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ABSTRACT

IMPROVEMENT OF INELASTIC PERFORMANCE FOR FRICTION

DAMPED ASYMMETRIC BUILDINGS

HATEM BEDAIR

This thesis investigates the effect of having brace strength eccentricity (slip load
eccentricity) negative that of stiffness eccentricity on the performance of friction damped
braced frames, in an effort to improve the efficiency of friction damped braced frames in

single and multi-storey buildings.

Firstly, multi-storey models having stiffness ratio (brace stiffness to frame stiffness)
of three and strength ratio (brace strength to frame strength) of unity are subjected to an
ensemble of earthquakes over a wide range of stiffness eccentricity e such that 0 <e; < 1.2
and a range of slip load ey, such that -e; < e}, < e;. The results demonstrate that as the slip
load eccentricity ep, moves from the stiff side to the flexible side of the structure, maximum
displacement and ductility demands are reduced and more storeys participate in dissipating
energy. Maximum improvement is obtained when €pb = -€s-

The inelastic behavior of single-storey model is studied using the history of base
shear and torque. A single storey model with stiffness ratio of three and strength ratio of one
is subjected to an earthquake over the range of slip load and stiffness eccentricity indicated
above. The results show that as e, shifted to the flexible side of the structure the maximum

base torque is decreased.

The energies imparted and dissipated by brace slippage and frame yield of the single
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storey model indicated above are studied. The results demonstrate that the energy dissipated
by the braces increases as the slip load eccentricity moves to the flexible side of the structure.
The research demonstrates that the slip load eccentricity must be considered in the

design of friction bracing.
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CHAPTER 1
INTRODUCTION

The philosophy of the earthquake protection of buildings concentrate
fundamentally on preventing collapse of the main structure during a severe earthquake. In
recent years many researchers have been concerned with the development of new seismic
structural systems that can improve the seismic performance of buildings. One of these
systems is the friction damped braced frames (FDBF) which was introduced by Pall and
Marsh in 1982. In this system the tension compression cross-braces are replaced by a
mechanism containing a friction device in the intersection of the cross-braces. The
friction damping device helps to absorb the extra energy input of severe earthquake
excitations [1]. Because of the fact that costs combined with the repair and rehabilitation
of buildings and their non-structural components in the outcome of an earthquake could
be prohibitive, the idea of the friction damping device arose to overcome this deficiency.
Friction dampers have successfully performed in other configurations of the bracing,
namely in single diagonal braces and K-bracing for new construction as well as in retrofit
of existing buildings[2].

As a good tool in governing structural response due to seismic excitations,
friction damped braced frames have fascinated researchers to study the optimization
procedure that would ensure maximum energy dissipation while minimizing lateral and
torsional displacements. Early studies have concentrated on demonstrating the optimum
ratios of stiffness and strength between the friction damped braces and the unbraced

frames [3, 4]. Later attention has been given to the plan-wise distribution of strength and



stiffness between the device-equipped resisting braces [6].

This thesis studies the effect of slip load distribution on the displacement and
ductility of the multi-storey structural models and on the base shear and torque as well as
the energy dissipated by friction in the single-storey structure model, as an effort to
determine a method for redistributing the slip load that would be easy to apply in order to
improve the response.

The buildings studied in this thesis are 3-dimensional eccentric shear buildings of
intermediate height. The resisting elements are moment resisting frames with friction
damper braces. This study examines the inelastic behavior of eccentric buildings that
have eccentricity up to 40 percent of the plan dimension due to variation of brace strength
distribution (slip load eccentricity).

It should be noted that the analysis of the single and multi-storey stiffness
eccentric models is made by using the two dimensional dynamic analysis program
DRAIN-2D [14]. Therefore, all 3-D models have been converted to equivalent 2-D
models. These 2-D models are explained in chapter 2. Moreover all definitions and

formulation are described in chapter 2.

The research presented herein consists of three phases: the first phase deals with
the effects of slip load distribution on the displacements and ductility demands of a multi-
storey structural models; the second phase briefly addresses the effect that slip load
distribution has on the base shear and torque of a single-storey structural model; and the
third phase examines the effect of the slip load distribution on the amount of energy that

the reconfigured braces will be expected to dissipate of a single storey model.



Phase I evaluates the previous single-storey model used [5,6] and its ability to
provide responses over the full range chosen of slip load distributions. Suitable multi-
storey models are then chosen consisting of five and ten typical single-storey models
introduced in [5] and used in [6], and maximum displacements and ductility demands are
obtained for a wide range of eccentricities and an ensemble of earthquakes, namely, the
1940 El Centro N-S excitation, the artificial Newmark-Blume-Kapur earthquake, the
1952 Taft S69E excitation, and the 1977 Romania N-S excitation. Comparisons are also
made with the results of other researchers [6] to determine potential benefits of slip load
redistribution. Particular attention is given to those structures having the center of
strength of the unbraced structure coincident with the center of stiffness of the braced
structure.

Phase II applies the slip load distribution used in phase I for the single-storey
model, and the base shear and torque are obtained for the full range selected of stiffness
eccentricity and strength distribution. The time history used was 1940 El Centro N-S
excitation.

Phase IIl uses the same slip load and stiffness distribution of the single-storey
model of the previous phase to report the amount of energy that will be imparted to the
structures considered as well as the amount of energy that will be dissipated by the braces
and by frame yield.

A review of the literature serving as a foundation of this research is presented

below. Other relevant literature is given at appropriate points in each of the chapters.

1.1 LITERATURE REVIEW



Since Pall and Marsh introduced the friction dampers in 1982 [1], many researchers
studied their performance in both single and multi-storey buildings for symmetric and
asymmetric structures. Collectively, these studies have agreed with the fact that in order to
optimize structure efficiency, tuning of the friction damped braces must be done with respect
to both the stiffness and the slip load of the braces. Initially Baktash carried out the study of
the ratio of brace strength to frame strength and demonstrated that the friction device offers
maximum energy dissipation under pseudostatic loading when the brace strength equals to
that of the unbraced frame in which it was added to [3]. Baktash simplified the analysis by
studying a symmetric structure which required the analysis of only one friction damped
braced frame (FDBF).

Later, Pekau and Guimond studied the effectiveness of FDBF in directing the seismic
response of asymmetric structures. They studied the effectiveness of the ratio of the brace
stiffness to the frame stiffness [4]. They demonstrated that an optimum response to seismic
excitation will occur when this ratio exceeds seven. Pekau and Guimond established a single
storey mass eccentric model containing two identical friction damped braced frames which
the creation of the eccentricity of the model was achieved by moving the FDBF so that the
center of stiffness of the structure, lying halfway between the two FDBF, no longer coincided
with the center of mass of the deck.

For friction damped model with high stiffness of the brace (more than seven), the
enhanced performance accompanying slip load redistribution has been presented by
Martin and Pekau. However, such magnitude of brace stiffness to frame stiffness (KB/KB
= 10) while desirable may not necessarily be realizable in practice owing to architectural

layout requirements. For this reason Martin and Pekau evaluate the effectiveness of the

reduced bracing to frame stiffness given by KB/KF = 3.



This study requires a model that can handle a wide range of stiffness eccentricity
as well as the redistribution of slip load eccentricity. Therefore the unbraced single storey
structure, created by Goel and Chopra [5], has been selected since it is an appropriate
numerical model when analyzing the response of buildings subjected to coupled lateral
torsional motions. The research of Goel and Chopra did not consider the effect of
introducing friction damped braces into the systems.

To modify those sections of the Mexico building code belonging to earthquake
resistant design, Tso and Ying [8], and Sadek and Tso [9] studied the optimization of the
strength and stiffness distribution between resisting frames. Their studies showed that
structures having strength eccentricity negative that of the stiffness eccentricity have a better
performance under seismic loading than structures having their strength eccentricity limited
to the positive range only. They further suggested that future modifications of the code
should consider taking advantage of this phenomenon.

The previous research of the unbraced structures was the foundation of the work done
by Martin and Pekau [7]. They studied the effect of the slip load distribution on the
displacement and ductility demand of single-storey asymmetric friction damped structures.
Martin and Pekau [7] demonstrated that improvement in performance of friction damped
braced frames (FDBF) may be obtained by properly tuning the devices with respect to the
slip load distribution between the resisting braces. For varying slip load distribution in
asymmetric structures, optimum responses have been obtained when the slip load eccentricity
is opposite that of the structure stiffness eccentricity [7].

Emphasizing the use of storey shear and torque histories as a tool to study the
inelastic seismic behavior of asymmetric buildings, De La Llera and Chopra showed that the

base shear and torque (BST) surface, in conjunction with the base shear and torque histories,



provides a useful conceptual framework for understanding the behavior of asymmetric
systems [10]. They showed that changes in the planwise distribution of strength produces
changes in the torsional capacity of the system and in the length of the constant base torque
branch of the BST surface corresponding to predominantly torsional mechanisms of the
structure [10]. Stiffness and strength asymmetry may be effectively used to control the

torsional performance of a structure [12].

1.2 PHASE I: SLIP1LOAD D N TI- REY STRUCTURFE

The ratio of brace strength to frame strength RB / RF was determined by Baktash
[3], while the ratio of brace stiffness to frame stiffness KB / KF was established by
Guimond [4]. Afterwards, Martin [6] proved that a reduction in KB / KF is acceptable. In
Chapter 3 an attempt is made at determining how these limits may be set within the
structure. The multi-storey models investigated are five and ten-storey models. Each
storey is assigned global values of RB / RF = 1.0 and KB / KF = 3, and the models were
strength eccentric models. These strength eccentric models are designed so that the
strength eccentricity of the frames is equal the stiffness eccentricity of the structure, or
the center of strength of the frames coincides with the center of stiffness of the structure
(epr= €5). At first, the slip load eccentricity was identical with the stiffness eccentricity, i.
e. the total required slip load of the structure is concentrated on the stiff side of the
model, then the slip load of the flexible side is increased and that of the stiff side is

decreased while maintaining RB / RF the value of one. The slip load eccentricity, e, is
expected to vary between -e; and e;. The results obtained were identical with those

obtained by Tso and Ying [8] for unbraced single storey structures. That is, the optimum



responses occur when ey, < 0. They also reflect the results obtained by Martin and Pekau

for friction damped braced frames of single-storey structure.
The results obtained demonstrate that as the slip load eccentricity moves from the
stiff side to the flexible side of the structure, more storeys will participate in dissipating

energy and the optimum responses occur when €pb = -€s-

1.3 PHASE 11: EFFECT OF SLIP LOAD DISTRIBUTION ON THE BASE SHEAR
ND TOROUE HISTOR F SIN -STOREY T

Chapter 4 investigates the effect of slip load distribution on the inelastic seismic
behavior of asymmetric single storey structures with friction dampers using the histories
of base shear and torque. The first step in understanding this behavior is to construct the
base shear and torque surface (BST) for the model, which represents all combinations of
shear and torque that applied statically lead to collapse of the structure.

Considering the single storey model used by Martin [6], the value of RB / RF was
set to be equal to unity and KB/KF = 3.

For the full range of stiffness eccentricity (from 0.0 to 1.2), the slip load is

expected to vary between -e; and e,. It was observed that the maximum base torque

deceases as the slip load eccentricity move from the stiff side to the flexible side of the

structure. Furthermore, strength eccentricity controls the width and skewness of the BST

surface.

.4 PHASE 11]: RGY TION



The final phase of this study deals with the energy imparted and dissipated by the
single storey model used in the previous phase. Chapter 5 looks at the effect of the
redistribution of brace slip loads on the ability of the models to dissipate the inelastic
energy by friction braces and by the frame yield. The energy input and dissipated time-
histories are calculated for three cases of slip load eccentricity (epp* = e5*. epp™ =0 and
epp* = -€5*) with the full range chosen of stiffness eccentricity (eg* from 0 to 1.2). The
results obtained reflect those of phase 1 & 2 in which the maximum energy dissipated by
brace slippage is in the case of epp* = -e5*.

Analysis of the overall results obtained shows that the improved optimum
performance of the FDBF occurs when the slip load eccentricity equals the stiffness

eccentricity but on the other side of the structure.



CHAPTER 2
DESCRIPTION OF THE MODEL

2.1 INTRODUCTION

This chapter depicts the single-storey structural model which will be used to
investigate the effects of the slip load redistribution between the friction device equipped
braces on the inelastic seismic behavior of asymmetric buildings and on the energy
imparted and dissipated by the system. Also described in this chapter are the multi-storey
models that will be used to study the effect of slip load distribution on the maximum edge
displacements and element ductility demands. The multi-storey models are used in the
early part of the investigation as an extension of the work by Martin [6] for a single-
storey model.

The single-storey model is the stiffness eccentric model used by Goel and Chopra
[5]. The model has four resisting elements as shown in Figure 2.1, two elements in the
direction of excitation and two resisting elements in the orthogonal direction. A special
case of this model is the case with only two resisting elements in the direction of
excitation which have been used in most of this study. The model with two elements in
the direction orthogonal to the excitation has been used in one case during the current
investigation when the torsional rigidity of the structure need to be increased. The two
elements in the direction of excitation are friction damped braced frames (FDBF), while
the two resisting elements in the orthogonal direction, if they exist, are assumed to be

elastic elements, i. e. all models used have two FDBF in the direction of excitation.



.2 DE PTION OF N - L (Withou €

The single-storey stiffness eccentric model described in this section was originally
introduced by Goel and Chopra [5] and selected by Martin [6] to study the effect of slip
load distribution on the maximum response and ductility demand of single -storey
structures. This model has the ability to simulate a wide range of slip load and stiffness

distribution that will be used in the study.
The basic structure consists of a rigid rectangular deck of mass m and dimensions

D, by D, supported by two massless frame elements as imaged in Figure 2.2. The
dimensions are chosen to be a function of the mass radius of gyration p as follow:

D, = 3p -1

n

D=.3-p (2-2)

The aspect ratio (D,/D) is thus chosen to be 1.732. According to Tso [15] an aspect ratio
less than unity gives higher response but in fact it is less likely to occur than the aspect
ratio chosen. Moreover it is important that the values of the deck dimension chosen

follow the mathematical relation for the mass radius of gyration:

N/

= d -

P = (2-3)

:_L+*L, _ 1 (b,-D’ DD, o

P~ "D D\ 12 12 2-4)
2 2
, (D2+D%

pr= ——— (2-5)

12

For simplicity the model is symmetric about the X-axis and lateral movement of
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the center of mass in the X-direction is prevented. For Y-direction earthquake excitation,
the result is a simple model with only two degrees of freedom: the translation
displacement, y, of the center of mass, CM, relative to the ground in the Y-direction and a
rotation, 6, about a vertical axis passing through the center of mass of the model. Figure
2.2 shows the general layout of the single-storey model or the typical floor of the multi-
storey models; as can be seen two resisting elements (1 & 2) in the direction of excitation
(Y-direction) are located at a distance of (a) to either side of CM along the X-axis. One
special case of this study dealt with a torsionally rigid structure; in this case, high
torsional rigidity was set up by the introduction of the two resisting elements in the
orthogonal direction (elements 3 & 4 of Figure 2.1). Elements 3 and 4 are located at a
distance of (d) to either side of CM along the Y-axis. The elements in the orthogonal
direction are assumed to remain elastic, which means that the two models of Figures 2.1
and 2.2 are similar in that they both have two friction damped braced frames in the
direction of excitation, the difference being that the model with elements in the
orthogonal direction has a wider range of increased torsional rigidity.

Lateral and torsional rigidities of the model are given by:

K, = %K,.y (2-6)
K, = 2K, (2-7)
J
KG = Zijai2 + Z1<jxdi2 + ZKie (2'8)
i i i
2
Ky, = Kg—e, 'K, (2-9)

where K, is the total lateral stiffness of the resisting elements in the direction of
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excitation (the Y-direction), K, is the total lateral stiffness of the elements in the
orthogonal direction (the X-direction), Kjg is the torsional rigidity of an element about its
own axis (can be neglected for planar members), K¢ is the torsional rigidity of the
structure about the center of mass, CM, and Ky is the torsional rigidity of the structure

about the center of stiffness, CS. In equation 2-8 the second term exists only for systems

with elements in the X-direction.

The yield strength of the frame element is assumed proportional to stiffness. That
means that the center of resistance of the frame, CR, coincides with the center of
stiffness of the structure. The center of stiffness of a structure, is defined as that point
along the deck where the resultant of the lateral force passes through without any rotation
of the deck. The center of resistance, CR, of a structure is defined as that point along the
deck where the resultant of the lateral load of sufficient magnitude causes yielding in all
resisting elements at the same instant. The distance measured from the center of stiffness
to the center of mass is the elastic stiffness eccentricity and is denoted by e.. The other
eccentricity that will be used in this study is the plastic eccentricity or the strength
eccentricity. The plastic eccentricity denoted by e, can be defined as the distance
measured from the center of resistance to the center of mass. Accordingly, four

eccentricities can be defined for the model:

1
e. = =K, a. (2-10)
s Kyi 2
e = 1SR a (1-11)
p Ry
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ex = 3 (2-12)
p

e* =P (2-13)

where eg* represents the static stiffness eccentricity, normalized with respect to the radius
of gyration about the center of mass p, coming from an irregular distribution of stiffness
and mass, and ep* expresses the normalized static strength eccentricity due to the
variation of yield strength of the resisting elements. Ry depicts the total resistance of the

structure in the direction of excitation and is given by:

R, = 2R, (2-14)
i

where Ry; is the yield resistance of the individual elements. The occurrence of yielding of
the resisting elements is ensured by limiting the maximum induced elastic resistance of
the element to the ratio of the theoretical maximum elastic seismically induced force,

Relastic- to the code force modification factor, R. Thus, R, is represented as:

R .
R_v = el}zésnc (2_1 5)

In this study a value of R = 4.0 was used, which depicts the maximum allowable
modification factor for structures that have high level of ductility according to the 1995
NBCC [16]. The uncoupled lateral frequency and the uncoupled torsional frequency

about the center of mass can now be defined as:

1
o, = (1&)2 (2.16 2)
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i
0, = (%‘)2 (2-16 b)

1
Ky )2
0y = | —5 (2-17)
mp
Two other torsional frequencies which have been used in the literature are [11]:
1
J ORY
g5 = ( ";) (2-18)
mr
1
K. )2
W, = ( 9;} (2-19)
mp

where r is the mass radius of gyration about the center of resistance, CR, of the structure.

Consequently. three uncoupled torsional to lateral frequency ratios, can be defined:

2
2 ®
Qe = — (2.20)

'

[so]

e

. (2-21)
0y
Q% = 22 (2-22)
©y

The uncoupled torsional to lateral frequency ratio Q, is a significant feature that

allows direct comparison of the results as long as it is constant and independent of the

eccentricity of the structure.

Moreover the two coupled natural frequency of the system can be calculated from

the following equation [11]:
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2 2 2 2

Wy, 1+Qr,  [1-Qc] 2

2 T3 * T () (2-23)
y

Because of the fact that friction dampers are considered to be most advantageous
to multi-storey buildings of moderate height, a period of vibration of T = 1.0 sec. is
specified. In addition, since the lateral-torsional coupling in elastic structures is most
critical when the torsional to lateral frequency ratio is near unity, therefore, Q, = 0.9 will
be adopted for the models used in this study. The remaining variables are thereby
adjusted to ensure the specified T and Q. The dimensions of the model with two
resisting elements in the direction of excitation together with the large eccentricity (e =
1.2) used in this study are not allowing €, grater than 0.9. Therefore, the resisting

elements in the orthogonal direction have been introduced when Q, needed to be more

than 0.9.

2.2.1 Positioning the Resisting Elements

The single-storey stiffness eccentric structure of Figure 2.1 shows the general
layout of the single-storey model or the typical floor of the multi-storey models. The
model has two resisting elements in the direction of excitation (Y-direction) and two
resisting elements in the orthogonal direction (X-direction). The center of mass coincides
with the geometric centroid of the deck and the resisting elements are placed at equal
distance either side of CM in both directions. The eccentricity is created by assigning

different stiffness to the resisting elements in the direction of excitation. Determining the
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actual in-plan position of the resisting elements is done according to the equations set
forth in reference [5]. Considering the generalized system of Figure 2.1, the resisting

elements of this stiffness eccentric system are located according to:

d _ A1 (2-24)
o] cox/(oy
g = J(l —y Qi+ ()’ (2-25)

where o, / o, is the lateral vibration frequency ratio equal to (K, / Ky)'/2 and y, is
defined as the relative torsional stiffness of frames oriented along the X-direction to the

torsional stiffness and is given by:

(ZKixdz')
A -
e T TR (2-26)
The stiffness of each element are given by:
2
Klv my( es*
— T c— — -7
m 2 : a’/ (2-27)
K o’ e*
2 _ _y(1+ s ) (2-28)
m 2 a’/p
K K w22
3x _ Tx _y(_x) (2-29)
m m 2 0, :

If the elements of the orthogonal direction do not exist, “d” will be zero and

equation 2-25 will be as follows:

N

2
5 = O +(e) (2-30)

°
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2.2 Addi riction Damper ipped Brace

A friction damper device basically consists of series of steel plates with slotted
holes (Figure 2.4). The plates are specially treated to develop most reliable friction [24].
They are clamped together with high strength bolts and allowed to slip at a predetermined
load.

Braces and frames are alike in that they have particular strength and stiffness
features. The difference between traditional X or K bracing and friction damper equipped
braces is that the friction damper does not undergo traditional yielding. It starts to slip at
predetermined load equal to the yield point of traditional bracing. Only if the friction
damper bracing reaches its maximum slip displacement, then it can practice yielding.
During an earthquake, the friction dampers start to slip and dissipate energy at the
predetermined load just before the structural elements undergo yielding deformation [3].
After the earthquake the strain energy of the framed structure brings the friction damper
to their near original alignment.

Because of this likeness between braces and frames, the equations introduced
earlier are applied to the bracing as well. In order to remove the confusion between the
strength, stiffness and slip load eccentricity of the frame and bracing, the following
notations are used for each of the frame and bracing properties. Hence, the frame stiffness

and strength eccentricity can be defined as:

1
1
e, = E;RF-“'“" (2-32)
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and the brace stiffness and slip load eccentricity can be formulated as:

1 2
_ 1
e,y = R—BERBy,.a,. (2-34)

where ey, is the stiffness eccentricity of the braces measured from the center of mass to
the center of rigidity of the braces, and epp is the strength eccentricity or the slip load
eccentricity of the braces measured from the center of mass of the structure and the slip
load center of the braces. The slip load center of the braces is defined as that point along
the deck where the application of a force of sufficient magnitude causes all the braces to
slip at the same time. Figure 2.3 shows the position of center of stiffness and center of
resistance for the frames and braces due to different distribution of slip load, frame
resistance and stiffness.

The stiffness is defined (for both the braced and the unbraced frames) as the load
that results a storey drift of unity. The individual frame resistance, RF,; is defined as the
force required for the resisting element to start yielding. and the individual brace strength,
RBy;. is defined as the force needed for one friction damper to start slippage at constant
load.

‘Two new variables of particular interest can be introduced: the ratio of total brace
stiffness to total frame stiffness, KB / KF, and the ratio of total brace strength to total
frame strength, RB / RF.

Several studies have been dealt with the optimization of KB / KF and RB / RF by

other researchers and will not be reproduced here [3, 4, 6, 7, 11]. Baktash [3] and Pekau
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and Guimond [4] used two dimensional analysis and made some simplifying assumptions
to examine the ratio of total strength or stiffness. One common assumption in both
studies was that the resisting frames would be identical in stiffness and strength, and that
the braces assigned to each frame would also have identical slip loads and stiffnesses.
Guimond [11] established the ratio of braces stiffness to frame stiffness KB / KF to be
grater than seven. Later Martin and Pekau showed that KB /KF = 3 is adequate. From
these studies, it was concluded that the optimum response of a structure would be
obtained when the RB / RF ratio was near unity and KB / KF of three is satisfactory. The

current research studies the effect of changes in distribution of RBy; and KB;, while RB /

RF and KB / KF remain constant.

:2.3 Computer Modeling of the Single-storey Structures Considered

The single-storey model used is that with only two FDBF in the direction of
excitation. The analysis of this single-storey stiffness eccentric model made by using the
two dimensional dynamic analysis program DRAIN-2D [14]. Therefore, the system has
been converted to an equivalent 2-D model. Figure 2.2 represents the layout of the
structure to be modeled. The rigid deck is replaced by beam element with infinite rigidity.
The infinite rigidity of the beam is insured by selecting suitable material property which
reflects that of the deck. A simple truss element was chosen to model the frame énd
braces. The truss elements have the stiffness and yielding properties of the frame, or the
stiffness and the slip load property of the friction dampers. Figure 2.6 shows the idealized

single-storey model and figure 2.8 shows the idealized translational and rotational

deformations.
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The mass of each floor is assumed to be lumped at the floor level. Thus it is easy
to assign the center of mass to the control node in the model of the beam which is
assumed to be the center of mass. This point was prevented from horizontal movement.
The application of beam elements for modeling the deck and truss elements for modeling
the resisting elements is verified by the design assumptions that have been made. The
truss elements carry only tension or compression which is compatible with the
assumption that frames act as massless tension compression spring. Control points are
located at the edges of the model, at the location of the resisting elements, and at the CM
point. Finally, positioning of the resisting elements and the structural properties
governing their behavior is dictated by equations (2.1) to (2.31).

It should be noted that if an element (frame or brace) does not exist, it will be
assigned either a KB or RB value of zero.

To study the maximum edge displacement and ductility demands of the single
storey structures (Chapter 3), the models used were subjected to four earthquake records
(1940 EL Centro N-S, the Newmark-Blume-Kapur artificial excitation, 1952 Taft S69-E,
1977 Romania N90-W).

In chapter 4 this idealized single-storey model was subjected to 1940 El-Centro
N-S earthquake record to study the inelastic seismic behavior of single-storey structure
using histories of base shear and torque.

To study the energy input and dissipated by the system (chapter 5), the model was

subjected to 1977 Romania N90OW earthquake excitation.
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. LTI-ST Y L

In addition to the translational motions, buildings subjected to earthquakes often
undergo a torsional motion. The torsional motion arises because of the eccentricity
between the center of mass and the center of stiffness at various floors of the building.

It is simple to estimate the center of mass of a building. Therefore the analysis of
the structure will be straightforward if the requirement is to apply the seismic force
through the center of mass. However, if the load application point is the center of
stiffness, hence the position of the center of stiffness must be determined. In this study a
ground excitation is applied to multi-storey eccentric friction damped braced frame to
study the response due to different stiffness eccentricities (0.0, 0.3, 0.5, 0.75, 0.9 and
1.2). Therefore the center of stiffness has to be known.

For multi-storey buildings there is no exact definition for the center of stiffness. It
is possible to define the center of stiffness at any floor level as the point that when
applying a lateral force through it, the floor level under consideration has no rotation, but
the other floor levels may rotate.

In this study the center of stiffness and the center of mass of each floor level are

set to lie on two vertical lines and the stiffness eccentricity e is assumed to be the

distance between the two lines.

2.3.1 Description of Multi-storey Stiffness Eccentric Model

In the multi-storey models (five and ten Storey) the floor level of each storey
consists of a rigid rectangular deck of mass m, that is supported by two massless, planar

frame elements. The deck dimensions and aspect ratio are as the same as the single-storey
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model. The center of mass and resistance are set to lie on two vertical lines. At each floor
level, the multi-storey models have two degrees of freedom: translation y in the y-
direction and rotation 6 about the vertical axis through the center of mass. As a single-
storey model each floor is assumed to be symmetric about the x-axis; however there is
unsymmetry about the y-axes.

As the case for single storey model, the multi-storey models under consideration
are strength eccentric models where the strength eccentricity of the unbraced frame
equals the stiffness eccentricity i.e. €p= €;. In this case the yield strength of the resisting
frame elements RF is assumed proportional to stiffness, therefore, the CR of all floor
levels lie on one vertical line coincident with the CS vertical line.

The strength of unbraced structure RF is calculated from the elastic response of
the symmetric structure, for which the maximum base shear is Rgj,qi.. Employing the
code force modification factor R, RFy = Rgjaqic/R.

In this study a value of R=4 is considered which represents the reduction factor for
ductile systems according to 1995 NBCC. The frame elements of all storeys are assumed

to be identical.

2.3.2 Position of Resisting Elements

The centers of mass of the floor levels of the multi-storey model lie on one
vertical line. At each floor level the resisting elements are position symmetrically about
the CM which coincides with the geometric centroid of the deck. Determining the actual

in-plan position of the resisting elements for each floor level is done according to the set

of equations (2.23 to 2.28)
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The stiffness eccentricity normalized with respect to the mass radius of gyration p
was allowed to vary over the range (0 to 1.2) while the slip load eccentricity normalized

with respect to the mass radius of gyration p was allowed to vary over the range (-e;* to
es*) ie.
O<(e*;=e,/p)<1.2 (2-35)

~12<(e*p = €,,/P) <12 (2-36)

The computer program DRAIN-2D [14] was used for the analysis of the multi-
storey models with five percent viscous damping and time step At=0.01 sec. Four
earthquake records were used as the seismic input base excitation: 1940 El-Centro N-S:
the Newmark-Blume-Kapur artificially generated ground motion; 1952 Taft; 1977
Romania N9OW Figure 2.10 shows the acceleration time history of this ensemble.

The eccentricity in the x-direction between the center of mass and center of
stiffness is represented by e and is constant throughout the height, for each floor level
the stiffness eccentricity is calculated from equation 2.10. A period of vibration of T=1.0
sec. and a torsional to lateral frequency ratio is ,=0.9 are specified. The SAP90
program was used to calculate the period of vibration and the lateral and torsional
frequencies, several iterations being used to adjust the variables to ensure the specified T
and Q. Simply the properties of the one storey model are used for each floor level of thé
multi-storey models and using SAP90 program, the mode shapes, frequencies, and
fundamental periods are calculated. Then the properties were readjusted by the ratio of

the calculated fundamental period and 1.0.

To check the uncoupled torsional to translational frequency ratio, equation 2.23 is



used to calculate the ratio of @, / @; for each eccentricity of the single storey model.

Then SAP90 was used to calculate the same ratio for each eccentricity of the multi-storey

models to ensure that they are identical with the values of one storey model.

2.3.4 mputer Modeling of Structur nsidered

The lateral analysis of asymmetric building structures usually requires a full three
dimensional computer procedure. It is acceptable to reduce the size of the problem by
neglecting less significant degrees of freedom, for instance normal bending and torsion of
columns and beam, and by taking advantage of the particular structural and geometric
features of the building [25].

Analysis of the multi-storey models will be done through the use of DRAIN-2D, a
two dimensional dynamic analysis program [14]. Therefore, as single-storey model, the
multi-storey models have been converted to equivalent two dimensional multi-storey
models as shown in Figures 2.9 and 2.10. The idealized multi-storey computer model of
Figure 2.9 represents the case in which the model has only two FDBF resisting elements
in the direction of excitation, while Figure 2.10 depicts the case that has two more elastic
elements in the orthogonal direction.

For each floor level of the multi-storey models the rigid deck is modeled as a
series of beam elements with infinite rigidity and material properties reflecting those. of
the rigid deck, the lengths of the beam elements are chosen to be equal to the distance
between control nodes. The frames and braces are modeled as truss elements, each having
the lateral stiffness and yielding properties of the resisting elements. For the friction

brace, the vield resistance specified for the truss element equals the slip load of the brace.
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The mass of each floor level is assumed to be concentrated at the centroid of the
deck, therefore, it is possible to assign the total mass of a floor level to that point in the
center of the rigid beam and considered as the center of mass CM of that floor level. The
center of mass of each floor level was prevented from horizontal movement.

The rigid beam of all floors and the lumped mass assigned to the center of the
beam of each floor are assumed to be identical for all floors. Moreover the frames and
braces properties (stiffness and strength or slip load) of each side of the model are
identical for all floors since the centers of stiffness and the centers of resistance of all

floor are lay on two vertical lines.

25



1.73p

D=

Direction of
excitation

Figure 2.1 Generalized stiffness eccentric model with two FDBF in the direction of
excitation and two elastic elements in the orthogonal direction
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Figure 2.2 Generalized stiffness eccentric model with two FDBF in the direction
of excitation
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Figure 2.4 Typical friction device [3].

F frame 7’ 7l Fbrace A=l
—-Q 0
Kframe = Force required Kprace = Force required

Figure 2.5 Definition of stiffness [11]
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Figure 2.6 The idealized single-storey model and typical floor of the multi-storey
models with two FDBF in the direction of excitation
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Figure 2.7 The idealized typical floor level of the multi-storey model with
two FDBF in the direction of excitation and two elastic elements in
the orthogonal direction
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Figure 2.9 The idealized multi-storey model with two FDBF in the direction

of excitation.
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Figure 2.10 The idealized multi-storey model with two FDBF in the direction of
excitation and two elastic elements in the orthogonal direction
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Figure 2.11 Acceleration time histories for earthquake ensemble: (a) 1940 El CentroNS;

(b) Newmark-Blume Kapur artificial excitation; (¢)1952 Taft S69E;
(d) 1977 Romania N-S

34



CHAPTER 3

ANALYSIS AND RESULTS OF THE 2-D MULTI-STOREY MODELS
SUBJECTED TO CHANGE IN SLIP LOAD DISTRIBUTION

3.1 INTRODUCTION

This chapter deals with the distribution of the slip load of friction damped braces
in multi-storey structures. The optimum ratio of the slip load to frame strength, RB/RF,
was determined by Baktash [3] to be equal to unity. The slip load and stiffness
distribution of the single-storey structures was the subject studied by Martin [6]. The
results obtained by Martin are the basis of this chapter. He obtained that the optimum slip
load distribution for a single-storey model occurs when the slip load eccentricity equals
to the stiffness eccentricity, but in the other direction. Martin and Pekau [7] later showed
that the ratio of the brace stiffness to frame stiffness KB/KF = 3 is satisfactory.

The research herein aims to determine how the limits established by Baktash.
Martin and Pekau can be utilized to minimize the response of the multi-storey models

chosen (five and ten storey models).

2 OPTIMIZATION OF THE N ISTRIBUTION

The ratio of the slip load (brace strength) to frame strength RB/RF was set to

unity, and the ratio of the brace stiffness to frame stiffness KB/KF was chosen to be

three.
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The structural parameters allowed to vary were the normalized stiffness

eccentricity eg*=e/p, and the slip load eccentricity of the friction damped braces
epb*=epy/p- The stiffness eccentricity e,* was allowed to vary from 0 to 1.2 which

provides results for structures with no eccentricity to structures with eccentricity equal to
40 percent of the plan dimension. The slip load eccentricity was allowed to vary from -

es* to e.* (from -1.2 to 1.2). The distribution of the frame strength also was allowed to

vary from 0 to 1.2 and it is set to be equal to the normalized stiffness eccentricity (epf* =
es*).

The stiffness of the brace to the stiffness of frame KB/KF=3 means that the
stiffness of each brace was equal to three times that of the frame in which it was located.
The braced system had the same stiffness eccentricity as the unbraced system.

For each storey of the multi-storey models, the total slip load required for the
brace was calculated to be equal to the sum of all the strengths of the frames in which the
braces were to be placed. The total required stiffness was determined as the sum of all the
stiffnesses of the frames in which the brace were to be placed multiplied by the KB/KF
ratio of three.

The stiffness eccentricity was introduced by increasing the stiffness on one side of
each floor level (the stiff side) and decreasing the stiffness on the other side (the flexible
side). Three values of the slip load eccentricity were introduced. The first one when

epp *=es* where the center of the slip load (the center of strength of the friction damped
braces) CRp coincides with the center of stiffness CS. This case is introduced by

increasing the slip load on the stiff side and decreasing the slip load in the flexible side in

each floor level while keeping the ratio of RB/RF equal to unity. The second value was
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when ep,* = 0 where CRp coincides with CM. In this case the total slip load was
distributed equally on the two resisting elements. The last value of the slip load was €pb*
= -e;* in which the slip load increased in the flexible side of each floor level of the
structure and decreased in the stiff side, while keeping the ratio of RB / RF equal to unity.

The response of the multi-storey models with five percent viscous damping and
time step At = 0.01sec. was obtained using DRAIN-2D for six eccentricities (eg* = 0, 0.3,
0.5, 0.75, 0.9. 1.2) and four earthquakes (1940 EL Centro N-S, the Newmark-Blume-
Kapur, artificial excitation, 1952 Taft S69-E, 1977 Romania N90-W) were processed.
Normalized response is plotted verses normalized stiffness eccentricity for the three
different values of the normalized slip load eccentricity.

The response was normalized by taking the maximum edge response of the
structure and dividing it by the corresponding maximum edge response of the unbraced
symmetric structure. A period of vibration of T = 1.0 sec. and the uncoupled torsional to

translational frequency ratio Qy = 0.9 are specified.

3.3 RESULTS OF THE STREN ANALYSI

Described in this section is the analysis of the single, five and ten-storey models
with two resisting element in the direction of excitation and no orthogonal resisting
elements. The uncoupled torsional to lateral frequency ratio Qj = 0.9 is specified for the
three models described in this section.

The study done by Martin [6] for single-storey model with four FDBF (two in

direction of excitation and two in the orthogonal direction) and Q; = 1.0, has been
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repeated here for the model with no resisting element in the orthogonal direction and
uncoupled torsional to translational frequency Q= 0.9 to be consistent with the multi-
storey models chosen.

The results of the single storey model were identical with the results obtained by
Martin in which showed a reduction in the maximum edge displacement and ductility
demand as the slip load eccentricity moved from the stiff side to the flexible side of the
structure. For large eccentricity (eg* = 1.2), the maximum edge displacement when epb* =
-e,* was reduced by 70 percent of the maximum edge displacement when epp* = eg*
(Figures 3.1 & 3.2)

Both multi-storey models showed also reduction in the maximum edge
displacement as the slip load eccentricity moved from the stiff side to the flexible side of
the structure. Figure 3.3 shows the normalized maximum edge displacement of the five
storey model. As can seen for large eccentricity (e;* = 1.2) the response decreased from
the case of epp* = es* to that of ej,* = -e;* by 50 percent. For the ten-storey model shown
in Figure 3.8 the reduction was 53 percent.

For all models the case of ep,* = -e;* keeps the normalized maximum edge
displacement of all eccentricities less than one, i.e. less than the maximum edge
displacement of the symmetric unbraced case.

The symmetric case (eg* = 0) of single, five and ten-storey models experiences a
maximum edge displacement of one third that of the symmetric unbraced case [Y ,, (¢ =
0 & KB/KF=0)]. This may be due to the fact that adding bracing is equivalent to increase
the stiffness and yield strength of the frame, i.e. providing frames with higher stiffness

and yield strength will decrease the maximum edge displacement. Consequently, it is
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expected that the optimum response will be achieved if the slip load of the brace reduces
the strength eccentricity represented in the unbraced system.

In general the minimum displacement occurs when the normalized slip load
eccentricity ep,* equals -e*; therefore, the minimum normalized response Y.,/
Ymax.(e=0 & KB/KF=0) occurs when the eccentricity of the slip load equal to the
stiffness of the structure but on the opposite side.

Most modern codes, including the national building code of Canada, involves the
concept of ductility. Ductility is defined as the capacity of the members to safely absorb
energy during earthquake while undergoing large inelastic deformation. The ductility
demand of an element is the ratio of maximum displacement to yield displacement.
Figures 3.5 to 3.7 and 3.10 to 3.12 show the ductility demand of the flexible edge for the
five storey and ten storey models respectively.

The ductility demand of the first storey of the five and ten storey models are
shown in Figures 3.4 and 3.9, respectively. As can seen, the ductility demand increases

with increase in e;*. More importantly, the ductility demand with variation of slip load
distribution shows that the best results are obtained when ey,* = -e;*. Also the case of
epb* = 0 keeps the ductility demand below epp* = e *.

If one stops to consider how ductility demand affect the multi-storey structure.

one will realize that, in the symmetric case (e;* = 0), few storeys were ductile (two

storeys in the five storey model and three storeys in the ten storey model). While for large

eccentricity (eg* = 1.2), in the five storey model of Figure 3.7 three storeys were ductile
when ep,* = eg*, four storeys when epp* = 0 and five storeys when epb* = -e5*. The ten

storey model with large eccentricity (e;* = 1.2) of Figure 3.12 shows that six storeys were
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ductile when epp* = e *, eight storeys when epb* = 0 and nine storeys when ep,* = -es*.
This phenomenon means that, as the center of slip load moves from the stiff side to the
flexible side, more storeys will participate in dissipating energy and the ductility demand

will decrease.

34 NCLUDING REMA

The analysis of the friction damped brace strength distribution of the multi-storey

models has indicated to the following:

- Minimum response of multi-storey buildings were obtained when the slip load
of the friction braces has been distributed so that the normalized slip load eccentricity
equals the stiffness eccentricity but in the opposite side of the structure, i.e. epp* = -e5*.

- For practicality, good results were obtained when the slip load of the brace has
been distributed so that epp* = 0, which places the center of the braces strength CRp
coincident with the center of mass CM.

- At the optimum distribution of the slip load (epp*=-€5*), more storey levels will
participate in dissipating energy.

All results were obtained using four earthquake records (1940 EL Centro N-S, the
Newmark-Blume-Kapur, artificial excitation, 1952 Taft S69-E, 1977 Romania N90-Wj.

All model have only two FDBF in the direction of excitation.

S EFFEC F_THE N F ET JIONAL TO ILATERAL FRE-
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ENCY RATI NTHE E

This part studied the effect of torsional rigidity of the structure on the maximum
edge displacement and ductility demand of the multi-storey buildings with various slip
load distribution.

The ten-storey model with the same parameters and limits indicated earlier except
the torsional to lateral frequency ratio € has been chosen in this part of the study.

Two cases of torsional rigidity have been considered: the first case is the

torsionally flexible structure, in this case the torsional to translational frequency ratio

chosen to be equal to 0.7 (Q4? = 0.5); the second is the torsionally rigid case, in this case

the torsional to translational frequency ratio chosen to be equal to 1.7 (902 =3). For the
plan dimension chosen with two resisting elements in the direction of excitation, Q
cannot exceed 0.9. Therefore, one has to introduce elements in the orthogonal direction to
adjust Qg to be equal to 1.7. These two elements are placed at distance “d” on either side
of the center of mass CM in the y-direction. Most important is that the elements in the
orthogonal direction are assumed to remain elastic, so that they do not contribute to the
energy dissipation. The structure will still have two FDBF in the direction of excitation.

The rest of the parameters are kept as before (RB/RF=1,KB/KF=3and T =
Isec.).

The analysis was performed using DRAIN-2D program with five percent viscous
damping and integration time step At=0.01. The system was excited by the same four
earthquake records (1940 EL Centro N-S, the Newmark-Blume-Kapur, artificial

excitation, 1952 Taft S69-E, 1977 Romania N90-W).
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3.6 RESULT N NALYSIS

The results for the torsionally flexible model (Q = 0.7) are shown in Figures 3.13
to 3.17. As expected the maximum edge displacement shows a reduction as the slip load
eccentricity moves from the stiff side to the flexible side of the structure (F igure 3.13).
The reduction is smaller than the reduction when Qg = 0.9; for example, for the large
eccentricity (eg*=1.2) of the torsionally flexible’ model (€, = 0.7), the maximum
normalized edge displacement is reduced from the case of epp* = &* to that of e * = -
es* by 35 while it was 53 percent when Q; = 0.9. Moreover, the maximum edge
displacement in the case of ep,* = -e;* for normalized stiffness eccentricity as large as

0.9 and 1.2 exceed Y,,x (e=0 & KB/KF=0), i.e. exceed the maximum edge displacement

of the symmetric unbraced case.

The ductility demand in the first storey of the ten-storey torsionally flexible model
(Figure 3.14) shows that the best performance occurs when epp* = -es*. Also more
storeys will be ductile as the slip load eccentricity moves from the stiff side to the flexible

side of the structure (Figures 3.15 to 3.17).

Correspondingly, the ten-storey torsionally rigid model (€ = 1.7) showed that
the best behavior occurs when e,,* = -eg*. Similarly, more storeys are ductile as the slip

load eccentricity moves from the stiff side to the flexible side of the structure (Figure
3.18). The maximum edge displacement for all slip load distribution cases with different
eccentricities is below that of the symmetric unbraced case. For large eccentricity

(es*=1.2), the maximum edge displacement in the case of e * = e,* is 0.58 Y., (e=0 &
s pb S max.

KB/KF=0). However, the maximum edge displacement is reduced from the case of epb*
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= eg* to that of e,,* = -e5* by 40 percent.
The ductility demand curves (Figures 3.19 to 3.22) show that the general trend
still applies for Qy = 1.7, as can be seen that more storeys participate in dissipating

energy as the slip load moves from the stiff side to the flexible side of the structure. It is
obvious that the total number of storeys that have ductility for each eccentricity are less

than the case of y = 0.9. For example, in large eccentricity (e;*=1.2), four storeys are
ductile in the case of epp* = e5*, five in the case of e,p* = 0 and seven in the case of epp*
= -e5*, while six storeys are ductile in the case of ey,* = e*, eight in the case of epp* =0

and nine in the case of epp* = -e*when Q= 0.9.

3.7 CONCLUDING REMARKS

The analysis of the possible variation in strength distribution between friction
damped braces with changes in the uncoupled torsional to translational frequency ratio

has revealed the following:

- As torsional rigidity of the structure increases, the maximum edge displacement

decreases.

- The reduction from the case of e,p* = e* to that of e,p* = -e5* decrease as the
uncoupled torsional to translational frequency €, become smaller or greater than the
critical value (€2 = 0.9), i.e the idea of having slip load eccentricity equal to the stiffness

eccentricity but on the other side of the structure is most beneficial for structures that
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have uncoupled torsional to translational frequency near one.
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Figure 3.17 Ductility demand of the torsionally flexible ten-storey model
(average of 4 earthquakes, Q,=0.7 & T=1)
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Figure 3.19 Ductility demand for the first storey of the torsionally rigid
ten-storey model (average of 4 earthquakes, Qp=1.7 & T=1)
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Figure 3.20 Ductility demand of the torsionally rigid ten-storey model
(average of 4 earthquakes, Q,=1.7 & T=1)

(@e~0 (b)e=0.3

59



Floor level

10.0

9.0

8.0

7.0

6.0

5.0

4.0

1.0

0.0

_ pbCs  _ u i
- - epp=0
""""" €pb=Cs
B I B n
2 b
?] ﬂ _c’M"c'sﬂ"
— a w— - —
S ia——.
D,=3p
i
i
| |
I . !

1 I L 1 1 ! ! 1 'l [} 1 | 1 | 1 l. [l ) 1
00 10 20 30 40 50 00 1.0 20 30 40 5.0
Ductility demand Ductility demand
(a) (b)
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CHAPTER 4

EFFECT OF SLIP LOAD DISTRIBUTION ON THE BASE SHEAR
AND TORQUE OF THE 2-D SINGLE-STOREY MODEL_

4.1 INTRODUCTION:

Studied in this chapter is the effect of slip load distribution on the inelastic
seismic behavior of asymmetric single-storey buildings using the histories of base shear
and torque. The basis of this work is the research of De La Llera and Chopra [9 & 12].
They studied the inelastic seismic behavior of asymmetric-plan buildings and concluded
that one can adjust the stiffness asymmetry and strength asymmetry to direct the inelastic
behavior in any desired region of the base shear and torque (BST) surface. Independently
varying the stiffness and strength may seem impractical for conventional steel and
reinforced concrete buildings, but should be feasible for systems using friction damped
braced frames.

The computer program DRAIN-2D was used to analyze the single-storey model
described in chapter 2 having uncoupled torsional to lateral frequency ratio £2,=0.9 and
fundamental period T=1 sec. The brace strength was set to be equal to the frame strength.
1.e. RB/RF = 1, and the braces stiffness to frame stiffness KB/KF was set to be equal to
three. The model was subjected to the N-S component of 1940 El Centro earthquake in
the y-direction.

As before six normalized stiffness eccentricity were considered (e *=0, 0.3, 0.5,

0.75, 0.9 and 1.2). For each stiffness eccentricity three cases of slip load eccentricity were
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considered (epp*=eg*, epb*=0 and e, *=-e.*).

Examined in this chapter are the effects of the plan-wise distribution of the slip
load by considering the base shear and torque response histories. These histories
represented in the force plane spanned by base shear V,, and torque Tg.

At each instant of the response, the base shear and torque define one point in this
plane. The combination of the base shear and torque are bounded in this plane by a
surface called the base shear and torque ultimate surface. The base shear and torque
(BST) surface is defined by the set of base shear and torque combinations corresponding

to the different collapse mechanisms that can be developed by the system [10].

4.2 THE BASE SHEAR AND TOROQUE ULTIMATE SURFACE

The base shear and torque (BST) surface for the 2-D single-storey model spanned
by the shear in the y-direction V, and torque Ty borders all combinations of the base
shear and torque that when applied statically lead to collapse of the system. The BST
surface is affected by the strength of the resisting elements and its distribution.

The single-storey model under consideration there is that of Figure 2.2, where
only two friction damped braced frames are introduced in the direction of excitation (y-
direction). The dimension of the rigid deck as well as the aspect ratio are described by
equations 2-1 to 2-5, and the position of the CM are explained in chapter 2. Moreover the
calculation of the stiffness, strength and slip load eccentricities as well as the properties

of each resisting element are done through the use of equations 2.6 to 2.33.
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The fundamental period was adjusted to be equal to one and the uncoupled
torsional to translational frequency ratio Qg of 0.9 is specified.

Figure 4.1 shows a symmetric single-storey system with two FDBF resisting
elements in the direction of excitation (y-direction). Each one has identical lateral
stiffness 2K (0.5K for the frame and 1.5K for the brace) and lateral strength Ry (0.5R, for
the frame and 0.5R, for the brace) and is subjected to a static base shear Vy and torque
Tg. It is obvious that the maximum lateral capacity of the system is Vy0=2R, and the
maximum torque capacity of the system is Tgo=2Ra.

The BST surface of Figure 4.1.b can be constructed by representing the
translational and rotational collapse mechanisms (Figure 4.2). For example the first
quadrant of the BST surface in Figure 4.1.b can be determined as the following:

- Point (1): It corresponds to a translational mechanism in plan (Figure 4.2.a) and
means that the resisting elements in the y-direction; must yield. At collapse (Figure 4.2.b)
the system has translated from 0-0° to 1-1° producing simultaneous yielding of the two
resisting elements in the y-direction, therefore, equilibrium of the system imposes that
Vy=2R, and Tg=0.

- Point (2): This point corresponds to a rotational mechanism of the plan (Figure
4.2.c). It implies that the resisting elements in the y-direction must yield but in opposite
directions. At collapse the system has rotated about the center of the deck and line 0-0’
becomes 1-1° (Figure 4.2.d). Equilibrium of the system in the y-direction shows that
V,=0 and Tg=2R,a.

Figure 4.1.c shows an asymmetric single-storey system with two resisting

elements in the y-direction. Element (1) on the stiff side of the structure has lateral



stiffness K1 and lateral strength Rly while element (2) on the flexible side of the
structure has lateral stiffness K2 and lateral strength R2,. The total lateral stiffness of the
system K1+K2=4K (1K lateral stiffness of the frame and 3K lateral stiffness of the
braces) and the total strength of the system R1,+R2, = 2R, (IR, for the frame strength
and 1R, for the braces strength).

The construction the first quadrant of the base shear and torque surface shown in
Figure 4.1.d can be done by representing the collapse mechanisms in Figures 4.2.e and g.
One can determine points (1) and (2) as follows:

- Point (1): This point matches the mechanism shown in Figure 4.2.e. It implies
that the two resisting elements must yield in the positive y-direction. The strengths of the
two resisting elements are not identical; therefore, the base torque is exist. From the
equilibrium of the system at mechanism 1-1°(Figure 4.2.f) one easily sees that the base
shear V, =R1,+R2,=2R, and the base torque Te=(R1y-R2),)a.

- Point (2): Shown in Figure 4.2.g is the mechanism which associates with the this
point. As can seen, the two resisting elements yield in opposite y-directions. The
equilibrium of the system for mechanism 1-1° (Figure 4.2.h) gives the base shear Vy
=R1,-R2, and the base torque Tg=2R,a.

The base torque Tg =2R,a can be written as a function of eccentricities as follow:

]

R1, RB1,+RF1, 4-1)

R2,

I

RB2,+RF2, (4-2)
Looking at Figures 4.2 d and h, the base torque can be defined as follow:

To = 2R,a = R1,-a+(-R2,)-(-a) = a-(RB1,+RF1,+RB2,+RF2) (4-3)
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Looking at Figures 4.2 b and f, the base torque can be define as follows:
Ty = (R1,-R2)-a = Rl,-a+R2,-(-a) 4-4)
Ty = a-(RB1,+RF1,))+(-a)- (RB2,+RF2) (4-5)
Equations 4.3 and 4.5 lead to the following equation:

Ty = 2RF,,-a+XRB, -a (4-6)

i !

Substitute in equation 4.6 using equations 2.26 and 2.28
Ty = epf* -p-RFy+epb* -p-RBy 4-7)
Ty = eyr-RF, +e,,-RB, (4-8)
In order to verify these equations one must follow the positive direction of V and

Tg as shown in Figures 4.1.2 and c.

Moreover, it should be noted that the base shear has been normalized with respect
to the maximum shear capacity of the system Vymax (point 1 in figures 4.1.b & d) and
the base torque has been normalized with respect to the maximum torque capacity of the

system Tgmax (point 2 in figures 4.1.b & d).

4.3 ANALYSIS AND RESULTS

Regardless of the slip load eccentricity, the strength eccentricity of the frames
increases with increase of the stiffness eccentricity, i.e the center of strength of the frames
is coincident with the center of stiffness. When eyp* = eg¥, the strength of the frames and
the slip load are increased on the stiff side of the structure and decreased on the flexible

side of the structure, while e,,* = 0 means that the center of the slip load coincides with
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the center of mass, but the frames center of strength is identical to the center of stiffness.
It can be concluded that the strength is eccentric in these two cases (epp* = es* and ey, * =
0). This eccentricity in strength causes an asymmetry in the BST surface. The third case
(epp* = -e5*) means that the strength of the frames is increased on the stiff side of the
structure and decreased on the flexible side, while the slip load (brace strength) is
increased on the flexible side and decreased on the stiff side of the structure. The brace
strength to the frame strength ratio (RB/RF=1) together with adjusting slip load
eccentricity to be equal to stiffness eccentricity but on the other side of the structure,
means that the total strength (frames and braces) on the stiff side of the structure equals to
the total strength on the flexible side, i.e epp* = e;* causes a symmetry in strength,
therefore the BST surface has to be symmetric in this case.

Looking at cases (a) and (b) in Figures 4.4 to 4.8, it can be recognized that as the
strength eccentricity is increased from 0 to 1.2 the BST surface becomes skewed and
stretched toward the first and third quadrants.

The results of the base shear and torque response histories are plotted in Figures
4.3 to 4.8 which each figure presenting three cases of slip load eccentricity (epp*=es*,
epb*=0, and ep,* = -e;*), for one case of stiffness eccentricity.

Figure 4.4 shows that the maximum normalized torque occurred is 0.65 in the
case of epp*=es*, 0.59 in the case of eyp*=0 and 0.57 the case of ep,*=-e;* which mean
that, as the slip load moves from the stiff side to the flexible side of the structure the
maximum torque that occurs will decrease.

Same comment can be made for Figure 4.5 where e *=0.5; in addition, it starts to

appear that the maximum base shear of the BST surface can be reached in the case of
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epb*=0 and e,,*=-e;*,while it cannot be reached in the case of €pp*=es*.

These two remarks become obvious as the stiffness eccentricity e;* increase. The
maximum decrease in base torque due to slip load distribution occurs when e* = 0.75
(Figure 4.6), as it can be seen that the maximum base torque when epp* = -e5* is 50
percent less then its counterpart in the case of ep,* = eg*.

For all cases shown in Figures 4.4 to 4.8, none of the components reach the
maximum base torque of the BST surface.

The case of epp* = -e* expresses the case of strength symmetry (strength
eccentricity of the structure equal to zero), since the total strength on the flexible side
matches the strength of the stiff side. Most important, however, is that the strength
eccentricity of this case is constant with different stiffness eccentricity. Therefore this
case is convenient in studying the effect of stiffness eccentricity on the base shear and
torque. Case (c) of Figures 4.4 to 4.8 together with Figure 4.3 show that the behavior of

base shear and torque inside the base shear and torque ultimate surface is modified as the

stiffness eccentricity change.

4.4 CONCLUDING REMARK

- Base shear and torque response history is a good way to reflect the behavior of

asymmetric buildings.

-As the slip load eccentricity moves from the stiff side to the flexible side of the
structure, the torque decreases and the shear increases inside the BST surface.

- The response history of the base shear and torque can reach the maximum value
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of the shear in the BST surface when Tg=0; on the other hand there is no evidence that it
can reach the maximum value of torque in the BST surface when V,=0.

- Strength eccentricity and stiffness eccentricity affect the behavior of base shear
and torque inside the base shear and torque ultimate surface, Whilé the strength

eccentricity effect controls the shape of BST surface.
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Figure 4.1.a Resistant element in the y-direction for symmetric case
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Figure 4.1.b Base shear and torque surface for symmetric case
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Figure 4.1.c Resistant element in the y-direction for asymmetric case

Figure 4.1.d Base shear and torque surface for asymmetric case
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Figure 4.2 Construction of the base shear and torque surface
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Figure 4.3 Effect of the slip load eccentricity on the seismic behavior
of single-storey buildings (e,*=0, 1940 El Centro N-S)
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Figure 4.4 Effect of the slip load eccentricity on the seismic behavior
of single-storey buildings (es*=0.3, 1940 El Centro N-S)
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Figure 4.5 Effect of the slip load eccentricity on the seismic behavior
of single-storey buildings (es*=0.5, 1940 El Centro N-S)
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Figure 4.6 Effect of the slip load eccentricity on the seismic behavior
of single-storey buildings (es*=0.75, 1940 El Centro N-S)
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CHAPTER 5

ENERGY TERMS OF THE SINGLE-STOREY MODEL UNDER THE
EFFECT OF THE SLIP LOAD DISTRIBUTION

S.1 INTRODUCTION:

The research carried out so far has dealt with the distribution of the slip load to
minimize the response, ductility and base torque for the structures studied. This chapter
studies the effect of the slip load distribution on the energy terms in order to determine
the benefit of the new distribution on the energy dissipated by the structure, in particular
the energy that will be dissipated by the friction braces.

The model used was the 2-D single-storey model described in chapter 2 (Figure
2.2) with uncoupled torsional to translational frequency ratio Q;=0.9 and fundamental
period T=1 sec. The resisting elements are two FDBF in the direction of excitation. The
brace stiffness chosen was three times the frame stiffness (KB/KF=3) and the brace
strength was set to be equal to the frame strength (RB/RF=1). The model was subjected
to 1977 Romania N90E earthquake in the y-direction.

The response data was generated using DRAIN-2D for five percent viscous
damping and time step At=0.01 sec. Using the results obtained from DRAIN-2D, a

separate program was used to calculate the different energy terms.

3.2 ENERGY EQUATIONS F DOF TEMS:

Two methods can be employed to calculate the energy terms imparted to a
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structure by a seismic excitation, the absolute energy method and the relative energy
method [19 & 21]. The difference between these two methods can be explained in the
SDOF systems of Figure 5.1. Given the viscously damped SDOF system of Figure 5.1.a
subjected to a horizontal earthquake ground motion, the equation of motion can be
written as:

my,+cy+f, = 0 (5-1)
where m is the mass of the system, c¢ is the viscous damping coefficient and f; is the
restoring force. The absolute displacement of the mass is y, = y + yg Where y is the
relative displacement of the mass to the ground and Yg 1s the ground displacement due to
seismic excitation.

By letting y, = y + jz'g the equation of motion can be written as:

my + cy +f = ——my"‘g (5-2)

Therefore the system in the Figure 5.1.a which includes ground displacement in addition
to relative mass to ground displacement can be treated conveniently as the equivalent
fixed base system of Figure 1.5.b subjected to a horizontal dynamic force of magnitude
—mj3g and the relative displacement is employed. Analysis of the system of Figure 5.1.b
thus employs the relative energy method. This latter concept was the one used in this

study.

Depending upon the relative energy concept, integration of equation 5-2 with

respect to y gives:
Impay + Jeydy + [f,dy = ~fmyp,ay (5-3)

The first term on the left-hand-side of equation 5-3 represents the relative kinetic energy
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or the energy stored by the mass of the structure calculated at the end of each time step.
The second term is the energy dissipated in viscous damping as it increases during the
duration of motion. The third term represents the recoverable elastic strain energy and the
energy absorbed by the system in the form of irrecoverable hysteretic energy (energy
dissipated by the frame yield and by brace slippage), calculated at end of each time step.
The right-hand-side term of the equation 5-3 thus defines the input energy of the system.

The relative energy equation can be written as follows [20]:

E = Ek+E§+ES (5-4)
where
E, = —Imygay (5-5)
-2
E, = Im}dy = m; (5-6)
E; = Jeydy (5-7)
E, = [fdy (5-8)

5.3 ENERGY EQUATIONS FOR THE TWO DOF SYSTEM_USED IN THIS

STUDY:

Expanding the same approach of the SDOF systems, the equation of motion of the

two DOF system shown in Figure 5.2 can be written as:

ool a7
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Integrating the above equation with respect to y gives the energy terms of equation 5-4

for the two DOF system used in current study as follows:

Sy M1 vy + Ty - 1C1- (a0} + JIFT- ()}

=-Jiay7- M- [y"g(’)} (5-10)
0

and {y(r)} isthe vector of mass velocity defined as:

()} = [y_")} (5-11)
8(»)

where {3'(1)} is the vector of mass acceleration defined as:
v} = [f(’)} (5-12)

0(7)
The first term of equation (5-10) leads to the kinetic energy of the system, the second
term leads to the damping energy of the system and the third term gives the stored elastic
and irrecoverable plastic energy. The right hand side of equation 5-10 gives the input
energy. Explained next is the calculation of the different energy terms at the end of each

time step.
S.3.1 Input Energy

The input energy can be defined as:
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E(r) = ~[tay(r)y" - (M- Fgé’ﬂ (5-13)

It has been calculated at the end of each time step as follow:

E(0 = Eft-an+ 31y +y(-an)- [af] [J;g(’) =Yl A”J (5-14)
0

5.3.2 Kinetic Energy:

The first term of the left hand side of equation 5.10 leads to the Kinetic energy

which can be defined as follow:
_ “‘ - T p _ 1 ;2 T .
E, =y} - IMI-{dv(D} = 500 ()} - [M]- {¥(D}) (5-15)
Substitute in 5-15 using equation 5-11, kinetic energy can be written as:

E, = 2. () + o [6(01%) (5-16)

ST

S.3.3 Energy Dissipated In Viscous Damping:

The energy dissipated by viscous damping can be written as:

. T
Ey(0) = [y} - [C1- {ay(n)} (5-17)
At each time step the energy dissipated by viscous damping may be calculated from ;che

following equation:
E(1) = E(1-AD+ %{ya - AN +y(} - [] - () -y - AD} (5-18)

where {y(1)} is the vector of mass displacement defined as:
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{y(} = [g 8 ﬂ (5-19)

and the damping matrix [C] defined as follow:

[C] = [2§my 0 ] (5-20)
0 2804,

Substitute in equation 5-18 using equations 5-11, 5-19 and 5-20 the energy dissipated in

viscous damping at the end of each time step can be written as:

E(1) = E;(1= AN+ 2 {0, [)(1- AN +3(D] + 0go[y() -y(t—AN]}  (5-21)
5.3.4 The Stored Elastic (Strain er nd The Irrecoverable Energyv:

The elastic strain energy stored by the system can be written as:
1 T
E; = 51y} - [K1- (D)) (5-22)

Where [K] is the linear portion of the stiffness matrix and which may written as:

zki Zkixi

[x] = Zik.x- zik.x? (5-23)

Substitute in equation 5-22 using equations 5-21 and 5-23, the strain energy may

calculated at the end of each time step as follow:

() = 5 (Zhiy01 + Zhe1001) + Tk 100ID40] (5-24)

The energy dissipated by friction braces can be calculated directly at the end of

84



each time step as the product of the slip load and the total slip travel:

(5-25)

Ebrace = ZRBi : 'Aslipl
i

where RF; represents the i slip load of the braces and Agjip is the accumulative (absolute)
slip travel.
The energy dissipated by the frame yield can be also calculated at the end of each

time step as the product of the frame strength by the ductility displacement:

Epome = ZRF;-[8,~ 4, (5-26)
1

where RF; is the i frame strength, A, is the i frame maximum displacement and A;y is

the yield displacement of the it? frame.

The input energy defined by equation 5-5 is calculated separately at the end of
each time step. The energy terms of the right hand side of equation 5-4 are summed to
produce the total energy mobilized by the system at the end of each time step. The

accuracy of calculation is checked by computing the sum of energies mobilized with the

input energy.

5.4 DISCUSSION OF RESULTS

The energy curves obtained for the various eccentricities are normalized with
respect to the elastic input energy of the symmetric case (Figure 5.3). Thus, the energy
curves presented in this chapter depict the effect of eccentricity increase on the energy

imparted to the structure as well as the energy dissipated by the braces and by frame yield
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according to the three cases considered of the slip load distribution (epp™ = &%, epp* =0
and epp* = -e.¥).
Energy consumed through yielding of frames and slippage of braces are the

irrecoverable hysteretic energy dissipated by the system. Figure 5.4 shows the energy

terms for the case of e;*=0. As can seen, the energy dissipated by frame yield in this case

is almost negligible compared with the energy dissipated by the brace slippage. Figures

5.5 to 5.9 show the energy terms for different stiffness eccentricities (eg* = 0, 0.3, 0.5,
0.75, 0.9 and 1.2), each figure showing three cases of slip load eccentricities (epp* = 5%,
epp® = 0 and epp* = -e.*). Case (a) in Figures 5.5 to 5.9 show the energy curves for epp* =
es*, which indicates that the input energy E, has no significant change in the small and
moderate stiffness eccentricity (eg* = 0.3 to 0.75). However, E, increases as the stiffness
eccentricity increases in large eccentricity (e;* = 0.9 and 1.2). The energy dissipated by
the braces and by frame yielding almost remain constant as e.* increases from 0.3 to 1.2.
Cases (b) and (c) for epp* = 0 and epb* = -e5*, respectively (Figures 5.5 to 5.9) imply that,
for both cases the input energy increases as the stiffness eccentricity increases, but it is
obvious that the rate of increase when ey,* = -e;* is more than the rate of increase in the
case of e,p* = 0.

For small and moderate eccentricity (eg* = 0.3 to 0.75) it may be concluded from

Figures 5.5 to 5.7 that the input and dissipated energies decrease as the slip load
eccentricity moves from the stiff side to the flexible side of the structure. While for large

eccentricity (eg* = 1.2) of Figure 5.9, the energy dissipated by the braces E, ... increases

and the energy dissipated by the frame yield Eg, . decreases as the slip load eccentricity
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moves from the stiff side to the flexible side of the structure.

To study the energy dissipated by brace slippage and by the frame yield, the
energy curves are summarized in Figures 5.10 to 5.12. In these charts, the results were
obtained for 1977 Romania N90W excitation. For each eccentricity the peak input energy
and the maximum dissipated energy by the frame yield and by the brace slippage were
normalized with respect to the peak input energy of the symmetric unbraced case (e, = 0
& KB/KF = 0). The three cases of slip load eccentricity (e p* = €5*, ey,* = 0 and epp* = -
e*) are plotted in Figures 5.10 to 9.12, respectively. Figure 5.10 shows the input and
dissipated energies for the six different eccentricities (eg* = 0, 0.3, 0.5, 0.75, 0.9 and 1.2)
in the case of ey,* = e5*. It can be seen that the input energy increases with increase of
stiffness eccentricity. For the small stiffness eccentricity (e,* = 0.3) the input energy is
two times the input energy of the symmetric case, while in the large stiffness eccentricity
(es* = 1.2) the input energy is 2.7 times the input energy of the symmetric case. For e * =
0.5 and 0.75 the rate of increase was zero, which means that the rate of increase in the
input energy was high in large stiffness eccentricity (from 0.9 to 1.2) and in small
eccentricity (from 0 to 0.3), while the rate of increase of the input energy was negligible
in moderate eccentricity (from 0.3 to 0.75). Similarly behaves the curve of the energy
dissipated by the frame yield. The energy dissipated by the brace slippage is constant _for
small and moderate eccentricity, while it is increased for large stiffness eccentricity. A
phenomenon that manifests itself is that for symmetric friction damped braced frames
most of the energy is dissipated through slippage of the friction device as can be clearly

seen in Figure 5.10 where the energy dissipated by the frame yield in the case of e,* = 0

is almost zero.
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The energy input and dissipated for the case of epp* = 0 are presented in Figure

5.11. It shows that the input energy increases as the stiffness eccentricity increases. For

small eccentricity e;* = 0.3 the input energy was 1.1 times the input energy of the
symmetric case, while in the large eccentricity (e,* = 1.2) the input energy is 2.4 times

the input energy of the symmetric case. The energy dissipated by the brace slippage

(Eprace) also increases with increase of eg*. For large eccentricity (eg* = 1.2), (Epace) iS
1.65 times its counterpart for exp* = es*. The energy dissipated by the frame yield is 0.5
the input energy of the case when eg*=0.5 but it comes to 0.4E, (e;* = 0) when e,* = 0.9

and 1.2.

i

Figure 5.12 shows the energy curves for the case of ep,* = -e;*. For large

Il

eccentricity (eg* = 1.2), the input energy for is three times E, (e,* = 0). The energy

dissipated by the braces slippage (Ej,ce) Was two times its counterpart in the case of €pb*
=eg*. The energy dissipated by the frame yield (Efame) is 0.4E, (eg* = 0) when e* = 0.75
but it comes to 0.125 E, (e;* = 0) when eg* = 1.2.

The average results of the four earthquake records: 1940 El-Centro N-S; the
Newmark-Blume-Kapur artificially generated ground motion; 1952 Taft; 1977 Romania
N90W, are summarized in Figures 5.13 to 5.15. In these charts, for each eccentricity the
peak input energy and the maximum dissipated energy by the frame yield and by the
brace slippage was normalized with respect to the peak input energy of the symmetric
case (e; = 0). The three cases of slip load eccentricity (epp* = e5*, epp™* = 0 and epp* = -
es*) are plotted in Figures 5.13 to 5.15 respectively. Figure 5.13 shows the input and

dissipated energies for the six different eccentricities (e;* = 0, 0.3, 0.5, 0.75, 0.9 and 1.2)
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in the case of epp*=es*. It can seen that the input energy increases with increase of
stiffness eccentricity. For the small stiffness eccentricity (es* = 0.3 and 0.5) the input

energy is equal to the input energy of the symmetric case, while in the large stiffness

eccentricity (eg* = 1.2) the input energy is 2.4 times the input energy of the symmetric

case. which mean that the rate of increase in the input energy is high for large stiffness
eccentricity (from 0.9 to 1.2), while the rate of increase of the input energy was small in
small and moderate eccentricity (from 0.3 to 0.75). Similarly behaves the curve of the
energy dissipated by brace slippage. The energy dissipated by frame yield increases as
the stiffness eccentricity increase (from 0.1 E;ate;=0t0 0.4 E,at e, = 1.2).

The energy input and dissipated for the case of epp* = 0 are presented in Figure

5.14. It shows that the input energy increases as the stiffness eccentricity increases. For

small eccentricity eg* = 0.3 the input energy is 1.1 times the input energy of the
symmetric case, while in the large eccentricity (eg* = 1.2) the input energy was 1.7 times
the input energy of the symmetric case. The energy dissipated by brace slippage (Ep;ace)
also increases with increase of eg*. For large eccentricity (eg* = 1.2), E,c. is equal to its
counterpart for epp™ = &*. The energy dissipated by frame yield is 0.3 times the input
energy of the symmetric case when e *=0.75 but it comes to 0.25E, (e;* = 0) when e* =
0.9 and 0.22E, (e;* = 0) when e* = 1.2.

Figure 5.15 shows the energy curves for the case of epb* = -g;*. For large
eccentricity (eg* = 1.2), the input energy is two times E, (e;* = 0). The energy dissipated
by the brace slippage (Ey,,ce) is equal to its counterpart in the case of epb* = €*. The

energy dissipated by the frame yield (Egape) is 0.24E, (e;* = 0) when e* = 0.5 & 0.9 but
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itcomes to 0.125 E, (e;* = 0) when e* = 1.2.

5.5 CONCLUDING REMARKS

- The energy dissipated by brace slippage increases as the slip load eccentricity
moves from the stiff side to the flexible side of the structure.

- For eg* > 0.3, the energy dissipated by the braces slippage and by frame yield

are almost constant for epp* = eg*.

- For e,* > 0.5, as the slip load eccentricity moves from the stiff side to the
flexible side of the structure, the energy dissipated by braces slippage (Ep,,ce) increases
and the energy dissipated by frame yield (Eg,,e) decreases for epp* = 0 and epp* = -e.*

- For e* = 0.5, the energy dissipated by the frame yield (Efyye) are

approximately equal for ep,* = eg* and €pb*
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CHAPTER 6

CONCLUSION

This research examined the performance improvement of FDBF due to slip load
redistribution. The study consists of three parts; the first part was a study of the two dimensional
multi-storey models with FDBF conducted using DRAIN-2D program to determine the slip load
distribution that gives the optimum response and minimum ductility demand; the second part
was a study of the effect slip load redistribution on the inelastic behavior of two dimensional
single-storey model using the history of base shear and torque in order to determine the optimum
slip load distribution that gives the minimum base torque. The analysis was made through the use
of DRAIN-2D program; the third and final part was a study of the energy imparted and
dissipated by the system in order to examine the effect of slip load redistribution on the amount
of energy dissipation by the brace slippage. In this part, after analyzing the single storey model, a
separate program was run to calculate the energy terms.

In chapter 2, the description of the single and multi-storey models was presented along
with the equations that control the placement of the resisting frames and braces as well as the
distribution of slip load, strength and stiffness.

In chapter 3, the parametric study of the multi-storey models over the range chosen of

stiffness eccentricity (eg from 0 to 1.2) with various slip load distributions showed that optimum

responses are obtained when the slip load eccentricity is opposite the stiffness eccentricity (i.e.

€pb = -€;). It was demonstrated that as the slip load eccentricity move to the flexible side of the
structure, more storeys will participate in dissipating energy and the ductility demand will

reduced.
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Chapter 4 dealt with the effect of slip load distribution on the inelastic behavior of
a single storey model. The results showed that the minimum base torque was obtained
when the slip load eccentricity equals the stiffness eccentricity put in the opposite side of
the structure (€pp = -€5)-

In chapter 5, the study of the energy imparted and dissipated by the system
demonstrated that the amount of energy dissipated by the brace slippage increase as the
slip load eccentricity moves from the stiff side to the flexible side of the structure.

It is concluded from this study that the slip load distribution must be considered in
the design of FDBF, as well as the optimum strength ratio RB / RF and the optimum
stiffness ratio KB / KF.

For future research, more investigation of inelastic behavior using history of base
shear and torque is require. It is suggested to use the strength eccentricity to reshape the
BST ultimate surface in order to minimize the base torque.

Also the study of the storey shear and torque for multi-storey structures require

more investigation using the concept of slip load redistribution.
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APPENDIX A

NUMERICAL INPUT VALUES

109



A.1 SINGLE-STOREY MODEL

The following are the numerical input values for DRAIN-2D program:

T=1.0 sec., Qp= 0.9, £=0.05, At = 0.01 sec., m=1, and p=100.
[All units are SI units, N and mm]

Table 1: Elements Properties e, =0

ELEMENT | ELEMENT | YOUNG’S | AREA YIELD
TYPE MODULUS STRENGTH
Frame 0.394784 5000 Table 3
: Brace 0.394784 15000 Table 4,5& 6
Frame 0.394784 5000 Table 3
2 Brace 0.394784 15000 Table 4,5& 6

- Young’s modulus remains constant.
- Stiffness eccentricity introduced by changing the area of elements 1& 2.

- Slip load eccentricity introduced by changing the yield strength of elements 1 & 2.

Table 2: Different Areas of Elements for Different Eccentricities

0.3 0.5 0.75 0.9 1.2
Frame 6581.1 7428.2 8200.9 8535.5 9000
1 Brace 197433 22284.6 24602.7 25606.5 27000
Frame 3418.9 2571.8 1799.1 1464.5 1000
2 Brace 10256.7 7715.4 5397.3 4393.5 3000

Table 3: Frame Yield Strength for Different Earthquake Records

El Centro N-B-K Taft Romania

Frame 1 &2 | 0.11802 0.375 0.03262 0.12392

110



Table 4: Brace Yield Strength for Different Earthquake Records (epn = ¢€5)

El Centro N-B-K Taft Romania

0.03934

Brace1 & 2 0.125 0.01087 0.04131

Table 5: Brace Yield Strength for Different Earthquake Records (epr =0)

El Centro N-B-K Taft Romania
Brace 1 0.02988 0.09497 0.00826 0.03138
Brace 2 0.05753 0.18281 0.0159 0.06041
Brace 1 0.02684 0.08414 0.00732 0.02781
Brace 2 0.07648 0.24302 0.02114 0.08031
Brace 1 0.02389 0.07621 0.00663 0.0.2518
&= 0.75 Brace 2 0.10933 0.34739 0.03022 0.11479
Brace 1 0.02305 0.07322 0.00637 0.02419
Brace 2 0.13431 0.42677 0.03712 0.14103
Brace 1 0.02186 0.06944 0.00604 0.02295
Brace 2 0.19670 0.62500 0.05437 0.20653

111




Table 6: Brace Yield Strength for Different Earthquake Records (epp = -€5)

El Centro N-B-K Taft Romania
Brace 1 0.02043 0.06494 0.00565 0.02146
& =0.3 Brace 2 0.07573 0.24061 0.02093 0.07951
Brace 1 0.01324 0.04207 0.00366 0.01390
&= 0.5 Brace 2 0.11485 0.36453 0.03171 0.12046
Brace | 0.00863 0.02742 0.00238 0.00906
=075 prce2 0.17932 0.56979 0.04956 0.18828
Brace 1 0.00675 0.02145 0.00187 0.00709
&= 0.9 Brace 2 0.22928 0.72853 0.6337 0.24075
Brace 1 0.00437 0.01388 0.00121 0.00459
&= 1.2 Brace 2 0.35406 1.12500 0.09786 0.37176
Table 7: Distance Between The Resisting Elements and CM.
e 0.0 0.3 0.5 0.75 0.9 1.2
a 90 95 103 117 127 150




The following are the numerical input values of the

DRAIN-2D program:

A.2 FIVE-STOREY MODEL

T=1.0 sec., Q4= 0.9, £=0.05, At = 0.01 sec., m=1, and p=100.
[All units are SI units, N and mm)]

five-storey model for

Table 8: Elements Properties e, =0
ELEMENT | ELEMENT | YOUNG’S | AREA YIELD
TYPE MODULUS STRENGTH
Frame 0.406087 60000 Table 10
! Brace 0.406087 180000 Table 11,12 & 13
Frame 0.406087 60000 Table 10
2 Brace 0.406087 180000 Table 11,12 & 13

- Young’s modulus remains constant.
- Stiffness eccentricity introduced by changing the area of elements 1& 2.

- Slip load eccentricity introduced by changing the yield strength of elements 1 & 2.

Table 9: Different Areas of Elements for Different Eccentricities

0.3 0.5 0.75 0.9 1.2

Frame 78947.37 | 89126.21 | 98461.54 | 102519.69 | 108000

! Brace 236842.11 | 267378.64 | 295384.62 | 307559.06 | 324000
Frame 41052.63 | 30873.79 |21538.46 | 17480.31 12000
2 Brace 123157.89 | 92621.36 | 64615.38 | 52440.94 | 36000

Table 10: Frame Yield Strength for Different Earthquake Records

Romania

0.04825

El Centro N-B-K Taft

Frame 1 &2 | 0.04535 0.14554 0.01491
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Table 11: Brace Yield Strength for Different Earthquake Records (epp =€)

Taft Romania

0.01608

El Centro N-B-K

Brace1 &2 | 0.01512 0.04851 0.00497

Table 12: Brace Yield Strength for Different Earthquake Records (epp=0)

El Centro N-B-K Taft Romania

Brace 1 0.01149 0.03687 0.00378 0.01222

3 Brace 2 0.02209 0.0709 0.00726 0.02351
Brace 1 0.01146 0.03266 0.00335 0.0183

= Brace 2 0.02938 0.09429 0.00939 0.03126

Brace 1 0.00921 0.02933 0.00303 0.00980

=075 Ipace2 0.04211 0.13514 0.01385 0.04481

Brace 1 0.00885 0.02839 0.002911 | 0.00941

es=0.9 Brace 2 0.05189 0.16652 0.01706 0.05520

Brace 1 0.00840 0.02695 0.00276 0.00894

2 Brace 2 0.07558 0.24257 0.02485 0.08042
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Table 13: Brace Yield Strength for Different Earthquake Records (epp = -€5)

El Centro N-B-K Taft Romania
Brace 1 0.00786 0.02523 0.00258 0.00836
e =03 Brace 2 0.02907 0.09329 0.00956 0.03093
Brace 1 0.00525 0.01681 0.00172 0.005571
e =03 Brace 2 0.04364 0.14005 0.01435 0.04643
Brace 1 0.003306 | 0.01061 0.00109 0.00352
& =0.75 Brace 2 0.06910 0.22178 0.02272 0.07352
Brace 1 0.00258 0.00823 0.00085 0.00274
&= 0.9 Brace 2 0.08866 0.28452 0.02915 0.09433
Brace 1 0.00168 0.00054 0.00055 0.00179
=12 Brace 2 0.13605 0.43662 0.04474 0.14475

Distance (a) between the resisting element as table “7”.
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A.3 TEN-STOREY MODEL
A.3.1 Ten-storey Model With The Critical Value Of Q.

The following are the numerical input values of the ten-storey model for DRAIN-

2D program:
T=1.0 sec., €2p= 0.9, £=0.05, At = 0.01 sec., m=1, and p=100.
[All units are SI units, N and mm]

Table 14: Elements Properties e, =0

ELEMENT | ELEMENT | YOUNG’S | AREA YIELD
TYPE MODULUS STRENGTH
Frame 0.883648 100000 Table 16
1 Brace 0.883648 300000 Table 17,18, & 19
Frame 0.883648 100000 Table 16
2 Brace 0.883648 300000 Table 17,18, & 19

- Young's modulus remains constant.
- Stiffness eccentricity introduced by changing the area of elements 1& 2.
- Slip load eccentricity introduced by changing the yield strength of elements 1 & 2.

Table 15: Different Areas of Elements for Different Eccentricities

0.3 0.5 0.75 0.9 1.2

Frame 131578.95 | 148543.69 | 164102.56 | 170866.14 | 180000

: Brace 394736.85 | 445631.07 | 492307.69 | 512598.43 | 540000
Frame 68421.05 | 51456.31 35897.44 |29133.86 | 20000
2 Brace 205263.15 | 154368.93 | 107692.31 | 87401.57 | 60000

Table 16: Frame Yield Strength for Different Earthquake Records

El Centro N-B-K Taft Romania

Frame 1 &2 | 0.05338 0.16587 0.016 0.05715
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Table 17: Brace Yield Strength for Different Earthquake Records (epp =€)

El Centro

N-B-K

Taft

Romania

Bracel & 2

0.01779

0.05529

0.00533

0.01905

Table 18: Brace Yield Strength for Different Earthquake Records (epy =0)

El Centro N-B-K Taft Romania
Brace 1 0.013523 0.04202 0.004053 0.014478
-3 Brace 2 0.026006 0.06236 0.007795 0.027842
Brace 1 0.011979 0.03722 0.00359 0.012825
0-5 Brace 2 0.034578 0.10745 0.010365 0.037022
Brace 1 0.010843 0.03369 0.00325 0.011609
& =0.75 Brace 2 0.049567 0.15402 0.014857 0.053068
Brace 1 0.010414 0.03236 0.003121 0.011149
& =0.9 Brace 2 0.061074 0.18978 0.018306 0.065388
Brace 1 0.009885 0.03072 0.002963 0.010583
2 Brace 2 0.088967 0.27645 0.026667 0.095250
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Table 19: Brace Yield Strength for Different Earthquake Records (epp = -¢€5)

El Centro N-B-K Taft Romania
Brace | 0.009253 | 0.02875 0.002773 | 0.009906
e =03 Brace 2 0.034218 | 0.10633 0.010256 | 0.036635
Brace | 0.006164 | 0.01915 0.001847 | 0.006599
e =03 Brace 2 0.051366 | 0.15961 0.015396 | 0.054993
Brace | 0.003892 | 0.01209 0.001167 | 0.004167
=075 Ipce2 0.081341 | 0.25275 0.024381 | 0.087086
Brace 1 0.003033 | 0.00947 0.000909 | 0.003248
e =0.9 Brace 2 0.104356 | 0.32427 0.031279 | 0.111726
Brace 1 0.001977 | 0.00614 0.000593 | 0.002117
=12 Brace 2 0.160140 | 0.49886 0.048 0.17145
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A.3.2 Torsionally Flexible Ten-storey Model

The following are the numerical input values of the torsionally flexible ten-storey

model for DRAIN-2D program:
T=1.0 sec., p= 0.7, £=0.05, At = 0.01 sec., m=1, and p=100.
[All units are SI units, N and mm]

Table 20: Elements Properties e, =0

ELEMENT | ELEMENT | YOUNG’'S | AREA YIELD
TYPE MODULUS STRENGTH
Frame 0.883648 100000 Table 16
: Brace 0.883648 300000 Table 17, 18, & 19
Frame 0.883648 100000 Table 16
2 Brace 0.883648 300000 Table 17, 18, & 19

- Young’s modulus remains constant.
- Stiffness eccentricity introduced by changing the area of elements 1& 2.
- Slip load eccentricity introduced by changing the yield strength of elements 1 & 2.

Table 21: Different Areas of Elements for Different Eccentricities

0.3 0.5 0.75 0.9 1.2
Frame 1390625.5 | 157736.72 | 172815.53 | 178947.37 | 186330.9
: Brace 417187.5 473210.16 | 518946.59 | 536842.1 558992.7

Frame 60937.5 42263.28 27184.47 21052.63 13669.1
Brace 182812.5 126789.89 | 81553.41 63157.89 41007.3
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See table 16 for frame yield strength of Different Earthquake Records.

See table 17 for braces yield strength of Different Earthquake Records (e,

Table 22: Distance Between The Resisting Elements and CM.

€ 0.0 0.3 0.5 0.75 0.9 1.2

a 50 77 86.6 103 114 139

Table 23: Brace Yield Strength for Different Earthquake Records (ey, = 0)

El Centro N-B-K Taft Romania
Brace 1 0.0128 0.0398 0.00384 0.0137
¢ =03 Brace 2 0.0292 0.0907 0.00875 0.0313
Brace 1 0.0113 0.0.351 0.00338 0.0121
¢ =05 Brace 2 0.0421 0.1308 0.0162 0.0451
Brace 1 0.0103 0.0320 0.00308 0.0110
e =0.75 Brace 2 0.0655 0.2034 0.01962 0.0701
Brace 1 0.0099 0.0309 0.00298 0.0106
& =09 Brace 2 0.0845 0.2626 0.0253 0.0905
Brace 1 0.00955 0.0997 0.00286 0.0102
=12 Brace 2 0.1302 0.4044 0.0390 0.1394
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Table 24: Brace Yield Strength for Different Earthquake Records (epp = -€;)

El Centro N-B-K Taft Romania

Brace 1 0.0078 0.0242 0.00233 0.00835
Brace 2 0.0406 0.1262 0.01217 0.04347
Brace 1 0.0048 0.0148 0.00143 0.00510
Brace 2 0.0664 0.2064 0.0199 0.0711
Brace 1 0.0028 0.00869 0.00084 0.002994
Brace 2 0.1131 0.3515 0.0339 0.1211
Brace 1 0.00209 0.0065 0.00063 0.00224
Brace 2 0.1512 0.46997 0.0453 0.1619
Brace 1 0.00131 0.00406 0.00039 0.0014
Brace 2 0.1426 0.7537 0.0727 0.2598
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3. rsionally Rigid Ten- del
The torsionally rigid ten-storey model has the same numerical input values as the

ten-storey model with €,=0.9, but it has additional two elastic resisting element in the
orthogonal direction (elements 3 & 4) placed at distance d = 85 mm either side of the
center of mass. These two elastic elements have the following numerical input values for
DRAIN-2D program:

T=1.0 sec., Qy= 1.7, £=0.05, At = 0.01 sec., m=1, and p=100.
[All units are SI units, N and mm]

Table 25: Elements Properties e =0

ELEMENT | ELEMENT | YOUNG’S AREA YIELD
TYPE MODULUS STRENGT
H
3 Frame 0.00001 25000 999999
4 Frame 0.00001 25000 999999

A.4 The Ratio mZ[_c_o_l for Single and Multi-storev Models:

For single-storey model the ratio w,/w; has been calculated for Qy= 0.9 using

equation 2-23.

For the multi-storey models the ratio ®w,/w; has been calculated for Q= 0.9 using

SAP90 program.

Table 26: The Ratio w,/0;

€ 1-Storey 5-Storey 10-Storey
0.3 0.718 0.69 0.718

0.5 0.588 0.588 0.588
0.75 | 0.46 0.48 0.46
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Table 26: The Ratio w,/w,

e 1-Storey 5-Storey 10-Storey
0.9 |0.398 0.36 0.397
1.2 0.302 0.34 0.33

Ad T_e max and meag of the Base Shear And Torgue Time History:

For single storey model with two FDBF in the direction of excitation following properties

apply:

T=1.0 sec., Q5= 0.9, £=0.05, At = 0.01 sec., m=1, and p=100.

Vymax =23604 N

Table 27: Values of Tg max for Different Eccentricities

€s

0.0

03

0.5

0.75

0.9

1.2

Tg max (N.mm)

212436

224238

2431204

276166.8

299770.8

354060
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APPENDIX B

SPECTRAL VELOCITY OF ROMANIA AND EL CENTRO

EARTHQUAKE
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ENERGY INPUT ELASTI E:
For Romania earthquake:

Rejastic = 4.9568 kN

Apax=0.125m

Elastic strain energy E® = 0.5 Rejastic Amax
E®=0.3098 kN.m

Using spectral velocity:

ES=0.5(m) (S,

E¢=0.5-(1)-(0.79%) = 0.31205 kN.m

The energy curves are normalized with respect to the frame elastic energy of
symmetric unbraced case Eg;.
Ei(e=0 & KB/KF=0) =0.5 (RF) (4,)

Ay =Apay /4=0.03125m

g
RF = Rgjpqric /4 = 1.2392 kN

E.(e=0 & KB/KF=0) = 0.019 kN.m
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Relastic

Elastic strain energy E®= 0.5 m S,°

RF=Re}agtic/4

E,, (e=0 & KB/KF=0)

Figure B.1 Elastic strain energy and frame elastic strain energy of symmetric
unbraced case
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Figure B.2 Velocity Spectrum of 1977 Romania earthquake
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Spectral velocity S, m/sec.
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Figure B.3 Velocity spectrum of 1940 El Centro N-S
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APPENDIX C

DISPLACEMENT PERFORMANCE OF THE SINGLE AND MULTI-
STOREY MODELS DUE TO EACH EARTHQUAKE.
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Figure C.1 Maximum response for the single-storey model (T =1 & Q)=

0.9)
(a) EL Centro (b) Newark-Blame-Kapur (c) Taft (d) Romania
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Figure C.2 Maximum response for the five-storey model (T =1 & Qy= 0.9)
(a) EL Centro (b) Newark-Blame-Kapur (c) Taft (d) Romania
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Figure C.3 Maximum response for the ten-storey model (T =1 & Qy=0.9)
(a) EL Centro (b) Newark-Blame-Kapur (¢) Taft (d) Romania
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Figure C.4 Maximum response for the torsionally flexible ten-storey model
(T=1 & €2;=0.7)(a) EL Centro (b) Newark-Blame-Kapur
(c) Taft (d) Romania
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Figure C.5 Maximum response for the torsionally rigid ten-storey model

(T=1 & Qy=1.7)(a) EL Centro (b) Newark-Blame-Kapur

(c) Taft (d) Romania
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