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ABSTRACT

Exploration of the Fractal Dimension

André Khalil

This thesis studies the theoretical and experimental determination of the frac-
tal dimension of different sets. It contains both pure and applied topics. After
establishing the ground rules, we look at ways to calculate the fractal dimension of
fractal interpolation functions and we end the study with an experiment consisting
in the estimation of the fractal dimension of two graphs representing the activities
of two companies at the Toronto Stock Exchange. In fact, we will see that there is a
certain cohesion between the fractal dimension of a cloud of points and the absolute

value of the slope of the regression line approximating the same cloud of points.
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CHAPTER 1: Fractal Dimension

After introducing our subject, we begin by elaborating on what a fractal is,.
where it lives (in what space). This is followed by the definition of the fractal
dimension and its theoretical and experimental determination. Chapter one ends

}
with an overview of the Hausdorff-Besicovitch fractal dimension.

I.1 What is a Fractal?

To many, geometry is the study of the objects and shapes that surround us in
nature. It is important to study the circle, the cylinder and the sphere as they are
figures that can look like a water puddle, a tree trunk, and the earth or the moon.

It is always a good idea to have a model of the objects that we are studying.

But in nature, the vast majority of forms and shapes do not look at all like a
cube, a cone, or an ellipse... Assuming that standard geometry studies objects of
one, two, and three dimensions, Fractal Geometry can be seen as an extension of the

standard geometry, where shapes and objects may have a non-integer dimension.

For example, we know that a straight line has dimension one, and that a plane
has dimension two. If we consider the line, or should we say, the figure, correspond-
ing to the boundary of a cloud, or the outline of a rock, the dimension of this figure
will be between one and two. If we zoom in very closely on this figure, it will never
be piecewise linear. So the dimension is more than one, and on the other hand, it

is less than two as it does not fill the whole area of the plane.

A figure such as the one mentioned above could be called a Fractal. We will



avoid attempting to give a formal definition of a fractal. If needed, we could define
a deterministic fractal. The space where fractals are found, H(X), is the collection
of the nonempty compact subsets of the complete metric space X. In order to
define a deterministic fractal, we could say that it is the fixed-point of a contraction
transformation on H(X) (with the Hausdorf metric). But by doing so, we would

require that the underlying metric space (X,d) be ‘geometrically simple’.

I assume the reader is familiar with basic analysis and topics such as compact-

ness, completeness, balls, metrics, etc...

1.2 Fractal Dimension

We consider the complete metric space (X,d) (in most cases considered in the
theory and for the experiment, X will denote the real plane 22 and 4 will represent
the Euclidean metric). Consider A € H(X). A is a nonempty compact subset of X.
Next, let B(z,¢) denote a closed ball of radius e > 0, centered at z € X. Finally, let

N(4,¢) be the smallest integer M such that

M
Ac | JB(zie)

i=0
(union of balls of radius €). So M(4,¢) is the least number of radius-¢ balls needed
to cover A. The existence of N(4,¢) is a consequence of the compactness of A (as

any cover of A by open sets will possess a finite subcover).

Definition 1.2.1 Let (X,d) be a metric space. Let A € H(X). D = D(A) is called

the Fractal Dimension of A, and

_ . In(N(4,¢€))
D=lm = 07e

when the limit exists.



So in the real plane with the Eucledian metric, if we consider a single a € X, so
that A = {a}, then D(A) = 0. Also, if (X,d) is a metric space and we have a,b,c€ X so
that A = {a,b,c}, then D(A) = 0. The fractal dimension of a closed line segment is 1.
After the following two theorems (I.2.1 and I.2.2), we will see other examples for 4,

and the tools given by the theorems will help us find D(A4).

In Def. 1.2.1, we can replace ¢, which can be seen as a continuous variable, by
a discrete variable ¢, = Cr", where C > 0, and in the case of the following theorem,

where 0 < r < 1.

Theorem 1.2.1 Let (X,d) be a metric space. Let A € H(X). Let ¢, = Cr", where

C>0,n=1,23,..If

e In(V(4, )
D= lm =t

then D = D(A).

Proof ([B]): Let us define a function f(¢) = max{en : €x < €}. S0 f(€) = €n_3, for

€n < € < €n—1. Assume that e <. Then
fle) <e< f(e)/r,
and
N(A, f(e)) 2 N(A,e) > N (A, f(e)/T).

(Note: In(z) is an increasing positive function of = for z > 1.) Then, we have

In(NM (4, f(e)/r)) . In(N(A €)) _ In(N(4, f(€)))
In(1/f(e)) = 1In(l/e) = In(r/f(e)).

Let us assume that A(4,¢) — o as € — 0; if not, then the theorem is true. (Setting

up the Sandwich Theorem of Calculus). From the right-hand side inequality, we

have;

. In(NV(4,f(€) _ . ImWN(4,e)) . In(NV(4,€r))
M) (e e In(r) + In(l/e)

3



In(NV(4,€)) _

= lim = D.

n—oo In(1/ey)
And from the left-hand side inequality, we have;

In(NV(4, f(€)/r)) _ . In(N(A€n1)) _ . In(NV(A,€n1))
B T In(l/fle) Jim In(1/en) = +ln(1/len_1) =
T In(N(A4,€,)) _
T TRy

So as € — 0, both the left-hand side and the right-hand side of the above inequalities

approach the same value, claimed in the theorem. End of proof.

The next theorem (the box-counting theorem) gives us a very practical method
to estimate the fractal dimension of a set. Instead of covering the set 4 with balls of '
radius e (from Def. 1.2.1), or radius Cr* (from Thm 1.2.1), we cover it with square

boxes of side length 1/2".

Theorem I1.2.2 Let A € H(R™), (BEuclidean Metric). Cover R™ by the mesh of
closed square boxes of side length 1/2". Let A (A) denote the number of boxes which

intersect the attractor A. If

L In(WNa(A))
D= lm ey

then D = D(A).
Proof: First, let us consider the following statements:
1. A circle of radius 1/2" intersects at most 4 squares of side length 1/2m-1.

2. (Generalization) A ball of radius 1/2" intersects at most 2™ boxes of side

length 1/27-1.

Statement 2 tells us that #balls > #guares | which gives us;

N(A,1/27) = 27 ™ N,_1(A).

4



Let us put a square in a circle (or a box in a ball). If we let = be the side length of

the box and r, the radius of the ball, then we have

(z/2)% + (z/2)? = r2 ,m=2,
(@/2)* + (2/2)* + (2/2)? = r* ym =3,
()
(2/2)% + (z/2)* + ... + (z/2)% = q(z/2)* = r? ,m=gq,

So if the dimension is m, we have;

m(z/2)? = 72, (2.2.1)
and
-2
r = \/.ﬁ.
If z < 2=, the box of side length z will fit inside a ball of radius . Thus we can say

Jm?
that N(4,1/2") < Nim)(4) for some k(n). What is k(n)? We can use equation (2.2.1).

in the following way: For a fixed n, what k(n) will satisfy

m(L22 ) < (12797

If we solve for k(n), we get
k(n) 2 (1/2)logom +n — 1.

Then,
2™™ n—l(A) SN(A’ 1/211) SNk(n)(A)a m,n= 112v37"'

and

27" Na-1(A) _ N(A,1/2%) _ Niwy(4)
on - on - on °

(Setting up the Sandwich Theorem). From the left hand side inequality, we have;

In(2~™) +In(Naa(4)) _ o

. ln(2"'"N _1(A)) T
Aim In(27) =4 TRy rmEh

5



And from the right-hand side inequality, we have;

- InWikmy(4)) . In(Nimy(4)) (@) In(Niny(4))
A T T2ny R T @) e k) L

Note that as n — co, we have £ _ 1, and therefore, &2 — 1, justifying the last

step. By the Sandwich Theorem we have the desired result. End of proof.

As an example, we can consider A = ‘Unit Square’ in the real plane. A is the
square of side length 1 located at coordinates {(0,0),(0,1),(1,0),(1,1)}. As n increases,
the side length of each box is getting smaller and smaller. In fact, each time n‘
increases by one, all the needed boxes to cover A get divided into 4 boxes of half
side length. So the number of boxes N,(A4) will always be 4. And {%g—} =2 (for any

n). Hence D(Unit Square) = 2.

Similarly, let us consider the Sierpinski triangle in the real plane. The Sierpinski
triangle (sometimes called the Sierpinski gasket) is a triangle that we divide into 4
smaller triangles, and we cut out the middle one (Fig. I.1). In this case, each time
n increases by one, only 3 out of a possible 4 covering square boxes are needed to
cover A. So N,(4) = 3*. And In(3")/In(2*) = In3/In2 (for any n). Hence D(Sierpinski

triangle) =In3/In2 ~ 1.58.

i g
2
A

R,

4
ZF

Bk

AN
o B B B

FIGURE 1.1: Sierpinski’s Gasket.

Y
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It is important to mention here that although the Box-Counting Theorem is set
up for square boxes of side length 1/2", using c¢/2", where c is a constant, will still
work. In Chapter IIl c= £ -5 ((E)nd - (S)tart) will measure an interval of time (in_

minutes).

Definition I.2.2 Two metrics d; and d; on a space X are equivalent if there

exist constants 0 < ¢; < ¢z < oo such that

c1dy(z,y) < da(z,y) < cadz(z,y), v(z,y) € X2

In the following theorem, we will see that metrically equivalent sets have the

same fractal dimension.

Theorem 1.2.3 Let (Xi1,d;) and (X2,d;) be metrically equivalent, and let 4 :
X; — X2 where 6 provides the equivalence of the spaces. Take A; € H(X;), and let-

D(A]) =D. If A = H(Al) then D(Ag) = D. That iS, D(A]) = D(Q(Al))

Proof: ([B]) As (X1,d1) and (X2,d2) are equivalent under 8, there exist positive

constants e; and e, such that
e1dz(0(x), 6(v)) < di(z,y) < eada(6(z), 0(y)) v,y € X1.
We may assume that e; < 1 < eq, giving;
©0@),00) < 2L oy e xi.

This implies that

8(B(z,€)) C B(f(x),e/er) vz € Xj. (2.3.1)

Now, considering N(A;,¢), we can find {z;,z2,...,zn8} C X1, where N = N(4,,¢), such
that the closed balls {B(z,,¢): n=1,2,...,N)} cover A;. It follows that {6(B(znr,€)) :n=

7



1,2,...,N} covers A,. But equation (2.3.1) implies that {B(6(z,),e/e1) : n = 1,2,..., N}
also covers A;. Hence;
N(A2a e/el) S N(Aly 6)1

so that when e < 1,

In(NM(Az,€/e1)) < In(N (A, ¢€))
In(1/¢) = In(l/e) °’

from which it follows that:

—  In(N(As,€)) T 0ln(J\f(A'z,e/o:zl)) < lim In(N(A;,¢€))

meo—p e ~ Wm0 =7 S e - DA

(There is no ‘sup’ on the right-hand side limit as D(A;) was assumed to exist, and
so lim and lim coincide.) Now iet us find an inequality in the opposite direction. By

altering the inequality given for the definition of equivalent spaces, we can say;
d1(07'(2),671 () < e2da(z,) Vz,y € Xa.
This tells us that
6~1(B(z,¢€)) € B(07(x), ex€)) Vz € Xo,

Hence;
N(Aly 625) S N(A21 E),
so that when ¢ < 1,

In(NV(A;1, eze)) < In(NV(42g,¢€))
In(1/¢€) =  In(l/e)

from which it follows that

. ln(N(A21 6)) . ln(N(A )626)) o ln(N(Alse)) _
bRz 25T haje B g T D

So we can combine our inequalities to obtain;

. In(NM(Az2,¢))
lim. 1n(1/z)

In(NV(Ag, €))

= D(A1) = Iime—o In(1/¢)

8



And finally;

D(As) = ?mw = D(4y).

—0  In(1/e)

Thus we get D(6(A;)) = D(4:). End of proof.

Let ¢ denote the Cantor set in [0,1]. A Cantor set can be seen as a set consisting
of repeatedly removed middle third line segments (Fig. 1.2). Let € denote the Cantor
set in [0,3]. Then ¢ and € are metrically equivalent, and Theorem I.1.3 says that

D(C) = D).

FIGURE 1.2: The Cantor Set.

We define the Manhattan metric in the following way: For any points z = (z1, z2)
and y = (v1,72) in the space X = R?, d(z,y) = |z; —y1|+|z2—y2|. When using this metric,
the path joining two points will consist only of horizontal and vertical lines, thus
justifying the name ‘Manhattan’ for the comparison of the path with the streets of

a city.

Theorem 1.2.3 says that for a set A € H(%?), if we let D(4) = D; in the Manhattan
metric, and D(A) = D, in the Euclidean metric, then as the two metrics are equiv-_
alent, D; = D;. To show that these metrics are equivalent, we can consider d; to
be the Manhattan metric and d; to be the Euclidean metric, and use, for instance,

9



c1 = 1/2 and c; =2 in definition 1.2.2.

1.3 The Theoretical Determination of the Fractal Di-

mension

Let us start this section by giving a broader definition of D(4), the fractal
dimension of A. This new definition provides a fractal dimension in some cases

where the previous definition makes no assertion.

Definition 1.3.1 Let (X,d) be a complete metric space. Let 4 € H(X). Let N(e)

be the smallest number of balls of radius ¢ needed to cover A. If

D=Tm In(NV(€))

Me=0Tn(1/8)
where ¢ € (0,¢), then D = D(A) and D is called the Fractal Dimension of A. (Note

that the limit has to exist for D to equal D(A).)

All of our theorems apply with either definition 1.2.1 or 1.3.1.. Indeed, one can
show that if a set has fractal dimension D according to definition 1.2.1 then it has the
same dimension according to definition 1.3.1.. We use the broader definition 1.3.1
in proving Theorem 1.3.1, which states an intuitively logical result, namely that a

set containing another set has higher fractal dimension than that of the contained

set.

Theorem I.3.1 Consider #™ with the Euclidean metric. Assume that for any

A € H(R™), D(A) exists. Let B € H(®™) be such that A ¢ B. Then D(4) < D(B). In

particular, 0 < D(A) < m.

Proof ([B]) (for m =2): We are in ®2. We can assume that A ¢ (Unit Square.).

10



This implies that
N(A4,¢) < N(Unit Square,e) Ve > 0.

We can also assume that e < 1. We get

0 < In(NV(A,¢€)) < In(NM(Unit Square,¢))

- In(l/e) — In(1/€)
and
— In(N(4,¢)) — In(N(Unit Square,e))
hme_.ow < lime_g In(i/e) =2.

So we have 0 < D(4) < 2.

Now if A,B € H(R?) (where A c B), then D(4) and D(B) both exist. So replacing

(Unit Square) by the set B will show that D(4) < D(B). End of proof.

Note on the above proof (of Thm 1.3.1): Going from m = 2 to m = k can be
done easily as the 2-dimensional unit square has the same characteristics as the

k-dimensional cube.

Theorem 1.3.2 Consider ®#™ with the Euclidean metric. Let 4, B € H(®™), and

let D(A) be defined as in Def. 1.2.1. Suppose D(B) < D(A). Then D(AuU B) = D(A).

Proof: ([B]) Let us consider the desired equality as two inequalities, and let us
get rid of the first part by saying that D(Au B) > D(A), which follows from Thm

1.3.1.

Part 2: (Show that D(A U B) < D(A)). V € >0, we have N (AU B,€) < N(A,€) + N(B,e).
This implies
In(N(A4,€) + N(B,¢)) <

In(NV(A U B, €))

D(A ] B) = limg_,o ln(l/e) < lime—.o ln(l/e) >
N(B.e
—  IN4,6)  — I+ 5E9)
< llmeqo—m;)— + llme~0W'

11



So,
In(1 + AN/(%:%)

In(1/e€)

We want to have the above Iim equal to 0. To do it, we want to show that;

D(AUB) < D(A) + me—o

lim N(B,€)

e—0+ N(4,€) <1

Notice that if we define the function g in the following way;

o0 = sy B

we can see that g is a decreasing function of the positive variable . So for a

sufficiently small € > 0,
In(NM(B,¢€))
= Th(t/e)
In(NV(B,¢)) _ In(N(A4,¢))
In(1/¢) < In(1/¢€)
In(N (B, €))
= WN(A,e) <

< D(4),

End of proof.

Consider a kiwi fruit. Try to picture the kiwi as two images; one is the fruit
itself, but without its little hairs, and the other image is the hairs only. Let A
represent the whole kiwi, let K, denote the image representing the ‘bald’ kiwi, and
let K, denote the image representing the ‘hairs’ of the kiwi. Theorem 1.3.2 says
that since the contribution to M(A,¢€) of the hairs, K, becomes exponentially small
compared to the contribution from the bald kiwi, K,. The condition D(K.) < D(Ky)
holds and D(A) = D(K, U K;) = D(K,) = D(bald kiwi). Other examples: consider a

peach and its tiny hairs, or a cactus and its needles.

We will soon see a very important and useful theorem (1.3.4) which provides the
fractal dimension of an important class of iterated function systems (IFS). Before

12



the theorem, we formally define what is an IFS, an attractor and the three classes

of IFS’s.

Definition 1.3.2 A (hyperbolic) iterated function system (IFS) consists of a
complete metric space (X,d) with a finite set of contraction mappings w, : X — X,

with respective contraction factors s,, for n=1,2,...,N.

The word hyperbolic is put in parenteses as it is sometimes dropped in practice.
The notation (from Barnsley) used to define an IFS is {X;wn,n = 1,..,N}, and
s = max{s, : n = 1,..., N} is the contraction factor for the IFS. Next we only state a

theorem from which we will define what is an attractor.

Theorem 1.3.3 Let {X;w,,n = 1,..., N} be a hyperbolic IFS with contractivity

factor s. Then the transformation W : H(X) — H(X) defined by
N
W(B) = | wn(B)
n=1

for all B € H(X), is a contraction mapping on the complete metric space (H(X), h(d))

with contractivity factor s. Its unique fixed-point, 4 € H(X), obeys

N
A=W(A) = | wn(4)

n=1

and is given by A = lim,—..o W°*(B) for any B € H(X).

Definition 1.3.3 The fixed-point A € H(X) described in the above theorem is

called the attractor of the IFS.

Here the word ‘attractor’ could be replaced by ‘deterministic fractal’. Dynamical’
systems often possess attractors, and when these are interesting, they are called

‘strange atractors’.

13



An IFS can be totally disconnected (e.g. the Cantor set), just-touching (e.g. the

Sierpinski triangle) or overlapping. An example of an overlapping IFS in ® is
wi(z) =z/3, wolr)==z/2+1/4.

Before seeing the formal definition, it is important to point out that the terminolo-
gies ‘totally disconnected’, ‘just-touching’ and ‘overlapping’ refer to the IFS itself,
and not the attractor of the IFS. The reason for this is that an attractor may satisfy
several different hyperbolic IFS’s. For example, one could easily come up with two

IFS’s, one just-touching, the other overlapping, and both having attractor, say, [0,1]. '

Definition 1.3.4 Let {X;w;,...,wy} be a hyperbolic IFS. The code space associ-
ated with the IFS, (£,dc), is defined to be the code space on N symbols {1,2,..., N},

with the metric dc given by

de(w,0) = Z IN+10)':|’ Vw,o € L.

Definition I.3.5 Let {X;w,,n =1,2,..., N} be a hyperbolic IFS with associated

code space . For each ¢ € =, n € N, and z € X, consider the continuous and onto
function ¢: & — A defined by

#(o,n, &) = Wg, OWe, ©..Wg, (Z)
where

¢(o) = lim ¢(o,n,z)
exists, belongs to 4, and is independent of z € X. An address of a point a € A is any
member of the set
¢~ (A) = {weT: p(w) =a}.

The IFS is said to be totally disconnected if each point of its attractor possesses a
unique address. The IFS is said to be just-touching if it is not totally disconected
and yet, its attractor contains an open set O such that

14



(1) wi(0) Nw;(0) = 0 Vi,j €{1,2,...,N}, i #j;
(2) UL, limw;(0) C O.

An IFS whose attractor obeys (1) and (2) is said to obey the open set condition.

The IFS is said to be overlapping if it is neither just-touching nor disconnected.

Theorem 1.3.4 Let {®™;w,...,wy} be a hyperbolic IFS, and let A4 denote its
attractor. For n=1,.., N, w, is a similitude of scaling factor s,,. If the IFS is totally
disconnected or just-touching, then the attractor has fractal dimension D(A), which

is given by the unique solution of

N
Z IsnID(A) =1,
n=1
where D(A) € [0, m]. If the IFS is overlapping then D(A) < D’, where D’ is the solution.
of
N ’
Z |3ﬂ|D =1,
n=1

and D' € [0, 0).

Proof: There are two parts to this proof. The first part is concerned with an
IFS that is just-touching or totally disconnected. We will omit the first part as it
is well taken care of in the proof of theorem I1.5.3. ([F]). So here, we will assume

the first part and concern ourselves only with the second part, which is about the

overlapping IFS.

Let D’ satisfy the following equation;
N ’
> lsal®, D' € [0,c0). (3.4.1)
n=1

For any set E, we write E;, . ;, = w;, o...ow;, (E).
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Let Ji denote the set of all k-term sequences (i1, ..., ix), with 1 < 4; < N. By keeping
in mind that we are dealing with an overlapping IFS, and by using A > UY_, w.(4)

repeatedly, it follows that;
AD U Ai s
Ji

Since the mapping w;, o ... o w;, is a similitude of scaling factor s;,...s;,, then;

ZlAil-nik'D, < Z(sil'“sik)DIlAlDl = (Z -95')--'(2 Sﬁl)lA,D’ = IAID’. (342)
i I i i

The above inequality is true by equation (3.4.1). This implies that there exists a

D(A) < D' such that inequality (3.4.2) becomes an equality. And therefore,

N
> fsalP =1, D(A)< D'

n=1

End of proof.

Consider Sierpinski’s Triangle on the real plane. It is the attractor of a just-
touching IFS of three similitudes; w,(z,y) = (z/2,¥/2), wa(z,y) = (z/2 + 1/2,y/2), and
ws(z,y) = (/2 + 1/4,y/2 + 1/2). The three scaling factors are equal, and s; = s; =
s3 = 1/2. Using Thm 1.3.4, we have (1/2)? + (1/2)? + (1/2)° = 1, which means that

(1/2)P = 1/3, and thus, D =1n3/In2 ~ 1.58.

Similarly, if we consider the Cantor set on [0,1], its two similitudes are w;(z) =
z/3, and we(z) = z/3 + 1/3. The two scaling factors are equal; s; = s; = 1/3. Again,
using Thm 1.3.4, we have (1/3)? + (1/3)? = 1, which means that (1/3)° = 1/2, and

thus, D =1n2/1n3 =~ 0.63.

If we consider the overlapping IFS given as an example above (p. 14), we see
that the application of the Theorem 1.3.4 is not so easy. Indeed, we would get
(1/3)P" + (1/2)P" = 1, where D’ is the upper bound for the fractal dimension, i.e.
D(A) < D'. Solving for D’ here would be difficult.

16



I.4 The Experimental Determination of the Fractal Di-

mension

A topic that I have found interesting while doing some research, is that practi-
cally everyone agrees on the following fact: When associating a fractal dimension
with a certain set of data, the method used to obtain D is not unique. And so far,
no general conjecture has been set up for it. It is therefore customary to specify

with the data, how its fractal dimension was calculated.

In our application of the box-counting theorem for the experiment of chapter
ITI, we actually use rectangles. The data we use will fit perfectly in the rectangles,

as it would in square boxes. More on that in section III.1.

The fractal dimension is calculated by associating it with the slope of the re-
gression line that approximates the log-log plot of (1/e,) and N,(4) (In(1/e,) on the
z-axis and In(M,(A)) on the y-axis). In our case, we will see later that ¢, = (E - §)/2",
where S is the minute at which the experiment starts, and E is the minute at which

the experiment ends. The slope is approximated by using the least-squares method.

As an example, let us consider the results of a fictional experiment (Table

I.1). For simplicity, we will assume that S = 0 and £ = 1. Then, ¢, = 1/2™.

17



n eps, N‘(A) In(hi‘(A)} In(1!epsn)
—

0 1 1 0 0

1 112 3 1.10 0.69

2 114 7 1.95 138

3 118 10 2.30 2.08

4 1116 19 2.94 2.77

5 1132 33 3.50 3.46

6 1164 58 4.06 4.16

TABLE I1.1: Sample results as an example.

As we can see in Figure 1.3, the slope of the regression line that approximates

the points given by the log-log plot is where we get our fractal dimension.

Now in the experiment of chapter III, in order to get a better regression line
approximation, we actually throw out the first dot (the dot located at the origin of
the graph in Figure I.3). What does this dot represent? It is associated with the first
(and thus unique) covering box. It represents the existence of the set being covered.
Indeed, if this dot were not at the origin, it would mean that the contribution to

N(A,¢), for when e is still its largest, is null. So if we have nothing to cover with our

biggest box, why continue and try to cover A with smaller boxes.

T

Log(Nn)

Log (27N H(E-S) ———I>w=

FIGURE 1.3: Slope of Regression = Fractal Dimension.
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Furthermore, this first dot would fit perfectly in a linear function whose y-
intercept is 0, if only for all of the next smaller ¢’s, all the covering boxes would’
actually be needed to cover a piece of A. For our second ¢, (i.e., when the original
covering box is subdivided into 4 smaller boxes), it is still possible for A to be
covered by the 4 boxes. However after the next subdivision, with 16 boxes, it is
quite unlikely that all of the 16 boxes would be needed to cover A. So considering
the first dot or not certainly has an effect on the slope of the regression line, and

thus on the fractal dimension.
I.5 The Hausdorfl-Besicovitch (H-B) Fractal Dimension

The H-B dimension is much more complex and subtle in its definition than that
of the fractal dimension seen above. Its importance is revealed when comparing the

sizes of sets that have the same fractal dimension.

We will need the following notations and specifications to understand the defi-

nitions and theorems in the present section.
— X = (R™,d), m € 2+, d-Euclidean metric.
— A c ®#™ is bounded.
— diam(A) = sup, 44 d(z,y). We will also denote the diameter of a set A by |A].
For0<e<ocoand 0<p< oo, 4; C A and 4 C U2, A

- M(A,p, E) = inf,-=1,2,,,,{zf;1 (diam(A,))P tAC Uzoil A,-,dia.m(Ai) < 6}
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—Convention: (diam(A;))° =0 when A4; = 0. M(a,p,¢) € [0, c0).
— M(a,p) = sup, o M(A,p,e€) (= Vp € [0,00), M(a,p) € [0,00])

Definition I.5.1 Let m be a positive integer, and let A be defined as above. For

each p € [0,00), M(A,p) is called the Hausdorff p-dimensional measure of A.

As we will see in the proof of Thm 1.5.1, M (A4, p,¢) is a nonincreasing function of .

¢. In the same proof, we see that M(A,p) is a nonincreasing function of p € [0, ).

Consider again the Cantor set C in [0,1] and the Sierpinski triangle A. Then

M(C,0) = 00, M(C,1) =0 and M(A,1) = 00, M(A,2) = 0.

M(A,p) is quite remarkable as its range can consist of only one, two or three
values, i.e., 0, oo, and a finite positive number. So for ¢ and A, the ‘shift’ from oo
to 0 is made respectively between 0 and 1, and between 1 and 2 (Fig. 1.4). And if p

is an integer, M(A,p) is simply the Lebesgue measure.
INFINITY

T INFINITY
M(o,p) T

MCp)

0 P —» 158 2

0 [ J—— 0.63

FIGURE 1.4: Graphs of M(A,p) and M(C,p).
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Theorem I.5.1 Let m be a positive integer, and let A be a bounded set in R2.
For p € [0,0), there exists a unique real number Dy € [0,m] such that M(A,p) = o if '

p< Dy and M(A,p)=0 if p> Dy.

Proof ([FA]): First, we will note that M(4,p) is a nonincreasing function as p

goes from 0 to co. From there, we will go through the steps that complete the proof.

Assuming e to be less than 1, it follows that e? will decrease (go to 0) as p increases
(goes to oo). Let us consider the following important fact which helps us to obtain

this above result;

lim lim e? =1,
e—0+ p—0

and

lim lim €? =0.
€—0+ p—o0

Now consider p < p,. We claim that
M(A,p,e) > M(A,po,€)e? .
Proof (of Claim): diam(A;) <e.
i(diam(Ai))”" = io:(diam(A,'))’”""’+p < ie”""’(diam(ai))” = PP i(diam(ai))P.
=1 i=1 i=1 i=1
Take the infima over all possible coverings {A;} of both sides of the above inequality

to obtain

M(A,po,€) < 2 PM(A,p,e).

End of proof (of Claim).

Using this claim, we can say that if M(4,p,) > 0, then M(A,p) = co. Thus we conclude:

there exists a unique real number Dy such that;

M(A,p)=oo ,0-<_p<DH,
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and

M(A,p)=0 Dy <p<oo.

End of proof.

Definition I1.5.2 In the above theorem (Thm I.5.1), the real number Dy is

called the Hausdorff-Besicovitch (H-B) Dimension of A. It is also denoted by Dy (A).

This next theorem states that the H-B dimension of a set is not greater than

the fractal dimension of the same set.

Theorem 1.5.2 Let m be a positive integer, and let A be a set in ®™. D(A)
represents the fractal dimension of A and Dy (A) represents the H-B dimension of A.

Then 0 < Dy(A) < D(A) < m.

Proof: From Def. 1.2.1, D(A) = lim_o ,‘%}% Fix e> 0.

D(A)In(1/¢) = In{N¢)

L
DA

N
= 1= NP = 37 D)

i=l1

(N = N.). Let {B; : i =1,..,N} represent the covering boxes used in the box-

= Ne

counting algorithm (and keep in mind that diam(B;) < ¢), and let {4;:i=1,..,N}
represent those sets used as a covering for the Hausdorff measure. Choose A; such
that 4, = B, N A (A; is the intersection of each box with the set A). We have
diam(4;) < diam(B;). It follows that with this ¢, M(4, D(A),¢) < oo (since ¢ must be
less than or equal to the diameter of this choice of A;). Next, as D(A) exists, this

must be true for every ¢, and we get;

lim > (diam(A:))? <1,

i=1
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for p = D(4). So we have Dy(A) = D(A), except when the above sum is 0, in which.

case Dy (A) < D(A). End of proof.

Our next theorem (Thm 1.5.3) is an extension of Thm 1.3.4. It mentions that for
a totally disconnected or just-touching IFS, the fractal and Hausdorff dimensions

coincide.

Theorem 1.5.3 Let m be a positive integer. Let {R™;w,,...,wny} be a hyperbolic
IF'S, and let A denote its attractor. For n = 1,..., N, w, is a similitude of scaling factor
sn. If the IFS is totally disconnected or just-touching, then D(A) = Dy (A) = D, where

D is given by the unique solution of

N
> lsal? =1,

n=1

where D(A) € [0,m]. If D > 0, then the Hausdorff D-dimensional measure M (A, Dy (A))

is a positive real number.

Before we discuss the proof of this theorem (it is by far the most complex proof
encountered in this paper), we state and prove a small lemma that will be used near
the end of the proof of the theorem. Also in the proof of this theorem, we use the

Mass Distribution Principle. It is stated and proved after the Lemima.

Lemma 1.5.3 Let {V;} be a collection of disjoint open subsets of ™ such that
each V; contains a ball of radius e, and is contained in a ball of radius asr. Then.

any ball B of radius r intersects at most (1 + 2az)™a7™ of the closures V;.

Proof (of Lemma): ([F]) If V; meets B, then V; is contained in the ball concentric

with B of radius (1 + 2a3)r.
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Suppose that g of the sets V; intersect B. Then, summing the volumes of the

corresponding interior balls of radii a;r, it follows that
g(a1r)™ < (1 + 2a2)™r™,
giving;
g < (14 2a2)™r™(ayr)™™ = (1 + 2a2)"r™ ™.

End of proof (of Lemma).

Definition I.5.3 A measure x on a bounded subset of ®” for which 0 < u(®") < oo

will be called a mass distribution.

Mass Distribution Principle ([F]) Let x be a mass distribution on 4, and

suppose that for some D, there are numbers ¢ > 0, and ¢ > 0, such that
wU) < cUf?

for all sets U with |U| < e. Then M(A,D) > u(A)/c, and

D < Dy(A) < D(A) < D(4),

where D(A) and D(A) represent respectively the limit inf and the limit sup from the

definition of the fractal dimension of A.

Proof (of Mass Dist. Princ.): If {U;} is any cover of 4, then
0 < pu(A) = p(Lils) < Z.U'(Ui) < Clei!s-

Taking infima, M (A, D,¢) > u(A)/c if € is small enough, so M(A,D) > u(A)/c. End of

proof (of Mass Dist. Princ.).

Proof (of Theorem 1.5.3): ([F]) Let D satisfy the following equation;

N
D lsal? =1, D € [0,m]. (5.3.1)

n=1
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Let J, denote the set of all k-term sequences (iy,...,ix), with 1 < i; < N. It follows, by

using A4 = U, w.(A) repeatedly, that;

A=A, it
Ji

We check that these covers (above) of A provide a suitable upper estimate for the

Hausdorff measure.

Since the mapping w;, o ... ow;, is a similitude of scaling factor s;,...s;,, then;

ST 1A adP =Y (sis0)PIAIP = (D sP)- (D sRIAIP = AP,
Jie Ji 1) ik

The above is true by equation (5.3.1). For any ¢ > 0, we may choose k such that
|Ai,..i.] < (max;s;)* < e, so M(A,Du(A),€) < |A|? and hence M(4,Dy(A4)) < |AIP. (We

have the upper estimate.)

‘We now check for the lower estimate. This task is more awkward...

Let I be the set of all infinite sequences I = {(i1,i2,43,...) : 1 < i; < N}, and let

L. i = {{(81y 1%k, Qr41, ) : 1 < g; < N} be the cylinder consisting of these sequences

in I with initial terms (é1,...,%)-

We may put a mass distribution x on I such that
wl(Liy,.i) = (8, 80) P

Since (si,...s0)°2 = SN (siy508:) 2, L€, p(liy,..in) = iy bl ini)» it follows that u
is indeed a mass distribution on subsets of I with u(I) =1.
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Now that we have a mass distribution x on I, we may transfer it to a mass distribu-
tion 2 on A in a natural way by defining a(E) = p{(i1,42,43, ...) : Zi, 4,,.. € E} for subsets

E of A. (Note: X;, ... = Nie; Aiy,....in-) It can be checked that i(4) = 1.
We show that i satisfies the conditions of the Mass Distribution Principle.

Let V be an open set satisfying: V > U~ w:(V) (a disjoint union), V is nonempty

and bounded.

Let V denote the closure of the open set V. Since V > W(V) = UL, wi(V), the
decreasing sequence of iterates W*(V) converges to A. (N, W*(H) = A for any set

Hc®™.)

In particular, V > 4, and Vi, i, D 4;,,..: for each finite sequence (is, ..., ix)-

with diameters comparable with that of B and with closures intersecting AN B.

We curtail each infinite sequence (iy,1s,...) € I after the first term i, for which
(min s;)r < 5;,8i,..5i, L7 (5.3.2)

and let Q denote the finite set of all (finite) sequences obtained in this way. Then, for

every infinite sequence (i,,4z,...) € I, there is exactly one value of k£ with (i1,...,4x) € Q.

Since W, ..., Vv are disjoint, so are Vi, . i1, Viy,....i,~ fOr €ach (iy,...,i). Using this
in a nested way, it follows that the collection of open sets {V;,,. ..., : (41,...,3x) € Q} 18
disjoint.
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Similarly,

AcC UAi,,...,ik C UVH ..... Th
Q Q

We now choose a; and a; so that V contains a ball of radius a; and is contained in
a ball of radius a,. Then, for (i1,...,ix) € Q, the set V;,,...; contains a ball of radius
si,...8i,a1, and therefore, it also contains one of radius (min; s;)a;r and is contained in

a ball of radius s;,...s;, a2, and hence, in a ball of radius a,r.

By the above Lemma (1.5.3), there are at most ¢ = (1+2a2)™a; ™ (min; s;)~™ sequences.
in Q. Then
AB) = A(A[)B) < pl(i1i2,) : @i i, € A[)BY < pf{U it}
Q1

So a(B) < u{Ug, %5} since, if z;, 4, .. € AN B c Up, V,....i., then there is an integer

k such that (i,...,ix) € @;. Thus,

["(B) < Z/‘L(Iil ..... ik) = Z(sil“'sik)u < Z"‘D < TDq
ch Q) 2]

(using equation (5.3.2)).

Since any set U is contained in a ball of radius |U|, we have a(U) < |U|Pgq, so the Mass

Distribution Principle gives;

M(A,Du(A)) 297" >0, & D(A)=D.

If Q@ is any set of infinite sequences such that for every (i;,12,...) € I, there is exactly

one integer & with (iy,...,ix) € Q. It follows inductively that

D (si85,)° = 1.

Q
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Thus if @ is chosen as in equation (5.3.2), @ contains at most (min;s;)"Pr=? se-

quences.
For each sequence (iy,...,ix) in @, we have

|‘;2| ..... ikl = Sqy ---Si,,|V| < T‘lVl,

so A may be covered by (min; s;)~Pr—P2 sets of diameter r|V| (vr < 1).

Now D(4) = Tﬁeﬂo%"ﬁiﬂ, where N,(A) is the smallest number of sets of diameter at

most € that cover A.

=D(A) < D. Since the Hausdorff dimension is also D, this completes the proof. End

of proof (of theorem 1.5.3)

When considering two sets of different fractal dimension, the set with the higher
fractal dimension is called the ‘larger’ one. For two fractals that have the same
fractal dimension, we can still differentiate them with the aid of the Hausdorff

measure. The larger M(A, Dy(A)), the larger the fractal.
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CHAPTER I1I: Fractal Interpolation

In this chapter, we talk about a function that interpolates a certain set of
data. This function is also the attractor of a specific hyperbolic IFS. A fractal
interpolation function (F.I.F.) (defined below), has a graph that can be used to
approximate non-regular shapes such as; top of clouds, river beds, horizons over

forests or mountains, etc... The graph of the function (F.L.F.) can be made close to

the data in the Hausdorff metric.

Theorem I1.3.1 gives a surprisingly neat way to calculate the fractal dimension

of a F.ILF.. We will see that this gets even better if the points over which the

function is interpolating are equally spaced.

The chapter ends after introducing the concept of the hidden variable. It is a
generalization of the scaling factors. As the scaling factors, hidden variables are

used to adjust the graph of the F.I.F., but they offer more flexibility.
I1.1 Applications for Fractal Functions.

Let us consider the line segment representing a river drawn on a map. A F.L.F.
will interpolate coordinates at different points on the line. By looking at the map.
and at the graph of the F.I.F., we can play with the scaling factors (defined below)
to adjust how the graph of the F.L.F. behaves between two interpolation points until

it ressembles the river drawn on the map.
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II.2 Fractal Interpolation Functions (FIF’s)

We consider a collection of data of the form: {(z:, F;) € ®2,i = 0,1,..., N}, where

To<T1 <..< ZINn.

Definition I1.2.1 An interpolation function corresponding to the above set of-
data is a continuous function f: [zy,zy] — R such that f(z;) = F; for i = 1,2,...,N. The
points (z;, F;) are called the interpolation points. So f interpolates the data, and the

graph of f passes through the interpolation points.

As an example, consider the function f(z) =1+=z. f is an interpolation function

for the points {(0,1),(1,2)}. Consider w; and ws;

w (:r:)___( z/2 ) w (x)_((x+1)/2)
"\ y+1)/2)" Ny \w+2)/2 )"
The graph of the attractor of the IFS corresponding to these two similitudes is

exactly the straight line joining the points (0,1) to (1,2), i.e., the graph of f(z) over

the interval [0,1].

More generally, we can write (and this is the notation used in our next theorem

(I1.2.1)):

Tu—Tn—1 0 INTn—1—T0Tn
x TN —Zo T N —ZT0
Wn ( ) =\ Fu—=Fu_ —d (Fn—Fu) d . ( ) + | znvFu_1—zuFu —d (znFo—zoFn)
y TN —To nzN -0 n y TN—T n TN —To

or, to simplify;
z\ _(a. O T €n
w"(y)—(cn dn)<y)+(fn>’

where
In — Tn-1 INZn—1 — Tndo
ap = "=, e = —nmt WO
IN — 0 TN — To
o = Fp — Foey — dn(Fn — Fo) fo= TnFno1 —Tofn (znFo — z0Fn)
TN — Zo ’ " TN — To " zn-=z0
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Here, d, is called the vertical scaling factor, where 0 < d, <1 and n =1,2,..., N.
d. can be seen as a ‘distortion knob’. If we are trying to approximate say, a sample
of the boundary of a lake, the graph corresponding to the w,’s will definitely go
through the interpolation points, but it is the choice of the scaling factors that"
determines where, or rather how, the line representing the boundary of the lake
behaves between two interpolation points. If d, = 0, then the F.LLF. is simply a

piecewise linear interpolation function.

Note that a similitude w, (described above) does not necessarily have to be a

contraction, even though |d.| < 1.

These next two theorems establish the theoretical justifications for the above

descriptions.

Theorem I1.2.1 Let N be a positive integer (> 1). Let {R?;w,,n = 1,..., N} denote
the IFS defined above, associated with the data set {(zn,F.) :n=1,..,N}. Let the
vertical scaling factor d,, obey 0 < d, < 1, for n=1,...,N. Then there is a metric 4 on
M2, equivalent to the Euclidean metric, such that the IFS is hyperbolic with respect
to d. In particular, there is a unique nonempty compact set G € ®2 such that

N
G=|Jwn(G)
n=1

Proof: ([B]) Let us define a metric d on %2 by;
d((z1,1), (z2,y2)) = |71 — 22| + Oly1 — 2!, 6 e Rt

(6 is defined below.) (R?,d) is equivalent to (%2, Euclidean). For n € {1,2,..., N}, let

@n,Cn,en and f, be defined as above (bottom of p.30).

= d(wn(xlyyl))wn(x27y2)) =
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d((anzl + en,cnT1 + dny1 + fn)a (anm2 + en,CnT2 + dny2 + fn)) =
an|z1 — T2| + Olen(zr — x2) +dn(yr —12)| <
(lan| + Blen|)lz1 — z2| + 8ldnllyr — vol.

Note that |a,| = Z2=22=1l <1 as N > 2. Choose

_min{(2—|a,|):n=1,2,..,N}
T max{2|ca|:n=1,2,...,N}

and if all of the ¢,’s are 0, then simply choose ¢ = 1.
= d(wn(z1,91), wn(T2,92)) < (lan| + Olcn|)|z1 — z2| + 0]ldn|ly1 — y2| <
alzy — z2| + 06|y1 — y2| < max{a,8}d((z1,%1), (z2,y2)),

where a = 1+a, — (1/2) max{|ap|n = 1,2,...,N} {a < 1),

and § = max{|d.| : n=1,2,..,N} (6 < 1). As both a and 6§ are < 1, the IFS is hyperbolic.

End of proof.

Theorem II.2.2 Let N be a positive integer (> 1). Let {R?%wn,n =1, ..., N} denote
the same IFS defined above, associated with the data set {(z,.,F.) : » = 1,...,N}.
Let the vertical scaling factor d, obey 0 < d,, < 1, for n = 1,...,N, so that the IFS
is hyperbolic. Let G denote the attractor of the IFS. Then G is the graph of a
continuous function f : [ze,zn] — R, Which interpolates the data {(z;, Fi):i=1,...,N}.
That is,

G = {(z, f(2)) : = € [zo,zn]},
where

f(z:)=F;, i=0,1,...,N.

Proof: ([B]) Let F denote the set of continuous functions

[ lzo,zn] = R,s.t. f(xo) = Fo & f(zn) = Fn.
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Define a metric d on F by;
d(f,9) = max{|f(z) — g(z)| : = € [0, zN]} VS, gEF.
Claim #1: (F,d) is a complete metric space. (I think it’s a good idea to prove this
fact as it uses a good basis of analysis.)
Proof (of Claim #1): First we can prove that (F,d) is a metric space.
Axiom 1: d(f,g) > 0 as it is the max of a set of nonnegative numbers. Also, if
f(z) = g(z) Vz € [z0,zN],
= hax If(fb‘) g(z)|=0, fgeF
Conversely, the above max is equal to 0 only if |f(z) — g(z)| = 0 Vz € [zo, zn].

= f(z) = g(z) Vz € [zo,zn]

Axiom 2 This part is obvious as |f(z) — g(z)| = |g(z) — f(z)| Yz € [xg, zn]-

Axiom 3 Let f, g, h € F. For any z, € [zo,zn], We use the triangle inequality to say;
[f(z1) = h(21)] < |f(21) = g(z1)| + |g(zx1) — h(z1)]
max |f(z) — g(z)| + sepax Ig(x) h(z)|

~ z€lzn,zN]

=d(f,g) +d(g,h).
So, d(f,g) +d(g,h) is an upper bound for the set
S = {|f(z1) — h(z1)] : 21 € [x0,zN]}

=d(f,g) +d(g,h) > Joax ]S= d(f,h)
z€[za, TN

and the 3rd axiom is proved.
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Now that we know that (F,d) is a metric space, we can prove that it is a complete

metric space:
Consider {f.}, (f» € F) a sequence of real-valued functions defined on [z, zx]. Now
suppose we only consider sequences {f.} which are uniformly Cauchy, i.e.,

Ve > 0,3Ns.t. |fo(z) — fm(z)| <€ Ym,n>=N & Vzé& [zg,zn]

To show: {f.} converges uniformly.

Part A — Show that {f,} is bounded. Fix ¢ > 0. 3N such that m,n,> N
= |fa(z) — frm(z)| <€ (Vz € [zo,ZnN])

So for any n > N, |fa(z) — fr(2)| <k,
= |fal2)| < €+ |fn(2)] (Vz € [z, zn])

and

[fa(2)] < max{{fal, [fal s | fualse + [ ]} (Vz € [zo, zN])-

Thus, the sequence is bounded.

Part B — Construct a monotonic sequence out of {f,}. For each m, let S,, denote
the set of members of the sequence of functions {f,}, from the m!* stage onwards;
Sm = {fn(z): n2>2m}

Let gm(z) = sup {fa(z): n 2 m} = sup, Sm.
Sm+1 C Sy = s:p.S’m.H < Sl;p Sm.

Thus, {g} is monotonic and decreasing. Also, gm(z) > fm(z), and S; is bounded

below. Therefore, so is {gm}. Say {gm} — . (The sequence {g.,} converges to l.)
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Part C — Show that {f.} also converges to I. Given € > 0, 3 N; s.t. |fm — fnl < €,
m,n > Ni, and 3N; s.t. |l —gm| <€, m > N,. Let N = max{N;, N2}. gy — € is not an

upper bound of Sy = {fa(z) : n > N}
= 3IM =2 N st fu(z) >gn(z) —e & far(z) < gy ()
since gy is an upper bound for Sy. Now vn > N,
|fo~U=I|fo—Ffm+ frr —gn + 98 = U S | fno — faa] + 1 fae — gnrl + g — 1] < 3e.

= {fa} — I. End of proof (of Claim #1).

Let an,cn,en, f» be defined as before. Define a mapping T : F — F by;
(TF)(z) = enl7H ) + dnf(71(2)) + fn T € [@n-1,Tn),n=1,2,...,N.
ln @ [To, TN] = [n—1,7x] is the invertible transformation
In(z) = anz + €n.

1. We verify that T does indeed take F into itself. Let f € F. Then we see

that

(T£)(wo) = arlT (o) +d1f(IT (0)) + fu = c120 + d1 f(T0) + fn = c1Z0 + d1Fp + fr = Fo
and,

(TH)(zn) = enly (an) + dn fUR @) + fv = enan +dn f(an) + fv = enan + dnFi.

= The function (Tf)(x) obeys the endpoint conditions.
Claim #2: (Tf)(z) is continuous on [z,-1,z,], for n =1,2,...,N.

Proof (of Claim #2): ([B]) Let us fix an € > 0. We have to show that 35 >

0 st |lz—yl <6= [(Tf)(z) = (THW)I <€ 7,y,€ [Tn-1,Zn].

(TF)(x) = caly (z) + dn f(I71(2)) + fn
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where [71(z) = (x—en)/an 8S In(T) = anT+en. an,cn,dn,en, and f, are all fixed constants.
So I,(z) and {;!(z) are both continuous. And therefore, c,i;!(x), f., and d.f(l7'(z))
are all continuous as f is continuous. Hence, (Tf)(z) is continuous on [z,-1,zx)], for

n=1,2,..,N. End of proof (of Claim #2).

To continue in the proof of Theorem II1.2.2, it remains to be demonstrated that
(Tf)(z) is continuous at each of the points z;,zs,...,zy-1. At each of these points the

value of (T'f)(z) is defined in two different ways:

For ne {1,2,..,N -1}, we have
(TH)(zn) = Cn+ll;-11 (zn) + dn+1f(l;-fl-1(mn)) + fat1

= Cn+129 +dn+1f($0) + fat1 = Fy,

and

(Tf)(xn) = cnl;:l(xn) + dnf(lgl(xn)) + fn

=CnTN +dnf(mN) +fn = Fn.-
So both methods of evaluation lead to the same result. We conclude that T does

indeed take F into F.

2. We show that T is a contraction mapping on (F,d). Let f,g € F. Let

n€{1,2,...,N} and let z € [x,—1,z,). Then
(Tf)(=) = (Te)(@)l = |dall F (171 (2)) = g(iz (@) < ldn]d(,9).

= d(Tf,Tg) < éd(f, g), 6 = max{|d,|: n=1,2,..,.N} (6§ <1).

We conclude that T': F — F is a contraction mapping.
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The Contraction Mapping Theorem implies that T possesses a unique fixed-point

in F. That is, there exists a function f € F such that
(Tf)(=z) = f(z) Vz € [zo, zN].

So f passes through the interpolation points!

Let G denote the graph of f. Notice that the equations that define T can be rewrit-
ten;

(T f)(anx + en) = cnz + dp f(z) + fn, z € [zo,zN], n=1,2,..., V.

N
=G =] w.(G).
n=1
But G is a nonempty compact subset of #2. By Thm I[I.2.1, there is only one
nonempty compact set G, the attractor of the IFS, which obeys the latter equation.

It follows that G = &. End of proof.

Note that in definition I1.2.1, we defined what is an interpolation function. We
finish this section with this next definition, where we formally state what is a fractal

interpolation function (F.I.F.).

Definition II.2.2 The function f(z) (whose graph is the attractor of an IFS

as described in Theorems II.2.1 and I1.2.2 above), is called a fractal interpolation

function, (F.LF) corresponding to the data {(z;,F;):i=1,..,N}.
I1.3 The Fractal Dimension of Fractal Functions.

Before stating the first theorem of this section, let us recall the variables defined

in the proof of Thm II.2.1:

Tn —Tp—1 INZn—1 — Tnlo
Qn = ————, en=—" """
N — Ig N — Zo
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= Fo—F,_ 1 —d,(Fy — Fo), o= TnFn_1 —zoFn d, (znFo — zoFN)

TN — Tp IN — Zo IN — Zo

Theorem II.3.1 Let N be a positive integer, and consider the set of data

{(zn,Frn) :n=1,..,N}. Let {R%w,,n =1,..,N} be an IFS associated with the data,

w(3)= (o (@) + (%)

for n = 1,2,...,N. The vertical scaling factors d, obey 0 < d,, < 1; and the constants

where

an,cn,en, and f, are given as above. Let G denote the attractor of the IFS, so that.

G is the graph of a F.I.F. associated with the data. If
N
S ldnl > 1, (3.1.1)
n=1

and the interpolation points do not all lie on a single straight line, then the fractal

dimension of G is the unique real solution D of

N
> ldaleR"t =1
n=1

Otherwise, the fractal dimension of G is 1.
Proof: ([B]) (This is an informal demonstration. The notation is the same)

Let ¢ > 0. Consider G in the following way: We place a grid on the graph of G, and

e is the length of each side of the squares in the grid where G is superimposed.

Let N(e) be the number of square boxes of side ¢ which intersect G. (These boxes

are similar to the ones used in the box-counting theorem.)
Suppose G has fractal dimension D, where N(e) ~ Ce2, as ¢ — 0. (C is a constant.)

To show: We want to estimate D from this assumption.
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Let n=1,2,..,N. Let N,(¢) be the number of square boxes of side ¢ which intersect

wn(G), for n=1,2,...,N. Suppose ¢ < |zy — zp|. (« is ‘much smaller than’)

Then, as the IF'S is just-touching, it is reasonable to say:

N(e) = Ny(€) + Na(e) + Na(€) + ... + Nn(e) (3.1.2)
Can we find a relationship between N(e) and N.(¢)? The answer is yes, and here is
how:

Let {c; (e)};‘(:‘l) be the set of columns of boxes of side ¢ which intersect G, where k(¢) =

# of columns.

By equation (3.1.1), we can say that the minimum number of boxes in a column
will go to infinity as € goes to 0. Assume that |d,| > a, for n = 1,2,..,N (this is a
stronger assumption than eq. (3.1.1)). Note that
N N
(zn - 2"n-—l)
= o mml g
Then the column of boxes c;j(¢) becomes a column of parallelograms when w, is

applied to it. The width of the new column is a,.e and the height of the new column

is |d.|{height of old column}.

Let N(c;(e)) be the number of boxes in the column c;(¢). Then the new column
wn(cj(€)) can be thought of as being made up of square boxes of side length an¢, each
of which intersect w,(G). The new columns are made up of small parallelograms,

but the number of square boxes of side length a.e which they contain is readily

estimated.

The number of boxes of side a,e in w,(c;(€)) is approximately equal to |d.|N(c(€))/an.

39



This implies;

k(e) |d | k(e)

Maan) = 3_ldnlN (s )/ = G215 Moy By ).
=1
Note that ¢ < |zy — zol.
= No(e) = l-ZLIN(e/an), n=1,2..,N. (3.1.3)

Next, if we substitute equation (3.1.3) into equation (3.1.2), we obtain;
d; ds dn
N(e) ® —N(e/a1) + —N(e/az) + ... + —N(e/an) (3.1.4).
ay az an
Now we subsitute N(e) ~ Ce~P into equation (3.1.4);
e D x|dy|aP~ e P + |dglaf e P + ... + |dn|aR e P (3.1.5)

N
= Z |dplal-t =
n=1

(We still have to show that if 3°7_, |d.| < 1, then D=1.)

If N |d.] < 1, then N(e) ~ Ce™!, as we can say that |d.| < an, and thus that

|da}/an < 1. Substituting in the approximation (3.1.5) gives us the desired result.
=D=1

End of proof.

In this theorem, the equation Y7, |d.|aD~! = 1 expresses D in a fairly simple
manner (in view of all the variables involved). In particular, when we consider
equally spaced interpolation points, the result is very beautiful. When considering
equally spaced points, we can say that z, = zo + nA(z), where A(z) = (zv — z0)/N.
Therefore,

Tp —Tn-1 _ D(z) 1

any = = - .
" Tn — o TN — To N
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Then, if ¥ |d.| > 1, D will obey;

n=1
N N 1 1 N
D-1 __ D—1 _ - —
> ldnlaR ™t = D ldnl( )7 = ()77 L ldal =1

n=1 n=1

(by Thm II.3.1). If we solve for D, we get;

., (o ldal)
D=1+ ———Tn(—]\l/)——

We can see that if 32, |d.| < NV, then the fractal dimension of the F.L.F. will be < 2.

Also, if _ |d.| > 1, then the fractal dimension of the F.L.F. will be > 1.

A remarkable fact is that D is totally independent of the values of F; (for i =
1,..,N). This is very useful, and namely, it is practical when building an algorithm
that calculates D. All we need to calculate the fractal dimension D (when the
interpolation points are equally spaced), is the number of interpolation points, N,

and the scaling factors, d,, for n=1,...,N.

We can therefore study a collection of F.I.F.’s that all have the same dimension-

D. To do so, we give a simple constraint on the d,’s:

N
> ldn) = NP1
n=]
I1.4 Hidden Variable Fractal Interpolation

This section is a generalization of section II.2. Here, other than the scaling
factors d., we will use new, hidden variables. The variables are in fact the ‘left-

over’variables resulting from a projection of #2 into ®2.
We consider (Y,dy) to be a complete metric space.

Definition I1.4.1 Let I c R. Let f: I — Y be a function. The graph of f is the

set of points G = {(z, f(z)) eRX Y :x € I}
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We consider a set of generalized data of the form: {(z;,F;)) e ® x Y¥,i=0,1,...,N},

where 4 < z; < ... < zn.

Definition I1.4.2 (Compare with Def I1.2.1) An interpolation function corre-
sponding to the above set of data is a continuous function f : [z¢,zy] = R X Y such
that f(z;) = F; for i = 1,2,...,N. The points (z;,F;) € ® x Y are called the interpo-
lation points. So f interpolates the data, and the graph of f passes through the

interpolation points.

Now, we want to generalize the notions covered in Thm I1.2.1. So the desired
generalization is to go from (%2, Euclidean metric) to (X,d =any metric). To set this

up, we will consider some conditions that will be assumed to hold for the theorem.

Let X denote the cartesian product space ® x Y, and let # denote a positive

number. Define d on X by;
(Condl) d(X,X2)=|z1— z2} +0dy(¥1,%2), VX1 =(z1,1), X2 = (22,¥2), X1,X2€ X.

((X,d) is complete.) Let N be a positive integer. Let {(z.,F.) € X : n =0,1,...,N}.

Define L, : ® — R by;
(Cond2) L,(z)=apz +en,

for n € {1,2,..., N} so that L,(|z¢,zn]) = [Tn-1,2.), where a, and e, are the constants
defined in section I1.3. Let ¢, s be two real numbers such that 0 < s < 1, and ¢ > 0.

Let M, : X — Y be a function that obeys
(Cond3) d(Mpu(a,y), Mn(b,y)) <cla—b Va,beR,
and

(Cond4) d(Mnp(z,a), Mp(z,b)) < sdy(a,b) Va,beY.
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Next, we want a transformation that ‘projects’®® to ®2. In order to obtain such
a transformation, we will go through these next steps. More specifically, we will
state and prove two theorems, and then give the definition of a generalized fractal

interpolation function before obtaining the desired transformation.

Consider a transformation w, : X — X defined by

wn (;) = (i’kgb) V(z,y) € X,n=1,...,N.

As an extension of Thm II.2.1., we can state Thm I1.4.1 as follows;

Theorem 1I.4.1 Let the IFS {X;w,,n=1,..,N} be defined as above. Assume
that there are real constants ¢, s such that 0 < s <1, and ¢ > 0, and that conditions

3 and 4 are satisfied. Let 6 (from condition 1) be defined by
8=(1-a)/2c,

where a = max{a, : n = 1,..., N}. Then the IFS is hyperbolic with respect to the metric

d.

Proof: Define the metric d on ® x Y by;
d((z1, 1), (z2,¥2)) = |21 — 22| + Ody (y1,92),
where a = max{a; : i =1,..., N}.
dy (Mn(a,y), Mn(b,y)) < cla — b
dy (Mn(a,y), Mn(b,y)) < cla—b|
dy (M (z,a), Ma(b,y)) < sdy(a,b)

and 6 = (1 — a)c, and s, ¢ > 0, and under the usual assumptions about the ordering

of z;,1>a>0.

43



Under each map, (z,y) — (Ln(z), Ma(z,¥))
= d(wn(T1,¥1), Wn (22, ¥2)) = d((Ln(z1), Ma(z1,91)), (Ln(z2), Mn(z2,92)))

= |Ln(z1) = La(z2)| + 6dy (Mn(z1,91), Mn(z2,92))
= |anZ1 — anT2| + 0dy (Mn(z1,11), Mn(z2,2))
= lan|lz1 — 22| + 0dy (Mn(z1,41), Mn(z2,¥2))
< al|zy — zo| + 0dy (Mp(z1,y1), Mn(z2,y2)).

We can use the triangle inequality on the last term of the above expression;
dy (Mn(z1,11), Mn(22,92)) < dy (Mn(x1,91), Mn(z2,91)) + dy (Mn(z2, y1), Mn(z2,92))

< clzy — z2| + sdy (y1,¥2)-

= d(wn(z1,¥1), Wn(z2,y2)) < alz1 — z2| + Ocjz1 — x| + sdy (1, ¥2)
< 2a+1—a

- 2
< 14+a

- 2

[z1 — z2| + sdy (y1,y2)

jz1 — z2| + s0dy (y1,¥2)-

Since 0 <a < 1, we have 1 +a < 2, so if we let
& = max{(1 -+ a)/2,s) < 1,
then we get;
d(wn(z1, Y1), Wn(T2,y2)) < &'|z1 — 22| + 5'0dy (Y1, y2) = s'd((z1, 1), (72, 92))-

Hence the IFS is hyperbolic. End of proof.

Similarly, there is also a generalization that can be made for Thm II.2.2.. For
our extension, we will need a new condition that will constrain the IFS used, so

that its attractor includes the set of generalized data. Assume that

(Cond5)  Myu(xo, Fo) = Fn_1, My(zn,FNn)= Fayn=1,..,N.
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From this assumption, it follows that
wn (2o, FO) = (Ln(.’L‘o), M, (z0,%0)) = (xn-—laFn—l)a

and

wo(zn, FN) = (Ln(zn), Ma(zn,yn)) = (Tn, Fn), n=1,...,N.

Theorem II.4.2 Let N be a positive integer. Let {X;wn,n=1,..., N} denote the
same IF'S defined above, associated with the data set {(z:;,F;) e RxY :i=1,..,N}.
Assume that there are real constants ¢, s such that 0 < s < 1, and ¢ > 0, and that
conditions 3, 4 and 5 (above) are satisfied. Let G € H(X) denote the attractor of the
IFS. Then G is the graph of a continuous function f : [z¢,zx] — Y, which interpolates

the data {(z;,F;):i=1,...,N}. That is,
G = {(z, f(z)) : z € [z0, zn]},

where

f(z:) = F;, i=0,1,...,N.

Proof: ([B]) First note that by Thm II.4.1, the attractor exists. As we did in

Thm I1.2.2, we devise the operator T : F — F to be;
(Tf)(IC) = Mn(f(L;l(ZL‘))), TE [xn—la xn]-

(F is the family of continuous functions f : [z¢,zn] = Y.)

— Ly(z) = anz + e, (‘L,’Was ‘I,'in Thm 11.2.2)

— L, is continuous, and so is its inverse.

— f 1s assumed to be continuous.
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— M, is linear, so that Tf is continuous on each [z,-1,z,].

1. We verify that T does indeed take F into itself. We have

Iy — g InZog — ToT)
zg +

Ll(l‘o) =a1Zg + € =

Iy — X N — Tp
TN — IN-1 INTN—1 — TNTD
Ln(zn) =anzn +env = TN + =zp.
Ny —Xo IN — X9
Tn — Tn-1 INIn-1 —T0Tn—1
Ln(xn—l) =anITp-1+ep =—=In1+ = Tn-1.
Ny — Ip N — To
Tn — Tn-] INIn — TpTn
Ln(zn) = QnTp + e = Ty + =Tn.
N — o TN — T

= The end points of each [z,_1,z.] get mapped to the next and last,
= 19 and zy get mapped to themselves.
= All these points are fixed under L,, and thus under L;'.

By definition,

(Tf)(mo) = Mn(zo, fo) = (Ta-1,Fn-1),
(Tf)("LN) = Mn(er fN) = (xnaFn)-

So T: F — F as desired.

2. We show that T is a contraction mapping. Let f,g € F. Then;
(TF)(x) = Mn(L7 (), (L7 (2)))

(T9)(z) = Ma(L7* (2), 9(L7 " (2)))

Next, from the definition of a metric, and the restrictions on M,, we have;

D(Tf,Tg)= _ max dy (Ma(L7*(2), F(L3(2))), Ma(L7H(2), 90171 (2))))

[In—l 7::'1]
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max ]sdy(f(L,Tl(w))vg(L;l(I))) <d(f,9)

T ZE[Tn-1.Tn

Hence, T is a contraction. End of proof.

Definition I1.4.3 The function f defined in Theorems 11.4.1 & I1.4.2, where its
graph is the attractor of an IF'S as described is called a generalized fractal interpola-

tion function (G.F.I.F.), corresponding to the generalized data {(z;, F;):i=1,..,N}.

As one might expect, G.F.I.LF.’s produce more flexible interpolation functions.
We use affine transformations acting on %, and we project the graph of the G.F.L.F.
into ®2. The extra degrees of freedom provided by working in 3 give us hidden
variables. As with the scaling factors, these can be used to adjust the shape and

fractal dimension of the interpolation function.

If the use of scaling factors can be compared to a shareware version of a soft-.
ware, then the set of hidden variables could be compared to the full version of the

software... In the following paragraph, note where the d, is located in the matrix.

We introduce a set of real parameters {H; : i = 0,1,..., N} (they are assumed to
be fixed for now). Next, define a generalized set of data to be {(z:, F;,H:) € ® X
R2:i=0,1,..,N}. So we are considering the case (Y,dy) = (®2,Euc.). Now consider
an IFS {(R3;w,,n =1,..., N}, where w, : # — R3 is affine of the special structure:
z an O 0 T €,
wp |yl =|cn dn hy yj+| fa
z k, l, m, z Gn

Here, a,.,c¢n,dnsen, fr,gn, An, kn, In, mn are all real numbers. Assume they obey

To Tn-1
wo | Fo | =wn | Faey
Ho Hn—l

and



So we now have the desired transformation that projects 3 to R? as we can say

x I (Z)
—_— n 3
o z B (Mn(xyy,z)) (x,y’ Z) € R y = 11 2’---,N,

where L,(z) = a,z + e, (as before) and

z
- Y fn+enx _(dn  ha
w(B)om(De(E2) we(E R

@

4

In the condition #5, replace F, by (F,, H,). (This implies that M, obeys cond. #35.)
Define

¢ = max{max{¢;, k;} :i1=1,...,N}.
(This implies that cond. #3 is true). Now assume the linear 4, is contractive, with

contraction factor s, with 0 < s < 1. (This implies that cond. #4 is true).

In conclusion, under the conditions seen here, the IFS satisfies the assumptions of
Thm I1.4.2. Therefore, the attractor of the IFS is the graph of a continuous function

£t [zo,zn] — R2 such that

fz:) = (Fi, Hy), i=1,..,N.

Now if we write f(z) = (fi(z), fo(z)), then fi : [zo,zn] — R is continuous, and

fi(z:s) = F i=1,..,N.

Definition II.4.4 The function f; constructed above is called a hidden variable

fractal interpolation function associated with the set of data {(z;,F;) e ®2:i=1,...,,N}.

Let A denote the attractor of the IFS we are working with. Remark that al-
though A = UY_,w,(A), it is not the case if ‘attractor’is replaced by ‘projection of
the attractor’. The graph of f, is not self-similar.
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CHAPTER III: The Experiment

The two sections of this chapter establish how the graphical analysis of two
stocks is done. As mentioned in Chapter I, the method used to calculate the fractal
dimension has to be optimal for the data considered. So the more we know about
how the data is made available, better are our chances of using the right tool. The.
first section explains how the data was received and processed, and in the second

section we talk about the program.
IT1.1 The Data and How to Use It

The data was made available by Nesbitt Burns, a company owned by the Bank
of Montreal. Whenever there is a transaction realized at the stock market, the
information given by Nesbitt is the time at which the transaction has been realized,
(up to the nearest minute), the volume, and the price of the stock at the exchange.
We disregard the volume here while keeping in mind that it could be a good variable
to add to the analysis of the st_ock. So, for example, if a stock is traded at 9:30-
a.m., then at 9:39 a.m., and then at 9:40 a.m., we will consider these times and the

price of the stock at those particular times.

What if there is more than one transaction during one minute? (and this hap-
pens a lot, sometimes 9 or 10 transactions during one minute...) Then we only
consider the value of the stock at the end of that minute. So we obviously have an
approximating error here, but I think that it is of minimal importance. The idea is
to have a cloud of points (Fig. III.1), each representing the price of the stock at a

certain minute.
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FIGURE IIL.1: One day of transaction = 390 minutes.

If there is no transaction during a minute, the default value of the price
is 08. This is a somewhat critical move. Why do we do it? Three reasons. The first
reason is that sometimes, the price of the stock will fluctuate for a few consecutive
minutes, and then stop for another few minutes. But a few minutes later, when the
buyers and sellers start transacting again, the price of the stock may not be the
same as it was when they stopped a few minutes ago. So there is no use in putting.

a dot at every non-transaction minute.

Let us clarify this with an example. Say the stock is at $35.00 at 9:35 a.m., and
that there are no transactions between 9:35 a.m. and 10:00 a.m. Well, at 10:00,
the stock may very well be listed at $35.25. The reasons and consequences of these
abrupt changes will not be taken into account, as long as we keep in mind that
whatever happened in the past should continue happening in the future (talking
about the abrupt changes). So joining a line of dots from 9:35 to 10:00 is irrelevant
since we would be forced to either have an abrupt change or ‘smooth-out’the line

of dots, and thus estimating too much, giving us too many errors.

The second reason why we give the value of 03 to non-transaction minutes. By
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doing so, the cloud of dots is less dense, giving a lower fractal dimension. Also, it is
easier to differentiate, just by looking at the graph, when the stock is more ‘active’,

and when it is less ‘active’.

The third reason is actually a compliant consequence coming from the fact that
in the post-experiment analysis (Chapter IV) we compare the slope of the regression
line with the fractal dimension of the cloud of dots. If we were to keep all the dots
(transaction and non-transaction minutes), the slope of the regression line would
be represented by a number closer to 0. Since we will be looking for a relationship’
between the fractal dimension and the slope of the linear regression, it is best that

the two be close in range... More on that in Chapter IV.

As an example, let us consider the second day of transaction for the company
Loewen Group Inc. (of the two companies analyzed). We can see that the data
never goes above $40, and never steps below $30 (Fig. IIL.1). In the box-counting

experiment, the boxes will cover the cloud of dots in the rectangle of height 40 - 30

= 10 (Fig. IIL.2).

FIGURE IIL.2: Zoom in of Fig. III.1.

BOXES = RECTANGLES!

As we can see in figure II1.3, the boxes are not squares, but the algorithm still
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goes through each and every one of them, and reports if there is at least one y-value
in it. Whether the box is a square, a circle, a triangle, or anything regular and

easily duplicable, the theorem will still apply.

Considering one day of transaction, for the first step of the algorithm the big
unique covering box will have a length of 390 minutes and a height of $10 (i.e.,
length = 1 day, height = 10). For the next step, we will have four smaller boxes,
each of length 195 minutes, and height $5. Now for the next step, the new (16)
smaller boxes will have height $2.50 (Fig. II1.3), but the length should be of 98.5
minutes. As we will see in section III.2, the data fed to the program is only read at

integer minutes. So we have to take the integer part of the length of the boxes, i.e,

here, 98 minutes instead of 98.5.

FIGURE IIL.3: We need 8 (out of 16) covering boxes after 2 subdivisions.

Actually in the experiment, the program analyses the data and finds the maxi-
mum and minimum values of the price of the stock for the period considered. Next,
if, say the maximum value is $38.90, and the minimum value is $32.12, then instead
of $40.00, the program would use $38.91, and instead of $30.00, the program would
use $32.11. So in figures III.1,2 and 3, the original rectangle (and its subsequent

subdivisions) is overly represented.
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III.2 The Setup for the Program
MINIMAL BOX-SIZE

Let us keep in mind that a dot represents (at least) one transaction during one
minute. The data is obviously not continuous, but discrete and finite. By looking
at the graph, we can see that at some point in the algorithm, boxes will be small
enough for each dot to be covered by a box (i.e. no two dots are in the same box).
When this happens, there is no use to continue and so, we stop the algorithm. In
fact, it is even too late to stop the algorithm at that time. (The determination of

when the algorithm has to stop is discussed below.)

Let E-~ S (End — Start) be the total number of minutes elapsed during the
whole period (the period over which we want to estimate the fractal dimension). So
in our example (Fig. III.1), one day of transaction has 6.5 hours, and therefore, if

we consider one whole day of transaction, E —§ = 390 minutes.

The height of the boxes is not as important as the width (the length). In the
algorithm, the y-values are real numbers. So the loop that checks whether a certain
row contains a dot or not, simply verifies with a < sign for the base line of the row,.
and a < sign for the upper line of the row. So having a height of, say $1.25, is quite

alright.

In the algorithm, the width (in minutes) of the smaller and smaller boxes is
important to know as it can tell us when to stop. Why is this true? Once the
length of a column is of smaller width than the smallest interval of time between

any two transactions, only one dot can occur in the whole column. So we must stop
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dividing the boxes. And in fact, according to other similar box-counting experiments
(for example, see [V]), the length of time (width) of the smallest boxes should not
be lower than the average time between transactions. Let us denote the length’
of the smallest boxes by s (in minutes), and let A represent the smallest interval of
time, and B, the average interval of time between any two transactions. Then we

will want to have to following condition on s:
A<B<s

Obviously, the average time is always greater than the minimal time. So we will
want the algorithm to stop before the boxes get smaller than the average time, and

thus certainly before they get smaller than the minimal time.

Now, suppose we know what is the average amount of time between any two
transactions (thanks to a subalgorithm in the program that calculates this average
and lets the user know what it is before the algorithm starts). Then, we can calculate'
exactly when the boxes will be small enough to stop the algorithm. For example,
if the average time between transactions is 4.5 minutes, we can ask the program to
stop the algorithm when the length of the boxes attains a low of 6 minutes... In

fact, the optimal s was chosen to be 6 minutes for the experiment.

Note that the width of the boxes (rectangles) after & subdivisions is proportional
to the length of the period considered. So the width of the boxes (in minutes), that
we will denote w(k), after k subdivisions is w(k) = £z5, where E — S is in minutes,

and where k goes from 0,1,2,3, ... to M (M is defined below).

This leads us to the determination of M. M is the number of steps the algorithm-
goes through. If M = 4, then the original 390 minutes x $10.00 box is subdivided 4
times, and so, the smallest boxes (after 4 subdivisions, we have 256 boxes) will have
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length w(4) = 390/2* = 24.625 minutes (or rather, 24 minutes). An optimally chosen M
will be very important to get accurate results in the least-squares approximation of
the log-log plot. As s represents the length of the smallest of our covering rectangles

(in minutes), it will be of no surprise to see that M is a function of s...

M represents the sufficient and otpimal number of divisions that can be made
in the Box-Counting Theorem. M is chosen in the following way: Before the length
(in minutes) of the boxes is smaller than the average interval of time between two
transactions, the algorithm has to stop. So, assuming we know what s is, then M -
satisfies the inequality

(E—S)/2M < s,
where E — S is the length of the period considered. If we solve for M, we get
M > log(E — S/s)/log(2).

Taking M to be the integer part +1 of the right hand side of the above inequality,

i.e., M =INT(log(E — S)/s)/log(2)) + 1 will the optimal choice.

The program used in the experiment is listed in the appendix. The computer
divides the imaginary rectangle on the Z x R plane, where Z represents the integer
axis, into smaller and smaller boxes, and counts the number of data points in each‘
one. The program is written in Liberty Basic, and should run on any PC. A fast

computer is needed in order to obtain quick results...

The program is self-contained in the sense that all the data points are already
in it. We cover one week for each of the two companies. The program does not
have to read its data from a file or a disk. To save (a lot of) space in the appendix,
only the first and last fifteen minutes of transaction for the week are listed in the
program.
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CHAPTER 1IV: Post-Experiment Analysis

In this chapter, we analyze the results of the experiment. The first section
establishes what was expected from the experiment. The second section considers

the results and compares them with the hypothesis.
IV.1 What Pattern Do We Want to Look For?

Our first intuitive hypothesis was to expect an increase in the fractal dimension
when the data became more volatile, and a decrease when the data stabilized. This

is a rather logical idea when considering the definition of the fractal dimension.

So how can one calculate, or estimate the volatility of the data? Well, another
intuition was to think that the slope of the regression line would go through changes
that would be proportional to the changes in the volatility. Now this is not as
safe an idea as the one in the preceeding paragraph. It is quite possible, however
unlikely, that two regression lines be equal (or at least have the same slope), one
approximating data that is spread out and volatile, and the other approximating
very condensed and almost linear data. We have to keep this in mind throughout

the analysis.

IV.2 Results

The two graphs shown in each of the Figures IV.1,2,3 and 4 express respec-
tively the results of the fractal dimension and the results of the absolute value of
the slope of the regression line. A sample of the output of the program is listed in
the appendix. The program ran a total of thirty times. We can see in the graphs
showing the results of the experiment (Figures IV.1-4) that the slope of the regres-

sion line and the fractal dimension go through similar changes as time goes on.
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FIGURE IV.1: Results for one week, in five periods. Company: Loewen Group Inc.

Unfortunately, we could only consider the absolute value of the slope of the linear
regression. Whether the slope is positive or negative is not represented by any visible
sign in the fluctuations of the fractal dimension. This is not in contradiction with
the above statement which says that the volatility and the change come together.
But so far, no conclusion could be made with regards to the fractal dimension versus

the sign of the slope of the regression line.

It is important to say a word concerning the end of the week for Loewen Group
Inc. (Fig IV.1). On Friday, especially in the afternoon, not too many transactions
were taking place. Consequentely, the data are very scarse. Intuitively, this should
result in a lower fractal dimension (and it does). But the slope of the regression

line that approximates the same data may very well go wild...
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FIGURE IV.2: Results for one week, in ten periods. Company: Loewen Group Inc.

In Figure IV.2, the idea that there is a lack of data for Friday afternoon is more
easily seen. When approximating a whole day (Fig. IV.1, Friday), the regression
line has a rather large slope, but when considering the day in two parts (Fig. IV.2,
Friday), the two slopes (and especially the one representing Friday afternoon) are
much smaller. This confirms the idea that the transactions were too rare that

Friday.

Although it was of less importance, there was also a period where less transac-
tions were held. If we look at what happened on Wednesday (p.m.) and Thursday
(a.m.) for Loewen Group Inc. (Fig. IV.1 & IV.2), we can see that the two graphs
diverge. A quick check in the data shows that this particular period was also a slow

one.
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The next company is Bell International.

FIGURE IV.3: Results for one week, in five periods. Company: Bell International

" St

RV £

s

FIGURE IV.4: Results for one week, in ten periods. Company: Bell International
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Our first comment concerns the number of transactions held (the volume) dur-
ing the week of data we have for Bell International. The data representing these
transactions is much more dense than the data for Loewen Group Inc. The cohesion

seems stronger between the two graphs in Figures IV.3 & IV.4.

A logical statement would say that the more data you have, better are your
chances of obtaining an accurate approximation... The hypothesis and the conclu-

sion of this statement are both verified in this experiment.

As mentioned in Chapter I, it is important to specify what range of lengths of
covering boxes was used. Since the same range was used for all of the thirty times
the results were compiled, let us state it here. The length of the biggest covering box
was either 390 minutes, (for one-day periods) or 195 minutes (for half-day periods).

The length of the smallest covering boxes, s, was 6 minutes.

A possible future use of a new and improved program could be to help investors
who already know what they are buying or selling. More specifically, since the
comparison made with the fractal dimension concerns the absolute value of the
slope of the regression line, the possiblity of predictions are those of movement, and
not of the direction of the movement. In this case, the program would help them
to decide when to buy or sell. Even so, we would have to find out that the fractal

dimension changes slightly before the slope of the regression line does.

But how long before the optimum transaction time could the analysis confirm
the intuition? One day? One hour? Five minutes...? Good questions that should

and will be investigated in the future but are out of the scope of our actual study.
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CHAPTER V: Conclusion

The notion of Fractal Geometry is a very interesting and inviting subject. In
the past twenty years, many experiments have been conducted on various subjects.
The fractal dimension and fractal interpolation are only two of the many tools used
in these experiments and applications. Fractal growth, Brownian motion, countless
studies on boundaries, are just a few examples of the ever-growing math branch

classified as Fractal Geometry.

Looking back at this text, we first notice all the qualificative words like ‘remark-
able’, ‘beautiful’, ‘surprisingly neat’; etc... And I am convinced that in the future,

these words will always stick to the subject of Fractal Geometry.

In the first two chapters of the text, we covered the theoretical parts related
to the fractal dimension and fractal interpolation functions. In this latter part, the
way our theorems expressed the fractal dimension of the fractal functions is quite
remarkable. And although the experiment in Chapter III only requires the notions
seen in Chapter I, the numerous applications of fractal interpolation functions make
it a very inviting subject. I would say that the topic of fractal functions should be

seen soon after the basics of the fractal dimension.

For a first experiment with an invented program, we could say that the graphical
analysis of the two stocks went very well. We cannot be completely satisfied with
the program and should concentrate on what can be improved. The most important
upgrade would be that the choice of the length of the smallest covering boxes (s)
be done automatically. After analyzing the data, the program should be able to

evaluate the optimal value for s.
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We considered two companies with different volumes. By volume, we mean
the number of stocks exchanged during a certain period. For the whole week, the
company Loewen Group Inc. had a relatively low volume and Bell International

had an average volume.

If we concerned ourselves only with the fractal dimension (and not the slope
of the regression line), then the volume would have been a biasing factor of less
importance. But I think that we should look in the other direction and at some
point, one could find a way to deal with companies having a low volume. This alone
would be a good reason to add the volume as a specific variable in the analysis.
Perhaps we could consider the price of the stock as a function of its volume and
not as a function of time. Certainly in this way, companies with a low volume and
companies with a high volume could be compared equally by taking two different

time intervals for each...

A conclusion is one which says that there is a tangible cohesion between the
fractal dimension of a cloud of points and the absolute value of the slope of the
regression line that approximates the same cloud of points. Future enquiries in this
direction could be to represent the strength of the cohesion by a number or on a

scale which has a spectrum ranging from no cohesion, to a very strong cohesion.
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This is the listing for the Progranm.

DIM £(2000)

'THE DATA

f(0) = 35.5

f(1) =0

£(2) =0

£(3) =0

f(4) = 0

£(5) =0

f(6) =0

£(7) =0

£(8) =0

£(9) = 35.3
£(10) = 0

£(11) = 0

£(12) = 0

£(13) = 35.5
£(14) = 35.35
£(1936) = 0
£(1937) =0
£(1938) = 36.35
£(1939) = 36.35
£(1940) = 0
£(1941) = 36.3
£(1942) = 36.3
£(1943) = 0
£(1944) = 0
£(1945) = 0
£(1946) = 0
£(1947) = 36.3
£(1948) = 0
£(1949) = 36.3
£(1950) = 0

LET L = 33.99
LET H = 36.51
Let z = H-L
print "At what minute
print "the experiment
input S

print "At what minute
print "the experiment
input E

LET T = 5*390
for i = S to E
if £(i) = 0 then
let r = r+l

APPENDIX

'Low is 34.00S8
'High is 36.508

do you want "
to Start"

do you want "
to End"
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end if

next i

Let a = (E-S) - r

Print "The average time between points "

print "of data is ";(E-S)/a;" minutes."

print

' [chooses]

print "Enter the approximate length (s) of the"
print "smallest covering rectangle (in minutes)"
input s
LET M = int(log((E-8)/s)/log(2))
print
print
print
print
'print "Do you want to change s? (No)"
'input o

'if o ="Y" then

'goto [chooses]

'end if

print
PRINT
PRINT
PRINT In(N(A)) In((2*n)/=z)"
PRINT "= ———m e e e

"With this value of s, the smallest rectangle”
"will be of length ";int ((E-S)/(2"M)):" minutes."

"RESULTS OF THE BOX-COUNTING THEOREM."

FOR n = 0
LET N = 0
FOR k =1 TO 2 * n
FOR j =1 TO 2 “ n
LET ¢ =0
"BOX-DIVIDING" LOOP
FOR i = int ((j-1)*(E-S)/2%n)+S TO int (j*(E-S)/(2"n))+S
IF ((k - 1) / 2 ~n)*(H - L) + L <= f(i) AND f(i) <

'THE

L) + L THEN
c=c¢ + 1
ELSE ¢ = ¢
END IF
NEXT i
IF ¢ >= 1 THEN
N=NS+1
else N = N
END IF
NEXT 3
NEXT k
IF n = 0 THEN
PRINT n; " ";
ELSE
PRINT n; " ",
END IF
PRINT
LET ki(n)
NEXT n

" . " .
’ ’

LOG(N); "

N; " "; LOG(N); " ";

It

LOG (N)

FORn = 3 TO M
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LET N =0
FOR k =1 T
FOR j =1 T
LET ¢ =0
'THE "BOX-DIVIDING" LOOP

FOR i = int((j-1)*(E-S)/2”*n)+S TO int(j*(E-S)/(2”n))+S
IF ((k - 1) / 2 ~n)*(H - L) + L <= £(i) AND £(i) < (k / 2 " n)*(H -

L) + L THEN
c=c+1
ELSE ¢ = C

END IF

NEXT i

IF ¢ >= 1 THEN

N=N=+1

else N = N

END IF
NEXT 3j
NEXT k
IF n = 0 THEN
PRINT n; " "; N; " "; LOG(N); "
ELSE
PRINT n; " "; N; " "; LOG(N); "
END IF
PRINT
LET k(n) = LOG(N)

NEXT n

'END OF THE MAIN ALGORITHM
'LEAST SQUARES APPROXIMATION ALGORITHM
Print "What is the first point to be"
Print "considered in the L-S Method (n=2)"
input £
FOR i = £ TO M

sumy = sumy + k(i)

sumxy = sumxy + (LOG((271i)/z)+10) * k(i)

sumx = sumx + LOG((27i)/z)+10

sumxx = sumxx + (LOG((27i)/z)+10)"2
NEXT i

Sxx = sumxx - (1 / M) * (sumx) ~ 2

Sxy = sumxy - (1 / M) * (sumx) * (sumy)
dimension = (Sxy) / (Sxx)

PRINT

PRINT "Fractal Dimension ...... "; dimension

”.
’

'"PRINT " (for the "; T/60; " hours of transaction time)"

Print

FOR i = S TO E
sumy = sumy + f£(1)
sumxy = sumxy + i*f (i)
sumx = sumx + i
sumxx = sumxx + i~2

"; LOG((2"n)/z)

LOG((2”n)/z)

NEXT i

Sxx = sumxx - (1 / (E-S)) * (sumx) ~ 2

Sxy = sumxy - (1 / (E-S)) * (sumx) * (sumy)

slope = (Sxy) / (Sxx)

PRINT

PRINT "Slope of the Regression ...... "; slope

PRINT " (for the "; (E-S)/60; " hours of transaction time)"
END
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This is the output of the program for the first day of the week for the company
Bell International.

At what minute do you want

the experiment to Start

?1

At what minute do you want

the experiment to End

2390

The average time between points
of data is 4.1827957 minutes.

Enter the approximate length (s) of the
smallest covering rectangle (in minutes)

?5

With this value of s, the smallest rectangle
will be of length 6 minutes.

RESULTS OF THE BOX-COUNTING THEOREM.

n N (Aa) 1In(N(A)) In((2~n)/z)
o 1 o0 ~1.25846099
1 4 1.38629436 ~0.56531381
2 8 2.07944154 0.12783337

3 13 2.56494936 0.82098055
4 27 3.29583687 1.51412773
5 53 3.97029191 2.20727491
6 72 4.27666612 2.90042209

What is the first point to be
considered in the L-S Method (n=?)

22

The fractal dimension is... 0.30432428

Slope of the Regression ...... ~0.84007081e-2
(for the 6.5 hours of transaction time)
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