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ABSTRACT

End Depth and Flow relationships for Smooth Open
Trapezoidal and Circular Channels

Karl Ahlen

The current study’s objective was to obtain an accurate
relationship between the end depth Y, and the discharge rate
for smooth open channels with trapezoidal and circular cross
sections. To accomplish this, the momentum equation was used.
The velocity and pressure head distributions at the end depth
Y, were determined to obtain the corresponding velocity and
pressure coefficients, (alpha o, beta P and K).

The pressure head readings were obtained thfough the use
of a static Pitot tube. Velocity readings were obtained
through the use of a Pitot tube and a Laser Doppler
Anemometer (LDA) system. The velocity measurements with the
Pitot tube utilised procedures to take into account the
curvilinear nature of the flow in the Y, region.

The present investigation improves on existing studies in
several ways.

(1) The velocities over the entire end depth and
critical depth sections for circular and
trapezoidal cross sectional channels were measured
over a range of flow conditions.

(2) The pressure distribution at the end depth section

iid



for circular and trapezoidal cross sectional
channels were measured to incorporate the pressure
force term in the mcmentum analysis.

(3) The pressure and velocity coefficients K, &, and B
were evaluated based on the velocity and pressure
distribution data.

(4) Pressure head values were also calculated
indirectly at the end depth section using velocity
distribution data for e¢ircular and trapezoidal
cross sectional channels.

Another aspect of the study was the improved analysis of the
momentum equation with the calculation of o and B coefficients
for both circular and trapezoidal channels,

The improved analysis of the momentum equation provides
for a more accurate functional relationship between the two
flow variables. This would permit the establishment of a
simple method for monitoring the flow rate in existing

channels at their discharge point.
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Chapter 1 Introduction

1.0 General Remarks

To predict the discharge in open channels, earlier
studies have been conducted to determine a functional
relationship between the flow rate Q@ and end depth Y,. End
depth relationships have been studied more extensively for the
rectangular cross sectional channels than for circular and
trapezoidal cross section channels. See Fig. 2.1 for a summary
of previous studies.

End depth pressure and velocity fields are also available
for rectangular, (Rajarantam et al 1968)) and triangular,
(Repologle (1962)) cross sectional channels. Keller et al
(1989) generated a pressure coefficient K, from data of the
previous authors who investigated triangular and rectangular
channels. The present investigation has attempted to validate
the assumptions utilised in the above mentioned study. It may
be noted that none of the earlier investigations had
determined the nature of alpha (&) and beta (B) coefficient (
Table 3.2) for circular and trapezoidal channels.

This study aims to verify basic assumptions in
formulating the governing equations relating the main
geometric and hydrodynamic parameters. The refinement of

existing relationships between parameters was done with the

1



use of data collected with an Laser Doppler Anemometer (LDA)
system. It should be noted that the alpha (o) and beta ()
coefficients have not been evaluated for either the circular
or trapezoidal <channels in previous studies. These
coefficients were determined experimentally in the current
study and used to accurately evaluate the momentum equation

(Eq 2.3).

1.1 Scope.of Study

The present study was mainly experimental and the
analysis is 1limited to the interpretation of test data
collected. The objectives of the study were as follows;

(1) Using the Pitot and Static Pitot tube

(2) The pressure field for both the circular and
trapezoidal open channels at the end depth and
critical depth sections were measured.

() The velocities for both channels at the end
depth and critical sections were measure.

(2) Using the Laser Doppler Anemometer (LDA) data

(a) The three main velocity components in the
trapezoidal and circular open channels were
determined

(b) The o and P coefficients for both the
trapezoidal and circular open channels were

evaluated and the assumptions made in some of

2



{c)

(d)

the previous studies were validated.

The momentum equation (Eq 2.3) was used to
refine the Q=F(Y,) more accurately based on the
velocity and pressure distribution data.

The Pressure head (P/y) values were calculated
from the measured velocity distribution data
and compared it with the direct static probe

pPressure measurements.



Chapter 2 Literature Review

2.0 Introduction

To predict discharge in horizontal circular or
trapezoidal channels, it is desirable to have a simple and
accurate method. This method could use the end depth as a
single measurement to evaluate the discharge and reduce
errors. Several studies have been carried out on this topic

for both channels.
2.1 Literature Review on Trapezoidal Channels

There have been numerous studies on end depths in
rectangular channels while fewer studies related to
trapezoidal channels. The first study into end depth
relationships in rectangular channels was done by Rouse (1936)
for which the Y,/Y.,, end depth vs ecritical depth, ratio 0.72
was determined. Diskin(1961) performed experiments on
trapezoidal channels relating Y., to the discharge. Charts
describing some of the previous studies on end depths in
various types of channels are shown in Fig. 2.1.

Rajaratnam et al (1968) and Replogle (1962) performed
velocity measurements in the vicinity of the end depth section
in open channels with \}arious geometries. Replogle (1962)

measured the velocity profile in rectangular and triangular

4



sections. Rajaratnam et al (1968) measured velocity
distributions in rectangular channels and calculated the B
coefficient. The coefficient B ranged from 1.074 to 1.148,
There have been several recent studies to determine the
nature of the Y,/Y., ratio for trapezoidal channels. For
instance, Keller et al(1989) assumed a pressure distribution
coefficient, X, (Table 3.1) from previously measured data for
rectangular and triangular channels. For a rectangle channel
of width B, Ferro(1992) showed that for 0.8<B/Y,<17.9 the
ratio Y,/Y. did not change, Gupta et al(1993) obtained a
dimensionless calibration curve relating (Om!-3/g9-5B2:5) with
(e*5%°Imy /B) for predicting the discharge Q with ¥, known. B
was the bottom width of the channel, m was the slope of the
side walls and S, was the slope of the channel. For the
present investigation, S, was always zero. See Fig 3.1 for

definition sketch.

2.2 Literature Review on Circular Channels

Both Smith 1962, and Rajaratnam et al 1964 (b)
investigated the end depth in horizontal circular channels,
The studies were based solely on end depth to discharge
measurements.

Smith(1962) investigated the relationship between end
depth and discharge. A relationship between A,/A., ratios of

areas of the end depth and critical sections, and Y./D was

5



found.

Rajaratnam et al (1964) (b) investigation determined that
the Y,/¥. ratio for horizontal circular channels was 0.725. The
Y./Y. ratio remained constant until the Y./D ratio was greater
than 0.9. Rajarantam et al (1964) performed a theoretical
analysis to determine a pressure factor to account for
nonhydrostatic conditions. This factor was not verified
through experimental investigations.

Diskin(1962) stated that a linear relationship could be
generated by comparing Y.,/D vs Q/G%SD?5, ap equation

illustrating the relationship was generated(Eq 2.1).

-(-QT%.E=1_32(%§)1.95 2.1
aQ

Eq 2.2 shows a relationship of Y. /Y. with changing pipe
diameter.

(_Yg) =________0.72
ve' T Yc ,0.005

D,

Diskin (1963) observed the Y, /Y, ratio to be higher than
that obtained by Rajaratnam et al (1964) (b) . For a ten inch
diameter pipe, Diskin(1963) found the ratio Y, /¥, ranged from
0.785 to 1, when the Y./D, ratio ranged from 0.5 to 0.132.
Diskin (1963) also noted several objections to using the end
depth as a measuring device., These were the existence of cross
waves and a hump in the transverse section. Measuring the

depth further upstream was proposed as an alternative device.



Other authors, (Argyropouls et al (1964)), expanded
further on equations developed by Rajaratnam et al(1964) and
Smith (1962) . Compared using the end depth ratio to different

formulas developed earlier for predicting the flow rates.

2.3 Theoretical Considerations

The governing equation for the end depth problem for both
the trapezoidal and circular channel is the momentum equation.

Eq 2.3.
P9+M9=Pc+Mc-FL

Here the pressure and momentum terms are represented by P and
M. The suffixes e and ¢ denote the end depth and critical
sections(see Fig 3.1 for definitions). F; represents the
friction force. A through presentation of the derivation and
analysis of the governing equation is presented by the several
earlier investigators;( Rouse 1936, Diskin 1964, Rajaratnam
1962, and Neogy 1972).

The components of pressure and momentum at the end depth
could not be evaluated easily on the basis of test data, as
the flow is highly curvilinear at the end depth section. Since
the stream lines were curvilinear, hydrostatic rules could not
be appiied. To evaluate the component terms, the following

equations had to be used, (Rajarantam et al 1964 and 1968) .



P,=0.5K,Y,vA, 2.4

M,

=102£Lp 2.5
g 4

For an accurate evaluation of P, and M,, K,, a coefficient to
account for nonhydrostatic conditions, and P had to be
evaluated., To accurately evaluate K, and B, experiments had to
be performed. The B coefficient in previous studies had been
assumed to be 1.0. This assumption would be examined in this
study.

The o coefficient for the velocity had to be détermined
for use in the energy equation. The true velocity head is
denoted by, av?/2g. Alpha is known as the energy coefficient
(Cofiolis coefficient). It is generally not equal to unity

when the flow is curvilinear.



Chapter 3 Equipment and

Procedure

3.0 Introduction

The experiment was performed on two different apparats.
A diagram of each experimental layout is shown in Fig. 3.1,

Trapezoidal channel, and 3.2, Circular channel.

3.1 Trapezoidal channels Equipment Set up

The smooth stainless steel horizontal channel used in
this experiment had a bottom width (B) of 0.127 m, side slopes
(m) of 1:1 and a height of 0.334 m(see Fig. 3.1). It was 6.85
meters long. The end section(0.70 m long) was constructed of
clear plexiglass to facilitate Laser Doppler Anemometer (LDA)
measurements.

Screens and a fine mesh were set up 0.50 m before the
entrance to the channel to reduce large scale turbulence. A
low resistance mesh, (lem by 1cm), was placed just in the
entrance to the trapezoidal channel and 0.52 m into the
channel to reduce scaler turbulence in the channel. The

discharge was measured with the use of a standard V-notcii.



3.1.1 IlLaser Doppler Anemometer  (LDA) Probe

Pesitioning

A diagram of the laser mount is shown in Fig. 3.3. The
moving mechanism as illustrated in Fig. 3.3 was used to move
the laser probe in steps of ilmm. The probe was placed in two
different orientations and was always normal to the channel
walls. When the probe was Placed in position 1(Fig 3.3) the
axial velocity U, and lateral velocity U, were measured in the
rectangular sub section of the trapezoidal channel. 1In
Position 2 (Fig 3.3) the probe measured the axial velocities

U, in the triangular sub section of the channel.

3.2 Circular Channel Equipment Setup

A diagram of the circular channel is shown in Fig. 3.2,
It consisted of a head tank that funnelled water into a
horizontal circular pipe. The Pipe was 10 meters long and
0.3048 m in diameter. At the end depth section water flowed
into a tail gate box and was then channelled into a standard
V-notch.

A square to circular transition section was placed at the
channel entrance to greatly reduce turbulence and ehtrance
head losses. Sufficient damping devices(screens, honeycombs)

were placed in the head box to reduce larger scale turbulence.
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3.2.1 Laser Doppler Anemometer (LDA) Probe

Positioning

For laser measurements in a circular pipe, the laser
probe had to be positioned perpendicular to the channel axis
to reach 1locations along a radial axis. Along with this
requirement, the probe also had to be moved parallel to the
channel axis. The LDA probe measured velocities in the 6 and
z directions(Fig 3.4). The velocities in the radial (r)
direction were calculated using the U, and U, data because U,
could not be measured. (Appendix C)

Diagrams of the laser Probe mount are shown in Fig.
3.5(a) & (b). The mount consisted of a circular sleeve that
was concentric to the channel and had two flanges attached to
it. The two flanges were for circular rotation around the pipe
at a fixed axial location. A mechanism was attached to the
outer flange to allow for radial motion of the probe.

The laser mount could be moved accurately to the nearest

1 mm for linear motion and 2 degrees for circular motion.

3.3 Laser Doppler Anemometer (LDA)

The laser doppler anemometer (LDA) system used in this
study was supplied by Dantec Inc. It consisted of an argon ion

laser that measured velocity in two directions. The power of

11



the laser was 300 mw. The laser light was first directed
through a transmitter that split the beam in two. After the
laser beams had gone through the transmitter, they were
directed through fibre optic cables to the probe. There were
four laser beams coming out of the probe. Two of them were
blue and the other two were green. The diameter of the beams
were 1.35 mm and their wave lengths were 488.0 nm(blue) and
514.5 nm(green). The beam spacing was 38 mm and there were 35
fringes. The probe system had a light transmitting efficiency
caused by the interference phenomena of about 70%.

Velocity was calculated by measuring the light scattered
when extraneous particles crossed the fringe. The fringes were
located in the measuring volume at the focal point of the
beams. Velocity was calculated by the following equation based

on manufactures calibration data.

U:'.fddf:fd_._..l_

28in(2) 3.1
U= Component of velocity in the plane of the two laser
beams and perpendicular to their bisector.
fs= Doppler frequency, d,= fringe spacing
A = Wavelength of laser light, 6 = beam intersection

angle
In the current study the collection and transmitting of light
was done with one probe operating in the backward scatter

mode.,
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3.4 Experimental Procedure

3.4.1 Critical Depth(Y,.) /End depth (¥,) measurements

End depths, surface water profiles and side water

profiles, were measured by a metric depth gauge which had an

resolution of 0.10 mm. The total flow rate was measured by

passing flow over a standard V-notch and using standard

procedures to calculate the flow rate(Q) . Critical depths (Y.)

were calculated by using standard methods (Chow 1959). The

equations used are listed below.

For Circular Channels;

2
¥,=0.325(-£)3+0.083 (D,)

o

For Trapezoidal Channels

( 2 )2
0.5(0.127+¥) Y, {0.127+Y_)) Y,
0.127+2Y, 2g

3.4.2‘Pressure Head Measurements

Wall pressure heads were measured using

3.3

manometers. A

dianr.m of pressure tap locations are shown in Fig. 3.4 and

3.6. The pressure taps were 1.6 mm in diameter. The manometers

could measure the pressure head to the nearest 0.1 mm,

13



The manometers displayed the static head {(P/¥)+z). To
obtain the true (P/Y) value, a datum was established. The
datum was the bottom elevation of the channels when (r/v)=0.

To determine the pressure distribution in the channel
flow, a static pitot tube was used. The static pitot tube
measured the static head(P/y+2) at any point. Used the same
datum established for wall pressure head readings.

A diagram showing the set up for the Pitot tube is shown

in Fig.3.7.

3.4.3 Velocity Measurements by a Pitot Tube in

Curvilinear Flow.

A static pitot tube, in conjunction with a pitot tube,
was used to measure the velocity in curvilinear flow. The
pitot tube was used to measure the dynamic head, (B/Y + z +
U%,/2g) . Velocity head was calculated by subtracting the static
head, (P/Y + z) from the dynamic head, (B/y + z + U%/2g), to
get U?,/2g and subsequently U,. Additional details on the
orientation of the axis are provided in Fig. 3.4 and 3.6.

When taking velocity measurements at the end depth, the
static and dynamic pressure readings were taken at the exact

same location.
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3.4.3.1 Calculation of U,, U,, and U,

The velocity U, had to be calculated in both the circular
and trapezoidal channels using both LDA and pitot tube data by
the following procedure:

(1) The slope of the water surface at the end depth
section was measured. The Yy and z components of the
velocity at any point at the end depth section were
related by the following relationship, dy/dz = U,/U,
along any stream 1line. The dy/dz ratio was
determined by measuring the slope of the water
surface and then fitting an equation to the profile
by the least square method.

(2) The slope dy/dz of stream lines was assumed to
linearly increase from zero at the channel bottom,
to a maximum at the water surface.

(3) Dy/dz was obtained by multiplying the elevation of
pitot tube measurement by the dy/dz/y ratio. Then
multiplied the dy/dz ratio by Uz, which was

measured, to obtain Uy.

For calculating U, in the circular channel, the
continuity relation was used. An initial value of U, near the
core of the channel was calculated by relating U, to U, by the
following equation U, = U,/cos 0. The rest of the values for

U, were calculated using the continuity relationship. (Appendix
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C Sample Calculations).
Used the measured value of U, and the calculated value of
Uy, along with the continuity principle to determine U, in the

triangular section{ Fig. 4.6) of the trapezoidal channel.

3.4.4 LDA Measurements

The process of measuring velocities with the laser was
more involved than with the pitot tube. First the velocities
could not be measﬁred exactly at the end depth due to the
disposition of the laser beams. To measure the velocity with
the beams, b»oth beams had to pass through a nearly flat
surface. At the end depth section, both beams do not traverse
the fluid through similar paths. Velocities at several axial
locations z=1.5, 3, 6 cm upstream of the end depth section had
were measured. Extrapolation techniques were then used to
calculate the end depth velocities. Three locations upstream
of the end depth section were considered 2 nminimum for
extrapolation purposes.

For the LDA system, continuous and repetitive modes were
available. When running on continuous mode, data was saved to
a file. In the repetitive mode, the average velocity on the
screen along with a histogram were displayed. Both modes were
used in this study. A typical velocity histogram is shown in

Appendix E.
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3.4.5 Determination of Pressure and Velocity

Coefficients

In analyzing the results, several coefficients had to be
determined due to the nonuniform velocity and pressure
distributions. These included the o, a’, B and B’ coefficients
(Table 3.1-3.2) for velocity and pressure distributionsr Other
pressure coefficients were calculated (K,K.), and used in
calculating the pressure force. The pressure force is used in
the momentum equation. The coefficients were used to account
for non hydrostatic conditions at the end depth.

To calculate these coefficients, two different computer
Programs were written. One was for calculating the velocity
coefficients and the other for pressure coefficients. (Table
3.1).

The source code and flow charts for all the programs are
included in Appendix B. al1l pPrograms were written in Turbo

Pascal 6.0.
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Table 3.1 (Pressure Coefficients)

I Formula

Computer Method

1=1+—.1_. A :
[ 4 Qyﬁ,cvda

e

A = Total area of the
integral da

v= Q/A

C=vi/g

2=2/3 Ye

Rajaratnam

P=(p/y) *Y*A*0.5

(1968) p=ag 1Yo K1=P/ (A*0.5%Yexy)
Rouse e e 2
{1936)
and more
Keller Follow equation as
(1989) 2_4— 0.215"’0-175){9:_&1{ Written

1+X 37"

Appendix B shows a flow chart of the program for

calculating the velocity coefficients. The pProgram used a grid

to determine all the incremental areas. These areas were then

multiplied by the corresponding velocity component and summed

up. See Table 3.2 for the procedure for calculating o and B

coefficients.
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Table 3.2 (Velocity Coefficients)
r— —_—

Coefficients Formula
———— e e
Alpha f AV3 da
a=2_—
| via
Beta 2
f1ﬁdA
p==2
vaa
—_%

3.4.6 Verification of the Momentum Equation

To verify the momentum equation, the terms at each end of

a control volume were calculated. (Fig.

3.1 and 3.2) The

control volume was bound by the end depth section at the down

Stream locatiun and the critical section at the up stream

section. Boundary friction was neglected when balancing the

momentum relation(Eq 2.3)

For calculating the pressure force at the end depth

section, the following procedure was used;

(1)
(2)

(3)

Symmetry of flow was assumed and verified.
The areas at the end depth section and critical
section were calculated. The area at the end depth
section was divided into sub areas where the
pressure head was measured or caléulated.

The average pressure over a sub area was multiplied
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by the sub area to obtain the pressure force.

(4) All pressure forces over the entire end depth
section were summed.

(5) Standard procedures and formulas were wused +to
calculate other terms in the momentum equation.

Appendix C provides for more details on the calculations

related to the momentum analysis,

3.4.7 Energy equation

The main equation used for the energy analysis is the
energy equation. This equation together with the continuity

equation is shown below.

2 .4
-‘E+z+l=constant 3
2g

Y

Q=V,4,~V,2, 3.5

The continuity equation Egq 3.5 was used to check for
continuity of flow. Eq 3.4 was used to calculate P/y at the

end depth section where V¥/2g+z values were known.
When Eg 3.4 was used to calculate P/Y wvalues at a
vertical end depth location, the following procedure was used.
(1) A location on the water surface across the cross
section was used as the reference point to

calculate P/Y for the a vertical cross section
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because P/y=0 and z and V?/2g were known at the
reference point. V is the total velocity and is

defined by the following equations.

For Trapezoidal Channels

Vi= Uza +Ux2 +Ur2 3.6

For Circular Channels

V2=U22+U62+Ur2 3-7

(2) The P/Y values were calculated over the entire end
depth section at discrete locations outside the
boundary layer were V2 and z are known.

(3) The pressure distribution in the boundary layer was

assumed to be linear.
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Chapter 4 Results

4.0 Introduction

For trapezoidal and circular channels the velocity and
pressure head values at the end depth section were measured
for a range of discharge values. With the measured data, the
velocity coefficients were determined. The presentation and

analysis of the results are presented in subsequent sections.

4.1 Cbservations

4.1.1 Pressure Head measurements

For both the circular and trapezoidal channels, the
pPressure along the perimeter of the end depth section was
zero. In the interior of both channels, the pressure head was
found to be greater than atmospheric. Figs 4.1 and 4.2
qualitatively illustrate the general Pressure distributions in
trapezoidal and circular channele.

Fig 4.3 illustrates a typical pressure head distribution
pattern for a vertical section in a circular channel. Fig 4.4
illustrates the pressure head distribution along the periphery
of the wall 3.2 mm upstream of the end depth section. Although
both figures show pressure distributions in just ecircular
channels, similar patterns were observed in trapezoidal

channels.
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To check that there was no sudden change of gradient in
the pressure head measurements, the following ratios P/P_ VS
L/L.,: were compared (Fig. 4.5). P was the measured Pressure at
any given distance L from the end depth and P, was the
Pressure head at an arbitrary feference location L., distance
from the end depth which was greater than the c¢ritical
_ distance L,.

Fig 4.5 shows that there is no sudden change in the
gradient of pressure head measurements along the centre line.
No sudden change in the gradient in the pressure head
measurements across the end depth section was observed. This
observation would contrast with an assumption by an earlier
investigator, Keller et al(1989).

As shown earlier in this study, Keller et al(1989)
obtained a pressure coefficient,K Table 3.1, for trapezoidal
channels from combining previous data for triang:-lar and
trapezoidal channels. This procedure would result in an
imaginary line(A-B Fig. 4.6) Separating the rectangle and
triangle sections. At this point the pressure head
distribution assumed by Keller(1989) was discontinuous(Fig.
4.6) . Measured pressure head data in this study indicated that
the trapezoidal channel had to be treated as a whole unit to
exclude discontinuity. There was no discontinuity observed in
the pressure head measurements since pressure is always
continuous. Keller’s assumption would also affect the pressure

coefficient (K).
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4.1.2 Y /Y, vs Q comparisons

For circular and trapezoidal channelé, the variation of
Y., /Y. vs Q for the present study was found to correspond to
previous studies. (Fig 4.7 +4.8 and 4.9) Similarly, Rajaratnam
et al(1964) (b) presented a relationship Y,/D vs Q/G°5D?5 which
was compared to existing data(Fig 4.8). In this study, the
range of data presented, was 0.22<Y,/D<0.4 and 0.10 < Q/G%°p2-5
< 0.26. A regression by the least square method was performed
using the present data. This resulted in a relation between

Y./D with Q/G%*D?° (Eq 4.1).

19 - Ye
- . —-—) 848
(D% 73 1.0213¢ D, )y-0.12

Correlation was found to be very good.

Fig 4.9 shows the variation of A,/A; with Y./d were A_ and
A, are the cross sectional areas at the critical and end depth
sections. The present set of data follows the trend suggested
by Smith (1962).

The above comparisons were used to calibrate the
equipment used in this study. Because similar results were

obtained, equipment and procedure was deemed proper.



4.1.3 Velocity measurements with a Pitot tube

The highest velocities at the end depth section were
observed near the bottom of the channel which was consistent
with earlier observations (Rajarantam et al 1968). The axial
U, velocity distribution along the centre line corresponded
qualitatively with previously published data (Insert Fig.
4.10(a)). A typical velocity contour profile developed by
measured velocity points is also shown in Fig. 4.10(a) along
with sample measured data.

Fig 4.10 (b) shows the axial velocity contours for a
circular channel using Pitot tube measurements

For a numeric comparison of the velocity profiles for
both channels and with Rajarantam et ail (1968), refer to Fig

4.10(c). This figure shows the profile developed frecm both

pitot tube and LDA measurements.

4.1.4(a) Laser Doppler Anemometer (LDA)

Measurements for The Trapezoidal Channel

Velocities were measured or calculated according to

procedures laid out in section 3.4.3 The laser probe measured

velocities in two directions.

Fig 4.11 (a)~(c) illustrates typical velocity contours

for all 3 velocity components at Y, for one given flow rate in
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a trapezoidal channel. Sample velocity measurements are also
included in Fig4.11(a)-(c) Velocities were measured for six
different flow rates. The contours for each velocity component
of all flow rates showed similar patterns.

The axial velocity U, for all flow rates where velocity
measurements were taken, were multiplied by the incremental
areas to directly calculate the flow rate. The difference
between the calculated and measured flow rafes was less than
5%. Irrotationality out side the boundary layer and continuity
of the flow were also checked and confirmed through the use of
basic principles (Appendix C).

In Keller et al(1989) study, the boundary line between
the rectangle and triangle section was assumed to have a
velocity of zero(line A-B, Fig 4.6). As can be seen in Fig
4.11(a), the velocity is not zero at this boundary line. This
assuﬁption would affect the wvalue of the o and B

coefficients

4.1.4(B) Velocity Measurements for Circular

Channels

The results of the LDA tube measurements for circular
channels are shown in Fig. 4.12(a)-4.12(c). Velocity
measurements were taken for six different flow rates. Fig
4.12(a)-4.12(c) show the three components of velocities for a .

given flow rate using LDA. All velocity profiles for all flow
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rates showed similar patterns. For the circular channel, the
8, r and z cylindrical coordinate system is shown in Fig 3.4.
The velocity in the 0 and =z direction were measured while the
velocity in the r direction was calculated using the z and 6
values, {Appendix C). The boundary layer was also found to be
around 0.1Y, when 6’ was 0°.

Because of limitations with the range of the laser, the
pitot tube had to be used for regions which were out of range
of the LDA lens. At the higher flow rates, pitot data was used
in the 10 to 15% of the centre region that was not covered by
1DA data. Procedure to measure velocities with the pitot tube
were described in section 3.4.

Velocities calculated by the pitot tube data in regions
were the velocity was measured by the laser showed close
correlation in the U, direction. Could then use a hybrid set
of data to generate the velocity contours.

Along the 5° radial line(Fig 4.12(a)), the velocities in
the z direction showed the same characteristics aslthe results
of Rajarantam et al (1968) (Fig 4.10 (c)).

The 0 velocity on any given radial line increased from
zero at the centre line to a maximum. The maximum was at a
given angular distance 6’ from the centre line from where it
would decrease until the water surface. Fig 4.12(b) insert -
illustrates the above described relationship.

As in the trapezoidal channel, the axial velocity U, for

all flow rates were multiplied by incremental areas to
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directly calculate the flow rate. The difference between the
calculated and measured flow rates was less than 5%.
Irrotationality out side the boundary layer and continuity of
the flow were also checked and confirmed through the use of

basic principles (Appendix C). Irrotationality was checked in

three othoganal directions(x,y, z).

4.1.5 Comparisons between pitot tube and laser

measurements

The LDA was able to measure the velocity more accurately
than the pitot tube and could also measure the velocity in two
directions. It was more sensitive to fluctuations of velocity,
especially near the channel surface because it was non
intrusive. It could also measure velocities closer to the
channel bottom than the pitot tube. The pitot tube was more
sluggish in its response to velocity changes. Measuring,

curvilinear flow posed no difficulties to LDA measurements.

4.1.6 Flow Profile

The slope of the water surface(dy/dz) at the end depth
increased as the discharge(Q) decreased. This would indicate
that the component U, relative to U, would increase as

discharge decreased. When the end depth was approximately two
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centimetres, the flow began to wrap around the end depth
section. Data was not taken at these flow rates because

surface tension forces became significant.

4.2. Calculated pressure coefficients

There were several kinds of pressure coefficients that
were evaluated. The most common definition of the pressure
coefficient used is stated in Eq 3.5 and was wused by
Rouse (1936) and Rajarantam (1968). Another definition for the
pressure coefficient was introduced by Replogle (1962) and is
stated below;

K=[({(P/Y)+2) =2) /Y] 1y
K, could be determined experimentally. Keller (1989) introduced
a pressure coefficient K, (Table 3.1), which was based on the
end depth. Two other coefficients, (o’ and B’ Table 3.1), were
used to analysis curvilinear flow (Chow 1955).

To calculate the above pressure coefficients for the
trapezoidal channel, a computer program was written. Table 4.1
shows the pressure coefficients calculated for the trapezoidal
channel. A graphical presentation of the results are shown in

Fig 4.14.
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Table 4.1 Calculated Pressure Coefficients For Trapezoidal
Channel

K,
Location A Fig
1.018 | 0.282 0.262 0.275_J
1.012 |0.289 0.264 |0.299
1.009 |0.303 0.266 |0.303
1.006 |0.297 0.268 |0.312
mm Location B Fig 4.14 |
I 10.7 1.024 f1.016 |0.235 |0.262 |0.234
Ps.v 1.028 [1.019 |o0.276 0.265 |0.246
7.3 1.011 |1.008 |0.288 0.267 |0.287
5.0 1.004 |1.002 |o0.282 0.272 |0.326
Set 3 Z = ~7 mm Location C Fig 4.14 l
{11.4 1.040 |1.025 |o0.220 0.261 |0.219 |
9.3 1.029 |1.020 |o0.258 0.264 |0.228 |
9.2 1.027 [1.018 ]o0.218 0.264 |0.218
ls.2 1.022 |1.015 |0.235 | 0.265 |0.248
5.4 1.011 [1.007 |o0.282 0.270 |0.287
| 1.007 10.282 ]0.270

Caption
Y, = end depth
o’ ,B’ = Pressure coefficient (Chow 1955)
Ki = coefficient as defined by Rajaratnam (1967)

(See Table 3.1)

K = coefficient as definedq by Keller (1989). (See Table
3.1)

K, = coefficient as defined by

Replogle (1962) = (P/Y/Y) pu
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With respect to trapezoidal channels, there was an
observable increase in o’ and B’ with an increase in Y..
Coefficient, K, determined by Keller(1989) increased with Y,.

A similarity in values between K, and K, was observed. In
Fig. 4,13 a comparison of pPressure head coefficients, K; for
cir;ular, trapezoidal and rectangle channels is shown. The
pressure head coefficients for the eircular and trapezoidal
channels were determined in this study, using Repogle’s
definition, while earlier studies had determined the values
for rectangle channels.

The values of K; and K, varied with the three sets as can
be seen in Fig 4.14. The variation can be explained by the
location of the Pitot tube. For set 3(Location C) the pitot
tube was 7 mm down stream of the end depth section and had the
lowest pressure head distribution values. The trend of
decreasing pressure head values at sections down stream of Y,
was expected because'the pressure head distribution would

eventually become atmospheric throughout the flow region.

4.3 Calculated Velocity coefficients, o and B.

For both channels the o and B velocity coefficients were
calculated and found to range from 1.03 to 1.10 for
trapezoidal channels and 1.03 to 1.07 for circular channels.
The coefficients were calculated using the formulas in (Table

3.2). Eq 4.2 and 4.3 were also used to calculated the o and
coefficients (Chow 1959).
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@=1+3¢e%-2¢3 4.2

B=1+e? 4.3
E = (U,/U)-1 4.3(a)
Um = Maximum velocity
U = Average velocity

Similar results were obtained from both formulas.
Rajarantam(1968) reported B values of 1.07 to 1.14 for

rectangular channels.

4.4 The Momentum Equation

The momentum equation used in this present analysis is
shown in Eq 2.4-2.6. In this discussion the friction force Fy
was neglected, since its value was found to be less than 1% of
total forces.

The pressure force P, was calculated with knowledgé of
measured pressure heads across the whole channel cross
section. After determining the pressure force P, at the end
depth, the momentum equation was applied. Tables 4.2 aﬁd 4.3
show the results of applying the momentum equation at varying
flow rates for the two different channel geometries used in

this study. Refer to Appendix C for procedure used in
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calculating the pressure force and other terms of the momentum

Equation, (Eq 2.3),at the end depth section.

Table 4.2 Momentum Analysis for Trapezoidal Channels

Flow Rate Yo(cm) | Y.({cm) | M+P,(N) | M.+P.(N) | Me+Pe (N)T
33.96(1/s) 10.16 13.87 52.8 57.0 56.62
27.46(1/s) 9.17 12.69 39.7 43.5 41.02
26.60(1/s) 8.87 11.%94 39.5 41.2 40.5
e
Table 4.3 Momentum Analysis For Circular Channels _
|| Flow Rate Y. (cm) Y.{cm) | M+P,(N) | M_+P_ (N) M, +P, (N) * "
r 38.76(1/s) 11.61 14.86 64.5 68.3 67.3 I
38.32(1/s) [11.11 |14.76 63.0 67.3 67.0
l27.5701/s) [9.36 |12.38 |42.1 44,2 43.9
||22.9(l/s) 8.5 11.2 33.3 35.0 34.5

* = analysis that include the P coefficient where B=1.05 for

the trapezoidal channel and 1.03 for the circular channel.

Two of the trials showed near exact matching of the sum
of the components of the momentum equation for the end depth
and the critical section. Theoretically this is what was
expected. When the B was added the equations balanced.

The main objective of this study was to obtain an
equation to calculate Q by measuring Y,. This was done by
using the total momentum calculated for the critical section
and equations presented in section 2.3. It was done for all

flow rates in table 4.2 and 4.3. The comparisons for the

highest flow rate for both channels is presented below;
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Discharge Discharge

Measured Calculated
Trapezoidal Channel 33.96 1/s vs 34.39 1/s
Circular Channel 38.76 1/s vs  39.65 1/s

The flow rates were calculated considering B to be

greater than unity.

4.5 Discussion of energy equation

4.5.1 Application of the energy equation from the

critical section to end depth section.

The energy relation Eq 3.4 was used to indirectly
calculate the pressure head distribution at the end depth
section using the velocity distribution data. Velocity and
pressure head readings at the critiecal section, where the
pressure head distribution was hydrostatic, were measured so
that the total head could be evaluated. Eq 3.4 was then
applied from the critical section to the end depth section(Fig
3.2) . The velocity used in the energy equation was always the
total velo&ity U as defined in Eq 3.6 and 3.7. One could only
apply Eq 3.4 outside the boundary layer region. Fig 4.15 shows
the velocity distribution at the critical and end depth

section and the approximate boundary layer location.
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4.5.2 DApplication of Energy Equation at the
vertical End Depth section

The P/Y values at discrete locations over a vertical
Cross section at the end depth section were individually
obtained by the measured velocity distribution at these
points. The details of the procedure are explained in section
3.4.7. Close agreement with the indirectly calculated P/y
values and those airectly measured by a pitot static probe was
observed. Refer to Table 4.4 for a comparison of calculated

P/Y values and measured values.

Table 4.4 Comparisons of calculated and measured P/y

values (Circular Channel) (Typical Test Condition)

%
Elevation (cm) (P/v)/Y calculated (P/7Y) /Y Measured
[Y,=6.98] Q=18 1/s [¥,=7.10]Q=18.4 1/s

|5.6 0.17 0.17
I 0.23 0.25

4.6
|3.6 0.27 0.31

The differences in values can be attributed to the boundary

layer effects
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4.6 Momentum Analysis with Calculated Pressure head

data for Circular Channel

The momentum analysis was applied with the calculated
Pressure head data and compared with the data in Table 4.2 and
4.3. The results of the comparison show a similar correlation
between the sum of M, and P, vs sum of M, and P, (Eq 2.3) which
were based on the following;

i) Measured P/¥ values based on static probe data.

ii) Calculated P/Y wvalues

based on the velocity

distribution data.
In table 4.5 are the results of the momentum analysis with
calculated pressure head values(Eq 3.4).
Appendix C shows the data and calculations used in the

momentum analysis. The pressure heads were calculated with use

of the energy equation.

Table 4.5 Momentum Analysis with Calculated Pressure Forces

For Circular Pipes (High, Middle and Low Flow rates)
gy Y4 e and L

Q{1/s) Y, (cm) Y, (cm) M,+P, (N) M +P, (B) M +P_ (N)
40.71 11.91 15.88 70.62 72,52 73.12
31.74 9.66 13.6 51.05 52,41 53.48

I 18.0 6.98 9.83 25.68 26.36 25.53

B=1.03 ,Calculated from velocity data measured by the

laser.See Eg 2.3 for momentum equation.
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Clearly the addition of the P coefficients did make a
difference in the calculations. It accounted for an additional
three percent difference in the sum of the P, and M, terms (Eq
3.3). As can be seen in Table 4.5, the B coefficient improve
the balance of the momentum equation.

The coefficient o was wused in calculating P,. The
momentum analysis with calculated P/y values and measured ones
were compared. An improvement was cbserved (Tables 4.2-4.5),

when the a coefficient was incorporated into the momentum

analysis.
4.7 Discussion of Free vortex model of Ali (1972)

Ali(1972) analyzed the end depth problem on the basis of
the free vortex theory. It was found that there could be a
close correlation between experimentally determined end depths
and the predicted end depths., 7
Ali (1972) derived two equations from the free vortex
theory for the velocity of lower and upper stream lines. These
formulas are shown below as in Eq 4.4 and 4.5
Vu= (2*g(H-h,))%* 4.4
V1=(2gRH)%* 4.5
H= ﬁeight of water surface
Vu=upper stream line
Vl=lower stream line

H= H, +A./2T,
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The velocities calculated with the above equations did
not correspond with measured data. Values calculated by
Ali(1972) were either too high or too low. For example, at Ye
= 11.65, the lower velocity was measured as 1.67 m/s.
Calculating this velocity from formula 4.5 resulted in a
velocity of 2.3 m/s. The velocity for the upper stream section
was lower than measured. However the difference was smaller.
There were a couple of problems with the analysis related to
the facts presented below;

i) Stream lines in a vertical plane are not strictly

circular.

ii) The radius of curvature increases as one moves

towards the interior of the flow region.
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Chapter 5 Conclusions

5.0 General Remarks

New information relating the flow rate (Q) and end depth
(¥,) in trapezoidal and circular channels smooth open channels

was obtained.

5.0.1 Trapezoidal Channel

In the current study, the velocity and pressure
distributions for the trapezoidal channel were obtained,
considering the end depth and critical depth cross section as
a whole unit. The three components of velocity were also
determined. This enabled the accurate determination of the
velocity and pressure coefficients (¢, B and K) from the
velocity and pressure distribution data. The above
coefficients were then used with the momentum equation fo
accurately evaluate the Q=F(Y,) (Eq 2.3-2.5) relationship. The

o and B coefficients were found to range from 1.03-1.07.

5.0.2 Circular Channel

The velocity and pressure head distribution for the

entire end depth ¢ross section permitted the evaluation of the
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velocity (o and B) and pressure (K) coefficients. All other
objectives laid ocut in section 1.1 were meet. This enabled
one to accurately balance the momentum equation and establish

the Q=F (Y,) relétionship.
5.0.3 Calculated Pressure Head Values

The energy equation (Eq 2.3) was used successfully to
determine the end depth pressure field at the end depth
section using the measured velocity distribution at that

section.

5.0.4 Concluding Remarks

The accurate determination of the Q=F(Y,) relationship
would permit a cost effective method of flow rate monitoring

at point source discharge locations.

5.1 Recommendations

- Measure all 3-d component with an LDA system
instead of calculating one component, knowing the

other two components.

- Perform measurements on channels with wvariable

slopes and roughness values
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Front view

clamps
A
Directio
of
Motion 380
76.2

~_ g v
Flange O &/lg

!

Laser- Mount

Probe

Fig. 3.5(b): Circular Laser Probe Positioning
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Note NTS

Only one of Static or

Point Gouges Pitot Tube used at a Time
~ ~
- . Al
) Q)
|
N
\or’
Carriage
Standard
Pitot Tuke .
Direction of Ftou<___
L=
>
Screw Driver
Prob

Fig. 3.7: Mounting for Pitot Tubes
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Y= 10.81 CM X=0 Q=38.32 I/S B

0.8-
0.6
p o
~
>—
0.4-
K= ;
A
- 25 ——p \
0.2-
0 T T T T
0 0.2 0.4 0.6 0.8 1
P

Fig. 4.3: Variation of P with Y1/Y
P=((P/Y+z)-2z)/y; along center line (A-B)

58



q=38.7 I/s z=—3.2 mm
1
A
0.8 - Y
0.6 1 4 theta
X
=
0.4 - Y1
3
0.2 5
2
1
0 T T T '
C 0.2 0.4 0.6 0.8 1

Fig. 4.4: Variation of P with Y1/Y

P=((P/y+z)~-2)/y;

Instert: wall pressure tap

location : Y1=Y at Free Surface

Position Theta Height (Y1) (mm)
1 0 0

2 20 10.16

3 40 36.1
_4_ 60 76.2
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084 P
L

0.6 1

ref = 22.5 m
ref=260.35 mm

P/Praf

0.4 1

0.2 1
L l

L/Lref

0.6 0.8 1

Fig. 4.5: Variation of P/Pref with L/Lref (Static
Wall Profile along Channel Axis, X=0,Y=0) Q=38 l/s,
Ye= 11.2 cm, P= P/y= wall Pressures
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Definition Sketch
K2 = max P/y for rectongular channel
K1 = max P/ for troingular channel
—— B _
Al/2 AP Al/2
K1 Ko "
| |A
| |
' \I/Ac’cual Pressure Head
- — — — = — _ _ Distribution
/’;ﬂri T Assumed ™ T E'““\\\
7 VPressure Head Distrioution | N

Fig 4.6: Definition Sketch used By Keller(1989) To
calculated a pressure head coefficient.
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Present Study;b=126 mm,m=1 —8—

7 Kellers (1988 );b=150mm, m=1
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mYe/b
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Fig. 4.7: Variation of mY./b vs L
L=0Q’m?/gb’
m=side slope of channel
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Fig. 4.9: Area Ratio vs Y./D Comparisons with
Existing Data

A.= End depth area

A= Critical section area
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depth with different geometries
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Appendix B
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'low chart for computer pProgram to calculate Alpha and Beta
coefficients

Input data in the following format
One control Line
# of Data Points, # of X points, # of Y Points

Several information lines
Xposition Yposition and Velocity

Calculate the Average Velocity

Sum all the Velocity Points, If a velocity point
=0 then do not count it. Divide the sum of the
velocities by the number of data points that did]
not have a velocity of 0.

Calculate the Dx and Dy

Dx and Dy are 1/2 the difference between
measurement points. Used to calculate the area
around each point.

Calculate alpha and beta Coefficients.
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Program Alphabeta;

Uses Crt;
Var ,
o] array(1..100,1..100] of real;

X array[1..100] of real;

Y array([1..100] of real;

v ! array[l..100] of real;

dy: array[l..100] of real;

dx: array[l..100] of real;
DeltalA:array{1..100] of real;
corner:real;

Yl: real;

datapoints : integer;
vavesrreal;

vl:real;

Xline:integer;

Yline:integer:;

Xlineb:integer;

Templ:integer;

Temp2:string;

Vsum, Vtemp, Vtempl, al,areal:real;
Vtemp3, Vtemp2, Vsuml, Beta:real;
alpha:real;

Procedure Input;
(*read data in from either the screan or a data file*)
var

m;:integer;

j,i:integer;

begin
datapoints := 9;
xline :=3;
Yline :=3;

writeln(’ Input the values of x,y,v below’);
writeln(f x y v');
for m := 1 to datapoints do
readln(x[m],¥[m],v(m]);
for i := 1 to datapoints do
begin
for j:=1 to 2 do
Pi{i,J] := x[i];
Pli,jl:=y[i];
end;
for i:=1 to datapoints do
begin
for j:=1 to 2 do
write (p[i,j1:8);
writeln;
end;
end;
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Procedure Inputfile;

var

Filename:string;

Samplefile:text;

m,i,j:integer;
function fopened(var thefile: text; Fname:string) :boolean;
begin

assign( Thefile, fName) ;

(*$1-%)
Reset (thefile);
(*¥ST+*)
-If IQresult = (0 then
Fopened := True
else
Fopened := false;
end; .
Begin

Writeln(’Input the name of the input file’);
readln (filename) ;
If Fopened(Samplefile,filename) = true then
begin
readln (Samplefile, datapoints, xline,yline) ;
for m := 1 to datapoints do
readln(Samplefile,P(m,1],P[m,2],vIm]);
close (samplefile);
end
else

writeln(’could not open file’, filename);
end;

Procedure Avelocity;
(*calculates average velocity*)
var
i:integer;
vtemp:real;
count, countl:integer;
begin
vl:=0;
countl:=0;
for i := 1 to datapoints do
begin
If v[i] = 0 then
viemp:=vl
else
begin
c¢ount := countl + 1;
vtemp:=vl+v[i];
countl:=count
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end;
vl:=vtemp;
end;
vave:=vl1l/countl;
writeln (vave, countl) ;
end;

Procedure dxdy;
var
i,j:integer;
m,ml:integer;

begin
Dy[1l] :=(p[2,2]1-P[1,2])/2;
for i := 2 to Yline do

Dy[i) :=(p[i+l,2}-p[i,2])/2 +(p[i,2]-pl[i~1,2])/2;
If Dy[i] < 0 then
Dy[i] :=(pli,2]-p[i-1,21)/2;

Dx{1] :=(pll+Yline,1l]l-p(1,11)/2;
ml:=Yline;

for i:= 2 to xline do

begin

m := ml+Y¥line;

D X [ i
:=(P[m+1,1}-plm,1])/2+ (plm,1)-plm—{Yline+1),1])/2;
ml:=m;
End;

If Dx[i] < 0 then
Dx[i] :=(p(M1,1]-p(Ml-(Yline+l1),1])/2;
For 1 := 1 to Yline do
Writeln(dy([i]:8);
For j:= 1 to xline do
writeln(dx([J}:8);
end;

Procedure area;
var
k,i,k1,j:integer;
begin
Kl:=0;
for i := 1 to xline do
begin
for j := 1 to Yline do
begin
ke=kl+1;
deltaA[k] :=dx[i]l*dy[]]:
Kl:=k;
end;
end;
for i:= 1 to datapoints do
writeln (deltaalil:3:3,’ 7,v[i):3:3);
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end;

Procedure Calc;
var
i:integer;

begin
al:=0;
viemp3:=0;
Vtemp:=0;
for i := 1 to datapoints do
begin
If v[i]=0 then deltaal[i] := 0;

areal:= al + deltaafi];
al:=areal;
vtempl:=v([il*v[il*v[i)*deltaa[i];
Vtemp2:=viil*v[i]*deltaal[il;
vsum:=vtemp+vtempl;
vsunl:=vtemp2+vtemp3;
vtemp3:=vsuml;
vitemp:=vsum;

end;

writeln(al,vave);

alpha:=vtemp/ (al*vave*vave*vave) ;

Beta:=vtemp3/ (al*vave*vave);

writeln(‘Alpha =’,alpha:3:3,’ Beta=’,beta:3:3);

end;

Procedure Output;
var
i, j:integer;
output:text;
outl:string;
begin
writeln (' Input the name of the outputfile’);
readln{outl) ;
Assign (output, outl);
Rewrite (output) ;
For i := 1 to Yline do

Writeln (output,’Dy([’,1i,’]1=",dy[i]:8);
For j:= 1 to xline do :
writeln (output, 'Dx([’,3,’1=",dx(J]:8);
for i:= 1 to datapoints do
writeln (output,’delta A[’,i,']=',deltaai]):3:3,"’
rL vt ,i, Y=, vl(il:3:3); .

writeln (output, ‘Beta=’,beta:3:3,’ Alpha= ’,alpha:3:3);

Close ({(output);
end;
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Begin
clrscr;
Writeln(’Do you want
File?’);
Writeln(’ (1) screen
readln(templ) ;
If templ = 1 then
Input
else
begin
Inputfile;
end;
avelocity;
dxdy;
area;
cale;
output;
readln;
end,

to input data

(2)File’);
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Flow chart for Calculating the Pressure COerficlents
]

Input Data in the Following Format
Q,¥e,Pressure head

Use Formulas in Table 2.1 to calculate coefficients
|

Output Results
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Program pressure coefficient;

uses Crt;

var

Atarray[l1..100] of real;{area of cross section}
V:arrayf{l..100] of real; {average velocity}
dg:array[l..100) of real;{flow rate}

c:real; {pressure head correction}

alphaprim, Betaprim:array([1..100] of real; {Pressure
coefficients chow}

Ye:array[1..100] of real;{end depth}

Z:real;

H:iarray[1..100] of real; {measured pressure head}
Kl:array[l..100] of real;{Raja coefficient}
Piarray(1..100] of real; {real pressure}
Gamma:real; {specific weight of water)
K:array[1..100] of real;{kellers coefficient}
Xe:array[l..100] of real;

Ko:array[l..100] of real; {Chris coefficient}
I:integer;

Trails:integer; {How many trails need calculating}

Procedure Input;
var
Filename:string;
Sample:text;
Temp:integer;

Function Fopened(Var thefile:text;Fname:string) :boolean;
Begin '
Assign( thefile, fname) ;

(*$I—%)
Reset (thefile);
(X$T+*)
If IO0result = 0 then
Fopened := True
else
Fopened := false;
end;

Procedure Finput:;
Var
Filename:;string;

samplefile:text;
m:integer;
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Begin
Writeln(’Input the name of the input file’);
Readin (filename) ;
If fopened(samplefile,filename) = true then
Begin
Readln(samplefile,trails);
For m := 1 to trails do
readln(samplefile,q[m],Ye[m],H[m]):
close (samplefile);
end
else

writeln(’could not open file’,filename);
end;

Procedure screen;

Var
Filename:string;
samplefile:text;
m:integer;

Begin
Writeln(’Input Name of input file to create’);
Readln (filename) ;
Assign (samplefile, filename);
Rewrite (samplefile);
Writeln(’Input number of trials’);
Readln(trails);
Writeln (samplefile, trails);
For m:= 1 to trails do
begin
Writeln(’inpute Ye,Q,H’);
Readln({Ye(m],q(m]l,h(m]);
writeln(samplefile,Ye[m],q[m],h[m]);
end;
Close (samplefile);
end;

Begin

writeln (’ Input data by (1) file or by the (2) screen’);
Readln (temp) ;

If Temp = 1 then

Finput;

If temp = 2 then

screen;
end;
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Procedure chow;
begin
z:= (2/3)*Ye[i];
afil:= (0.127+Ye[i]) *ye[i];
viil:=q[il/al[il;
c:= v[il*v[i]/9.81;
alphaprim[i]:= 1 + (L/qlil*ye(i]) *c*v[i]*ali];
betaprim{i]:= 1 + (l/ali]*z) *c*a[i];
end;

Procedure Raja;
Begin
gamma :=9810;
pfil:=h{i]*gamma*a[i];
kl[i):=p[il/(ali]l* 0.5 * ye[i]*gamma);
end;

Procedure keller;

Begin
xel[i]:=ye[i]/0.127;
k[i]:=(4/3)*(0.215+0.175*xe[i])/(1+xe[i]);
end;

Procedure Chris;

var
m:integer;
Yc:real; {critical depth}
r:real;
D:i:real;
Templ, temp2, temp3, tempd:real;
tol:real;

begin

* Qfil:= g(i1/0.02831;

Yc:=2.0927+16.009%q[i]}-7.8757*q[i]*q[1]+2.1849*q[i}*q[i] *q[i];
r:=ye[i]/(0.01l*yc);
d:=0.25;
templ:=1/r;
Temp3:=(d/yc) * (d/yc) ;
tempd:=(H[i}/d) *(h[i]/d};
Ko[i]:= 0.01:
repeat
temp2:=1.5+0.5* (ko[i]*r*r+temp3*temps) ;
writeln (temp2, templ);
tol:=templ-temp2;
Ko[i]:= 0.01+ko[i]);
until ( abs{tol)<0.01);
end;

87



Procedure output;
Var
OQutput:text;
outl:string;
isinteger;

begin
Writeln(/Input the name of the output file’);
readln (outl);
Assign (output, outl);
Rewrite (output) ;
writeln {output, ' Ye alphaprim[i], betaprim([i], k1,
r K, (ko');
for i := 1 to trails do
begin
writeln(output,’Ye[',i,’]
!,alphaprim[i]:3:8," " ybetaprim([i]:3:8,
", k[i]:3:8," fykoli]:3:8);
writeln(alphaprim[i]:3:8,' ",betaprim[i]:3:8,"
f,k1[i]:3:8," " k{i}:3:8," f,ko[i]:3:8);
and;
Close (output) ;
end;

=',Ye[1]1:3:3,"
' f,k1[i]:3:8,"

Begin
clrscr;
input;
For i:= 1 to trails do
begin
chow;
Raja;
Keller;
(* chris; *)
end;
output;
writeln(/Press enter to continue’);
readln;
end.
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C.0 Using the Momentum Equation with Measured

Pressure Heads

C.0.1 Circular

Equations used in the analysis

1, 0.3048/2-H c.1
=2 1
8=2cos™{( 0.3048/3
2=0.304g829-8in6 c.2
) 8

V = Q/A
=p Qv,
P = 0.5HAY

Pa = 1/2 (P/'Y) valua measured‘YA'

A" = The sub area in the channel around which the (P/Y) vatue
value was measured. Refer to Fig C.l1 for definition of sub
areas used in circular channels when calculating the pressure

force with measured values of P/7.
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&9._____,____]\

— s ey ey — ]

Al direngions i Centimaters

Figure C.1

Areas were calculated by the following method.
Al= 5.9*%(h-1.39)+40.5(5.9%1.39)
A2=n/2-Al

C.0.2 Trapezoidal Channel

The same method was used for the trapezoidal channel. The only
difference was the way the incremental areas were calculated.
The procedure for calculating each incremental area were

as feollows:

(1) Took a line were vertical pressure  head
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measurements were performed.

(2) Formed a rectangle around the line and calculate

its area.

(3} In the Triangle section the shape was a triangle

plus rectangile.
The formula for calculating the area of a trapezoidal channel
is shown below,

A= (b+y}y

C.1 Calculating Ur in circular channels.

Because the velocities were mearsue in two dimensions, U,
had to be calculated using the U, and Uy data. To get the
radial velocities, the following procedure had to be followed.

Refer to Fig C.2 for definitions
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Calculating Ur by first calculating Uy

e Z Points needed to convert cylindrical
[ coordinates to rectangular,
| Xl = c/{cosk)
I A Y=y1 - A
o I Y1l =15cosB
i’_ ______ N é ___________ Z = 15sinB
I C=depth of water below center line
| Ur=Uy/cosb
Iyt
Il v
l
|
IR
Figure C.2

First in calculating the U, component, the position of
the LDA measureing volume was located.

To accurately calculate the position and thus U,, a table
had to be set up. An example of such a table is shown in Table
C.1. This table was generated for a flow rate of 40.71
1/8(¥,=11.91).

To obtain a value of dy/dz/y, had to first obtain an
equation for the slope of the water surface. The slope of the
water surface was obtained by measuring the water surface

profile and using the least square method to generate an
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equation. After an equation had been generated, the first

derivative

(dy/dz)

at the end depth (Y.} was taken. Then

divided the first dirivative by Y,
Table C.1 Calculation Table 1

B -4;i Z Y dy/dz/y

5 14.94 1.3 11.84 0.0428

25 13.6 6.33 10.5 0.0483

35 12.3 8.6 9. 0.0511 {

55 8.6 12.28 5. 0.0589

Refer to Fig C.2 for Definitions
For B= 25 Degrees

X1=3.42 cm(See Figure C.2)

Distance Below Water Surface

Along R coordinate position = 6.58 cm
Y = 6.58*%cos 25 = 6.58 cm
Z =10 * sin 25 = 4.22 cm

Y = 11.19 and dy/dz/Y = 0.0455 by interpolation from Table C.1

Distance from Bottom of channel = 11.19 - 5.96 = 5.23 cm
dy/dz = 0.0455 * 5,23 = 0.238

Using the relationship of dy/dz = u,/U,

U, = 1.61 m/s (measured)
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Uy = 1.61 * 0,238 = 0.3804 m/s

To Calculate U,, use the following expression

U, = U,/ cos 25 = 0.419

For calculating the rest of the U, values used Eq C.3.

U, 1 3UR 1 aUe_o ¢.3
9z r R R 8

This equation was the continuity equation. Since U, and Uy were
measured, the components with those terms could be evaluated.
For each radial, the U. component was evaluated by the

following forward difference formula as shown in Eg C.4.

U, R,-U, R, ,=K+*R*AR c.4
- [Er'_r?_-‘ +1 E.Ué] C.5
dz R A8
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C.2 Check on Irrotationality in Circular Channels

Used two different sets of axis for measurements and to check

on irrotationality. Fig. C.3
shows the orientation of the
axis.

All analysis was done

using rectangular coordinates.

Circualr were

coordinates

converted to rectangular
coordinates with the help of

Qpro.

A sample of calculations for
below. The data is for Ye=11

Table C.2 for data used.

dv_0.209-0_
0.09

ox

du _

1.47-1.65

Axis used In
Axis used In Analysis
Measurements
N Z
yd X
v Y
Figure C.3

irrotationality are presented

91 and Q=40.71 1l/s. Refer to

=2.22

9Y 0.057-0.1147

d 1.62-1.67

=3.13

dz 0.0464-0.0688

=2.23

g6
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Ow_0.172-0

=1.19
dx 0.09 1.1

Ow_ 0.172-0.155 =0.51
d¥ 0.1147-0.1147 '

d 0.32-0.29 N
_— =0.7%
dz 0.0507-0.0087

Several other points at the same flow rate, and at different

flow rates were checked for irrotationality

C.3 Calculation of Pressure‘ head Field

For calculating pressure head values at the end depth section

+ the following procedure was followed.

(1) A position on the water éurface point was used as a
reference value since P/Y = 0 and z and U%?/2q were
known.

(2) Used Eq C.6 for calculating the piezometric head
for the entire end depth section out side the
boundry layer. The end depth sections piezometric
head were calculated with the use of Quattro Pro. a
sample of the output for a circular channel with Y

a

= 6.98 and R=5 degrees is shown in Table C.3 for
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Circular channels and Table C.4 for Trapezoidal

channels at Y_=11.91.

Table C.3 Sample Data for Calculated P/y values for Circular

channel
Um/s | Uth Ym szgg P/y+Z | P/ym
0.31 0.06 0.010 | 0.119 0.046‘ 0.036
0.40 0.05 0.020 {0.120 { 0.045 | 0.025
0.47 0.06 0.030 {0.116 | 0.049 | 0.019
5 11 1.31 0.53 0.06 0.040 | 0.109 | 0.056 | 0.016
5 10 1.26 0.54 0.06 0.069 { 0.096 | 0.06% [0

Table C.4 Sample Calculated P/y values for trapezoidal channel

U,({m/s) U, (m/s) -i;;n) U,/2g P/%¥ (m) "
1.81 0.022 0.005 0.165 0.069 "
1.73 0.10 0.03 0.153 0.056
’Il.ﬁ? 0.22 0.056 0.145 0.038
lll.so 0.26 0.07 0.135 0.03 |
1.52 0.35 0.115 0.124 0 I
1 I

99




C.4 Momentum.nnalysis With Calculated Pressure Data

for Circular Channel.

The same procedure was used in the momentum analysis as was
used with measured data. The only difference was in the method
for calculating the incremental areas. Refer to Figure C.4 for
definitions of areas used. For the particular case in

question, used data for the Flow Rate = 40.71 1/s and Ye=11.91

cm.
Definltlon of Areas
used to calculate
the momentum
Analysis
0.4 05 0507 gg 09
[ Water Line
3 13
Figure C.4
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A,=1/2R%68-(0.0310.031tan15) 0.5
A,=1/2r*0-(0.031%0.031tan30) *0.5-(0.031*0.031tan15) *0.5

A;=1/2r%0-(0.031%0.031tand5) *0.5-(0.031+0.031tan30) 0.5

When calculating the end depth pressure force, used equations
in section C.0. Data in Table C.3 was for calculating the

pressure force for Ye = 11.91.

Table C.5 Pressure Force Calculation

”_'A-(mz) Pave value (m) Pe (N)

||0.00281 0.035 0.9715
||0.00279 0.027 0.737
0.00281 0.031 0.86

|0.0189 0.011 1

— r— e~ — — . ——

For end depth section

P, = 3.56 N M, =pQVB = 63.50%1.03 = 65.41N

Vae™= 1.56 m/s (average velocity from laser measurements)
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For critical section, use standard formulas for praessure force

and momentum and calculation of area..

Y. = 15.88 cm
P. = 30.74 N M, = 42,40 N
T, = 73.12 T. = 72.52

C.5 Calculating Uy for Trapezoidal channel.

Followed the same procedure as was used in the circular Pipe.
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C.6 Checking Irrotaionality for Trapezoidal Channel

Used same procedure as was used for circular channels
Some sample calculations for ¥.=11.65 (Results shown in Table

E.1l)are listed below

Location:Y¥1/Y=0.5,x=0, z=0

du_1.66-1.55

=]1,11
3y 0.0 *

dv_0.20-0.0_

1
Ox 0.20

Location:Y¥1/Y¥=0.5,x=0, z=0

du_1.64-1.56

—-— =1.25
oz 0.64

Location:Y¥1/¥=0.5,x=0.0476,2=0.015-.03

8w_0.10-0.08 _

1.35
ox 0.015

Location:Y1/Y=0.3,x=0.05, z=0

dv_0.13-0.04 _

_ 1
dz 0.09

dw_0.15-0.08

—_——=].2
d¥Y 0.05825
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Other points were also checked and irrotationality was
confirmed. Continuity was also confirmed with several points.

One of those points is shown below.

du_1.615-1.415

=-4.44
dx 0.015-0.06
dy 0.034-0.058
Ow_  0.10-0.08 ~0.83

Y 0.0526-0.0286

If the resultants all three equations s are added up, the

result is 0.25. This value is close enocugh to zero to satisfy

continuity.
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Appendix D
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Uncertainty Analysis
Uncertainties in measured variables

Discharge using standard (ASME) V-notch Q #3%

Depth gauge Y +*0.1lmm
LDA measurements .V £0.5%
P/y +0.5mm
Trapezoidal positioning
Xx1mm
Y+0.1lmm
243mm
Circular Measurements
©+1 degree
r+2mm
Z+3mm
Calculated variables
Y/Y1l
([p/Y+2z)-2) from measured P/v data 5%
({p/Y+2]-2) from calculated P/y data *2.5%
Ur *5%
Uy (trapezoidal channel) +5%
o +2%
B *2%

Sample Calculations

In estimating the error for U,, the same procedure would apply
for U, since similar procedures were used,

U, is a Function of (U,,Y,dy/dz)

The uncertainty in U, » ¥ or dy/dz so neglect
Uncertainty in Y and X with average values
are Y+ 1% and X+5%

By the following ecquation uncertainty in dy/dz is determined

Wom] (L y2e( 5
W’\1(100)2”1(:10)2

Wrt5% for dy/dz and U,*5%
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Appendix E

Units for all Tables are as follows

(1) Locations(X,Y¥,Z) are in om.

(2) Velocities are in m/s

(3) P/y and manometer readings are in cm of water
(4) End depth elevations (Y1,Y¥Ymax) are in cm
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Table E.1 Results from laser Readings for Trapezoidal Channel
Ye=11.65 and 0=40.71 1/s, Probe at 90 degrees

|Y IX Uz Ux B/y
1.43 2.36 1.571 0.09 7.4
3.11 2.36 1.611 0.08 8.4
4.43 2.36 1.620 0.07 9.2
7.21 2.86 1.584 0.08 10.2
7.21 5.26 1.567 0.10 10.1
4.93 4.76 1.615 0.10 9.1
2.33 .86 1.597 0
4.63 -.64 1.580 0
6.58 -.14 1.576 0
3.48 -.14 1.598 0
1.99 ~.64 1.600 0
.33 ~.64 1.61 0
3.48 4,86 1.646 0.15 7.6
8.49 5.36 1.572 0.08 10.6
Pos2 3.0 c¢m from

_____!1___4__:_4%
8.49 5.36 1.56 0.07 11.4

l 6.48 4.86 1.556 0.08 10.7
4.94 6.16 1.534 0.08 10.1
3.08 4.56 1.550 0.09 9.4
2.29 5.56 1.531 0.11 9.1

[

Pos3 6.0 cm from ‘
[:]

2.29 5.96 1.415 0.09 10.8
5.59 6.26 1.448 0.09 11.4
8.18 5.36 1.513 0.01 12.1
9.03 5.36 1.5 0.08 12.4
.03 3.86 1.502 0.09 12.4
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Table E.1 C’ont (Probe at 45 degrees)

109

¥ X Uz Uy* P/y
6.66 8.76 1.483 0.41 9.8
7.24 6.26 1.562 0.36 10.3
3.98 6.26 1.551 0.34 8.5
1.38 6.86 1.23 0.24 6.7
5.94 8.56 1.477 0.36 9.4
7.33 10.16 1.468 0.39 9.9
9.59 9.86 1.474 0.36 11
9.7 12.76 1.414 0.36 11.4
9.63 13.86 1.366 0.38 11.4
8.59 10.86 1.46 0.37 10.7
7.93 12.86 1.367 0.37 10.4
4,44 7.56 1.515 0.37 8.7
4.88 5.56 1.57 0.37
4.33 8.36 1.44 0.36
7.56 8.36 1.474 0.29
1.83 7.36 1.564 0.36
4.03 9.16 1.552 0.44
6.29 9.86 1.47 0.35
3.27 8.16 1.509 0.36 7.

5.33 9.36 1.489 0.36 8.6

Pos2 _ —
5.08 5.36 1.513 0.27 0.1
4,05 8.26 1.419 0.3 10.3

7.34 7.66 1.438 0.34 10.9

8.54 12.16 1.416 0.31 11.6

6.99 10.16 1.456 0.33 10.8

Pos 3 - o

10.43 14.16 1.29 0.24 13.1




Table E.1 Probe at 45 degrees con’t

[10.87 8.36 1.441 0.26 12.9 |
7.23 3.16 1.505 0.25 12.1 _%
l4.54 3.76 1.486 0.23 11.4
4.98 5.56 1.43 0.21 11.5
Table E,2 Velocity at the critical section
{Y o X (P/y+z+V2/2qg) Uz __"
9.9 4.35 29.4 1.17
7.9 4.35 28.5 1.09
f4.9 4.35 27.5 1.00
1.9 4.35 25.9 0.829
l 0.4 4.35 24.8 0.686
.0 6.35 29.2 1.155
| 7.9 6.35 28.3 1.08
1 4.9 6.35 27.3 0.981
N 6.35 25.8 0.816
lo.a 6.35 25 0.714
i‘11.9 11.35 29 1.13
9.9 11.35 28.2 1.07
1 7.9 11.35 27 0.95
4.9 11.35 24.8 0.686
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Table E.3 Laser readings For Q=40.71 and Ye=11.91

Pos 1
thets  [{distance
From Uz &Jth
(Center (on]
o) 15 1.630 0070
] 1.746 0070
13 1743 0.070
12 1.710 0.070
11 1.640 - 0.070
10 1.610 0.070
25 15] 1580]  0.150]
14 17001 - 0170
13 1.690 0170
12 1,675 0170
11 1,652 0,170
10 1,625 0.180
35 15 1484 0200
14 1632 0,190
13 1610 0.200
12 1610 0200
- 11 1600 0.200
10 1.600 0.210
- 55 - 15 1,270 0.250
14 1.500 0.260
13 1.510 0.260
12 1.480 0,270
11 1.470 . 0.260
&0 15 1.370 0210
14 1,490 02
13 1.470 0.250
12 1,470 0240
11 1450 Q270
70 15 1800 02
14 1,400 0,200
13 1380 Q200
12 1 350 0240
75 15 1.130 0.170
14 1.340 0.190

Pos 2
theta cistance
From Uz Uth
Center (e
5 15 1370 Q000
44| 15751 oo0o
13 1640 0.000
12 1.620 § bt
i1 1.620 | bttt
10 1.610 | 4tit+
55 15 1.219 0.258
‘ 14 1430 0.200
13 1,450 | 4ttt
12 1,480 | bt
11 14
053
5 15 1200 0
14 1,400 0
13 14 0
1?2 1490 | b4t
11 1500 | statidt |
55 15 1.221 0.030
14 1.3680- 0.050
13 1.390 | 4tdtb ot
12 1.400 | $-tttbet
11 1.400 | Attt
Furthest
15 1,077 | 4ttt
14 1227 | -ttt
13 1,364 | 4ttt
12 1400 § 4basas
11 1420
10 1,420 § bttt
Actual
Readings
Ye V-notch Ye
31.9 40,71 11.91
Y1 3237 Y1 12.38
Y2 3291 Y2 12.92
Y3 3354 Y3 13.55
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Table £4 Laser Readings for Flow Rate 0=31.74 Us Ye=9.65

Pos 1
theta tance
X Uy*.
g 5] 1475 oo78]
14 1.620 0,080
13 16301  0.074
12 1600 0060
11 15701 0,080
10 1.550 0.067
25 151 1480l 0191
14 1.550 0158
13 1580 o162
12 1,540 0150
11 1.530 0.160
10 1.500 0160
35 15 1,250 0273
14} 1500 0220
13 1,500 0.220
12 1,480 0.230
13 1460 0290
10 1.430 0230
55 15 1.120 0.270
145 1.270 Q.250
14 1,340 0270
135] 1320
13 1.31¢ 0270
12 1.300 0.290
4725 lsurbace 1290
60 15 1.200
14 1.260 0.200
13 1.200 0,230
65 15 1012 0,180
14 10811 0120
*Measured at End Depth Section

Pos 2
[theta ds!an:z‘]
From Uy
Center (¢
10 15 1330
14 1,480 0.000
13 1.510 0.000
12 1520 f gt + 1
11 1,480 | 4+3pit
10 1.480 | 4ttt
85 15 110 _oo7R
145 1.250 0.086
14 1330 0072
135 1370 0.080
13 1.370
125 1,340
= 12 1.320
10 15 0.900 0
14 1,290 0000|
. 13 1340 0.000
12 1413 | 4t tpts
11 1,400 {4ttt
85 15 0964 0026
14.5 1.180 0.000
14 1218 0000
135 1270 0.000
13 1.320 0.000
Urthast
15 0.940 | 4ttt s
14 1.142 | bttt
i3 1190 Fgbimtsys
12 1.270 { ittt
11 1300 Vaaissay |
10 1,300 | 4ttt
Achral
Readings
Ye V-notch Ye Qcts)
308 37.1 265 1.121217
Y1 31,14 Y1 9.99
Y2 31.73 Y2 10.58
Y3 3255 Y3 114
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Table E.5 Pressure Field Data For Circular Pipes

[Flow Rate b4 Yl P/Y Yrax

S S — _— L
38.5 Center 0.6 11.61

1.6
2.6
3.6
5.6
|| 8.6

40° Line 4.6
' 5.6

6.6
7.6
8.6

I 38.3 Center 0.6
R 1.6
2.6
3.6
5.6
( 8.6

40° Line 4.6

6.6

’ 7.6 . _
8.6 .

[y
.
(Lo

W

N W

L ]
Wl JOo | o |-

= ot oo

11.11

*
W Wl oy [ [N oy [N W

Ol Rk IR IvIwliw|lwivIio|la |k |k Ik [o N

ll
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Table E6 sample Monometer Data

Monometer |Reading [Actual [Py Y1 Ymax
Readin
11 104 29 1.884 1.016; 11.03
12 9.7 2.2 2.2 0
13 104 2.9 1.884 1.016
14 123 4.8 1.1932 3.61
15 -7.5 -15.12 7.62
21 11.6 4.1 3.084 1.016 11.24
22 11.25 3.75 3.75 0
23 11.6 4.1 3.084 1.016
24 .13 55) 1.8932 3.61
25 16.2 8.7 1.08 7.62
31 13 5.5 4.484 1.016 11.34
32 12.8 5.3 5.3 0
33 13 5.5 4.484 1.016
34 14.5 7] 3.3932 3.61
35 16.5 9 1.38 7.62
41 15 7.5 6.484 1.016 11.57
42 14.7 7.2 7.2 0
43 15 7.5 6.484 1.016
44 16.3 88| 5.1932 3.61
45 17.2 9.7 _2.08 7.62
51 171 9.6 8.584 1.016 11.93
52 17 9.5 95 0
53 171 9.6 8.584 1.016
54 18 105! 6.8932 3.61
55 19.2 117 4.08 7.62
61 19.5 12| 10.984
62 19.2 11.7 11.7
63 19.5 121 10.984
64 19.8 123| 8.6932
65 204 129 5.28
72 20.8 133 133
75 21 135 5.88
82 21.5 14 14
85 21.9 144 6.78
92 22 145 14.5
95 22 145 6.88
el 221 14.6 14.6
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Table E.7 Pressure Field Measurements Far Trapezoldal Channel

X lz Y* y+Z 1

1.36 4.4 0.4 7.55 0.491

5 1 8.8

5.5 1.5 9.7

. B 2 104

7.5 3.5 11.9

9.5 5.5 13.5

11.5 7.5 14.9

13 9 15.65

6.36 4.4 0.4 7.6

5 1 9

5.5 1.5 9.7

5 2 10.5

7.5 3.5 12

9.5 55 13.5

11.5 751 14.85

13 9 15.7

8.36 6.5 2.5 9.3

"7 3 10.5

7.5 3.5 11.2

B 4 11.9

8.5 5.5 13.4

11.5 7.5 14.8

13 9 15.7

10.36 8.5 45| 11.1

9 5 12.2

9.5 55 12.9

10 6 13.5

11 7 14.4

11.5 7.5 14.8

13 9 15.7
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(plys2)r
1.95
3.2
4.1
4.8
6.3
7.9
9.3
10.05
2
3.4
4.1
4.9
6.4
7.9
9.25
10.1
37
4.9
5.6
6.3
7.8
9.2
10.1
5.5
6.6
7.3
7.9
8.8
9.2
10.1
-5.6



Table E.8 0=34.32 1/s and Ye=9.67 cm

Mon # Reading Actual Monometer IReading Actual "
Reading # Reading
||1 7.8 1.8 31 14 8 i
B 7.8 1.8 32 14 g
+3 7.8 1.8 33 14 8
4 7.8 1.8 34 14 8 '
5 7.8 1.8 35 14 8
6 7.8 1.8 36 14 8
7 37 14,2 8.2
8 10.4 4.4 38 14.6 8.6
9 11.4 5.4 39 15.4 9.4
10 14.0 8 40 16.6 10.6
11 9.5 3.5 41 16 10
12 9.5 3.5 42
rls 9.5 3.5 43 16 10
" 14 9.5 3.5 44
| 15 9.5 3.5 45 16 10
16 9.6 3.6 46 16 10
17 10.2 4.2 47 16 10
||18 11.4 5.4 48 16.8 10
Fls 12.4 6.4 49 16.8 10.8
20 15.2 9.2 50 17.2 11.2
r21 11.6 5.6 51 17.6 11.6
22 11.6 5.6 53 17.6 11.6 |
23 11.6 5.6 55 17.6 11.6
24 11.6 5.6 56 17.6 11.6
25 11.6 5.6 57 17.6 11.6
|26 10.8 4.8 58 17.6 11.6
| 27 12.0 6 59 17.6 11.6
"28 12.8 6.8 60 |18 _f12 ]
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Table E.8 Con't

[

13.2

ul

18.8

12.8 ]|

30

16

uz2

18.8

12.8 |
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