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BUCKLING STRENGTH OF SIMPLY SUPPORTED STIFFENED
"PLATE HAVING A PLAIN CIRCULAR PERFORATION
M.R. PUROHIT
ABSTRACT

A thin plate of constant thickness subjected to a
uniform compression applied at its opposite edges, is a
common structural element. One or more circular perforations
may be provided in such plate element for the purpose of
allowing access. The loss in buckling strength, as will be
caused by these perforations,must be compensated before
the plate can be used to its best advantage. An economical
design is possible by introducing stiffeners to reinforce

the perforated plate.

A theoretical investigation is qonducted in this
study to report the structural instability caused by a
plain circular perforation for simply supported square
plates under.edge compression, and also for those plates
reinforced by two symmetric stiffeners in longitudinal and
in transverse manner., Numerical results show that the
. presence of a plain circular perforation causes a small
reduction in buckling compression of a plate whereas the
two stiffeners can be used to carry a substantial part of
the applied compression, increase the buckling strength or

to perform both these functions.
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Plate length
Plate width

Correction factor for calculating
buckling stress in the inelastic range

of the plate material
Flexural rigidity of the plate

Flexural rigidities in two mutually
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Youngts Modulus

Secant Modulus

Tangent Modulus

Buckling coefficient
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Number of half waves in the buckled form ’
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Ratio of cross sectional areas of the

plate and of the reinforcing stiffeners
Shape factor

Ratio of rigidities of the reinforecing

stiffeners and of the plate
Polar coordinates

Compressive stress applied to the plate

edges, far from the perforation
Plate thickness

Amount of work done by the compressive

forces acting on the plate
Energy of the plate’

Loss of energy due to a plain circular
perforation

Lateral deformation of the edgewise
compressed plate

Rectangular coordinates

Buckling stress

Moments applied to the plate edges

Normal and shearing force per unit

length, acting at the plate edges
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INTRODUCTION

Perforations are very often included in the stressed
skin cover of airplane wings. Webs of wide-flange beams
and girders must often be opened up at a number of places

in order to accomodate utility components. In the present

construction practice perforated cover plates are extensive-

ly used to substitute lattice bars and batten plates.
Structural performance of all these plate elements. greatly

depends on their buckling strength.

A perforated plate is less strong as compared to one
without any perforations. A greater tendency toward buckl-
ing may therefore be expected. A design solution must be
deviced to increase the structural stability of such perfo-
rated plate before it can be used to its best advantage.
This always can be accomplished by seleéting a thicker
plate but the design solution will not be economical in
terms of the weight of material used. It is possible to
desigﬂ an adequately strong and rigid structural plate
element by keeping its thickness as small as possible and
by introducing reinforcing stiffeners. Economy in weight
of material and efficient structural performance are both

achieved to a high degree through such design.

vy



The determination of stresses around any plain
circular perforation in a stiffened plate under edge
compression presents itself as a problem of theoretiéal
analysis. Kirsch ' has obtained a solution for stresses
around a small circular perforation in a plate subjected:
to uniform tension épplied in one direction. The theory
of bending of curved bars was used by Timoshenko ? in
obtaining an approximate solution of stresses for plateé
having circular. perforation reinforced by beads. quney 2
has presented an exact analysis of plane stress distribu-
tion for an infinite plate havingla circular perfcration
reinforced by rectangular bead. Mathematical solution is
available for determining stresses around a plain circular

Ly5

perforation in an orthotropic plate .

The intent of this presentation is to study more
fully the effect of a plain circular perforation in redu-

cing the buckling strength of stiffened plates.

Energy solution to the problem of buckling of simply
supported rectangular plates compressed uniformly at theif
opposite edges in one direction, is given by Bryan . A
variety of problems concerning stability of plates rein-
forced by ribs, are discussed by Timoshenko and are
presented collectively ° . Several papers are available

on the general topic of instability and failure of stiffened
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plates. Seide 9 and Stein 7 have used Rayleigh-Ritz method
for calculating buckling compression of plates reinforced
by longitudinal stiffeners, This theory neglects the
torsional rigidity of the reinforcing stiffeners but
considers their flexural rigidity alone, BudianskylO and

10 '
Stein have presented an analysis to determine thz buckl-

ing strength of plates reinforced by transverse stiffeners
where the torsional rigidity of the stiffeners is taken
into account. Seide H has corrected the results given in
Ref. 9 for the case of asymmetric stiffeners used on one
side of the plate. A biblography 2 on stability behaviour
of stiffened plates is available. Also the extensive work
on buckling of stiffened plates has been summarized by
Gerard = and Becker ! « A correlation between stability
problems of isotropic and orthotropic plates under uni-
axial and bi-axial stress applied at their opposite edges,
is given by Wittrick ! . Instability in shear for simply.
supported square plate having a plain circular perforation
is obtained by Krolll whereas the method of numerical

2 16 16 16
integration was used by Levy , Woolley and Kroll in
deriving a solution for critical buckling compression for
similar plates. Some instability problems have been noted
in the study of open web beams and expanded girders, Cato 17
has reported web buckling in built-up girders with rectangu-
lar perforations. Lateral buckling of expanded beams has

18
been reported at University of Illinois . Results on
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over-all stretching of plates having plain circular perfo-
1

rations are presented by Greenspan .,

The author feels that too little is known about the
decrease in buckling strength of a stiffened plate, when
a plain circular perforation is included there in. Also
a theoretical relation between the size of such perforation
and the resulting loss in plate strength must be estabii-
shed. In absence of a rigorous mathematical solutipn a
simplifying recourse has been adapted in this study to
present an appro#imate analysis based on the principle of

minimum potential energy of the following items:-

1. Buckling strength of simply supported square plate

under edge compression applied in one direction.

2. Structural instability due to a plain circular
perforation for uniformly compressed square plate, same
as in item 1 above. Different sizes of such perforation

with diameters upto one-half of the plate length have been

considered,

3. Stabilizing effect of the two symmetric stiffeners,
when they are used to reinforce uniformly compressed perfo-
rated plates, same in item 2 above. Longitudinal and trans-

verse ways of reinforcement have been considered,

Numerical results are obtained on buckling strength.
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THEORETICAL ANALYSIS

2.1 METHOD OF ANALYSIS

In absence of rigorous solution giving the smallest
Eigenvalue of the differential equation representing the
buckled form of a perforated stiffened plate, the aégédxima—
te value of the buckling compression‘can be obtained by'
principle of minimum potential energy-. The analysis is bésed
on ensuring equilibrium and compatiﬁility, which are formu-
lated in terms of scalar functions of energy and work. All
extraneous details arising from complicated geometric or
mechanical reascnings are avoided. The following assumptions
are made :-

1. The perforated stiffened plate will buckle under the
action of stresses acting in a direction parallel to its
middle plgne. The stresses acting in a direction pexrpendi~
cular to that of the middle plane may be disregarded.

2. The slope of the deflected surface is considerably
small in any direction.

3. Buckling is consiéered as limited lateral bending w,
and in-plane extension is negligible. The energy due to in-

plane stretching may be disregarded.
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4. Energy of deformation is not transformed into heag,
kinetic energy or any other form.
5. Points which lie normal to the middle plane of a

perforated stiffened plate prior to its buckling,remain

-normal during and after its buckling.

6. Two distinct phases may be distinguished before any

o

buckling is noticed:; first, the state of stable equilibrium

in which the energy of deformation is always greater than the

corresponding amount.of work done in compressing the perfora-
ted stiffened plate and the second, the state of neutral
equilibrium where the magnitude of the applied compression

is increased to the extent that the amount of work just equals
to.the corresponding energf of deformation. It is obvious

that any further increase in the applied compression, howso-

ever small, will cause buckling and the state of nonequilibri-

Ume.

The smallest value of the buckling compression is

obtained by equating the energy of deformation to the corres-

ponding amount of work done.
2.2 DERIVATION OF BASIC EQUATIONS

An approkimate theory for bending and stretching of

thin plates is derived in order to avoid the difficulties



in its apnlication to the problem of buckling of perforated
stiffened plates.

————

Let us consider a thin plate of constant thickness %
which is subjected *to bending moments Mx' M and twisting

y

noments M and M pei' unit length, =acting at the oprosite ‘
, Xy Jyx ' ‘ '
two edges all as shown in Fig. 1, Let the plate be referred

to.rectangular coordinates with origin coinciding with the
geometric center of the plate; The axes x and y are directed
to the edges and the z axis is directed in the direction of
plate thickness ; The plane midway between the two faces of
'the plate is denoted as the middle plane.énd it is uséd as
the reference surface, Let us conside? a state where ihe

plate deforms laterally to = 1imited bent configuration,

-5+

ALet such'deformation be designated as w. The following
boundary conditions must be satisfied: at x =y = + .gL
- 2

w =20, and at x = ¥y =0vw +# 0, The deformed shape can be

expressed in the form of a double trigonometric series

0o 0 . - '
. - _ nngx n -,
W o= Z }: B ©0S T, cos —_ll eae ()

m-=1 n =1
The slopes of the deformed surface are given a
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MOMENTS APPLIED AT THE PLATE EDGES
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and - E;_—’ where the minus sign denotes that the slopes

decrease with the increase in values of x and y respect-

ively. The curvatures are defined as the rate of change of

slope and are given by the following expressions

. R .
R, {1+(_aw/ax)2}"5’z dx° |
ee(2)
FPu v
=T 2
Ry ay

Twist 1s defined as the rate of change of slope in x
direction when measured in y direction or viceversa. The

following relation denotes twist

L | (3)
| . B;a—y c.oo-ncooo.oaocoo'o

Xy

Slopes, curvatures and the deformation geometry of the
- plate under edge compression are shown in Fig. 2 , whereas
the twist of the reference surface of such plate is given

in Fig. 3.
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The relation between normal stresses and the curvatures is

E z 1 1

d = 2 + AL
X 1 ) R R
( -IL( X . Y
. - . 1 * ‘00000(4)
E z .1
g - +
YA
(l—u ) Ry | Rx

Similarly the shearing stress is related to the twist by

the following expression

T. = 2¢6z

1
z ceeee (5)
Xy R
Xy

The moments causing bending of the pPlate are obtained from

the integrals

M =' d = d ep e 0 6
. Ci z dz and gy ny z dz (6)

And the twisting moment Mxy‘is obtained from

M = T za ceeedl)

After substituting values of stresses from equations (4) and

(5) into equations(6) and (7), the moments are expressed in
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terms of curvatures and twist

1 1 1l 1
AMx = D :x ,+a-§] and .My = D[_E;, +a_€j"'”(8)
) | ZFW"
Mxy= D (1-{1) — S =)

The energy due to bending is given as

: 1 1
av, = % { M_— + M;‘__"‘] dx dy ciecescecseeae(ll)
- | " rR . ¥ R |
x . Y

And the energy due to twisting of the plate is

—

5 .
dU2 = X (1-i)D azw ax.dy cecccscsssces(ll)
0x Yy .

After sﬁbstituting for moments their expressions (8) and (9)
into (10) we get the energy of deformation of an infinitesiﬁal
differential element(dx dy)by adding dU1 and dU2 . The total
~energy of déformation of the plate will bé obtained by inte-~

grating the energy of the differential element over the en-

tire area of the plate.

U = L
(dLl-'-dUz)
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1 S 22w |2
U =§D + -—
2
>k’ dy
s 2 2 2
ow ow é>w
- 2(1 ) dx dy -..-(12)

dx2  dy? " |ox 2y

It must be noted that the notation D represents the bend-

ing rigidity of the plate and

3
E t

D=—""3"
12(1-LL)

The work done by the forces applied at the boundary of the

plate and acting in its middle plane is represented as

r- bw2 'awz
T = -%j Nx{bx + Nyb—y + 2ny><

dw Ow
S { = N ¢ K-
X 2% By .
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BUCKLING OF SIMPLY SUPPORTED SQUARE PLATE UNDER UNIFORM

EDGE COMPRESSION APPLIED IN ONE DIRECTION

Let us consider a thin plate of length = width = £ and
thickness = t which is compressed uniformly at the opposite

4

two edges y = + Y while being held as simply supported at
the remaining EWO\edges x =+ e%—, all as shown in Fig. 4.
Let the maénitude of the average compression per unit length
be denoted as Nyf The plate boundaries are free of any other
normal and shearing forces N, , N . It is assumed that the
conpressed plate would undergo a limited lateral bending w,
which can be represénted by a double trigonometric series as
given in équation (1). In considering buckling of this plate
the stretching in its plane i$ heglecﬁed; The value of criti-

cal stress is obtained by equating the energy of deformation

to the corresponding amount of work done.

Energy of deformafion of the buckled plate, from equations -

(1) and (12) is

' 4 Z
D
U=—7'T7§‘ R ZJ az (nz +m2)2 .-o.oo.o-(l4)

8
18

n=1 m=1

v v st ey e e T T
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Thé work done by the compressive forces causing buckling of

the plate, from equation (13), will be

4 5 o oo . - )
T = 7[ y 2/ Z n a .-oooooo(lS)
8 .

n=1 m=1

Critical value of the buckling cémpression is obtained by
equating the energy of plate deformation U, to the corres-
ponding amount of work T. The followingAcharacteristic equa-
tion must be.satisfied and all values of the coefficients a

mn
be considered as zero except one.

]

(n2+m?) - Ny n Z ﬂ D) 0 cecessos (16)

The plate will begin to buckle at the smallest value of the

applied compression that satisfies equation (16). n and m

represent the length of the buckle and are expressed as posi-

tive integers. The minimum value of the buckling coefficient
¥ is obtained by considering that the plaﬁe would buckle into
one single wave in each direction parallel to x and y axes. -
The following relation holas good for determining k

2

(n+2)2 N ¢ & 3|

IR



We observe

3
Et

= 2- ¢+ N, =6 t andll = 0.30
12(1 - &) o cr

The critical stress will be given as

2
. . &
Eop = 3.62E[ﬂ cectrerersenss(18)

3.1 ELASTIC BUCKLING OF THE COMPRE RESSED PLATE
The critical stress C; as calculated from equation
cxr

(18) will give a true value only when the proportional limit

of the plate material is not exceeded. Elastic buckling of

the compressed plate is distinguished from its inelastic buck-..

ling by obtalnlng the value of critical stress well below the

proportional limit and within the elastic range.
3.2 INELASTIC BUCKLING OF THE COMPRESSED PLATE

t
In case of a thin plate where the ratio -Z— is considers
ably small, the critical stress may exceed proportional limit
of the plate material. Use of equation (18) will give exaggeérs

ated results. Necessarily a plasticity correction factor ¢

must be introduced.
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In the inelastic region of the stress-strain curve as shown
in Fig. 5, the stress is no longer related to strain by linear
relationship. The value Poisson's ratio X tends to inérease |
"to a numerical vaiue equal to one-half, especially when the
plastic strains are large. Therefore Young's modulus E, ;s
used in relation (18), must be repiaced either by the ratio
of inelastic stress to corresponding plastic strain, that is
defined as secant modulus Es or by the variable slope of the
stress-strain curve and defined as tangent modulus Et; The
correction factor C must include all these inelastic effects.
By using the results of the unified theory of plastic buckling
20

of columns and plates given by Stowell the following rela-

tion holds good for theoretical calculation of C

et 2 [ () G
o 1 \ /|

2 a
i-l, B

and the critical stress, beyond the proportional limit of the ®

plate material is given as
63 ' i
= 3.62 CE(-——.) o ® 9 00 e 00900 (20)
cr J :

where we observe li and LL as the wvalues of Poisson's
e p
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21 .
ratios corresponding to elastic and platic strains.The criti-
'cal stress beyond the proportional limit of the plate materiai
is denoted as(j;r . In order to obtain equation (20),the
correction factor C must be multiplied to both sides of equa-

tion (18). By comparing these equations (18) and (20) we also
cry ’

o

£ind that C =

3.3 FAILURE OF THE COMPRESSED PLATE

A compressed plate must be déformed plastically before

. it wouid begin to fail. Necessarily the_nonlinear inelastic
stress—-strain behaviour must be taken into consideration.

The ultimate compression,at which failure may be.noticed,can

be expressed as

........:.'(21)

>
O;l - O)cr .

timate i
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AN ANALVSIS OF STRUCTURAIL INSTABILITY OF SIMPLY SUPPORTED

SQUARE PLATE HAVING A PLAIN CIRCULAR PERFORATION

A theoretical analysis is presented for calculating
an approx1mate value of buckllng compression of simply suppor-'
ted square platé having a plain circular perforatlon. We
consider a case where the compression is applied along §ppo- ’
site two edges of such perforated plate..No attempt is made
to reiﬁforce the plate at the éériphery of the pérforation.
Results, as obtained in this analysis, indicate that a plain
circular perforation will decrease the critical comp;ession .
of the plate. Structural instability,as would be caused by.
aﬁy such perforation,will depeﬁd on its s%zé._.

441 EFFECT OF PLAIN CIRCULAR PERFORATION ON THE STATE

4

OF STRESS

A thin plate under edge compression or tension,is in '
state of plane stress. If a small circular perforation is
made in the middle of this plate, the stress distribution in
"thé immediate neighbourhood of such perforation,'will change.

In consiéering buckling of this perforated plate the state of

redistributed stresses must be known.

An analysis for calculating stresses in a plate having
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a plain circular perforation when subjected to a uniform
tension applied in one direction, is giveﬁ by Kirsch% A review.
of this.soiution shows that the same may ée used to determ-
ine the redistributed stresses in a uniformly compressed
plate, just prior to its buckling. Since we consider buckling ;
under the action of uniform comp;ession applied in'oné direc-

tion,a minus sign must be introduced to preceede S in kirsch's

solution. The stresses will be given by the following rela-

tions
4
s | R:Z i S 3R 4R2
O; = e — 1 - -— 114+ - .cos 26},
2 ’ .
- 2 “ ’
S R S 3R H
G% ={e—]1+—| + —| 1+ cos 28} and
2 L v 2] 2 4
r r
4 - 2
7 S 3R 2R
= - . - bl l Sin 29 000000.-(22)
8 2 4 2 : ‘
x r

Where
r, © = polar coordinates with crigin coinciding with the
geometric center of the plate
R = radius of perforation

- S = edge compression acting far from the perforation




e ———

i JLTENEN

: ‘ i
O; = stress in the radial direction ' ’ : &
C% = stress in the tangential direction %

%o = shear stress _ oo . . | i
4 .

Two distinct stress zones may be distinguished as shown

B e dann LU LRI L

in Fig. 6; the first, far from the perforation and the second, g
in its immediate neighbourhood. Stresses in the first zone ) é
may be considered as if unaffected by the presence of the

perforation. In the second zone; a high concentraﬁion of

stresses may be noticed. When r is very large, as will be at

any point in the first stress zone of the compressed perfora-

ted plate, the stresses are given by the following relations .
Og = - S, Gp=-%8S (L+cos28), T, =5%S sin 26...(23)
Whereas the stresses at any point'where r = R will be given as

Gy = TIQ =0, o’e = = (S = 25 COS 28) .eceecssn..(24)

4.2 EFFECT OF LATERAL TENSION

In obtaining solution for redistributed stresses at any
point of the perforated plate, as given in equations(22), (23)
and (24) we consider the action of compression applied in one '

direction. In fact the perforated plate will undergo some
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FIG 6 -

EFFECT OF PLAIN CIRCULAR PERFORATION

ON THE STATE OF STRESS

25
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contraction in a direction parallel to that of the applied
compression. An extension will be noticed in a difecéion
perpendicular to that of the applied compression. IF the
stresses corresponding to such extension are included, equa-
tion_(é4) will be modifiéd as |

C; = - {S - 2S coé(ze —Hﬂ-+ [S - 2S cos Zé] .......(25)'

The stresses as referred to polar coordinates may be converted

-

to those in rectangular coordinates by using the following

relations

%

. 2 A .2 . .
G; cos © + C% sin” 8 - T_g4 sin 28,

. 2 2 .. .
O; = (j; sin ©6 + Cfe cos B + T;e sin 26 s.i..(26)
T = X(d .—Cf ) sin 26 + T _ cos 26
Xy r © re

$ow

4.3 BUCKLING OF SIMPLY SUPPORTED SQUARE PLATE HAVING A

PLAIN CIRCULAR PERFORATION UNDER EDGE COMPRESSION

The critical stress at which the perforated plate |
" would begin to buckle, is obtained by equating the energy
of deformatioh to the corresponding amount of work done by the

compressive forces . By using equations (22) through (26) in

T
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the calculation of energy and work, we obtain

| S Fu
U, =ﬂ 51 - j(j z dz éXZ] -[ tO; z dz byz]
2 o

Area

| [ ow -
o +-%L?;y z dz 5% By ] d%wéy cereene-(27)

Again it may be tentatively assumed that the energy of the
perforated plate can be-obtained by the relation Up = U - Ub,
where the notation U represents the energy of the plate prior
to making any perforation therein. Uo denotes the energy as
vwi;l be dbtained“by integrating equation (12) over tﬁe enti;e

portion of the plate that has been removed. The energy of the

perforated plate U will be given as

4
IIp
U = Zz (n+m)"
P .
| m=1l n=1 ’ :
4IID
- Z Z (n +m) q& -x) dx..(28)
=1 n=1

Similarly the work done in compressing the-perforated §late-'

will be given as Tp = T .- T. where T, is obtained by inte-
. o «

grating equation (13) over the portion of the plate that has

been removed. ' .
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The smallest value of the buckling stress will be ocbtained

U

by making the expression el minimum. The necessary and .

P

sufficient condition to obtain this minima will be satisfied

if the determinant of the coefficients a

reduces

eeeeed

11’ mn

t+o zero in the following set of simultaneous equations

U T
p .

+ S P = 0
a1 a1y -
U T

___p. - + S p = 0
a a
mn mn

Y eecooscacessecsas(29)

The loss in buckling strength of the.pléte as caused by the

presence of a circular perforation, will be given as

O::r' tf dx dy =
oo o0

SRS
1D a (n 4+m

-

_ m=1 n=1
= 5
a n
co.mn
m=1 n=1

. 2
3.62 E )» th

12

i

4 .QkR2 —x2) dax =

tevesesssess(30)
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It must be noted that in deriving equation (28), we replace

the bending rigidity of the plate D by the term __ =t ____ and

12 (1-4/2)

the radius of the perforation R which is expressed as a frac-

tion of the plate length Z,Vis replaced by a parameter%%. The

critical stress of the perforated plate will be given as

g

2
oo f1-n
cr = 3.62 Et -_
P £2

ceeernesa(31)
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BUCKLING STRENGTH OF SIMPLY SUPPORTED STIFFENED PLATE HAVING

A PLATIN CIRCULAR PERFORATION

In case of buckling of simply supported square plates
ﬂ'“d‘~-_“—§ith“or‘without-ani perforations, the value of critical stress
is directly propértional to the square of the ratio -5?. One
or more stiffeners always can be provided tc increase buckling
strength of these plates, to carrwv a part of the applied con-~
pression or to perform both these functions. In some cases
the plate is reinforced locally at the periphery of the per-
foration by doubler plates whéreas in other cases no such

local reinforcement is provided and the perforation is left

plain. The intent of this study is confined to the later cases

Lo &

-

where we consider plain perforations alone.
5.1 STABILIZING EFFECT OF LONGITUDINAL STIFFENERS

- . Buckiing strength of a plate with or without any perfo-~
ration can be increased by providing longitudinal stiffeners
which are parallel to the direction of the applied compression.
These stiffeners subdivide the plate into panels of smaller
widths. Each panel may be c;nsidered as simply supported in
between the stiffeners and to act as a long platz with a

t
greater value of the ratio -Er, where b denotes the width of
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the panel. It is easily wverified that the buckliajy strength
' £ 12 £ 2
of the plate will increase because {—1 >{——1 also because
b i
the stiffeners will carry a part of the applied compression.
The relation between the dimensions of stiffeners and the
" corresponding increase in buckling strength of the perforated

plate can be obtained by using energy method.

5.2 BUCKLING STRENGTH OF A SIMPLY SUPPORTED SQUARE PLATE
REINFORCED BY TWO LONGITUDINAL STIFFENERS AND HAVING

A PLAIN CIRCULAR PERFORATION

Let us consider a séuare plate of length = width = lz‘

that is reinforced by two equidistant stiffeners subdividing

the plate into three panels of equal width . Let a small
circular perforation bé made in the middle of this étiffened
plate and let a ﬁniform compression -S be applied at the
opposite ?wo edges y = + % {, in a direction parallel to.
that of the two stiffeners,all as shoﬁn in Fig. 9. The mini-
mum value of the applied compression at which the perforated
stiffened plate will begin to buckle, is obtained by equatingl
the total energy of deformation of such plate to the -correspon-

ding amount of work done during compressing. By designating .

the energy and work done in compressing of the two stiffeners
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FIG.9- LOADING OF SIMPLY SUPPORTED SQUARE PLATE
REINFORCED BY TWO SYMME TRIC STIFFENERS AND .

HAVING PLAIN CIRCULAR PERFORATION
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by the notations Ug and T, respectively, we obtain
-— = T - o ® e o000 00000
? UO + US TO + Ts (32)

__ We denote the bending rigidity of a stiffener as BT, — -— .-

also we introduce the following other notations

-S = uniform c¢ompression applied along the opposite_two
edges, far from the perforation |
-Pp = part of the applied cqmpréssion carried by the
séiffeners
plate length

0} = shape factor = = 1
: plate width

ratio of the crosssectional areas of the stiffen-

O
]

A
ers and the plate'
- . EX )
Q = ratio of rigidities = —
D

The energy.of deformation of a single stiffener at a distance

p from the origin is given as

2. 2
AW

US=%EIJV[‘—] dy = %EI -—5 n(a cos—i—“}‘
dy2

X=p ] £3 n=1

iy ¢ (33)
- . + a cOsS + oo e e eeoeocoe 33
: n2 Z ) ‘

L s
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And the work done by the part of the applied compression -P

acting on the stiffeners is’

2 v 2 2 n2 g
T, = o, - 5 dy = ZQA -!zP—[ Ln (a; X
et —————- 1 — x=p_ _ 1l . n=1.
P 21p
X COST+ a 2 cos L + 000000)2 --00000000(34)

The general eqﬁation for calculating the critical stress is

obtained from equations (32), (33) and (34)

2
. . & .
g = o0.905 (1-Xm=e— X
. Cr { 2
2 cO o0
e 2 2 222 4 mIIp 2
PRl
n=1im=1 n—l m= l. .
L ”Z Z(}: r)
mn

n=lm=1 :
In order to .cbtain the smallest value of the critical stress

the derivative of equation (35) is equated to zero. Th& app-

roximate expression for the critical stress is given as

- . 2
3Q+ 4 2 t

= 0.905 (1 -~ /\H) E— cecctecnene (36‘)
cr 3.0+ 1 {2 '

oo oy
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After rearranging the terms in equation (36) we obtain
P P Y

' - 1) ... (37)
J2 30, +1 /

e

where the last term in thé parentheses of equatioh (37) re-"
presents the stabilizing effect of the two symmetric stiffen-
ers reinforcing the perforated plate longitudinally in a

direction parallel to that of the applied compression;

Let us consider a particular case where the two stiff-

eners are of equal rigidity and their size is selected such

- that the ratio of croés sectional areas QA becomes 0.10 and

the ratio of rigidities 5 is 5.00. The critical stress in
this particular case, from equation (37), will be
2
3.62 E t

O = (1-20+266) cueuciinene(38)
cr
2 |

5.3 STABILIZING EFFECT OF TRANSVERSE STIEFENERS

Let us consider a square plate of length = width =4
having a small circular perforation. Let this perforated
plate be reinforced by two equidistant stiffeners transverse-
ly in a direction perpendicular to thatvof the applied comp-

ression, as shown in Fig. 10. The two transverse stiffeners

s

—
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FIG. 10
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PERFORATED PLAT.E USED FOR CALCULATING EQUATION(BS)
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will not participate in carrying the appiied compression yet
the buckling.strength of the perforated plate will be increa-
séd to some extent. This increase in buckling strength will
be notiéed pecause the two stiffeners subdivide the perfora-
ted plate into three éanels each of equal width b and each
panel will act as a long plate.The critical stress will be
obtained by equating thé total energy of deformation to the
corresponding amount of work done. The following equation

holds good
; é 2 _
3.62 Et 2 (n +1)+3Q

= < 1- AT+

Lz L ) 4n2

-1 L.......(39)

4

Where n denotes the number of half-waves into which the pléte
would buckle; It is noticed that the equation (39) will acqu-

ire its minimum value when

An +n"9=0 -.-ooo-oooocoooo(40)

After substitu;ing n=2.54 3and Q = 5.00 into equation

(39),we obtain
2
3.62 Et
.2 ‘
)

(1- A?n +1.70) IR .5 §

g. =

cxr

B AR

P
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5.4  ORTHOTROPIC IMPLICATIONS IN BUCKLING OF PERFORATED
STIFFENED PLATES

Buckling stress of a perforated plate with three or
more stiffeners will differ very little from that of a
plate reinforced closely by infinite number of stiffeners.
As a result, the buckling stress in such case may be

21
calculated with orthotropic plate theory .

The bending and twisting moments in a stiffened
plate will be related to curvatures and twist by the

following relations

w = w4 op 2w
p.d X ax2 1 X}TZ
aZ ()2

= D —W_ + D - _ evses e 2

R R (42)
2

M = 2p Ow__
xy Xy Jdx dy

We consider the stiffened plate as a technically ortho-
tropic plate ° and the relations in equation (42) are
based on different elastic properties in two orthogonal
directions of such plate. Again it must be noted that

the relations in eqﬁations (8) and (9) which are based on

isotropic plate theory, will be substituted by those in

equation (42).
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For the particular case when the size of the perforation
is considerably small, the buckled form of such perforated

stiffened plate may be represented by the differential

equation
D il + 2(D.< 2D‘) Chiy D St
+ —_— —_—=
X Oxk 17"t 5x20y2 Y Togk
2
_ 2y
= NY ay2 ..oaooooooooooooogto(-LPB)

The critical stress at which the compressed plate will

begin to buckle, is given by the relation

2 - D, +20D
D, D 1 Xy -
=E[_L,Y_ K ~-241 - coes{lh)
er 2
b~ t l Dx _Dy

The theoretical determination of the plate rigidities in
the two mutually orthogonal directions of a stiffened
plate is not simple especially when the stiffeners are
asymmetric. The following relations hold good provided
that the stiffeners are symmetric and are provided on

both sides of the perforated plate.

EIX EI
Dx= D + —= 2 Dy = D +__X— 0000.(1}'5)
P

Yy . Py

v h g e A s



L2
and

D; ={D-2ny] A (1)

The notations Py and py are used to represent the stiff-

ener spacing in the directions of x and y axes.
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5.3 BUCKLING OF STIFFENED PLATES WITH TWO OR MORE
CIRCULAR PERFORATIONS.

A stiffened plate with two or more closely spaced
perforations is more likely to be buckled in between
such perforations, when compressed beyond the critical
capacity. Exact analysis of the effect of adjecent
perforations.entails considerable complications because

of the complex nature of the locally concentrated stress,

When the pe;forations are spaced at a distance -
greater than that of the stiffeners, it will be simplify-
ing to neglect the effect of adjecent perforations and
to consider the stiffened plate to be subdivided into
smaller segments each containing a single perforation
and acting as simply supported in between the stiffeners.
Buckling behaviour of each perforated éegment will
necessarily depend or the degree of elastic restraint
available at the supporting stiffeners thereforé the

—

stiffeners must be sturdy in size.
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NUMERICAL RESULTS

We obtain several values of critical buckling comp-
ression for simply supported square plates of different
cross sections, also when a small circular perforation is
inclﬁded there in, and when these perforated plates are
reinforced by two symmetric stiffeners in longitudinal and
in transverse manners. These numerical results formulate
basis for predicting relative buckling strength of plates

with plain circular perforations with or without any ‘

stiffeners,

The values given in Table No. 1 are calculated from
equation (18) for simply supported squaré plates of dif-
ferent cross sections. Several values of the ratio t/{
are considered and corresponding buckiing compressions
are calculated, The results show thaﬁ the buckling strength
of a plate will increase when a higher ratio t/{ is

selected,

The valueé given in Table No., 2 are calculated from
equation (31) wherz we consider the presence of a plain
circular perforation in simply supported square plates
of identical dimensions and cross sections as were consi-
dered in calculating the values given in Table No. 1,

above., Perforations with diameters upto one-half of the
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plate length., The results given in Table No. 2 show that
the buckling strength of simply supported square plates
is hardly affected by the presence of a perforatioh

when the size of the perforation is considerably small

as compared to plate dimensions. There is a rapid decrease
in buckling strength with the increase‘in size of the

perforation.

We also consider longitudinal and transverse stif-
fening arrangements in reinforcing of simply éupported
square plates with plain circular perforations., The values -
of critical buckling compression for these cases are
calculated from equations (37) and (38). respectively and

are given in Table No. 3 and Table No. &.
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7
CONCLUSIONS

Based on the results obtained in this study, the
following conclusions are formulated with regard to buckl-
ing of simply supported square plates reinforced by two

symmetric stiffeners and having small circular perforations,

1. Perforated plates are subject to failure by buck-
ling at relatively low stresses, frequently below tﬁe

proportional limit of the plate material and seldom above

the yield stress,

2. Buckling is the critical mode of failure for the
major portion of the compressed plate especially when its

thickness is considerably small.

3. Buckling may occour due te lateral bending of the
compressed plate or under action of both bending and twist-
ing. The wave length of the buckle depends on the cross
sectional dimensions of the plate and on the shape factor
Qg+ Values of critical buckling stress for simply supported

plates may be predicted from a direct reading chart given

in Fig,11l. -

L. Perforated plates when reinforced by two symmetric
stiffeners will buckle at relatively high stress frequently

above the proportional limit of the plate material., The
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chart given in Fig, 12 indicates the effect of flexural
rigidity of the stiffeners on the buckling strength of
plates having plain circular perforations. A marked incre-
ase in the the buckling compression may be accomplished

by selecting more rigid and sturdy stiffeners.

Critical buckling stress depends on elastic pr0perﬁ-
ies of the plate material. The values bf Poisson's ratio in-
crease in the inelastic range of the plate ﬁaterial. 4]
large values of plastic strains sﬁch increase is almost
one hundred per cent, The chart in Fig. 13 is obtained by
plotting the values of plate buckling coefficient K against
the corresponding values of Poisson's ratio in the elastic

as well as in the inelastic range of the plate material.

13
The chart shown in Fig. 14 is developed by Gerard

which aids in calculating the plate buckling coefficient
while taking into consideration the torsional rigidity of
the reinforcing stiffeners. The upper curve will be appli-
cable if the stifféners are considered as torsionally stiff,
and are attached to both sides of the perforated plate by
means of double row of fasteners. The lower curve will be

applicable if the stiffeners behave as torsionally flexible.

5. In presenting the buckling formulae in this study
the energy of twist is disregarded based on the assumption.

that the stiffeners would behave as absolutely stiff against

¢ e comre | o s e
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twist.

: : 13
The chart given in Fig. 15 is developed by Gerard

which aids in calculating the effect of elastic restraint
at the uncompressed edges on buckling strength of simply
supported plates. In this study we assume that the uncomp-
ressed edges remain straight during and after buckling.
The elastic restraint against in-plane expansion is due to

Poissonts ratio, -

In considering buckling of perforated stiffened
plate we assume that the reinforcing stiffeners subdivide
the plate into segments, each acting as a long plate
while being held as simply supported in between the stif-
feners. Obviously the elastic restraint against in-plane
motion in any such segment must be provided by the
stiffeners., The actual amount of restraint depends on
cross sectional dimensions and the parameter QA contains
the effeét of elastic restraint on plate buckling coeffi-
cient. In Fig. 15 the values of buckling coefficient X
are plotted against the'corresponding values of the para-
meter QA. Two limiting cases are distinguished: in the
first case the ratio of cross sectional areas QA is
considered as zero., Which means the stiffeners are abso-

lutely flexible or in other words the plate will behave

as if unreinforced. In the second limiting case the

ratio of cr i . .
I oss sectional areas QA is considered as

i e O ALIYP T AR P AT et e e e

e e e e e O 1 S P v AT VAL ¥ b S
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Which means that the stiffeners will behave as absolutely
rigid. For any practical dimensions of stiffeners, both
the limiting cases will not apply and the value of the

plate buckling coefficient may be predicted from the

chart given in Fig. 15.

6. Presence of a plain circular perforation
decrease the buckling strength of a plate however such

loss in buckling strength may be economically compensated

by providing suitable reinforcement either at the periphery

of the perforation or in its immediaté vicinity in. longitu-
dinal or in transverse manners. Relative buckling strength

of a perforated plate reinforced by two symmetric stiffen-
ers may be predicted from Fig. 16. .

vacern
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