires a reference object at a recalibrated location. The class B calibra-
tion procedure takes advantage of robot mobility. It requires a reference frame. but
not precalibration. The class C procedure, by taking full advantage of both robot
mobility and dexterity, requires no reference object but the simplest one] a visible
point, which is similar to our approach. In [28], a description is presented on ongoing
research to achieve coarse calibration of multiple visual sensors. The emphasis is no
on high accuracy calibration, but on real-time adaptive calibration procedures which
will enable a mobile robot to successfully navigate in complex environments.
Solutions to pattern-recognition problems are discussed in references [23, 29, 30,
33, 37, 38). In [23] the authors have attempted to use a neural network as a decision-
making system which determines how to move the robot to reach the exact target on
the basis of the image acquired by the robot “eye™. This function has been taught
automatically to the neural network. The total system works as follows: (1) A target
object is set at a known position. and the position is taught to the system; (2) The
robot moves randomly around the target and the neural network learns the relation
between the relative positions and images: (3) After enough learning, the robot can
identify the target located at an arbitrary position. Reference [29] describes a robotic
vision system where stationary calibrated cameras. mounted at a specific height from
the workspace plane are used as position sensors for the location determination of
mobile robots. The position of the robot is derived from a shape with a contrasting
color drawn on its top through segimentation and detection processes. The authors
use a process similar to ours in order to determine the object position; camera calibra-
tion, geometric distortions correction, segmentation, parallax correction and scaling.
Reference [30] addresses the problem of determiniug the positions and dimensions of
objects for which only shape models are available and the object size is unknown.

One application domain for generic object recognition is the handling and sorting of

postal objects. Because metrical information relating object features to one another
is not available, the more common feature-based appronches are inadequate. INGEN
(inference engine for generic object recognition), uses a data-driven approah to deter-
mine the position and size of objects with generic shapes such as parallelepipeds and
cylinders. This system successfully recognizes occluded objects in heaps. It also han-
dles scenes which have irregularities in surfaces and edges as well as shadows whick
are common to postal objects. Reference [33] describes a low cost, real-time, robot
vision system. The aim of the project was to automate certain aspects of the catering
operating at Heathrow airport. The vision tasks proposed are: use a vision system
to determine whether an in-flight meal tray has been correctly loaded by a robot:
and develop a working approach to the identification and orientation of randomly
arranged recyclable items on a tray returned from use on an airliner. The eventual
objective of this task is to use this information to guide a robot to unload the tray
automatically. The brief for the vision system has been to produce a versatile low-cost
industrial vision system, capable of performing the required inspection tasks, within a
limited processing time, and requiring no specialized image processing hardware. The
robot-vision system described in [37] is implemented for a mobile robot and a robot
manipulator. The intelligent robotic system is capable of: (a) on-line recognition and
locating of 3-D objects and obstacles with a single or multiple camera system; (b)
vision directed navigation of a mobile robot and (c) optimal task and trajectory plan-
ning for a robotic manipulator with obstacle and singularity avoidance capabilities.
Another approach for a robot-vision system in the postal service ([30]) is described
in [38]. Three dimensional picture processing enables the use of robots for sorting
objects. The system, with the aid of a special image processing computer, permits

out of order parcel heaps to be separated in real time. As in our system, Halogen

and/or fluorescent lights (stroboscopic lighting) makes the vision system significantly

independent of ambient lighting.

System performance is addressed in references {21, 32, 35, 36, 39]. In [21], con-
cepts, implementation. and evaluation of a novel processor for feature extraction are
described. The processor is a freely programmable RISC (Reduced Instruction Set
Computer) machine with a modified Harvard architecture, designed to operate as
a processor in combination with each parallel processor of the multiprocessor robot
vision system BVV 3. The processor has been tested in a number of real-world exper-
iments, including road following. In this application it has demonstrated its ability to
analyze a TV image in less than 4 ms. Our system analyzes an image which includes
one object in 150ms approximately. Reference [32] describes research on Transputer-
based machine vision systems. Because of the massive amount of computation, con-
ventional uniprocessor computers cannot fulfill the computational requirements of
practical real-time industrial applications. The anthors have developed parallel al-
gorithms and special architectures for machine vision purposes. In reference [39),
to meet the requirements of robot vision, a multiprocessor system architecture was
conceived which is based on a small number of loosely coupled microcomputers, inter-
connected by two separate bus systems for video data and for inter-processor message
exchange. Three generations of vision systems based on this architecture have heen
built. The first two use only standard microprocessors of moderate computing, power,
but they have, nevertheless, shown remarkable performance in reat-time vision appli-
cation. The third one uses, in addition, a special processor, similar to a digital signal
processor, for further enhancing the performance of the system. In reference [36], the
authors describe a high-performance transputer-based robot-vision system that per-
forms real-time tracking of moving objects, real-time optical flow computation, and
high-speed depth map generation. The transputer vision hoard was equipped with

three image frame memories, each of which could be used simultancously for inage

input, image processing, and image display. The vision board was also equipped with
a standard image compression chip, used as a correlation processor. Reference [39]
whicli is very similar to our application deals with a real time 2D visual sensor used
to control in a closed loop, a robot which assembles a workpiece held by its grippers
moving in a plane. A fast vision algorithm is designed as the means to measure the
position and the dimensions of a circular pattern in less than 40 ms.

Reference [34] describes automatic light source placement for an active photo-
metric stereo system. Since photometric stereo systems normally use multiple light
sources fixed to the environment, they cannot avoid shadows caused by surrounding
objects. The authors suggest to use a movable light source and to adapt its place-
ment activity to the task environment (like our Halogen light mounted near the robot

end-effector).

1.3 Thesis Organization

An introduction to the evolution of industrial robotic systems and summary of the
research work has been given in this chapter. Chapter 2 describes the theory behind
the implementation of the pattern-recognition fwction which is later applied to IC
recognition and other aspects when dealing with video signal processing. Chapter 3
presents a complete hardware description of the vision-based ARVS and includ »s the
new Master/Slave hardware interface. The Slave’s additional functionality and the
new lighting environment for present and future applications is also included in this
chapter. Chapter 4 describes the implemented software of the pattern-recognition
function in our environment. Chapter 5 contains a description of the software for
robot motion. Concluding remarks and suggestions for future work are given in

Chapter 6.

oL

Chapter 2

VIDEO SIGNAL PROCESSING -
THEORY

2.1 Introduction

To find the location of ohjects in a picture, an initial threshold procedure that distin-
guishes between the background and the ohject is applied first, then the convolution
operation is applied to obtain data about the boundaries of the ohject, and then comes
the tedious process of line detection. line thinning. line merging, line expansion, and
detection of the corners of an object in the case of a square, rectaugle or triangle.
Another problem arises when there is a need to find out about the boundaries of a
circular object, Then a process is applied to determine the circular curve [2].

The convolution process works well when :

1. The object is close to the camera. This results in high resolution (intcrval/pirel);
2. The background signal is distributed equally at the camera input window;

3. The object is well defined (rectangle, square, ... etc.).

The disadvantages of the convolution process appear when :

1. The object is relatively small and is not located near the camera.
2. The object is not well defined.

3. The input window is too wide and there are local changes in the background

signal which result in different intensities on the boundaries of the objects.

4. The convolution operator is applied near the corners of the object, and the

camera is not located near the object, resulting in large error.

ot

The color of the object is not homogeneous.

6. The lighting in the camera environment is not good.

In the proposed algorithm. we shall explain how to establish the correct threshold
at the input of an arbitrary window, how to find the number of objects of simple
shapes in a scene, and how to locate rectangular. square, triangular or circular objects.

Finally. we will incorporate these concepts into our system in order to recognize
the locations (positions and orientations) of dual-in-line 1(C’s (rectangles) so that the

robot can “pick” and later “place” them at desired locations.

2.1.1 Thresholding

It is desirable that the intensity going out from the light source will not cause reflection
of light from the object. An ideal light source is a fluorescent light where the light
source is mounted high above the camera, distributing the light equally around the
workspace of the camera. The background material should be white matte to avoid

reflection, e.g., a regular white matte paper. Since our practical objects are regular

10

dual-in-line 1Cs in black packages. putting them on a white matte background gives
excellent results.

When the distribution of the light is different across the workspace we may define a
different threshold for each window in the workspace. Furthermore, when the window
is too large, the threshold within each segment in the window should be evaluated.
The evaluation of £ %+ ¢ should be peiformed where g is the mean and o is the
standard deviation of the gray level of the bject.

The worse case should always be cousidered. If g, is the mean value of the
background gray level, y; is the mecn value of the object gray level and oy, and a,
are the standard deviation of the background and the ohject gray level respectively,

then the following relation should be satisfied:
fyy £ o >y 1 oy (2.1)

This assumes that the background gray level is much brighter than the object
gray level. In case that the distribution of the object or the background gray level
across the window changes dramatically, different threshold levels should be applied

according to each segment of a given window.

2.1.2 Pattern Recognition

A theoretical description of the process to locate a multi-object input such as a disc, a

square, a rectangle and a triangle in two dimensions is given below. The prerequisites

are:

1. ldeally, the object should be (almost) flat.

2. If the object is not flat, then the distance of the camera to the surface of the
object must be much greater than the distance of the surface of the object to

the table.

11

The process is composed of the following stages:

1. Collecting data from an input image and separating it into partial groups.

2. Removing irrelevant data from the memory, leaving only the data that describes
the boundaries of each partial group. This process creates an outer skeleton of

each object partial group.

3. Joining skeleton partial groups into groups which describe the final skeleton

objects in the multi-object environment.

4. Enclosing the skeleton inside a rectangle in order to determine the shape of each
object and then calculating the corners. center position and orientation of each

object,

Collecting data from an input image

After selecting the correct offset and range for the input image. the objects and
the backgroand image should be well defined such that, if y1,.7 = 1, ..., n, are the mean
gray levels of the nobjects and o,.7 = 1,n. are the standard deviations of the gray

levels of the n objects, the threshold th is chosen accordingly to the relation

S th> t=1,.,n
Lhy — O I > —
Heg 9 mar

(e + o)) (2.2)

We assume that each object is well defined in the workspace implying that each object
has minimum distance d from any other nearby object. When the image is scanned,
the gray level value (gl) at each pixel is compared with the threshold level. For any
gl < th the location 7, j of the pixel in the image is stored in memory. For g > th,

the algorithm discards the location of the pixel.

Memory consideration

We have to consider memory constraints because the dynamic memory allocation
must not exhaust the available RAM. For example. the window of the image composed
of an array of 512 x 480 pixels consists of 245.760 pixels. Storing the whole image in
memory, results in 245,760 x 4 bytes (2 bytes for z-axis and 2 bytes for y axis) i.e.,
9383.040 Lytes, which will overload the memory availabl: under DOS.

The user has to define the maximum density of objects possible inside the window
image taking into consideration first that the objects have to be at minimum distance
from each other. second, the limit that is imposed on the size of the largest object,
and finally, that the system must operate in real-time. It has been found that about
15 objects (1Cs), Tmm wide by 30mm long can fit into our chosen window. In order
to evaluate the dynamic memory allocation needed to store the data, we will assume
that the largest worse case object size of a 20 pin dual in line IC" is a rectangle, Tmm
wide by 30mm long. If we assume that the whole object has a fixed gray level which
satisfies, gl(7,7) < th for each pixel, and the pixel interval ratio is 4.5 pirels/lmm
then, the largest worse case number of pixels per object that will be stored in memory
is Tmm (3.5pirels/Ilmm) x 30mm (3.5pixrels/Tmm) = 2570 pixels or 10,280 bytes
per object or 154,200 bytes for 15 objects out of 500,000 hytes available for dynamic
memory allocation under DOS.

A convenient way to save on memory is, if we choose an ¢ which is the worse case
(shortest) distance between any two objects and we choose a § such that § <« «
which is the distance between two consecutive pixels in the same row (i) within the
image stored in memory. For example we can take a worse case minimum distance
between any object for which ¢ = 18 pixels and § = 4 pixels to satisfy § « ¢, and
save up to 75% on the dynamic memory used as well as computation cost. In this

way the maximum dynamic memory allocation occupied Ly 15 object is 154,200bytes

13

divided by 4, i.e., 40Kbytes of memory. It should be noted that the first and the last
pixels in a line describing part of an object boundary are always kept in memory. The
above scheme answers our main demands for running in real-time and using a small

portion of memory.

Processing of the Image Data

There are three ways to insert a pixel into a group,

1. Join to the current partial group if we find one pixel in the current group for

which the distance to the candidate pixel is less than e.
2. Scan the other partial groups for pixels that satisfy the condition in 1.

3. When | or 2 are not satisfied. open a new partial group with the candidate

pixel.

In order to reduce computation time. the algorithm keeps in memory only the
pixel indices that descrile the boundaries (skeleton) of each partial group, such that
for every j. store 7_y,,, J and 7_y.z, J in memory. If the distance of a pixe] in one
skeleton partial group to a pixel in another skeleton partial group is less than ¢, then
we join the two partial groups together. Doing this, we finally create one group which
defines one object. At the end of the last stage, the process outputs groups of pixels
thau describe object skeletons.

In order to find the features (corners, radii) that describe the shape of an object
we enclose each object boundary inside an imaginary rectangle. All the sides of the
imaginary rectangles are parallel to the camera window. If we assume that each
skeleton of an object is described by n given pixels where each pixel is composed of

an (7, Jj) location, then we define the four lines of the imaginary rectangle as

i-mnx = n:a:r ! (2-3)

14

I_max , j_max I_min, |_max

A '} -Axis

imaginary
Rectangle

- -

I_max, j_min i_min, Lmin

"V-Axis -

(0,0)

Figure 2.1: The four corner points of the imaginary rectangle.

Lmin = n:m l (2.1)
j-nmr - ﬂ;nr ! (2.h)
. min g 9
Jomm = _; ‘ (2.6)

and the four corner points of the imaginary rectangle are (Figure 2.1):

(i_nm:r'.j_mn.r)~ (7...'"1"17,1._1"{!1‘)' (i-'mn.r-.j_mm)\ (i...‘lll”l$j_"ll") (2'7)

Both the rectangle enclosed inside the imaginary rectangle and the imaginary

rectangle share the same center, which is

. i-"l(ll‘ + i_"l.”l . . — j_”l{l.T + j_‘"ll?l
o=y e T

2 (2.8)

When the center ip, jo has been located, then the corner points of the internal rect-

angle can be located using the following algorithm:

Algorithm 2.1

Input: (ic, jc); n skeleton points, (ji,s), for k =1,..n.

Output: four rectangle corner points, ¢, = 1,..,4.

1. Choose an integer r > 0 such that » = 1o 2 of the width in pixels of the

1

2
desired rectangle.

2. For1=1,...4 do:

Compute the four farthest points ¢, = 1,..,4, from the center (ic,jc) among

the points on the skeleton using the distance measure

\z/(jk —Jje) 4 (e —10)?, k=1,..,n, (2.9)

such that if (7). j;) is any point of the 4 farthest points. then each of the other

three farthest candidate corners (i, , j.,) will have to satisfy

i, = 1)+ Uo —)2 > 7 (2.10)
End of loop.

3. To find the center of an object (i¢, jor) when irregularities are present around
the object boundaries but not near corners (1C). use the results in the last step
such that,

i =

4
Y e (2.11)
cr=1

] o—
oo | —

4
2 e o=
cr=1

1. Exit algorithm.

Finally, we obtain the or’ »ntation of the rectangle relatively to the camera window

using

i — 1, i3 — 14
a = atan(= —) or a = alan(—— 2.12
J:-Jz) (.13—]4) ()

The width and length of the rectangle are given by

| tion—ivia I= | tavda—taeda | || 4151 =13.J3 =l d2yJ2 —14.75 || (2.13)

16

If additional objects shaped like circle or square exist in the camera workspace,
then a fifth sample (is, js) is taken which is the farthest distance from (i¢, j¢) and

satisfies 7 &= 3 (the width of the rectangle). If for ¢, = 1,..,5,
| ic,jc—te,ydee || s Constant (2.14)
then the object under investigation is a circle. If,
| icyje —icyde, || is not Constant (2.15)

then the object under investigation is a squarc or a reetangle. If the width is equal to
the length, i.e.,

| i =g I= |l i = s |l (2.16)
then the object is a squarc. Otherwise the ohject is a rectangle. The approach to
locate the corners of a triangle inside an imaginary rectangle is a little hit different.
The rulc is that at least one of the external rectangle corners should be located at one
of the corners of the enclosed triangle. In practice, to find such a point, we compute
the distance of each point k=/...,n. on the skeleton of the enclosed triangle to the four
imaginary rectangle corners. If we define the four corners of the imaginary rectangle
as \le,y jer)s € = 1,..,4, then, we look for a (ix. jx) point such that, || i.,.)., — . ju ||
is close to zero, and this is the first corner of the triangle. If we define Ly as the
lougest distance between two skeleton points then, assuming that the given point is
the first corner point i, jo, of the triangle, then the second corner point is located

at a point (7, i) that satisfies,

” irp’jrp - ih.jk I|= Ld (2]7)

The third corner point is found by computing the longest distance of any triangle

skeleton point to the line created by the first and second corner points already found.

17

If we define a line generated by the first and second points as
al +bJ+c=0 (2.18)

and the maximum distance Lq of point from that line is defined on the skeleton image

as (v,w) then, that point must satisfy,

av+bw+c

W =macr Ld

for any point on the skeleton image (v, wx), k=1,..,n.

(2.19)

To check that the object is a triangle, we have to take the following steps:

1. Find the longest line between the three corners which compose the possible
triangle.
2. Compute the middle point of the longest line (2,10, jmu)-

3. Choose r =1 x [shoriest distance between two assumed triangle corners).

4. Choose the farthest point (4,,.ji,) on the investigated skeleton image from

Imily Jmtt such that,

e oder = inndi | > 7, € =1...,3 (2.20)

If the farthest point (i, ji,) is located on one of the triangle lines, then the

ot

object is a triangle.

If (i1, Jt,) is not on one of the lines, then the object is not a triangle.

More general way to check that the object is a triangle is as follows,

1. Choose r = 3 x [shortest distance between two of the three assumed to be

triangle corners).

18

2. Look for a second farthest point using again equation 2.19 when the third as-
sumed corner is blocked by r. If the second farthest point is not on one of the

lines, then the object is not a triangle.

2.2 From Theory to Practice

2.2.1 Pattern-Recognition of Multiple Objects (Shapes &
Sizes)

The proposed algorithm was designed to give fast answers using an inexpensive real-
time system concerning the location (position & orientation) of objects in the work
space. If a particular object of a given size needs to be found, then at the input
level. the size of the object should be specified. Furthermore, if the objeet sizes
differ significantly, then the size of the window of the camera should be changed to
accommodate the smallest size that might appear in the workspace. This means that
the interval/pixel ratio should be made smaller.

When working in real-time in a multi-object environment, we need to consider the

following points:

1. Choose a window that will contain as many objects as possible with an accept-

able level of accuracy.

2. As the size of the window increases, the accuracy of the result (ohject location)

decreases.

3. If one intends to place an object accurately in a given location, then a second
camera should guide the object to the exact location. That camera should

be mounted near the robot E.e (End-effector) so that a close-up image which

19

contains the object and the final location can be obtained. In this way a surface
mount or dual-in-line IC can be inserted onto a printed-circuit board when the
first camera supplies the approximate location of the target and the close-up
camera makes adjustments of the position and orientation of the IC to allow

smooth insertion.

4. If very high accuracy is not needed, then only one camera is sufficient for pick

and place operations.

2.2.2 IC Recognition

A question that arises when enclosing a rectangle by another is whether the sides
of the external rectangle always pass through the corners of the internal rectangle.
In practice, this is not always possible to ensure. The reason is that objects do not
always have smooth shapes. When the sides of the internal rectangle are parallel or
almost parallel to those of the external rectangle (one rectangle overlapping another),
but the sides of the internal rectangle are not smooth. then the size of the external
rectangle will depend on the structure (data) of the sides of the internal rectangle
and not on its corners. This means, that the external rectangle sides may me« ve up,
down, left or right. So. finding the center of the external rectangle does not always
supply us with the exact center of the enclosed rectangle, but will surely lez<] us to
somewhere around the center of the internal rectangle.

This assumption is used when we look for an approximate center of a dual in line
IC', since in some cases, parts of pins around the sides of the 1C but not at the corners
may effect the final result. This is why in Algorithm 2.1 we use information about

the corners rather than the sides.

Remarks

The corners of an IC are not subject to irregularities for the following reasons:

1. In most ICs, a space exists between the last pin on the row and the corner.

2. In most ICs, the pin near the corner is very thin and does not protrude as the

others do.

Since the color of the pins (silver) is much brighter than the color of the package
(black). fixing the offset and the range of the picture will eliminate most of the
effects of the pins on the rectangular package. The four pins that are near the
four corners will never appear in the picture if appropriate lighting is used. The

effect of the other pins is negligible in this location.

The system is structured to reduce any errors that may occur. Let us assume
that the pin at one of the corners affects the final result, and that due to an
error, the corner is defined 1l from its true location. Since the center of
the rectangle is found by summation of the four i’s and j's and division of
the result by four. the error is divided by four as well and the final computed
deviation from the center of the I(" is 0.25mm. The system keeps the error
low when computing the orientation of the 1CC. As an example, for a 14 pin

package, size 6mm x 19mm, moving one corner lmm from its true location,

the orientation error on one side is 3°. On the other side of the package, the
error is 0°. The average worst case orientation error will be 1.5° which is less

than the robot worst case error of 3°.

The worst case error situation occurs when only one corner of the 1€ is affected

in the image by one pin near this corner. Since, in the image the two farthest

[\
—_

6.

Horizontal || Vertical

Window Window

111 (1q1{0]-1

0]1]0(0¢1]0]}-1

Sl -1 -1 1]07-1

Table 2.1: Sobel convolutions.

corners from the center of the image will always be ahead of the pins close to
these corners, the pins will never have any effect on the farthest corners of the
1C'. Looking at the other two corners of the IC, if the pin beside each corner is
seent by the camera, then the eflect on the error approaches zero. When only
one pin at the corner is seen by the camera then, as explained here and in the

preceding paragraph. this is the worst case.

It is now easy to understand why using convolution is not the best approach

for our application. In summary, the reasons are as follows:

(a) Irregularities caused by the pins around the 1C will supply false information

about the boundaies of the I(* package.

(b) The error around the corners of the IC will be high as a result of convolu-

tion.

(c¢) In an image input, when two ICs are near each other, and parallel to each
other, the algorithm may see two 1Cs as one. That is why using the data
inside the 1C and not only at the boundaries, gives a better indication

about the structure of each object in such an environment.

[V

Figure 2.2: The original picture taken by the frame grabbher.

Figure 2.3: Horizontal Sobel convolution applied to the original picture.

23

Figure 2.4: Vertical Sobel convolution applied to the original picture.

oy

4

Figure 2.5: The original picture after adjustment of range and offset.

Figure 2.6: Vertical Sobel convolution applied to the adjusted picture,

From Figures 2.2 - 2.6, it is easy to understand why Sobel convolution (edge
detection) was not used. Figure 2.2 is the original picture taken by the frame grabber,
and Figures 2.3 and 2.4 are Horizontal and Vertical Sobel Convolutions (See Table 2.1)
performed on Figure 2.2. As can be seen, the results are affected by inaccuracy due to
dark spots created by the 1C’ package reflection caused by the fluorescent light. pins
that directly aflect the boundaries of the objects, and missing data on edges of the
boundaries. Figure 2.5 shows much bLetter results after offset and range adjustinents
were applied to the original image (Figure 2.2). This results in no spots, little ¢ffeat
of the ICs pins on the shape of the rectangle, and no noise around the corners of the
rectangle. Figure 2.6 shows the result when implementing Vertical Sobel Convolution
on Figure 2.5. Due to the image being very “busy”([5] (high mixture of Llack and
white pixels reflected from the described object and created by image oflset and
range adjustments) in Figure 2.5, bad edge detection as well as inaccurate results

occur.

25

2.2.3 Parallax Effect in Determining Locations of ICs

When the camera is located far away (high ratio of camera-table distance to object
surface-table distance) from almost flat objects, and the size of the window is small
(small ratio of ‘center of image-corner of image distance’ to ‘camera-table distance’),
then the parallazr cfiect is negligible. If the window of the camera is large, and the
camera is located in a medium/short distance of an almost flat object, then the
parallax eflect should be evaluated. The ratios are chosen according to the demanded
precision of the application.

If we assume that the table is parallel to the camera window (lens), and that the

object is shaped like a box (IC), then we have to take the following steps:
1. Measure the distance from the camera to the table, d,;.
2. Measure the distance from the object (I(') surface to the table, dy,.

3. If the four corners of the IC in the image are defined as (i, ,J¢). &r = 1....4,
and the indexed value of the pixel at the center of the image is (/ep, Jop), then

the values of the true new indices of the corners 7. and j.-, are given by

dfg

iC"N = icr + (]cp - ic,)d_d (221)
. . . d
JCrN =Jer + (Jcp _]cr)aj_: (222)

It should be noted that ¢, , and j,, will in general have real values which may

be approximated to the closest integers.

26

Chapter 3

HARDWARE DESCRIPTION

FOR THE VISION-BASED

ROBOTIC SYSTEM

3.1 Introduction

The vision-based robotic system consists of the following components:

1.

o

The camera [16] is manufactured by HITACHI, a color NTSC standard £ incl

single layer MOS color image sensor with 760 x 485 pixels.

The frame grabber card OC-300 [15] developed by CORECQ INC., is based on
the PC-AT bus interface, and is able to read and process an image composed
of 512 x 184 pixels. The OC-300 is a high speed frame grabber which is able to

grab 30 images per second.

The robotic system consists of an IBM 7545 [12] robot with a teach pendant.

The robot is of SCARA (Selective Compliance Assembly Robotic Arm) type

27

and has four degrees of freedom. A high speed master controller based on 1BM
486-AT system [13], processes the frame grabber card output, performs pattern
recognition on the picture grabbed by the frame grabber, and sends information
to the controller (a slave based on the EV80C196KA Evaluation Board [14]) of
the robot concerning the path that the robot should take in order to perform its
task. The slave takes over a significant percentage of the computations required
for the servo control, and thus allows more computationally complex control
strategies to be executed on the master. The latter was initially based on an

IBM PS/2 model 50 computer.

3.1.1 Integration

To integrate between all the components of the system, process the data in real-time

and provide a hetter lighting environment the following steps were taken:

3.

. The PS/2 was replaced by a PC-AT computer system based on the INTEL

486 micro-processor. This provided very high speed execution compared to
the IBM-PS/2model 50. Also the frame grabber card available was compatible
with an AT-BUS. The 486 based system was chosen to perform as a new master

for the Advanced Robot Controller in a Master/Slave configuration.

A new interface card vetween the Master PC-AT 486 and the slave EVS80C196 K A
was designed and implemented. It should be noted that the PS/2 and the PC-

AT have completely different buses.
A better lighting environment was created by the following actions:

(a) The master controls a group of three fluorescent lights whencver the bal-

ance of lighting is not sa*isfactory.

o
o

(b) The master uses a relay (18], and is able to control a Halogen light which
is mounted next to the camera. This will be particularly useful in case (for

future applications) it is required to distinguish between colors.

4. A special hardware function was added to control the gripper at the E_e of the

robot using the new Master/Slave configuration. This was not available under

the PS/2 based system.

5. A special effort was made to avoid any change in the Slave interface to the robot

hardware and to the Dual-Port RAM [17].
6. Special care was taken to install the camera:
(a) The camera was installed precisely horizontal to the given workspace near
the E_e.
(b) A special frame was designed to avoid any movement of the camera relative

to the robot during the motion of the robot.

The implemented system is shown in Figure 3.1. A picture of the IBAM 7545 robot
manipulator with the camera and the halogen light mounted on the robot arm is
g.ven in Figure 3.2. The master /86-SYSTEM sitting on top of the robot controller
is shown in Figure 3.3, and the RGB monitor, PC-XT and the Powcr Supply for the
Slave-EV80C196KA Board are shown in Figure 3.4.

3.2 Master Hardware Interface Functions

3.2.1 Master/Slave Interface

Special care needs to be taken when designing the hardware interface functions of the

Master PC-AT 486 System. If, for example, one of the functions generates a busy

29

Video Signal
Output
—

LDJ CAMERA

-
e ==

1BM7545
ROBOT
MANIPULATOR

INPUT OUTPUT

WORKSPACE

WORKSPACE

1

AR

RGB
Monitor

-
}
4
3
4
}
4
3
4
!
[]
e

Robot Controller

po——=f-

(o) 0 o]
+3Vdc «+18Vdc -185Vdc

e e L L L T

. OWER SUPPLY

Figure 3.1: Description of the Vision-Based Robot Manipulator System.

30

- gy Wi &é‘l’:ﬁ‘(.
XY gt o
A ’

Figure 3.2: The IBM 7545 Robot Manipulator with the CCD camera and the halogen

light mounted on the robot arm.

Figure 3.3: The Master 486-SYSTEM with the interface Master/Slave board.

31

Figure 3.1: The RGB monitor, PC-XT and the power supply for the EVS0C196KA

Board.

signal for the Master. then the interface should advance the signal fast enough so
that it can reach the Master on time to avoid a system erash. For this reason, the
best solution is to use the Bus-Interface 1Cs based on the ALS-TTL group, and where
possible complementary 1Cs based on the AS-TTL group which are the fastest 1Cs
in their group (TTL) at present. The average worst case of signal propagation delay
time f,4 for ALS-TTL Bus Interfacing Group is 20nsec, and for the AS-TTL Group is

Gusec. Special attention was given to simplifing the functions to reduce signal delays.

The schematic diagrams that describe the Master/Slave interface and the lighting
environment function are given in Figures 3.5 and 3.6.
The PC-AT Bus is composed of 24 address lines. The seven most significant bits

LAL7-23 (Unlatched addresses 17-23) are the output signals used to provide memory

l AR 178 M0
o1 e PO Pad 14 PO Pee
02 a2 I +4 I
o3 3 2 1% (3]
[T 1] T ”3 »3
oS et +4{ ra »a
oy o >y 2141 ot
oe es Aller ovar
[- a0 -_
TIRCIETI -_— 41 *3 -
-_ + b3 -
- + % -—3
-— a8 -3
-— L 24 -
r—e ;& e
TARCYET)
L3 3{.2)
s1re

[

£, -
nm:np—-—g " A

P,y

r2

»3

SiH '
= %
E . o - Ei -3
=HE S

- 1:&: ” 1 [
B=)
HbE me Z
4

%

2
6l
e
MEE- >
i Y6 06
-ty Y& A%
—nh Y4 A4
-t vl a3
Sz a2 IETITT>
~dBivi a1
YYRCXE:
.1\ o vwwe w
A2
Lo
32
—— e X
LT, S—
& Uy
al a5 ¥ pBEA
1%, LI L]
X FHIBM
A npE X3
G
G2
1 VAT

3 PC=AT, 196 INTEAF, & LIGHT CONTROL $CM (A)

Tie Pecuman Tl
¢ DESIGNED Bv: Y., BLOCH, € & C KNG,

3CH 2

Figure 3.5: The schematic diagram of the Master/Slave interface and the lighting

environment function Part-A.

33

;i-a.l
N
- N
§5-=1
= N
N
— N
2= :
VI)
4—-1(} N
Se-21]
N
1% N
N
N
LT =4 N
N
N
~J
~J
- N
- N
N
N
L Ciw =~
A\
54 N
N
32x2 |
(176 1
170 1,000 |43 j
101 1s01m + 7
17020 1/702m -
1/03C 1ro3m /]
1704, 1/0am Y’
1/05C 1/08R]
17060 1r0en 144 /]
17070 17078 y
d a2 4
noL
v a1 >4 /]
LIS LI
¥ a2l n2a (3 =]
3 a3e L4¢ ’
adL Al T /]
asd asn =3 /
asL ” -1 v
N 7
AL
Al Al /]
asL agk
il A6 ason (43 il —1
2 ' ag LAY 5
1 47
= HiE R {—
Algus. SUTw [4S RUSY. %
Risiston Aisisron
RESISTO
0.33k LE
~sVec Vec
Nie
A
—~ 1/ 1,008
4411700k 1r01m Hi =]
- /020 1,028 = ’
~ /030 1s03m g
/ /081 37040]
7 i e =
'
[110 sow s v m o m e 4 Alizr0rn 1,07 (A4
i A
(o e, s vt ¥ —
azL a2m -]
a3 AR ’
5 sy asn /
asp asn -/
ast a3 -
b
an. aen 143 = /
T an aon 33 =t %
FON ai0L aior
s g e a8 = —
== f = st " P —
- — J emen soTm jax nusy /
J0T7i3d
o
*iilQvac
= PROJCCTOR A
iy i
u1ra rusc
7an832
*11QVac
Mi2 P
: T | PROJECTON B
L1 47) cu—
t i SHE 4]
- -
o8 & HE !
L - 3 anp
07 o7 44—
—21{ 08 oo AL
den
oc
YIALYTY 4
dﬂﬂg ! PC-AT, 196 INTERF, & LIGNT CONTAOL SCH.C8)
sBeRNoCument hummer | 49
< DESIGNED BY: Y, BLOCH [& € ENG. r
-3 CHE TTIY] I LYYk 14

Figure 3.6: The schematic diagram of the Master/Slave interface and the lighting

environment function Part-B.

address information about the present bus cycle. These addressing signals, unlike
SAQ-SA20, are not valid during the entire bus cycle. They become valid during the
actual time of the BALE bus signal and can be latched on the falling edge of the
BALE signal. We use the ~bove technique with 1CC U18 (74ALS573) to latch the
LA17-23 so that the address will be available at the output of the U18 during the
whole bus cycle.

For the eight bit identity comparator 1C Ul, the Dip switch S1 was initialized
to recognize the two most significant hexadecimal addresses 0Crrrr. There are two
additional Dip switches on the interface board. S2 and S3 initialize the comparators
U2 & U10 respectively for the third most significant hexadecimal address. 1f the
hexadecimal address 0C8rrr is released by the Master then the combination of Ul
& U2 will control the CE terminal in U13 & Ul4 of the Dual-Port-Ram. If the
hexadecimal address 0C9rzzr is released by the /86 then the combination of U1 &
U10 will control the lighting environment function.

If the output signals of Ul and U2 are low then it enforces the signal at the ontput
of U3A to become low. That signal, together with the two control signals A0 and
SBHE (System Bus High Enable) decode at the output of U3c and U3d the type of
bus cycle shown in Table 3.1.

The control signals of the 486 microprocessor MEMW and MEMI! control the

R/WL and OFL input terminals of the Dual-Port-Ram (DPR).

Special care was taken for the //O CH RDY signal which indicates to the Master
processor that the Dual Port Ram is busy serving the slave at the same required
address. To cause the busy signal released Ly the DPR to reach the 486 terminal as
soon as possible the output of IC U3A is connected to the 1C of UTA which enables
1C U6 the Octal Buffer with 3 State outputs. When the busy signal generated by the

DPR changes from high to low on 1C U'13 pin 3, the way through 1€ U6 to the 456

35

SBHE Value | AQ Value | Function
0 0 16 Bit Transfer
0 1 Lower Byte Transfer
1 0 Upper Byte Transfer
1 1 Invalid

Table 3.1: Data bus size operation decoding of the Master.

IC no. tpd

U18 14 nsec.

Ul 20 nscc.

U3A 6 nscc.

U3C 6 nsec.

U13 35 nsec.

Table 3.2: ¢,4 of 1Cs involved in the generation of the Busy signal.

terminal is already open.

For the worst case scenario, we have calculated the propagation delay time ¢,4
from the point where the signal address arrives at the (Master/Slave) interface board
until the busy signal leaves the interface board. The data used was supplied by T/
and is given in Table 3.2. The value of t,; was found to be 81nsec. It should be noted
that the worst case ¢4 of the DPR (U13) and U3C is 41nsec. which is 15nsec. more
than that of U6 (20nsec.) and UT7A (6usec.) so. as stated above, the busy signal

released by the DPR does not cause a delay at 1C U6.

36

Address | DO | D1 | Function

0C9000 | 1 0 | Halogen Lights On

0C9000 | O 1 | Fluorescent Lights On

0C9000 | 1 1 | Fluorescent & Halogen Light On

0C9000 | 0 0 | Fluorescent & Halogen Light Off

Table 3.3: The lighting system controlled by D0 & Df.

We used our Logic Analyzer to evaluate the timing of the bus cycle. It was found
that the particular bus cycle to the DPR address is over 200nsec., which is suflicient
time for the busy signal to reach the PC terminal. So, the additional generation of a

wait state is not needed.

3.2.2 The Lighting Environment Function

When instructions to control the lighting environment are generated by the PC,
comparators Ul and U10 outputs are low; therefore, the output of the OR gate at 1C
U3B is low. When that signal arrives at UI7TA pin 1, at the rising edge of ATEMW
signal, the output of U'17A changes from low to high latching the data on the Data
Bus into the D-TYPE Edge-Triggered Flip-Flop. With open collector drivers UI5A /B
at the output of the D-Type Flip Flop, sufficient current is driven into the solid state
relays U16/19 input loop in order to activate the 110v lighting system. The lighting
system is controlled by the value of bits D0 & D/ arriving at 1C U12 as shown in

Table 3.3.

37

U3s-LL ~

A

a Yo
] v
[4 Y2
Y3
Y4
Gl Ys
G2a Y&
628 Y?
745134
-
OIR=ERELZ >
ozlrdc R
-3}
v
)]

SH SPDT

$H DPST

RELAY DPST

CRL2-1 == DO INTERFRCE
CRL2-2 == SOLENOID i GRIPPER AIR

532

+24ydc +*5Ydc

R1 R2
RESISTOR 3.0k RESISTOR
[3}

LH'O':F:TN " 2/|

196~ROBOTCIBM/7648) GRIPPER CONTROL SCH.
1zePocument Number v
A |DESIGNED BY: Y, BLOCH E, & C. ENG.
ate

Heril 27, I§§!Ehrnt

1 of i

Figure 3.7: The schematic diagram of the Slave and E_e interface.

3.3 Hardware Design of the Slave and E_e Inter-

face

The schematic that describes the Slave and E.e Interface is given in Figure 3.7. To

create a hardware interface from the slave (EV80CI96KA) microcontroller to the

gripper, we used a free terminal on IC U1l Pin 7 (figure 3.7) at the control unit level

of the slave, and thereby avoided adding a new decoder to our hardware design.

When the slave sends the value of 0F000H on the address bus, the 3-line to 8-line

decoder is activated, i.e., Y7 output changes from high to low. Since the interface to

the gripper is write only. we combine the Y7signal with the slave BWRL (Bus Write

38

Q! Driver | N-Mosfet | Relay Gripper

Qutput | OQutput

High | 5V oV Active ('lose

Low oV 24V Non-Active | Open

Table 3.4: The mechanism which controls the lighting system.

Low) control signal into U2A OR Gatc whose output becomes low when the above
signals are low.

The next stage is 1C '3 Octal D-Tvpe Edge Triggered Flip Flop where DO of
the Data Bus of the slave is connected to DI of U3. On the rising edge of BWEL
the value on D0 is latched into IC' U3. The output signal of 1C' U3 is Q1. which is
connected to U4A an open collector driver, which keeps a stable voltage level ontput
OV or 5V at the input of an N-MOSFET. If the input voltage is OV, then the Mosfet
channel is closed and the voltage at the output of the Mosfet is 24V. Thus, the relay
is non-active and the gripper is open. If the input voltage to the Mosfet is KV, thea
the Mosfet channel is open. The voltage at the output of the Mosfet is OV, The relay
is active and the gripper is closed. Table 3.4 describes this process.

The connection between the new interfare and the gripper relay is through an

SPDT switch at the entrance to the controller relay board, connector CN-11 pin 19

[12].

39

Chapter 4

DESCRIPTION OF THE
VISION-BASED SOFTWARE

4.1 Introduction

As mentioned in the previous chapters, the Master processor controls the whole sys-

tem directly. The functions that it performs are as follows:
1. It interfaces with the user.
2. It (nitializes the first movement toward the input workspace of the objects (I1Cs).

3. It uses a special pattern-recognition function developed to recognize the number

of 1('s and their locations (positions and orientations).

4. The data gathered in item 3 is sent to the EVB0OC196KA (slave processor) to
create consecutive “pick and place” movements using a PD Control Algorithm
and a ('ubic Polynomial Trajectory Generation Algorithm until all the ICs have

been collected.

40

USER
FRIENDLY INTERFACE ENVIRONMENT

h

486-MASTER PROCESSOR

USER INTERFACE FUNCTIONS
VIDEOC CARD CONTROL
PATTERNRECOGNTTION FUNCTION
PD ROSOT CONTROL ALCORITHM

CUBIC PATH PLANNING ALGORITHM

VIDED CARD EVBOC196KA SLAVE PROCESSOR
FRAME GRABBER CONTROL MODE
PICTURE MANIPULATION VO HANDLER FOR THE MASTER

FANDHOME MODE

CAMERA ROBOT

Figure 4.1: Block diagram of the Vision-Based Robot (‘ontrol software,

5. At the end. the master sends the slave the last instruction to return to the

initial point.

The software was developed to recognize approximately flat and symmetric (circu-
lar. rectangular, square. triangular) objects in a multi-object environment in a matter
of seconds. The software that was developed to recognize different 1C sizes (rectan-
gles) can easily be applied to any flat and symmetric object. Since. in the electronics
industry, most of the parts are flat and symmetric, the presented approach can be cas-
ily applied in 2D. Figure 4.1 shows a block diagram of the system and the role of cach
part in the overall design. The following section defines and describes some variables

involved in image analysis which are part of our pattern-recognition software.

4]

CAMERA 3
WINDOW :‘
[

R

v

I

[]

r
The Ratlo Pixels / mm for I' Axls led . "

L Distence= 10cm Pixele = 400 J A

I i :‘

1

Fine Ruler Measures Pixels to Inmervaifor ‘I’ Axis

Figure 4.2: Description of pixels/interval measurement.

4.2 Procedure to Obtain Parameters

In order to define the location of a flat object in a workspace, the following evaluations

need to be carried out:

1. Finding the Pixcls/Interval ratio; after the camera has been installed on the

robot arm and the window size is chosen, measurements are done to determine
the ratio of pixels/interval(mm). The measurements are taken along the i-ariz
and j-aris of the camera window. since sometimes a deviation in the Image
Sensor or the camera lens is created during the manufacturing process, or by
the fact that the camera is not installed vertically with respect to the robot
workspace. The measurement can be done with a precise ruler. More details

are given in Figure 4.2.

The variables in our program that represent pixels/interval(mm), are c_r (i-axis)
and c.y (j-axis) and the values found are 3.56 pixels/1mm and 3.48 pixels/lmm

respectively.

"
vvernvvemnen B

)
[y
.
LI
)

CAMERA
WINDOW

o,
..
vy

Figure 4.3: Description of the parallax eflect and the solution.

2. Description of the parallax effect parameters:

In Figure 4.3, we see a black ohject in the Camera Window. The objeet (hox)
is placed such that its sideline DB is vertical to the camera surface and one of
its upper corners is at point B. The Parallax effect occurs when the 21) image
shows that the corner of the object is located at point) when actually the
corner is located at point D and the size of the error is DC. Thus we have to

create a mechanism that will eliminate this error once point C is found.

Let us define a point O at the center of the camera window. The distance from
the camera to the table is OA. The distance from the surface of the object (hox)
to the table is BD, and the distance from the center of the camera window to

the reflection of the corner B in the camera window is OC. If these three lines

are given, we can find the error distance DC since, the triangles AOC ~ BDC

43

Figurc 4.3 | Program | Distance, | Function

Lines Variables | Indices

AO d. 420mm | Distance from camera to table
oC dye 8mm Distance from IC face to table
0O leps Jep 255,241 | Pixel indices at the center

oG le, — i index at the false corner value
OH Je, — j index at the false corner value
OE i,.,N — i index at the true corner value
OF Jeey — j index at the true corner value

Table 4.1: The parallax variables.

thus,
OCx* BD _

5 CD (4.1)

and then OD = OC — CD. The true distance of the corner from the camera
window center is O, The various distances shown in Figure 4.3 and their
program variables are presented in Table 4.1. It should be noted that the
parallax effect is zero at the center of the camera window. and is maximum at
the corners of the camera window. From the above correlation we find the true

object corner locations ic,y s Jer) USinG equations 2.21 and 2.22 in Section 2.2.3.

3. Since the camera is installed parallel to the second link of the /BM 7545, and

is vertical to the robot workspace, it is assumed that the i-axis of the camera
window is parallel to the second link (Figure 4.4); but, this may not exactly
be the case in practice, since the camera may not always be mounted precisely

parallel to the second link. That is, the camera window may sometimes be at

44

A Robot
- X' Axis
ng!
[9_00:\ A
Robot End EHeotor "
——
CAMERA
P
. . Camera
Robot-‘Link 2' - | Axe
Camen Window
¢ -
¢ Camers /
+ | Axie Hobot
+'Y Axie
%
Robot: ‘Link 1°

Figure 4.4: General system coordinates and location of angloecrr.

an unknown angle /BAC to the second link. This error should be taken into
account in computations performed. At this puint we can start translating the
position and orientation of the 1C from camera coordinates to robot coordinates.
The first and second joints control the XY position of the E_e, the third joint. Z,
controls the height of the E_e above the table and the fourth joint, contiols the
orientation (roll) of the gripper. The translation of hoth position and orientation

will be explained in the following two sections.

4 Rabot
. Axds J1e2390 o J
gl et s e
4 Azhy
Camern
Coordinstes
t Axhs
Robot
oY Axis

Figure 4.5: Translation of IC orientation from camera coordinates to robot coordi-

nates.

4.3 Translating IC Orientation from Camera Co-

ordinates to Robot Coordinates

As shown in Figure 4.5, we define £J1 for the first joint at the origin. and £J2for the

second joint. Then £Jis given by
J=J14+J2-90° (4.2)

The Za is the translation of the orientation of the IC in the camera coordinates
to the jfaxis of the camera and the £J-¢ is the angle that translates the jaxis of the
camera coordinates to the A-axis of the robot coordinates, which is also parallel to

the axis of rotation of the E_e. Therefore, the final formula is
O =—(a+J1+J2-90°—angl.err) (4.3)

where O is the Orientation in robot coordinates.

The negative sign preceding the parentheses indicates that the object orientation is

in the counter clockwise direction. Equation 4.3 is valid for the entire workspace of the robot.

46

Robot

- Axis J14J280 = J

angl efr =@ dtc

End_Effecior

Camera

Cootrdinates

AN Robot
+ 'Y Axis

Figure 4.6: Translation of IC position from camera coordinates to rohot coordinates.

For simplicity. we state that if the value of the Orientation (' > 907, then ()], =

e u

Or —180°, and if O" < =90°, then O7,,, = 0" + 180°.

neu

4.4 Translating IC Position fromm Camera Coor-

dinates to Robot Coordinates
Figure 4.6 describes the approach used to translate 1C positions from camera coordi-
nates to robot coordinates. First of all, we should note the following points:
1. The actual location of the E_e can be obtained at any time.

2. I we choose a reference point (Ref_point in Figure 4.6) inside the camera window

at the corner closest to the E_e, and we assume that the camera is mounted at

47

a fixed place near the E_e, then we can assume two additional parameters of
constant data which can be measured and used when we translate IC positions

from camera coordinates to robot coordinates:
(a) The distance between the E_e and the closest corner of the camera window
is fixed (constant). It can be measured and is defined by d_t_c in Figure 4.6.

(b) The angle of the line joining the E_e and closest corner of the camera
window to the second link is fixed (constant), and is defined by b_angl in

Figure 4.6.
3. The center of the 1C in camera coordinates (see the explanation in the next
section), is given by pixel indices (7,j).
Having the above data, we use the following steps to find the location of the IC
in robot coordinates:
1. First, we calculate 0 as
8 = 180° — b.angl — angl_err. (4.4)
Again, in theory, 8 + b_angl should be equal 180°, but some uncertainty exists

when the camera is mounted with the window at an unknown angle (angl_err)

with link2 of the manipulator.

|

. At this point, our goal is to find the angle created by the {(End_effector)-
(Ref_Point)} and {(Ref_Point)-(IC_-Center)} lines. This angle is composed of

two angles:

(a) The first is § which defines the angle between

{(E.e)-(Ref_Point)} and {(Ref_Point)-(i-axis)} lines.

48

(b) The second is a which defines the angle between
{(Ref_Point)-(i-axis)} and {(Ref.Point)-(1("_C'enter)} lines.
If we define the constant location of the Ref_Point in camera coordinates
as b.z for i coordinates and b_y for j coordinates, and the location of the

center of the 1C in the camera coordinates as i+, je, then the value of a is,

| (b-y = jc)e-y H)

| (bor = i)eor ||

a = arctan ((4.9)

The ratio of c_yand c_r variables is to fix the deviation of the data collected

from the picture to its true value.

Having found 8 and a, it is easy to calculate 4,

1=0+a (1.6)

3. The next step is to find the absolute distance between the Ref-Point to I¢

Center defined in Figure 4.6 by the variable d_c.ic. Using the same variables as

in equation 4.5. we have

dc.ic= \’/((b_y ~ je)ey)t 4 ((br = i)er)? (4.7)

. Having found 5 and d_c_ic along with the measured length d_t_c, we can use the
cosine law to find the absolute distance E_¢ — 1" C'enter in Figure 4.6 defined

by d_t_ie,

d-t.ic= C/(d_t_c'z + d_c.ic? — 2 x d_t.c * d_c_ic * cos(7y) (4.8)

. To reach our final step we must find ¢ which gives us the angle that will translate
the absolute distance d.t.ic into the rohot (X,Y) coordinates. Using the three
lines d_t_c, d_c_ic, d_t_ic, we use the cosine law again to find £3.1, 0" < 3.1 £

180°:

(4.9)

2 4"12_ 1 ¢.10%)
4.1 = arccos (((l_t_(' 4+ d.cic® —d.ca)

(2d_t_e * d_cac)

49

Phia 180 . (5_eng! - bets_1) - (2 ¢ J2)

Rebet *in et Bustation phi is negative &
«'X Azle B
¢ B
,’!.,‘3 ": ! -
End_Efee o ~ "' i_“lo--" Ret_Point
\ Y.,
thete

\
N 1

), b_sngl 1
I~ H
3 Y H

[}

[}

|

. 1
.)
S e—d el

1-:u:

§ Conter

H

+

‘

'
Va2
1

Figure 4.7: lllustration for equation 4.10.

+'Y Az

6. Then,
¢ = 180° — (bangl — 3.1) = (J1 4 J2) (4.10)

Note that ¢ may have positive or negative values.

We can find the location of the E_cin (X, Y) robot coordinates by using the data

supplied by the robot manufacturer: link.1 = 400mm and link2 =~ 250mm ,
NE_e =250 * cos(J1 + J2) + 400 * cos(J1) (4.11)

and,

Ye_e =250 * sin(J1 + J2) 4+ 400 * sin(J1) (4.12)

Now, using the values of ¢ and d-t.ic found earlier, we can obtain an accurate

value of the location of the 1CC center using the following equations,
Xijc = Xg_o + d_tiic* cos(¢) (4.13)

and,

Yic = Ve — d-t-ic*sin(¢) (4.14)

50

7. 1t should be understood that even though the data collected by measurements
of d_t.c and b_angl is accurate, the final answer in equations 4.13, 4.14 contains
the distance from the origin (‘O in Figure 4.7) to Xg_., Ye_.. This distance is
based on the data supplied by the manufacturer, and includes an error of up to
=+ Imm for each link. This meauns that link_1 and link_2 are approximate values,
and once the measurements for d_t.c and b.angl are done, in order to complete
the calibration of the robot-vision system, the operator should perform on-line

calibration using the five varialles: d_f_c, b_angl, angl_err, link_I and link.2.

It should be noted that the parameters link_1 and link_2, are independent of
the visual paramcters. This means that any general calibration of link_1 and lmk_2
parameters may take place before proceeding to the calibration of the d_t_e. b.angl,

and anglerr parameters.

4.5 Computing Orientation and Center Position
of IC in Camera Coordinates

Figures 4.8 - 4.11 illustrate the procedure to find the center position and orientation
of an 1C.

From Figures 4.8 and 4.9, wr see that two different cases may result when grab-
bing a picture for a pattern-recognition application (we use the theory explained in
section 2.1.2).

In Figure 4.8, we see the case where the object (IC) is parallel to the camera
window. Here the IC pins have a substantial eflect on the width of the external
rectangle. If the unwanted effect of the IC pins is on the left side of the 1C then,

when using equation 2.8, the center of the exterual rectangle will move to the left

Aerral Restangle — |

TeAxts

1€ Pins Bl
xternal Restangie

T-Axis

Figure 4.8: 1(* Pins affect the external rectangle.

Camere Window

nomel Mectange — N\ /,/
"y 7
\,IC\
Skp\!oton\ /
S~ N\ 4
~.\ \ yd
\~\: 1 1/
/ ¢ %\\1\ .
/ _‘ SN - inserrl Rectangle (i)
\\~
T-Axis
/ N
/ N,
e \\ AN

~1CPine Do Not EMect
Rxiomal Rectangle
Anc Both Recsingies
Share The Same Conter.

‘P-Axls

Figure 4.9: 1C' Pins do not affect the external rectangle.

1CPins Etect
Sxterrel Rowiongle

ntermal Redangie(iC)

Camemn Window
Comer 1
........ i SR
shon D!Im
Medium Disiance
.
Comer 3 Skeleton',
. \ delte T
~
~ R
1€ True 3
Ceneor ™
ostie T .,
a
T-Axte
Comer 2
Lang Dintance
deta 7 Comer 4
‘T-Axls
0

Figure 4.11: Locating the true center and angle o.

53

of the rectangle (1C) along the broken line. In dual-in-line 1Cs. the upper and lower
sides of the 1Cs are pin free and depend on the 1C package only. In Figure 4.9, the IC
package is not parallel to the camera window axes and, as can be seen, the IC pins
do not affect the external rectangle. Using equation 2.8, we expect to compute the
true center of the external and the internal rectangles. To conclude this discussion

the following points should be noted:

1. The unwanted effect of the IC pins may occur when the IC is positioned at
angles in the range (0°,20°) to one of the camera window axes: 0° is the worst

cdse,

[

The position of the 1(' in the camera window is important, since the effect of
the 1C pins is prominent when positioned in parallel near the boundaries of the
window. Therefore. only one side of the IC' pins may be seen by the camera and
the error from the true center of the IC' can reach up to 0.5 mm. On the other
hand. if the 1C is positioned near the center of the camera in parallel with the
camera window axis. both sides of the IC pins can be seen by the camera so.

the error tends to cancel out.

In order to find the true corners of the I(' package. and to overcome the problem
mentioned in the second item ahove, we use the algorithm described in section 2.1.2
and illustrated Figure 4.10. Here, the IC pins that the camera sees are located on
the left side of the 1C". Therefore the center of the external rectangle does not overlap
the (true) center of the internal rectangle (IC). Assuming that the false center (/).
is located to the left of the true center, the farthest paint of f. is either A or 3, since

the distance relations must satisfy

I fe=Al=ll fe = B> . - Cli=ll fe - DIl (1.15)

54

Let us assume that the farthest point found is a point at corner A. To be sure that
no other point will be chosen near that corner we impose a restriction that the next
farthest point cannot be chosen if the distance from A to the second farthest point is
less than r. In this way, we find the true corners B, CC and D. Figure 4.11 describes
the algorithm to find the 1C’s true center and the angle a. To locate the 1("s true

center, we use equation 2.11, and to find a we do the following:
1. Prepare an array which describes the location (#,7) of the four corner points.

2. Choose the first corner point which satisfies,
n=mar(j.,) c¢=1....4 (1.16)

3. From the first corner point. we measure the absolute distance to all the other
corners. By doing this, we can estimate the location of each corner of the IC.
The longest distance always belongs to the diagonal between corners | and 4,
the medium distance always belongs to the longest side connecting corners 1 to
2 of the 1C package, and the shortest distance always belongs to the shortest

sia= of the 1C package connecting corners 1 to 3.

4. We can now find the orientation of the 1C' package in the camera window coor-
dinates () in two ways. By calculating the slope between corners (1 and 2) and
the j-axis, or the slope between corners (2 and 4) and the faxis (cquation 2.12).

To reduce the error we average both slopes for the final 1C orientation (a).

4.6 How Partial Groups of Objects are Created

Figure 4.12 illustrates how partial groups that describe an IC are created. As illus-

trated, the direction of scanning starts from a pixel at location (0,0) and proceeds

59

*.0) “ToAxie

Directon Of Scanning

*I-Axte

Figure 4.12: Explanation for the formation of partial groups in an IC.

to the right until the end of the line. When the end of line is reached, a new line of
position 0.j starts. In some special cases where the t-axis of the camera coordinates
is parallel to the longest side of the IC, it may happen that some parts of the pins
protrude a little more than others. In Figure 4.12 we can see that pin A and pin B
protrude more than others in the group. When the computer scans the picture from
left to right, it passes through pin B, which is the first pixel belonging to the new 1C,
and opens a new partial group for additional pixels joining that same partial group
(1C). The computer continues scanning to the right and then finds a second part of
the same 1C pin A represented by a pixel where the distance between Pin A and Pin
B is more than ¢ in camera coordinates (please see page 13). In this case the computer
again opens a new partial group for the same IC, and when it finishes scanning the

whole picture, it will put both partial groups into one group as explained on page 14.

506

QROUP 1 GRraue 2

Parid Group 1A Partial Group 18 Parial Group 24 Parvel Greup 28
-— o—— Boginning O Ries

When comparing
Sotwmen per¥sl

groupe start sct + 'ig
hare cormparing tv pmis
nens partel group te
ssmplam flle in the
wscond pardal (reup

When edding pixals to

Figure 4.13: Illustration of how to reduce computational cost.

4.7 Reducing Computational Cost

In cases where the camera window has many 1('s, say about 15, then joining pixels
into partial groups and merging between partial groups increases the computation
time drastically. It was found that in the worst case, when no special effort was made
to reduce the amount of computation, locating 15 I1Cs in the camera window took up

to 30 seconds. To reduce this time, two important points shouid be noted (please see

Figure 4.13):

1. When trying to add the current pixel to partial groups, the current pixel should
be compared first to the last pixel in the partial group and then to continue
toward the beginning of the file of the partial group. If the longest 1C is 30 mm,
then the worst case number of pixels covering the line is 30mm x 3.5pixels/mm=
105 pixels. To be on the safe side, we compare the current pixel with the Jast

200 pixels for each partial group (please see page 13).

2. When trying to combine skeleton partial groups into a skeleton group (1C), we

compare the whole of one skeleton partial group (pixels) to only the first 20

57

Number Of | Time Required
ICs (seconds)
1 0.2
3 0.6
5 1
8 2
11 3.5
15 8

Table 4.2: Computation cost of the pattern recognition function.

sixels from the beginning of each skeleton partial group sinc 2, skeleton partial

groups tend to match at the beginning of the file.

We performed some measurements to evaluate the computational cost of the pattern-

recognition function. The results are given in Table 4.2.

4.8 Treating Undefined Objects

The software assumes that all the objects presented to the camera window are well
defined. Sometimes, visible black points in the robot workspace may be presented to
the camera. In that case the software will discard that data. The explanation is that
the size of data created by the black points is very limited as compared to an IC.
If a piece of data does not satisfy equation 2.13 which defines a rectangle, then the

software will discard the data.

4.9 On-Line Robot-Vision Calibration

To avoid recompilation during robot-vision calibration (see Appendix A),

the operator can change the key variable values on-line. The key variables are:
1. b.angl.
2. d-t_c.
3. angl_err.
4. link_1.
5. link 2.
6. Robot Error_Gains:

(a) kp-l. kp-2. kp-Z. kp-R.

(b) kv_l. kv_2, kv_Z, kv_R.

Further information concerning the first three variables is given in Section 4.4. To
conclude this chapter. we give a flowchart of the pattern-recognition function in Fig-

ures 4.14- 4.18.

59

l

- Initialize the Frame Grabber
A - Grab a picture
- Scan results & open partial groups

1

- Find skeleton partial groups

B - Joint partial groups into groups to
create an approximate skeleton-
of the iC

« Find corners & center of each-
IC in camera coordinates

C » Find orientations of ICs in camera-
coordinates

- Convert orientations & positions of-
ICs to robot coordinates

D - Check that the final ICs locations are
in the robot's workspace

l END

Figure 4.14: Main block diagram of the pattern-recognition function.

60

A

Initialize video board
with FG3ENV function

Initlallze range & otfset
such that background

B
1

5

Compare distance (d)
to ¢ of current

pixel to the last 200
pixels stored In

Open new group
and put pixel indices
in the new group

signal value Is 258,
current group

« initialize to grab a picture
+ Grab a picture

Yos
Join pixel indexes Is
to current group de e?
{Convolution)
No
Compare distance (d) Goto B
to ¢ of current
1t 00
fori=0to 511 pixel to the last 2
for] = 110 480 pixels stored in
groups other than the
current group
Yes
Join pixel indices Yes
to the right group
No If one was found

Figure 4.15: This is Section A of the Main Block Diagram.

61

Ilor k = 1,..,,N partial groups |

Next group

Keepljof M=t
in memory

for M= 2,...L pixels |

Next pixe)

Keep current i}

-

KeepljotL

s
i changing value of
current i compared to the

preceding i 7

Creating skeleton partial group

:

for k = 1,..,N skeleton partial groups
for m = k+1,..,N skeleton partial groups

is the
first address

content of k or m

equaisto -1 ?

Compara distances of all pixels in
the k-th group to first 20 pixels
in the m-th group

No

Yo | Add m group to k group

and write -1 to the
content of first address

Figure 4.16: Section B of the main block diagram.

C

[for k= 17....N uvoup.J

r——————

i first address contant
of k-th group is -1

or
it the content of the k-th
group is less than 20 pixels
due to noise reading

then,
discard the k-th group.

No

Keop the k-th

group in mamory

]

| Fork = 1,..L IC groups]

Find max },) and min i}

The four cornars of the
exiornal rectangle are:

max), max). max i, min |,
min i, max |. min |, min J.

l

Find center of external
tlangle

(max | + min)r2zic
(max | + min))/2=Jc

:

Find four comers of

the IC package by:
Finding tour times the
longest distance from lc,Jc
to given pixel that creslas
skelston IC, and then

block the access for the
corner for next search

1

To find IC center:

Average value | of four
iC corners

Average value | of four
IC corners

—

To find orlentation of an IC:

Compute the siopas of the
IC's two longesl sides
In camera coordinates.

Average the two resufts
to get the tinal slope.

Yoo

GOTO D

Figure 4.17: Section C of the main block diagram.

63

D

1

|For kat,.,LIC l

To define IC orfentation In
robot coordinates, find:

- alpha = Average slops of IC
orfentation in camera
coordinates,

+ J1 = Value of jointd.
« J2 = Value of joint2,

< angl_err = angle
bstween the camena
axis and link 2
of the robot.

The tinsl orientation is =

o 1 +J14J2-00-angi_err)

To abtain iC position in
robot coordinates, find:

- Measure distance
d_t_c = Camera axls and Re{_point

« Measure angle
b_sng! = angle between Link2 and
Camera - Ref_point iine.
Find:

- a= angle between

l-Axis and IC center - Ref_point lins
in camera coordinates.

-« 8=(180 - b_angl)- angl_err

sy=a+0

» d_c_ic = distance between
Ref_point and IC center
in camera coordinates

« d_t_ic = distance from E_e to IC center
using cosine law using
dtecdcic& v

- B_l= angle between
IC conter-Camera and
Camera-Ref_point line

using cosine law using
d_tcdc_ic&dt ic

- 9=180-(b_angk P_I HI1H2)

« X-E_o 2250°c08(J1+J2)+400*cos(J1)
« Y-E_0 2250°sin{J14J2)+400*sIn(J1)

« X-IC-center = X-E_¢ +d_t_ic*cos(¢)
« YeiC-conter = Y-E_o «d_1_lc*sin (¢)

Check for the three
restrictions imposed
to insure

inverse Kimematics
can be computed.

No

/w

rite: “out of space In
X-Y plane"

Figure 4.18: Section D of the main block diagram.

64

Chapter 5

ROBOT SOFTWARE
DESCRIPTION

5.1 Introduction

This chapter gives a brief description of the software that controls the IBM7545 robot.
Since much of this part was covered in [1], we mainly concentrate on the changes that
have been made to the original software in order to adapt it to our needs.

The program uses a PD control algorithm which provides error-driven, indepen-
dent joint control whereby each joint is controlled separately by a simple position-
velocity servo-loop with predefined constant gains. The joint torque at a sampling
instant N is given by

7(N) = hyto(N) + kyeo(N) (5.1)

where

ep(N) = desired joint position(N) — actual joint position(N) (5.2)

and

Xsdoint pesition Xd=Dusirad |int position

Xadoint veloeslty XdaDasirnd Joint veloaity

Robot

Xe

xd

Figure 5.1: Block diagram of the trajectory-following controller.

arc the position and velocity tracking errors, k, > 0 and k, > 0 are the position and
velocity feedback error gains. aud T denotes the sampling period. The PD controller

was implemented in our application because

1. It requires very little computation and can therefore be implemented at high

servo rates.

2. The mass of the payload (i.e. the 1Cs) is very small, and does not affect the

robot dynamics, so adaptive or robust control is not needed.

Figure 5.1 shows a block diagram of our trajectory following controller. If there is no
initial error, the robot will follow the desired trajectory almost exactly. If there is an

initial error, it will decay rapidly because of the gains k, and k, chosen in equation 5.1.

The path planning algorithm is called by the control program and computes the
entire path off-line prior to the execution of the move. The algorithm is based on a
cubic spline generator. The algorithm for this path generator enables the specification
of via point locations and also provides automatic selection of joint velocities at the
selected via points. The velocities at the via points are computed according to the

following scheme. First, the slopes (average joint velocities) between adjacent via

66

points are calculated. The velocity at a via point is then set to zero if the two slopes
on either side are of opposite sign. If the slopes are of the same sign, the velocity
is computed as the average of the two slopes. A full description of the cubic spline

generator algorithm is given in [10].

5.2 Dual-Port Ram Utilization

The Dual-Port Ram (DPR) is a shared memory device and is used for passing param-
eters and variables between the Master and the Slave processors. Each parameter and
variable is assigned a specific location (register) in the DPR. Since the new Master
processor a /86 based PC replaced the old version, a PS2/50, some addresses have
changed. Also a new variable. gripper, was added. The address and name of cach

register in the DPR is listed in Table 5.1.

5.2.1 The Gripper

The gripper function was added to the system in order to control the closing and
opening of the gripper (at the E_e). As shown in Table 5.1, the Master contiols
the Giipper through address C802AH (Gripper Register). The function is defined in
Table 5.2. The Slave sits in a continuous loop checking the Command Register and
the Cripper Register. When one bit of the E_e function is set, the Slave perfoiins the

corresponding task and then clears the Gripper Register.

67

ADDRESS SIZE NAME USER ACCESS
Master Slave Master Slave
(C8000H EO000H | word sample_period w r
C8002H EO002H | word timing_A r/w r/w
('8004H E004H | word timing_B r/w r/w
(‘3800611 E006H | word command r/w r/w
('SO0SH LE008H | word error r/w r/w
(‘80101 LO010H | double word | actualposition_joint_1 r w
('8014H EO14H | double word | actual_position_joint_2 r w
('8018H FO018H | double word | actual_position_joint_Z r w
CS01CH EO0ICH | double word | actual_position_joint_R r w
(80200 EO020H | word torquc_joint_1 w r
('8S022H E022H | word torque_joint_2 w r
('8024H E024H | word torque_joint_.Z w r
('8026H E026H | word torque_joint_R w T
('802AH E02AH | word gripper w r/w

Table 5.1: Dual-port RAM register reference table.

Bit Number Set | Indication

0 Open Robot Gripper

~J

Close Robot Gripper

Table 5.2: The gripper register function.
5.3 Robot Motion
The robot motion is separated into three stages:

1. The initial movement and the movement of the robot m its workspace

grabbing one or more images.
2. The “pick and place” movements.
3. The last move toward its home position.

Figure 5.2 illustrates the height of the ™ " e the table as a function of time
when it advances toward a section of * 'wp e and discovers two 1Cs. There are

three levels at which the E_e of the robot operates:

1. Height O0mm (according to its home position) - This is when the gripper is moved
from the home position to a point in order to grab a picture (points 0-1), and
at the end of the move when it is on its way back to the home position after

completing its task.

2. Height -200mm - This is when the gripper is carrying an 1C or on its way to

pick another 1C.
3. Height -227.7mm - This is when the gripper picks or places an [C.

69

-

’
.
)
»
]
[}
[
'
.
.
.
.
3
.
.
]
[
'
4
-~
.
n
.
.

g
]
.
t
.
»
3
.
*
’
.
0
)
'
)
.
.
’
»
]
.
.
.
'
]
.
.
s

v

o) semmcscscacecmanen

e QT ™~~~y

«227.7mm

%
°
E]
3

4 & 8 ’ 12 16 17
plck place plck place

Figure 5.2: Motion and height of the end-effector above the table as a function of

time.

The robot performs the task described in Figure 5.2 in the following stages:

I. Segment 0 = 1 : The robot approaches its input window (1) in order to let the

camera grab a picture and then to execute the Pattern-Recognition function.

| 8

Segment 1 = 2: The robot uses its jeint-Z in order to reach a height of -200mm

from the height of the home position (0mm).

3. Segment 2 = 3 : The gripper is moved toward the location of the first 1C using

joints-1,2,R.

4. Segment 3 — 4 : When the gripper is located above the center of the IC, the
robot uses its joint-Z to position the gripper at the level of the IC to perform
a pick operation. This is done by moving an additional -27.7mm in the Z

direction. This places the gripper at the desired altitude of -227.7Tmm.

5. Segment 4 — 5: The gripper picks up the IC. A delay of 0.5 sec. occurs to give
the mechanical part of the gripper (controlled by an Air-Valve) enough time to

perform the closing operation.

6. Segment 5 — 6 : The robot starts its movement toward the “place™ location.
In order not to touch or move other IC's in the workspace, the gripper is moved

back to -200mm using joint-Z.

-1

. Segment 6 — 7: The gripper is moved toward the “place”™ location using joints-

1,2.R.

o

. Segment 7 — 8 : The robot uses its joint-Z to approach the -227.7num altitude

mark before placing the IC.

9. Segment 8 = 9 : The robot places the 1(" using the same delay as in item 5 by

opening the gripper.

10. Segment 9 — 10 : The gripper is moved toward the -200mm height using joint-7

and is moved toward the second 1, and the above steps are repeated.

Segments 17 — 0 : After placing the last I(') the robot starts its return to the
home position. The gripper is moved from -227.7mm to Omm using joint-Z. and the

“home” position is then reached using joints-1,2,R.

Remarks:

1. The robot may move into as many input windows as needed. At the end of each
move, the system calls the Pattcrn-Recognition function. This results in finding

IC locations, if any.

2. The robot movements are composed of three different motions,

71

(a) The first motion is from the home position to the input window and is

composed of one move only (no via points).

(b) The second motion (if there are any 1Cs) is composed of two motions each
of two via points. The first motion performs a “pick up” action for the 1C

and the second a “place” action.

(c) The last motion is composed of two movements (with one via point), and
1s used to instruct the robot to move toward its home position after all

“pick” and “place” tasks have been performed.

3. In the program, there are two arrays, In_pos {15}{3} and Qut_pos {15}{3}.
In_pos {15}{3} contains the data of the present locations of the ICs and
Out_pos {15}{3} contains the locations to where the I('s are to be moved to. The
program fills the arrays from 0 down to 14. and In/Qui_pos {zz}{0} contains the
value of the angle converted to a Hexadecimal number for Joint_1, In/Qut_pos

{rz}{1} for Joint.2 and so on.

4. It is often useful to create robot motions with fixed joint velocities. The veloc-
ities of the joints are specified by an array v {4} as follows,
(a) Joint.] = 45°% per sec.
(b) Joint2 = 50° per sec.
(¢) Joint_Z = 100mm per sec.

(d) Joint_R = 70° per sec.

Before the E_e of the robot moves to a new location, the distance that each
joint will move is calculated. Then the time each joint needs for the move is
computed. In the next stage, the chosen global time for the move is the longest

time among the four joints. A minimum of 0.2 sec. global time is used for small

72

START

]
ISystem inltistization l

T

Find Home Change Of Parameters Video Robot Control

Additional Robot Initiailzation
Robot_error_check

Change Change
Error Gain Parameters Video Parameters
kp_1, kp_2, kp_z, kp_r d_t_c, b_sngl, ang!_err
kv_1,kv_2, kv_z,kv_r link_1, link_2. A

Quit Change of
Parameters
Mode ?

Figure 5.3: General flowchart of the robot modes (first part).

motions to avoid high torques at the beginning of a move. High torques may

not be achievable in a short time and thus may cause tracking errors.

Flowcharts of the robot modes of operation are shown in Figure 5.3- 5.4,

73

A
4

]

Calculats the initisl move from the origin
using the Cublc_Spline tunction

l Use PD control for the robot move l

Grab a frame
Run the patisrn-recognition function
Find ICs locations in robot coordinates

Are there
mote frames
to grab?

Calculats the move to next window
using ths Cubic_Spline funclion

Are there iCs
in robot

workspsce ?

Caiculate the last motion
to the origin in two movements
using the Cubic_Spline function

move foint_z (o Omm akitude
mova joints 1,2,R to origin

]

L)
I Uss PD control for the robot move]

rsun "pick” & “place™ motion l

Caiculate "pick I movement
for the IC using the
Cubic_Spline function

Use PD control

At the end of the move
closs the E_e

GOTO START

Calculate "place IC" movement
for the IC using the
Cubic_Spline function

Use PD control

At the end of tho move
openthe E_e

Figure 5.4: General flowchart of the robot modes (second part).

74

Chapter 6

CONCLUSIONS

An architecture for incorporating visual information in the operation of a robot has
been presented. The goal of the thesis was to enhance an Advanced Robot Contioller,
based on a Master/Slave configuration which controls the IBM7545 with the capability
to use input from a camera in its workspace. An important consideration was to create
an efficient low cost effective environment. In the design of the system the following

aspects were considered.

1. High Specd Systcm - Vision information usually involves a huge amonnt of data
(250,000 pixels) which requires fast processing and large amounts of memaony.
To address this problem within a limited budget, we used an INTEL-486 hased

PC (which replaced the slower INTEL-286 based PS2/50).

2. Compatibility - The PC-AT-BUS is fully compatible with the frame grabber

used (OCULUS-300).

3. Hardware Design - Several hardware changes werce carried out to implement the

vision system on the rohot:

75

(a) New Master/Slave Interface - Special care was taken in choosing the in-
terfacing 1Cs in order to comply with the speed requirements of the faster
INTEL-486 processor. It was necessary to ensure that the BUSY signal

from the DPR met the timing constraints.

(b) E.c Control - New design of the Master/Slave control of the Robot E_e

was carried out. This was not available in the earlier version.

(c) Lighting Environment Control- A special hardware design lets the INTEL-
486 processor control the lighting environment for object recognition (flu-

orescent light) and to distinguish between colors (Halogen light).
4. Softwarc Design :

(a) Master Software Design - The software consists of two main parts. The
first is the Pattern-Recognition function hased on the input from the frame
grabber. The second part is in the form of continuous movement based on
PD control and Cubic-Spline trajectory generation, to perform “pick and

place™ operations.

(b) Slave Softwarc Design - Additional software was added to the Slave control

procedure in order to obtain full control of the Robot E_e.

5. Integration - Full integration between all the components of the system to per-

form real-time tasks (Camera, Frame-Grabber, Master and Slave) was carried.

The theory developed for the pattern-recognition function was shown to work
very eflectively when implemented on (dual in line) ICs. The same method may
be implemented for any electronic component that satisfies the main requirement of

symmetry and shape (rectangle, disc. square and triangle), and is flat (the distance

of the ubject surface to the table should be small compared to the distance of the
camera to the table).

When the image resolution is low and/or not much detail about an object is
available, (i.e., the number of pixels/mm is small) in order to keep good accuracy
of the pattern-recognition function, convolution should not be performed. This will
tend to reduce the accuracy of important features (object corners), and enhance the
effect of errors (due to IC pins, spots etc...). Our analysis and experimental results
indicate that with the vision system incorporated with the IBM 7545, it can perform
almost real — time “pick and place™ operations. An important aspect of our design
is that it is Jow-cost and can be easily adapted for other industrial rohotic systems,

Up to three more cameras may be connected and coutrolled by the CORECO
frame grabber. A second camera can be incorporated to provide data for fine motion.
This can be used to perform guarded motion or even achieve contact. If a foree
controller is incorporated as well, one can perform insertion of different types of 1C's
on a printed circuit board.

Another interesting application (possibly not in real-time) would be to enable the
robot E_e to track an object moving in its workspace. Since the average time of
recognition of simple objects is less than 0.2 sec. aad path computation is 0.1 see.

the robot’s response time with respect to object movement in its workspace is L3 see.

Bibliography

[1]

[4]

[6)

J. N. Brodkin, The Design and Implementation of an Advanced Robot Controller.
M.A.Sc. Thesis, Dept. of Electrical & Computer Engineering. Concordia Univer-

sity, Montreal, Quebec, ("anada. November 1990.

C'. Miciiaud, Multi-Robot Workeell with Vision for Integrated Circuit Assembly.
M. Eng. Thesis, Dept. of Electrical Engineering, McGill University. Montreal.

Quebec, Canada. July 1986.

A. R. Mansouri and A. Malowany. “Using Vision Feedback in Printed-Circuit
Board Assembly™. 1985 IEEE Microprocessor Forum, Atlantic City, New Jersey.

pp. 115-122 April 2-4, 1985.

J. S. Weszka, “A Survey of Threshold Selection Techniques”. Computer Graphics

and Image Processing vol. 7, pp. 259-265, 1978.

J. S. Weszka and A. Rosenfeld, “Threshold Evaluation Techniques”. IEEE Trans-

action on Systems, Man, and Cybernetics, Vol. SMC-8. No. 8 Aug. 1978.

A. R. Mansouri. A. F. Malowany. and M.D. Levine, “Line Detection in Digital
Pictures: A Hypothesis Prediction/Verification Paradigm”, Computer Vision,

Graphies, and Image Processing. vol. 40, pp. 95-114 1987.

[7] “Robot with vision svstem picks parts and places them on hybrid substrate”,

FElectronics Magazine, vol. 17, pp. 136-137 January 1984,

[8] N. B. Freeman, “Assembly- assisted by vision, robot helps build circuits”, Amer-

ican Machinist, vol. 8, pp. 115-117, May 1985.

{9] D. Horn, “Machine Vision: The Guiding Light”, Mechanical Engineering, vol.

19, pp. 40-43, June 1989.

[10] John J. Craig, Introduction te Robotics Mechanics and Control, Second Edition,

Addison-Wesley. Reading, MA, 1989.

[11] Pamela McCorduck, Artificial Intelligence-Machines Who Think. W.H. Freeman,

San Francisco, CA, 1989,

[12] IBM 7545 Manufacturing System Hardwarc Library. IBM Corporation, Boca

Raton. Florida. 1984.

[13) L. C. Eggebrecht, Interfacing to the 1BA Personal Computer. PC AT System
and Bus Architecture, Chapter 10 pp. 267-285, second edition 1990, Howard W.

Sams & Company.

[14] EVE0CI196 KA Microcontroller Evaluation Board Uscr’s Manual. Intel Corpora-

tion, Santa Clara, California, Release 001, March 20, 1988.

15] OC-300 Real-Time Image Digitizing and ’rocessing Board, User’s Manual, Idi-
U] !

tion 1.00, Coreco Inc., Montreal, Canada, July 1988.
[16] VK-C360 Color Camera, Instruction Manual, HITACHI, Japan.

(17) High Pcrformance CMQOS Dala Book, Integrated Device Technology, Santa

Clara, California, 1938.

79

(18) AC Solid State Rclays, GORDOS ARKANSAS, G Series, Rogers, Arkansas,

[19]

[20]

[21]

24

USA.

Shao Lejun, R. A. Volz, L. Conway, M. W. Walker, “Tele-Robot Control In-
volving Contact and Time-Delay”, Computer, Communication and Networking
Systems: An Integrated Perspective. Proc. of the International Conference on In-
formation Enginecring - ICIE, vol. 1, pp. 160-169, Elsevier, Amsterdam, Nether-

lands, 1991.

Shao Lejun. R. A. Volz, “Robot Vision Calibration Under Constraint conditions”,
Computcr, Communication and Nctworking Systems: An Integrated Perspective.
Proc. of the International Conference on Information Engincering - ICIE, vol. 1

pp. H5-64, Elsevier, Amsterdam, Netherland. 1991.

V. Graefe, K. Fleder. “A Powerful and Flexible Co-processor for Feature Extrac-
tion in a Robot Vision System™. Proc. IECON 1991, International Conference
on Industrial Electronics, Control and Instrumentation, vol. 3 pp. 2019-2024,

IEEE. New York, NY, USA, 1991.

R. A. Jarvis, “3D Shape and Surface Color Sensor Fusion for Robot Vision”,

Robotica, Vol. 10, pp. 389-396, 1992, UK.

H. Kobayasui, K. Uchida, Y. Matsuzaki, “A Self-Learning Robot Vision System”.
IEEE International Joint Conference on Neural Networks. vol.3 pp. 2007-2012.
IEEE. New york, NY, USA.

R. Sharma, J. Y. Herve, P. Cucka, “A Framework for Vision-Guided Manipulato
of a Moving Target”, Conference Proceedings IEEE International Conference on
Systems, Man, and Cybernctics.. vol. 1, pp. 213-218, IEEE, New York, NY, USA,

1991.

[25]

[26]

[29]

[30]

A. Nagchaudhuri, M. Thint, D. P. Garg, “Camera-Robot Transform for Vision-
Guided in a Manufacturing Work Cell”, Journal of Intclligent and Robotic sys-

tems: Theory and Applications, vol. 5, pp. 283-298, Netherlands, 1992,

L. G. Trabasso, C. Zielinski, “Semi-Automatic Calibration Procedure for the
Vision-Robot Interface Applied to Scale Model Decoration™, Robotica, vol. 10

pp.303-308, UK, 1992.

C. C. Wang, “Extrinsic Calibration of o Vision Sensor Mounted on a Robot™,

IEEE Transactions on Robotics and Automation, vol. 8, pp. 161-175, UISA, 1992,

M. J. Daily, “Self-Calibration of a Multi-Camera Vision System”™, Conferane
Record. Twenty-Fourth Asilomar Conference on Signals, Systems and Compul-

ers, vol. 2, pp. 810-815, San Jose. CA, USA, 1990.

P. K. Sinba, M. Maamri, “Use of TV Cameras for Robot Position Determina-

tion”, International Conference on Image Proccssing and Its Applications, pp.

567-570, London, UK, 1992.

A. J. Vayda, A. C. Kak, “A Robot Vision System for Generie Object Recogni-
tion”, Workshop on Dircctions in Aulomated (CAD-Bascd Vision. pp. 166-175,

IEEE Comput. Soc. Press, Los Alamitos, CA. USA, 1991,

M. Ito, “Robot vision Modelling-Camera Modelling and Camera Calibration™,

Advanced Robotics, Vol. 5, pp. 321-335, Netherlands, 1991.

L. Annell, M. Torngren, “Transputer-Based Machine Vision System Research at
the University of Oulu”, Nordic Transpuler Applications. Proc. of the st and

Md Nordic Transputer Seminars, pp. 112-116, Amsterdam, Netherlamds, 1991,

§1

(33]

[34]

[35)

[36]

[39]

N. R. Schofield. Low Cost, Real Time, Robot Vision System, with a Cluster-Based

Learning Capability. Univ. Durham, UK, 1988.

S. Sakane, T. Sato, M. Kakikura. “Automatic Planning of Light Source Place-
ment for an Active Photometric Stereo System™, Proc. IROS. IEEE Interna-
tional Workshop on Intelligent Robots and Systems. Towards a New Frontier of

Applications. vol. 2, pp. 559-566. IEEE, New York, NY, USA, 1990.

V. Graefe “The BVV-Family of Robot Vision Systems”, Intclligent Motion Con-
trol. Proc. IEEE International Workshop, vol. 1, pp. 55-65, New York, NY, USA,

1990.

H. Inoue, T. Tachikawa. M. Inaba, “Robot Vision System with a Correlation
Chip for Real-Time Tracking, Optical Flow and Depth Map Generation™, Proe.
IEEE International Conference on Robotics and Automation, vol. 2. pp. 16G2]-

1626. Los Alamitos. CA, USA, 1992,

A. K. C. Wong “Intelligent Robotics Research at Waterloo™, Proc. International

Conference on Manufacturing Automation. pp. 349-354, Univ. Hong Kong. Hong,

Kong. 1992.

M. Rechsteiner, B. Schneuwly, W. Guggenbuhl. “Rebots in Postal Service. A Fast
and Robust Vision System for Parcel Separation”, Bulletin Des Schweizerisehen
Elektrotechnischen Vereins & Des Verbandes Schweizerischer Elckirizitactswerke,

vol. 83, pp. 19-26, Switzerland, 1992,

F. Leonard, G. Abba, E. Ostertag, D. Mehdi, “Closed Loop Robot Control by
Real Time Visual Sensor”, Robot Control (SYROCO 1991). Selecled Papers from
the 3rd IFAC/IFIP/IMACS Symposium, pp. 507-512, UK, 1991.

82

[40]

[41]

[42)

[43]

41

A. T. de Almeida, U. C. Nunes, J. M. Dias, H. J. Araujo and J. Batista, “A
Distributed Control Network for Sensory Robotics”, Microprocessors in Robotics
and Manufacturing Systems, Chapter 9, pp. 217-235, Kluwer Academic Publish-
ers, Boston, MA, UISA, 1992,

E. Oliveira, R. Camacho and C. Ramos, “A Multi-Agent Environment in

Robotics™, Rolbotica, vol. 9, pp. 431-440, UK, 1991.

J. H. Kim and S. C. Hyung, “Real-Tiine Determination of a Mobile Robot’s
Position by Linear Scanning of a Landmark”, Robotica, vol. 10, pp. 309-319,

UK., 1992,

Z. Bien, H. Y. known, J. Youn, “A Closed Form 3D Self-Positioning Algorithm
for a Mobile Robot Using Vision and Guide-Marks”. Robotica. vol. 9, pp. 265-274,

UK, 1991,

Theo A. Gi. Heeren, Frans E. Veldpaus, “An Optical System to Measure the End
Effector Position for On-Line Control Purposes”, The International Journal of

Robotics Research, vol. 11 pp. 53-63, MA, USA, 1992.

Appendix A

Calibration of the Robot Vision

System

Figures A.1 and A.2 illustrate the approach used to evaluate the fixed distance, d.1_e,
the distance from E_e to the camera's closest corner. and the fixed angle, b_angl. the
angle between the second link and the End-eflector to Ref_Point line.

With reference to Figure A.1. the following steps are carried out to perform the

calibration of the vision system.

Input: End-effector location relative to the origin (0,0).

Output: b_angle, d_t_c.

1. Turn on the system and initialize the robot by calling the find_home procedure.
2. Choose a Ref.Point in the corner closest to the E_e of the camera window.

3. First Stage,

(a) Choose an arbitrary point A on the robot coordinates.

(b) Enter continuous frame grabbing mode of the Camera and move the robot

arm such that point A and the Ref Point overlap exactly.

84

X Axle
Robot Coordinsies

First Stage

Ref_Point

Camers’s Window

(0,0)

+Y Axis
Robot Coordinates

Figure A.1: Description of the two stage measurements when calibrating the vision

system.

X Axis
Robot Coordinates

J=J1+J2-90
b_angl =180-J+ &
delta= A

d_t c=|| 1 Ax|i+]| Ayl]I /
Ref_Point (A)

Camera's Window

(0,0)

+Y Axis

Robot Coordinates

Figure A.2: Computation of d_.t_c and b_angl.

86

() Exit the continuous frame grabbing mode and call the nrobot program
which performs the robot PD control, and can be used to find the E_e

position.

(d) Read the E_e location in robot coordinates (x,y) and the values of Jl

(joint-1) and J2 (joint-2) in degrees.
4. Sccond Stage,

(a) Move the robot arm such that the center of the E_e is located precisely

above point A.

(b) Read the new E_e location in robot coordinates (r;,y2).

From Figure A.2, we calculate Ar and Ay as

[]

Ar=r) —ry (A.1)
and.
Ay=uy —p2 (A.2)
This gives
= arctan(%ﬁ) (A.3)

and

dtc= A+ Ay? (A.4)

b.angl = 180° — (J1 +J2~90% + & (A.5)

6. End of algorithm

The calibration procedure is repeated 2 or 3 times and the average of the results

are used to obtain values for d_t.c and b_angl.

oo
-1

After completing the above procedure, we find d_t.c to within an error of up to
+0.5mm and b_angl to within an error of up to £0.5°. We Then perform the final On
Line Calibration procedure to obtain more accurate values of d.i.¢, b_angl, angl.err,
link_1 and link_2. 1t should be noted that the final value of angl_erris within £3"
and the values of the robot link lengths link_1 and link_2 are in the range of [399 -

401]mm and [249 - 251}mm respectively (based on the manufacturer's data).

88

Appendix B

Master Software Description

Some parts of the Master software subroutines which control the Master’s move-
ment and trajectory planning were taken from [1] (find_home(), robot_error_check(),

cubic_spline(), joint_torques, prop_deriv_control(), ...).

/* UTILITY PROGRAMS AND FUNCTIONS FOR USE IN VISUAL ROBOT CONTROL */
#include <fg3.h>

#include <fg3demo.h>

#include <stdio.h>

#include <stdlib.h>

#include <alloc.h>

#include <math.h>

#include <dos.h>

/* GLOBAL VARIABLES (begin with a capital letter) */

double Duration; /* Duration (in sec.) of the move */

/* position error gains #*/

double kp.1 = 60, kp.2 = 60, kp_Z = 55, kp_R = 60;
/* velocity error gains #*/
double kv_.1 = .1, kv.2 = .1, kv.Z = .1, kv.,R = .1;

/* explanation for all the following variables is in chapter 4. sections 3-4. */
double c_x=1/3.56, c_y=1/3.48, b_angl=137.7, d_t_c=81.8, d_err=0, angl_err=1.8;
double link_1=400.00, 1ink_2=250.00;
int b_x=3, b_y=457;

int Home_found = 0; /+ A flag which is set to 1 when home is found */
int Flag_a = 0, Flag_b = 0, fn_ics=0, Ini_step = 0, N=0, K=0, Stop;

89

int CO = 0, take_picture=0;

int far *gripper = 0xc000802a;

long int In_pos[10]{3], Out_pos(10][3];
double choose_new_gain(char *, double);

/#*#****#*****#****#********#******#*#*####*ti***#‘*'#‘##*##*“*“##*#*“*“#‘/
main(argc, argv)
int argc;
char *argv[];
{ *gripper = 0x0000;
-stklen=10000;
if (fg3env(argc,argv)<0)
{
fg3free();
exit(1);
3
for(;;) {
/* fn_ics=0;*/
Stop = 0;
clrscr();

controller_menu();

3

L T T e PR T e PP PP PP P A S R P e LT T Y
int check_home_found_flag(); /# function prototypes */

prop. :ontrol();

prop.deriv_control();

find_home();

controller_menu()
{

char ch;

printf("Choose controller\n\n");
printf("[1] FIND HOME\n");
printf("[2] VISUAL SERVOING OF ROBOT\n");
printf("[3] CHANGE OF PARAMETERS ?\n");
printf("[0] QUIT\n\n");
printf ("ENTER YOUR CHOICE: ");

90

do {
switch(ch = getch()) {
case ’'1': find_home();
return;
case ’2’: /# check_home_found_flag(); #*/
prop.deriv_controi();
return;
case ’3’: change_parameters(},
return;
case '0’: fg3free();
clrscr();
exit(0);
default : delline();
printf("\rINVALID CHOICE. TRY AGAIN: ");
}
} while(ch !'= *1’ && ch != ’2° &% ch != °3’ && ch != ’0’);
}

/‘###*##**i#*#**##*#********#**~ **#*#****‘##**#*##*****ﬁ*******#*****#**#**#*/

/* this function was established in order to allow calibration of robot
and video " ON-LINE ". x»/

change_parameters()

{

char ch;

clrser();

printf("\t\t\tPD CONTROL & VIDEO PARAMETERS\n\n");

printf("The position error gains are:\n");

printf("kp.1 = %-5.2f kp_2 = %-5.2f kp_Z
,kp_1,kp_2,kp_2,kp_R);

printf("The velocity error gains are:\n");

printf("kv_1 = %-5.2f kv_2 = %-5.2f kv_Z
Jkv_1,kv_2,kv_Z,kv_R);

printf("link_1 = %-6.2f 1link.2 = %-6.2f\n\n\n",link_1, 1ink_2);

printf("The number of VIDEO pixels per one mm. in the work space are:\n");

%-5.2f\n\n"

%-5.2f kp_R

h-5.2f kv_R = }-5.2f\n\n"

printf("X axis = -4.2f pixels Y axis = }-4.2f pixels\n\n",1/c_x,1/c_y);
printf("The location of the reference point is:\n");
printf("pixel num. %d on X axis and pixel num. %d on Y axis\n\n",b_x,b_y);

91

printf("The value of measured b_angl is %-5.2f degrees\n\n",b_angl);
printf("The distance of measured tip to corner of picture is %-5.2f mm.\n\n"
,d_t_c);
printf("The value of angl_err is %-5.2f degrees\n\n\n",angl_.rr);
printf("Change any of the parameters? [y/n]:");
if(getche()=="y’) {
clrser();
printf("\tChoose group:\n\n");
print£("[1] ERROR GAIN AND LINK_1(2) PARAMETERS\n");
print£("[2] VIDEO PARAMETERS\n");
print£("[0] QUIT\n\n");
printf ("ENTER YOUR CHOICE: ");
do {
switch(ch = getch()) {
case ’'1’: gain_change();
return;
case ’'2’: video_change();
return;
case '0’: return;

default : delline();
printf("\rINVALID CHOICE. TRY AGAIN: ");

}
} while(ch !'= ’1’ && ch !'= ’2’ && ch != ’0’);

}
getch();

}

T R T T T e P PP T T S TS S PSP TR ey
gain_change()
{
printf("\n\n");
kp_1 = choose_new_gain("Kp_1", kp_1);
kp_2 = choose_new_gain("Kp_2", kp.2);
kp_Z = choose_new_gain("Kp_2", kp.Z);

kp.R = choose_new_gain("Kp_R", kp_R);
printf("\n");

kv_1 = choose_new_gain("Kv_1", kv_1);
kv_2 = choose_new_gain("Kv_2", kv_2);

92

kv_2Z = choose_new_gain("Kv_2", kv_.Z);

kv_R = choose_new_gain("Kv_R", kv_R);
printf("\n");
link.1 = choose_new._gain("link_1", link_.1);
link_2 = choose_new_gain("link_2", 1ink_2);

}

L T R R R e T LI LT Ly
video_change()

{

printf(“\n\n");

b_angl = choose_new_gain("b_angl", b_angl);

d_t_c = choose_new_gain("d_t_c", d_t_c);

angl_err = choose_new_gain("angl_err", angl_err);

}

/##t##############l####**###t##**##****##***##*#***#***#*##**#***#*#*#******#**#/

/* change the value of a gain or parameter */

double choose_new_gain(char *name, double gain)
{

printf("Change Us? [y/n]: ", name);

if(getch() == 'y’) {

printf ("\tFrom %1f to: ", gain);

scanf ("}1f", &gain);

}

else printf("\n");

return(gain) ;

}

L T T Ty T LT P P ey P P P T R Ty

find_homa() /% tells 196 to find home */

{
int far *command = 0xC0008006;
unsigned int far *error = 0xCO008008;

error = 0x0000; / clear the error register */

command = 0x0080; / give 'find home’ command */
clrscr();

93

printf ("\t\t\tFINDING HOME, PLEASE WAIT");
vhile(*command); /* wait for 196 to finish the move */
Home_found = 1;

delline();

/****#****#**#**##*‘*##*##*#t**#*###t*##*#***##*t#tt##t#*“#‘t‘tt###t*t#“t‘#t/

/* check for joint overuns */

robot_error_check()

{
int far *error_pointer = 0xC0008008;
int e;

*error_pointer = *error_pointer & Ox00ff;
if (*error_pointer) {
do {
e = #*error_pointer;
clrscr();
printf("\t\t\tROBOT ERRORS\n\n");
if(e & 0x0001) printf("Joint 1 in positive overun\n");

if(e % 0x0040) printf("Joint
if(e & 0x0080) printf("Joint r in negative overun\n");

printf ("\nMANUALLY MOVE THESE JOINTS BACK INTO THE WORKSPACE");
whil, (e == *error_pointer);

in positive overun\n");

if(e & 0x0002) printf("Joint 1 in negative overun\n");
if(e & 0x0004) printf("Joint 2 in positive overun\n");
if(e & 0x0008) printf("Joint 2 in negative overun\n");
if(e & 0x0010) printf("Joint z in positive overun\n");
if(e & 0x0020) printf("Joint z in negative overun\n");
& r
r

} while(*error_pointer);
printf("\n\nAll overun errors fixed. Press any key to continue ");
while(!getch());
return;

/#*##**###*t******#*##t#‘*####*#*#*###******t*#*t#t###*##ﬁt#t##t*ttt#*###‘##tt/

/* display errors */

94

display_errors()

{
unsigned int far serror = 0xCO008008;
unsigned int temp;

temp = *error;

if(temp & 0x0001) printf("\tjoint
if(temp & 0x0002) printf("\tjoint
if(temp & 0x0004) printf("\tjoint

1 entered positive overun\n");
1
2
if(temp & 0x0008) printf("\tjoint 2 entered negative overun\n");
z
z
r

entered negative overun\n");
entered positive overun\n");

if(temp & 0x0010) printf("\tjoint
if(temp & 0x0020) printf("\tjoint
if(temp & (x0040) printf("\tjoint
if(temp & 0x0080) printf("\tjoint r entered negative overun\n");

entered positive overun\n");
entered negative overun\n");
entered positive overun\n");

if(temp & 0x0100) printf(“"\tToo much torque was applied to joint 1\n");
if(temp & 0x0200) printf("\tToo much torque was applied to joint 2\n");
if(temp & 0x0400) printf("\tToo much torque was applied to joint z\n");
if(temp & 0x0800) printf("\tToo much torque was applied to joint r\n");
if (temp & 0x1000) printf("\tPS/2 did not provide torques in time\n");
if(temp & 0x2000) printf("\tPS/2 did not finish its loop in time\n");

AL R R R A R L e e T TR P T2y
/* compare two numbers (double precision).

* return 0 if their signs are the same.

* return 1 if their signs are different or if at least one number is zero. */

cmp_sign(double num_1, double num_2)
{

if(num_1 && num_2){ /+* if neither number is zero =*/
if((num.1 > O && num_2 > 0) || (num_1 < 0 && num_2 < 0)) return O;
}

else return 1;

/#‘t‘t#######tt#‘##tt‘*t“##t####‘##‘####**#t#*##*#*#t*##****#####**####***#*#/

95

/‘##t‘*#####t####*###t###t#*#t#*ttt##*#‘t‘##t##t###t##‘###t#‘#.t“ttt#t##
* pat_rec.c file is a basic general pattern-recognition function
which checks the data from the frame grabbed by the camera and
then separates the data into partial groups(partial-objects).
In the next stage the skeleton of each partial group is extracted
and the function joins skeleton partial groups into skeleton
groups that share the same data(cbject). In the last stage the
function locates the external rectangle of each object and compute
the center of each external rectangle before calling the library
functions. *

% # # ¥ # & =
#* # B B B B & =

L L L T e TP YT I YY)
#include <fg3.h>

#include <tg3demo.h>

#include <stdio.h>

#include <stdlib.h>

#include <alloc.h>

#include <math.h>

extern int fn_ics;

int edgpl[20][4][2], f.cntr[20][2], fg_p=-1, *fp[20][5], box[20] [6];
double jt, jti1, jt2;

/* edgp[1[1{]

collects data about 20 rectangles and the value(x,y)
of each of the four corners in camera’s coordinates.
the center (x,y) of each ICs in camera’s

f_entr[10]

coordinates.

fg.p - final number of groups(ICs) start from O(first group).

*»fp[1[5] - 5 pointers for vach final group pointer O is always
the first address of the group poiters 1,2 usually
found within the group and pointers 3,4 are always
at the end of the object’s group.

box[1[] - contains the external rectangle values. box[][0,1],
contain the center of the external rectangle and
box[] [2-5] contain the side’s values.

jt1 = the value of the first joint in degrees.

jt2 - the value of the second joint in degrees. */

pattern_recognition()

{
byte far #strt;

long int huge *pr = 0xc0008010;
long int j1 = *pr;

96

iong int j2 = #(pr+1);

int edstn, *s_dstn, »p[30] [5], *1_p, *m_p, *h_p;
int x, y, n=-1, i, j=0, g.p=0, n.ics=0, scnd_b=0;
int y_glvl, x_glvl, gp_f=0, tmp_g.p;

int k, tmp[4][2], break_1;

/* *strt - points to the adress of the frame buffer.
*pr & *(pr+1) - point to jointl and joint2 addresses in DPR.
*s_dstn - points to the first data address where all
the groups are mixed all together.
=dstn - points to the last address where all the
groups are mixed all together.
»p[][5] - 5 pointers for each partial group with the same
separation as in *fp[][5].
*1,m,h_p =~ point to three consecutive values of "y".
n ~ number of words collected by *dstn.
g-pP - number of partial groups.
n.ics - equal to (g_p-1).

fn_ics=0;
jt1=§1/872.2222;
jt2=j2/444.444;
fg3roa(35,35);/+ offset and rage initialization */
convo_ini(0);
/* convo(0); Perform horizontal sobel covolution =*/
convo_end() ;
frop.1(); /» grab a frame */
dstn = (int *) malloc(60000) ; /* allocates 60000 bytes for*/
/* data collected from the
/* frame buffer.
if(!dstn) {
printf("OUT OF MEMORY");
exit(1); 2
s_dstn=sdstn;
if ((strt = fg3omap(0,BYTE)) == NULL) { fg3cmap();
exit(1); }
/* the data is collected in four stages each stage depends on the
board limit of 64kbytes.*/

97

*/
x/

for(y=0;y<=127 ;y++) {/+ first stage */
for(x=0;x<=511 ;x++) {
if((y!=0) && (*strt<i150)) {/* if the value of the pixel is*/

(*dstn)=y; /* less than 150(graylevel) */
dstn++; /* keep the index values in x/
(*dstn)=x; /* the allocated area. */
dstn++;
n=n+2;
}
Strt++;
}
}

if(fg3romap(1) != 0) {/* second stage */
fg3cmap();
exit(1); }
for(y=128;y<=255 ;y++) {
for(x=0;x<=511 ;x++) {
if (#strt<150) {
(*dstn)=y;
dstn++;
(*dstn)=x;
dstn++;

n=n+2;

strt++ ;

if(fg3romap(2) != 0) {/* third stage */
fg3cmap();
exit(1); }
for(y=256;y<=383 ;y++) {
for(x=0;x<=511 ;x++) {
if (*strt<150) {
(*dstn)=y;
dstn++;
(*dstn)=x;
dstn++;

n=n+2;

98

Bt T++ ;

if (fg3romap(3) != 0) {/#* fourth stage*/
fg3cmap();
exit(1); }
for(y=384;y<=480 ;y++) {
for(x=0;x<=511 ;x++) {
if (#strt<150) {
(#dstn)=y;
dstn++;
(*dstn)=x;
dstn++;
n=n+2;
}
STIrt++ ;
}
}
fg3cmap ();
/%% %%%224 ¥k kx4 * % [
dstn=s_dstn;
printf("\n%i" ,n);

if(n t=-1) { /* if the workspace is not empty open the first partial group*/
pleg-pl[0] = (int *) malloc(10000);/+ locate 10,000 bytes four each partial #/
if(!'plg.pll0]) { /% group. */
printf("OUT OF MEMORY") ;
exit(1); }
plg_pl(4] = plg_pl (3] = plg_pl[2] = plg.pl[1] = plg_pl[0];
n_ics=1;

plg_pl[4]++;

*p [g_p) [3] =#dstn;
dstn++;

*p [g_p) [4]=*dstn;
dstn++;

j=1;
for (i=2;i<=n;i+=2) {

99

y.glvl=xdstn;
dstn++;
x_glvl=xdstn;
dstn++;

gp-f=1;

/* check if the current pixel belongs to the first group saying, if the

distance to the last pixel or the pixels before is less than 20 pixels #*/
if (sqrt(pow(*p[g_p] [3]-y_glvl,2)+pow(*p[g_pl [4]-x_glvl,2))<=20) {

J++;

plg-pl [31=plg.pl [3]+2;

plg.pl [4)=plg_p]l [4]1+2;/* compare to the last pixel in first group#*/

plg_pl [3]=y_glvl; / joint the pixel to the first group if */

p[g_pl [4]=x_glvl; / less than 20 pixels distance. */

gp-£=0; }

else {
/* compare the current pixel to the last 34 pixels in the first group and
joint if the distance is less than 20 pixels. */

if((plg_pl [3]-plg_pl[0]) < 132) {

plg-p1[1] = plg_pl[0];
plg-pl[2] = plg_pl(0]+1; }
else {
plg-pl[1] = plg_pl[3] - 132;
plg.pl (2] = plg_pl[4]) - 132; }
for(;;) {
it (sqrt(pow(*p[g_pl [1]-y_glvl,2)+pow(*plg_p] [2]-x_glvl,2))<=20) {
j++;

plg_pl [3]+=2;

plg-pl [4]+=2;

#p[g_pl [3]=y_glvl;

*p(g_pl [4]=x_glvl;

gp-£=0;

break; }
if(plg_pl (11==plg.p] [3]) break;

plg_pl [1]+=2;

plg-pl [2]+=2;

100

}

/* if no match found for the first partial group than open a new partial
group and place the index values at the beginning of the next partial
group. for each additional pixel compare the distance of the pixel in
following order:

1) compare to the last pixel in the current partial group.

2) compare to the last 43 pixels in the current partial group.
3) compere to the last 43 pixels in the other partial groups.
4) open a new partial group. */

/* compare to the last 43 pixels in the other partial groups */
if(gp_f==1) {
tmp_g_-p=g-p;:
for(g_p=0;g_p<=(n_ics-1);g_p++) {
if(g_pt=tmp_g_p) {
if((plg-p) (3)-plg-pl [0])<132) {
plg.pl[1] = plg.pl[0];
plg-pl[2] = plg_pl[0] +1; }
else {
plg-pl[1] = plg_pl[3] - 132;
plg.pl[2] = plg_pl[4] - 132; }
for(;;) |
if(sqrt(pow(*plg_pl [1]-y_glvl,2)+pow(*p[g_pl [2]~-x_glvl,2))<=20) {
plg-pl[3]+=2;
plg-pl[4]+=2;
*plg_pl [3]=y_glvl;
*plg_pl [4)=x_glvl;
gp-£=0;
scnd_b=1;
break; }
if(plg.pl[1]==plg_pl[3]) break;
plg-pl [1]1+=2;
plg-pl[2]+=2;

}
}
if(scnd_b==1) {
scnd_b=0;
break; }

}

/* open a new partial group. */

101

if (gp_f==1) {
n_ics++;
g.-p=n_ics-1;
plg-pl [0]=(int *) malloc(10000);
it (plg-pllo0]) {
printf ("\nOUT OF MEMORY");
exit(1); }
plg-pl[4)=plg_pl [3]=plg_pl [2])=p[g_pl [1]=plg_p] [0];
*p[g_pl [31=y_glvl;
plg-pl[4]++;
*p[g_pl[4]=x_glvl;
gp.£=0;
}

/*%*%33%%%4s/

free(s_dstn);

/* having the all partial groups we get rid of the filled data keeping only
the skeleton. the skeleton is found by keeping the first and last pixel’s
indexes of each line in the camera’s coordinates. #*/

for(g_p=0;g.p<=n_ics-1;g.p++) {

1_p=plg.pl [0];
plg.pl[11=1_p+1;

m_p=1l_p+2;

h_p=m_p+2;

foi(;;) o
if(1_p==p(g_pl{3]) break;
if (m_p==plg_p] [3]) {

plg_r][1]++;

*p[g_pl [1]=+m_p;

plg.pl[1]++;

m_p++;

*plg.pl [1]=*m_p;

plg.pl(4l=plg_pl[1];

plg-pl [3]=plg_pl[1]-1;

break; }

if ((*1_p!=+*#m_p) || (#m_p!=¢h_p)) {
plg_pl[1]++;

102

»plg_p) [1]=*m_p;
ple_pl [1]++;
m_p##;
»p[g.pl [1)=*m_p;
m_p++; }
else m_p+=2;
1.p+=2;
h_p+=2;
}
}
/+* having the skeleton of partial groups we compare each partial group
to another if one pixel in one skeleton group is in distance of less than
20 pixels to the other skeleton group we join the second group to the
first skeleton partial group and cancelling the second by putting
the value -1 in the first address location.
at the end of the process we formed skeleton's objects. */
for(g_p=0;g_p<=n_ics-1;g_p++) {
for(i=g_p+1;i<=n_ics=-1;i++) {
break_1=0;
it ((splg_pl [0]!=-1) && (+p[i] [0]i=-1)) {
plg.pl [1]=p(g._pl[0];
plg-pl [2]=p(g_p][0]+1;
pli)[1]=p[il[0];
plil1[2]=p[il [0]+1;
for(;;) {
if (sqrt(pow(*plg_pl[11- *p[i] [1],2)+pow(*p[g_pl[2]- *pl[il[2],2))<=20) {
plil [1]=p[i] [0];
plil [2]=p[il [0]+1;
for(;;) {
plg-pl [3]+=2;
plg-pl [4)+=2;
*plg_pl [3]=+p[il[1];
*pg_pl [4]=+p[i][2];
plil[1]+=2;
pli] [2]+=2;
if(pli1 1] > plil(3]) {
*p[i] [0]=-1;
break_1=1;
break; }
}

103

}
if(break_i1==1) break;
else {
plg_pl [1]+=2;
plg_pl [2]+=2;
if(plg-pl [11>plg_pl(3]) {
plg_pl{1]=plg.pl [0];
plg_pl[2]=plg.p] [0]+1;
pLil[1)+=2;
pl[il[2]+=2;
if ((pli] [131>p[i1 [33) |1 ((plil[13-p[i1[0])>20)) break;
}

}
}
>
}
}

/* assign the final skeleton’s objects to fp[] [[] and discard skeleton
groups with less than 6 pixels(dirt). »/

for(g_p=0;g.p<=n_ics-1;g_p++) {
if ((»plg_pl0]!=-1) && (plg-pl(3]-plg.pl [0] >20)) {
fg_pt+;
for(i=0;i<=4;i++) { fplfg.pl[il=plg_pl[il;2}
fn_ics++; }
}

printf ("\n}i",n_ics);
printf ("\n%i",fn_ics);

/* find the external rectangle to each object by looking for min,max of {x},{y)}
and then calculate the center of the external rectangle. */

for(i=0;i<=19;i++) {
box[i][2]=511;
box[i][3]=0;
box[i] [4]=480;
box [i][5]1=0; }

for(fg_p=0;fg_p<=fn.ics-1;fg_p++) {

104

tpltg._pl[1]=fp[fg_pl [0];

tpltg_pl [(2)=2plfg_pl (0] + 1;

for(;;) {
it (»fp[fg_pl[1]<box[fg_pl [4]) box[fg_pl[4)=+fplfg_pl[1];
if («fp[fg_pl [1]1>box[fg.p] [5]) box[fg_p] [S1=+fpl[fg_pl[1];
it (»fp[fg_p) [2]<box[fg_pl [2]) box[fg._pl[2]=+fplfg_pl[2];
if («fpltg_pl[2]>box[£g_p] [3]) box[fg_p][3]=#fp[fg.p][2];

if (fp[fg_pl[1]==fp[fg_pl[3]1) {
box [fg_pl [1]=(box[fg_p) [2]+box [fg_pl [3]1)/2;/%X*/
box [fg_p] [0]=(box[fg_p] [4]+box[fg_pl [5])/2;/*Y*/
printf("\n%d %d %d",fg.p+1,box[fg_pl[0],box[fg_p)[1));
break; }

fplfg_pl[1]+=2;
fplfg_pl[2]+=2; X
}

rectangle_corners(); /+ library function */
rectangle_pos_orient();/* library function */

for(g_p=0;g_p<=(n_ics-~1);g_p++) {free(plg.pl[0]); } /* free all pointers */

}

105

P T Ty Y L R T a I T P T P Y Y XYY

/*
[*

rec_corner.c locates the four corners of the rectangle from a given
skeleton in camera coordinates in multi-object(ICs) input.

*/
*/

/#*#*###****#*#**#*###*#*#*******##****#####*#######t#t####**‘##“‘##“#t##‘#‘/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

extern int fg_p, fn_ics, *fp[20] [5], box[20] (6], edgp[20][4][2], f_cntr([20][2];

re
{

fl
/*
/*
/*
/*
/*
/*
in
/*
/*
/*
/%
/*
/*
/*
/*
/*

ctangle_corners()

cat gdst, ldst, nr, fr;

gdst-the longest distance from the center of the external rectangle to any
point given by the skeleton of an object.

ldst-a variable of gdst, nr, fr.

nr- When locating the 4 corners we have to put these points in order. "nr"
is the closest corner to the first corner and,

fr- 1is the farthest corner.

t ymx, xmx, t 1.1, t_1_m, k, trd_b, tmp[4]([2], i, y0=241, x0=255;

ymx- hold the corner with the highest y value(first corner)

xmx- Is the x axis value of ymx

t.1.1- The index value of the closest corner

t.1_m- The index value of the farthest corner

tmp[4]1[J-tmp[0][] holds the corner which comply with "ymx", tmp[1][]

holds the value of the corner in the same sid. of the first corner.

tmp[{2] [J-holds the corner of the othe- side of the rectangle saying,

the nearest corner to tmp[1]J[] and tmp[3][] holds the last corner.

(y0,x0)~- hold the value of the center pixel r: the camera.

double i_c_h=8.5, c_i_d=420;

/*
/*

i_c_h-distance of IC face to table in mm.
c_i_d-distance of camera to table in mm.

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

Jankkukhkkkk* FINDING# %% FOUR#### #EDGE#** *¥POINTSH*k# kk s ks s ks akhaddsa ks hb st s s 54 /

fo

r(fg_p=0;fg_p<=fn_ics-1;fg_p++) {

fplfg_pl[1]=fp[fg_pl [0];/* initializing beginning of groups */
fplfg_pl[2]=fplfg_pl [0]+1;/+ fglfg_pl[1]=y & fglfg_pl [2]=x */

gdst=0;
i=0;/* corners’ index */
for(;;) {

106

trd_b=0;
ldst=sqrt(pow(+fp[fg_pl[1]-box[fg_p]l[0],2)+
pow(»fp[fg_pl[2]-box[fg_pl[1],2));
if(1dst>zdst) {
if((i>0) && (i<=3)) { /+ If the first longest distance
point(corner) found then check that
the other three points are in 14 pixels
distance of one to the next one */
for (k=0;k<=i-1;k++) {
if (sqrt(pow(*fp[fg_pl[1]-edgplfg_pl[k] [0],2)+
pow(*fplfg_pl [2]-edgp[fg_pl [k][1],2))<=14) {
trd_b=1;
break; }

if(trd_b==0) {
gdst=ldst;
edgp [fg_pl [il1[0]=+fp[fg_pl [1];
edgp [fg_pl [i][1]=+fp[fg_p)[2]; }

it(fp[fg._pl [1]==fp[fg_pl[3]) { /*»If the end of group then starts from
the beginning for the next corner */
i44;
i£(i>3) { /* If all the four corners found then calculate the center
of IC in camera coordinates */
f_cntr[fg_pl [0]=0;
f_cntrlfg_pi[1]=0;
for(k=0;k<=";k++) {
edgp[fg_pl [kl [0]=floor (edgp[fg_p] [k] [0]+(y0-edgp[fg.p] (k] [0])*i_c_h/c_i_d+.5);
edgp[fg._p]l (k] [1)=floor (edgp[fg_p] [k] [1]+(x0-edgp[fg_pl [k][1])*i_c_h/c_i_d+.5);
f_cntr [fg_p) [0]+=edgp [fg_p] (k] [0];
f_cntr[fg_p] [1]+=edgp[fg.p] (k] [1];

}
f_cntr[fg_pl [0]=f_cntr[fg_pl [0]/4;
f_cntr[fg_pl [1)=f_cntr[fg_pl [1]1/4;
break; }

else {

107

fplfg.pl [11=fplfg_p] [0];
tplfg_pl [2]=fplfg_pl [0]+1;
gdst=0;

continue; }

fplfg_pl [1]14=2; /* check next pixel #*/
fplfg.pl [2]+=2;
}
}
/*% %2 %PUTTING* #xxxxPOINTS*# s xxxrxINsxxus sk xxeJRDERS# a0t e aastsdhpmasrdbasvannss /
for(fg_p=0;fg_p<=fn_ics~-1;fg_p++) {
t.1_m=0;
ymx=edgp [fg_p] [0]1 [0] ;/* Find the corner with the highest value of y */
for(i=1;i<=3;i++) {
if (ymx<edgp[fg.pJ [1][0]) {
ymx=edgp [fg_p]l[i] [0];
t.l_m=i; }/* t_1_m contains the index of "ymx" =/
}
xmx=edgp[fg.p] [t.1_m] [1];
edgp[fg_pl [t_1_m] [0)=edgplfg.pl[0] [0];
edgp[tg_pl[t_1._m] [1]=edgp[fg_p] [0] [1];
edgp[fg.p] [0] [0]=ymx;
edgp[fg.pl [0] [1])=xmx;

nr=150.0;
fr=0.0;
for(i=1;i<=3;i++) { /- Finding the farthest corner(fr) and the closest
corner(nr) to "ymx" corner */
ldst=sqrt (pow(edgp[fg_p] [0] [0]-edgp[fg.p] [i][0],2)+
pow(edgplig_pl [0][1]-edgplfg.pl[i1[1],2));
if(1dst>fr)
fr=ldst;
t_l_m=i; }
if(ldst<nr) {
nr=ldst;
t_1.1=i; }

for(i=1;i<=3;i++) {
tmp i) [0)=edgp(fg_pl [i]1[0];
tmp{i] [1)=edgp(fg.pl (i1 [1]; 1}

108

edgp[£g.pl (2] [O)=tmp(t_1.1][0]; /* assigning the order which is
specified above */
edgp[fg_pl [2) [1])=tmp[t_1_11[1]; /* into edgpl J[J[] */
edgp[fg_pl [31 [O]=tmp[t_1_m] [0];
edgp(fg_pl (3] [1)=tmplt_1_m] [1];
for(im1;i<=3;i++) {
if(Citet _1.1) && (it=t_1_m)) {
edgpltg._pl [1] [0)=tmp[i] [0];
edgplfg_pl [1][1])=tmp[i][1]; }
}
printf("“\n");
for (k=0;k<=3;k++) {
printf("/d %d ",edgplfg_pl[k1[0],edgplfg.pl[k1[1]);
}

109

PR L L T T T TP T T T
* rec_po.c calculate the (x,y) center location and orientation of ICs =+
* (rectangles)in robot’s coordinates. full explanation of the *

* procedure and variables are given in chapter 4. sections 3 and 4. *
t##t#*#**#‘#*##‘t##*"*#*****t‘t#*###t‘#*‘#*t#“‘###‘#ttt‘###t‘##ttttttt“/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

extern int fn_ics, edgp(20][4][2], f_cntr[20][2];
extern double jti1, jt2, jt, pi;

extern long int In_pos[10][3];

extern int b_x, b_y;

extern double c_x, c_y, b_angl, angl_err, d_.t_c, d_err;
extern double link_1, link_2;

rectangle_pos.orient()

{

int fg_p;

double dy1, dxi, dy2, dx2, alfa[20], jf, y_angl, beta_err, gama;
doub.e beta_1, phi, X, Y, w, jnti, jnt2, temp;

double d_c_ic, d_t_ic, theta;

/% x*FINDING##**%#1C’> S#kx* 2 *DRIENTATION*** IN****ROBOT***COORDINATES# # %% s %»/
for(£fg.p=0;fg.p<=fn_ics-1;fg_p++) {
dy1=(edgp[fg_p] [0] [0]~-edgp[fg._pl[1][0])*(c_y/c_x);
dxi=edgp[fg_p] [0] (1] -edgp[fg.pl [1] [1];
dy2=(edgp [fg_p] [2] [0]-edgp[fg_p][3] [0])*(c_y/c_x);
dx2=edgp[fg_p] [2] [1]-edgp [£g_p] [3] [1];

if(dy1==0) dyi=0.01;

if(dy2==0) dy2=0.01;

temp=(atan(dx1/dy1)*pi)-(atan(dx2/dy2) *pi);

if((temp>150) || (temp<=-150)) alfa[fg_pl = 90;
else alfa[fg_pl=(atan(dx1/dyi1)=*pi + atan(dx2/dy2)#*pi)/2;

110

alfa[fg pl=-(alfa[fg_p] +jti+4jt2-90-angl_err);
if(alfalfg.pl>90) alfa[fg_pl=alfalfg p]-180;
if(alfalfg_pl<-90) alfa[fg_pl=180+alfal[fg_p];
}
J*FINDING##*#X##»Y#2IC’ S##CENTERS#*IN**ROBOT**COORDINATES* % #kkkhkkkkkkskx ks [
jtm=jt1+jt2;
d.t_c=d_t_c-d_err;
theta=(180-b_angl)~-angl_err;
for(fg_p=0;fg_p<=fn_ics-1;fg_p++) {
if ((f_cntr[fg_pl [1]-b.x) ==0) gama=theta +390;
else pgama=theta+
atan(c_y*abs(f_cntr[fg_p] [0]-b.y)/(abs(f_cntr[fg_p] [1]-b_x)*c_x))*pi;
d_c_ic=sqrt(pow((f_cntr[fg_pl[1]-b_x)*c_x,2)+
pow((f_cntr[fg_pl[0]-b_y)*c_y,2));
d_t_ic=sqrt(d_t_c*d_t_c+d_c_ic*d_c_ic-2#%d_t_c*d_c_ic*cos(gama/pi));
beta_l=zacos((d_t_c*d_t_c+d_t_ic*xd_t_ic-d_c_ic*d_c_ic)/(2*d_t_ ic*d_t_c))*pi;
phi=180-(b_angl-beta_1)-jt;
X=link_2*cos((jt)/pi)+link_1#*cos(jt1/pi);
Y=1ink_2*sin((jt)/pi)+link_1#sin(jt1/pi);

X=X+d_t_ic*cos(phi/pi);
Y=Y-d_t_ic*sin(phi/pi);
/% sPUTTING*###Xs#xY**#*Rex s INSIDE*#+THE# ###GLOBAL***TABLE*#**In_pos[fg_p] [i]**/

/* There are three restrictions imposed to allow inverse kinematics */
if(X<-650 || X>650) { /% -1- »/
printf("\nX out of space for ics No. %d",fg_p+1);
exit(1);
}
if(y<-386 |l v>650) { /* -2- »/
printf ("\nY out of space for ics No. %d",fg_p+1);
exit (1);
}
w=(X*X+Y*Y+97500.0)/800;
11 (X#X4Y*Y>+usw) { /* -3- %/
jnti=atan2(Y,X)+atan2(-sqrt (X+X+Y*Y-wsw) ,w);/* Inverse kinematics for jointi*/
if (jnt1<0) jnti=jnti+ 2#180/pi;

/* Inverse kinematics for joint2 #*/

111

jnt2=atan2(-X*sin(jnt1)+Y+cos(jnt1),X+cos(jnt1)+Y*sin(jnt1)-link_1);
In_pos[fg_p] [0]=(long int) (jnti*pi=872.2222+0.5);
In_pos[fg_pl[1]=(long int) (jnt2*pi*444.4444+0.5);
}

else {
jonti=-1;
jnt2=-1;

}

if(jnt1<0 || jnt1>174445 |1jnt2<0 || jnt2>60001) {
printf ("\nOut of space in X-Y plane');
exit(1);

}

In_pos[fg_pl[2]=(long int) (alfa[fg._pl*227.5556);

112

/*» subroutine to perform proportional derivative control

and gripper control. */

#include <alloc.h>
#include <stdioc.h>

long int huge *cubic_spline(double); /* prototype */
extern double kp__1, kp_.2, kp.Z, kp_R;

extern double kv_1, kv_2, kv_Z, kv_R;

extern double Duration; /* Global variables */

extern int Flag_a, Flag_b, Ini_step, Stop, CO;

extern int far *gripper;

prop_deriv_control()

{

double kvi, kv2, kvz, kvr;

double e_1=0, e_2=0, e_Z=0, e_R=0; /#* joint position error */
double el.1, el _2, el_Z, el_R; /* previous joint position error */
static double sample_per;

char ch;

long int huge #pp; /* pointer to desired (reference) path points */
long int huge #s_pp; /* a place to save this address */

unsigned int far *sample_timer = 0xC0008000;

int far *error = 0xCO008008;

long int far *act_pos_1 = 0xC0008010;

long int far *act_pos_2 = 0xC0008014;

long int far =*act_pos_2 = 0xC0008018;

long int far =act_pos_R = 0xC000801C;

int far *t_1 = 0xC0008040;
int far *t_2 = 0xC0008042;
int far *t_Z = 0xC0008044;
int far *t_R = 0xC0008046;
int far stiming_a = 0xC0008002;
int far *timing.b = 0xC0008004;
int far *command = 0OxC0008006;

/+ DISPLAY CURRENT SAMPLING PERIOD AND PROMPT FOR A CHANGE #*/

*sample_timer=1000;

113

sample_per = (double)(*sample_timer)/1000000;

/¥ CHECK ROBOT FOR OVER RUN ERRORS */
robot_error_check();

/* GET TRAJECTORY */
pPp = cubic_spline(sample_per);
5_PP * PP;

/* BEGINNING OF THE MOVE */

clrser();

kvl = kv_1 / sample_per;
kv2 = kv_2 / sample.per;
kvz = kv_Z / sample_per;
kvr = kv_R / sample_per;

printf ("\t\t\tEXECUTING");

*command = 0x0001; /# have 196 begin its i_o loop */

while((*pp != Oxffff0000) && (*error == 0)) {

/* wait to for start of sampling period #/

vhile(!(*timing.a & 0x0001));

/* update joint position errors */
el 1 =e.1, el.2 = .2, el_Z = e_2Z, el R

/* wait for joint positions */
vhile(!(*timing_.a & 0x0002));

/* compute joint torques */

t_1 = (int)(0x0800 + kp_1(e_1 = (*pp++
t_2 = (int) (0x0800 + kp_2(e_2 = (*pp++
t_Z = (int) (0x0800 + kp_Z#(e_Z = (*pp++
t_R = (int) (0x0800 + kp_R#(e_R = (*pp++

timing_ b = 0x0001; / tell 196 that torques are ready

/* wait for torques to be accepted */
vhile(*timing. b && !(*error));

e_R;

*act_pos_1))
*act_pos_2))
ract_pos_Z))
*act_pos_R))

114

kvis(e_1-el_1));
kv2s(e_2-e1_2));
kvz#(e_Z-el_2));
kvr*(e_R-el_R));

/* indicate end of sample period */
*timing_a = 0x0000;
}

/+ INDICATE END OF COMMAND =/
scommand = 0x0000;
*timing_.b = 0x0000;

/* DISPLAY SUCCESS OF EXECUTION */
delline();
if(*error) {

printf("\n\n\tCommand terminated prematurely because:\n\n");

display_errors();

serror = 0; /# clear the error semaphores */

vhile(!getch());

Ini_step = 0 ;

Flag.a = 0;

Flag.b = 1;

Stop = 1;

}

/* while(!getch());*/

/* FREE ALLOCATED MEMORY #*/
terminate:
farfree(s_pp);
if(Stop == 1) return;
if(co !=0) { /* do not change gripper position */
i£(CO == 1) {
sgripper = 0x0080;/* instruct the slave to close gripper */
while(*gripper);
€0 = 0; }
else {
sgripper = 0x0001;/+ instruct the slave to open the gripper */
while(*gripper);
Co = 0; }
}
prop.deriv_control();

}

115

/* A cubic spline path generator that incorporates via points.
* Velocity at the via points is automatically choses.

* See Craig, pp. 198-199. for details.

* the function generates gripper control mechanism as well. =/

#include <alloc.h>
#include <stdio.h>
#include <math.h>
#include <dcs.h>

void get_cartesian_position(); /* prototypes */
void get_joint_position();

void get_time();

cmp_sign(double, double);

extern double Duration;
extern int Flag_a, Flag.b, fn_ics, Ini_step, N, K, Stop, CO, take_picture;

/* In_pos[][] keeps the input location
and orientation of the ICs in pulses in
robot’s coordinates.
Out_pos[][] keeps the output location and
orientation of the ICs in pulses in
robot’s coordinates.*/
extern long int In_pos[10][3), Out_pos[10][3];
long int huge *cubic.spline(double sample_per)

/* const_z1 = -200mm when the robot moves in its workspace.
const_z2 = -227.7mm when the robot "pick & place" ICs #*/
{ const double const_z1 = 200#380.96, const_z2 = 227.7%380.96;
char ch;
int i, j, 1, error, num_via_points;
double s1, s2; /* slope 1, slope 2 */
long int pos[4][4]; /* A two dimensional position ariay.
* A row for each specified path point.

* column 0 = joint 1 pulse count

* " 1= " 2 1] n

* " 2 = 1} z n "

* " 3= " T n n */

long int position[4];

116

double vel[4][4]) = { /+ A two dimensional velocity array #*/
0,0,0,0, /* A row for each specified path point #/

0,0,0,0, /% column 0 = joint 1 velocity %/
0,0,0,0, /* " 1= 2 " */
0,0,0,0 }; /* " 2= vz " */
/* " 3= " r " */

double a[4][4]; /* two dimensional array of coefficients (Craig p. 198) =/
double time[4];
double cnst(4] = {
872.2222,444.4444,380.96,227.5556 };
int v[4] = {

/* constant velocities of jointi=45 degrees per second,
joint2=50 degrees per second,
joint_z = 100mm per second and
joint_r 70 degrees per second. */
45,50,100,70 };
double ti([4][4];
double t, t2, t3, tf, tf2, t£f3;
long int huge *path_point; /# pointer to starting address of path */
long int huge #s_path_point; /# a place to save this value */
unsigned long int num_bytes_mem_req;
long int far *current_pos = 0xC0008010;

/* GET CURRENT POSITION =/

clrscr();
pos[0] [0] = *(current_pos++);
pos[0]1[1] = *(current_pos++);
pos[0][2] = *(current_pos++);
pos[0][3] = #(current_pos);
time[0] = 0;

/* SIMULATING OUTPUT POSITIONS OF UP TO 5 ICs */
Out_pos[0] [0] = 84496;
Out_pos[0] [1] = 52967;

Out_pos[0][2] = 0;
Out_pos[1][0] = 82262;
Out_pos(1][1] = 50705;
Out_pos[1]1[2] = o;
Out_pos[2] (0] = 80578;

117

Out_pos[2][1] = 48281;
Out_pos[2][2] = 0;
Out_pos([3][0] = 79411;
Out_pos[3][1] = 45701;
Out_pos([3][2] = 0O;
Out_pos[4][0] = 78726;
Out_pos[4][1] = 42948;
Out_pos[4][2] = 0;

if(take_picture==1) {
take_picture=0;
sleep(1);
pattern_recognition();/* call pattern_recognition function */
getch();

if (fn_ics == K) {
Ini_step = 0;

K= 0;
Flag_a = 0; }

if ((Ini_step == 1) && (fn_ics > K)) {
Flag.a = 1;

num_via_points

n
N
w

/* if there are more ICs then put the In_pos and Qut_pos values for the
next " pick & place " move */
if ((fn_ics> K) && (Flag.a == 1)) {

/* CO=_ open gripper CO=1 close gripper C0=0 do not change gripper
position #*/
if (N == 0) {

pos[2][0] = In_pos[K][0];
pos[2][1] = In_pos[K][1];
pos[2]1[3] = In_pos[K][2];
N=1;
co = 1; }
else {
pos[2][0] = Out_pos[K][0];
pos[2][1] = Out_pos[K][1];

118

pos[2] [3] = Out_pos[K][2];
N=O;

K=K+ 1;

co = 2; }

pos[1]1[0] = pos[0] [0];
pos[1]1[1] = pos[0][1];
pos[1][2] = const_z1;

pos[1][3] = pos[0][3];
pos[2][2] = pos[1][2];
pos[3][0] = pos[2] [0];
pos[3]1[1] = pos[2][1];
pos[3][2] = const_z2;

pos[31[3] = pos[2] [3];

if (Flag_a == 0) {
if (Flag_b == 0) {

/* first move to the initial window for grabbing a frame =*/
num_via_points=0;

pos[1][0] = 0x00009951;

pos[1][1] = 0x0000b646;

pos{1][2] = 0;

pos[1][3] = 0;

Flag.b =1,

Ini_step = 1;

take_picture=i; }
else {

/* After completing the job return to origin */
num_via_points=1;
pos[1][0] = pos[0][0];

pos(1][1] = pos[0][1];
pos[1][2] = o;
pos[1][3] = pos[0][3];
pos[2][0] = 0;
pos[2][1] = 0;
pos(2][2] = 0;
pos[2][3] = 0;

119

i

Flag.b = 0;
Ini_step = 0;

Stop = 1; }
}
for (i=1 ; i <= num_via_points + 1 ; i++) {
for (j=0 ; j <=3 ; j++) {

t1[i][j] = (double) ((pos[il(j] - pos[i-1]1[j1)/(v[jl*cnst[j1)) ;

if (t1[i1[3] < 0) t1[il[j] = -t1[i1[3];

t1[i][j] = t1[il[j] + 0.2; /* minimum move between two via points #*/
/* is 0.2 sec. */

if (e1[i) (3] > t1[il1[0]) t1[il[o] = t1[i1[j] ; }

time[i] = time[i-1] + t1[i]J[0] ;

do {
Duration = time[num_via_points+1];
num_bytes_mem_req=(unsigned long int) (4*4*Duration/sample_per+20+100);
/* 4 = four joints
* 4 = four bytes per joint per sample
* Duration/sample_per = total # of samples
* 20 = four bytes extra per joint + 4 byte flag
* 100 = safety margin =/
path_point=(long int huge *)farmalloc(num_bytes_mem_req);
if(!'path_point) {
printf("Insufficient memo.y for a %1f",Duraticn);
printf("'second move.\nEnter a shorter duration: ");

} while (!path_point);

/+* COMPUTE THE VELOCITIES AT THE VIA POINTS %/
for(i=1; i<=num_via_points; i++) { /% for each via point #/
for(j=0; j<=3; j++){ /* for each joint #*/
s1 = (double) (pos[i+1] [jl-pos[il[j]) / (time[i+1] - time[i]);
s2 = (double) (pos[il[jl-pos[i-11[j]) / (timeli] - timel[i-1]);
if(cmp_sign(s1,82)) velli][j] = O;
else vel[i)J[j] = (s1 + 82)/2; /* the average of the two */

120

/+ COMPUTE AND STORE THE PATH */
printf ("\n\n\t\tCOMPUTING THE PATH. PLEASE WAIT");
s_path_point = path_point;
t=0.0;
tf = 0;
for(i=0; i<=num_via_points; i++) { /* for all points (beginning at 0) =/
t=t - tf;
tf = time[i+1] - time[i];
tf2 = tf = tf;
tf3 = tf2 » tf;
for(j=0; j<=3; j++) { /* for each joint */
al[jll0] = pos[il[j];
aljl[1] = vel[il[jl; .
aljl[2] 3*(pos[i+1][jl1-a[jI1[0])/t£2 -~ (2+a[jl[1]+vel[i+1]1[jl)/tf;
a[j1[3] = -2+(pos[i+1]1[j1-al[jI[0])/t£3 + (velli+1])[jl+aljl[1])/t£2;

for(; t <= tf+sample_per/2; t += sample_per) {
t2 =t % t,;
t3 = t2 % t,;
*path_point++ =(long int)(a[0] [0]+a[0] [1]*t+a[0] [2]*t2+a[0] [3]#t3+0.5);
spath_point++ =(long int)(a[1][0]+al1] [1])*t+a[1] [2]*t2+a[1] [3]*t3+0.5);
spath_point++ =(long int)(a[2][0]+a[2] [1]*t+a[2] [2]#t2+a[2] [3]*t3+0.5);
spath_point++ =(long int)(a[3][0]+a[3] [1]*t+a[3] [2]*t2+a[3] [3]*t3);

}
path_point = Oxff££0000; / flag end of path */

return(s_path_point);

121

Appendix C

Slave Software Description

The Slave software subroutine used is from [1], the only part added to it is the gripper
control which appears in the Slave software under section ‘gripper mode’.

HH slave.a96 - B0C1S6KA assembly code for AVRS slave processor.

$GE ; Expand all MACROs in slave.lst listing
$include(8096.inc) ; Include symbolic definitions from file 8096.inc

i+ Storage Reservation for Program Variables and Pointers in the 80C296KA’s
13 232-byte Register File

rseg at 40h

TEMP1: dsw 1 ; Temporary registers
TEMP2: dsw

[

NOOO1: dsw
NO0D2: dsw
NOOOQ3: dsw

1 ; Registers to hold frequently used
1
1
NOQO4: dsw 1
1
1
1
1

; numbers.

NOOO7: dsw
NOOOB: dsw
NOOOF: dsw
N0OO10: dsw

SAMPLE_PERIOD: dsw 1 ; Registers to hold pointers to
TIMING_A: dsw 1 i dual-port RAM registers

122

TIMING_B: dsw 1

COMMAND: dsw 1

ERROR: dsw i

POS: dsw {

VEL: dsw 1

ACC: dsw 1

TOR: dsw 1

GRP: dsw 1
CL_GRP: dsw 1

LIMIT_SENSORS: dsw 1 ; Register to hold pointer to joint
; overrun sensors and encoder index
: pulses

POS_1: dsl 1 ; Registers to hold current joint

PDS_2: dsl 1 ; positionms

POS_Z: dsl 1

POS_R: dsl 1

POS_1L: dsl 1 ; Registers to hold last joint positions

POS_2L: dsl 1

POS_ZL: dsl 1

POS_RL: dsl 1

VEL_1: dsw 1 ; Registers to hold current joint

VEL_2: dsw 1 ; velocities

VEL_Z: dsw 1

VEL_R: dsw 1

VEL_1L: dsw 1 ; Registers to hold last joint velocities

VEL_2L: dsw 1

VEL_ZL: dsw 1

VEL_RL: dsw 1

TORQUE_1: dsw 1 ; Registers to hold joint torques
TORQUE_2: dsw 1

TORQUE_Z: dsw 1

TORQUE_R: dsw 1

PCZ2_R14_CS: dsw 1 ; Pointers to position counters
PCZ2_R13_CS: dsw 1 ; Z2 or 1R = joints Z2& 2 or 1 & R
PCZ2_R12_Cs: dsw 1 ; R12, R13, R14 = register 12, 13, 14
PCZ2_R14_0E: dsw 1 ; CS = chip select

PCZ2_R13_0E: dsw 1 ; OE = output enable

123

PCZ2_R12_0E: dsw 1
PCi1R_R14_CS: dsw 1
PC1R_R13_CS: dsw 1
PC1R_R12_CS: dsw 1
PCi1R_R14_OE: dsw 1
PCiR_R13_CE: dsw 1
PCi1R_R12_QOE: dsw 1

PC_1_PC: dsw 1 ; Registers to hold pointers to

PC_2_PC: dsw 1 ; Position counters’ program counters

PC_Z_PC: dsw 1

PC_R_PC: dsw 1

PC_1_RESET: dsw 1

PC_2_RESET: dsw 1

PC_Z_RESET: dsw 1 ; program counters
1

PC_R_RESET: dsw

; Registers to hold values to be to
; sent to position counters’

DAC_1: dsw 1 ; Registers to hold pointers to the
DAC_2: dsw 1 ; first rank registers of the DACS
DAC_Z: dsw 1

DAC_R: dsw 1

DACS_OUT: dsw 1 ; Register to hold pointer to the
; second rank register of each DAC

CE.S5: dsw 1 ; Gripper address

...

IR EEEEEEEEE RN EREEEEE R EEEE SRR EENERNNEREEEEENEENE FENIEEENEEEEEEEE SR NN
133+ MAIN_PROGRAM SSEET

IR N N NN R N R RN NN I RN

HH
;3 Initialization of Program Variables and Pointers

cseg at 2080h

LD DAC_1, #O0AFFCH ; DAC first rank addresses

LD DAC_2, #OAFFAH

LD DAC_Z, #OAFF6H

LD DAC_R, #OAFEEH

LD DACS_OUT, #0AFDEH ; All DACS second rank address

124

LD
LD
LD
LD
LD
LD
LD
LD
LD
Lb
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD
LD

LD
LD
LD
LD
LD
LD
LD
LD

LD

LD
LD
LD
LD
LD

PCZ2_R14_CS, #09494H ; Position counter addresses
PCZ2_R13_CS, #09392H

PCZ2_R12_CS, #09292H

PCZ2_R14_OE, #09414H

PCZ2_R13_0E, #09312H

PCZ2_R12_OE, #09212H

PCiR_R14_CS, #094D4H

PCiR_R13_CS, #093D2H

PC1R_R12_CS, #092D2H

PC1R_R14_OE, #09454H

PC1R_R13_OE, #09352H

PCiR_R12_0OE, #09252H

PC_1_PC, #085C4H ; Address of program counter register

PC_2_PC, #08584H ; on the position counters.
PC_Z_PC, #08584H ; 1&R, 2& 2 are equal
PC_R_PC, #085C4H ; since they are accessed in pairs
PC_1_RESET, #0100H ; Value to reset counter 1 & idle counter R
PC_2_RESET, #0001H ; Value to reset counter 2 & idle counter Z

PC_Z_RESET, #0100H ; Value to reset counter Z & idle counter 2
PC_R_RESET, #0001H ; Value to reset counter R & idle counter 1

CE_5, #0FOQOH ; Gripper address

CL_GRP, #0001H ; Generate 1 to d.f.f. to close the Gripper

NOOO1, #0001H
NO0O2, #0002H
NOOO3, #0003H
NO004, #0004H
NOCO7, #0007H
NO008, #0008H
NOOOF, #00O0FH
NO0O10, #0010H

SP, #100H ; Init stack at top of reg. file
LDB I0C2, #00000001B ; Put TIMER2 into fast increment mode

SAMPLE_PERIOD, #OEOOOH ; Addresses of dual-port RAM registers
TIMING_A, #0EOO2H

TIMING_B, #0EO004H

COMMAND, #0EOO6H

ERROR, #OEOO8H

125

LD POS, #0EO10H

LD VEL, #0E020H

LD ACC, #0EO30H

LD TOR, #0E040H

LD LIMIT_SENSORS, #0BOOOH

LD GRP, #0OE(02aH ; the address Gripper in the DPR

ST 0, [ERROR] ; Clear error register
ST 0, [PC.1_PC] ; Software reset all position counter by

ST 0, [PC_.2_PC] ; writing O to their program counters

ST 0, [CE_5] ; Initial to open Gripper

main_loop:

ST 0, [COMMAND] ; Clear Command register

ST 0, [GRP] ; Clear Gripper register in DPR
wait_for_command:

CALL zero_dacs ; Turn off all servo motors

CALL get_.robot_state ; get state of robot

CALL overrun_check

CMP 0, [ERROR] ; If there is a joint overrun error

JNE wait_for_command ; keep waiting until it’s corrected

LD TEMP1, [COMMAND] ; Read Command register

BBS TEMP1, 0, control_mode ; If bit O is set, enter control_mode
BBS TEMP1, 7, find_home_mode; If bit 7 is set, enter find_home mode
LD TEMP1, [GRP]

BBL TEMP1, 0, grp.o ;If bit O is set, enter grp_open mode
BBS TEMP1, 7, grp.c ;1f bit 7 is set, enter grp.close mode
BR wait_for_command ; Otherwise keep waiting
HH I I R N N HNHH
EERE GRIPPER MODE HER
R R
grp.o:
CALL delay
ST 0, [CE_5] ; open Gripper
CALL delay
BR main_loop

126

grp.c:

CALL delay

ST CL_GRP, [CE_5] ; close Gripper

CALL delay

BR main_loop
R RN R R R R R R S R N R R R R R R NI R N R R R R R R R R R RN R R
si3sss FIND HOME MODE ;;;:::

..

IR NN R R N N N R N A A I I I A A I A I O RO 2N BN)

FH MACRO joint, positive_torque, negative_torque, home_bit, index_bit
LOCAL nh, fh_1, fh 2, fh_ 3

LD TEMP1, [LIMIT_SENSORS]

JBS TEMP1, home_bit, fh_1 ;3 If HOME sensor is not set, goto fh_i

LD TEMP2, #positive_torque ;; else move joint away from HOME

ST TEMP2, [DAC_&joint]

ST 0, [DACS_OUT]

nh: LD TEMP1, [LIMIT_SENSORS] ;; If HOME sensor is still set, goto mnh
JBC TEMP1, home_bit, nh ;; Else keep moving away from HOME

CALL delay i; during ’'delay’ period ("2 seconds)
CALL zero_dacs i 7 Remove the positive torque

fh_1: LD TEMP2, #negative_torque ;; Move joint toward home,

ST TEMP2, [DAC_&ioint]

ST 0, [DACS_0UT]

th_2: LD TEMP1, [LIMIT_SENSORS] ;; Wait for home sensor to set,

JBS TEMP1, home_bit, fh_2 ;; then continue.

fh_3: LD TEMP1, [LIMIT_SENSORS] i+ Wait for index pulse,

JBC TEMP1, index_bit, fh_3 HH then

ST PC_&joint& RESET, [PC_&joint&_PC] ;; Set position counter to zero and
CALL zero_dacs ;; remove the torque

ENDM

find_home_mode:

FH Z, 900H, 640H, 4, 0
FH 1, S00H, 7T00H, 7, 2

FH 2, 900H, 700H, 6, 1

FH R, 920H, 6AOH, 5, 3

BR main_loop

--

127

--

IR R I A I AT A AN S I A I I B IR A BN N B B B SN I A A)

control_mode:

CLR TIMER2

ST 0, [TIMING_A] ; Clear the timing registers
ST 0, [TIMING_B]

control_loop:
ST NOOO1, [TIMING_A] ; Signal master to begin its servo loop
SCALL get_robot_state ; Get robot state

SCALL overrun_check ; Check for overruns and end if found
CMP 0, [ERROR]
BNE main_loop

wait_for_torque:
CMP TIMER2, [SAMPLE_PERIOD] ; Wait for torques but end

JGT torque_too_late ; (with error) if too late.
CMP O, [COMMAND] ; End (without error) if master
BE main_loop ; clears command register.

AND TEMP1, NoCO1, [TIMING_B]; Check for arrival of torques.
JE wait_for _torque

SCALL check_torques ; Get and check torques.
CMP 0, [ERROR] ; End (with error) if
BNE main_loop ; torques are out of range.

ST 0, [TIMING_B] ; Tell master that torques were accepted
SCALL torque_out ; Output torques

wait_for_master:
CMP TIMER2, [SAMPLE_PERIOD] ; Wait for master to finish loop but end
JGT master_too_slow ; (with error) if master is too slow.

CMP 0, [TIMING_A]

JNE wait_for_master

wait_next_period:

CMP TIMER2, [SAMPLE_PERIOD] ; wait for next sample period
JLT wait_next_period

SUB TIMER2, [SAMPLE_PERIOD] ; Reset the sample period timer

128

BR control_loop

torque_too_late:
LD TEMP1, [ERROR]
OR TEMP1, #1000H
ST TEMP1, [ERROR)
BR main_loop

master_too_slow:
LD TEMP1, [ERROR}
OR TEMP1, #2000H;
ST TEMP1, [ERROR)
BR main_loop

--

..

get_robot_state:
:; Read Joint Position

LD TEMP1, [PCIR_R14_CS] ; 1st read of Ri4 of position counters 1&R
LD TEMP1, [PCZ2_R14_CS] ; 1st read of R14 of position counters 2&2
ST POS_1, POS_1L ; Store 'last’ positions - low word

ST P0OS_2, POS_2L ; and kill > than 1.8 usec.

ST POS.Z, POS_ZL

ST POS_R, POS_RL

LD POS_1, [PC1R_R14_0OE] ; 2nd read of R14 of position counters 1&R
LD POS_Z, [PCZ2_R14_0E] ; 2nd read of R14 of position counters 2Z&2
ST POS_1+42, POS_1L+2 ; Store ’last’ positions - high word

ST POS_2+2, POS_2L+2

LD TEMP1, [PCi1R_R13_CS] ; 1st read of R13 of position counters 1&R
LD TEMP1, [PCZ2_R13_CS] ; 1st read of R13 of position counters Z&2
STB POS_1+1, POS_R ; Sort data and kill > 1.8 usec.

STB POS_zZ+1, POS_2

LD TEMP1, [PCiR_R13_0E] ; 2nd read of R13 of position counters 1&R
STB TEMP1, POS_1i+1 ; Sort data

STB TEMP1+1, POS_R+1

LD TEMP1, [PCZ2_R13_OE] ; 2nd read of R13 of position counters Z&2
ST POS_Z+2, POS_ZL+2 ; Store ’'last’ positions - high word

129

ST POS_R+2, POS_RL+2

LD TEMP2, [PCi1R_R12_CS] ; 1st read of Ri2 of position countecrs 1&R
LD TEMP2, [PCZ2_R12_CS] ; ist read of R12 of position counters 2&2
STB TEMP1, POS_Z+1 ; Sort data and kill > 1.8 usec.

STB TEMP1+1, POS_2+1

LD TEMP1, [PCi1R_R12_OE) ; 2nd read of R12 of position counters 1&R
STB TEMP1, POS_1+2 ; Sort the data

STB TEMP1+1, POS_R+2

LD TEMP1, [PCZ2_R12_OE] ; 2nd read of R12 of position counters Z&2
STB TEMP1, POS_Z+2 ; Sort data

STB TEMP1+1, POS_2+2

CLRB P0S_1+43 ; Clear the most significant byte
CLRB POS_2+3
CLRB POS_Z+3
CLRB POS_R+3
CMPB POS_1+2, #0FFH ; Set most sig. byte to FF if 2nd most
JNE pos2 ; significant byte is FF.
LDB POS_1+3, #OFFH
pos2: CMPB POS_2+2, #0OFFH
JNE posZ
LDB POS_2+3, #OFFH
posZ: CMPB POS_Z+2, #OFFH
JNE posR
LDB POS_Z+3, #0FFH
posR: CMPB POS_R+2, #OFFH
JNE pos_end
LDB POS_R+3, #OFFH
pos_end:
ST POS_1, [POS] ; Save positions in dual-port RaM
ST POS_1+2, 2[P0S]
ST POS_2, 4[POS]
ST POS_2+2, 6[POS]
ST POS_Z, 8[POS]
ST POS_Z+2, OAH[POS]
ST POS_R, OCH[POS]
ST POS_R+2, OEH[POS]

ST N0003, [TIMING_A] ; Positions saved.

130

;; Compute Joint Velocity

VELO MACRO JOINT, OFFSET

ST VEL_&JOINT, VEL_&JOINT&L ;; Store Prev. velocity

SUB VEL_&JOINT, POS_&JOINT, POS_&JOINTEL ;; Compute velocity
ST VEL_&JOINT, OFFSET[VEL] ;; Save in DPR

ENDM

VELO 1,
VELO 2,
VELO 2,
VELO R,

O oS NN O

ST N00O7, [TIMING_A] ; Signal to master: velocities ready.
;; Compute Joint Acceleration

ACCEL MACRO JOINT, OFFSET

SUB TEMP1, VEL_&JOINT, VEL_&JOINT&L ;; Compute accelerations
ST TEMP1, OFFSET[ACC] ;; Save in DPR

ENDM

ACCEL 1,
ACCEL 2,
ACCEL Z,
ACCEL R,

D & N O

ST NOOOF, [TIMING_A] ; Accelerations saved.

RET

..

'll’lllﬂ’l"".!l)ll'l)!'l)"l’!l"'"’DD””’)'!”’,’)"l’l’”ll’l”]lll’)ll’

LN 2N B I A | DELAY "1

..

IR RN N RN R RN R RN N RN]

delay: LD TEMP2, #2H ; Generate about a 2 sec. delay
delayO: LD TEMP1, #0FFFFH H by counting down from FFFFH
delayl: DEC TEMP1 ; 8H times

CMP TEMP1, O

131

JNE delayl
DEC TEMP2
CMP TEMPZ, O
JNE delay0
RET

..

IR R I A A A A I A I A I A R I R DI B A N R AR A R R I JNT 2T R N A B I BN R BT R RN IS IS JNE I 2 N NN N DNE TN NN N A B N I N RN O B R B I I R N]
113353 ZERD DACS ;;;3:5:

..

AR B EEEREEEEEEEEEEEEEE N R NN NN N RN R N R R R

zero_dacs: ; Reset all DACS to 0 Vdc (offset = 800H)
LD TEMP1, #800H

ST TEMP1, [DAC_1] ; Load first rank registers of all DACS

ST TEMP1, [DAC_2]

ST TEMP1, [DAC.Z]

ST TEMP1, [DAC_R]

ST 0, [DACS_OUT] ; load 2nd rank registers of each DAC

RET ; simultaneously

..

I N NN N NI RN RN RN R R N N RN

ti333; CHECK JOINT POSITIONS FOR OVERRUN ;;;:33

..

IR N N NN NN RN NN NN NEE RN NN

OVERRUN MACRO JOINT, MIN, MAX, NEG_OVR_FLAG, POS_OVR_FLAG, NEXT_JOINT, MSB
LOCAL or_a, or.b

CMP POS_%JOINT+2, #OFFFFH ;; If joint is not in negative region

JNE or_a ;7 goto or_a

CMP POS_&JOINT, #MIN ;; Else compare its position against

JC oxr_&NEXT_JOINT ;; the specified MIN.

OR TEMP1, #NEG_OVR_FLAG ;3 If position is < MIN, make note of

BR oxr _&NEXT_JOINT ;; neg ovrrun error and check next joint

or_a: CMP POS_%JOINT+2, #MSB ;; Compare 3rd byte against MSB:
JLT or_&¢NEXT_JOINT ;; 1IF position < MSB, check next joint

JGT or. b ;; IF position > MSB, goto or_b

CMP POS_&JOINT, #MAX ;; Else compare position against MAX.

JNH or &NEXT_JOINT ;; IF < MAX, check next joint

or_b: OR TEMPi{, #POS_OVR_FLAG ;; Make note of positive overrun error.

ENDM

overrun_check:

132

CLR TEMP1

or_i: OVERRUN 1, OEEF7H, OBO3CH, 2H, 1H, 2, 2H
or_2: OVERRUN 2, OF752H, OEB3EH, 8H, 4H, 2, OH
or_2: OVERRUN Z, OFE83H, 07585H, 20H, 10H, R, 1H
or_R: OVERRUN R, OS5F1DH, OAOE3H, 80H, 40H, end, OH
or_end: LD TEMP2, [ERROR] ; Update Error Register
STR TEMP1, TEMP2

ST TEMP2, [ERROR]

RET

--

..

CT MACRO JOINT, OFFSET, NEXT_JOINT, ERROR_FLAG

LD TORQUE_&JOINT, OFFSET[TOR] ;; Get torque from DPR register

AND TEMP1, TORQUE_&JOINT, #0FOOOH ;7 Mask-out all but most sig. byte
JE ct_&NEXT_JOINT ;; If result is zero, check next joint

OR TEMP2, #ERROR_FLAG ;; Else make a note of the error

ENDM

check_torques:

CLR TEMP2

c¢t_1: CT 1, 0, 2, 10CH

ct_2: CT 2, 2, Z, 200H

ct.2: CT Z, 4, R, 400H

ct_.R: CT R, 6, end, 800H

ct.end: OR TEMP2, [ERROR] ; Update Error Register
ST TEMP2, [ERROR]

RET

--

--

R R NN N N N R N R R R E N RN]

torque_out:

ST TORQUE_1, [DAC_1] ; Load first rank registers of DACs.
ST TORQUE.2, [DAC_2]

ST TORQUE_Z, [DAC_2Z)

ST TORQUE_R, [DAC_R]

133

ST 0, [DACS_OUT] ; Load second rank register of DACs.
RET

END

134

