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Abstract

Reengineering Unification and t-Entailment for Mantra in C++4-

Tania Kharma

The objective of this thesis lies in two directions. In one hand, understanding the
concepts of unification and decidable inference mechanism, used in building the logic
formalism of Mantra and implemented in its previous version in Common Lisp in
1991. On the other hand, learning about the object oriented paradigm and applying
it in the design and implementation through the use of design patterns, the OMT
notations, and C++ as the implementation language.

Mantra is a shell for hybrid knowledge representation and hybrid inferences. It sup-
ports three different formalisms: logic, frames, and semantic networks. In repre-
senting any kind of knowledge through a knowledge base system, one is faced with
choosing among a broad repertoire of formalisms. Mantra provides a combination of
knowledge representation formalisms, so the user can decide which representation is
convenient for each piece of knowledge, and is not limited to only one formalism.
Our concentration is on reengineering the logic formalism module. Mantra uses a
four-valued logic which has the syntax of standard first order order along with a de-
cidable inference algorithm, called ¢-entailment.

Unification is at the heart of the inference mechanisms in Mantra. The efficient algo-
rithm of Martelli and Montanari is used.

In view of its many advantages and its popularity, the object oriented paradigm is
used in the design and implementation of this work. The primary design considera-

tions are correctness, understandability, and extensibility.
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Chapter 1
Introduction

The objective of this thesis lies in two directions. In one hand, understanding the
concepts of unification and decidable inference mechanism, used in building the logic
formalism of Mantra and implemented in its previous version in Common Lisp in
1991. On the other hand, learning about the object oriented paradigm and applying
it in the design and implementation through the use of design patterns, the OMT

notations and C--+ as the implementation language.

To represent any kind of knowledge through a knowledge base system, one is faced
with choosing among a broad repertoire of formalisms to achieve this goal. In making

this choice, four properties should be taken into consideration [34]:
o Representational adequacy —the ability to represent the required knowledge.

o Inferential adequacy —the ability to manipulate the knowledge and infer new

knowledge from the old.

o Inferential efficiency —the ability to direct the inference mechanism into the

most efficient direction by appropriate guides.

e Acquisitional efficiency —the ability to acquire new knowledge using automatic

methods.

To date no single system optimises all four properties. The main reason behind this
is the “trade-off between expressive power and computational tractability” [24].

Mantra [8, 9], a shell for knowledge representation, offers three different formalisms:



logic, semantic nets. and frames. The user can represent his knowledge using any
of the formalisms. Then infer knowledge from one or a combination of formalism,
through this hybrid inference the functionality of one formalism could be used to
enhance the inferential adequacy and the efficiency of the other. Our concern in this
thesis is the logic formalism.

Logic has played an important role in knowledge representation because of its for-
mal semantics, expressive power, and well understood properties as regards their
cornpleteness, soundness, and decidability. However, very little was done in defining
decidable logics for knowledge representation. Most modifications are either exten-
sions to first-order loric or ad-hoc changes to inference mechanism [29]. in Mantra, a
four-valued logic, based on the work of Patel-Schneider [31] is used. The four-valued
logic weakens the first order logic just enough to achieve a logic with a decidable
inference process. The semantic-net and the frame formalisins are also based on the
four-valued semantics. The main advantage of having unified semantics among the
three formalisms, is the facility for definition of the interaction between different for-
malisms. Part of this thesis’s work involved the design and implementation of this
inference mechanism.

This inference requires its input to be formulae in Conjunctive Normal Form (CNF).
Thus, the first step involved the design and implementation of the transformation of
a first order logic formula into CNF.

Unification is at the heart of the inference mechanisms in Mantra. From the execu-
tion time point of view, unification is expensive and tricky. This is the reason why it
has been introduced and studied by a number of researchers. In this thesis, we are
concerned both in the design and implementation of an efficient unification module
for Mantra based on the algorithm described by Martelli and Montanari [25].

Since 1980s, the object oriented approach has been getting more popular, because
of its many advantages, such as reusability of software components leading to pro-
ductivity and rapid system development, maintainability where an object can be
replaced with a new impletaentation without affecting the other objects, and modu-
larity. In addition, this paradigm is closer to the real world since it deals with objects,
and it offers key features such as polymorphism, encapsulation, abstraction, and in-
heritance, which differentiate it from the traditional paradigm .

Along with the object oriented approach, the roots of object oriented design patterns

2



go back to the late 1970s and early 1980s. The design pattern concept can be viewed
as an abstraction of the imitation activity people tend to do in copying parts of pro-
grams or designs written by others. More precisely, as Christopher Alexander says:
“Fach pattern describes a problem which occurs over and over again in our environ-
ment, and then describes the core of the solution to that probler, in such a way that
you can use this solution a million times over, without ever doing it the same way
twice” (20, page 2]. Design patterns make it easier to reuse successful designs, to
choose design alternatives, and to improve the documentation and maintenance. Put
simply, design patterns help a designer get a design “right” fast [33, page 2]. In this
thesis, design patterns are used to solve the design problems encountered.

In the design description, the Object Modeling Technique (OMT) notations are used
(10]. The OMT methodology, is developed by J. Rumbaugh and his colleagues, it sup-
ports the same notation during the three different phases of the software life cycle.
And the notations and terminologies it uses are not dependent on any programming
language. The selection of OMT for this work, is based on its popularity and enforced
by the fact that “All of the object-oriented methodologies, have much in common,
and should be contrasted more with non-object-oriented methodologies than with
cach other” [33].

The programming language C++ is used in this work since it supports = combination

of object-oriented and traditional procedure-oriented programming.




Chapter 2

Background

2.1 Logic

Logic studies proofs, theorem inference {rom other theorems or axioms, and how as-
sertions are combined and connected. [t is separated into two aspects: One aspect
is concerned with syntax — rules stating how strings of symbols can be built up;
and the other with semantics — the meaning or interpretation of the syntactical ob-
jects. There are many logics: first order or predicate, second order, propositional,
modal, temporal, many-valued, and many others. They differ in the concepts and
the basic features they consider. Throughout the years, computer science has utilised
many of them in areas such as programming languages, logic programming, prov-
ing the correctness of programs, automated theorem proving, artificial intelligence,
and knowledge representation. Qur interest is theoremn proving and knowledge rep-
resentation using logic. In this section, the classical propositional and predicate logic
notations [17, 37] are studied and a wide variety of their theorem proving formalisms
are discussed namely: tableaux and resolution mechanisms, Hilbert systerns, natural
deduction, the sequent calculus, and the Davis-Putman procedure. Then, a decidable

four-valued logic is described.

2.1.1 Propositional Logic

Propositional logic starts with the simple connectives and A , or V , and not ~. We
formalise atomic sentences which can be either true or false and then we combine

them to form more complex sentences. The main interest, is to show how the truth



value of an atomic sentence extends to the truth of more complex sentences. The most
important features studied in propositional logic are given below and the notations

used are based on [17] and [37].

2.1.1.1 Syntax

e Propositional letlers express propositions: P,Q,...

Formulae are propositional letters connected using propositional connectives.

[

e Propositional connectives: V,A,C,D,=,2,¢,. %, T, 1.

e Constants: 1 false, T true.
T, t, and true are used interchangeably. And L, f, and false are used inter-
changeably.

e An atomic formula is either a propositional letter or a constant.

o Formulae are defined as:

1. All atomic formulae are formulae.
2. For every formula F, -F is a formula.
3. For all formulae F' and G, F op G is a formula, for any propositional

connective op.

e Many transformations can be applied to a formula while preserving its seman-
tics. Some of the transformations are: commutativity, associativity, and dis-

tributivity.

2.1.1.2 Semantics

Propositional logic is two-valued : true (t) and false (f). Table 1 summarises the
interpretations of the binary connectives. The unary operator — is simple : - true =
false and - false = true.

2.1.1.3 Properties

1. Boolean Valuation:
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Table 1: Interpretation of the Binary Connectives in Classical Logic

e Boolean valuation v is a mapping from the set of propositional formulac
to the set {true, false} with the following conditions: v(T)=t; v(Ll)=f;
v(=X)==v(X); v(X op Y)=v(X) op v(Y) where op is any propositional
connective.

A boolean valuation is also known as an assignment.

e A tautology is a formula X for which v(X)=t for every boolecan valuation

V.

e A set S of formulae is satisfiable if there is a boolean valuation v that maps

every formula in the set to t.

e Two formulae F and G are equivalent if for every boolean valuation v(F)=v(().

2. Uniform Notation: In his book [17], M. Fitting used the notations: a formulac,

for those that act conjunctively, and 3 formulae, for those that act disjunctively.

v(a)=v(a1) A v(az) and v(B)=v(B) V v(82)
In Table 2, all connectives are grouped under two categories : conjunctives and

disjunctives. These notations are used in section 2.1.1.4.

3. Normal Forms: Formulae exist in many forms. However, some of these forins

play an important role in theorem proving and they are known as normal forms.

o Let Xi, X3, X3, ..., X,, be alist of propositional formulae. [X;, X2, X3, ..., X4]
is the generalised disjunction of X, X,, Xs,..., X, where cach X, is a
propositional formula and the only connective between formulac is Vv .
And < X, X2, X3, ..., X, > is the generalised conjunction, where each X,

is a propositional formula and the only connective between formulae is A.
o A literal is either a propositional letter, its negation, or a constant.

o A clause is a generalised disjunction where each X is a literal.

6



Conjunctive Disjunctive
o a; B B B2
XAY X Y | ~A(XAY)|-X Y
~(XArY)| =X Y XVvY X Y
~(XD2Y)| X Y XDY (=X Y
(X cY)|-X Y XcY X Y
~(XTY)| X Y XT1Y [-X Y
XlY |[-X Y| -~(X|Y)| X Y
XpY X Y [|-~(X2Y)|-X Y
XgY |[-X Y |-(X¢gY)] X Y

Table 2: Conjunctive and Disjunctive Formulae

e A clause C, subsumes a clause C, if every literal in C; is in Cs.

e A formula is in Conjunctive Normal Form (CNF) if it is < Cy,Cy, ...,

where each C is a clause.

positive literal.

4. Hintikka’s Lemma: Hintikka’s Lemma helps us extend the proof of some theo-
rem provers to first order logic. It is an abstract and generalised approach which

connects syntax and semantics. A set H of formulae is called a propositional

Hintikka set if it satisfies the following:

e If A is a propositional letter then both A € H and -A € H

o L¢gH;-T¢H

o If - ~Z€eHthen Z e H

e If o € Hthen a; € H and a; € H (see Table 2)

A dual clause is a generalised conjunction where each X is a literal.

o

>

A formula is in Disjunctive Normal Form (DNF) if it is [Dy, Dy, D3, ..., D,]

where each D is a dual clause.

A Horn formula is in CNF and every disjunction contains at most one



o If 3 € Hthen 8, € H or 8, € H (see Table 2)

The important result here is that every propositional Hintikka set is satisfiable.

. Model Existence Theorem: The Model Eristence Theorem relates syntax and
semantics. The arguments in this theorem are given abstractly so we can use it
to deal with the completeness of several proof procedures in propositional logic.
A set of formulae is said to be consistent if no contradiction occurs when we
apply a proof procedure to it.

The various features of consistency are used to construct a boolean valuation
for this set. This construction will identify the essential features of consistency,
which are grouped in an abstract consistency property.

The Model Existence Theorem is> the assertion that the abstract consistency
property is enough for the construction of a boolean valuation.

The idea of abstract consistency property is very general, so instead of talking
about a consistency property C of a set of formulae, we talk about the collection
of all sets having property C. If a set S is in the collection C we say that § is
C-consistent (has property C). For C to be a propositional consistency property

each set S € C should meet the following:

If A is a propositional letter then both A € S and ~A € S
1Le&€8;-T¢S
If --Z €S then SU{Z}€C

o fae S then SU{aj,a} €C
If 3€ Sthen SU{B}€CorSU{B} €C

Two very important theorems: 1. If C is a propositional consistency property
and S € C then S is satisfiable (that is there is a boolean valuation that maps
every element of S to true). 2. Let S be a set of propositional formulae. If

every nonempty finite subset of S is satisfiable, then § is satisfiable.

. Compactness Theorem: The Compactness Theorem states that a set of formulae

is satisfiable if and only if every finite subset of it is satisfiable.



2.1.1.4 Propositional Logic Theorem Provers:

2.1.1.4.1 Semantic Tableau Method

Semantic tableaux are an extremely elegant and efficient proof procedure for proposi-
tional logic. It can also be extended to first order logic. Some proof procedures, like
analytic tableaux, are variations of semantic tableaux, but the main idea is the same
for all tableaux methods. Semantic tableaux are related to formulae in disjunctive
normal form (DNF), and they are a refutation system since they involve working on
- X and concluding the opposite for X. For instance: if =X has a tableau proof then
we conclude that X does not have a tableau proof. The idea of a tableau proof is to
expand X by giving it the form of a tree whose branches are conjunction of formulae

and the tree itself is the disjunction of its branches.

Ay
A;

An
is the one branch tableau for the finite set of propositional formulae {A;, Ay, ..., An}

The expansion of a formula takes place according to rules known as the tableau ex-

pansion rules:

7z L T a1 BB

Suppose that 8 is a branch on a finite tree with nodes labelled by propositional for-
mulae, and X a formula on . The first rule states that if X is -—Z, then a new
node Z is added to the end of #. Similarly, in the second rule if X is =T, then the
node L is added. And in the third rule X is =L and the node T is added. If X is «,
the fourth rule adds a node to the end of @ labelled o; and another node after that
labelled a;. If X is 8, the fifth rule adds left and right children to the final node of

0, one is labelled 3; and the other is f,.
The expansion resulting for a formula F is known as the tableau for this formula.

9



A branch is closed if X and = X occur on it, or L occurs on it. A tableau is closed
if all its branches are closed. When a tableau is closed for =X then .X' has a propo-

sitional tableau proof.

We summarise the semantic tableaux evaluation as follows:

e They are suitable for automation since there is a very well defined algorithm to

implement them.
e Tableau proofs are shorter than using truth table verifications for a formula.

e Tableau proofs are sound: any formula that could be proved using tableau is a
tautology.
A set S of propositional formulae is satisfiable if there is a boolean valuation
that maps every formula in S to true.
A branch is satisfiable if the set of its formulae is satisfiable, since a branch is
the conjunction of its formulae so all of them should be true. For a tableau to
be satisfiable it is enough to have at least one satisfiable branch, since a tableau
is a disjunction of its branches.
If we apply any expansion rule to a satisfiable tableau, the result is a satisfiable
tableau. From this we get the proposition that if there is a closed tableau for a
set S, then S is not satisfiable. And we conclude that if any formula X has a

tableau proof then X is a tautology.

e Tableau proofs are complete: any tautology could be proved using tableau.
A finite set S of propositional formulae is tableau consistent if none of its for-
mulae has a closed tableau. The collection C of all tableau consistent sets is
a propositional consistency property. Then, according to the Model Existence

theorem, S is satisfiable, so each of its formulae is a tautology.

e Implementation of tableau proofs requires imposing rules regarding: when to
stop, skipping formulae, reusing formulae, and choosing the next formula. This
is not very difficult to do except deciding whether a formula should be reused or
not. Reusing formulae over and over in tableaux proofs is a controversial issue:
non-classical logicians claim we should, while classical ones claim we should not.
The idea behind this is that reusing formulae makes completeness easy to prove

by a general method but implementation becomes difficult {17, page 39].

10



2.1.1.4.2 Resolution Method

The resolution principle was originally proposed by J.A. Robinson in the early 1960s
[36]. The mctivation for developing this principle was to improve the efficiency of
earlier proof methods. He admitted that the single inference rule of his calculus
does not necessarily lead to easily understandable proofs, but he said that all that is
required is that it is sound and recursive. Moreover, this inference rule constitutes
a complete calculus for first order logic. Resolution is a refutation proof procedure
that operates on formulae in conjunctive normal form (CNF).

In a resolution proof, we represent a conjunction of disjunctions by listing its members

in a sequence, one disjunction on each line.

[Ai]
[A2]

[Ar]
is a resolution expansion for the finite set of propositional formulae { A;,A4;,...,A, }.
For adding new lines, we either apply one of the resolution expansion rules or the
resolution rule. We keep doing this until we get the empty clause([]). A resolution
containing the empty clause is closed. Resolution is a refutation system, so a closed
resolution expansion for =X is a resolution proof of X. X is a theorem of the reso-

lution system if it has a resolution proof.

The Resolution Expansion Rules are the following:

VA L T ,B] ' , (2 4]

The first rule states that if we have a disjunction D containing =—Z then a disjunction
follows that is like D except that it contains an occurrence of Z instead of =—Z.
Similarly the second and third rules replace occurrences of ~T and =L by 1 and
T respectively. In the fourth rule, if 8 is a disjunction in D then another D follows
containing occurrences of both f; and f§; where D contained 3, for example, [~Q, - R}

follows from [~(@ A R)]. In the fifth rule, having a formula a two disjunctions follow,

11



one like D but with a replaced by «; and the other with a replaced by a3, for example,
[=P] and [~(@ A R)] follow from [-P A =(Q A R)].

The resolution rule is of a quite different nature than the resolution expansion rules:

[X111 -X127 vens Xlna “ ’]
[X217X22a erey XZm) _'X]
[Xllv X12s seey X1n1 XZl» 1¥22’ reey X2m]

It states the following:

Having D; and D, are two disjunctions, with X a formula occurring in D; and =X
in Dy. Let D be the result of first, deleting all X from D,. Second, deleting ali =X
from D,. Third, combining the resulting disjunctions. D is said to be the result of
resolving D; and D; on X. D is called the resolvent of Dy and D; and X is the
formula being resolved on. We say that D follows from the disjunctions Dy and D,

by the application of the resolution rule.

In evaluating resolution, the following points were raised:

e It is quite popular in automatic theorem proving because it is simple to imple-

ment.
e It has a single, simple inference rule known as the resolution rule.

e The resolution method requires that the proposition should be in conjunctive

normal form.

e The resolution method is a sound proof procedure.
A resolution expansion is satisfiable if there exists some boolean valuation that
maps every line of it to true. Since resolution expansion is a generalised conjunc-
tion of its disjunctions then all disjunctions should map to true for the resolution
to map to true. If we apply a resolution expansion rule or the resolution rule to
a satisfiable resolution expansion then the result is another satisfiable resolution
expansion. Thus, satisfiability is preserved. If we find a closed resolution ex-
pansion for a set .S, then S is not satisfiable because at least one of its elements
is not true. So we conclude that if any formula X has a resolution proof then

X is a tautology.

12



e The resolution method is a complete proof procedure.
A finite set S of propositional formulae is resclution consistent if there is no
closed resolution expansion for S. A resolution derivation from a set S of dis-
junctions is a sequence of disjunctions each of which is a member of .S, or comes
from an earlier term in the sequence by applying one of the resolution expan-
sion rules or by applying the resolution rule. The collection of all resolution
consistent sets is a propositional consistency property. Then, according to the

Model Existence theorem, S is satisfiable, so each of its formulae is a tautology.

e The controversy on re-using formulae in tableau applies for resolution method
as well. Thus, non-strict versions are easy to prove but difficult to implement

and vice-versa.

2.1.1.4.3 Hilbert or Axiom Systems

Over the last hundred years many different calculi for logic have been developed.
This development started with Frege in 1879, and later in 1928 led to the Hilbert
type calculi in which valid formulae are derived from a sequence of basic logical for-
mulae using few forms of inferences [16]. Unlike tableaux and resolution mechanisms
which start with the formula and try to work with it in order to prove it, Hilbert
systerns start with known tautologies, derive consequences, derive consequences from
consequences until the formula we want to prove is reached.

A Hilbert system consists of the following important features:

e Arioms which are the starting point and assumed to be true, and rules of

inference used to show that a formula follows from another one.

o A proof in Hilbert system is nothing but a sequence X, X», ..., X» of formulae
such that each X, is either an axiom or follows from earlier formulae X;...X;_;

by applying one of the rules of inference.
o X is a theorem of a Hilbert System if X is the last line (X,.) of a proof.

o The most common rule of inference provided is the modus ponens:

X XoY
Y
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This means that ¥ is accepted to be true if X and .X D Y have been previously

shown to be true. In other words, we infer Y.

An infinite number of axioms is available but they all follow a finite number of axiom
schemes. Assuming that P and @ are propositional letters and that X and ¥ are

formulae, we have the following axiom schemes:
L. X >(Y o X)
22.(Xo(Y 22)> ((X>Y)d(X 22))
3. 10X
4. XDOT
5 ——X D X
6. X O(-X DY)
T.ado
8. ada

9. (/10 X) D((f2 D X)D (BC X))

In evaluating Hilbert Systems, the following points were raised:
e Hilbert systems are sound: If X has a Hilbert proof then X is a tautology.

o Hilbert systems are complete: If X is a tautology then X has a Hilbert proof.

Hilbert systems rely on heuristics for the choice of axioms. The length of the

proof can vary greatly depending on the heuristics.

e A user can derive a huge number of consequences as work progresses, which

makes this system again not good for automation.

A proof in a Hilbert system is very easy to explain to people and may provide

insights that other systems do not.
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e Certain non-classical logics use only Hilbert systems. Hilbert systems are his-

torically very important and are widely used.

e Ililbert systems are simple because they consist of a set of axioms together with
a few rules of inference. But the problem is that in practice proofs tend to be

long, tedious and difficult to perform.

2.1.1.4.4 Natural Deduction

During 1934-35, Gerhard Gentzen [21] developed a system of natural deduction in-
tended to allow proofs to be performed in a way which corresponds to human rea-
soning. The major principle of natural deduction is that there should be separate
rules that allow the introduction and removal of each logical symbol. Thus, we find
many rules of inference and few axioms. The way to proceed is to start from the
assumed axioms (taken as true always) and get to the goal (that is the theorem we
wish to prove) using the rules of inference. In a natural deduction system, we have
subordinate proofs which are conclusions derived from premises, and once we finish
with these premises we discharge them in order to produce an assumptio  ice result.
To make this idea clear we use the following notation: each subordinate proof is writ-
ten in a box, with the first line inside the box being the assumption made in that
subordinate proof, and the first line below the box being the result of discharging the
assumption. Note that once the box is closed the assumption is discharged, which
means that the assumption cannot be used in other boxes. The box is an analogy
of the scope of the assumption. At any stage of the proof, the formulae that are in
boxes which are not closed are the active formulae. The following is a list of rules

which are used in natural deduction systems:

1. Implicationrule: if we can derive Y from X then we can discharge the assump-

tion X and conclude that we have proved X D Y.
2. Modus Ponens rule: From X and X DO Y we concludeY.

3. Constant rules:

4. Negation rules:
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X -X
X
e ¢ .
L L 1
-X X
5. Connective rules:
a «
« Elimination: o Qaa
441
a Introduction: as
04
"ﬁl “ﬁz
£ Elimination: B B
Br B
_'ﬂl "ﬂ'z

B Introduction:

B || B
A B

The following is an example of a natural deduction proof of «(PAQ) D (-PV-Q)
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1. ~«(PAQ)

9. —=P
3. ~Q

4. ~FV-Q

5 =(PAQ)D(—~PV-Q)
{. is an assumption.
2. is a second assumption.

3. follows from 1 and 2 using the first 3 elimination rule where we take f as

~(P A Q).
4. follows from the first 8 introduction rule where we take g as - P V -(Q).

5. follows from 1 and 4 using the implication rule.

A natural deduction derivation of X from a set S of formulae is a proof of X. Nat-
ural deduction derivation allows at any stage, any member of S to be used as a line
(axiom), and all assumptions are discharged before the end of the proof so X is true
without any assumptions.

The evaluation of Natural Deduction System is summarised as follows:

e Natural deduction system is sound: If X has a natural deduction proof then X

is a tautology.

o Natural deduction system is complete: If X is a tautology then X has a natural

deduction proof.
e Natural deduction is very close to humar reasoning, thus easy to understand.

e Natural deduction is not efficient in developing proofs. However, natural de-

duction provides a clear form for displaying proofs once they have been found.
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e Proofs tend to be lengthy and complex.

e Choosing the right and most appropriate instances of the axiom schema for a
particular proof is a difficult task. Usually, it requires enumerating all possible
deductions until the required proof is generated. This could be overcome by

performing the proof backwards.

® Deciding which rule should be chosen to be applied at cach step is another
difficult task. Of course, the straightforward way is to try all applicable rules at

each step of the proof but this makes the proof very lengthy and time consuming.

2.1.1.4.5 Gentzen Sequents or Sequent Calculus

Historically, both natural deduction and sequent calculus were introduced by Gentzen.
However, sequent calculus can be regarded as intermediate between tableaux and
natural deduction. It was in realising the limitations of the natural deduction calculus
for developing proofs that Gentzen was motivated to design the Sequent Calculus.
This involved showing that proofs are performed in a direct way, starting with axiom
sequents and successively introducing connectives until we get the theorem we want,
to prove [17]. Later, tableaux systems used a backward application of the rules of
sequent calculus.

Some notations and definitions used in sequent calculus:
e The connectives used are V, A, and D.

e A sequentis a pair < I' J,A > of finite sets of formulac. This could also be
written as I' — A. A sequent is like an assertion: if all the formulae on the
left of the arrow are true, then at 1cast one of the formulae un the right is true.
This is described as follows: A boolean valuation v( I' = A ) = true if v(X) =

false for some X € T or v(Y') = true for some Y € A.
The axioms and rules used are as {ollows:

1. Axioms:

X - X
1l —
— T
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2. Structural Rule, Thinning: If T’y C I'; and A; € A, then
'y -4
2 = A

3. Negation Rules:

- AX rhx-A
F-X-A TI-=A-X

4. Conjunction Rules:

ILX, Yy - A r-4A,X I'->AY
[XAY - A ' - AXAY

5. Disjunction Rules:

LX—-A [LY=A ToSAXY
T XVY > A T-AXVY

6. Implication Rules:

Tr-AX I,Y A T,X=AY
ILXOY —A T>AXDY

A proof in sequent calculus is a tree labelled with sequents meeting the following
conditions: leaf nodes are axioms; if a node has children then those children follow
from the sequent labelling the node by applying one of the sequent calculus rules.
The label o.. the root node is the sequent we want to prove. Finally, a formula X is
a theorem of the sequent calculus if the sequent — X has a proof.
The following is an example of the sequent calculus proof of -(PA Q) D (=P V -Q):
P — P axiom Q — @ axiom
P,QQ — P thinning P,QQ — @ thinning
P,QQ - PA @ conjunction
@ — PAQ, =P negation
— PAQ, ~P,~@ negation
-(PAQ)— —P, @ negation
~(PAQ)— -PV~Q disjunction
— =(PAQ)D (-PV-Q) implication

The following points summarise the Sequent Calculus evaluation:
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o Sequent calculus is sound: if X is a theorem of sequent calculus then X is a

tautology.

e Sequent calculus is complete: if X is a tautology then X is a theorem of the

sequent calculus.

e Sequent calculus can be easily implemented. In fact most systems that have
been implemented on computers for automatic proving have sequent calculus

bases.

e All proof systems designed mainly for the purpose of efficient proof development

have a great relationship with sequent calculi.

e Tableaux systems, which are very good for automation, correspond to the back-

ward application of rules of sequent calculus.

2.1.1.4.6 Davis Putnam Procedure

The Davis Putnam procedure was introduced in 1960 [15]. It is a refutation method.
In order to apply the Davis Putnam procedure on a formula, first it must be converted
into its CNF. A block is a disjunction of formulae in CNF. The second step involves
transforming the blocks into new blocks by applying rules. These transformations
will preserve the satisfiability of the block. We keep transforming until we reach a
block that is obviously satisfiable or unsatisfiable. The rules that could be applied

are the following:

1. Preliminary 1: Remove any repetition within a clause in a block, and arrange
the literals.

2. Preliminary 2: Delete any clause that contains both a literal and its complement
(P and P = —P are complementary literals). Delete any clause that containg

T. Delete all occurrences of L.

3. One Literal Rule: If B is a block, S is a CNF formula in B, and .S contains the
one-literal clause [L]. Then, remove from S all clauses containing [, and delete

all occurrences of L from the remaining clauses.
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4. Affirmative Negative Rule: If B is a block, S is a CNF formula in B, and some
clauses in S contain the literal L and none of them contains L. Then, we can

remove from S all clauses containing L.

5. Subsumption Rule: If B is a block, S is a CNF formula in B, C, and C; are

clauses in §, and C; subsumes C,. Then, we can remove C, from S.

6. Splitting Rule: If B is a block, and S a CNF formula in this block. In S some
clauses contain the literal L others contain L. Si is the CNF formula that
results when all clauses in S containing L are removed, and all occurrences of

L are deleted. In the same way, we could have St

A Davis Putnam derivation for a block B is the finite sequence of blocks B;,B;,Bs... B,.
Where each block follows from the previous one by applying one of the rules. A deriva-
tion succeeds if each CNF formula in the last block contains the empty clause. A
derivation fails if the last block contains an empty CNF formula (no literals in all
its disjunctions). Any application of the Davis Putnam procedure on a formula X

must terminate. If it is a success then X is a tautology otherwise it is not a tautology.

In evaluating Davis Putnam Procedure, the following point are raised:

e The Davis Putnam procedure is complete.

e The Davis Putnam procedure is sound.

Davis Putnam procedure is very suitable for automation since its algorithm is

not difficult to implement. And it is considered among the fastest.

Some transformations are required before the procedure starts.

A clear and simple set of rules are applied to transform the block. These

transformations will always terminate with an answer that either the formula
is a tautology or it is not.
2.1.1.5 Summary of Propositional logic theorem proving

The following Table 3 is a summary of the theorem provers just described. The

information is based on readings from [17, 19, 16, 5, 12]
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Semantic | Resolution | Hilbert Natural Gentzen Davis
Tableau System System | Deduction | Sequents | Putnam
Sound yes yes yes yes yes yes
Complete
Suitable for | very good | very good | very bad | very bad | very good | very good
Automation
Transformation yes yes no no no yes
Required
Understanding fair fair very easy | very easy fair fair
Complexity
Rely on no no yes yes no no
Heuristics
Fast average average no no average very

Table 3: Summary of Propositional Logic Theorem Provers

2.1.2 Predicate Logic

Predicate logic is an extension of propositional logic thus, it allows us to describe

concepts we were not able to express with the limited tools of propositional logic. For

instance, how to express that a property is true for certain objects or for all objects.

The most important features studied in predicate logic are given below and the no-

tations used are also based on [17, 37].

2.1.2.1 Syntax

e The quantifiers are: existential quantifier (there exists) 3 and universal quanti-

fier (for all) V.

o A first order language L(R,F,C) is determined by:

— A finite set R of relation symbols where each relation has a positive integer

which determines its arity.

— A finite set F of function symbols where each function has a positive integer

which also determines its arity.

— A finite set C of constant symbols.

e Variables are identifiers other than those in R,F, or C.
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e A term of L(R,F,C) is:

— Any constant symbol member of C.

— Any variable.

— Any n-place function symbol f(¢y,...,t,) where f € F of arity n, and each
t, is a term of L(R,F,C).

A term is closed if it contains no variables.

e An atomic formula is a constant notation (T or 1) or a relation r(¢,...,t,)

where r € R of arity n, and each ¢; is a term of L(R,F,C).
e Formulae are defined as:

— All atomic formulae are formulae.
— For every formula F, =F is a formula.

— For all formulae F and G, F op G is a formula, for any propositional

connective op.
~ For every formula F' and variable z, (3z)F is a formula.
— For every formula F' and variable z, (Vz)F is a formula.
e Variables within a formula occur either bound or free.
A free variable occurrence is defined as:
— Any variable in an atomic formula.
— Any variable in —A that is free in A.

— Any variable in A op B that is free in both A and B and for any proposi-

tional connective op.

— Any variable in (Vz)A or (3z)A that is free in A and is not z.

A variable occurrence is bound if it is not free. For example in the formula Vz
the variable z is bound, while in the formula 3z( PyV Qy) the variable y is free.

A formula is closed if it has no free variable.

e The concept of equivalence as well as the transformation rules described in

propositional logic can be extended to predicate logic.
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o A substitution is defined as a mapping from a set of variables to a set of terms
S: V — T. Aprlying a substitution to a formula F replaces all free occurrences
of a variable in F by the corresponding term. F[z/t] denotes the application of

the substitution of x by the term t.

2.1.2.2 Semantics

e In first order logic to give meaning to a formula we need to specify a model which
consists of two items: a domain D for the quantifiers, and an interpretation |

for the constants, functions and relational symbols with respect to the domain.

o A model of L(R,F,C) will be a pair M = < D,I > where D is a non-empty sct

and | is a mapping such that:

— For every constant c € C, ¢ € D.
~ For every n-ary function symbol f € F, fl:D* — D.

— For every n-ary relation symbol r € R, r! C D".

e An assignment in a model M = < D,| > is a mapping A from the set of variables

to the set D.
An assignment A in M = < D,I > of L(R,F,C) associate to each term ¢ of L(R,F,C)
a value ¢ in D as follows:

— For a constant ¢, A =l

— For a variable v, oA = A

— For a function symbol f, [f(tl,...,t,,)]l'A = f'(t'l'A, oy thAY
o The interpretation of terms and formulae can be defined recursively.

o We associate a truth value (true or false) to each formula FFin M = < D,| >

for a language L (R,F,C) and an assignment A: £,

e A formula F is true in a model if F'* = true for all assignments A. It is valid
if it is true in all models of L. A set of formulae is satisfiable if there is some
assignment A for which F'A = true for all ' member of the set. The set is

satisfiable if it is satisfiable in some model.
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Universal Existential
Y ¥(t) 6 (1)
(Vz)® | ®[z/t] (3z)® | @[z/¢]
-(32)® | ~®[z/t] || ~(Vz)® | =9z /t]

Table 4: Universal and Existential Formulae and Instances

o A model M = < D,I > for L is a Herbrand model if D is the set of closed terms
and for each closed term ¢, t/=t.
IfM = < D,l > is a Herbrand model: 1. for any term ¢ of L, thA = (tA)! (in t'A A
is an assignment which gives values to variables, and in (¢A)! A is a substitution
which substitutes variables by terms) 2. for any formula F of L F'A = (FA)
3. if (Vz)F is true in M then F[z/d] is also true for every d € D and if (3z)F
is true in M then F[z/d] is also true for some d € D.

2.1.2.3 Properties

1. Uniform Notations: In Table 4, 4 formulae are associated with universal quan-

tifiers and 6 formulae with existential quantifiers.

If 4(t) and é(t) have property @ for each term ¢, then vy and é have property Q.
In a Herbrand model M=< D, > for a language L, a formula v of L is true in
M if and only if v(d) is true in M for every d € D, and a formula 6 of L is true
in M if and only if §(d) is true in M for some d € D.

2. Normal Forms: A very important feature of predicate logic is the transformation
of any formula into standard forms while preserving its semantics: In a rectified
formula, no variable is bound and free and all quantifiers refer to different
variables. A prenezred formula has all the quantifiers at the front. A formula in
RPF is in a rectified and prenexed form. A skolemized formula is a formula in
RPF where each existentially bound variable is replaced by its skolem function
— a skolem function is a new function symbol introduced into the formula
and has as arguments the variables in the universal scope of the existentially
bound variable to be replaced. A formula in CNF is a skolemized formula with
its matriz part —part of the formula without quantifiers, as a conjunction of

disjunctions.
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All the transformations can be done algorithmically. Many proof mechanisms,

like resolution for example, require the input formula to be in CNF.

. Hintikka’s Lemma: A set of sentences H is called a first order Hintikka set with

respect to a language L if:

o It satisfies all the properties for the Hintikka's Lemma for propositional

logic.
e If v € H then y(c) € H for every closed term c of L.
e If § € H then é(c) € H for some closed term ¢ of L.

The important property of Hintikka set is that it is satisfiable in a Hebrand
Model.

. Parameters: Whenever within a proof we want to introduce a new item having
a given property we should use a constant symbol that has not been used yet,

so we introduce a set called parameters and we denote it by LP*" of the language

L.

. The Model Ezistence Theorem: Let L be a language, LP*" an extension of L, and
C a collection of sets of sentences of LP*". C is said to be a first order consistency

property if in addition to the Model Existence properties for propositional logic:
o If y € S then S U{4(t)} € C for every closed term t of LP*".
o If § € S then S U{é(t)} € C for some parameter ¢ of LP*".
If C is a first order consistency property with respect to L, S a set of se. . nces
of L, and S € C then S is satisfiable in a Herbrand model. The main use of the

model existence theorem just stated is to prove completeness. There are also

some other applications:
e Let S be a set of sentences of the language L, if every finite subset of S is
satisfiable so is S. This is the Compactness Theorem.

e A set S of sentences of a language L is satisfiable if and only if it is satisfiable
in a Herbrand Model with respect to LP%". A sentence X of L is valid if

and only if X is true in all models that are Herbrand with respect to LP*".
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6. Logical Consequences: In addition to knowing whether a formula is valid or not
we also want to know which formulae follow from which formulae. A sentence
X is a logical consequence of a set of sentences S if X is true in every model in

which all the members of S are true.

2.1.2.4 First Order Logic Theorem Provers:

2.1.2.4.1 Semantic Tableaux
In first order logic, tableau proofs are constructed exactly as in propositional logic

but with two additional tableau expansion rules which are the following:

Y R
(%) é(p)
for any closed for a new
term t of LPe parameter p

The first rule suggests that we replace Vz® with ®[z/t] where ¢ is any closed term.
The second rule is to replace 3z2@ with ®[z/t] where ¢ is a new parameter that does
not have an intended meaning in the original language L. The reason why the pa-
rameter should be new is that: Suppose we have proved the statement (3z)Pzx so we
say let a be such as £ and we write Pa so P holds for at least one a. Then we want
to show for another property @ that there exists z such that Qz, we cannot say let
a be such r because we have already committed a for  such as Pz and we do not
know whether there exists a that can hold for both properties, so we chose another
parameter.

A tableau branch is satisfiable if the sentences on it are satisfiable and the tableau is
satisfiable if at least one of its branches is satisfiable. Whenever a tableau expansion
rule is applied to a satisfiable tableau, the result is another satisfiable tableau.

A finite set S of sentences of LP*" is tableau consistent if there is no closed tableau

for S. The collection of all tableau consistent sets is a first order consistency property.

In evaluating Semantic Tableau the foliowing points were raised:

¢ Semantic Tableaux « e sound and complete.

o The rules are non-deterministic. If the right choice is not made at each stage

there is a possibility to go on forever, continually doing something new without
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reaching a closed tableau. This is possible when applying the first rule infinitely.

To avoid this problem we need to restrict reusing formulae.

2.1.2.4.2 Resolution Method
Just as we did with tableau proofs, we have two additional resolution expansion rules

which are the following:

v 6

A1) 8(c)

for any closed for a new

term t of LP*" parameter c

The same explanations and restrictions apply to both tableau and resolution methods.

A resolution expansion is satisfiable if there is a model in which every disjunction
in 1t is true. This means that each line should be satisfiable, and for each line to be
satisfiable at least one of its sentences should be satisfiable. Whenever a Resolution
Expansion rule is applied to a satisfiable resolution expansion, the result is another
satisfiable resolution expansion. A finite set S of se. ences of LP*" is resolulion consis-
tent if there is no closed resolution expansion for S (A closed resolution is a resolution
containing the empty clause). The collection of all resolution consistent sets is a first

order consistency property.

The following points summarise the Resolution evaluation:

e Resolution is sound and complete.

e The rules are non-deterministic. It is possible to continually do something new

without reaching a closed resolution. When applying the first rule infinitely.

e A disadvantage of using resolution as a proof procedure is that by transforming
everything to CNF, some obvious, useful, and valuable things become hidden

such as the existentially quantified variables.
e Resolution requires the use of a unification algorithm to match two literals.

e Resolution can be used to answer questions which instantiate variables, not only

yes/no questions.
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2.1.2.4.3 Hilbert Systems
In addition to the axioms and rules defined for predicate logic, one axiom and one

rule are added for the first order logic version of Hilbert Systems :

par

Axiom: 4 D 4(¢) where t is any closed term of L

Universal Generalisation Rule:

® D v(p)
® Dy

where p is a parameter not occurring in ® D ~v

Hilbert Systems are sound and complete. As in propositional logic, Hilbert Systems

rely heavily on heuristics in the choice of axioms and rules.

2.1.2.4.4 Natural Deduction
Just by adding the following two quantifier rules, the natural deduction explained for

propositional logic becomes applicable to first order logic:

v Elimination 4 Elimination
5 )
7(t) é(p)
for any closed for a new
term t of LreT parameter p

Natural Deduction is sound and complete.

2.1.2.4.5 Gentzen Sequents

Gentzen Sequents is extended to a first order version by adding the following two
quantifier rules:

7 Rules:

[v(#) = A T = Av(p)
Iy—A = Ay
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Semantic | Resolution | Hilbert Natural | Gentzen
Tableau System System | Deduction | Sequents
Sound yes yes yes yes yes
Complete
Suitable for yes yes no no yes
Automation
Transformation yes yes no no no
Required
Understanding fair fair very easy | very casy fair
Complexity
Rely on yes yes yes yes no
Heuristics

Table 5: Summary of First Order Logic Theorem Provers

t is any closed term and p is a parameter that does not yet occur in the proof.

6 Rules:

' = A,6(2)

[,6(p) = A

I - Aé

I'é — A

t is any closed term and p is a parameter that does not yet occur in the proof.

Gentzen Sequents are sound and complete.

2.1.2.5 Summary of Theorem Proving in Predicate Logic

The following Table 5 is a summary of the theorem provers just described. The

information is based on readings from [17, 19, 16, 5, 12]

2.1.3 Computability and Decidability

Computability deals with functions that could or could not be computed by algo-
rithms. An algorithm is a well defined set of instructions that work on some input
data to produce useful output. Both the input and output data must have finite
descriptions and the algorithm should run for a finite amount of time. A function

is computable if there is an algorithm for computing it [3]. A problem is decidable if

there is an algorithm which can always give the answer to the problem.

There is no algorithm that is always able to determine whether an arbitrary formula
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or sentence of first order logic is valid. That is, first order logic is not decidable.
There are, however, subsets of first order logic for which all theories are decidable.
If a formulae is a theorem we can show that it is valid in a finite time. However, if
it is not a theorem, the procedure may loop for ever. Thus, first order logic is semi-
decidable {16, pages 34-35]. The theorem provers described in section 2.1.1.4 and
section 2.1.2.4 will not always terminate when attempting to prove that a particular

formula is or is not valid in first order logic.

2.1.4 Four-Valued Logic

Many-valued logics were developed based on the argument that by considering facts as
either true or false we are oversimplifying things. So we need our facts to be mapped
not only over two values (true and false) but over many values [2]. Historically,
the first many-valued system (propositional logic) was constructed by Lukasiewicz in
1920 [43] in which he introduced the notion of three-valued logic : true, false, and
neutral(an intermediary value). Shortly after Lukasiewicz in 1921, Post published his
many-valued system [43] where he allowed arguments and functions to take values
out of a given number of n values (say 1,2,...,n) regardless of what meaning each
value i could have. In the early 1940s, the first complete algebra of n-valued logic
corresponding to the work of Post, was formulated [35]. After that, many-valued logic
started to gain interest in many areas: logic design, switching theory, programming
languages, pattern recognition, artificial intelligence and many others.

Our concern here is the decidable four-valued logic introduced by Belnap [4] and

extended to a version suitable for knowledge representation by Patel-Schneider [30,

31).

2.1.4.1 Why Four-Valued Logic ?

There are several reasons behind the need to use four-valued logic:

Firstly, there is a trade-off between expressive power and computational tractability
in knowledge representation formalisms [24]. When the formalism is very expressive
like first order logic, then reasoning becomes time consuming and, in the case of first
order logic, semi-decidable. Being semi-decidable, first order logic is not suitable
for knowledge representation systems. What four-valued logic does is weaken the

standard first order logic just enough to get a decidable inference process. Other
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systems might solve the undecidability problem in different ways: add restrictions
and heuristic steps to the inference mechanisms to make them decidable. But this
will produce a system which cannot justify its answers except by fiving the actions
taken at each step, and it will not have an adequate semantics. Another approach is
to design semantics that will fit a particular inference process. Again, this approach
has problems in choosing its semantics and it usually results in a very complicated
semantics which reflects the inference process rather than the meaning of a formula.
Secondly, we should be able to consider cases where something is both true and false
(contradiction) and dezl with it without polluting the remaining knowledge [4]. We
should also be able to express the fact that we Lnow nothing about a particular

knowledge (neither true nor false).

2.1.4.2 Syntax of Four-Valued Logic
The syntax of four-valued logic is essentially the same as that of classical logic:

e Primitive elements are variables, n-place function letters, and n-place relation

letters.

® A term is a variable or a function application f(t,,...,t,) where f is a function

of arity n, and each ¢, is a term.

e An atomic formula is a relation application r(¢y,...,¢,) where 7 is a relation

letter of arity n, and each ¢; is a term.
o A formula is either:

. atomic formula

—

o

aVp

Ll S

aAf

Vo

[P

6. Jra
where a and A are formulae and z is a variable.

® A sentence is a formula with no free variables.
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None | F { T | Both

-+ | None | T | F | Both

Table 6: Negation Evaluation in Four-Valued Logic

2.1.4.3 Semantics of Four-Valued lLogic
The four-valued logic truth values are:

1. True: when there is existence of evidence supporting the truth of a fact.
2. False: when there is existence of evidence supporting the falsity of a fact.

3. Both: when there is existence of evidence supporting both the falsity and the

truth of a fact. (contradiction).

4. None: when there are no evidence supporting either the falsity or the truth of

a fact. (ignorance).

The four truth values form the set of subsets of {true, false}: {true}, {false}, {true,

false} for both, and {} for none.

Table 6 through Table 8 summarise the values taken by compound sentences with
the —~ negation, A conjunction, and V disjunction connectives [4]. The entries are
based on the truth table of classical logic, applying monotonicity using the lattice in

figure 1, or by induction from the following two equivalences:
e aANb=aiffavb=15b

eaANb=bifavVbd=a

Just as an assignment assigns one of the two truth values to a propositional letter, a
setup in four-valued logic maps each propositional letter into one of the four subsets of
{true, false}. Unlike standard logic, no sentence is true in all setups and no sentence

is false in all setups either.
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A None | F T Both

None | None | F | None F

T None | F T Both

Both F | F | Both | Both

Table 7: Conjunction Evaluation in Four-Valued Logic

\Y} None F T | Both

None | None | None | T T

F None F T | Both

Both T | Both | T | Both

Table 8: Disjunction in Four-Valurd Logic
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Both

None

Figure 1. Approximation Lattice

Situations are the basis of the semantics. They correspond to models of the clas-

sical logic. A situation consists of:
¢ A domain, which is a non-empty set D.

¢ A mapping, k, which maps each function letter into a function over the domain

thus giving meaning to them.

¢ A mapping t which maps each n-place relation letter ,r, into a function from D"

to subsets of {true,false}. So it gives meanings and values to predicate letters.

A situation s might support the truth of a predicate P on some objects d in the domain
(t € to(P)(d)) , the falsity on some objects d in the domain (f € t,(P)(d)) , it might
be missing information (@ € t,(P)(d)) , or even inconsistent (t and f € ¢,(P)(d)). A
model in classical logic would correspond to a situation without any contradictions

or missing information.

A Variable Map is defined exactly as in classical logic. It maps variables into some
non-empty set. For instance : if v is a variable map into D, z is a variable, and d is

an element of D, then v7 is a variable map into D. In a situation s:

v; = v(z) if zisa variable,

v (f(t1y . tn)) = (k())(vi(t), ..., v5(ta))  otherwise.

Formulae are given meaning using an interpretation function i(s, v, formula) (v is a
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variable map and s the situation) which maps each formula into subsets of {t, f}. For

example: t € i(s,v,aV 3)iff t €i(s,v,a) or t € i(s,v. ).

For two formulae o and 3, we say a entails 8 (a — p) : if for all situations and
all variable maps 8 is true whenever « is, and « is false whenever 3 is.

With the definitions we already have, computing this entailment is still undecidable.
The problem that causes undecidability is still present: quantification is equivalent
to infinite conjunction or disjunction. For example: PaV Pb entails 32 Pz br ~ause if
Pa V Pb is true either Pa is true or Pb is true, so Pz is true for some x, however,
z is not the same individual all the time. To solve this problem, the quantification
equivalence is changed by evaluating formulae in a set of compatible sets of situations
rather than in a situation.

A compatible set of situalions is a set of situations with the same domain (D) and the
same mapping of function letters to functions over the domain (k). But they differ in
the truth conditions they give to predicate letters (t).

The interpretation function will then map compatible sets of situations, variable maps,
and formulae into subsets of {t,f}. For example: t € i(S,v,Vxa) iff foralld € D t
€ i(S,vj,a) where S is a set of compatible situations, v a variable mapping, D the
domain, and a a formula. Now for a set of situations to support the truth of 3z Pz
there has to be a single object common across all the situations, and all the situations
support the truth of P for that object. We read Jz Pz "there exists a known indi-
vidual for which P is true ” [6]. More generally, S supports the truth of Jza under
the variable map v if there is som: domain element (€ D), common across all the
situations in S, which when taken as the mapping of z, is such that cach situation in
S supports the truth of a.

In four-valued logic, there are three different versions of entailment, with correspond-
ing versions of equivalence. They are for all compatible sets of situations S, and

variable maps v:

t-entailment: o —; @ iff t € i(S,v.a) then t € i(5,v,3). That is 8 is true whenever a

1s true.

f-entailment: @ —; B iff f € i(S,v.B3) then f € i(S,v,). That is « is false whenever

3 is false.
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{f-entailment: a —y fiffa = fand a =4 B
We summarise some properties of these entailments:
e Yzt xr —,5 Pa : A universal entails an instance
e Pa —,;; dzPz : An instance entails an existential
e PaV Pb s,y dzPzx : A disjunction does not entail an existential

Yz Pz /4 PaA Pb : A universal does not entail a conjunction

VzPz —, Pa A Pb : A universal t-entails a conjunction but

VePz /5y PaA Pb : A universal does not f-entail a conjunction

PaV Pb 4, 3zPz : A disjunction does not t-entail an existential but

PaV Pb —; 3zPzx : A disjunction f-entails an existential

A formula is in t-quantifier normal form. if it is prenexed, rectified, all the universally

bound variables are skolemized, and its matrix is in CNF.

2.1.4.4 Four-Valued Logic Evaluation

We summarise the four-valued logic evaluation in the following points:
e Il is decidable: there is an algorithm to compute ¢-entailment.

o Its syntax is the same as the classical first order logic, making it easy to under-

stand.

e Its semantics is based on logical situations which correspond to models in the

classical first order logic.
o It is weak:

1. All its entailments are weaker than logical implication.

2. Some valuable rules are not valid, for example modus ponens, disjunctive
syllogism (a A (ma V b) 4 b).
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o The paradoxes of implication: AA -4 — B and A — BV ~B are not valid.
The failure of the first means that just because we have been told that A is
true and that A is false, we cannot conclude everything. Actually we might
not know anything about B (none). And the failure of the second means that
we cannot conclude that we know something about B just by knowing that A
is true. Their absence is welcome because we guarantee that the presence of a

contradiction will not contaminate the system [4].

e It is rooted in reality where we encounter contradictory facts (both) or we ignore

the truth or falsity of some others (none) [4].

2.2 Knowledge Representation

In order to use knowledge in a machine, we must first choose a way of representing
it, and a way of manipulating it in order to create solutions to problems related
to this knowledge. Some very general methods exist for manipulating knowledge,
but these methods are made so general that their strength is very limited. This is
the reason why we use specific knowledge representation models which have more

powerful inference mechanisms to manipulate them.

2.2.1 Logic

One way of representing facts is to use the language of logic. This representation
has many advantages [22]: First, logic has a formal semantics, which gives a precise
meaning for each expression. Second, logic has well defined properties for which it is
possible to prove their soundness, completeness, and decidability. For powerful logics,
proof theories are sound, complete, and semi-decidable. Third, logic has predefined
techniques to manipulate and reason with that knowledge and to derive new knowl-
edge from old, such as the resolution method for predicate logic. The final but not
least important advantage is its expressive power. Logic can express, not only as-
serted knowledge, but also incomplete knowledge, or information about incompletely
known situations [27]. For instance, in predicate logic disjunction could he used to
express that either this pen is blue or this pen is red, which is an incomplete knowl-

edge about the colour of the pen. As Levesque and Brachman [24] say about the
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expressive power of logic:”determines not so much what can be said, but what can

be left unsaid”.

2.2.2 Structured Representations of Knowledge

In logic, complex structures and relationships cannot be easily represented so we have

other systems for representing complex structured knowledge. Those systems should

have the following four properties [34]:

o Representational adequacy: be able to represent all the kinds of knowledge

needed.

¢ Inferential adequacy: be able to manipulate the representatior.al strictures to

derive new ones.

o [nferential efficiency: be able to incorporate information that will help in the

inference mechanism.
¢ Acquisitional efficiency: be able to acquire information easily.

Two representations fulfill these objectives: Declarative representation, where knowl-
edge is represented as a static collection of facts with a small set of procedures on how
to manipulate them; and procedural representation, where knowledge is represented
as procedures for using it. Each of the methods has its advantages and disadvantages
and in practice most representations employ a combination of both. In declarative
representations, choosing the level of representation is an important issue. For in-
stance: if “Tania ate an ice cream” and then I am asked: “Did Tania use a spoon?”
I cannot answer this question unless the fact that Tania ate an ice cream is broken
down into taking a spoon, moving it towards the mouth and so on. The advantages
of representing knowledge in terms of a small set of primitives is that the inference
rules will be written in terms of the primitives rather than in terms of the many ways
in which knowledge may appear. The disadvantages are that a lot of work is needed
to convert knowledge into its primitives, and a lot of storage is also required.

A knowledge structure is a data structure in which knowledge can be stored about
a particular problem domain. Two +:ry common and useful ways of decomposing
things in knowledge structures are: the ISA relationship between two objects in a

hierarchy, and the ISPART relationship between an object and the parts that make
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it up. Transitivity is a property of both relationships.

A schema gives a method on how to organise things in a particular way because of past
reactions and experiences. Examples of schemas are: frames to describe attributes of
an object, scripts to describe a sequence of events, and stereotypes to describe char-
acteristics found in a particular group of people.

The representational schema can be categorised into two categories by considering
the syntax-semantics dimension: Syntactic systems do not have any concern for the
meaning, they are concerned with manipulating the representation. Semantic systems
are concerned with the meaning behind each representation. Most of the available

structures tend to use a combination of both.

2.2.2.1 Declarative Representations

Using declarative representations has many advantages: each fact is stored only once
and could be used in many ways. It is also easy to add new facts without changing
anything. Several declarative mechanisms for representing knowledge were developed.
Some of them are general, others are used for specific kinds of knowledge. But they
all share some common features: the way they are implemented in main memory
using associative memory technique or other techniques, cach has a set of inference
rules which emphasises computational efficiency rather than completeness.

Some of the declarative representations are briefly described below:

o Semantic Nets are used to describe both events and objects. They are one of
the first knowledge representation structures developed, they were proposed by
Minsky in 1975 in [26]. They were originally designed to represent the meanings
of English words. The two components of a semantic net are the nodes and the
labelled arcs. Information, an object, an event or a concept, is represented by
the nodes and relationships are represented by the labelled arcs between nodes.
Semantic net is particularly good for representing binary relations. Non-binary
relations are handled by using arcs with more than two endpoints. The advan-
tages of semantic nets are that they easily represent inheritance, they are flexible
so it is easy to modify them by adding, deleting or changing a node or link as
necessary. However, this flexibility tends to become a disadvantage because se-
mantic nets lack a formal structuring, so complex ones become messy and hard

to understand. To overcome this problem, some techniques were developed such
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as the Warnier/Orr approach, and normalisation [11].

o Frames are used to reprcsent complex objects from different points of view.
They describe an object by placing all the information related to that object
in slots. Each slot either describes an aspect of the object, is another frame, or
has a default value. Slots could also be attached to procedures that describe
them: this is known as procedural attachment.

One way of selecting a frame that is applicable to a particular situation is:
Select an initial candidate frame and instantiate it. Find values for each slot in
the frame. If a value is not found then seicct another frame using clues for the
failure or use fragments that are correct and try to match them with another
frame.

In real life, we tend to proceed in a similar fashion. When something happens
we do not analyse it from scratch. We have in mind a collection of structures
which are like the frames and whenever something happens, we try to find the
frame that best fits the situation. That’s why using frames is very common
when modelling real world situations. Procedural attachment allow attributes

to have more general values rather than simply data values.

e Conceptual Dependency describes the relationship between the components of
an action. It is a theory on how to represent the meaning of natural lan-
guage sentences in a way that has an easy inference mechanism, and that is
independent of the language in which the sentences are stated. A conceptual

dependency consists of:

— A group of primitive actions, such as ATRANS for a transfer of things.

— A group of conceptual categories included in a sentence, such as ACT for
an action, and PP for an object.

~ A list of semantic relations among the concepts and dependencies so it is
clear how things could be related in a sentence. For instance there is a rule
which describes the relationship between two PPs one of which belongs to

the set defined by the other.

The advantage of using Conceptual Dependency is that we have less inference
rules because many inferences are included in the representation, and the struc-

ture contains holes to be filled with the correct values.
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The disadvantages of using Conceptual Dependency are that: a low-level de-

composition is needed, and there is a need to represent more than just events.

Scripts were first proposed by Schank and Abelson in 1977 [1]. They are used
to represent a common sequence of events. For example, what happens when
one goes to arestaurant. A script 1s a description of a class of events in terms of
contexts, participants, and sub-events, It consists of a sct of slots. Each slot has
a default value and information about what it could take as values. Scripts are
useful because in the real world there is a pattern behind each event. However,
for a system to be able to reason about a variety of things, many scripts are
needed. This makes scripts not a desirable representation for general cases, but

they may be suitable for very specific events.

Demons are procedures which activate an associated process when some con-
ditions become true. For example, we might have a procedure to compute the
weight whenever needed. This procedure is invoked when the volume and den-
sity are available and the weight is needed. Demons are difficult to reason about.
because they are not invoked explicitly. However, they allow the representation
of knowledge at a global level. Demons are used when coding active databases

and knowledge systems.

A Decision Table is a collection in any tabular form used to describe a rule by
providing all the possible conditions and the corresponding actions to be taken.
The advantages of using decision tables is that they are easily understood and

they are good to capture and store a large amount of data.

Decision Trees are like hierarchical semantic nets where nodes represent goals
or decision points and the links are alternative decisions. They are examined
from left to right. Decision trees are especially good to represent. cause and

effect and they are easy to validate.

2.2.2.2 Procedural Representation

So far we have discussed declarative representation where knowledge is represented
as a set of facts. Procedural representation is another way of representing knowledge

as a set of procedures for using knowledge. Procedural representation of a piece of
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information is a plan on how to use that information. In other words, knowledge
is represented by rules about a particular problem. This approach was taken by
Winograd [41, 42] in his SHRDLU system which takes English sentences as input and
produces a set of procedures for doing what the statement requested. Each procedure
has a set goals and there is a mechanism to satisfy this goal. In practice, very few
systems use procedural knowledge as the only way to represent knowledge. Rather,

a combination of declarative and procedural knowledge is used.

2.3 Mantra

2.3.1 Definition

Mantra is a general purpose shell for hybrid knowledge representation and hybrid
inferences. It supports three different knowledge representation formalisms: logic,
frames, and semantic nets. Knowledge is represented in one of the formalisms and
then inferred from one or a combination of the formalisms.

Mantra was developed in Karlsruhe, Germany, in 1991 by G. Bittencourt [6, 8, 7] and

implemented in Common Lisp. The motivations behind its development were:

e To provide a combination of knowledge representation formalisms since each
formalism is usually suitable for a particular kind of knowledge. The user can
then decide which representation is convenient for each piece of knowledge, and

is not limited to only one formalism.

e To allow the user to control the interactions between the different knowledge

representation formalisms.
e To have decidable inference procedures based on a clear semantics.

e To provide a shell for the development of expert systems.

The interface of Mantra is very simple. It provides two primitives: Tell, to store
knowledge into one of the three formalisms, and Ask, to query knowledge from one

or a combination of formalisms. For example:
o Tell(KBS-name,to-logic(formula))
o Ask(KBS-name,from-logic(logic-question))
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Figure 2: Mantra Architecture

e Ask(KBS-name,from-logic-frame(logic-frame-question))

2.3.2 Architecture

The architecture of Mantra consists of three levels: Epistemological level, Logical

level, and Heuristic level, as shown in Figure 2.

e The Epistemological Level provides three formalisms to represent facts about

the world. It consists of three modules each based on one formalism:

— The Assertional Module is used to represent asserted facts about a

particular domain. Its formalism is first order logic language, based on the

decidable four-valued logic. Example:

Tell(k,to-logic(robin(tweety)))
Tell(k,to-logic(size(tweety,small)))
Ask(k,from-logic(!Ex(robin(x) & size(x,small))))
Answer: yes x=tweety
Ask(k,from-logic(!Ex(robin(x) & size(x,big))))

Answer: no
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— The Frame Module is used to represent concepts, which are categories
of objects, and relations, which are the properties of objects. The syntax
of this module is very rich: it prov rich set of primitives such as
negation of concepts and relations, anu special symbols and tests. The

semantics are also based on the four-valued logic. Example:

Tell(k,to-frame(mammal :c=animal & !V blood:[warm] & !V
reproduction:{viviparous]))
describes the concept of mammal as all animals having a warm blood and
a viviparous reproduction system.
Tell(k,to-frame(elephant :c=mammal & 'V food:[plant] & 'E
organ:[trunk]))
describes the concept of elephant as a mammal whose food is only plant
and one of its organs is trunk.
Tell(k,to-frame(bird :c=animal & !V blood:[warm] & 'V
reproduction:[oviparous]))
describes the concept of bird as an animal whose blood is warm and
whose reproduction system is oviparous.
Tell(k,to-frame(robin :c=bird & !V size:[small] & !E organ:{wing]))
describes the coucept of robin as a bird whose size is small and one of its
organs is wing.
Ask(k,from-frame(mammal > robin))
asks whether the concept of mammal subsumes the concept of robin
(Concept C; subsumes concept C; if all instances of C; are instances of
Ch)

Answer: no

The four Tell statements describe the concepts on Figure 3.

~ The Semantic Net Module allows the definition of classe: of objects and
hierarchies. Hierarchies are the links between classes, with default and
exception links provided. The syntax provides the necessary primitives

and operators to describe them. Example:

Tell(k,to-snet(circus-elephant :k=normal-elephant + flying e'ephant))
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ANIMAL
BIRD MAMMAL
blood: warm blood: warm
reproduction:oviparous reproduction:viviparous
ROBIN ELEPHANT
size: small food: plant
Jorgan: wing Jorgan: trunk

Figure 3: Example of Concepts

takes the classes of normal-elephant and flying elephant and creates a
new class circus-elephant more specific.
Tell(k,to-snet(colour :h=elephant — gray 4+ royal-elephant /4 gray))
constructs the colour hierarchy: elephant has a positive link with gray,
and royal-elephant has a negative link with gray
Tell(k,to-snet(circus :h=african-elephant — elephant 44 royal-elephant
— elephant ++ circus-elephant — royal-elephant))
constructs the circus hierarchy out of three hierarchies: african-elephant
and circus-elephant have a positive link with elephant and
circus-elephant has a positive link with royal-elephant.

 Ask(k,from-snet(colour ++ circus(circus-elephant /4 gray)))
asks whether in the hierarchies colour and circus, circus-elephant is not a
sub-class of 1iy.

Answer: yes

This example describes the hierarchies shown on Figure 4
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Figure 4: Example of Two Hierarchies

The three modules use the same semantics basis, which facilitates the definition
of their interactions. Through these interactions, the functionalities of one
module increase the inference power of another module. An examples on the

interactions based on the facts stored in the examples above:

Ask(k,from-logic-frame(!Ex(size(x,small) & animal(x))))

Answer: yes x=tweety.

The division of the knowledge language into formalisms has two advantages:
(1) each formalism solves its computability problems independently; and (2) it
is very easy to integrate new formalisms to the language without changing the

others.

At the Logical Level, the knowledge bases and the functions that manipulate
them are defined. Each knowledge base is a set of partitions, one for each
formalism, with the two primitives; Tell and Ask. The inference defined on this
level is both for a single or a combination of formalisms: logic, frame, semantic

nets, logic and frames, logic and semantic nets, or frame and semantic nets.
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e While the epistemological level is for declarative knowledge, the Heuristic
Level is for procedural knowledge. It defines the primitives that allow the
definition of production systems for the automatic manipulation of knowledge

bases. Each production rule consists of: a rule identifier, a list of variables, a

Figure 5: Mantra Modules

condition, and an action to be taken if the condition is satisfied.

2.3.3 Modules

The modules of Mantra are shown on Figure 5. They are

Interface contains the functions that define and control the menus presented to the

user.

Parser parses the input and validates it.

Knowledge Base Management holds the definitions of the knowledge bases and

the functions that control the interactions hetween the three episternological

formalisms.
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Production System implements the primitives of the heuristic level to define pro-

duction rules and manipulate them.
Unification defines the functions and structures used in the unification algorithm.

Logic Module contains the functions used to manipulate logical formula, including

the t-entailment algorithm.

Frame Module contains the functions used in the manipulation of frames: defini-

tion of new frames, and subsumption tests.

Semantic Network Module contains the functions that manipulate semantic nets

and compute inheritance.
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Chapter 3
Transforming a Formula into CNF

A first order logic formula can be transformed into various normal forms while preserv-
ing its semantics. Thus, the various transformations applied on the formula preserve
its truth value and no information is lost or modified. Conjunctive Normal Form,
known as CNF, is the most common form. It is a standard way of representing a for-
mula to be processed by various algorithms especially algorithms based on resolution.
In our case, the inference mechanism rcquires that the asserted facts be in CNF, and
the questions to be in ¢-quantifier normal form, which is a variation of CNF. The
knowledge base stores the facts as F = Dy A Dy A Ds...Dy, that is, a conjunction of
disjunctions. Each disjunction is a collection of terms. Terms are the input to the

unification module.

3.1 Steps in Transforming a Formula into CNF

The steps necessary to transform a formula into CNF are the following [37]:
1. Rectify the formula:

¢ No variable should occur both bound and free. For variables occurring

bound and free, the free occurrences are renamed.

o All quantifiers should refer to different variables. Whenever a variable
is bound twice, one of its occurrences is renamed and all its occurrences

within that scope are also renamed.
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2.

Prenex the formula: All the quantifiers are moved to the beginning of the
formula. In a prenexed formula, no quantifier occurs within a negation. a con-
junction, or a disjunction. The part of the formula without quantifiers is called

the matriz. For instance, in Vz3y(Pz A Qy), the matrix is Pz A Qy.

Skolemizing a formula: For each variable bound by an existential quantifier,
all occurrences are substituted by skolem functions. A skolem function is a
new function symbol that does not yet occur in the formula, and takes as its
arguments all the variables in the universal scope of the variable being replaced.

After skolemizing the formula, the existential quantifiers can be removed.

CNF: The matrix of the formula is transformed into conjunctions of disjunc-

tions by applying the following rules:

Replace —F by F (double negation)
Replace ~(F AG) by -F v -G (deMorgan’s law)
Replace ~(F V G) by -F A -G (deMorgan’s law)

Replace TV (FAG) by (TV F)A(T VG) (distributivity)
Replace (FAG)VT by (TV F)A(TVG) (distributivity)

Every variable is understood as universally bounded. Hence universal quanti-

fiers are eliminated.

The following is an example showing all the steps involved in the transformation of

F = (-3z(P(z) vV VyQ(z, f(3))) VVyP(g(z,y),a))

into its CNF form:

1.

F = (=3z(P(z) V VyQ(z, f(y))) V YwP(g(z,w), a))
The variable y is bound twice, it is renamed to w in the second disjunct. None

of the variables are bound and free at the same time. The formula is in rectified

form.

F = Ya3y¥u((~P(2) A ~Q(z, (1)) V P(s(z, w),a))
All the quantifiers are moved to the beginning of the formula. The formula is

in prenex form.
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3. F = VeVuw((-P(z) A ~Q(z, f(h(x))))V P(g(x,w),a))
A new function symbol £ is introduced, h(z) is substituted for y because y de-
pends on z. The existential quantifiers are removed. The formula is in skolem-

ized form.

4. ((=P(x)V P(g(z,w),a)) A (-Q(z, f(h(z))))V P(g(z,w),a))
The matrix of F' is transformed into CNF by applying distributivity, and the

universal quantifiers are e!_minated.

3.2 CNF Implementation

3.2.1 Object Model

The Object Model in figure 11 describes the classes used in the implementation of
the transformation of a formula into CNF form. There are nine classes namely:
LIST, ITERATOR, FORMULA, CNF FORMULA, TRANSFORMER, EXISTLNTIAL TRANS-
FORMER, UNIVERSAL TRANSFORMER, TERM, and DISJIUNCTION. The associations
between classes are simple: the TRANSFORMER uses the LIST in its computations (
list of strings, list of terms, list of disjunctions, list of formulae) the LIST is traversed
by LIST ITERATOR, the FORMULA has many transformers, the TRANSFORMER is a
base class for EXISTENTIAL TRANSFORMER and UNIVERSAL TRANSFORMER, and the
CNF FORMULA is a FORMULA which consists of DISJUNCTIONS each having at least
one TERM.

The iterator pattern [20, pages 257-273] is used to access the elements of the LIST
sequentially, regardless of the internal representation of the LIST. This pattern uses
the LIST clas: and the LIST ITERATOR class. The LIST ITERATOR defines an interface
to c-cess and traverse elements of the LIST. While the LIST defines an interface for
creating an iterator object. The main advantages of using this pattern are: the list
representation can be changed without affecting the iterator since the list does not
need to expose its internal structure to the iterator; different list traversals can be
defined and used on the same list depending on the need of the transformer.

The template method [20, pages 325-331] is another pattern, used in the relation be-
tween the TRANSFORMER and its two sub-classes. It allows us to define the skeleton of
the CNF transformation in the TRANSFORMER class and defer some sub-steps to the
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FORMUILA [ TRANSFORMER LIST
< ]

1

CNF FORMULA UNIVERSAL EXISTENTIAL LIST ITERATOR
TRANSFORMER TRANSFORMER

DISJUNCTION

I
——

Figure 6: Object Model

two sub-classes: UNIVERSAL TRANSFORMER and EXISTENTIAL TRANSFORMER. The
UNIVERSAL TRANSFORMER defines the steps for the facts transformation, while the
EXISTENTIAL TRANSFORMER defines the steps for the query transformation. Each
of the sub-classes has a different implementation for some of the steps. For example,
in the scope computation, UNIVERSAL TRANSFORMER finds the universal scope of
variables while the EXISTENTIAL TRANSFORMER finds their existential scope. Each
sub-class has its own version of those sub-steps, and the invariant sub-steps, common
to both, are defined in the TRANSFORMER class. The main ac vantages of using this
pattern are: certain steps of the transformation are defined at the sub-class level with-
out changing the transformation structure —it is left to sub-classes to implement the
behaviour that can vary; the common steps which are invariant are localised under
the base class to avoid code duplication.

Figure 11 shows the object model without any details. Figure 9 through Figure 15

show details of each class in the object model with its attributes and methods.
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FORMULA <>——

node . enumeration
name : char*
arglist - term*
nextl : formula*
next2 : formula*

void Prnint()

CNE FORMULA -

ListOfDisjunction

void Print()
CNFFormula(Formula*)
void InsertDsjct(Disjunction®)

‘DISTUNCTION

ListOfTerm*

void InsertTerm(term?®)

TERM®

name ° char*
next - term*
args : term*

void Print()

Figure 7: Object Model Details
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TRANSFORMER

formula®*

Public:
void CnfExi&Uni(formula*)

Private:

void Rectify(formula*)

void RectifySubsteps(formula®)

virtual void FindScope(formula*)

void Prenex(formula*)

void PrenexSubsteps(formula*)

virtual void Skolermuze(formula*)

virtual void CancelQuantifiers(formula*)
void ConjOfDisj(formula*)

void ConjOfDisjSubsteps(formula*)

Protected:

void SkolemizeCommonSubsteps(formula*)
void CancelQuantifiersCommonSubsteps(formula*)

UNIVERSAL TRANSFORMER . EXISTENTIAL TRANSFORMER
void FindScope(formula*) void FindScope(formula*)
void Skolemize(formula®*) veid Skolemize(formula®)
void CancelQuantifiers(formula®) void CancelQuantificrs(formula*)

Figure 8: Object Model Details

55



LIST<T> 1%

Node*: T *Data Node*: T *Data
Node *Next Node *Next

vaid Insert(Node)
void InsertAtEnd(Node) boolean IsDone()
void Remove(} NodeData Currentltem()
boolean IsEmpty() void First(List)
ListOfNodes Tail() void Next()
Node Head()

Figure 9: Object Model Details

3.2.2 Data Structures

The major data structures used are briefly described below.

1. List Node is a structure:

e Data: any type depending on the instantiation of the list, since a list is a

template.

e Next: a list node

2. Formula is a structure:

¢ Node: enumeration { EX, ALL, NOT, AND, OR, PRED }
It determines the type of the formula: EX for 3, ALL for V, NOT for -,
AND for A, OR for V, and PRED for a predicate (relation symbol).

e Name: 'a string
If the node is EX or ALL, name is the name of the variable bound by 3 or
V. If the node is NOT, name could be either null if a formula is negated
or name could hold the name of the negated variable. For AND and OR,

name is null. For PRED, name is the predicate symbol.

e Argument list: a pointer to a term. It is only used if the node is a PRED,

it’s the argument list of the predicate.
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e Nextl: a pointer to a formula. For the unary operators (EX, ALL, NOT),
nextl is the formula following. For the binary operators (AND, OR), nextl
is the left-hand branch.

e Next2: a pointer to a formula. For the unary operators (EX, ALL, NOT),
next2 is null. For the binary operators (AND, OR), next2 is the right-hand

branch.
3. CNF formula is a list of Disjunctions.
4. Disjunction is a list of Terms.
5. Term is a structure:

e Name: a string. It is the term name.
e Next: a pointer to a term. Next points to the subsequent terms if there
are any.

e Argument list: a pointer to a term. It is null for a constant or variable

term and holds the arguments of a composite term.

3.2.3 Data Dictionary

e List Class

— Description
It is a container class used to store elements of any type. It could be used
either with the LIFO strategy or the FIFO strategy depending on the n d.

— Methods

Insert: inserts an element at the head of the list.
Insert AtEnd: inserts an element at the end of the list.
Rlemove: removes the element at the head of the list.
IsEmpty: checks whether the list is empty or not.
Tail: returns the tail of the list.

S

Head: returns the first element in the list.

e Iterator Class
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— Description
IL is used to traverse the list sequentially regardless of its internal repre-

sentation.
— Methods

1. IsDone: checks whether the end of the list has been reached or not.

2. CurrentItem: always returns the data in the node it is currently on

during the traversal.
3. First: initialises the iterator to point to the first element in the list.

4, Next: moves to the next element in the list.
e Formula Class

—~ Description

Defines a logical formula, as used by Mantra to represent asserted facts.

3.2.3.1 Methods

1. Print: prints the formula.
e CNF Formula Class

— Description
Is an instance of the formula in a Conjunctive Normal Form. It is repre-

sented as a list of disjunctions since it is a conjunction of disjunctions.
~ Methods
1. Print: overloads the print version of formula base class. It prints the

CNF formula as a list of disjunctions. One disjunction on each line.

2. CNFFormula: constructs a CNF formula as a list of disjunctions given
a formula containing only conjunctions of disjunctions -—a formula
transformed into CNF form but still implemented as a tree rather

than a list of disjunctions.

3. InsertDisjunction: inserts a disjunction into the CNF formula.

¢ Disjunction Class
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— Description

A disjunction is a list of terms.

— Methods

L.

InsertItem: inserts a term into the disjunction

o Term Class

— Description

Terms are the leafs of the formula. They also repiesent the atomic formulae

that constitute each disjunction.

-- Methods

1.

Print: prints a term.

e Transformer Class

— Description

The transformer defines each step for transforming a formula irio its Con-

junctive Normal Form. It is also the base class for two sub-classes which

override some of the steps of the transformation.

—~ Methods

Some of the transformer methods are private being only used by the public

method CnfExiUni. Others are protected because they are used by the two

sub-classes.

1. Rectify: piroduces a rectified formula.

2. RectifySubsteps: sub-methods to perform each task in rectifying a
formula.

s. FindScope: is a virtual function overridden by each of the sub-classes
depending on whether the universal or the existential scope needs to
be found.

4. Prenex: produces a prenexed formula.

5. PrenexSubsteps: sub-methods to perform each task in prenexing a
formula.

6. Skoleniize: is a virtual function implemented by each of the sub-

classes depending on whether skolemization is on existential or uni-

versal quantifiers.
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7. CancelQuantifiers: is a virtual function implemented by each of the
subclasses depending on the type of quantifiers being removed from
the formula.

8. ConjOfDisj: is the last stage in normalising a formula. It transforms
its matrix into a conjunction of disiunctions.

9. ConjOfDisjSubsteps: sub-methods used in transforining the matrix
into conjunctions of disjunctions. Each of the sub-steps apply a mod-
ification on the matrix to finally reach a CNF.

10. SkolemizeCornmonSubsteps, and CancelQuantifiersCommonSubsteps
: protected methods used by the methods in the sub-classes. They
are implemented in the same way regardless of the sub-class to which
the transformer belongs and they are used by each of the sub-classes’
methods. CancelQuantifiersCommonSubsteps is the same since it re-
moves all the quantifiers at the beginning of the formulae regardless of
whether they are existential or universal. In SkolemizeCommonSu’.-
steps, sub-steps common to both transformers in the skolemization
process are defined such as the construction of the skolem function
once the scope is found.

11. CnfExiUni: Is the high level method that calls all the others in a
certain order. Depending on whether this method is called for an
existential or a universal transformer, the appropriate virtual methods

are executed.
e Universal Transformer Class

— Description
This is a Transformer sub-class. It inherits all its methods and overrides
the virtual ones. This transformer deals with the steps that keep the

universal quantifiers in the formula, producing a CNF formula.
— Methods

1. FindScope: finds the universal scope for each term. In skolemization,

the variables in the scope are the arguments of the skolemn function.

2. Skolemize: replaces all the existentially bound variables by their skolem

functions.
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3. CancelQuantifiers: removes the existential quantifiers from the for-

mula.
o Existential Transformer Class

— Description
This is a Transformer sub-class. It inherits all its methods and overrides
the virtual ones. This transformer deals with the steps that keep the
existential quantifiers in the formula, producing a formula in {-quantifier

normal form.
— Methods
1. FindScope: finds the existential scope for each term. In skolemization,
the variables in the scope are the arguments of the skolem function.

2. Skolemize: replaces all the universally bound variables by their skolem

functions.

3. CancelQuantifiers: Removes the universal quantifiers from the for-

mula.
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Chapter 4

Unification Module

Given two terms in first order logic ¢; and ¢;, a untfier is a substitution § such that
t10=t20. Unification is the process of finding the most general unifier (mgu).

The earliest reference for unification of general terms goes back to 1920 when E. Post
mentioned in his diary and notes, partially published in [14], a hint of the concept of
a unification algorithm that computes a most general representation as opposite to
all possible irstantiations. The first published unification algorithm was given in J.
Herbrand’s thesis in 1930 [23]. In his algorithm, Herbrand described three properties
related to the validity of a formula. In 1960, D. Prawitz [32] worked on a logic which
did not contain any function symbols, and for which he computed a most general
representative of all possible instantiations. In 1963, M. Davis [13] published a proof
procedure which was implemented on an IBM 7090 at Bell Telephone Laboratories in
November 1962, and which used a unification algorithm. It was the first fully imple-
mented unification algorithm. It was not until 1965 that J.A Robinson [36] published
a formal unification algorithm for first order terms, and a proof that this algorithm
computes a most general unifier. Robinson’s algorithm is simple and applicable to
any finite nonempty set A of terms. The process always terminates either with failure
when the set is not unifiable or with success when it returns the most general unifier.
This algorithm requires time exponential in the size of the terms.

Robinson introduced unification to implement resolution. Since then, it became uni-
versal in automated theorem proving. Due to its pattern matching nature, unification
is applicable in a wide variety of areas in computer science [18, 38, 39] such as de-
ductive databases, information retrieval, type checking, natural language processing,

and logic programming. Unification is at the heart of these applications. Thus, its
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performance is crucial to the overall efficiency. Some algorithms having almost linear
time complexity were published for example [19]: M.S. Paterson and M.N. Wegman
in 1978, Kapur, Krishnamoorthy, and Narendran in 1982, G. Huet in 1976, L.D. Bax-
ter in 1973, Martelli and Montanari in 1982. The Martelli and Muntanari unification

algorithm and its implementation are described in detail below.

4.1 Martelli and Montanari Unification Algorithm

The algorithm of A. Martelli and U. Montanari [25] is based on a technique that
was first described by Herbrand. It operates on a system of term equations, and
it transforms this system until a solved form is reached. In their description of the
unification solution, Martelli and Montanari start with a nondeterministic algorithm.
Then they give another algorithm which works on a system of multi-equations but is
also nondeterministic. Then with few changes, the algorithm is improved and made
deterministic. Later, an enhancement is suggested to improve the efficiency of the

algorithm. Finally, a comparison with other algorithms is made.

4.1.1 Description of the algorithm
4.1.1.1 A first nondeterministic algorithm

Before describing the actual algorithm, few definitions are necessary:

o Term reduction and variable elimination are transformations which preserve the
sets of all unifiers. Let f(ty,t2,...,t:) = f(w,w2,...,w,) be an equation. Term

reduction is a process that constructs an equivalent set of equations:

lhn = 1wy

Let x = t be an equation, where z is a variable and # is a constant term.
Variable elimination is the process of applying the substitution of ¢ for z to a

set of equations.
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e A set of equations is in solved form if:

— the equations are r, = {,

— e\ery variable in the left of an equation occurs only there.

A solved set of equations has a unifier V = {[z1/t1], [x2/t2), ..., [Fn/tn]}.

The first algorithm in figure 10 shows how a set of equations is transformed into an

equivalent set of equations in solved form.

Any equation of the form t=x is rewritten as x=t
Any equation of the form x=x is eliminated
Apply term reduction to equations of the form

f(t. ) = f(wy...w,)
Apply variable elimination to equations of the form x=t
if x does not occur in t.

Failure occurs if there is an equation of the form

f(t..ty) = g(wy...w,) where f#g
or an equation x=t where x occurs in the term t

Figure 10: A First Nondeterministic Algorithm

This algorithm always terminates either with failure if there is no unifier or with
success when the set has been transformed into a set in solved form. However, it is
not deterministic bc.ause there is no fixed order in applying the steps, or selecting

the equations.

4.1.1.2 A second nondeterministic algorithm

A multi-equation is a pair < S,M >, written as S=M where S is a non-empty set of
variables and M is a multi-set of non-variable terms.
The unifier of a multi-equation is the substitution 8 such that S0 = M0.

A set of equations SE corresponds to a multi-equation S=M iff:

e All terms of SE belong to SUM

o For every ¢ and ¢, € SU M we have t; =55 t2, where =% is the reflexive,
symmetric, and transitive close of =gg, where t; =gg I, iff the equation ¢; = ¢
belongs to SE.
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So the multi-equation {z,..z,} = (f;...tm) is a way of grouping many equations
z, = z; and z, = t; and ¢, = {4.

The common part of a multi-set of terms (M) is a term constructed by superimposing
all terms, and taking the part which is common to all of them starting from the root.

For instance:

f(zl’g(a’ f(zS,b)))a f(h(C),g(.’L'z, f(ba zﬁ)))’ and f(h(:lh;), g(.'L's, .’133))) (1)
have common part : f(z;,g(z2,23)) as shown on figure 11.

A variable term is more general than a function term, and more general than a
constant term. Whenever we have two functions, they should have the same root
symbol and the same number of arguments. Otherwise there is no common part.
Whenever we have two different constant terms or a constant and a function then
again there is no common part. The cases, where no common part is computed, are
called a clash. For example, in computing the common part of {z1} = (g(z2,23),8(z4))
we get a clash.

The frontier of a multi-set of terms (M) is a set of multi-equations where each multi-
equation is constructed by taking one leaf of the common part and all sub-terms

corresponding to that leaf. For example, the frontier of the multi-set given in ( 1) is:

{{z1} = (h(c), k(24)), {z2,26} = (a), {wa} = (f(=s, ), f(b:26))}

Figurc 11 shows the correspondence of each leaf (z, 3, z3) in the common part to a
set of sub-terms.

The process of multi-equation reductionof S = M applied to aset Z of multi-equations
containing S = M yields the set 2’ = (Z — {S = M} U {S = common part of M}
U {frontier of M}.

Two multi-equations §; = M, and S; = M, where S} NS, # @ are merged to produce
S US; = My UM,. A set Z of multi-equations is compact if S; N S; = @ for all
multi-equations Sy = M, and S2 = M in Z. A set Z may be compactified by merging
multi-equations that violate 5} N S; = @.

A multi-equation S=M has a cycle if some variable z in S occurs in some term ¢ in

M. For example, {21} = f(z1,z2) has a cycle.
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Figure 11: Common Part and The Frontier Computation

The second algorithm in figure 12 solves a set Z of multi-equations. The system
consists of sets of multi-equations T and U. Where T is the solved, triangular part
and U is the unsolved part. At first, T is empty and U is Z. This algorithm always
terminates. If it terminates with failure then the system has no unifier. If it termi-
nates with success then it has an empty unsolved part U and the result is T which
is in solved form. The algorithm is nondeterministic because the order of selection of

multi-equations is arbitrary.

4.1.1.3 The unification algorithm

The algorithm in figure 13 is a simplified and deterministic version of the previous
one. It eliminates the need to apply substitutions and to check for cycles during each
iteration. During each iteration only those multi-equations which definitely do not

lead to cycles are selected.

4.1.1.4 Improvement on the unification algorithm

An improvement, in order to make an efficient multi-equation selection, is to associate
a counter with each multi-equation. The counter contains the number of occurrences
of its left-hand side variables in the right-hand side of all multi-equations in U. When
the counter is zero, the multi-equation can be selected. The counters are initially
~omputed by scanning U. Then, each time a reduction is applied, counters are decre-
mented if an occurrence of one of its variables appears in the left hand side of a

multi-equation in the frontier (because the right-hand side frontier variables were
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Transform the two terms to unify into a set Z of multi-equations
Repeat
Select a multi-equation S=M from U with non-empty M
Compute the common part and frontier of M.
If there is no common part then stop with failure.
(This indicates that there is a clash)
If any of the frontier multi-equations computed for M contains
in its left-hand side some variables of S
then stop with failure
(This indicates that there is a cycle)
Transform U using multi-equation reduction on S=M
Apply compactification on U
Apply the substitution, where {. is the common part of M
{[=/t] | V= € 5}
to the RHS of multi-equations in U.
Transfer S=common part of M from U to the end of T.
Until U is empty or U contains only multi-equations
with empty RHS.
Transfer all the multi-equations of U with empty RHS to the end of T

Stop with success
T contains a substitution that unifies the two terms

Figure 12: A Second Nondeterministic Algorithm
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Transform the tvo terms to unify into a set Z of multi-equations
Repeat
Select a multi-equation S=M of the unsolved part
such as the variables in its S part do not occur anyvhere else.
If there is no such multi-equation then stop with failure
since there is a cycle.
If M is empty then
transfer the multi-equatic ' to the end of T.
Else
begin
Compute the common part and the frontier of M.
If there is no common part then stop with failure
since there is a clash.
Apply multi-equation reduction and compactification to U.
Transfer S=common part of M from U to the end of T.
end
Until U is empty
Stop with success.
T contains a substitution that unifies the two terms.

Figure 13: Martelli and Montanari Unification Algorithm
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in the M terms of the selected multi-equation). When multi-equations are merged,

counters are added.

4.1.2 Comparison with other algorithms

The Martelli and Montanari algorithm offers many advantagss:

1.

The representation it uses is very abstract, it does not refer to any specific
control, or any data structure for representing terms and systems of equations.
This makes the idea very transparent, and it gives freedom of choice to any

person who wants to implement the algorithm [18].

Their approach is flexible. This is clearly demonstrated by the fact that this
algorithm became a standard in the field and its idea was used to describe other

unification algorithms [18].

It allows terms of any depth. This leads to a more efficient performance because

the computation of the common part and the frontier is the same for any term.

Martelli and Montanari’s algorithm has an almost linear time complexity. In the

remaining part of this section, we will compare it to two other algorithms: Huet’s

algorithm and Paterson and Wegman'’s algorithm both with a linear complexity. The

three algorithms stop either with success, or with failure when a cycle or a clash is

detected. We consider the performance of the three algorithms in three extr~me cases:

1.

When there is a high probability of stopping with success: Paterson and Weg-
man’s is asymptotically the best, because it has a linear complexity while
the two others have a comparable nonlinear complexity. However, in theorem
provers, where unification is mostly used, we usually deal with small terms and
in this case the asymptotically growing difference between linear and nonlinear
algorithms will depend on the efficiency of the implementation. An experiment
was carried out by Trim and Winterstein [40]: They implemented the three al-
gorithms in Pascal using the same data structures. The result was that Martelli
and Montanari’s algorithm had the lowest running time for all test data. The
reason behiad this is that it uses simpler data structures than Paterson and

Wegman'’s and it does not need a final check for cycles like Huet’s algorithm.
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Algorithm /Case Cycle Clash Success | Small terms
Paterson and Wegman | Very Good Poor Very Good Good
Huet Poor Very Good Good Good
Martelli and Montanari Good Good Good Very Good

Table 9: Unification Algorithms Comparison Summary

2. When there is a high probak 'ty of detecting a cycle: Paterson and Wegman’s
algorithm is the best because it does not merge any two multi-equations before
making sure that there are no cycles. So it saves merges. Huet'’s has a very
poor performance because it checks for cycles after each merging. Martelli
and Montanari’s algorithm is good because the detection of cycles is efficiently
handled by the counters.

3. When there is a high probability of detecting a clash: Huet’s algorithm is the
best because it stops on clashes befure wasting overhead of cycle detection.
Martelli and Montanari’s algorithm is better than Paterson and Wegman's al-
gorithm because clashes are detected when computing the common part and

this takes place earlier than in Paterson and Wegman’s algorithm .

Some algorithms perform better than Martelli and Montanari in some cases, but
Martelli and Montanari’s algorithm is better in general since it has, a good perfor-

mancein all cases. Table 9 is a summary of the performance of these three algorithms.

4.2 Unification Implementation

4.2.1 Object Model

The object model shows the classes that were used to implement Montanari and
Martelli’s unification algorithm. Figure 14 shows the object model in overview. Fig-
ure 15 and Figure 16 show details of each class in the object model with its attributes.
The object model has ten different classes : SYSTEM, SOLVED PART, UNSOLVED
PART, MULTI-EQUATION, S PART, M PART, TERM, V .- TABLE, GONSTANT, COMPOS-
ITE TERM, LIST, and ITERATOR. The relation hetween the first seven is aggregation
(is-part): A SYSTEM consists of a SOLVED PART and an UNSOLVED PART. Each of
the two parts consists of zero or many MULTI-EQUATIONS and each MULTI-EQUATION
has an S PART and an M PART. Both multi-equatior. parts have terms. The TERM
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has an isa relation with three sub-classes: VARIABLE, CONSTANT, and COMPOSITE
TERM which has terms as arguments. The two input terms to unify are transformed
into a systern. The unification algorithm uses a LIST container to handle intermedi-
ate computations and to manipulate the other classes. The LIST is traversed by LIST
ITERATOR.

Besides the ubiquitous iterator pattern, unification uses double dispatching. This is
a combination of the composite pattern (20, pages 163—175], which allows us to treat
individual objects (variable, constant) and compositions of objects (composite term)
in the same manner, and the visitor pattern [20, pages 331-345], which let us add
operations to classes without changing them. Double dispatching means that the
operation that is executed depends on the request (operation) and the type of each of
two arguments. Instead of binding operations statically into the term interface, the
operation that gets executed each time depends on the operation itself and the types
of terms we are dealing with (variable, constant, or composite term). The binding
to the exact operation takes place at run-time. Figure 17 through Figure 19 show

examples of dispatching.

4.2.2 Pseudocodes

A pseudocode is provided for some of the methods with complex steps:

e Unify Algorithm
Unify two input terms £, and {.
In the implementation, each combination of two terms has its own method
(being called using dispatching). The pseudocode on Figure 20 shows the steps

taken by all methods using the if statements.

e Solve System
Refer to Figure 21

e Common Part Computation
Refer to Figure 22 for the pseudocode of the common part computation of

M"—-‘(t],tg).

e Frontier Computation
Refer to Figure 23 for the pseudocode of the frontier computation of M=(¢; ...
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Figure 14: Object Model
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SYSTEM

U Unsolvedl®arnt*
T TrnangularPart*

boolean SolveSystem()
void Reduce()

void Compute"ounters()
void Rearrange()
TnangularTant GetT()
UnsolvedPart GetU()
void AddMuhEq(MNEq)

N

SOLVED PART

E.st Of MultiEquations

void AddMIEq(MhEq)
void RemoveMUEq(MILEq)

voud Print()

<

UNSOLVED PART

NbrOfMultEq int
ZeroMultEq ListOfMultEq
MultEqs ListOfMultEq

boolean MoreZeroMultEq()

void AddMIEqInMItkqs(M’ .Eq)
void AddMItEqInZeroMItEq(MIti=q)

void RemoveMItEq(MItEq)

void Print()

ListOfMIt GetZeroMUEqQ()

ListOfMItEq GetMItEq()

<

Py

MULTI EQUATION

ZeroCounter int
M ListOf Terms
U Lis:OfVariables

void ComputeCounter()

Term ComputeCommonPart()
ListOfMUIE(; ComputeFrontier()
void Pnnt()

int GetZeroCounter()
ListOfVanables GetS()

ListOf" s GetM(Q

Y

S PART

SetOfVanables 5

MPART

MultiSetOfTerms M

Figure 15: Object Model Details
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TERM

Name char®
vextiemm®

TyreEnum Type()

ListOfMultEq* Umfy(Term® Term*)

Virtual ListOfMultEq® Unifywith(Term*)
Virtual ListOfMultEq* UnmifyWithC(Constant®)
Vurteal ListOfMultGq® UmfyWithV(Variabie®)
Virtual ListOfMultEy  Unify WithT(Composite*)
Bool Match(Tem*, Term®,

Vinual Bool MatchWiirTer )

Vintual Bool MatchWithC(Constant*)

Virtual Bool MatichWithV(Vanable*)

Virtual Bool MatchWithT(Composite®;

PN
[ I ]
VARIABLE CONSTANT COMPOSITE TERM
Arguments term*
ListCMultEg® UnifyWith(Tem*) List fMultEq® Unify With(Term®) ListOfMullEq® UnifyWith(Term®)

ListOfMultEq® Unify WithC(Constant®)
ListOfMultEq®* Unify WithV(Vanable*)
ListOfMultEq® Unfy WuhT(Composite®)
Bool MatchWith(Teun®)

Bool MaichWithC(Constant*)

Bool MatchWithV(Variable®)

Bool MatchWithT(Composite*)

ListOMMultEq® Umify WithC(Constant*)
ListOfMuttEq* Unify WithV(Vanable*)
ListOfMultEq® Unify WithT(Compostie®)
Boo! MatchWith(Term*)

Boo! MatchWithC(Constant®)

Bool Ma:chWithV(Vanable*}

Bool MatchWithT(Composite®)

ListOMMullEq® UntfyWithC(Constant®)
ListOMultEEq® Unify WithV(Vanable®)
LiOMultl:g* UnifyWithT(Composic*)
Bool MatchWith(Term®)

Bool MatchWithC(Constant*)

Bool MatchWithV(Vanable®)

Bool MatchWithT(Composite®)
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Retumn(t]->UnifyWith(12))

TERM

Name char*
Next term*

ListOfMultEq* Unify(Term* t1,Term* 12)

Input :
tl =Cl1
t2=C2

Retum(12->Unify WithC(this))

|

CONSTANT

ListOfMultEq* UnifyWith(Term* 12)

» Retum NULL

ListOfMultEq* UnifyWithC(Constant*)
ListOfMultEq* UmifyWithV(Vanable*)
ListOfMultEq* Unify WithT(Composite*)

Bool MatchWith(Term*)

Bool MatchWithC(Constant*)
Bool MaichWithV(Vanable®*)
Bool MatchWithT(Composite*)

Figure 17: Dispatching Example
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I[ Return(t1->Unify With(12))

TERM

Name char*
Nextterm*

ListOfMultEq®* Unify(Term* t1, Term® 12)

Input :
tl =Vl
2=V2

Return{t2->Unify WithV(this))

VARIABLE

ListOfMultEq* UnifyWith(Term* 12)

ListOfMultEq* Unify WithC(Constant*)
ListOfMultEq* Unify WithV(Vanable* t1)

Construct Multiequation M
M: {this(2)=(,

Construct Sysiem S
Insert M into Solved Part of §

Retumn Solved Part of S

ListOfMultEq* Unify WithT(Composite™)

Bool MatchWith(Term*)

Bool MatchWithC(Constant*)
Bool MatchWithV(Vanable*)

I Bool Mat.hWith'T(Composite*)

Figure 18: Dispatching Example
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Retum(tl->Umify With(t2))

Input :

TERM
t1=Vl
Name char*
Next term* 2= C2
ListOfMultEq* Unify(Term* t!,Term* 12)
| |
CONSTANT

VARIABLF

ListOTMultEq* UnifyWith(Term* (2)
ListOfMultEq* UnifyWithC(Constant*)
ListOfMultEq* UnifyWuhV(Variable*)
ListOMultq* Unify WithT(Composite*)

Bool MatchWuh(Tetrm?)

Bool MatchWithC(Constant*)
Bool MatchWithV(Vamable*)
Bool MatchWithT(Composite*)

Retum(12->Unify WithV(this))

Construct Multiequation M ‘J
M: {t1}=(this)

Construct System §
Insert M into Solved Partof S

Return Solved Part of §

(i

ListOfMultEq* Unify With(Term*)
ListOfMultEq* Unify WithC(Constant*)
LiciOfMultEq* UnifyWithV(Variable* t1)
ListOfMultEq* Unify WithT(Composite*)

Bool MatchWith(Term*)

Bool MatchWithC(Constant*)
Bool MatchWithV(Vanable*)
Bool MatchWithT(Composite*)

Figure 19: Dispatching Example




If we have a constant term and a function term then
return that there is no unification
If we have two constant term then
If the constants are i1dentical
return an empty triangular part
Otherwise
return that there is no unification
If we have two variable terms then
construct a multi-equation with the two variables in S and M empty
insert the multi-equation into the friangular part of the system
return the triangular part
If we have a variable term and a constant term then
construct a multi-equation with the variable in S and constant in M
insert the multi-equation into the triangular part of the system
return the triangular part
If we have a variable term and a composite term then
If the variable is not in any argument then
construct a multi-equation with
the variable in S and the function in M
insert the multi-equation into the triangular part of the system
return the triangular part
Otherwise
return that there is no unification because of a cycle
If we have two composite terms then
If they have different root names or different number of arguments
return that there is no unification because of a clash
Nthervise
begin
for each variable term in the arguments of the functions
begin
construct a multi-equation S has the variable and M empty
add it to the unsolved part
end
construct an additional multi-equation:
insert in S a new variable not occurring anywhere
insert in M part the two composite terms
insert the multi-equation into the unsolved part
Solve the system
Return either no unification or the triangular part
end

Figure 20: Unify Algorithm
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Compute counters of all multi-equations in the unsolved part.
Rearrange: store multi~equations with counter zero into the zero list
and the others in the multi-equation list.
Repeat
Take a multi-equation from the zero list
If its M part is empty
Insert it in the triangular part
Otherwise
begin
Compute its common part
If it does not have a common part
Stop with failure, there is a clash
Otherwise
begin
Compute its frontier
Apply multi-equation reduction on the system
Compute the counters again
Rearrange the system
end
end
Until the zero list is empty
If the unsolved part is empty
return success, solution is in T part
Otherwise
failure, there is a cycle

Figure 21: Solve System Algorithm

Case
One of {;, I, is a variable x :
common part = x
Both ¢; and {; are constants c :
common part = ¢
tl = f(al...a,,) and tg = f(b]bn)
common part = f(ci...cp)
vhere ¢,= common par: of @, and b,
Otherwise : clash
End Case

Figure 22: Common Part Computation Algorithm
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t.) having a common part ¢..

Frontier = O
Loop over leaves of [,
If leaf is variable x then

Let 8; ... 8, be the terms (sub-term) of ¢,
corresponding to the position of this leaf in {.
Let S be the set of variable terms in { s; ... s, }
and M be the set of non-variable terms in { s ... s, }

Add S=M to frontier

Figure 23: Frontier Computation Algorithm

4.2.3 Data Structures

The major data structures used are briefly discussed in this section.
1. Term is a structure:

e Name: a string. An assumption is made regarding the name of the term:
If it starts with a capital letter or the underscore character then it is a
variable. If it starts with a small letter it is a constant. If its arguments field
is not null (it has arguments), and starts with any letter or the underscore
it is a function. Name is the variable name, the constant name; or the

composite term root name for example f(z) has [ as its name.

e Arguments: a pointer to a term. For composite terms, arguments is the

argument list. For variable and constant terms arguments is null.

e Next: a pointer to a term. Next allows the construction of a list of argu-
ments, where each argument is a term and its next part points to the term

following it, the last term has a null next.
2. Multi-Equation is a structure:

o Counter: integer. Counter indicates the number of occurrences of the
variables in the S part, of a multi-equation S=M, in the M parts of all

multi-equations in the U part of the system.
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e S part: a list of pointers to variables. It is the LHS of a multi-equation

and it holds the variables.

e M part: a list of pointers to terms. It is the RHS of a multi-equation and

it holds all the non-variable terms.
2. Unsolved Part is a structure:

o Nurnber of multi-equations: integer

s Multi-Equations with counters equal zero: list of multi-equations. The
multi-equations in thislist can be selected to be processed without resulting

in a cycle.

e Multi-Equations with non-zero counters: list of multi-equations. The
multi-equations in this list cannot be selected for process. Processing them

will result in & cycle.
4. System is a structure:
e Unsolved Part: a structure where the multi-equations not yet processed

are stored.

e Triangular Part: list of multi-equations. Multi-equations in T part are in
solved form. When the algorithm terminates with success, T part is the

unifier.

4.2.4 Data Dictionary

e System Class

— Description
It is a way of representing the two terms as a list of multi-equations in

order to compute their most general unifier (mgu).
~ Methods

1. SolveSystem: solves the system and stores the solved multi-equations

in its triangular part. It indicates if there is no unifier.

2. Reduce: implements multi-equation reduction.
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3. ComputeCounters: scans the whole system and computes the zero

counters of all the multi-equations.

4. Rearrange: scans the whole system and moves the multi-cquations to

the zero or non-zero lists depending on the values of their counters.

5. GetT and GetU: return the triangular part and the unsolved part of

the system respectively.

6. AddMultEq: Adds a multi equation to the system
¢ Solved Part Class

— Description
It is the part of the system that holds the solved multi-equations. When the
algorithm terminates, the solved part contains a substitution that unifies

the two input terms.

~ Methods
The only methods of this class are to add and remove multi-equations, and

to print itself.
o Unsolved Part Class

— Description
It is the part of the system that holds the unsolved multi-equations. The
multi-equations are arraaged into two lists depending on the value of their

counters.
— Methods

1. MoreZeroMultEq: checks whether there are still multi-equations with

zero counter.
2. RemoveMultEq: removes a multi-equation.

3. GetZeroMItEq and GetMItEq: return the list of multi-equations with
zero counter and with non-zero counter respectively.

4. AddMItEqInMultEqs: adds a multi-equation to the unsolved part and
compactifies by merging multi-equations as necessary.

5. AddMItEqInZeroMultEq: inserts a multi-equation in the ZeroMultkq

list of the unsolved part.

82



e Multi-Equation Class

— Description
A multi-equation is the generalisation of an equation. It allows us to group

together many terms which should be unified. A Multi-Equation has two

parts: S and M.
— Methods

1.

E\D

3.
4.
5.
6.

ComputeCounter: computes the value of the counter of a multi-equation.

The counter is the number of occurrences of the variables in S in all
the M parts of the multi-equations in U.

ComputeCommonPart: computes the common part of the multi-equation.
ComputeFrontier: computes the frontier of the multi equation.
GetZeroCounter: returns the value of the counter of a multi-equation.
GetS: returns the S part of a multi-equation.

GetM- returns the M part of a multi-equation.

e S Part Class

- Description
S is the left hand side of a multi-equation. It is a nonempty set of variable

terms.

¢ M Part Class

— Description
M is the right hand side of a multi-equation. It is a multi-set of constant

and composite terms. Unlike the S part, the M part might be en ..y for

some multi-equations.

o Term Class

— Description
A term is either a constant, a variable, or a function f(¢;,tn,...,¢,) where

each ¢, is a term. TERM is a base class with a derived class for each type

of term: variable, constant, or composite.

— Methods
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1. Type: returns the type of the term. An assumption is made for this
application:
* Ifit is a variable then the name starts with either capital letter or

underscore letter.
x If it 1s a constant then ithe name starts **'* 1~ver case letter.

* If it has arguments and the name starts ... any letter or the
underscore symbol then it is a composite.

2. Unify: is implemented using double dispatching. It calls the appropri-
ate version of UnifyWith depending on its first argument type.

3. Match: is implemented using double dispatching. It calls the appro-
priate version of MatchWith depending on its first argument type. It
returns whether the two terms match or not. It is used in computing
the common part and in initialising the system, where a non-match

indicates a clash and the unification fails.

4. UnifyWith, UnifyWithConstant, UnifyWithVariable, Unify WithClomn-
positeTerm: are virtual in the base class allowing each subclass to
define its own version.

5. MatchWith, MatchWithConstant, MatchWithVariable, MatchWith-
CompositeTerm: are virtual in the base class allowing each subclass

to define its own version.
e Variable Class

— Description
A variable may be substituted or instantiated to a term. Variable is a

subclass of term.

— Methods
1. UnifyWith, UnifyWithConstant, UnifyWithVariable, Unify WithCom-

positeTerm: are the variable implementations of the virtual versions
defined in the base class. They all deal with the first step of unifica-
tion where the system is initialised, then either SolveSystem is called
to return the solution in the system solved part or without calling

SolveSystem the system is already solved or unsolvable. For instance

84



in the case of two variables, the system would be solved without calling
SolveSystem.

2. MatchWith, MatchWithConstant, MatchWithVariable, MatchWith-
CompositeTerm: are the variable implementations of the virtual ver-
sions defined in the base class. They return either true or false de-
pending on the combination of the two terms and their actual syntax.
For example if we have a variable and a constant then we return true

(Variable::MatchWithC).
e Constant Class

— Description
A constant is an aton:ic, primitive value. It does not change value. Con-

stan’ is a subclass of term.

~ Methods
1. UnifyWith, UnifyWithConstant, UnifyWithVariable, UnifyWithCom-

positeTerm: are the constant implementations of the virtual versions
defined in the base class. They all deal with the first step of unifica-
tion where the system is initialised. In the case of constant either the
solution is in the system solved part (Constant::UnifyWithV) or there
is no unification (two different constants or Constant::UnifyWithT).
2. MatchWith, MatchWithConstant, MatchWithVariable, MatchWith-
CompositeTerm: are the constant implementations of the virtual ver-
sions defined in the base class. They return either true or false de-
pending on the combination of the two terms and their actual syntax.

For example if we have two different constant terms then we return

false (Constant::MatchWthC).
¢ Composite Term Class

— Description
The composite term is a function or predicate. It may have arguments.
It could have constants, variables, or even other composite terms as its

arguments. Composite term is also a subclass of term.

~ Methods
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1. UnifyWith, UnifyWithConstant, UnifyWithVariable, Unify WithCom-
positeTe.m: are the composite term implementations of the virtual
versions defined in the base class. They all deal with the first step
of unification where the system is initialised, then ecither SolveSystem
is called to return the solution in the system solved part or without
calling SolveSystem the system is already solved or unsolvable. For
instance, the case of two composite terms needs to call SolveSystem,
while a composite terin and a variable is aiready solved, and a com-

posite termm with a constant is unsolvable

2. MatchWith, MatchWithConstant, MatchWithVariable, Match\Vith-
CompositeTerm: are the composite term implementations of the vir-
tual versions defined in the base class. They return either true or false
depending on the combination of the two terms and their actual syn-

tax. Tor example, a composite term and a constant term will return
true (Composite Term::MatchWithC).
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4.5 A Cumplete Unification Example

In this section, a complete unification example is first described. Then an event trace
shows Low the actual steps of this example correspond to the different method calls

of the implementation. The two input ‘erms are-

T f(z1, 9(w2, 23), 72, b)
T2f(g(h(a, .’I‘r,), 1,‘2),131, h(a, (E4), .'134)

They are transformed into the system S.
Each multi-equation has a counter to indicate the number of occurrences of the vari-

ables in the LHS of the multi-equation in the RHS of all multi-equations:
U:

Counter Multi-equation
0 {:L‘} = (f(xl’g(l‘%xS)vx?a b), f(g(h(a’x5)1$2)’$lv h(a, :1:4), 1’4))

—_— D DN
———
&

»2
——
1
it
—

— N
——
8
-
——
|
—~~

T:()
Figure 24 shows the event trace for the initial transformation of the terms into a

system.
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Composite Composite Multi System  Unsolved Part

Main Term  Term Term  Equation S U
Tt T2 MItEq
Unify(T1.T2 ' : :
TLUnifyWith(T2) ' ' :
T2.UnifyWithT(T1) X X :
TLMatchWithT(T2)  + ! !
Tre : ) ;
! | 1
MultiEquatfon(S=Variable in T1 or T2, M is empty)
Repeat MitEq : :
until no m System() i UnsolvedParl()
Variables o § u
in T1 and S.AddMultEq(MIIEq) U.AddMultERInMultEqs(MItEq)
MultiEquatipn(S=Variabld not in T1 andjnot in T2, M=(T1,T2))
MItEq :
S..\ddMulEq(MitEq) U.AddMultERInZeroMultEq(MItEq)
S.SolveSyjtem()
!
For each Multifiquation in S.}J.MultEqs MitEq.GomputeCounter() | ComphteCounters()
Rearrange()
MItEq.GetZefoCtr()
Repeat ZeroCtr()
until nomoye |If MultiEquation has Zerodtr equal 0 MitEq SetAspeleted()
MultiEquatjon U.AddMultEqInZeroMultEq(MItEq)
in S.U.Mul

Figure 24: Event Trace for Transforming the Two Terms into a System
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For the first Iteration of the unification algorithm the selected multi-equation is
Nnt.{l‘} = (f(xlag(x%‘rli)a I, b)! f(g(’l((l, l’s), ‘T'Z)s 1y h((l,.l'q), .1'4))
The computation of the common part is shown in Figure 25, yields

f(wl, 1'1,3?2»11‘4)

The frontier computation is shown in Figure 26, using the notation of Figure 27 to

identify sub-terms. The result is

{MIt1: {z.} = (g(h(a,zs5),T2))
Mit2: {z,} = (g(z2 23))
MU3: {z;} = (h(a,z4))
Mltd: {z4} = (b)}

Then the system is reduced and compacted as shown in Figure 28, yielding

U.

Counter Multi-equation
{z1} = (g(h(a, z5),22), g(22, 23))
{22} = (h(a,24))
{z3} =)
{z4} = (b)
{zs} = ()

Pt e e N OO

({IL‘} = f(l‘],.’[l,.’rg,l‘q))
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System  Multi  Common

S Equation Part Ti T2 Tl T2l T2 T22 T3 T23 Ti4 T4
Mit
ComputeComnonPar) .
Tl .Malch\t:nh(TZ)
; IT2MatchWithT(T1)
X T1.1.MatthWith(T2)1)
2.1 MahWithV(tLL)
! T1.2.MaghWith(T2(2)
| T22.MatchWithT(T1.2)
: T1.3.MatchWith(T2.3)
2.3 MatchWithT(T1.3)
: T1.4MaichWith(T24)
! T24 MatchWithT(T1.4)
T]ue Tue | True | True | Tme | Trie | True True Trae
ChecklisiTLT2)
comp!enn :I

Checlist(T1.1,12.]

variable
Store T1.1 injCommon Par{

Checl?isl('l‘ 12122

variable

Store T2.2 i* Common Pant

CheeKlist(T1.3,12.3

variable
Store T1.3 injCommon Part

Checkfisi(T1.4,T2.4

variable
Store T2.4 in/Common Parf

Common Part

CompositeTerm(common rpotof T1 1d T2)

Figure 25: Event Trace for Common Part Computation 1st Iteration
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System Equation

S

Multi

Mit

ComputeFrontier()

Frontier

Term

CommoanJ

Multi

Equation

Mitl

Type()

composite teg

T1.Type()

composite tex

T2 TypeQ)

composite tefm

Take
TI, T

T1.1.Type()]

\rguments of
, Common Part

+

variable,com

posite term,vanable !

MultiEquagion(S=(CP 1,T1 1)N

Miit

I Insert

Take
TI.1,

T1.2.Type()

gvﬂtl In Frontier

Next of
r21.CP)

composite tel

im, variable,variable

MultiEquation(S=(CP.2,T2.2),N

[2.1.Type(.CP.1.Type()

I=(T2 1))

.2.Type().CP.2.Tyge()

1=(T1.2))

Multi
Equation
M2

Mi2

l Insent

Take
T1.2,

T1.3.Type()]

IMIt2 In Frontier

Next of
r2.2,CP.2

variable,co

MultiEq

posite term,vanable

[2.3.Type(),CP.3.Tyge

—~

)

ion(S=(CP 3,T1.3},NM=(T2.3))

Multi
Equation
Mit3

Ml

: l Insent

Take
T1.3,

T1.4.Type().]

MIt3 In Frontier

Next of
r2.3,CpP.3

constant,vari
MultiEqu:

ble,variable

[2.4 Type(),CP.4.Type()

ion(Se(CP.4,T2.4) M=(T1.4))

Multi
Equation
Mitd

Ml4

l Insent

Take
TL4,

Null

Take
T1, T

Null

Next of

Mht4 In Frontier

Next of
2.4, CP.4

, CP

Figure 26: Event Trace for Frontier Computation 1st Iteration
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/\\

T1.1 T1.2 T1.3 T1.4

/\

T1.2.1 T1.2.2

o

T21.1 T2.1.2 T2.3.1 T2.3.2

/N

T2.1.1.1 T2.1.1.2

cr

AN

cra cr.2 CP3 Ccr.4

N~
A

x2 x3

/\
A /\x4
/\

a x5

/\\

b

Figure 27: First Iteration: Common Part and Frontier Computation
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System Unsolved Part  Solved Part Multi Equation
S U T NewMit

Reduce()
U.AddMUREqInMpltEqs(Mit])

Merge Mit! with {x!}=()

U.AddMItEqInM{iltEqs(M1t2)

Merge Mit2 with {x1)}=(g(h(a,x5).x2))

U.AddMItEqinMultEqs(M1t3)

Merge MIt3 with {x2}=()

U.AddMIEqInMultEqs(Mt4)

Merge MIt4|with {x4}=()

U.RemoveMltEqiMlt)

MultiEquakion(S=S of Mit,M=Common Part)
NewMlt
T.Ad#dMIEq(NewMIt)

ComputeCoupters()

Rearrange()

Figure 23: Event Trace for System Reduction and Compactification st lteration
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For the second iteration of the unification algorithm the selected multi-equation

Mit: {:171} = (g(h(a1$5)s 372)79(‘1"2"7"3))
The computation of the common part yields

g(l‘z, $3)

The frontier computation, using the notation of Figure 29 to identify sub-terms,

results in

{Mit1: {z;} = (h(a,zs5))
Mit2: {z,} = (z3)}

Then the system is reduced and compacted yielding

U:
Counter Multi-equation
0 {z2, %3} = (h(a,z4), h(a, z5))
1 {za} = (b)
1 {zs} = ()
T:

({.’L‘} = f(mlaxlaa:% :124)
{z1} = g(z2,23))
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N\ /N

T1.1 T1.2 x2 x3

AN\ AN

T/\T n <2
T2.1.1 T2.1.2 a x5
Ci /\

CP.1 cpP.2 x2 x3

Figure 29: Second Iteration: Common Part and Frontier Computation

For the third iteration of the unification algorithm the selected multi-equation

is
Mlt: {z2,z3} = (h(a,z4), h(a,z5))
The computation of the common part yields
h(a,z4)

The frontier computation, using the notation of Figure 30 to identify sub-terms, re-

sults in

Mitl: {{z4} = (25)}

Then the system is reduced and compacted yielding

U:

Counter | Multi-equation

0 {:1:4,.'175} = (b)
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x4

N
AN N

T2.1 T2.2 a x5
CcPr.1 CcPr.2 a x4

Figure 30: Third Iteration: Common Part and Frontier Computation

({1?} = f(zl, T1,T2, -774)
{z1} = g(z2, 23)
{z2,z3} = h(a,z4))
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For the fourth iteration of the unification algorithm the last multi-equation is

selected
Mit: {z4. 75} = (b)

The computation of the common part yields

b

No Frontier since the common part is a constant.
Then the system is reduced and compacted yielding
U:()

T:

({z} = f(z1, 21,22, 24)
{z1} = g(22, 23)
{z2,23} = h(a,z4)
{$4,$5} = (b))
U is empty. The two terms can be unified by applying the set of substitutions in

the T part of the system in a bottom up way. The most general unifier is:

{["El/g(h(a’b)’h(a,b)] ’ f:rth(a,b)] ) [13/h(a’b)] ’ [$4/b] ’ [zS/b]}
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Chapter 5
Inference Mechanism

A language for knowledge representation should possess a decidable and fast proce-
dure for deciding whether statements follow from a knowledge base. It should be
expressively powerful and its semantics should reflect its constructs — what you see
is what you get. The four-valued logic, described in section 2.1.4, has the last two
properties since it is based on the language of standard first-order logic. In this sec-
tion, a decidable inference mechanism [31] based on t-entailment is described in detail.
This satisfies the first two properties, making four-valued logic a good candidate for

knowledge representation.

5.1 Inference Using t-entailment

t-entailment emphasiscs conjunctions and universal quantifiers which tend to be used
in knowledge representation systems, so it seems a better choice than f-entailment or
{ f-entailment for an inference mechanism for Mantra. What is needed is a decidable
algorithm to compute the ¢-entailment —to decide whether a —; 3 or o /4, 8. Such

an algorithm was described by Patel-Schneider:

t-entailment Algorithm Theorem 1 [31, page 378] Let a be a formula in con-
Jjunctive normal form with no eristentially quantified variables, a =VZAa,. Let § be
a formula in t-quantifier normal form. Let ) be a substitution that maps each univer-
sal variable, y of B into f,(E(y)), where E(y) is a sequence of the existentially bound
variables of 3 dominating y, and f, is a unique new funciion symbol called the Skolem

function for y. Let 3' be the matriz of B in conjunctive normal form, ' = AB;. Let &
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be some ordering of the eristentially quantified varables in 3. Then o —¢ 3 iff there
exists 0, a substitution of ground terms for ¥, such that for each 3, there cxists some
a, and !, a substitution of ground terms for =, such that a,yp C 3,\0, and moreore .,
if £, an existentially bound variable of 3, and y, a universally bound variable of 3,
are bound in different branches of some disjunct in 3 (independent in 3), then f, does

not occur in ().

How does t-entailment apply to Mantra? Any stored fact is an «a formula and any
question is a # formula. If @ —, 3 then the question (3) follows from the stored facts
(a). Hence, the answer for the question 3 is “yes”. If, for all facts a, a £, &, then
the answer is “no”.

Certain equivalences which are valid in standard first order logic, are not valid in
four-valued logic. Firstly, quantifiers cannot be moved around and combined in all
the ways of standard first order logic. For example, 3¢ Pr vV IyQy is not equivalent
to 3z(Pz V @z) it is only equivalent to JzJy( Pz V Qy), the reason behind this is the
fact that formulae are evaluated in compatible sets of situations. A sel S={s;,32}
of compatible situations with domain D={d,,d,} might support the truth of 3z PrV
JyQy and JzIy(PzV Qy) (s; supports the truth of P(d;) and s, supports the trath
of @(dz)) but S might not support the truth of 32(PzV Qz). Secondly, in four-valued
logic there are formulae which cannot be converted into an equivalent prenex normal
form. The reason behind this is that by just moving quantifiers, the scope changes
and so does the interpretatior of the formula. For example, if Vy3z Pyx vVy'32'Qy's'
is transformed into its prenex form Vy3zVy'3z'(Pyz vV Qy'z’) then the two are not
equivalent because the prenex form will be true in more compatible sets of situations
than the original formula. To overcome this problem, the formula is skolemized first
then it is prenexed.

The transformations and the normal forms considered for the t-entailment algorithn

retain t-entailment and are defined as follows:

e a is transformed into a conjunctive normal form with only universal variables:
VZ A a, where 7 is some ordering of all the universally bound variables in «.

This tranformation is done similarly to classical logic.

e 3 is transformed into ¢-quantifier normal form with only existential variables

and its matrix is in CNF: 3ZA 3, where T is some ordering of all the existentially
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hound variables in /3.

The steps of the I-entailment algorithm follow directly from the theorem:
1. Transform a into CNF: VZAa,
2. Transform B into {-quantifier normal form: 3% A S,

3. For each A, find a suitable a, and find substitutions 6, of variables in ¥ and
substitutions 1, of variables in Z. Such that o,®, C £,6, when considered as sets

of literals.

4. The substitutions ¢, must satisfy a technical condition: for all z € &, §(z) does

not contain the skolem function f, of any variable y independent of z.

[

a —¢ 3 iff, for cach i, one can find a,, 9,, ¥, satisfying 3. and 4.

We present two examples to illustrate t-entailment.

Example 1: Let a = Vi(shape(t, square)Acolour(t,red)) and 8 = Jz(shape(boz, x)).
Choose 1 = [t/box] and 0 = [z/square]. Then {shape(t,square)jy C {shape(boz, x)}0.
Hence, o —, 3.

Example 2: Consider the fact V2Vz3w3w'( Pzw V Q2'w') and the query Vy3dz Pyx V/
Vy'd2'Qy'z’. In normal form this gives:

a = VY (Pzf,(2,2)V Q' fu(z,2"))

f = 3xIr'(Pfyz V Qfyx')

The candidate substitutions are

¥ = {[z/fi), [2'/fv]} and 0 = {[z/ fu(fy fi))s ('] fuwr(fy, fyr)]}. However, z and '
are independent, and f, occurs in 8(z). This violates the technical condition. Hence,
a 4, 8.

In an inference mechanism for a knowledge base, the question may contain (exis-
tential) variables and the inference should return all possible instantiations of the
variables that satisfy the question. So the implementation of t-entailment should
enumerate all possible choices of ¥ and 4.

Example 3: Consider the facts:

Bird(tweety) A Size(tweety,small) A VC (Colcur(tweety,C))
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Bird(birdy) A Size{birdy.small) A YC (Colour(birdy.("))

and the question:

3AX (Bird(X) A Size(X.small) A (Colour(X red) V Colour(.X,blue))
This will give the following four solutions:

Solution; = {[X/tweety]. [C/red]}

Solution, = {[X/tweety], [C/blue]}

Solutiong = {{X/birdy), [C/red]}

Solutiony = {[X/birdy], [C/blue]}

5.2 Implementation of the Inference Mechanism

5.2.1 Object Model

Figure 31 shows all the classes involved in the inference mechanism implementation.
Most of the classes and associations described on this figure were already defined in
the separate sections of CNF and unification implementations. The new classes intro-
duced are: INFER and SUBSTITUTION. And the new associations are: INFER verifies
the t-entailment of formulae and uses the UNIFICATION ALGORITHM to compute this
entailment, the UNIFICATION ALGORITHM produces the SUBSTITUTION nccessary Lo
unify two terms, and SUBSTITUTION generated is the answer given by INFER when-
ever a fact (@) t-entails a question (). The new classes and their associations are

shown separately with their attributes and methods in Figure 32.

5.2.2 Data Structures

The major data structures used are briefly described below :

1. Substitution is a structure:

e Substitutions: a pointer to a List of multi-equations. Each multi-equation
is in a solved form hence, it defines a substitution of the variables in its S
part to the term in its M part.

e Status: enumeration {Unsolved, Solved-yes, Solved-no}. The status of
a substitution indicates whether the substitution is unsolved —-is still a
choice point, or solved giving a “yes” or “no” answer —can be reported as

a solution.
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Figure 31: Global Object Model
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INFER

CNFformula* Question
CNFformula* Fact

List<Substitution>* Solutions

S

Infer(CNFformula* Q,CNFformula* F)

Question=Q;
Fact=F;
this->Reset();

Reset()
Substitution* NextSolution()

UNIFICATION ALGORITHM

List<MultiEquation>* Unify(term1, term2)

SUBSTITUTION

List<MultiEquation>* substitutions
Enumeration Status

Int AlphaPosition

Int BetaPosition

Int AlphaLiteralPosition

Int BetaliteralPosition

Substitution()

Enumeration GetStatus()
List<MultiEquation>* GetMultEq()
Print()

while(!Solutions->is_empty())

delete(solutions->remove());

Substitution* StartingPoint;
solutions->insert(StartingPoint);

AlphaPosition=0;
BetaPosition=0;
AlphaLiteralPosition=0,
BetaL.iteralPosition=0;
Status=UNSOLVED;

Figure 32: Inference Object Model Details




o BetaPosition: integer. When substitution is a choice point, BetaPosition
indicates the position, i, of B, where the choice occurred —the position of
the disjunction in the query.

e AlphaPosition: integer. When substitution is a choice point, AlphaPosi-
tion indicates the position, j, of a, where the choice occurred —the position

of the disjunction in the fact.

o AlphaliteralPosition: integer. When substitution is a choice point, Al-
phaLiteralPosition indicates the position, n, of literal;, where the choice

occurred —the position of the literal in a disjunction «; in the fact .

¢ BetaLiteralPosition: integer When substitution is a choice point, Betal-
iteralPosition indicates the position, m, of literal;, where the choice oc-

curred —the position of the literal in a disjunction §; in the query.
2. Infer is a structure:

¢ Question: a pointer to a CNFFormula
o Fact: a pointer to a CNFFormula

e Solutions: a pointer to a list of Substitutions. Each substitution is either

an answer or is a choice point that needs to be solved.

5.2.3 Data Dictionary

¢ Unification Algorithm

— Description
It takes two terms and returns either null if the two terms cannot be
unified, or a list of multi-equations (unifier) where each multi-equation is
a substitution of a term (M part of a solved multi-equation) for a variable
(S part of the multi-equation), to make the two terms equal. If the list is

empty, the terms are equal.
¢ Infer

— Description

Defines the inference mechanism which takes a fact and a question and
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returns an answer to the question. In the case of more than one answer
for a given fact and question, Infer keeps track of all possible answers and

returns all of them if it is asked to.
— Attributes

1. Question: the question for which an Infer object is instantiated and on
which the inference mechanism is currently working. A question is a
formula in ¢-quantifier normal form, given to the inference mechanism
to be answered based on the facts stored in the knowledge base. The
answer to the question could be either no or yes with the necessary

substitutions. For the t-entailment algorithm, question is 3.

2. Fact: the fact or facts used to answer a particular question during the
current instantiation of an Infer object. A fact is a formula stored as
a conjunction of disjunctions (CNF). It could be a collection of facts
relevant to the question asked and grouped under one fact. Each fact
being a conjunction of disjunctions, one global fact could hold all the

disjunctions. For the t-entailment algorithm, fact is a.

3. Solutions: whenever for a given fact and question there is more than
one answer, Infer keeps track of the choice points in Solutions (a list),
then each choice is handled one at a time to check whether it is a
potential answer or not. In Solutions, a new choice point is added
at the end, and removed from the top in order to be handled (FIFO
strategy).

A choice point holds all the information required to get to that choice:
(a) The choice of fact a,

(b) The choice of query S,

(c) The choice of literal in «,

(d) The choice of literal in 3,

(e) The substitutions determined so far

(see Section 5.2.4 for details on choice points).
When Infer continues handling a choice point, it will either add the
substitutions necessary so the choice point is a complete answer, or if

it fails then the choice point is not a correct answer. A choice point is
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a reference to a substitution, and when it is solved it could be given

as an answer.

— Methods

1. Infer: given a question and a fact, Infer is the constructor to set the
question and fact attributes equal to those passed to Infer, then a
first empty choice point (starting point) is inserted into solutions in
order to be able to start the inference mechanism. Infer initialises the

inference mechanism with a given fact and question.

2. Reset: resets the inference mechanism to start its search for answers
from the beginning. For the same question and fact, it sets the choice
points list (solutions) to empty.

3. NextSolution: is the most important method. It returns the next
answer (whether it is no or yes) or null if there aren’t any choice
points left in solutions list. NextSolution implements the ¢-entailment
algorithm theorem. Each time it is called, it works on the current
choice point on top of the solutions list. If during its call new choice
points are found, they are inserted into the solutions list to be solved by
the subsequent NextSolution calls. NextSolution traverses the proof-

tree in breadth-first order.
e Substitution

— Description
A Substitution instance is a choice point as well as a substitution. It is
either solved and could be given as an answer (yes or no), or partially
solved. A substitution instance is a unifier which holds a list V' of substi-
tutions. V = ([z1/t1],...,[zn/ta]) where a variable z; is substituted by a
term t,. Substitutions are produced by the unification algorithm (list of

solved multi-equations) whenever two terms are unified.
— Attributes

1. Substitutions: list of solved multi-equations, each multi-equation de-
fines a substitution of variables in its S part to a term in its M part.

It is one unifier.
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2. Status: the choice point is either unsolved, or solved giving a yes

answer, or solved giving a no answer.

3. BetaPosition, AlphaPosition, AlphalLiteralPosition, BetalLiteralPosi-
tion: define the exact position where the choice point occurred. When
NextSolution solves this particular choice point, it knows exactly where

to continue.
~ Methods

1. Print: prints a substitution. If it is solved with a yes answer then it

prints the unifier. Otherwise, it only prints a no answer.

2. Substitution: constructs a substitution instance with an empty list of

multi-equations, all positions set to zero and an unsolved status.

3. GetStatus and GetMultEq: return the status and the unifier respec-
tively.

5.2.4 Pseudocode

The algorithm to compute a —; S is shown in Figure 33.

The notation used is as follows:

e oisin CNF, a = oy Aaa A az A ... A @, where n > 1, and where cach a; =

5,1 V38j2V 83V ..V s, form; 21

e A is in t-quantifier normal form, 8 = Bi A B2 A B3 A ... A B where k > | and
where each B, = t,) Vo Vig V...Vt for [; > 1

The pseudocode enumerates all solutions. A solution records the choice of a; for cach
B;, and a substitution © such that

{ 53195329+++95)m, } e - { ttl,tt2a"-7til. } )

The information returned to the user is the substitution ©.
By recording choice points, the algorithm can be modified to retu:n solutions one at
a time, either in breadth-first or depth-first order.

Choice points occur at two levels: At the alpha level, a choice occurs whenever more
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For each (3, of f3
For each a; of a
For each literal s, of o,
For each literal t,, of f;
Find ©,,;, which unifies ¢,,0 with 5,0
where O is the composition of previous O;;
EndFor
If no O,,,, is found then
a, € By
move to the next q,
EndFor
O;, is the composition of O;,,,
and aj@u g fBzeu
EndFor
If no ©,; is found then
no a, is C f
a /B
EndFor

Solution is a composition of 0O;;

Figure 33: t-entailment Algorithm
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than one «; is found for the same 3, such as, after unification, a, C f,. At the literal
level,a choice occurs whenever more than one literal ¢,;, in , matches the same literal
S;m, in ;. Interms of the algorithm in Figure 33, the match of 3,p to ¢,, is made by
the substitution ©, 4, .

5.3 Inference Mechanism Examples

Two examples are described to illustrate how the inference mechanism works given a
question to answer based on a set of facts:

Example 1 illustrates the occurence and the handling of choice points on both levels.
The following two facts are given:

Fact 1 describes tweety as a bird whose size is small and whose colour could be
anything.

Fact 1: Bird(tweety) A Size(tweety,small) A VC (Colour(tweety,C))

Fact 2 describes birdy as a bird whose size is small and whose colour could be anything.
Fact 2: Bird(birdy) A Size(birdy,small) A YC (Colour (birdy,C))

The question is whether there exists a bird whose size is small and whose colour is
either red or blue.

Question: 3X (Bird(X) A Size(X,small) A (Colour(X ,red) V Colour(X ,blue))
Tranformed into:

Facts:
1. a1 s11: Bird(tweety)
2. a3 sa1: Size(tweety,small)
3. a3: s31: Colour(tweety,C)
4. a4 s4y: Bird(birdy)
5. as: ss1: Size(birdy,small)
6. ag: se1: Colour(birdy,C)
Question:

1. Byt thy: Bird(X)
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2. f2: Uy Size(Xsmall)

3. f3: t3: Colour(X,red), t3: Colour(X ,blue)

1. Choice Point(:

(a) fi

iil.

vi.

B and oy
s11 = Bird(tweety) unified with t;; = Bird(X) gives ©1.9,1.1: X =tweety

il. B1 and as

521 = Size(tweety,small) unified with ¢;; = Bird(X) gives 01.1,2.; Null

3y and az
531 = Colour(tweety,C) unified with ¢;; = Bird(X) gives 01.1,3.1 Null

. 1 and a4

841 = Bird(birdy) unified with t;; = Bird(X) gives 0 1 4 : X =birdy

Choice Pointl on o level because 8; already found a match with o

. ,31 and Qs

ss1 = Size(birdy,small) unified with ¢,, = Bird(X) gives 011,5.1 Null

B1 and ag
se1 = Colour(birdy,C') unified with ¢;; = Bird(X) gives ©,16.1 Null

B matched a; and a3

(b) 4,

ii.

iii.

iv,

B2 and o

s11 = Bird(tweety) unified with ty; = Size(tweetysmall) gives ©y114
Null

B2 and a3

s21 = Size(tweety,small) unified with ty; = Size(tweety,small) gives
©2.1,21 Empty

B2 and a3

sz1 = Colour(tweety,C) unified with &y = Size(tweety,small) gives
©2.1,31 Null

B2 and a4
sa1 = Bird(birdy) unified with t;; = Size(tweetysmall) gives @341
Null
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V1.

. 52 and (843

851 = Size(birdy.small) unified with {2, = Size(tweety,small) gives
021,51 Null
B2 and ag

ss1 = Colour(birdy,C) unified with ty = Size(tweety,small) gives 02 4 ¢,
Null

B2 matched ay

(c) Pa

1.

ii.

ii.

iv.

B3 and oy
si = Bird(tweety) unified with £3; = Colour(tweety,red) gives O34
Null

si1 = Bird{tweety) unified with 3, = Colour(tweety,bluc) gives Q4.2 4
Null

B3 and ay

sy = Size(tweetysmall) unified with t3; = Colour(tweety,red) gives
031,21 Null

831 = Size(tweety,ssmall) unified with ta; = Colour(tweety,blue) gives
032,21 Null

B3 and ag

331 = Colour(tweety,C') unified with {3; = Colour(tweety,red) gives
031,31 : C=red

ss1 = Colour(tweety,C') unified with t33 = Colour(tweety,blue) gives
03231 : C=blue Choice Point2 on literal level because s3; already
found a match with ts;

B3 and ay

sq = Bird(birdy) unified with t3; = Colour(tweety,red) gives 034 4,
Null

s41 = Bird(birdy) unified with t3, = Colour(tweety,blue) gives 032 4,
Null '

. faand ag

ss1 = Size(birdy,small) unified with t3; = Colour(tweety,red) gives
@3,1,5,1 Null
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vi.

35y = Size(birdysmall) unified with ¢35, = Colour(tweety,blue) gives
03.2,5.1 Null

f3 and o

ss1 = Colour(birdy,C') unified with ¢3;, = Colour(tweety,red) gives
@3.1,6.1 Null

st = Colour(birdy,C') unified with ¢33 = Colour(tweety,blue)gives@;36.1
Null

B3 matched a3 on #3 and ¢3,

Solutionl is: ©y 5,11 : X=iweety and @59, Empty and ©O3,3; : C=red
01 = {[X/tweety}[C/red)

2. Choice Point1:

(a) B2

i.

1.

ifi.

1v.

V1.

f: and o

su = Bird(tweety) unified with #; = Size(birdy,small) gives O3 .
Null

p: and o

sn = Size(tweety,small) unified with #;; = Size(birdy,small) gives
021,2.1 Null

f: and o

sa1 = Colour(tweety,C') unified with 51 = Size(birdy,small) gives @5 134
Null

f: and a4

sy = Bird(birdy) unified with ¢;; = Size(birdy,small) gives Oz ; 4,
Null

. By and as

851 = Size(birdy,small) unified with t5 = Size(birdy,small) gives ©2 1 5.
Empty

B3, and ag

set = Colour(birdy,C) unified with 5 = Size(birdy,small) gives ©2.; g1
Null

B2 matched as

112



(b) 85

i1

iit.

iv.

vi.

. B3 and aq

s1 = Bird(tweety) unified with £3, = Colour(birdy,red) gives 031,14
Null

sn = Bird(iweety) unified with t3, = Colour(birdy,blue) gives 032,14
Null

B3 and aq

sg1 = Size(tweety,small) unified with t3; = Colour(birdy,red) gives
©31,21 Null

821 = Size(tweety,small) unified with t3; = Colour(birdy,blue) gives

©3221 Null

B3 and a3

s3; = Coloui(tweety,C) unified with t33 = Colour(birdy,red) gives
Os,13.1 Null

sz = Colour(tweety,C) unified with t3; = Colour(birdy,blue) gives
©3.231 Null

B3 and a,

sq = Bird(birdy) unified v* .33 = Colour(birdy,red) gives O31.4.1
Null

s4q1 = Bird(birdy) unified with t32 = Colour(birdy,blue) gives Q32,4.1
Null

. B3 and as

ss1 = Size(birdy,small) unified with t3; = Colour(birdyred) gives
O31,51 Null

s51 = Size(birdy,small) unified with {3 = Colour(birdy,blue) gives
©3.951 Null

B3 and ag

se1 = Colour(birdy,C) unified with # 5, = Colour(hirdy,red) gives O3.1,6.1
: C=red

se1 = Colour(birdy,C) unified with {33 = Colour(birdy,blue) gives
©326.1: C=blue Choice Point3 on ¢ level because sg; already found a

match with ¢35

B; matched ag on i3 and ty
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Solution2 O is: ©1,4, : X=birdy and ©,;5, Empty and @36, : C=red
0, = {[X/birdy), [C/red]}

3. Choice Point2:
Solution3d O is: ©1,4.1 1 X=tweety and O3 21 Empty and @33, : C'=blue

03 = {[X/tweety], [C/blue]}

4. Choice Point3:
Solutiond O is: ©y,3,41 : X=birdy and O, 1,51 Empcy and O356; : C=blue
04 = {[X/birdy, [C/bluc])

Example 2 shows the possibility of having o no answer. The following fact and
question are given:

The fact is that tweety is a bird whose size is small.

fact: Bird(tweety) A Size(tweety,small)

The question is whether there exist a bird whose size is large.

Question: 3X (Bird(X) A Size(X large))

Tranformed into:

Facts:

1. a;: s;p : Bird(tweety)

2. aj: sy : Size(tweety,small)
Question:

1. B ¢y, : Bird(X)

2. By tyy : Size( X ,big)

1. B

(a) A1 and
s11 = Bird(tweety) unified with ¢;; = Bird(X) gives 011,11 : X=tweety

(b) B and a;
sa1 = Size(tweety,small) unified with ¢;; = Bird(X) gives 0,15, Null

51 matched o
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2. By

(a) B2 and ey
s11 = Bird(tweety) unified with t5; = Size(tweety,small) gives ©,,;,;; Null

(b) B2 and a3
sg1 = Size(tweety,small) unified with {3, = Size(tweety,large) gives 0,2,

Null

B2 did not match any «; so there is no solution

5.4 Ewvaluation of the Inference Mechanism

The evaluation of the inference mechanism is summarized as follows: It is decidable,
the t-entailment algorithm described above always terminates either with a yes or
no answer for any fact and question. It 1s sound and complete with respect to the
four-valued semantics. It automatically gives answers which are the substitutions,
rather than just yes or no. If more than one answer or the complete sct of answers
is required, all different substitutions are searched for. In terms of implementation,
this is done by calling NextSolution() to get the next possible answer.

A drawback of this inference mechanism is that its worst case running time is expo-
nential in |a| * |3] where the magaitude of o and 8 is the number of literals in each
[31, page 380]. However, in most cases, a knowledge representation system will have

the following reasonable assumptions [31, page 380]:

Facts are already in CNF. If they are not, converting them to normal form will not

increase their size significantly.

Knowledge base has different predicates, thus only a small number will require uni-

fication.
Queries are small even when converted to CNF.
Facts are stored as short clauses (disjunctions).

Under these assumptions, running time is in order In k * k""* where k is the size of

the knowledge base.
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Being based on four-valued logic, the inference mechanism does not admit the dis-
junctive syllogism nor any type of chaining, such as modus ponens. It also does not do
reasoning by contradiction or reasoning by cases. A knowledge representation using
only t-entailment is weak. One way to make it stonger is to have a stronger domain
specific method that could be used whenever entailment fails. The advantage of this
is that entailment can explain what its failure to produce an answer means, since it
1s a semantically motivated and well-defined notion. This explanation could be used
by the next stronger method which could be first order logic for instance [29, page
458].
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Chapter 6
Conclusion

In this thesis, a unification module and an inference mechanism based on t-entailment
were designed in the Object Oriented paradigm making use of design patterns, and
then implemented in C++.

Some important topics had to be studied first in order to gather the necessary infor-
mation required in the actual work of the thesis. The second step, was the design and
implementation of the transformation of a formula into CNF. The design uscs design
patterns which make it reusable in other programs or applications. The third step,
was the understanding of the unification concept and the design and implementation
of the unification module of Mantra. The unification module is at the heart of the
inference mechanism and it is used by the three formalismsin Mantra: logic, semantic
nets, and frames. It was designed using the iterator pattern, and a combination of
the composite and visitor patterns. Its implementation is general to accept any two
terms to be unified. Testing was done using examples from Martelli and Montanari
paper [25], some logic books [16, 17, 19, 37] and inputs prepared by the author and
her supervisor. The final step was the building of the inference mechanism bhased on
t-entailment, which used the CNF transformation and the unification module. This
mechanism is specific to the logic formalism, it provides a decidable way to answer
any given question based on the facts stored in the logic formalism of Mantra. We
are confident about the correctness of this mechanism, we have tested it with all
the examples in Mantra manual [8], some examples from artificial intelligence books

[28, 34], and some tests prepared by the author and her supervisor.
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The importance of this work lies in some major aspects: The selection of the algo-
rithms and the use the Object Oriented paradigm in the design and implementation
phases.

The unification algorithm selected, based on Martelli and Montanari work, has been
shown to have a better performance than many well-known algorithms [25, page 44].
It has a lincar-time complexity [25, page 44]. The inference mechanism based on
t-entailment is sound, complete and decidable. Its performance in the circumstances
we are working in is typically in the order of Ink * k®* where k is the size of the
knowledge base. Besides the good performance of both selected algorithms, their
design and implementation being Object Oriented makes them easier to modify and
extend, and reusable in different applications. By using the OMT standard notations
in describing the design and by using design patterns, understanding the work and
using it by others becomes easier. There is a kind of common design vocabulary and
documentation within the patterns, and the OMT notations are simple, standard,

and they clearly illustrate the most common Object Oriented features.

No work is achieved without encountering difficulties. In the design phase, the se-
lection of the design pattern that will best fit into each situation was sometimes not
easy, especially when identifying the objects and the roles they play in the pattern.
Besides, changing my concept of programming from the conventional programming
where data structure and behaviour are only loosely connected and where finding a
solution to a problem was in terms of functions, to Object Oriented programming
where objects combine both data structures and behaviour and all the thinking is in

terms of objects rather than functions, was difficult at the beginning.

Although the implementation is robust, it has some limitations and drawbacks:

The unification algorithm complexity, when there is a very high probability of stop-
ping with success, is nonlinear. However, when unifying small terms, the complexity
tends to become linear.

The worst-case complexity of the t-entailment algorithm is very bad. It is exponential
in |a| * |#| when computing a —, 3.

The t-entailment algorithm is weak being based on four-valued logic, which does
not support all the classical logic rules. For example: If the following two facts are

stored: —student(maurice) V father(tania,maurice) and student(maurice), then
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asked father(tania, maurice), the implemented inference mechanism answers “no”,
while in classical logic, by applying modus ponens, father(tania, maurice) could be

derived.

Mantra provided us with the context for this work. The future work will be to
reengineer the semantic-nets and frame formalisms at the epistemological level and
their inference mechanisms at the logical level. This could be done either by con-
verting the semantic-nets and frame knowledge into logic and using the implemented
inference mechanism, or by implementing a separate mechanism for each formalism
based on the four-valued semantics.

I endorse an important suggestion given by Patel-Schneider in [29, page 458]: “Any
knowledge representation system based on four-valued logic is going to be quite weak.
One way of making such a system stronger is to make entailment be only the first
method for answering questions. If entailment fails to produce an answer then a
stronger method could be used, perhaps some domain specific method”, which could

also be considered for future work.
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