The Totally Complex Sextic S_5 Extension
of Minimum Discriminant

Nasser Haddad

A Thesis

in

The Department

of

Mathematics and Statistics

Presented in Partial Fulfilment of the Requirements

for the Degree of Master of Science at

Concordia University

Montreal, Quebec, Canada

July, 1996

©Nasser Haddad, 1996
The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.
ABSTRACT

The Totally Complex Sextic S_5 Extension
of Minimum Discriminant

Nasser Haddad

We demonstrate that the totally complex algebraic number field of degree six of minimum discriminant having Galois group $\text{PGL}_2(\mathbb{F}_5) \cong S_5$ is generated over the rationals by a root of the polynomial

$$f(t) = t^6 + 2t^5 + 3t^4 + 21.$$

This field has discriminant $-1778112 = -2^6 \cdot 3^4 \cdot 7^3$ and is unique up to isomorphy.
Acknowledgements

I would like to acknowledge the following persons for their kind assistance in the completion of my masters degree. Professor David Ford whose acceptance, relentless help, keen commentary and patience enabled me to discover new horizons and observe matters in a new perspective. Professor Chris Cummins who has always been ready to offer assistance and who has given me time and advice whenever needed. I would like to thank my wife Eliana and my three children who have been an example of patience and encouragement and who supported me through the hard times of my studies and completion of my degree. My brother Elia Haddad who has lent me his full support and stood by me whenever I became discouraged and disillusioned. I would like also to thank all my friends, especially Dr. John Asfour for his timely advice and for his scholarly and moral support.

Finally a kind word should be directed towards professor David Ford and the "Computational Technique in Combinatorics, Algebra and Number Theory" research team (FCAR) in the Concordia University Department of Computer Science for the financial support they provided me in the last year of my studies.
Table of Contents

List of Figures .. vi

Introduction ... 1

Chapter One: Mathematical Preliminaries 2

Chapter Two: Galois Groups 5

Chapter Three: Computing Bounds on Coefficients 10

Chapter Four: Experimental Results 17

References ... 19

Appendix I — Bounds for Y_3, Y_4, Y_5, Y_6 20

Appendix II — Generating the Polynomials 28

Appendix III — Routines Defined in `tcdeg6.pas` 51

Appendix IV — Screening the Generated Polynomials 63
List of Figures

\[g_z(t) = t^3 - \frac{1}{2} T_z t^2 + \frac{1}{2} a_\delta \] \hspace{1cm} 21

\[g_y(t) = t^3 - T_z t^2 + \frac{1}{4} T_z^2 t - 4a_\delta \] \hspace{1cm} 21
Introduction

The computation of primitive algebraic number fields having degree 6 and minimum (absolute) discriminant has been dealt with except for the case of Galois group \(\text{PGL}_2(\mathbb{F}_5) \cong S_5 \). Extensive results (covering most of the Galois groups) are due to Martinet and others [Berge et. al.], [Olivier 89, 90a, 90b, 91]. But in [Martinet], the author says "... for \(A_5, A_6, S_5, S_6 \) extensions, the minimum discriminants are known only in the \(S_5 \) case. However \(A_5 \) and \(A_6 \) extensions are probably out of our computational possibilities".

[Ford & Pohst 92, 93], gave details of computations to determine the totally real algebraic number fields of degree 6 and having Galois groups \(A_5 \) and \(A_6 \) and minimum discriminant. These computations completed the table given by Olivier excepting only the case of Galois group \(S_5 \).

This thesis describes a computation to determine the (unique) totally complex algebraic number field of degree 6 having Galois group \(S_5 \) and minimum discriminant. Chapter 1 gives definitions and results from algebraic number theory, to be used in what follows. Chapter 2 discusses Galois groups in general, and gives some specific properties of the group \(\text{PGL}_2(\mathbb{F}_5) \) that we exploit in our computations. Chapter 3 presents in great detail techniques for limiting the coefficients of the sextic polynomial \(f(t) = t^6 + a_1 t^5 + a_2 t^4 + a_3 t^3 + a_4 t^2 + a_5 t + a_6 \) in order that the number of examples to be considered be minimized. Chapter 4 gives the results of our computations. Four appendices include listings and documentation of the programs that were used, and their (partial or complete) output.
Chapter One
Mathematical Preliminaries

If E is a field containing the field F, then E is said to be an extension field of F, denoted by E/F.

Let a number $\alpha \in E$ be a root of a polynomial p over F, that is, it satisfies a non-zero polynomial equation with coefficients in F. Among all polynomials over F, there exists a unique monic polynomial p of minimal degree subject to $p(\alpha) = 0$, and p is called the minimal polynomial of α over F. (A monic polynomial is one with leading coefficient 1.) The minimal polynomial of α is monic and irreducible over F. (These facts are to be found in [Stewart 73]). In other words, there exist elements $a_1, \ldots, a_n \in F$ such that

$$\alpha^n + a_1\alpha^{n-1} + \cdots + a_n = 0.$$

The degree n of this polynomial is called the degree of α with respect to F. The n distinct roots of this polynomial $\alpha_1, \ldots, \alpha_n$ are called the conjugates of α with respect to F. A root of a polynomial with coefficients in F is called an algebraic number over F. In particular, a root of a polynomial with rational coefficients is simply called an algebraic number. By [Stewart 79, Theorem 2.1] the set \mathbb{A} of algebraic numbers is a subfield of the complex field \mathbb{C}. We define an algebraic number field to be a subfield K of \mathbb{C} such that $[K : \mathbb{Q}]$ is finite. By [Stewart 79, Theorem 1.8] this implies that every element of K is algebraic, and hence $K \subseteq \mathbb{A}$.
Definition 1.1. A complex number θ is called an algebraic integer when it is a root of a monic polynomial p integer coefficients.

Theorem 1.2 [Stewart 79, Theorem 2.2]. If K is a number field then $K = \mathbb{Q}(\theta)$ for some algebraic number θ.

Corollary 1.3 [Stewart 79, Corollary 2.11]. If K is a number field then $K = \mathbb{Q}(\theta)$ for some algebraic integer θ.

Definition 1.4. Let K be a finite extension of the rational numbers and let O_K denote the ring of all algebraic integers in K. The elements u_1, \ldots, u_n of O_K form an integral basis for K if every element of O_K can be uniquely written as

$$a_1 u_1 + \cdots + a_n u_n$$

with $a_1, \ldots, a_n \in \mathbb{Z}$.

Theorem 1.5 [Narkiewicz, Theorem 9.7]. Every field K of degree n over \mathbb{Q} has an integral basis consisting of n elements.

By choosing a basis $v_1, \ldots, v_n \in K$ as a linear space over \mathbb{Q} we may assume that these elements lie in O_K space the following lemma holds.

Lemma 1.6 [Narkiewicz, Lemma 9.5]. If v is an algebraic number, then there exists a natural number N such that Nv is an algebraic integer.

Assuming $[K : \mathbb{Q}] = n$, where both K and \mathbb{Q} are subfields of \mathbb{C} with $\mathbb{Q} \subset K = \mathbb{Q}(\theta)$, there exist n embeddings of K in \mathbb{C}. The number θ can be sent to any of its n conjugates over \mathbb{Q}. (Marcus, p 19)
Let \(\sigma_1, \ldots, \sigma_n \) be the \(n \) embeddings of \(K \) in \(\mathbb{C} \). The discriminant of an integral basis is independent of which integral basis we choose. This value is called the discriminant of the algebraic number field (or of \(O_K \)). So, if \(u_1, \ldots, u_n \) is an integral basis of the algebraic number field \(K \) then

\[
d(K) = \text{disc}(u_1, \ldots, u_n) = |\sigma_i(u_j)|^2
\]

i.e., the square of the determinant of the matrix having \(\sigma_i(u_j) \) in the \(i^{th} \) row, \(j^{th} \) column. For two integral bases \(\{u_1, \ldots, u_n\}, \{v_1, \ldots, v_n\} \) of an algebraic number field \(K \), we have

\[
\text{disc}(u_1, \ldots, u_n) = (\pm 1)^2 \text{disc}(v_1, \ldots, v_n) = \text{disc}(v_1, \ldots, v_n),
\]

because the matrix corresponding to the change of basis is unimodular ([Stewart 79, p 53])

Example: The ring of algebraic integers of \(\mathbb{Q}[\sqrt{5}] \) is \(\mathbb{Z} \left[\frac{1}{2} (1 + \sqrt{5}) \right] \). An integral basis is the set \(\{1, \frac{1}{2}(1 + \sqrt{5})\} \) and the field discriminant is \(d = 5 \). Details can be found in [Stewart 79, p 60].

Definition 1.9. The signature of a number field is the pair \((r_1, r_2) \) where \(r_1 \) is the number of embeddings of \(K \) whose images lie in \(\mathbb{R} \), and \(2r_2 \) is the number of non-real complex embeddings, so that \(r_1 + 2r_2 = n \).

If \(f \) is an irreducible polynomial defining the number field \(K \) by one of its roots, the signature of \(K \) will also be called the signature of \(f \). So, when \(r_1 = 0 \), we say that \(K \) and \(f \) are totally complex.
Chapter Two
Galois Groups

Here we describe briefly the idea of the Galois group of an algebraic number field, and develop the specific properties of the group $\text{PGL}_2(\mathbb{F}_3)$ that are used in our computations.

Definition 2.1. A bijective mapping of a given set into itself is called a permutation.

Definition 2.2. Let A be any nonempty set and let S_A be the set of all permutations of A. The set S_A is a group under composition. This group is called the symmetric group on the set A. In case $A = \{1, 2, \ldots, n\}$, the symmetric group on A is denoted by S_n.

Definition 2.3. Let K be a number field of degree n. K is called Galois over \mathbb{Q}, if K is invariant for the n embeddings of K in \mathbb{C}.

Every such embedding sends K into itself since it sends each element to one of its conjugates. All such embeddings form a group, called the Galois group of K, and denoted by $\text{Gal}(K/\mathbb{Q})$. In other words, for $K = \mathbb{Q}[\theta]$, there exist exactly n embeddings of K in \mathbb{C}, given by $\theta \mapsto \theta_i$, where the θ_i are the roots in \mathbb{C} of the minimal polynomial of θ. These embeddings are \mathbb{Q}-linear, their images K_i in \mathbb{C} are called the conjugate fields of K, and the K_i are isomorphic to K. By invariant we mean that for all the embeddings σ_i of K in \mathbb{C} we have $\sigma_i(K) = K$. So, the Galois group may be considered as a permutation group acting on the roots of a generating polynomial [Cohen, p 153].
Any automorphism $\sigma \in \text{Gal}(K/Q)$ maps a root of an irreducible factor of the polynomial f over Q to another root of the irreducible factor and σ is uniquely determined by its action on these roots (since they generate K over Q). Fixing a labelling of the roots $\alpha_1, \ldots, \alpha_n$ of f and observing that any $\sigma \in \text{Gal}(K/Q)$ defines a unique permutation of $\alpha_1, \ldots, \alpha_n$, and also defines a unique permutation of the subscripts $\{1, 2, \ldots, n\}$. This leads to an injection

$$\text{Gal}(K/Q) \hookrightarrow S_n$$

of the Galois group into the symmetric group on n letters which is a homomorphism (both group operations are composition). So, we may consider Galois groups as subgroups of symmetric groups.

Definition 2.4. Let $f \in Q[z]$ with $n = \deg(f) > 1$, and let the zeros of f be $\alpha_1, \ldots, \alpha_n$. Then the discriminant of f is:

$$\text{disc}(f) = \prod_{1 < j}(\alpha_i - \alpha_j)^2.$$

Let f be a polynomial with rational coefficients. We may assume that f is separable (i.e., its zeros in K are distinct) and has integer coefficients. Then the discriminant D of f is an integer and is nonzero. For any prime p, consider the reduction in F_p of $\bar{f} \equiv f \mod p$. If p divides D then the reduced polynomial \bar{f} has discriminant $\bar{D} = 0 \in F_p$, so is not separable. If p does not divide D, then \bar{f} is a separable polynomial over F_p and we can factor \bar{f} into distinct irreducibles

$$\bar{f} = \bar{f}_1 \bar{f}_2 \cdots \bar{f}_k$$

in $F_p[z]$, $\deg(\bar{f}_i) = n_i$, $i = 1, 2, \ldots, k$.

6
THEOREM 2.5 ([Dummit & Foote, p 553]). For any prime p not dividing the discriminant D of $f \in \mathbb{Z}[x]$, the Galois group over \mathbb{F}_p of the reduction $\bar{f} = f \mod p$ is permutation group isomorphic to a subgroup of the Galois group over \mathbb{Q} of f.

It follows that not only is the Galois group of the reduction $\bar{f} \mod p$ of f isomorphic to a subgroup of the Galois group of f but there is an ordering of the roots of \bar{f} and of f (depending on p) so that under this isomorphism the action of the corresponding automorphisms as permutations of these roots is the same. So, there are automorphisms in the Galois group of f with the same cycle types as the automorphism of \bar{f}. The roots of \bar{f}_1 are permuted amongst themselves by the Galois group and given any two of these roots there is a Galois automorphism taking the first root to the second (since the group is transitive; i.e., given any two elements $a, b \in K$ there is some $\tau \in G$ such that $a = \tau b$). Similarly, the Galois group permutes the roots of each of the factors $\bar{f}_i, i = 1, \ldots, k$, transitively. Since these factors are relatively prime we also see that no root of any factor is mapped to a root of any other factor by any element of the Galois group.

DEFINITION 2.6. We define the cycle type of a permutation T of degree n to be the partition of n induced by the lengths of the disjoint cycles of T. The factorization of a polynomial f modulo any prime p also induces a partition, namely the partition of $\deg(f)$ formed by the degrees of the factors.

LEMMA 2.7 ([Lagarias & Odlyzko], [van der Waerden, section 8.10]). For any good prime p relative to a polynomial f, (i.e., p not dividing the discriminant of f) the degree partition of the factorization of $f \mod p$ is the cycle type of some permutation in $\text{Gal}(f/\mathbb{Q})$.

7
Lemma 2.8 ([Lagarias & Odlyzko]). Let T be a partition of n. Then as $s \to \infty$, the proportion of occurrences of T as the factor type of $f \bmod p_i$, $i = 1, \ldots, s$, $(p_1, \ldots, p_s$ distinct primes) tends to the proportion of permutations in $\text{Gal}(f/\mathbb{Q})$ having the cycle type T.

Definition 2.9. The general linear group over the field F, $\text{GL}_n(F)$, is the set of nonsingular $n \times n$ matrices with entries in F. The subgroup of such matrices of determinant 1 is the special linear group $\text{SL}_n(F)$.

It is easily seen that $|\text{GL}_2(F_5)| = 480$. Defining

$$\left\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}, \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \right\rangle$$

to be the normal subgroup T of $\text{GL}_2(F_5)$, we have

$$\text{PGL}_2(F_5) = \text{GL}_2(F_5)/T,$$

and therefore $|\text{PGL}_2(F_5)| = 120$.

The group $\text{PGL}_2(F_5)$ is isomorphic to the subgroup of S_6 generated by $(1 \ 2 \ 3 \ 4 \ 5)$ and $(1 \ 6)(2 \ 3)(4 \ 5)$; the cycle types $1 \cdot 1 \cdot 1 \cdot 1 \cdot 2$, $1 \cdot 1 \cdot 1 \cdot 3$, $1 \cdot 2 \cdot 3$ and $2 \cdot 4$ do not occur in this group. So if f is a polynomial with Galois group $\text{PGL}_2(F_5)$ and p is a prime not dividing the discriminant of f then the degree sequence of the mod p factors of f cannot be among these four types.

According to [Cohen, p 325], sixth degree permutation groups are of four types. A sextic field has a quadratic subfield if and only if its Galois group is isomorphic to a subgroup of

$$G_{72} = \langle (123), (14), (25), (36), (1524)(36) \rangle.$$
Similarly, it has a cubic subfield if and only if its Galois group is isomorphic to a subgroup of \(S_4 \cong C_2 \). Hence, it has both a quadratic and a cubic subfield if and only if its Galois group is isomorphic to \(C_6, S_3, \) or \(D_6 \) (these being the groups that arise in both cases). If the field is primitive, i.e., does not have quadratic or cubic subfields, this implies that its Galois group can only be \(\text{PSL}_2(\mathbb{F}_5) \cong A_5, \overline{\text{PSL}_2(\mathbb{F}_5)} \cong S_5, A_6 \) or \(S_6 \).
Chapter Three

Computing Bounds on Coefficients

For ρ_1, \ldots, ρ_n the algebraic conjugates of an algebraic number ρ of degree n, and for $m \in \mathbb{Z}$, we define

$$S_m(\rho) = \rho_1^m + \cdots + \rho_n^m,$$

$$T_m(\rho) = |\rho_1|^m + \cdots + |\rho_n|^m.$$

An important theorem, originally due to Hunter (see Theorem 3.3 below), establishes the existence of an algebraic integer ρ having $T_2(\rho)$ within a bound given in terms of the field discriminant and $\text{Tr}(\rho)$, and further, that $\text{Tr}(\rho)$ can be taken to lie between 0 and $n/2$. Once $T_2(\rho)$ has been bounded, a theorem of Pohst (Theorem 3.2 below) can be applied to develop bounds on $T_m(\rho)$, for $m \geq 3$. Newton's relations, involving $S_1(\rho), \ldots, S_n(\rho)$ and the coefficients of the characteristic polynomial χ of ρ, combined with the obvious fact that

$$|S_m(\rho)| \leq T_m(\rho)$$

for all $m \geq 1$, then enable us to calculate explicit bounds on the coefficients of χ.

Lemma 3.1. Let $w > 1$ and define the function f on the real numbers as

$$f(x) = \begin{cases}
\frac{1-x^w}{1-x}, & \text{for } x \neq 1, \\
w, & \text{for } x = 1.
\end{cases}$$

Then f is strictly increasing in the interval $0 < x < \infty$.

Proof: Let $g = (1-x)^2 \frac{df}{dx}$, so that

$$g = 1 - x^{w-1} - (w-1)x^{w-1}(1-x),$$
and let \(h = \frac{dg}{dx} \), giving
\[
h = w(w - 1)(x - 1)x^{w-2}.
\]

In the interval \(0 < x < 1 \), \(h \) is clearly negative; hence \(g \) is decreasing. Because \(g(1) = 0 \), \(g \) must be positive in this interval. Hence \(\frac{df}{dx} \) is positive, so \(f \) is strictly increasing in the interval \(0 < x < 1 \). A similar discussion shows \(f \) is strictly increasing in the interval \(1 < x < \infty \). \(\square \)

Theorem 3.2. Let \(R, K \) and \(m \) be positive constants satisfying \(R \geq 3K^{1/3} \) and \(m > 2 \). Then
\[
F_m(x) := x_1^m + x_2^m + x_3^m
\]
has a global maximum on the set
\[
S := \{ x \in (\mathbb{R}^3_{>0})^3 \mid x_1^2 + x_2^2 + x_3^2 \leq R^2; x_1 x_2 x_3 = K \}
\]
at a point \(y = (y_1, y_2, y_3) \) with \(y_2 = y_3 \) and \(y_1^2 + y_2^2 + y_3^2 = R^2 \).

Proof: The condition \(R \geq 3K^{1/3} \) ensures \(S \) is not empty. If \(R = 3K^{1/3} \) then \(S \) consists of the single point \(x_0 = (K^{1/3}, K^{1/3}, K^{1/3}) \) and the theorem is obvious.

We therefore assume that \(R > 3K^{1/3} \), and that \(F_m(x) \) has its maximum on \(S \) at a point \(y \).

Because \(y_1^2 + y_2^2 + y_3^2 \leq R^2 \) we may choose \(y_4 \) so that
\[
y_1^2 + y_2^2 + y_3^2 + y_4^2 = R^2
\]
and apply the Lagrange multiplier method to maximize
\[
F_m(y) = y_1^m + y_2^m + y_3^m
\]

11
subject to the constraints

\[y_1^2 + y_2^2 + y_3^2 + y_4^2 = R^2 \quad \text{and} \quad y_1 y_2 y_3 = K. \]

Defining

\[L(y_1, y_2, y_3, y_4, \lambda_1, \lambda_2) = y_1^m + y_2^m + y_3^m + \lambda_1 (y_1^2 + y_2^2 + y_3^2 + y_4^2) + \lambda_2 y_1 y_2 y_3, \]

we have

\[
\begin{align*}
0 &= \frac{\partial L}{\partial y_1} = m y_1^{m-1} + 2 \lambda_1 y_1 + \lambda_2 y_2 y_3 \\
0 &= \frac{\partial L}{\partial y_2} = m y_2^{m-1} + 2 \lambda_1 y_2 + \lambda_2 y_1 y_3 \\
0 &= \frac{\partial L}{\partial y_3} = m y_3^{m-1} + 2 \lambda_1 y_3 + \lambda_2 y_1 y_2 \\
0 &= \frac{\partial L}{\partial y_4} = 2 \lambda_1 y_4.
\end{align*}
\]

If \(y_4 \neq 0 \) then \(\lambda_1 = 0 \). We may form the sum

\[0 = y_1 \frac{\partial L}{\partial y_1} + y_2 \frac{\partial L}{\partial y_2} + y_3 \frac{\partial L}{\partial y_3} \]

and solve for \(\lambda_2 \), which gives

\[\lambda_2 = -\frac{m(y_1^m + y_2^m + y_3^m)}{3 y_1 y_2 y_3}. \]

Substituting back and simplifying yields

\[
\begin{align*}
0 &= 2y_1^m - y_2^m - y_3^m \\
0 &= -y_1^m + 2y_2^m - y_3^m \\
0 &= -y_1^m - y_2^m + 2y_3^m
\end{align*}
\]

which implies \(y = x_0 \), which is easily seen to be an absolute minimum for \(F_m(x) \) on \(S \). Thus \(y_4 = 0 \) if \(F_m(x) \) has its maximum at \(y \).
Because $R > 3K^{1/3}$ the coordinates of y cannot all be equal; without loss of generality we assume $y_1 \neq y_2$ and $y_1 \neq y_3$. Because

$$0 = y_j \frac{\partial L}{\partial y_j} = my_j^m + 2\lambda_1 y_j^2 + \lambda_2 y_1 y_2 y_3$$

for $j = 1, 2, 3$, we have

$$\frac{y_1^m - y_2^m}{y_1^2 - y_2^2} = -\frac{2\lambda_1}{m} = \frac{y_1^m - y_3^m}{y_1^2 - y_3^2}$$

so that

$$1 - \left(\frac{y_2^2}{y_1^2} \right)^{m/2} = 1 - \left(\frac{y_3^2}{y_1^2} \right)^{m/2}$$

$$1 - \frac{y_2^2}{y_1^2} = 1 - \frac{y_3^2}{y_1^2}.$$

By Lemma 3.1 above we have $\frac{y_2^2}{y_1^2} = \frac{y_3^2}{y_1^2}$, hence $y_2 = y_3$. \qed

Remark: A general version of this result appears as Theorem 4 in [Pohst].

For totally complex roots, $f(t)$ can be written as

$$f(t) = (t - \alpha_1)(t - \bar{\alpha}_1)(t - \alpha_2)(t - \bar{\alpha}_2)(t - \alpha_3)(t - \bar{\alpha}_3)$$

$$= (t^2 - \beta_1 t + \gamma_1)(t^2 - \beta_2 t + \gamma_2)(t^2 - \beta_3 t + \gamma_3)$$

$$= t^6 + a_1 t^5 + a_2 t^4 + a_3 t^3 + a_4 t^2 + a_5 t + a_6$$

with
\[\beta_j = \alpha_j + \overline{\alpha}_j = 2 \Re(\alpha_j) = 2 \Re(\overline{\alpha}_j) \in \mathbb{R}, \quad j = 1, 2, 3 \]
\[\gamma_j = \alpha_j \overline{\alpha}_j = |\alpha_j|^2 = |\overline{\alpha}_j|^2 > 0, \quad j = 1, 2, 3 \]
\[-a_1 = \beta_1 + \beta_2 + \beta_3 \]
\[a_2 = \beta_1 \beta_2 + \beta_1 \beta_3 + \beta_2 \beta_3 + \gamma_1 + \gamma_2 + \gamma_3 \]
\[-a_3 = \beta_1 \beta_2 \beta_3 + (\beta_1 + \beta_2) \gamma_3 + (\beta_1 + \beta_3) \gamma_2 + (\beta_2 + \beta_3) \gamma_1 \]
\[a_4 = \beta_1 \beta_2 \gamma_3 + \beta_1 \beta_3 \gamma_2 + \beta_2 \beta_3 \gamma_1 + \gamma_1 \gamma_2 + \gamma_1 \gamma_3 + \gamma_2 \gamma_3 \]
\[-a_5 = \beta_1 \gamma_2 \gamma_3 + \beta_2 \gamma_1 \gamma_3 + \beta_3 \gamma_1 \gamma_2 \]
\[a_6 = \gamma_1 \gamma_2 \gamma_3 > 0. \]

For the root \(\alpha \) of \(f \) we have

\[S_m = S_m(\alpha) = \alpha_1^m + \overline{\alpha}_1^m + \alpha_2^m + \overline{\alpha}_2^m + \alpha_3^m + \overline{\alpha}_3^m, \]
\[T_m = T_m(\alpha) = |\alpha_1|^m + |\overline{\alpha}_1|^m + |\alpha_2|^m + |\overline{\alpha}_2|^m + |\alpha_3|^m + |\overline{\alpha}_3|^m \]
\[= 2 \left(\gamma_1^m/2 + \gamma_2^m/2 + \gamma_3^m/2 \right) \]

for \(m \geq 1 \). Then \(S_m \in \mathbb{Z} \), and it follows by the triangle inequality that

\[|S_m| \leq T_m. \tag{5} \]

Theorem 3.3. If \(K \) is a totally complex algebraic number field of degree six with discriminant \(d(K) \) then \(K \) has an integral element \(\rho \), with \(\rho \notin \mathbb{Z} \), such that

\[0 \leq \text{Tr}(\rho) \leq 3 \quad \text{and} \quad T_2(\rho) \leq \frac{\text{Tr}(\rho)^2}{6} + \left(\frac{4}{3} |d(K)| \right)^{\frac{1}{6}}. \]

Proof: This is a special case of Theorem 6.4.2 of [Cohen], with \(n = 6 \). The theorem originates in [Hunter]. \(\square \)
Theorem 3.4. The coefficients a_1, a_2, a_6 may be chosen to satisfy the following.

$$a_1 = -\text{Tr}(\rho) \in \{0, 1, 2, 3\} \quad (1)$$

$$1 \leq a_6 \leq \left(\frac{T_2(\rho)}{6}\right)^3 \quad (2)$$

$$a_2 \leq \frac{1}{2} T_2(\rho) + \frac{1}{3} a_1^2 \quad (3)$$

Proof: Equation (1) follows by replacing ρ with $-\rho$. For (2) we apply the inequality between arithmetic and geometric means to write

$$a_6^{1/3} = (\gamma_1 \gamma_2 \gamma_3)^{1/3} \leq \frac{1}{3}(\gamma_1 + \gamma_2 + \gamma_3) = \frac{T_2}{6}$$

and the result follows.

For (3) we apply the Cauchy-Schwartz inequality to the vectors $A = (1, 1, 1)$ and $B = (\beta_1, \beta_2, \beta_3)$ to yield

$$a_1^2 = (\beta_1 + \beta_2 + \beta_3)^2 = (A \cdot B)^2 \leq |A|^2 |B|^2 = 3(\beta_1^2 + \beta_2^2 + \beta_3^2) = 3(S_2 + T_2).$$

Substituting $S_2 = a_1^2 - 2a_2$ we have

$$a_2 \leq \frac{1}{2} \left(T_2 + \frac{2}{3} a_1^2 \right).$$

See also (15), (17) and (18) in [Pohst].

To determine bounds on a_2, \ldots, a_6 we proceed as follows.

For $m = 2$, we define $Y_2 = \lfloor T_2 \rfloor$ (which implies $Y_2 \geq T_2 \geq \lfloor T_2 \rfloor$).

For $m \geq 3$, values for Y_m are found by applying Theorem 3.2 with $R = \sqrt{T_2/2}$, $K = \sqrt{a_6}$. Observing that $T_m = 2F_m(\sqrt{\gamma_1}, \sqrt{\gamma_2}, \sqrt{\gamma_3})$, we conclude that

$$T_m \leq \max \left\{ 2y_1^2 + 4y_2^2 \mid 2y_1^2 + 4y_2^2 = T_2; \ y_1^2 y_2^2 = a_6 \right\}.$$
The conditions on \(y_1, y_2 \) immediately give

\[
4u^3 - 4T_2 u^2 + T_2^2 u - 16a_6 = 0
\]
\[
4u^3 - T_2 v^2 + 2a_6 = 0
\]

with \(u = y_1^2 \) and \(v = y_2^2 \) (see graphs in Appendix I). Altogether these conditions permit only two solutions, \((u_1, v_1), (u_2, v_2),\) and these solutions must satisfy

\[
0 < u_1 \leq \frac{T_2}{6} \leq u_2 < \frac{T_2}{2}
\]
\[
0 < v_2 \leq \frac{T_2}{6} \leq v_1 < \frac{T_2}{4}.
\]

The roots \(u_1, u_2, v_1, v_2 \) can be computed with sufficient accuracy so that the integer value

\[
Y_m = \max \left(\left| 2u_1^{m/2} + 4v_1^{m/2} \right|, \left| 2u_2^{m/2} + 4v_2^{m/2} \right| \right) \geq |T_m|
\]

can be determined.

Defining

\[
X_m = \sum_{i=1}^{m-1} a_s S_{m-i}
\]

for \(1 \leq m \leq 6 \) and applying Newton’s relations [Cohen, Proposition 4.3.3] we have

\[
S_m + X_m + ma_m = 0. \tag{7}
\]

For any \(Y_m \) satisfying \(Y_m \geq |T_m| \) we may apply (5) and (7) to get

\[
|X_m + ma_m| = |S_m| \leq |T_m| \leq Y_m
\]

so that

\[
\frac{-X_m - Y_m}{m} \leq a_m \leq \frac{-X_m + Y_m}{m}
\]

16
for $m = 2, \ldots, 6$. Also, from (2) we have

$$1 \leq a_5 \leq \left[\left(\frac{T_2}{6} \right)^3 \right] \leq \left[\frac{Y_2^3}{6^3} \right].$$

When $a_1 \neq 0$, another bound on a_5 may be computed. Taking $m = 5$ and 6 in (7) and eliminating S_5, then solving for a_5, gives

$$a_5 = \frac{-X_6' + S_6}{6a_1}$$

where

$$X_6' = a_1 X_5 - a_2 S_4 - a_3 S_3 - a_4 S_2 - 6a_6$$

so that

$$\frac{-X_6' - Y_6}{6a_1} \leq a_5 \leq \frac{-X_6' + Y_6}{6a_1}.$$
Chapter Four
Experimental Results

For an appropriate bound \(B \), we are to generate at least one defining polynomial

\[
f(t) = t^6 + a_1 t^5 + a_2 t^4 + a_3 t^3 + a_4 t^2 + a_5 t + a_6
\]

for each field \(F \) with \(|d_F| \leq B \) and signature = \((0,3)\).

Given such a bound \(B \), we construct a set \(M \) of monic sixth-degree polynomials such that each primitive totally complex algebraic number field \(F \) of degree 6 and discriminant \(d_F \leq B \) contains a generating element \(\rho \in F - \mathbb{Q} \) for which the minimal polynomial \(m_\rho(t) \) belongs to \(M \).

A preliminary computation produced \(f(t) = t^6 + 2t^5 + 3t^4 + 21 \) with \(d_F = -1778112 \), signature = \((0,3)\), \(\text{Gal}(f/\mathbb{Q}) = \text{PGL}_2(\mathbb{F}_5) \), establishing that any totally complex sextic number field \(K \) of minimum absolute discriminant has discriminant \(d_K \) satisfying \(|d_K| \leq |d_F| = 1778112 \). So, by setting \(B = |d_F| = 1778112 \), and assuming \(\text{Tr}(\rho) \leq 3 \), we apply Theorem 3.3 to calculate

\[
T_2(\rho) \leq \frac{\text{Tr}(\rho)^2}{6} + \left(\frac{4}{3} B \right)^{1/5} \leq 20.336.
\]

An ALGEB program (see [Ford]) computed approximations to the roots \(u_1, u_2, v_1, v_2 \) (see chapter three) so that the integer values \(Y_3, Y_4, Y_5, Y_6 \) could be determined. These values, with a listing of the ALGEB program, appear in Appendix I.
Having the table above, a PASCAL program was written to read the data in this table and generate examples. This program is given in Appendix II, with detailed descriptions of its components in Appendix III.

An ALGEB program computed signatures (using Sturm sequences [Cohen, Algorithm 4.1.11]) and field discriminants (using the Round Two algorithm of Zassenhaus [Cohen, Algorithm 6.1.8]), excluding polynomials with real roots or with $|d_F| > 1778112$. Finally, MAPLE programs computed Galois groups and confirmed that all examples with $d_F = -1778112$ were isomorphic (see Appendix IV).

The polynomial generation and screening required about 82 CPU-hours on a Digital AlphaServer 2100 4/200 in the Department of Computing Services at Concordia University. The remaining computations—signatures, field discriminants, Galois groups, field isomorphisms and integral bases—took less than one CPU-hour in total, using a variety of systems at Concordia University.

Theorem. The discriminant of minimum absolute value for a totally complex S_5 extension of degree 6 is $d = -1778112 = -2^6 \cdot 3^4 \cdot 7^3$. There is, up to isomorphy, exactly one field F of that discriminant with Galois group S_5. It is generated by a root ρ of the polynomial

$$f(t) = t^6 + 2t^5 + 3t^4 + 2t.$$

An integral basis for F is given by

$$1, \quad \rho, \quad \rho^2, \quad \rho^3, \quad \rho^4, \quad \frac{1}{277}(29 - 106\rho + 120\rho^2 - 47\rho^3 + 135\rho^4 + \rho^5).$$
REFERENCES

Olivier 89 M. Olivier, *Tables de corps sextiques contenant un sous-corps quadratique (I)*, Séminaire de Théorie des Nombres de Bordeaux 1 Sér. 2 (1989), 205-250.

Olivier 90a M. Olivier, *Corps sextiques contenant un corps quadratique (II)*, Séminaire de Théorie des Nombres de Bordeaux 2 Sér. 2 (1990), 49-102.

Olivier 91 M. Olivier, *Corps sextiques contenant un corps cubique (III)*, Séminaire de Théorie des Nombres de Bordeaux 3 Sér. 2 (1991), 201-245.

Using the results from chapter three, the ALGEB program tmtbla.agb computes bounds on Y_3, Y_4, Y_5 and Y_6 for each possible combination of values of $Y_2 = [T_2]$ and a_6. Theorem 3.2 of chapter three implies $\gamma_2 = \gamma_3$; taking $y = \sqrt{\gamma_1}$ and $z = \sqrt{\gamma_2} = \sqrt{\gamma_3}$ we define

$$\frac{u}{\mu} = y^2 = \gamma_1, \quad \frac{v}{\mu} = z^2 = \gamma_2 = \gamma_3.$$

The denominator μ is a parameter controlling the accuracy of our approximations.

We know

$$T_2 = 2y^2 + 4z^2 = 2\frac{u}{\mu} + 4\frac{v}{\mu} \implies w_1 = 2u + 4v - \mu T_2 = 0,$$

$$a_6 = \gamma_1 \gamma_2 \gamma_3 = y^2 z^4 = \frac{uv^2}{\mu^3} \implies w_2 = uv^2 - \mu^3 a_6 = 0$$

which together imply

$$0 = \frac{1}{4} \text{Resultant}(w_1, w_2, u) = -\left(v^3 - \frac{\mu}{4} T_2 v^2 + \frac{\mu^3}{2} a_6 \right) = -\mu^3 g_z \left(\frac{v}{\mu} \right),$$

$$0 = \frac{1}{4} \text{Resultant}(w_1, w_2, v) = u^3 - \mu T_2 u^2 + \frac{\mu^2}{4} T_2^2 u - 4 \mu^3 a_6 = \mu^3 g_y \left(\frac{u}{\mu} \right)$$

where

$$g_z(t) = t^3 - \frac{1}{4} T_2 t^2 + \frac{1}{2} a_6,$$

$$g_y(t) = t^3 - T_2 t^2 + \frac{1}{4} T_2^2 t - 4a_6.$$

The graphs of g_z and g_y are shown in figures 1 and 2 respectively. In the main loop we use successively larger values of μ, until our upper and lower approximations of $[T_3]$, $[T_4]$, $[T_5]$ and $[T_6]$ coincide.
\[g_z(t) = t^3 - \frac{1}{4} T_z \dot{t}^2 + \frac{1}{2} a_c \]

\[0 < \frac{V_0}{\mu} \leq \frac{T_z}{6} \leq \frac{V_1}{\mu} < \frac{T_z}{4} \]

Figure 1

\[g_y(t) = t^3 - T_z \dot{t}^2 + \frac{1}{4} T_z \ddot{t} t - 4 a_c \]

\[0 < \frac{V_0}{\mu} \leq \frac{T_z}{6} \leq \frac{V_1}{\mu} < \frac{T_z}{2} \]

Figure 2
ALGEB Program tntbla.agb

iochan 1;

begin
integer m, ct, ca, cb;
integer T2, a6, a6l, a6u;
integer Y2l, Y3l, Y4l, Y5l, Y6l;
integer Y2h, Y3h, Y4h, Y5h, Y6h;
integer u1l, u1h, r1l, r1h, u2l, u2h, r2l, r2h;
integer v1l, v1h, s1l, s1h, v2l, v2h, p1l, p2h;
integer T2l, T3l, T4l, T5l, T6l;
integer T2h, T3h, T4h, T5h, T6h;
boolean done;

integer procedure max (x, y);
integer x, y;
if x < y then max := y
else max := x
end;

integer procedure ceilg (u, v); { truncate rightwards }
value u, v; integer u, v;
if (v < 0) then u := -u ! v := -v;
if (u < 0) then ceilg := u / v
else ceilg := (u + v - 1) / v
end;

integer procedure floor (u, v); { truncate leftwards }
value u, v; integer u, v;
if (v < 0) then u := -u ! v := -v;
if (u > 0) then floor := u / v
else floor := (u - v + 1) / v
end;

integer procedure gy (u); { \(m^{-3} \cdot gy(u/m) \) }
integer u;
gy := ((u - m*T2)*u + cb*T2*T2)*u - 4*m*m*m*a6
end;

integer procedure gz (v); { \(m^{-3} \cdot gz(v/m) \) }
integer v;
gz := (v - ct*T2)*v*v + ca*a6
end;
procedure vsolve (ul, uh, vl, vh);
integer ul, uh, vl, vh;
integer gc, gc, gl, gh, d;
gl := gy(ul);
gh := gy(uh);
if (gl <= 0) and (0 <= gh) then
 d := +1
else
 if (gl >= 0) and (0 >= gh) then
 d := -1
else
 d := 0 ! writes(1,"You have made a y-mistake!") ! line(1,1);
if gl = 0 then uh := ul else
if gh = 0 then ul := uh else
while uh - ul > 1 do
 begin
 uc := (ul + uh)/2;
 g := d*gy(uc);
 if g <= 0 then ul := uc;
 if g >= 0 then uh := uc
 end;
gl := gz(vl);
gh := gz(vh);
if (gl <= 0) and (0 <= gh) then
 d := +1
else
 if (gl >= 0) and (0 >= gh) then
 d := -1
else
 d := 0 ! writes(1,"You have made a z-mistake!") ! line(1,1);
if gl = 0 then vh := vl else
if gh = 0 then vl := vh else
while vh - vl > 1 do
 begin
 vc := (vl + vh)/2;
 g := d*gz(vc);
 if g <= 0 then vl := vc;
 if g >= 0 then vh := vc
 end;
end;
integer procedure lsqrt(n); { lower square root }
integer n,x,y;
x := 2; y := x*x;
while y < n do x := y ! y := x*x;
while y > n do x := y + n / 2*x ! y := x*x;
lsqrt := x
end;

integer procedure usqrt (n); { ceiling(sqrt(v)) }
integer n,x,y;
x := 2; y := x*x;
while y < n do x := y ! y := x*x;
while y > n do x := y + n / 2*x ! y := x*x;
if (x*x < n) then usqrt := x + 1
 else usqrt := x
end;

output(1,"AGB$OUTPUT"); { *** start here *** }

for T2 := 6,...,21 do
begin
 a6l := 1;
a6u := (T2*T2*T2)/(6*6*6);
for a6 := a6l,...,a6u do
begin
 m := 2^14; done := false;
while not done do
begin
 m := 2*m; ct := m/4; ca := m*m/m/2; cb := m*m/4;
u1l := 0; v1l := ceilg(m*T2,6);
u1h := floor(m*T2,6); v1h := floor(m*T2,4);
vsolve(u1l,u1h,v1l,v1h);
u2l := ceilg(m*T2,6); v2l := 0;
u2h := floor(m*T2,2); v2h := floor(m*T2,6);
vsolve(u2l,u2h,v2l,v2h);
r1l := lsqrt(m*u1l); s1l := lsqrt(m*v1l);
r2l := lsqrt(m*u2l); s2l := lsqrt(m*v2l);
T2l := 2*max(u1l + 2*v1l,
u2l + 2*v2l);
T3l := 2*max(u1l*r1l + 2*v1l*s1l,
u2l*r2l + 2*v2l*s2l);
T4l := 2*max(u1l*u1l + 2*v1l*v1l,
u2l*u2l + 2*v2l*v2l);
T5l := 2*max(u1l*u1l*r1l + 2*v1l*v1l*s1l,
u2l*u2l*r2l + 2*v2l*v2l*s2l);
end;
end;
end;
end;
end;
end;$end;
T6l := 2*max(u1l*u1l*u1l + 2*v1l*v1l*v1l, u2l*u2l*u2l + 2*v2l*v2l*v2l);
Y2l := floor(T2l,m);
Y3l := floor(T3l,m*m);
Y4l := floor(T4l,m*m);
Y5l := floor(T5l,m*m*m);
Y6l := floor(T6l,m*m*m);
\text{r1h} := usqrt(m*u1h); \quad \text{s1h} := usqrt(m*v1h);
\text{r2h} := usqrt(m*u2h); \quad \text{s2h} := usqrt(m*v2h);
T2h := 2*max(u1h + 2*v1h, u2h + 2*v2h);
T3h := 2*max(u1h*r1h + 2*v1h*s1h, u2h*r2h + 2*v2h*s2h);
T4h := 2*max(u1h*u1h + 2*v1h*v1h, u2h*u2h + 2*v2h*v2h);
T5h := 2*max(u1h*u1h*r1h + 2*v1h*v1h*s1h, u2h*u2h*r2h + 2*v2h*v2h*s2h);
T6h := 2*max(u1h*u1h*u1h + 2*v1h*v1h*v1h, u2h*u2h*u2h + 2*v2h*v2h*v2h);
Y2h := floor(T2h,m);
Y3h := floor(T3h,m*m);
Y4h := floor(T4h,m*m);
Y5h := floor(T5h,m*m*m);
Y6h := floor(T6h,m*m*m);
done := Y3l = Y3h and
\quad Y4l = Y4h and
\quad Y5l = Y5h and
\quad Y6l = Y6h
end;
write(1,a6,3);
write(1,T2,5);
write(1,Y3h,5);
write(1,Y4h,5);
write(1,Y5h,5);
write(1,Y6h,5);
line(1,1)
end
end
<table>
<thead>
<tr>
<th>a_6</th>
<th>Y_2</th>
<th>Y_3</th>
<th>Y_4</th>
<th>Y_5</th>
<th>Y_6</th>
<th>a_6</th>
<th>Y_2</th>
<th>Y_3</th>
<th>Y_4</th>
<th>Y_5</th>
<th>Y_6</th>
<th>a_6</th>
<th>Y_2</th>
<th>Y_3</th>
<th>Y_4</th>
<th>Y_5</th>
<th>Y_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>1</td>
<td>17</td>
<td>44</td>
<td>121</td>
<td>338</td>
<td>943</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>20</td>
<td>2</td>
<td>17</td>
<td>42</td>
<td>112</td>
<td>305</td>
<td>832</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>11</td>
<td>17</td>
<td>27</td>
<td>45</td>
<td>3</td>
<td>17</td>
<td>40</td>
<td>105</td>
<td>280</td>
<td>750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>4</td>
<td>17</td>
<td>39</td>
<td>99</td>
<td>260</td>
<td>683</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>14</td>
<td>24</td>
<td>44</td>
<td>80</td>
<td>5</td>
<td>17</td>
<td>38</td>
<td>94</td>
<td>242</td>
<td>626</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>12</td>
<td>18</td>
<td>29</td>
<td>46</td>
<td>6</td>
<td>17</td>
<td>37</td>
<td>90</td>
<td>226</td>
<td>576</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>11</td>
<td>14</td>
<td>19</td>
<td>25</td>
<td>7</td>
<td>17</td>
<td>36</td>
<td>86</td>
<td>212</td>
<td>531</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>17</td>
<td>33</td>
<td>64</td>
<td>128</td>
<td>8</td>
<td>17</td>
<td>35</td>
<td>82</td>
<td>199</td>
<td>490</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>15</td>
<td>26</td>
<td>47</td>
<td>86</td>
<td>9</td>
<td>17</td>
<td>35</td>
<td>79</td>
<td>187</td>
<td>453</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>14</td>
<td>22</td>
<td>35</td>
<td>58</td>
<td>10</td>
<td>17</td>
<td>34</td>
<td>76</td>
<td>176</td>
<td>418</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>13</td>
<td>18</td>
<td>25</td>
<td>37</td>
<td>11</td>
<td>17</td>
<td>33</td>
<td>73</td>
<td>166</td>
<td>386</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>20</td>
<td>42</td>
<td>89</td>
<td>190</td>
<td>12</td>
<td>17</td>
<td>33</td>
<td>70</td>
<td>156</td>
<td>356</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>18</td>
<td>35</td>
<td>69</td>
<td>139</td>
<td>13</td>
<td>17</td>
<td>32</td>
<td>67</td>
<td>147</td>
<td>329</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>17</td>
<td>30</td>
<td>55</td>
<td>104</td>
<td>14</td>
<td>17</td>
<td>32</td>
<td>65</td>
<td>138</td>
<td>303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>16</td>
<td>26</td>
<td>44</td>
<td>77</td>
<td>15</td>
<td>17</td>
<td>31</td>
<td>62</td>
<td>130</td>
<td>278</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>15</td>
<td>23</td>
<td>35</td>
<td>55</td>
<td>16</td>
<td>17</td>
<td>31</td>
<td>60</td>
<td>122</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>14</td>
<td>20</td>
<td>28</td>
<td>39</td>
<td>17</td>
<td>17</td>
<td>30</td>
<td>58</td>
<td>115</td>
<td>234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>24</td>
<td>53</td>
<td>118</td>
<td>268</td>
<td>18</td>
<td>17</td>
<td>30</td>
<td>56</td>
<td>108</td>
<td>214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>22</td>
<td>45</td>
<td>96</td>
<td>208</td>
<td>19</td>
<td>17</td>
<td>29</td>
<td>54</td>
<td>102</td>
<td>195</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>21</td>
<td>40</td>
<td>80</td>
<td>165</td>
<td>20</td>
<td>17</td>
<td>29</td>
<td>52</td>
<td>95</td>
<td>177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>20</td>
<td>36</td>
<td>68</td>
<td>132</td>
<td>21</td>
<td>17</td>
<td>29</td>
<td>50</td>
<td>90</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>19</td>
<td>32</td>
<td>57</td>
<td>104</td>
<td>22</td>
<td>17</td>
<td>28</td>
<td>49</td>
<td>84</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>18</td>
<td>29</td>
<td>48</td>
<td>82</td>
<td>23</td>
<td>17</td>
<td>28</td>
<td>48</td>
<td>83</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>17</td>
<td>26</td>
<td>40</td>
<td>63</td>
<td>24</td>
<td>17</td>
<td>28</td>
<td>47</td>
<td>82</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>16</td>
<td>24</td>
<td>33</td>
<td>48</td>
<td>25</td>
<td>17</td>
<td>28</td>
<td>46</td>
<td>80</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>28</td>
<td>64</td>
<td>152</td>
<td>362</td>
<td>26</td>
<td>17</td>
<td>28</td>
<td>45</td>
<td>79</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>26</td>
<td>57</td>
<td>128</td>
<td>293</td>
<td>27</td>
<td>17</td>
<td>28</td>
<td>44</td>
<td>78</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>24</td>
<td>51</td>
<td>110</td>
<td>243</td>
<td>28</td>
<td>17</td>
<td>28</td>
<td>43</td>
<td>77</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>23</td>
<td>46</td>
<td>96</td>
<td>203</td>
<td>29</td>
<td>17</td>
<td>28</td>
<td>42</td>
<td>76</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>22</td>
<td>42</td>
<td>84</td>
<td>170</td>
<td>30</td>
<td>17</td>
<td>28</td>
<td>41</td>
<td>75</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>21</td>
<td>39</td>
<td>73</td>
<td>142</td>
<td>31</td>
<td>17</td>
<td>28</td>
<td>40</td>
<td>74</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>20</td>
<td>35</td>
<td>64</td>
<td>117</td>
<td>32</td>
<td>17</td>
<td>28</td>
<td>39</td>
<td>73</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>19</td>
<td>30</td>
<td>48</td>
<td>78</td>
<td>33</td>
<td>17</td>
<td>28</td>
<td>38</td>
<td>72</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>18</td>
<td>25</td>
<td>42</td>
<td>63</td>
<td>34</td>
<td>17</td>
<td>28</td>
<td>37</td>
<td>71</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>19</td>
<td>28</td>
<td>42</td>
<td>63</td>
<td>35</td>
<td>17</td>
<td>28</td>
<td>36</td>
<td>70</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>31</td>
<td>77</td>
<td>191</td>
<td>476</td>
<td>14</td>
<td>18</td>
<td>36</td>
<td>79</td>
<td>182</td>
<td>430</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>29</td>
<td>69</td>
<td>165</td>
<td>396</td>
<td>15</td>
<td>18</td>
<td>35</td>
<td>77</td>
<td>173</td>
<td>402</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>28</td>
<td>63</td>
<td>145</td>
<td>339</td>
<td>16</td>
<td>18</td>
<td>35</td>
<td>75</td>
<td>165</td>
<td>375</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>27</td>
<td>58</td>
<td>129</td>
<td>292</td>
<td>17</td>
<td>18</td>
<td>34</td>
<td>72</td>
<td>156</td>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>26</td>
<td>54</td>
<td>115</td>
<td>254</td>
<td>18</td>
<td>18</td>
<td>34</td>
<td>70</td>
<td>149</td>
<td>326</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_5</td>
<td>Y_2</td>
<td>Y_3</td>
<td>Y_4</td>
<td>Y_5</td>
<td>Y_6</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>34</td>
<td>68</td>
<td>141</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>33</td>
<td>66</td>
<td>134</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>18</td>
<td>33</td>
<td>64</td>
<td>127</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>18</td>
<td>32</td>
<td>62</td>
<td>121</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>18</td>
<td>32</td>
<td>60</td>
<td>114</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>32</td>
<td>58</td>
<td>109</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>18</td>
<td>31</td>
<td>57</td>
<td>103</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>18</td>
<td>31</td>
<td>55</td>
<td>98</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>18</td>
<td>31</td>
<td>54</td>
<td>93</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>53</td>
<td>156</td>
<td>463</td>
<td>1375</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>51</td>
<td>146</td>
<td>425</td>
<td>1242</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>49</td>
<td>139</td>
<td>397</td>
<td>1143</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>48</td>
<td>133</td>
<td>374</td>
<td>1061</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>47</td>
<td>127</td>
<td>354</td>
<td>991</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>46</td>
<td>122</td>
<td>336</td>
<td>929</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>45</td>
<td>118</td>
<td>319</td>
<td>873</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>44</td>
<td>114</td>
<td>304</td>
<td>822</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>43</td>
<td>110</td>
<td>290</td>
<td>775</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>43</td>
<td>107</td>
<td>277</td>
<td>732</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>19</td>
<td>42</td>
<td>104</td>
<td>265</td>
<td>691</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>19</td>
<td>41</td>
<td>100</td>
<td>253</td>
<td>653</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>19</td>
<td>41</td>
<td>97</td>
<td>243</td>
<td>617</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>40</td>
<td>95</td>
<td>232</td>
<td>583</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>19</td>
<td>40</td>
<td>92</td>
<td>222</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>39</td>
<td>89</td>
<td>213</td>
<td>520</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>19</td>
<td>39</td>
<td>87</td>
<td>204</td>
<td>491</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>38</td>
<td>85</td>
<td>195</td>
<td>463</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>38</td>
<td>82</td>
<td>187</td>
<td>437</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>37</td>
<td>80</td>
<td>179</td>
<td>411</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>19</td>
<td>37</td>
<td>78</td>
<td>171</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>19</td>
<td>37</td>
<td>76</td>
<td>164</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>19</td>
<td>36</td>
<td>74</td>
<td>157</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>19</td>
<td>36</td>
<td>72</td>
<td>150</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>35</td>
<td>70</td>
<td>144</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>19</td>
<td>35</td>
<td>69</td>
<td>137</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>19</td>
<td>35</td>
<td>67</td>
<td>131</td>
<td>264</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>19</td>
<td>34</td>
<td>65</td>
<td>126</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>19</td>
<td>34</td>
<td>64</td>
<td>120</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>19</td>
<td>34</td>
<td>62</td>
<td>115</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>19</td>
<td>34</td>
<td>61</td>
<td>110</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a_5</th>
<th>Y_2</th>
<th>Y_3</th>
<th>Y_4</th>
<th>Y_5</th>
<th>Y_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>21</td>
<td>57</td>
<td>170</td>
<td>512</td>
<td>1548</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>56</td>
<td>164</td>
<td>489</td>
<td>1464</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>55</td>
<td>159</td>
<td>468</td>
<td>1390</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>54</td>
<td>154</td>
<td>450</td>
<td>1322</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>53</td>
<td>150</td>
<td>433</td>
<td>1261</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>53</td>
<td>146</td>
<td>417</td>
<td>1204</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>52</td>
<td>142</td>
<td>402</td>
<td>1151</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>51</td>
<td>139</td>
<td>388</td>
<td>1101</td>
</tr>
<tr>
<td>12</td>
<td>21</td>
<td>51</td>
<td>135</td>
<td>375</td>
<td>1054</td>
</tr>
<tr>
<td>13</td>
<td>21</td>
<td>50</td>
<td>132</td>
<td>362</td>
<td>1009</td>
</tr>
<tr>
<td>14</td>
<td>21</td>
<td>49</td>
<td>129</td>
<td>350</td>
<td>967</td>
</tr>
<tr>
<td>15</td>
<td>21</td>
<td>49</td>
<td>126</td>
<td>339</td>
<td>927</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>48</td>
<td>123</td>
<td>328</td>
<td>889</td>
</tr>
<tr>
<td>17</td>
<td>21</td>
<td>48</td>
<td>121</td>
<td>317</td>
<td>852</td>
</tr>
<tr>
<td>18</td>
<td>21</td>
<td>47</td>
<td>118</td>
<td>307</td>
<td>817</td>
</tr>
<tr>
<td>19</td>
<td>21</td>
<td>47</td>
<td>116</td>
<td>297</td>
<td>784</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>46</td>
<td>113</td>
<td>288</td>
<td>751</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>46</td>
<td>111</td>
<td>279</td>
<td>720</td>
</tr>
<tr>
<td>22</td>
<td>21</td>
<td>46</td>
<td>108</td>
<td>270</td>
<td>690</td>
</tr>
<tr>
<td>23</td>
<td>21</td>
<td>45</td>
<td>106</td>
<td>262</td>
<td>661</td>
</tr>
<tr>
<td>24</td>
<td>21</td>
<td>45</td>
<td>104</td>
<td>253</td>
<td>634</td>
</tr>
<tr>
<td>25</td>
<td>21</td>
<td>44</td>
<td>102</td>
<td>245</td>
<td>607</td>
</tr>
<tr>
<td>26</td>
<td>21</td>
<td>44</td>
<td>100</td>
<td>238</td>
<td>581</td>
</tr>
<tr>
<td>27</td>
<td>21</td>
<td>44</td>
<td>98</td>
<td>230</td>
<td>556</td>
</tr>
<tr>
<td>28</td>
<td>21</td>
<td>43</td>
<td>96</td>
<td>223</td>
<td>531</td>
</tr>
<tr>
<td>29</td>
<td>21</td>
<td>43</td>
<td>94</td>
<td>216</td>
<td>508</td>
</tr>
<tr>
<td>30</td>
<td>21</td>
<td>43</td>
<td>92</td>
<td>209</td>
<td>485</td>
</tr>
<tr>
<td>31</td>
<td>21</td>
<td>42</td>
<td>91</td>
<td>202</td>
<td>463</td>
</tr>
<tr>
<td>32</td>
<td>21</td>
<td>42</td>
<td>89</td>
<td>196</td>
<td>442</td>
</tr>
<tr>
<td>33</td>
<td>21</td>
<td>42</td>
<td>87</td>
<td>189</td>
<td>422</td>
</tr>
<tr>
<td>34</td>
<td>21</td>
<td>41</td>
<td>86</td>
<td>183</td>
<td>402</td>
</tr>
<tr>
<td>35</td>
<td>21</td>
<td>41</td>
<td>84</td>
<td>177</td>
<td>383</td>
</tr>
<tr>
<td>36</td>
<td>21</td>
<td>41</td>
<td>82</td>
<td>171</td>
<td>364</td>
</tr>
<tr>
<td>37</td>
<td>21</td>
<td>40</td>
<td>81</td>
<td>166</td>
<td>347</td>
</tr>
<tr>
<td>38</td>
<td>21</td>
<td>40</td>
<td>79</td>
<td>160</td>
<td>330</td>
</tr>
<tr>
<td>39</td>
<td>21</td>
<td>40</td>
<td>78</td>
<td>155</td>
<td>313</td>
</tr>
<tr>
<td>40</td>
<td>21</td>
<td>40</td>
<td>77</td>
<td>150</td>
<td>297</td>
</tr>
<tr>
<td>41</td>
<td>21</td>
<td>39</td>
<td>75</td>
<td>145</td>
<td>282</td>
</tr>
<tr>
<td>42</td>
<td>21</td>
<td>39</td>
<td>74</td>
<td>141</td>
<td>268</td>
</tr>
</tbody>
</table>
APPENDIX II — GENERATING THE POLYNOMIALS

The PASCAL program tcdeg6 generates the polynomials that define the fields to be tested for Galois group $\text{PGL}_2(\mathbb{F}_5)$. Such a polynomial is constrained to have a root θ such that coefficient $a_1 = -\text{Tr}(\theta) \in \{0, 1, 2, 3\}$ and $6 \leq T_2(\theta) \leq B_{a_1} \leq 21$; thus the controlling variable $T = \lfloor T_2(\theta) \rfloor$ runs from 6 to 21.

The array pr is initialized to contain the primes p in the range $101 \leq p \leq 571$.

The array Tmb is initialized to contain the values of Y_2, Y_4, Y_5, Y_6 for all possible pairs (a_1, Y_2), with $Y_2 = T$ by definition.

The array B is initialized to contain upper bounds on T for $a_1 = 0, 1, 2, 3$.

Detailed descriptions of the procedures defined in this program are to be found in Appendix III.
program tcdeg6 (input, output); { totally complex, degree 6 }

const a0 = 1;
 B0 = 19;
 B1 = 20;
 B2 = 20;
 B3 = 21;
 Tm = 6;
 Tm = 21;
 nb = 239;

var cpu: integer;
 T: integer;
 B: array [0..3] of integer;
 Tmb: array [1..nb,1..6] of integer;
 a1, a1l, a1u, c1l, c1u: integer;
 a2, a2l, a2u, c2l, c2u: integer;
 a3, a3l, a3u, c3l, c3u: integer;
 a4, a4l, a4u, c4l, c4u: integer;
 a5, a5l, a5u, c5l, c5u: integer;
 a6, a6l, a6u, c6l, c6u: integer;
 X1, X2, X3, X4, X5, X6: integer;
 Y1, Y2, Y3, Y4, Y5, Y6: integer;
 Z1, Z2, Z3, Z4, Z5, Z6: integer;
 S1, S2, S3, S4, S5, S6: integer;
 old1, old2, old3, old4, old5, old6: boolean;
type flag = (val, rej);

var c02: array [0..02-1, 0..02-1, 0..02-1, flag] of boolean;
f02: boolean;
c03: array [0..03-1, 0..03-1, 0..03-1, flag] of boolean;
f03: boolean;
c05: array [0..05-1, 0..05-1, 0..05-1, flag] of boolean;
f05: boolean;
c07: array [0..07-1, 0..07-1, 0..07-1, flag] of boolean;
f07: boolean;
c11: array [0..11-1, 0..11-1, 0..11-1, flag] of boolean;
f11: boolean;
c13: array [0..13-1, 0..13-1, 0..13-1, flag] of boolean;
f13: boolean;
c17: array [0..17-1, 0..17-1, 0..17-1, flag] of boolean;
f17: boolean;
c19: array [0..19-1, 0..19-1, 0..19-1, flag] of boolean;
f19: boolean;
c23: array [0..23-1, 0..23-1, 0..23-1, flag] of boolean;
f23: boolean;
c29: array [0..29-1, 0..29-1, 0..29-1, flag] of boolean;
f29: boolean;
c31: array [0..31-1, 0..31-1, 0..31-1, flag] of boolean;
f31: boolean;
c37: array [0..37-1, 0..37-1, 0..37-1, flag] of boolean;
f37: boolean;
c41: array [0..41-1, 0..41-1, 0..41-1, flag] of boolean;
f41: boolean;
c43: array [0..43-1, 0..43-1, 0..43-1, flag] of boolean;
f43: boolean;
c47: array [0..47-1, 0..47-1, 0..47-1, flag] of boolean;
f47: boolean;
c53: array [0..53-1, 0..53-1, 0..53-1, flag] of boolean;
f53: boolean;
c59: array [0..59-1, 0..59-1, 0..59-1, flag] of boolean;
f59: boolean;
c61: array [0..61-1, 0..61-1, 0..61-1, flag] of boolean;
f61: boolean;
c67: array [0..67-1, 0..67-1, 0..67-1, flag] of boolean;
f67: boolean;
c71: array [0..71-1, 0..71-1, 0..71-1, flag] of boolean;
f71: boolean;
type poly = array [0..6] of integer;

function deg (var f: poly): integer;
var k: integer;
begin
 k := 6;
 while (k > 0) and (f[k] = 0) do
 k := k - 1;
 deg := k
end;

procedure pswap (var f, g: poly); { f <-> g }
var h: poly;
begin
 h := f;
 f := g;
 g := h
end;

procedure prdif (var g, h: poly; p: integer); { g <-- dh/dx }
const n = 6;
var j: integer;
begin
 for j := 1 to n do
 g[j-1] := (j*h[j]) mod p;
 g[n] := 0
end;
procedure prmdr (var f, g: poly; p: integer); { f <-- rem(f,g), g < 0 }
const n = 6;
var j, s, t, cf, cg: integer;
begin
 t := deg(g); cg := g[t];
 for s := n downto t do
 if f[s] <> 0 then
 begin
 cf := f[s];
 if cg <> 1 then
 for j := 0 to s do
 f[j] := (cg*f[j]) mod p;
 for j := s-t to s do
 f[j] := (f[j] - cf*g[j-s+t]) mod p
 end
 end;
end;

procedure prgcd (var f, g: poly; p: integer); { f <-- gcd(f,g) }
begin
 while deg(g) <> 0 do
 begin
 prmdr(f,g,p);
 pswap(f,g);
 end;
 if g[0] <> 0 then
 pswap(f,g)
end;
procedure prprd (var w, z, f: poly; p: integer);
var j, k: integer;
begin
 v: poly;
 begin
 for j := 0 to 6 do
 v[j] := 0;
 for k := 6 downto 0 do
 begin
 for j := 6 downto 1 do
 v[j] := (v[j-1] + z[k]*w[j]) mod p;
 v[0] := (z[k]*w[0]) mod p;
 prmdr(v,f,p)
 end;
 end;
end;

procedure prpwr (var h, f: poly; q, p: integer);
var e, x, j: integer;
begin
 y, z: poly;
 begin
 for j := 0 to 6 do
 begin
 y[j] := 0;
 z[j] := 0
 end;
 y[0] := 1; z[1] := 1; { y = 1, z = x }
 e := q;
 while e <> 0 do
 begin
 r := e mod 2;
 e := e div 2;
 if r <> 0 then
 prprd(y,z,f,p);
 if e <> 0 then
 prprd(z,z,f,p)
 end;
 for j := 0 to 6 do
 h[j] := y[j] mod p
 end;
function s5cyc (p: integer): boolean;
var k1, k2: integer;
 f, h0, h1, h2: poly;
begin
 f[6] := 1 mod p;
 f[5] := a1 mod p;
 f[1] := a5 mod p;
 f[0] := a6 mod p;
 h0 := f;
 prdif(h1,f,p);
 prgcd(h1,h0,p);
 if deg(h1) > 0 then
 s5cyc := true { disc(f) = 0 mod p }
 else
 begin
 prpwr(h0,f,p,p,p); { h0 <-- rem (x^p - x, f) }
 h1 := f; prgcd(h1,h0,p); k1 := deg(h1);
 if k1 = 6 then
 s5cyc := true { 111111 }
 else
 if k1 = 4 then
 s5cyc := false { 11112 }
 else
 if k1 = 3 then
 s5cyc := false { 1113 }
 else
 if k1 = 2 then
 s5cyc := true { 1122, 114 }
 else
 if k1 < 2 then
 begin
 prpwr(h0,f,p*p,p); { h0 <-- rem (x^p^2 - x, f) }
 h2 := f; prgcd(h2,h0,p); k2 := deg(h2) div 2;
 if k2 = 1 then
 { deg(h2) = k1 + 2 k2 }
 s5cyc := false { 123, 24 }
 else
 s5cyc := true { 15, 222, 33, 6 }
 end
 end
 end
 end
 end
 end
end;
procedure csinit;
begin
 f02 := false; f13 := false; f31 := false; f53 := false;
f03 := false; f17 := false; f37 := false; f59 := false;
f05 := false; f19 := false; f41 := false; f61 := false;
f07 := false; f23 := false; f43 := false; f67 := false;
f11 := false; f29 := false; f47 := false; f71 := false;
end;

function c02srch: boolean;
const p = 02;
var k3, k4, k5: integer;
begin
 if not f02 then
 begin
 for k3 := 0 to p-1 do
 for k4 := 0 to p-1 do
 for k5 := 0 to p-1 do
 c02[k3,k4,k5,val] := false;
 f02 := true
 end;
k3 := a3 mod p;
k4 := a4 mod p;
k5 := a5 mod p;
 if not c02[k3,k4,k5,val] then
 begin
 c02[k3,k4,k5,rej] := not s5cyc(p);
 c02[k3,k4,k5,val] := true
 end;
c02srch := c02[k3,k4,k5,rej]
end;

%include 'CS19PV.INC' { functions c03srch ... c71srch similarly }
function csrch: boolean;
{ csrch true <=> for some p, f not in 5cyc(p) }
{ <=> for some p, cpsrch true }
{ csrch false <=> for all p, cpsrch false }
var cs: boolean;
begnin
cs := true;
if not c02srch then if not c03srch then if not c05srch then
if not c07srch then if not c11srch then if not c13srch then
if not c17srch then if not c19srch then if not c23srch then
if not c29srch then if not c31srch then if not c37srch then
if not c41srch then if not c43srch then if not c47srch then
if not c53srch then if not c59srch then if not c61srch then
if not c67srch then if not c71srch then
 cs := false;
csrch := 'cs
eend;

const pn = 80;

var pr: array [1..pn] of integer;

procedure prfill;
begnin
pr[14] := 479; pr[34] := 359; pr[54] := 239; pr[74] := 131;
pr[18] := 457; pr[38] := 337; pr[58] := 223; pr[78] := 107;
eend;
function s5type: boolean;
var k: integer;
 cvalid: boolean;
begin
 cvalid := true;
 for k := 1 to pn do
 if cvalid then
 cvalid := s5cyc(pr[k]);
 s5type := cvalid
end;

procedure lib$init_timer;
external;

procedure lib$stat_timer (code: integer; var value: integer);
external;

function lbound (u, v: integer): integer;
{ lower bound = u/v; truncate rightwards ("ceiling") } begin
 if (v < 0) then
 begin u := -u; v := -v end;
 if (u < 0) then
 lbound := u div v
 else
 lbound := (u + v - 1) div v
end;

function ubound (u, v: integer): integer;
{ upper bound = u/v; truncate leftwards ("floor") } begin
 if (v < 0) then
 begin u := -u; v := -v end;
 if (u > 0) then
 ubound := u div v
 else
 ubound := (u - v + 1) div v
end;
function lsqrt (v: integer): integer; { floor(sqrt(v)) }
var r, b: integer;
begin
r := 46340;
while r*r > v do
 begin
 b := r mod 2;
 r := ((r - b) div 2) + ((b*r + v) div (2*r))
 end;
lsqrt := r
end;

function usqrt (n: integer): integer; { ceiling(sqrt(v)) }
var u: integer;
begin
u := lsqrt(n);
if (u*u < n) then
 usqrt := u + 1
else
 usqrt := u
end;

function square (n: integer): boolean; { is n square? }
var r: integer;
begin
if n < 0 then
 square := false
else
 begin r := lsqrt(n); square := (n = r*r) end
end;

function gcd (x, y: integer): integer;
var z: integer;
begin
y := abs(y);
while y <> 0 do
 begin z := x mod y; x := y; y := z end;
gcd := abs(x)
end;
function sign (x: integer): integer;
begin
if x < 0 then sign := -1
else
 if x > 0 then sign := +1
 else
 sign := 0
end;

function root (x: integer; var h: poly; n: integer): boolean;
var k, v: integer;
 r: boolean;
begin
if x = 0 then
 root := (h[0] = 0)
else
 begin
 v := 0; k := 0; r := true;
 repeat
 if 0 = (v - h[k]) mod abs(x) then
 v := (v - h[k]) div x
 else
 r := false;
 k := k + 1
 until (k = n) or (not r);
 if r then
 root := (h[n] = v)
 else
 root := false
 end
end;
procedure a2bd (V2: integer; var b2l, b2u: integer);
begin
 b2l := lbound(-X2-V2,2);
b2u := ubound(-2*X2+3*V2,6)
end;

procedure a6bd (V2: integer; var b6l, b6u: integer);
begin
 b6l := 1;
b6u := ubound(V2*V2*V2,216)
end;

procedure a3bd (V3: integer; var b3l, b3u: integer);
begin
 b3l := lbound(-X3-V3,3);
b3u := ubound(-X3+V3,3)
end;

procedure a4bd (V4: integer; var b4l, b4u: integer);
begin
 b4l := lbound(-X4-V4,4);
b4u := ubound(-X4+V4,4)
end;

procedure a5bd (V5, V6: integer; var b5l, b5u: integer);
var U6: integer;
begin
 b5l := lbound(-X5-V5,5);
b5u := ubound(-X5+V5,5);
 if a1 <> 0 then
 begin
 U6 := -a1*X5 + a2*S4 + a3*S3 + a4*S2 + 6*a6;
b5l := max(b5l,lbound(U6-V6,6*a1));
b5u := min(b5u,ubound(U6+V6,6*a1))
 end
end;
procedure tmfull;
var j, k: integer;
begin
for j := 1 to nb do
 for k := 1 to 6 do
 read(Tmb[j,k])
end;

procedure inittm (var W3, W4, W5, W6: integer; V, a: integer);
var j, k: integer;
begin
for j := 1 to nb do
 if (abs(a) = Tmb[j,1]) and (V = Tmb[j,2]) then
 begin
 W3 := Tmb[j,3];
 W4 := Tmb[j,4];
 W5 := Tmb[j,5];
 W6 := Tmb[j,6]
 end
end;

function cubesf (var f: poly): boolean; { f = g(h), deg(g) = 3 }
begin
 cubesf :=
 and
end;

function quadsf (var f: poly): boolean; { f = g(h), deg(g) = 2 }
begin
 quadsf :=
 (64*f[2]
 and
 (64*f[1]
end;
procedure normal (var h: poly; n: integer);
var j, k: integer; { remove factors of x from h }
begin
 for k := n downto 1 do
 if h[0] = 0 then
 begin
 for j := 0 to k-1 do h[j] := h[j+1];
 h[k] := 0
 end
 end;
end;

function linfac (var f: poly): boolean;
var lfac: boolean; { does f have a linear factor? }

 procedure rtestl (v: integer);
 begin
 if root(v,f,6) then
 lfac := true
 end;

 procedure dtestl;
 var m, h, x, y: integer;
 begin
 h := abs(f[0]);
 m := lsqrt(h);
 for x := 1 to m do
 if not lfac then
 if 0 = h mod x then
 begin
 rtestl(x); rtestl(-x); y := h div x;
 if y <> x then
 begin rtestl(y); rtestl(-y) end
 end
 end;
 begin
 lfac := (f[0] = 0);
 if not lfac then
 dtestl;
 linfac := lfac
 end;
function quafac (var f: poly): boolean;
 var h0: poly; { deg 5 } \{ does f have a quadratic factor? \}
 h1: poly; { deg 4 }
 qfac: boolean;

 procedure rtestq (v: integer);
 begin
 if root(v, h1, 4) then
 if root(v, h0, 5) then
 qfac := true
 end;

 procedure qtest (r: integer);
 var d, j, m, g, x, y: integer;
 { If g(x) = x^2 + qx + r and f[0] = a6 = r*d }
 { then h0(q)*x + h1(q)*r = rem(f,g,x) }
 begin
 d := f[0] div r;
 h1[6] := 0; \{ q^6 \}
 h1[5] := 0; \{ q^5 \}
 h1[4] := -1; \{ q^4 \}
 h1[3] := f[5]; \{ q^3 \}
 h1[1] := -2*r*f[5] + f[3]; \{ q^1 \}
 h1[0] := -r*r - f[2] + d + r*f[4]; \{ q^0 \}
 h0[6] := 0; \{ q^6 \}
 h0[5] := -1; \{ q^5 \}
 h0[4] := f[5]; \{ q^4 \}
 h0[3] := -f[4] + 4*r; \{ q^3 \}
 h0[2] := f[3] - 3*r*f[5]; \{ q^2 \}
 h0[1] := -3*r*r - f[2] + 2*r*f[4]; \{ q^1 \}
 h0[0] := f[1] + r*r*f[5] - r*f[3]; \{ q^0 \}
 end;
if \((h0[0] = 0)\) and \((h1[0] = 0)\) then
\(qfac := \text{true}\) \{ \(q = 0\) is a solution \}
ext
begin
\normal(h0,5);
\normal(h1,4);
g := \gcd(h0[0],h1[0]);
m := \text{l}
\sqrt{g};
for \(x := 1\) to \(m\) do
if not \(qfac\) then
if \(0 = g \mod x\) then
\begin
\text{rtestq}(x); \text{rtestq}(-x); \ y := g \div x;
if \(y \neq x\) then
\begin
\text{rtestq}(y); \text{rtestq}(-y)
end
end
\end
end;

procedure \(\text{dtestq}\);
\var m, h, x, y: \text{integer};
begin
\ h := \text{abs}(f[0]);
\ m := \text{l}
\sqrt{h};
for \(x := 1\) to \(m\) do
if not \(qfac\) then
if \(0 = h \mod x\) then
\begin
\text{qtest}(x); \text{qtest}(-x); \ y := h \div x;
if \(y \neq x\) then
\begin
\text{qtest}(y); \text{qtest}(-y)
end
end
\end
begin
\ qfac := \text{false};
\ dtestq;
\ qfac := qfac
end;
function cubfac (var f: poly): boolean;
var p, q, r, d: integer; { does f have a cubic factor? }
 h1, h3: poly;
 cfac: boolean;

procedure rtestc (v: integer);
var b, c, u, w, x1, y1, x3, y3: integer;
begin
 if not cfac then
 if root(v,h1,3) then
 if root(v,h3,4) then
 begin
 p := v;
 w := (p - f[5])*p + f[4];
 x1 := w*r - f[1];
 y1 := r - d;
 if y1 <> 0 then { solve E1: q*y1 = x1 }
 begin
 q := x1 div y1;
 if 0 = x1 mod abs(y1) then { y1 | x1 }
 if f[2] = (d - r)*p + (w - q)*q + r*f[5] { E2 }
 then
 if f[3] = (w - 2*q)*p + q*f[5] + r + d { E3 }
 then
 cfac := true
 end
 else
 { r = d }
 end
 else
 { rhs(E1) = 0 }
 end
 else
 { rhs(E1) = 0 }
 end
 else
 { r = d }
 end
end.
procedure ctest (v: integer);
var j, k, m, g, x, y: integer;
begin
 r := v;
 d := f[0] div r;
 h1[6] := 0;
 h1[5] := 0;
 h1[4] := 0;
 h1[3] := d + r;
 h1[2] := - (d + 2*r)*f[5];
 h3[6] := 0;
 h3[5] := 0;
 h3[3] := - 2*d*r*f[5];
 h3[0] := (f[2] - r*f[5])*(r - d)**2
 if (h1[0] = 0) and (h3[0] = 0) then
 rtestc(0);
 if not cfac then
 begin
 normal(h1,3); normal(h3,4);
 g := gcd(h1[0],h3[0]); m := lsqrt(g);
 for x := 1 to m do
 if not cfac then
 if 0 = g mod x then
 begin
 rtestc(x); rtestc(-x); y := g div x;
 if y <> x then
 begin
 rtestc(y); rtestc(-y)
 end
 end
 end
end;
procedure dtestc;
var m, h, x: integer;
begin
h := abs(f[0]);
m := lsqrt(h);
for x := 1 to m do
if not cfac then
if 0 = h mod x then
begin ctest(x); ctest(-x) end
end;
begin
cfac := false;
dtestc;
cubfac := cfac
end;

procedure irtest;
var f: poly;
begin
f[0] := a6;
f[1] := a5;
f[3] := a3;
f[4] := a2;
f[5] := a1;
f[6] := a0;
if not quadsf(f) then
if not cubesf(f) then
if not linsf(f) then
if not quaface(f) then
if not cubfac(f) then
if s5type then
begin
write(a1:4); write(' '); write(a2:4); write(' '); write(a3:4); write(' '); write(a4:4); write(' '); write(a5:4); write(' '); write(a6:4); writeln
end
end;

48
procedure a5test;
begin
S5 := -X5 - 5*a5;
X6 := a1*S5 + a2*S4 + a3*S3 + a4*S2 + a5*S1;
S6 := -X6 - 6*a6;
if old4 then
 old5 := ((c51 <= a5) and (a5 <= c5u)
 and (abs(S6) <= Z6))
else
 old5 := false;
if not old5 then
if abs(S3) <= Y6 then
if not csrch then
 irtest
end;

procedure a4test;
begin
if old3 then
 old4 := ((c41 <= a4) and (a4 <= c4u))
else
 old4 := false;
S4 := -X4 - 4*a4;
X5 := a1*S4 + a2*S3 + a3*S2 + a4*S1;
a5bd(Y5,Y6,a51,a5u);
if old4 then
 a5bd(Z5,Z6,c51,c5u);
for a5 := a51 to a5u do
 a5test
end;

procedure a3test;
begin
if old6 then
 old3 := ((c31 := a3) and (a3 <= c3u))
else
 old3 := false;
S3 := -X3 - 3*a3;
X4 := a1*S3 + a2*S2 + a3*S1;
a4bd(Y4,a41,a4u);
if old3 then
 a4bd(Z4,c41,c4u);
for a4 := a41 to a4u do
 a4test
end;
procedure a6test;
begin
 inittm(Z3,Z4,Z5,Z6,T-1,a6);
 inittm(Y3,Y4,Y5,Y6,T,a6);
 if old2 then
 old6 := ((c6l <= a6) and (a6 <= c6u))
 else
 old6 := false;
 csinit; { requires a1, a2, a6 }
 S2 := -X2 - 2*a2;
 X3 := a1*S2 + a2*S1;
 a3bd(Y3,a3l,a3u);
 if old6 then
 a3bd(Z3,c3l,c3u);
 for a3 := a3l to a3u do
 a3test
 end;

procedure a2test;
begin
 if old1 then
 old2 := ((c2l <= a2) and (a2 <= c2u))
 else
 old2 := false;
 a6bd(Y2,a6l,a6u);
 if old2 then
 a6bd(Z2,c6l,c6u);
 for a6 := a6l to a6u do
 if a6 <> 0 then
 a6test
 end;
procedure a1test;
begin
lib$init_timer;
old1 := (T > 6);
S1 := -X1 - 1*a1;
X2 := a1*S1;
a2bd(Y2,a2l,a2u);
if old1 then
 a2bd(Z2,c2l,c2u);
for a2 := a2l to a2u do
 a2test;
lib$stat_timer(2,cpu);
writeln(T:3,':::',a1:1,':::',cpu:15)
end;

procedure Tvtest;
begin
X1 := 0;
Y2 := T;
Z2 := T - 1;
a1l := 0;
a1u := 3;
for a1 := a1l to a1u do
if T <= B[a1] then
 a1test
end;

begin
{ *** start here *** }
prfill;
tmfill;
for T := Tmn to Tmx do
 { T = ceiling(T2) }
 Tvtest
end.
APPENDIX III — ROUTINES DEFINED IN tcdg6.pas

function deg (var f: poly): integer;
Returns the degree of the polynomial f.

procedure prmdr (var f, g: poly; p: integer);
Replaces the polynomial f by its remainder upon division by the polynomial g,
modulo the prime number p (possibly multiplied by a unit modulo p).

procedure pswap (var f, g: poly);
Exchanges the polynomials f and g.

procedure prdif (var g, h: poly; p: integer);
Assigns to h the derivative of the (univariate) polynomial g, reduced modulo the
prime number p.

procedure prgcd (var f, g: poly; p: integer);
Given polynomials f and g and a prime number p, replaces the polynomial f by
gcd(f, g) mod p, possibly multiplied by a unit modulo p.

procedure prprd (var w, z, f: poly; p: integer);
Given polynomials w, z and f and a prime number p, replaces the polynomial w
by the remainder of w · z upon division by the polynomial f, reduced modulo the
prime number p.
procedure prpwr (var h, f: poly; q, p: integer);

Given the (monic) polynomial f, the positive integer q and the prime number p, assigns to h the remainder of $x^q - x$ upon division by $f(x)$, reduced modulo p.

function s5cyc (p: integer): boolean;

Given the prime p and defining $f(t) = t^6 + a_1 t^5 + a_2 t^4 + a_3 t^3 + a_4 t^2 + a_5 t + a_6$ from the global variables a_1, \ldots, a_6, s5cyc returns the value TRUE if p divides the discriminant of f or if the degree sequence of the mod p factors of f corresponds to one of the cycle types that occur in $\text{PGL}_2(\mathbb{F}_5)$, namely, 1·1·1·1·1·1, 1·1·2·2, 1·1·4, 1·5, 2·2·2, 3·3, 6; otherwise the degree sequence of the mod p factors of f is one of 1·1·1·1·2, 1·1·1·3, 1·2·3, 2·4, which do not occur in $\text{PGL}_2(\mathbb{F}_5)$, and s5cyc returns the value FALSE. (If the Galois group of f is $\text{PGL}_2(\mathbb{F}_5)$ then s5cyc returns the value TRUE, but not conversely.)

procedure csinit;

For each of the twenty primes $p = 2, \ldots, 71$, the flag I_p (denoted f_p) is initialized to FALSE.

function cprsch: boolean;

The number p is a prime between 2 and 71; the arrays V_p and W_p are boolean arrays of size $p \times p \times p$; the subscripts r_3, r_4, r_5 are the residues of a_3, a_4, a_5 mod p. If the flag I_p is FALSE then the array V_p has not been initialized; the entries $V_p[k_3, k_4, k_5]$ (denoted $c_p[k_3, k_4, k_5, \text{val}]$) are initialized to FALSE and I_p becomes TRUE. If $V_p[r_3, r_4, r_5]$ is FALSE then $W_p[r_3, r_4, r_5]$ (denoted $c_p[r_3, r_4, r_5, \text{ rej}]$)
has not been computed; its value is determined to be $\neg s5\text{cyc}(p)$ and $V_p[r_3, r_4, r_5]$ becomes TRUE. The value returned is $W_p[r_3, r_4, r_5]$.

function csrch: boolean;
Returns the value TRUE if $s5\text{cyc}(p)$ is FALSE for at least one of the primes $p = 2, \ldots, 71$; returns the value FALSE if $s5\text{cyc}(p)$ is TRUE for all these primes. (If the Galois group of f is $\text{PGL}_2(\mathbb{F}_5)$ then csrch returns the value FALSE, but not conversely.)

procedure prfill;
The integer array $\text{pr}[1..80]$ is initialized to contain the eighty primes p in the range $101 \leq p \leq 571$.

function $s5\text{type}$: boolean;
Tests $s5\text{cyc}(p)$ for the primes p in the range $101 \leq p \leq 571$. If the Galois group of $f(t) = t^5 + a_1t^5 + a_2t^4 + a_3t^3 + a_4t^2 + a_5t + a_6$ is $\text{PGL}_2(\mathbb{F}_5)$ then $s5\text{type}$ returns the value TRUE (but not conversely).

procedure $\text{lib$\text{\$init$\text{-timer}}$}$;
Initializes the system clock.

procedure $\text{lib$\text{\$stat$\text{-timer}}$(code: integer; var value: integer)}$;
When code = 2, returns in cpu the elapsed CPU time for the process, expressed in hundredths of a second.
function lbound (u, v: integer): integer;
Assuming \(\frac{u}{v} \) is a lower bound for a set of integers, returns \(\left\lfloor \frac{u}{v} \right\rfloor \) (which must be a lower bound for the same set of integers).

function ubound (u, v: integer): integer;
Assuming \(\frac{u}{v} \) is an upper bound for a set of integers, returns \(\left\lceil \frac{u}{v} \right\rceil \) (which must be an upper bound for the same set of integers).

function lsqrt (v: integer): integer;
Given the non-negative integer \(v \), returns \(\left\lfloor \sqrt{v} \right\rfloor \).

function usqrt (w: integer): integer;
Given the non-negative integer \(w \), returns \(\left\lceil \sqrt{w} \right\rceil \).

function square (n: integer): boolean;
Returns TRUE if the integer \(n \) is a perfect square, otherwise returns FALSE.

function gcd (x, y: integer): integer;
Returns the greatest common divisor of the integers \(x \) and \(y \).

function sign (x: integer): integer;
Returns the sign (-1 if \(x < 0 \), 0 if \(x = 0 \), +1 if \(x > 0 \)) of the integer \(x \).

function root (x: integer; var h: poly; n: integer): boolean;
Given the polynomial \(h \) of degree \(n \) and the integer value \(x \), returns TRUE if \(x \) is a root of \(h \), and returns FALSE otherwise.
procedure a2bd (V2: integer; var b2l, b2u: integer);

Given the value V2 for \([T_2]\), returns lower and upper bounds \(b_{2l}\) and \(b_{2u}\) for \(a_2\), as explained in Chapter Three.

procedure a6bd (V2: integer; var b6l, b6u: integer);

Given the value V2 for \([T_2]\), returns lower and upper bounds \(b_{6l}\) and \(b_{6u}\) for \(a_6\), as explained in Chapter Three.

procedure a3bd (V3: integer; var b3l, b3u: integer);

Given the value V3 for \(Y_3\), returns lower and upper bounds \(b_{3l}\) and \(b_{3u}\) for \(a_3\), as explained in Chapter Three.

procedure a4bd (V4: integer; var b4l, b4u: integer);

Given the value V4 for \(Y_4\), returns lower and upper bounds \(b_{4l}\) and \(b_{4u}\) for \(a_4\), as explained in Chapter Three.

procedure a5bd (V5, V6: integer; var b5l, b5u: integer);

Given the values V5 and V6 for \(Y_5\) and \(Y_6\), returns lower and upper bounds \(b_{5l}\) and \(b_{5u}\) for \(a_5\), as explained in Chapter Three.

procedure tmpfill;

For the 239 possible combinations of \(a_6\) and \(Y_2\), reads values for \(a_6, Y_2, Y_3, Y_4, Y_5, Y_6\) from the standard input and stores them in the array \(T_{mb}\) (see Chapter Three).

procedure inittm (var W3, W4, W5, W6: integer; V, a: integer);

Given \(Y_2 = V\) and \(a_6 = a\), assigns to \(W_3, W_4, W_5, W_6\) the values for \(Y_3, Y_4, Y_5, Y_6\) (see Chapter Three).
function cubesf (var f: poly): boolean;
Returns TRUE if the polynomial $f(t)$ can be written as $g(h(t))$, with $\deg g = 3$ and $\deg h = 2$; otherwise returns FALSE. (When this condition is true, h defines a field element having cubic minimal polynomial over \mathbb{Q}.)

function quadsf (var f: poly): boolean;
Returns TRUE if the polynomial $f(t)$ can be written as $g(h(t))$, with $\deg g = 2$ and $\deg h = 3$; otherwise returns FALSE. (When this condition is true, h defines a field element having quadratic minimal polynomial over \mathbb{Q}.)

procedure normal (var h: poly; n: integer);
Removes factors of x from $h(x)$, so that $h(0) \neq 0$.

function linfac (var f: poly): boolean;
Returns TRUE if $f(x) = x^6 + a_1x^5 + a_2x^4 + a_3x^3 + a_4x^2 + a_5x + a_6$ has a linear factor, FALSE otherwise.

procedure rtest1 (v: integer);
Gives the value TRUE to lfac if the integer v is a root of the polynomial f; leaves lfac unchanged otherwise.

procedure dtest1;
Assuming $a_6 \neq 0$, gives the value TRUE to lfac if there is an integer x (necessarily dividing a_6) such that $f(x) = 0$.

57
function quafac (var f: poly): boolean;

Assumes \(f(x) = x^6 + a_1 x^5 + a_2 x^4 + a_3 x^3 + a_4 x^2 + a_5 x + a_6 \), with \(a_6 \neq 0 \). Returns TRUE if \(f \) has a quadratic factor, FALSE otherwise.

procedure rtestq (v: integer);

Gives qfac the value TRUE if \(h_0(v) = h_1(v) = 0 \); \(h_0 \) and \(h_1 \) are defined below.

procedure qtest (r: integer);

Assumes \(r \mid a_6 \neq 0 \). If \(f(x) \) has a quadratic factor \(g(x) = x^2 + qx + r \) for some integer \(q \) then qfac is given the value TRUE, as follows. The remainder of \(f(x) \) upon division by \(g(x) \) is \(h_0(q)x + h_1(q)r \), where

\[
\begin{align*}
 h_0(q) &= -q^5 + a_1 q^4 - (a_2 - 4r)q^3 + (a_3 - 3ra_1)q^2 \\
 & \quad - (3r^2 + a_4 - 2ra_2)q + a_5 + r^2a_1 - ra_3, \\
 h_1(q) &= -q^4 + a_1 q^3 - (a_2 - 3r)q^2 - (2ra_1 - a_3)q - r^2 - a_4 + d + ra_2.
\end{align*}
\]

If \(h_0(0) = h_1(0) = 0 \) then \(x^2 + r \) is a factor of \(f(x) \), and qfac becomes TRUE. Otherwise \(h_0(x) \) and \(h_1(x) \) are normalized so that \(h_0(0) \neq 0 \neq h_1(0) \). If \(h_0(v) = h_1(v) = 0 \) for some \(v \mid \gcd(h_0(0), h_1(0)) \) then \(x^2 + vx + r \) is a factor of \(f(x) \), and qfac becomes TRUE.

procedure dtestq;

For each integer \(r \mid a_6 \neq 0 \), gives the value TRUE to qfac if there exists an integer \(q \) such that \(x^2 + qx + r \) is a factor of \(f(x) \).
function cubfac (var f: poly): boolean;

Assumes \(f(x) = x^6 + a_1 x^5 + a_2 x^4 + a_3 x^3 + a_4 x^2 + a_5 x + a_6 \), with \(a_6 \neq 0 \). Returns TRUE if \(f \) has a cubic factor, FALSE otherwise.

procedure rtestc (v: integer);

Assumes \(r \) is a fixed integer value, with \(r \mid a_6 \neq 0 \). If \(f(x) \) has a cubic factor \(g(x) = x^3 + px^2 + qx + r \), with \(p = v \), for some integer \(q \), then cfac is given the value TRUE, as follows.

Taking \(k_0 x^2 + k_1 x + k_2 \) to be the remainder of \(f(x) \) upon division by \(g(x) \), define

\[
E_1 = \frac{q}{r} k_2 - k_1, \quad E_2 = \frac{p}{r} k_2 - k_0, \quad E_3 = \frac{1}{r} k_2.
\]

Note that \(k_0 = k_1 = k_2 = 0 \iff E_1 = E_2 = E_3 = 0 \). Defining

\[
x_1 = wr - a_5, \\
y_1 = r - d, \\
x_2 = wq - a_4 - (p - a_1)r + dp, \quad y_2 = q, \\
x_3 = wp - a_3 + r + d, \quad y_3 = 2p - a_1,
\]

with \(w = (p - a_1)p + a_2 \) and \(d = \frac{a_6}{r} \), gives

\[
E_1 = x_1 - qy_1 = wr - a_5 - (r - d)q, \\
E_2 = x_2 - qy_2 = wq - a_4 - (p - a_1)r + pd - q^2, \\
E_3 = x_3 - qy_3 = wp - a_3 + r + d - (2p - a_1)q.
\]
If $y_1 \neq 0$ take $q = \frac{x_1}{y_1}$. If $q \in \mathbb{Z}$ and $E_2 = E_3 = 0$ then cfac becomes TRUE.

If $y_3 \neq 0$ take $q = \frac{x_3}{y_3}$. If $q \in \mathbb{Z}$ and $E_1 = E_2 = 0$ then cfac becomes TRUE.

If $y_1 = y_3 = 0$ then

$$E_1 = \frac{w}{3} - a_5, \quad E_2 = \frac{w}{3}q - a_4 + \frac{2}{3}pr - q^2, \quad E_3 = \frac{wp}{3} - a_3 + 2r.$$

If $E_1 = E_3 = 0$, and if the discriminant of E_2 (as a quadratic polynomial in q) is a perfect square, then cfac becomes TRUE.

procedure ctest (v: integer);
Assumes $v \mid a_6 \neq 0$. If $f(x)$ has a cubic factor $g(x) = x^3 + px^2 + qx + r$, with $r = v$, for some integers p and q, then cfac is given the value TRUE, as follows.

Taking E_1, E_2, E_3 as above, define

$$h_1(p) = \text{Resultant}(E_3, E_1, q), \quad h_3(p) = \text{Resultant}(E_1, E_2, q).$$

As polynomials in p, the degrees of h_1 and h_3 are 3 and 4 respectively. If $x^3 + px^2 + qx + r$ is a factor of $f(x)$ then $h_1(p) = h_3(p) = 0$. The value $p = 0$ is tested (by rtestc(0)) if $h_1(0) = h_3(0) = 0$. Then h_1 and h_3 are normalized by removing all factors of p, and all divisors v of $gcd(h_1(0), h_3(0))$ are tested (by rtestc(v)) as possible values for p.

procedure dtestc;
For each integer $v \mid a_6 \neq 0$, gives the value TRUE to cfac if there exist integers p and q such that $x^3 + px^2 + qx + v$ is a factor of $f(x)$. 60
procedure irrtest;
If the polynomial \(f(x) = x^6 + a_1 x^5 + a_2 x^4 + a_3 x^3 + a_4 x^2 + a_5 x + a_6 \) has no linear, quadratic or cubic factors (i.e., if \(f \) is irreducible) and if \(f(x) \) cannot be written as \(g(h(x)) \), with \(\deg(h) = 2 \) or \(3 \) (in which case the field generated over \(\mathbb{Q} \) by a root of \(f \) would have a proper subfield), and if the degrees of the mod \(p \) factors of \(f \) are consistent with \(\text{PGL}_2(\mathbb{F}_5) \) cycle types for primes \(p \) in the range \(101 \leq p \leq 571 \), then the coefficients \(a_1, \ldots, a_6 \) are written to the standard output.

procedure a5test;
Given \(a_1, a_2, a_3, a_4, a_5, S_1, S_2, S_3, S_4, S_5 \) and \(X_5 \), assigns

\[
S_5 \leftarrow -X_5 - 5a_5, \quad X_6 \leftarrow a_1 S_5 + a_2 S_4 + a_3 S_3 + a_4 S_2 + a_5 S_1, \quad S_6 \leftarrow -X_6 - 6a_6.
\]

Provided the current combination of values for \(a_1, a_2, a_3, a_4 \) and \(a_5 \) satisfies \(T - 1 < T_2 \leq T \), and provided the degrees of the mod \(p \) factors of the polynomial \(f(x) = x^6 + a_1 x^5 + a_2 x^4 + a_3 x^3 + a_4 x^2 + a_5 x + a_6 \) are consistent with \(\text{PGL}_2(\mathbb{F}_5) \) cycle types for primes \(p \) in the range \(2 \leq p \leq 71 \), and provided \(f \) satisfies the tests in \text{irrtest} above, the coefficients \(a_1, \ldots, a_6 \) are written to the standard output.

procedure a4test;
Having \(a_1, a_2, a_3, a_4, S_1, S_2, S_3, X_4, Y_5 \) and \(Y_6 \), assigns

\[
S_4 \leftarrow -X_4 - 4a_4, \quad X_5 \leftarrow a_1 S_4 + a_2 S_3 + a_3 S_2 + a_4 S_1,
\]

and determines bounds \(a_{5l}, a_{5u} \) for \(a_5 \) (as explained in chapter three). If the current values of \(a_1, a_2, a_3 \), and \(a_4 \) appear in any cases with smaller \(T \)-value, then
additional bounds c_{5l}, c_{5u} for a_5 are computed (to be used in excluding cases for which $T_2 \leq T - 1$). Calls a5test for $a_{5l} \leq a_5 \leq a_{5u}$.

procedure a3test;
Having $a_1, a_2, a_3, S_1, S_2, X_3$ and Y_4, assigns

$$S_3 \leftarrow -X_3 - 3a_3, \quad X_4 \leftarrow a_1S_3 + a_2S_2 + a_3S_1,$$

and determines bounds a_{4l}, a_{4u} for a_4 from Y_4 and X_4 (as explained in chapter three). If the current values of a_1, a_2, a_3 and a_4 appear in any cases with smaller T-value, then additional bounds c_{4l}, c_{4u} for a_4 are computed (to be used in excluding cases for which $T_2 \leq T - 1$). Calls a4test for $a_{4l} \leq a_4 \leq a_{4u}$.

procedure a6test;
Given a_6, assigns to Z_3, Z_4, Z_5, Z_6 the values of Y_3, Y_4, Y_5, Y_6 corresponding to $[T_2] = T-1$ and retrieves the values of Y_3, Y_4, Y_5, Y_6 corresponding to $[T_2] = T$. Initializes the flags I_p for $2 \leq p \leq 71$. With a_1, a_2, X_2 and S_1 given, assigns

$$S_2 \leftarrow -X_2 - 2a_2S_1, \quad X_3 \leftarrow a_1S_2 + a_2S_1,$$

and determines bounds a_{3l}, a_{3u} for a_3 (as explained in chapter three). If the current values of a_1, a_2 and a_3 appear in any cases with smaller T-value, then additional bounds c_{3l}, c_{3u} for a_3 are computed (to be used in excluding cases for which $T_2 \leq T - 1$). Calls a3test for $a_{3l} \leq a_3 \leq a_{3u}$.
procedure a2test;

Given $Y_2 = T = [T_2]$, determines lower and upper bounds $a_{\delta l} = 1$, $a_{\delta u} = \left\lfloor \frac{Y_2^2}{216} \right\rfloor$ for a_δ (as explained in chapter three). If the current values of a_1 and a_2 appears in any cases with smaller T-value, then additional bounds $c_{\delta l}$, $c_{\delta u}$ for a_δ are computed (to be used in excluding cases for which $T_2 \leq T - 1$). Calls a6test for $a_{\delta l} \leq a_\delta \leq a_{\delta u}$.

procedure a1test;

Initializes the system CPU timer. Given a_1, X_1 and $Y_2 = T = [T_2]$, assigns

$$S_1 \leftarrow -X_1 - a_1, \quad X_2 \leftarrow a_1 S_1$$

and determines bounds a_{2l}, a_{2u} for a_2 (as explained in chapter three). If $T > 6$, additional bounds c_{2l}, c_{2u} for a_2 are computed (to be used in excluding cases for which $T_2 \leq T - 1$). Calls a2test for $a_{2l} \leq a_2 \leq a_{2u}$. When a2test has completed, reads the system CPU clock and reports the elapsed time on the standard output.

procedure Tvttest;

Initializes

$$X_1 \leftarrow 0, \quad Y_2 \leftarrow T = [T_2], \quad Z_2 \leftarrow T - 1;$$

calls a1test for $0 \leq a_1 \leq 3$, provided $T \leq B_{a_1}$.
APPENDIX IV — SCREENING THE GENERATED POLYNOMIALS

The ALGEB program s0s5b.agb reads the sequence of polynomials generated as described above. For each polynomial it computes the signature by means of Sturm sequences [Cohen, Algorithm 4.1.11]; polynomials not having signature (0,3) are discarded. For those that remain the field discriminant is computed. This is done using the Zassenhaus "Round Two" algorithm [Cohen, Algorithm 6.1.8]. Polynomials for which the field discriminant is too large are discarded. The polynomials which survive these tests are written in normalized form, which is to say that the leading term of \(f(t) \) of odd degree has a positive coefficient, and \(g(t) = t^6 f(1/t) \) replaces \(f(t) \) if \(|f(0)| = 1 \) and \(g \) precedes \(f \) lexicographically.

ALGEB Program s0s5b.agb

```plaintext
iochan 1, 2; integer fsig, fmax;  \{ signature (0,3) \}

fsig := 0; fmax := abs(-1778112);

begin

integer j, fd, m, ct; array f[0:6];

external integer procedure fdisc;
external integer procedure sturm;
```
procedure normal; { make leading odd term positive }
integer j, k; array g[0:6];
if abs(f[0]) = 1 then
 begin
 k := 0;
 for j := 0,...,6 do
 begin
 g[j] := f[0]*f[6-j];
 if abs(g[j]) # abs(f[j]) then k := j
 end;
 if abs(g[k]) < abs(f[k]) then f := g
 end;
k := 1;
if f[3] # 0 then k := 3;
if f[5] # 0 then k := 5;
if f[k] < 0 then
 begin
 end;
input(1,"AGB$CONTROL"); { *** start here *** }
readn(1,m);
close(1);

input(1,"AGB$INPUT"); output(2,"AGB$OUTPUT");

for ct := 1,...,m do
 begin
 f[6] := 1; for j := 5,4,...,0 do readn(1,f[j]); normal;
 if sturm(f) = fsig then
 begin
 fd := fdisc(f);
 if abs(fd) <= fdmax then
 begin
 writeln(2,fd,12);
 for j := 5,4,...,0 do space(2,1) ! writeln(2,f[j],4);
 line(2,1)
 end
 end
 end

close(1); close(2)
The output from the ALGEB program `s0s5b.agb` consists of 1190 distinct polynomials of signature (0,3), each of which is given together with the discriminant of the field generated by one of its roots.

Output from s0s5b.agb (ALGEB)

```
-12167  0  5  3  12  -4  8
   .
   .
-1728243  3  1  -6  -5  18  27
-1778112  0  3  2   6   0   1
-1778112  0  3  4   0   6  13
-1778112  0  6 10  21  30  13
-1778112  2  1  4  14  16  9
-1778112  2  3  0   0  21
-1778112  2  5  0  7  -2  11
-1778112  2  6  6  -6  3
-1778112  2  8 18  25  10  17
-1778112  2 -1 -12 -2  10  11
-1778112  2 10  4  11 -8  3
```

A simple PASCAL program reads the output from `s0s5b.agb` and creates the MAPLE program `mins0s5.mpl`. This program computes the Galois group of the splitting field for each of the polynomials. (The substitution of $x - 514$ for x avoids an infinite loop in the MAPLE galois routine.)
MAPLE Program mins0s5.rpl

rpt := proc (fx, discF)
local st, gg, et, gx:
lprint('f'=fx):
st := time(): gg := galois(subs(x=x-541,fx)): et := time() - st:
lprint('dF'=discF,gg[1],xT'=et):
end:
rpt(x^6+5*x^4+3*x^3+12*x^2-4*x+8,-12167):
 .
 .
rpt(x^6+3*x^5+x^4-6*x^3-5*x^2+18*x+27,-1728243):
rpt(x^6+3*x^4+2*x^3+6*x^2+1,-1778112):
rpt(x^6+3*x^4+4*x^3+6*x+13,-1778112):
rpt(x^6+6*x^4+10*x^3+21*x^2+30*x+13,-1778112):
rpt(x^6+2*x^5+5*x^4+4*x^3+14*x^2+16*x+9,-1778112):
rpt(x^6+2*x^5+3*x^4+21,-1778112):
rpt(x^6+2*x^5+5*x^4+7*x^2-2*x+11,-1778112):
rpt(x^6+2*x^5+6*x^4+6*x^3+9*x^2-6*x+3,-1778112):
rpt(x^6+2*x^5+8*x^4+18*x^3+25*x^2+10*x+17,-1778112):
rpt(x^6+2*x^5-5*x^4-12*x^3-2*x^2+10*x+11,-1778112):
rpt(x^6+2*x^5+10*x^4+4*x^3+11*x^2-8*x+3,-1778112):

The output from this MAPLE program includes the polynomial, the discriminant of the field generated by adjoining one of its roots to \(\mathbb{Q} \), the Galois group of the splitting field of the polynomial, and the time (in seconds) required to compute the Galois group.

The Galois group \(\text{PGL}_2(\mathbb{F}_5) \cong S_5 \) occurs only for the ten fields with discriminant \(-1778112\). It is shown below that these fields are all isomorphic.
Output from insOs5.exe (MAPLE)

\[f = x^6 + 5x^4 + 3x^3 + 12x^2 - 4x + 8 \]
\[dF = -12167 \quad S3 \quad xT = .600 \]
\[f = x^6 + 3x^5 + 4x^4 - 6x^3 - 5x^2 + 18x + 27 \]
\[dF = -1728243 \quad D6 \quad xT = .400 \]
\[f = x^6 + 3x^4 + 2x^3 + 6x^2 + 1 \]
\[dF = -1778112 \quad PGL2(5) \quad xT = 4.817 \]
\[f = x^6 + 3x^4 + 4x^3 + 6x + 13 \]
\[dF = -1778112 \quad PGL2(5) \quad xT = 4.700 \]
\[f = x^6 + 6x^4 + 10x^3 + 21x^2 + 30x + 13 \]
\[dF = -1778112 \quad PGL2(5) \quad xT = 5.000 \]
\[f = x^6 + 2x^5 + x^4 + 4x^3 + 14x^2 + 16x + 9 \]
\[dF = -1778112 \quad PGL2(5) \quad xT = 5.600 \]
\[f = x^6 + 6x^5 + 3x^4 + 21 \]
\[dF = -1778112 \quad PGL2(5) \quad xT = 5.266 \]
\[f = x^6 + 2x^5 + 5x^4 + 7x^2 - 2x + 11 \]
\[dF = -1778112 \quad PGL2(5) \quad xT = 9.400 \]
\[f = x^6 + 2x^5 + 6x^4 + 6x^3 + 9x^2 - 6x + 3 \]
\[dF = -1778112 \quad PGL2(5) \quad xT = 5.200 \]
\[f = x^6 + 2x^5 + 8x^4 + 18x^3 + 25x^2 + 10x + 17 \]
\[dF = -1778112 \quad PGL2(5) \quad xT = 4.700 \]
\[f = x^6 + 2x^5 - x^4 - 12x^3 - 2x^2 + 10x + 11 \]
\[dF = -1778112 \quad PGL2(5) \quad xT = 4.816 \]
\[f = x^6 + 2x^5 + 10x^4 + 4x^3 + 11x^2 - 8x + 3 \]
\[dF = -1778112 \quad PGL2(5) \quad xT = 5.350 \]

Total CPU Time: 1063.516 sec

For the ten fields with discriminant \(-1778112\), defined over \(\mathbb{Q} \) by the polynomials \(p_1(t), \ldots, p_{10}(t) \), the MAPLE program isofild.mpl confirms that the field defined by \(p_k(t) \) is isomorphic to the field defined by \(p_5(t) \), for \(1 \leq k \leq 10 \). The MAPLE routine lattice is used to discover a relation between a root \(y \) of \(p_k(t) \) and a root \(x \) of \(p_5(t) \); the correctness of the relation is confirmed by a resultant computation.
MAPLE Program isofld.rpl

readlib(lattice):

Digits := 20: q := 10^Digits:

relvec := proc (f, r, g, s)
local h, j, k, u, v, w, b, c;
v := array(0..6):
for k from 0 to 6 do
v[k] := array(1..9):
if k = 6 then w := s else w := expand(r^k) fi:
for j from 1 to 7 do if j = k+1 then v[k][j] := 1
else v[k][j] := 0 fi od:

v[k][8] := round(q*coeff(w,I,0)):
v[k][9] := round(q*coeff(w,I,1))
od:

u := convert(v,list): b := lattice'u, integer): c := b[1];
h := c[1] + c[2]*x + c[3]*x^2 + c[4]*x^3 + c[5]*x^4 + c[6]*x^5 + c[7]*y:
if rem(resultant(h,g,y),f,x) = 0 then print('0'=h) fi
end:

p[01] := t^6 + 3*t^4 + 2*t^3 + 6*t^2 + 1:
p[02] := t^6 + 3*t^4 + 4*t^3 + 6*t + 13:
p[03] := t^6 + 6*t^4 + 10*t^3 + 21*t^2 + 30*t + 13:
p[04] := t^6 + 2*t^5 + t^4 + 4*t^3 + 14*t^2 + 16*t + 9:
p[05] := t^6 + 2*t^5 + 3*t^4 + 21:
p[06] := t^6 + 2*t^5 + 5*t^4 + 7*t^2 + 2*t + 11:
p[07] := t^6 + 2*t^5 + 6*t^4 + 6*t^3 + 9*t^2 + 6*t + 3:
p[08] := t^6 + 2*t^5 + 8*t^4 + 18*t^3 + 25*t^2 + 10*t + 17:
p[09] := t^6 + 2*t^5 + 10*t^4 + 4*t^3 + 11*t^2 + 8*t + 3:
p[10] := t^6 + 2*t^5 - t^4 - 12*t^3 - 2*t^2 + 10*t + 11:

print('x is a root of p[5] and y is a root of p[k].');
if nf := 5:
for ng from 1 to 10 do
1print('k'=ng):
fx := subs(t=x,p[ng]): rf := fsolve(fx,x,complex):
gy := subs(t=y,p[ng]): rg := fsolve(gy,y,complex):
kf := 1:
for kg from 1 to 6 do relvec(fx,rf[kf],gy,rg[kg]) od
od:
Output from isofld.mpl (MAPLE)

\(x \) is a root of \(p[5] \) and \(y \) is a root of \(p[k] \).

\[
\begin{align*}
k = 1 & \\
& 2 & 3 & 4 & 5 \\
0 &= 103 + 82 x + 111 x + 5 x + 21 x - 6 x + 277 y \\
k = 2 & \\
& 2 & 3 & 4 & 5 \\
0 &= 10 - 27 x - 121 x + 22 x + 37 x + 29 x - 277 y \\
k = 3 & \\
& 2 & 3 & 4 & 5 \\
0 &= 58 - 212 x - 37 x - 94 x - 7 x + 2 x - 277 y \\
k = 4 & \\
& 2 & 3 & 4 & 5 \\
0 &= 55 - 10 x + 27 x + 121 x + 65 x + 21 x + 277 y \\
k = 5 & \\
& 2 & 3 & 4 & 5 \\
0 &= \cdots x + y \\
k = 6 & \\
& 2 & 3 & 4 & 5 \\
0 &= 58 + 65 x - 37 x - 94 x - 7 x + 2 x - 277 y \\
k = 7 & \\
& 2 & 3 & 4 & 5 \\
0 &= 45 + 17 x + 148 x + 99 x + 28 x - 8 x + 277 y \\
k = 8 & \\
& 2 & 3 & 4 & 5 \\
0 &= 158 + 72 x + 138 x + 126 x + 86 x + 15 x + 277 y \\
k = 9 & \\
& 2 & 3 & 4 & 5 \\
0 &= 103 - 195 x + 111 x + 5 x + 21 x - 6 x + 277 y \\
k = 10 & \\
& 2 & 3 & 4 & 5 \\
0 &= -113 + 222 x + 10 x - 27 x - 58 x - 23 x - 277 y
\end{align*}
\]

Total CPU Time: 142.783