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ABSTRACT

This thesis initiates the study of some properties of
integrals of network functions and makes an attempt to investi-

gate their use in network theory.

The integrals of the even and odd parts of Hurwitz
polynomials, M and;N, have been considered first. Conditions
have been established such that these are suitable as the
odd and even parts of other Hurwitz polynomials respectively.
Testing procedures including simple inspection tests have been
enunciated. The polynomials M and N satisfying these conditions

have been defined as being "LC-integrable".

The approach used to derive integrability conditions for
M and N are then employed to examine the integrability of a
polynomial F having only simple negative real axis zeros.
Conditions have been found such that the integral of F (a) is
Hurwitz (Hurwitz Integrability) or (b) has only simple negative

real axis zeros (RC-Integrability).

Special cases of M, N or F, termed the medial M, the medial
N or the medial F, arise when their integrals assume the value
zero at the alternate zeros of the given functions. The
properties of the medial M, N or F provide additional criteria

which supplement the testing procedures described earlier.

xii



The real and the imaginary parts of positive real functions
are subjected to the operations of differentiation and integration.
Conditions have been established such that the resulting function
is suitable as the corresponding part of another positive real

function.

As a possible application, it is shown that higher order
positive real functions may be generated using the properties
of integrals of network functions. Further, two new decompo-
sitions of a Hurwitz polynomial employing differentials and/or
integrals of Hurwitz polynomials are considered and their use

in network synthesis discussed.
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CHAPTER I

INTRODUCTION
1.1 General:

Most problems dealing with the stability or the physical
realizability of a linear network are stated in terms of the
restrictions on the location of the zeros of polynomials in the
complex frequency “plane 's'. One well known result is that
the numerator and the denominator polynomials of driving point
functions realizable by a lumped, linear, finite, passive,
bilateral and time-invariant network shall have no zeros in the
right-half plane. Considerable amount of literature(l’z)
exists on the subject of polynomials and this is being utilized
at a rapidly increasing rate in the solutions of network theory
problems. There is little doubt that this practice will
continue in the years to come as a large amount of literature
on the mathematics of polynomials is yet to be applied in the
solutions of such problems. The mutual interaction between
the mathematics of polynomials and network theory has profited
both disciplines. In several instances, modern network theory
has given considerable insight into the behavioy of polynomials.
The generation of polynomials with negative real axis zeros and

(3)

an alternate proof of the Laguerre's theorem can be quoted
as examples in point. Recently, some links between theory of
equations and realizability conditions for networks(4) have also

bezn established.
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One of the topics in the mathematics of polynomials closely
connected to the subject of present investigation is concerned
with relationships between a polynomial and its derivative.
The application of these relationships in network theory has
been relatively recent. The following section summarizes some

results concerning the derivatives of polynomials.

1.2 Some known Resylts concerning the Derivatives of Polynomials:
A useful theorem in network theory concerning the properties

of Hurwitz polynomials* states that

(a) "If F(s) is a Hurwitz Polynomial (HP), then so is

d F(s) "

F'(s), where F'(s) = = a5 .

While a proof of this theorem has been furnished by Weinberg(s)

utilizing the properties of a positive real function(PRF), it
also follows as a direct consequence of a powerful theorem by

(6)

Lucas , which states that:

(b) "The zeros of the derivative polynomial F'(s) lie
within or on the perimeter of the smallest polygon which includes
within itself, or on its boundary, all the zeros of the polynomial

F(s)".

(7)

This theorem has been applied by Reza to generalize in

* A Hurwitz polynomial 1s one whose zeros do not lie 1in the
right half plane. A Hurwitz polynomial may be either strictly
Hurwitz (containing no zeros on the imaginary axis) or pseudo
Hurwitz (if simple imaginary axis zeros are included).
It is assumed that the even and odd parts do not contain any

common factor.



a certain sense Foster's and Cauer's theorems. Specifically,

it has been proved that:

(c) "If P(s)/Q(s) is a rational two-element kind impe-
dance function, then so is P'(s)/Q'(s), thereby establishing
the invariance of the nature of an impedance function under
such an operation".

“w
Another result of some importance concerning the deriva-

tive of a HP is that:

(d) "The logarithmic derivative Z(s) of a HP F(s) defined

as Z(s) = d{LogsF(s)} is a PRF".

Three important corollaries to (d) are:
(i) If F(s) is a HP, then

an(s)
.. n
Zn(s) = nﬁi
F(s)

d
dsn—l

is a PRF.

(ii) The logarithmic derivative of any polynomial F (s)
with zeros restricted to the negative real axis, represents

the driving point impedance of an RC network.

(iii) The logarithmic derivative of any polynomial F(s)
with simple zeros restricted to the imaginary axis represents

the driving point impedance of an LC network.

Talbot(s) has shown that the result (c) with respect to



the generalized Foster's and Cauer's theorems is, in fact,
of a more general nature and holds for any impedance func-

tion. Specifically, it is established that:

F'(s)u
G'(s) °

(e) "If g%%g is a PRF, then so is

Further, using the known properties of the derivative of

a polynomial, necessary coefficient conditions for the reali-
~

(9)

zability of two-element kind networks have recently been given .

1.3 Derivatives of Network Functions:

Several uses of the derivatives of complete network func-
tions have been reported in the literature. A summary of

some important results follows in the next section.

(10)’ who showed

An early reference is that of Van der Pol
that the difference between the electric and the magnetic energy
in an electric network is related to the derivative of its

driving point function. This theorem states that:

"The excess of stored magnetic energy M over stored
electric energy E, in any general RLC passive network fed by

a DC current source I or a DC voltage source V, is given by

2
M~-E = %_ dg(s)
S lg =0
5 ..(1.1)
M- E = - A dyY (s)
2 ds _
s =0

respectively”.

Using this theorem, driving point function synthesis



procedures have been formulated for two-element kind net-

) .

works wherein the total R,C or L has been minimized(ll

Necessary coefficient relationships between the numera-
tor and the denominator polynomials of driving point functions
have resulted by taking derivatives of network functions and
using the known properties of such derivatives(12'13’14'15’16).

These relationshies provide simple inspection tests for posi-

tive realness of driving point functions.

In one of the above paperélsl it has been shown that
the derivative of an RC driving point immittance function is
positive real under certain coefficient conditions. Consider-
ing an RC driving point admittance function of the following

form:

PRt ansn Fooa. +oag
Y_.(s) = K
RC sn + bn

n-1
-15 + ... bo

where either a, # 0 and bO # 0 or a, = 0 and bo # 0 and the

inequality
a.b_ - ab
1<1°2°lg9 .. (1.2)
b
o
d{YRC(S)} *
nolds, it has been proved that — g is positive real.

* What can be considered as an omission in the above result is
the fact that the authors have not pointed out that (1.2) is

& sufficient condition though not necessary. This can be
demonstrated by the following example. Consider
3 2
_ 8~ + 15.1s” + 51.5s + 5 \
YRC(s) = 5 .. (1.3

s“ + 6.8s + 4.8
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The same paper(ls)

goes on further to establish the conditions
under which a rational function F(s) is the derivative of an

RC admittance function.

The foregoing discussion shows that the derivatives of
polynomials and network functions have been widely used in
Circuit Theory. It seems reasonable to speculate that the
integrals of such functions would be of at least equal import-
ance(17)_ Unfortunately, even though several relationships are
known between a polynomial and its derivative, little is known
at the present time about such relationships with respect to
its integral. This thesis initiates the study of the properties

of the integrals of network functions.

1.4 Scope of the Thesis:

The main aim of Chapter II is to establish the condi-

tions under which the integral of a HP is another HP. Poly-

The inequality (1.2) does not hold for expression (1.3).
Differentiating (1.3), we get

pe(8) 54 4 13,65 + 51.185% + 144.96s + 247.20 (1.4)
e ...

(s + 0.8)%(s + 6)2

The numerator of the real part of (1.4) is

8 6 4

s® - 77.94s% + 350.465% - 2178.29s% + 5695.48

which is always positive when s = jw ,0 < w < . Hence,
it follows that (1.2) is not a necessary condition for
the positive realness of dYRc(s)/ds.



nomials for which this holds are referred to as being 'HP-inte-
grable', otherwise, they are termed 'HP-unintegrable'.* The
suitability of the integrals of the even and the odd parts of
the given HP as being the odd or the even part of another HP

is first studied. This procedure has been referred to in

the thesis as testing the 'LC-integrability'* of the even and the
odd parts. If the two parts are separately integrable, then
they are tested fu;lher to see if they can form the odd and

the even parts of the same HP. If either part is unintegrable,

the given HP is classed as being unintegrable.

In Chapter III, the integrability of polynomials contain-
ing only simple negative real axis zeros has been studied. TwoO
aspects are considered; the conditions under which the inte-
gral of the given polynomial is HP and the conditions under
which the integral is a polynomial containing only simple nega-
tive real axis zeros. These two cases are referred to
respectively as 'Hurwitz integrability' and 'RC integra-

bility'.

In Chapter IV, the real and imaginary parts of a PRF

are subjected to the operations of differentiation and inte-

gration. Apart from the conventional operations, two more

. . . P(s) .
operatio on rati 1l £ tion R(s) = are considered.
P ns a tiona unction R(s) ols)

These have been termed 'polynomial differentiation' defined

P'(s) , . . . . /P(s)ds
by o (s, and 'polynomial integration' defined by To(s)ds"

After each of these operations on the real and imaginary

*In this thesis, they are referred to as 'integrable or
'unintegrable' respectively.



8
parts of a positive real function, the suitability of the
new functions as the corresponding parts of another positive

real function are examined.

Chapter V discusses the decomposition of a given HP into
the sum of a HP and its integral which also is a HP. This is
applied in the synthesis of a transfer function as a symmetrical
lattice structure yhere all the inductances are lossy. Also,
an integro-differential type of decomposition of a HP where
each constituent polynomial is a HP is shown to be possible.

A possible use of this decomposition is discussed.



CHAPTER IT

INTEGRABILITY OF HURWITZ POLYNOMIALS

2.1 Introduction:

The determination of the character of a HP under inte-
gration can be considered as a logical starting point for the
investigation of the properties of integrals of network func-
tions. However, wsio precise mathematical relationship exists
between the zeros of a polynomial and those of its integral.
Therefore, recourse is taken to network techniques in the

formulation of the integrability conditions of a HP.

The main objective of this chapter is to establish nece-
ssary and sufficient conditions under which the even and odd
parts of a HP are integrable and hence obtain the necessary

conditions for the integrability of a HP.

2.2 The Integral of a Hurwitz Polynomial:

f(5’6) exists to show that the deriva-

More than one proo
tive of a HP F(s) is Hurwitz. However, the integral of
F =M+ N, where M and N are its even and odd parts respectively,

as given by

N
N
o

JFds = fMds + SNds + K e

*
need not be a HP . This may occur due to either or both of

* K, the constant of integration has to be associated with
/Nds only, as this will form the even part of /SFds. In
addition, K has to be non-negative, otherwise /Fds will
not be a HP.
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the following reasons:
(i) S/Mds and/or /Nds + K may not possess simple
imaginary axis zeros with any choice of K.

(ii) Even if /Mds and /Nds + K possess such zeros,

these two sets of zeros may not interlace.
Examples (2.1) and (2.2) illustrate these two

occurrencest respectively.

Example 2.1:

Consider
F o= (s241) (s243) + s(s2+2) .. (2.2)

which is a HP. Then

4

SfFds = (%— + 32 S

+ K) + Tg(3s4 + 2082 + 45). .. (2.3)

It is seen that the odd part of /Fds has compléx conjugate
zeros and therefore, (2.3) is not a HP. This holds irres-

pective of the value of K.

Example 2.2:

Let
F o= (s + 1)(s% + 5.01) + s(s® + 1.1) (s + 5.5) ..(2.4)
where

M=s*+6.01s% + 5.01 (2.5
and N = s> + 6.6s° + 6.05s .. (2.6)

Now, JFds = fMds + /Nds + K

= 2s(s® + 4.825569) (s° + 5.191097) +

%(s6 + 9.954 + 18.1552) + K Lo (207
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It can be shown that for the range of values of K,
K < 1.59561, /Nds + K can have only imaginary axis zeros
and it can be written as,

2

JNds + K = £(s + a)(s2 + b)(s2 + c) ..(2.8)

6
a,b,c >0

If /Fds is to be a HP, the inequality,

0 < a < 44825569 < b < 5.191097 < ¢ .. (2.9)
shall hold.
Since a + b + ¢ = 9.9 from (2.7) and (2.8), it follows that

(2.9) cannot hold. Hence [fFds cannot be a HP.

The above examples have illustrated the need of knowing
how to choose K, such that, the resulting polynomial is
Hurwitz. The following section deals with the influence of
the constant term in determining the nature of the polynomial

with which it is associated.

2.3 The Constant Term of a Polynomial:

A given non-HP, F = M + N, may be made Hurwitz by associa-
ting with it a real constant C, provided M + C and N contain
only simple imaginary axis zeros and these zeros interlace
with each other. In certain simple cases, it may be possible

to get the range of C by inspection. Failing this, one may

M+ C
N

if one exists, such that the residues are all positive. If

expand into partial fractions and choose a value of C,

no such value exists, then (F + C) can never be Hurwitz.
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Starting with F, a HP, it is possible to determine the
range over which its constant term may be allowed to vary
such that F remains Hurwitz. The procedure is contained in

the following theorem.

Theorem 2.1:

If F= (M + N) is a HP, where
n 5 .
N = s g (s™ + pi), 0 < Py < Py <eenen. < P,
then (F + C) will be a HP if and only if,
(i) for c > 0 , M|52=_pi + C < 0 ; P; = PysP3sPgre-.
or (ii) for c < 0 , M|82=-Pi + C>0 ; p; = 0,p2,p4,....
Proof:

Since F is HP, %-is a reactance function and can be

written as

o

2A.s
i

Z|=

= 59 + 3 + A_s .. (2.10)

s+p,

As the Ai's are positive, we have,

MI 2 < 0' for pl = P1:P31P51----
and Ml 2 > OI for pi = O,PZ,P4,....
s"=-p,
it foliows that, for (F + C) to be a HP, we must have,

(i) for c > 0 , Mlsz=—p. +C<0 ; P; = Pys/Py/Pgre--
i

v
o
-

o

or (ii) fOr C < 0 r M' 2 + C Z = 0’p2’p4l“'" B

s“=-p,
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Hence the theorem is proved.

Example 2.3:

(M + N)

Given F
= (s%+1) (s243) (s245) + s(s2+2) (s2+44) (s2+6) .. (2.13)

it is required to find the range of C such that (F + C) is a

HP. We have
M% C =15 + C
s =0
M + C = -3 + C
s2=-2
2_
s =-4
M+ C 2 =-15 + C
s“=-6
Hence, the permissible range of C is given as,
-3 < C<3 ..(2.15)

With any integration process, a constant term is asso-
ciated. The importance of Theorem 2.1 lies in the fact that
it gives a range of the constant term over which the Hurwitz

character of the polynomial remains invariant.

2.4 Conditions for the Integrability of Hurwitz Polynomials:

For the integrability of F, it is essential to establish

the following:

Step (1): that /Mds contains only simple imaginary
axis zeros and is, therefore, suitable as
the odd part of a HP, or equivalently that

iﬂﬁgi is a reactance function.
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Step 2: that /Nds + K contains only simple imagi-
nary axis zeros and is, therefore, suitable
as the odd part of a HP or equivalently that

(deSN+ K) is also a reactance function.

Step 3: that (IN?;d; X) is also a reactance function.

In effect, step (3) imposes the constraint that the imaginary

axis zeros of J)ddg and (/Nds + K) interlace with each other.

Necessary and sufficient conditions towards the fulfil-
ment of steps (1) through (3) above are given in the follow-

ing sections.

2.5 The Integrability of M:

If M is given as a polynomial, then it will be integrable

provided the continued fraction expansion of iﬁﬁEL has only
real and positive coefficients. Alternatively, if M is given
in the factored form containing m factors as,
= (s? 2 2 2.16)
Mm = (s + xl)(s + X2) cees (87 + Xm) (
Xl < X2 CeeseesS Xm
meds
then the residues of the partial fraction expansion of —
m
xust be real and positive. The same is also equivalent
to the following inequalities,
/M, ds > 0 at s = jw’Xzi_l
(2,173

and

U uH

IN%IdS < 0 at s = JjrX,.

i=1,2,3,....



Thus the problem is to formulate the conditions under which

inequalities (2.17) hold, given Mm as in (2.16).

It will be necessary at many places to depict Mm or
/M ds graphically. The next sub-section deals with the con-

ventions and the geometrical interpretations of M and meds.

2.5.1 Geometrical Interpretation of Mm and meds:
- as

Since Mo is known to have only conjugate pairs of simple
zeros on the imaginary axis, it is enough to depict the confi-
guration of Mm(jw) vs. ju for w > 0. If M is integrable,
then its zeros will interlace with those of meds on the jw~
axis. This condition can also be established by noting the
signs of meds at the consecutive zeros of Mm‘ The same

must alternate in order that integrability may hold.

It will be apparent that Mm is real for any value of u
while meds is always imaginary. However, in order to show
the interlacing of the zeros of Mo and meds, it has been
found convenient to plot both on the same graph. In such
plots, it has been assumed that the ordinate of Mm is real
while that of /M ds is imaginary. No confusion is antici-
pated on this account because the ultimate concern is only
with respect to the signs of meds at the zeros of Mm. Simi-
lariy, whenever meds is compared with a real quantity, it
ie tacitly assumed that it has been made real by simply remov-

ing its {1 multiplier.
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The Mm shown in Fig. 2.1 is integrable since the plot

meds is seen to change sign at consecutive zeros of Mm'

Mm will be unintegrable if either

/M ds < 0 at s = J/XZi—l
*+(2.18)
or meds > 0 at s = j/XZi
i=1,2,3,...
L 4
Figs. 2.2a and 2.2b illustrate these two situations.
meds for a given value of s = jw can also be viewed
as the area enclosed by Mm from the origin up to the given
point. Symbolically,
3%
meds = J Mmds .. (2.19)
s = j/X 0

k
The validity of this interpretation is guaranteed by the fact

that the constant of integration is assumed to be zero. As
an immediate consequence of this and in view of the form of
M as given in (2.16), it follows that meds is unconditionally
positive at s = j/iz'(or s2 = - Xl), the first zero of Mm' In
other words, the inequality,

3/R]

é Mmds >0

o~
2]

. ;—l 5

The testing of the integrability of Mm is based on thres

theorem. discussed in the following sub-section.
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2.5.2 Some Theorems on the Integrability of Mo ¢

Theorem 2.2: If

17Xy
J M ds > 0, then
0 m
37X, 2
é Mm(s + Xm+l)ds >0, X 41> Xm.
Proof: N
Integrating by parts, we have
VK, Y%, V%,
2 el — —
;oM (s +Xm+l)ds = (X ,17X,) / M ds 2/ s(/M ds)ds
0 0 0 .. (2.21)
37X, . L
The term (Xm+l - X2) é Mmds is always positive. From

Fig. 2.2b, it is seen that the plot of fs(meds)ds will be
as shown in Fig. 2.3 and hence will be negative at s = jvxz.

The theorem now follows.

Theorem 2.3:

A necessary condition for the integrability of a given

Mm is that (xz/xl) > 5.

Proof: Consider M2 given by,

2

= 2 57,
M, = (8" + Xq) (s™ + X,) (2022
_ s, 4 5 2 -
szdS = '5—'{5 + §-(Xl + X2)S + 5 X1X2} . . (2.25}
j VX,
The inequality (2.17) will be satisfied if s Mzds is
0

negative. The same holds if (X2/Xl) > 5.
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It may be noted that for M2, this condition is both
necessary and sufficient. From Theorem 2.2, it follows
that a necessary condition for the integrability of Mo is
that My, .... , ,m—2’Mm-l meet the integrability condi-
tion at s = j/X,. Combining this with the result obtained

2
above, Theorem 2.3 follows.

Sufficient conditions of integrability are obtained
L 4

only when the inequalities (2.17) for M are satisfied.

Let Aqui be defined by
JvXy
1.3.5...... (2m + l)l}- M ds]
S m 0
= ..(2.24
Am,X. 2X., ( )
i
Clearly, it is enough to test the signs of the Am X_'s in order
&g
to ascertain the integrability of M . A 's are obtained
m IIL)Xi

successively from a knowledge of b1 X_'s using the following
i |

theorem.

Theorem 2.4:

7 3
(a) & = -g(m,1,2,3) P(3,m-1,m-3) X
m,X 1
1 Xl X2

9 5 5

+8(m,2,3,4) P(3,m-1,m-4) Xl

+ ..... ® & o & 0 o ® ®© o o & & o o ® 6 5 ® & o & 0 0o o o .

m-4 2m-3 2m-7 - 4
+(-1) g (m,m-4,m-3,m-2) P(3,m-1,2) Xl
X X



2m-1 2m~5

+ (—1)m"3 g (m,m-3,m~2,m-1) P(3,m-1,1) xlm”3
X Xy
2m+1 2m-3
+ (-1)™ 2 8 (m,m-2,m-1,m) xlm"2
X %
+ (2m+1)X Am—l,Xl .. (2.25)
where B(m) =9.3.5.7. eeeenenan (2m+1)
sm ) = iy
B8 (m)

B(m,i,j,k)

(21 + 1) (23 + 1) (2k + 1)

P(i,j,k) = the sum of the products of the Xi's
lying within the subscript range

i and j taken k at a timef

* m-1
P(3,m-1,m-3) = 1 X,
i
3
m-1 m-1 m-1
P(3,m-1,m-4) = E ) e oo T XaXb ce e Xc
a=3 b c

a < b < ...< ¢
c-a = m-5
and so on.

As an example, for m = 7,

6
P(3,6,3) = z

o 2 ~v I )Y
™
Lo

aXch = X3X4(X5+X6) + X3X5X6 + X4X5X6

Q
1

4]
Il

N
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(b) A (k < m) is obtained by the following substitutions
m, Xy

in A :
m, X,

for i+ k ¢m ; replace X. by X.
i i+

—

k

or for i + k > m- ; replace Xi by Xi+k—m

Proof: (a) We have,

2

=
]

) I (s™ + X))

(s 2 m

+ Xl)(s2 + X
L 4

P(l,m,m) + P(l,m,m—l)s2 + P(l,m,m—z)s4 S +

-4 2 2m

P(1,m,2)s?™ 4 4 p(1,m,1)s2™ 2 4 ¢ .. (2.26)

Integrating (2.26) with respect to s, we obtain,

2 4
/M ds = s{P(l,m,m) + P(l,m,m—l)%- + P(l,m,m-2)§— Fouun. +
s2m--4 sZm—Z S2m
P(1,m,2) 55— + Pl m.1)5 + 5} .. (2.27)

Multiplying each term of (2.27) by g(m) and leaving out s, we

obtain,

g(m) P(1,m,m) + Bg(m,1) P(l,m,m—l)s2 + B(m,2) P(l,m,m—2)s4 + .. +

B (m,m-2) P(l,m,2)s2m_4 + B (m,m-1) p(1,m,1)s°™ 2 + 8 (m,m) s 2™
= G (say) .. (2.28)
Evaluating (2.28) at 32 = -X;, we get
G s2=—x = g(m) P(l,m,m) - g(m,1) P(l,m,m—l)xl +
1 g (m,2) P(l,m,m—Z)Xl2 m ot tecceceennas +

m-2

(-1) g (m,m-2) P(l,m,z)xlm' +

m-1 1l

(-1) + (-1)™ s(m,m)xlm

(2.2

8 (m,m-1) P(l,m,l)le-



Since
that o

(2.30)

where

and

We can

Xl {B(m)"‘ (mrl)} P(zlmlm'—l) - {B(mll)— (m,2)}

P(2,m,m-2)X, + {8(m,2)-8(m,3)} P(2,m,m—3)xl2 - .

(-l)m_z{s (m,m-2)-g(m,m-1)} P (2,m,1)xlm'2 +

m-1 m-1

(—l) {B(m,m-l)—B(m,m) }Xl

= 2Xl Am,Xl

Xy is positive, the sign of (2.30) will be the same

£ 8 Xy’ which is the expression to be evaluated.
, we have,
_ 1 1
Am,xl =3 xm(2m+1) A + 5 B

{g(m=1)-8(m-1)} P(2,m-1,m-2) - {g(m-1,1)=8(m-1,2)}

P(2,m-1,m—3)xl + {B(m-1,2)-8{(m-1,2)} P(2,m-l~,m—4)xl

3

m=3 (g (m-1,m-3)-8 (m-1,m-2)} P(2,m-1,1)%x,"73 +

(-1)

m-2 m-2

(-1) {g (m-1,m-2)-8 (m~-1,m-1) }X,

m—l,Xl
(2m+1) - {B(m-1,1)-8(m-1,2)1} P(2,m—l,m—2)xl +
{8(m-1,2)-8(m-1,3)} P(2,m-1,m-3)X,% - .........
(-D™% {gm-1,m-2)-8 (m-1,m-1)} P(2,m-1,1)%X,"™ % +

)m—l m-1

(-1 {8 (m,m-1)-6 (m,m)} X

now write

25

..(2.30)

as

From

.. (2.31)

2-—

.. (2.32)

.. (2.33)
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Am,Xl = Xm(2m+l)Am—l,Xl + -—B(m,l,2,3)P(3,m—-l,m—3)(7X2—3X1)Xl

+ B(m,2,3,4)P(3,m—l,m—4)(9X2—5X1)X12 e +

(—1)m’4s(m,m—4,m—3,m-2)P(3,m—1,2){(2m-3)x2—(2m-7)xl}xlm‘4

+ (—1)m‘3e(m,m$3;m—2,ﬁ-l)P(3,m-1,1){(imll)xz-(zm—s)xl}xlm'3

+ (-1)““23(m,m—z,m—l,m){(2m+1)x2-(2m—3)xl}xlm“2 .. (2.34)

L 4

(a) follows from a rearrangement of (2.34)

IA J ® e o o o
2 3

Am X ! to be tested are obtained from (2.25) by the substitution
14
m

of s = jvxz, j/Xé, eee j%Xm. All the coefficients of the

(b) The (m-1) different expressions, i.e., A

m,X m,X

different powers of s involve all the Xi's in the same fashion.

In other words, interchanging an Xi and Xj does not affect the

coefficient. Keeping this in mind, it follows that if we
obtain the expression corresponding to s = jVXl, the remaining

ones can be derived by a cyclic permutation of the Xi's.

The applications of Theorem 2.4 (a) in growing Am X1 from
14
Am—l,xl are now given. We have
5 1
A = .. (2.35)
2,X
1 X1 X2
7 3
A = - X, + 7X,A .. (2.36)
3,X1 X, X, 1 3 2,X1
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7 3 9 5 2
A4’X1 = —9X3 . . Xl + 1.3 « . Xl + 9X4A3'X1 .. (2.37)
1 2 1 2
7 3 4 5 5
AS,Xl = —99X3X4 , « Xl + 33(X3+X4) « X Xl
1 2 1 2
11 7 3
- 15 « « Xl + llX5 4“X1 ..(2.38)
1 2 ‘
7 3 9 5 2
A6,Xl = - 1287X3X4X5 . « X1 + 429(X3X4+X3X5+X4X5) Xl
X X
1 2 1
11 7 3
- 195(X3 + X4 + XS) « « Xy
1 2
13 9 4
+ 105 Xl + 13x6A5,X .. (2.39)
Xl X2 1

The application of Theorem 2.4 (b) gives A y A and so on.
6,X2 6,X3

2.5.3 summary of the Testing Procedure for the Integra-
bility of Mo

Theorems 2.2, 2.3 and 2.4 enable us to outline the follow-
ing testing procedure for determining the integrability of a

given Mm as in (2.16):

(1) I1If 5& < 5, the given Mm is unintegrable. This

X

will be referred to as a case where the second

zero condition is violated.

(2) For M3,M4, cee 4 Mm' the corresponding A's at s = jv’X2

namely, A , A are constructed in

3%, T4,Xy0 0t m, X,
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the above order by means of Theorem 2.4. If at

any stage of development, Ai (i < m) is non-

X
2
negative, the given Mm is unintegrable.

(3) A ; eee A are computed by means of

A
m,X2' m,X m,Xm

3
Theorem 2.4 in the order indicated. If at any

stage Am is non-negative for i even or non-

Xy

positive for i odd, the given Mm is unintegrable.

(4) If the given Mm does not violate the integrability

conditions referred to above, it is integrable.

Example 2.3: To find if

2

M

¢ = (s

+ 1) (s2 + 6)(s2 + 9)(s% + 18) (s® + 30) (s® + 100) ..(2.40)

is integrable.

The second zero condition is satisfied. We have,

M, = (s2 +1) (s% + 6) (s2 + 9) ..(2.41)

From Theorem 2.4,

7 3 5 1
A = -X + 7%
3,X 2 1
2 X, X, X, X

7 3 5 1

= -6 + 7
6 9 6 9

- 3 .. (2.42)

Hence, condition (2) is not satisfied and the given Mm is,

therefore, unintegrable.
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Example 2.4: To find if

M, = (s? + 1) (s + 6) (s + 14) (s + 25) .. (2.43)
is integrable.
The second zero condition is satisfied. Since there are

only four factors in the given Mm’ we may straightaway go to
test 3 in the summary of the testing procedure. This test

incorporates both the necessary and sufficient conditions.

For the given M4,

7 3 9 5

_ 2
A4,X2 = 9X4 . « X2 + 3 « " X2
2 3 2 3
7 3 5 1
+ 9Xl - . « X, + 7X4 « «
2 3 2 3
= -145152 «e(2.44)

Applying cyclic permutations of the X's in the expression for

A above, we similarly obtain expressions for A and
4,X2 4,X3
A4 . Evaluating these, we get,
,X4
A4,X = 15792 ..(2.45)
3
A4,X4 = =17340 ..(2.40)

Hence the given Mm is integrable.

2.6 The Medial Mm:

If the zeros of a given Mm are such that meds assumes

the value zero at all the even numbered roots of Mm' namely,
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j/Yz, j/§4, ++.. , then M_ is termed the "medial M_". Such
M provides an example of a limiting case of integrability,
since even a slight perturbation of one or more zeros of Mm

may result in the inequality,

37Xy
i) Mds >0, 1i=1,2,3,... .. (2.47)
0 m

being satisfied for one or more integral values of 1i. A

question which may arise is whether the medial Mm itself can
be considered integrable. It is true that (meds/Mm), where
Mm is medial, is a reactance function as the common factors

of meds and Mm, namely, (s2 + X2),(s2 + X4), ... cancel out.
However, in general, the double zeros contained in meds will
render it unsuitable as the odd part of any HP. An exception
occurs when ands + K has simple zeros corresponding to each

of the double zeros of meds, in which case, the medial Mm

may be considered integrable. Depending on m being even or
odd, two cases arise. These are discussed in Theorems 2.5
and 2.6.

Theorem 2.5:

A given Mm (m even) will be medial, if and only if

=% i 3=1,3,.c.., n-1 .. (2.48)

Proof:

(a) Necessity: If Mm is medial, we have, by definition,
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_ S 2 2, 2 2 2 2

meds TR (s +x2) (s +x4) cee (s +xm) ..(2.49)

. 2 2 2
Letting T = (s + X2)(s + X4) ceee (87 + Xm) ..(2.50)
we have,

_ S 2
medS = mT ..(2.51)
Differentiating (2.51) with respect to s, we get,
2
T T'

Mm—m(l+25 ﬁ‘—) ..(2.52)
Xl,X3,X5, . e ,Xm_l are zeros of M and since T does not contain
these 2zeros, we have,

1+2s <=0 for s®=-%x,, -X -X (2.53)
T - 1’ 37 7 Tm-1 cerEe
m
' 2
But = =25 I — 1 ..(2.54)
i=l s” + X,.
21
Therefore, using (2.54) in (2.53), we obtain
m
2 2
4s _ 2 _ _ _
1 + _E 5 =0, s° = Xl, X3, cee Xm—l ..(2.55)
i=l s” + X2i

and hence (2.48) follows.

(b) Sufficiency: Starting with any of the given equalities,
say at - Xl, and proceeding backwards from (2.55), we observe

that (s2 + Xl) is contained as a factor in (T + 2sT'). Simi-

2 2 2

larly, (s“ + X3), (s® + X5), cee 4 (87 + Xm—l) are also shown

to be contained in (T + 2sT'). Since T contains the rest

of the factors, Mm contains all the required factors.
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Hence the theorem follows.

Theorem 2.6:

A given Mm (m odd, m > 1) will be medial if and only if,

the expression

m-1

2 2 1

3XJ - 4xj z % —
Y = i=1 "2i J ..(2.56)

m-1

2 1
1l - 4Xj h) X . = X
i=1 2t 3
remains invariant for j = 1,3,...,m and is a zero of meds.

(Hence, all the zeros of meds are known)

Proof:
(a) Necessity: If Mm is medial, we must have, by definition,

S 2 2,2 2 2 2, 2

medS = EE—I—T (S + X2) (S + X4) e e e e (S + Xm_l) (S + Y)
..(2.57)
Letting
_ 2 2 2
T = (s + Xz)(s + X4) ce. (87 + Xm—l) ..(2.58)
we have,
_ s 2, 2
medS = Sm T 1 T (s™ + Y) ..(2.59)
Differentiating (2.59), we get,
T2 2 2T 2
Mm = 57T {3s“ + Y + 5 s(s” + Y)} ..(2.60)
m-1
T' 2 2s
Since F o= z —S—— i we have,
i=l s® + X

2i



m-1 m-1
2 2 2
1
Mm=:?.'m—T;—'I'{Y(l+4SZZ 21 )+352+4S4Z 5 }
i=l s” + X.,. i=l s” + X.,.
21 21
..(2.61)
Xl’ x3, X5,... Xm are zeros of Mm and since T does not contain
these zeros, we must have from (2.61),
m-1
4x.2 . !
I BEPEA svar Xy
Y = —7 ;7 J=1,3,5,..,m ..(2.62)
1 - 4X. z 1
i=1 %21 = %5
Hence the necessity follows.
(b) Sufficiency: Starting with the given expression Y at
52 = —Xl (say), and proceeding backwards from (2.61), we observe
that (52 + Xl) is contained as a factor in
2 . 2
3s“T + YT + 2T's(s” + Y) ..(2.63)

2 2

Similarly, (s + X3),(s2 + X5), cee 4, (87 + xm) are also
contained as factors in (2.63). Since T contains the rest
of the factors, it follows from (2.60) that Mm contains all the

required factors. This proves Theorem 2.6.

Fig.z.4(a) and (b) give the plot of medial Mm and its integral

for both the even and odd cases.

2.6.1 Some Theorems on the Medial Mm:

The following theorems hold for both the even and odd
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values of p.

Theorem 2.7:

If Mm is medial, then,

174
i) Mm_lds < 0 , 2i¢< m1, i=1,2,3,...
0
Proof:
The proof is by the method of induction. Since Mm is
medial, we have,
jvx,
/S Mds =0
0 m
or
JvX, V¥ 2 WXy
X é M _;ds + é s'™M__q.ds + /T s M _ids =0 ..(2.64)
ivXy
2 . . .
A plot of s M1 and M1 1s as shown in Fig. 2.5, from
which it follows that,
V¥, V¥,
2
J s™_ _,ds > -X; J M__.,ds
0 0
..(2.65)
JvX VX
2 2 2
and S s™™__.ds > -X S M __.ds

Hence, using (2.65) in (2.64), we get
VX,

(X = %) 6 M__,ds < 0
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VX,
or é M -1d4s < 0 ..(2.66)
Now, let
VX552
é Mm_lds <0 ..(2.67)

Since Mm is medial, we have,

Iy IV%55 37Xy4
1 M _ds + J ssz_lds + J ssz_lds =0
3VX54 2 IV¥yi2 I¥H41
..(2.68)
where 2i <m , i=1,2,3,.....
From Fig.2.6, which illustrates the behavior of ssz_l and
Mm—l between j»/XZi_2 and j/XZi, we have as before,
i1, IVXyi-1
J s“M ds > -X.,. J M ds
. m=-1 2i-1 . m-1
3VX55-2 IvXy5-2
..(2.69)
A TR IVXo4
and S s™™ ds > =X, . S M ds
. m-1 2i-1 . m-1
IVX55-1 Xy
Using (2.69) in (2.68), we get,
IVXy;
(X - X, . _4) J M .ds < 0
m 2i-1 . m-1
IVXyi-2
IvXys
or S Mm_lds <0 ..(2.70)
jvX, .
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Hence if (2.67) is true, we have,

WXy

S M
0

n-198 < 0 .. (2.71)

The theorem now follows.

This theorem implies that if the introduction of an addi-

tional zeros in Mm makes the resulting Mm medial, then, the

-1
integrability conditions at all the even numbered zeros of

M are satisfied.

m=-1

Theorem 2.8:

If Mm is medial, then,

VX,
ié Mm+lds >0
Proof:
- i
We have
jvX jvX
2 2 2
é Mm+lds = é s Mmds .. (2.72)
VX,
since X S M ds =0
m+1 0
From Fig.2.5, we obtain,
vaz j;/X2
é s Mmds > —Xl é Mmds .. (2.73)
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But i) M ds = 0 .. (2.74)
0 m

Hence the theorem follows.
This theorem leads to the following conclusions:
)
(i) For a given M, if z— = 5, then M, is medial.
2 Xl 2
Hence the second zero condition derived in

Theorem 2.3 also follows from Theorem 2.8.

(ii) If Mm = MiMj’ where Mi is known to be medial,

then, Mm is unintegrable.

Theorem 2.9:

If any zero X, of a medial M , other than the first zero

X,, is perturbed to Xi(p) such that

1

xi(p)=xi—e,a>o
JvX,
. . (p) . (p)
then the resulting function Mm is such that é Mm P ds > 0.
Proof:
Since Mm is medial,
V¥,
é Mmds =0
jvX
or X fz{M (2+x )(52+X (2+x)}ds
i) i-1(8 i+l 42) -ee (s m
JvX,
2 2 2 2 - -
+ 6 s {Mi_l(s + Xi+l)(s + Xi+2) .. (s + Xm)}do = 0
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As before, it can be shown that,

jvX
fzs?'{M (2+x )(s2+x ) (s2+x)}d>
5 i-1'8 i+l iv2! v m’ 795
jVX2
X, [ M, .(s® + X...)(s® + X...) (s® + X )ds
1 0 i-1 i+l i+2 ©t m
e (2.76)
Hence, using (2.76) in (2.75), we get,
jVXZ
2 2 2 }
é {Mi_l(s + X ) (8T X o) eee (8T 4 X )ds <0
e (2.77)
Now
JvX jvX jvX
S 2M (p)ds = f 2M ds - & [ 2{M (s2 + X )(s2 + X )
0 - 0 m 0 i-1 i+l i+2/ ¢
2
(s™ + Xm)}ds ..(2.78)

Hence using (2.77) in (2.78), the result follows.

Theorem 2.9 provides a comparison test for the integra-
bility of a given Mm’ in that, if the given Mm can be identi-
fied as being obtained by the perturbation of one or more
zeros (except the first zero) of a medial Mm towards the origin,

then the given Mm is unintegrable.

Example 2.5:

Let
2

M, = (s? 4 1) (s? + 6) (s2 + 13) (s? + 20) . (2.79)

be given.
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Knowing that

(82

+ 1) (s2 + 6) (s® +14) (s? + 21) ..(2.80)
is medial, it can be concluded that the given M4 is un-

integrable.

Theorem 2.10:

If Mm is medial and Xm is perturbed to Xm + €, € >0,

then the perturbed function Mm(p) is such that
V¥,
/ Mm(p)ds <0 ,2i<m, i=1,2,... ..(2.81)
0
Proof:
We have
I7%4 o) IRy VX
;o oM Plas = M ds + e f M__,ds
0 0 0 m
SLEPH
= € é M _1ds ..(2.82)

Hence the result follows from Theorem 2.7.

2.6.2 Summary of the Properties of the Medial Mm:

(1) A special case of Mm' called the medial Mm’
results when its zeros satisfy either the
equalities (2.48) or (2.56) depending on
whether m is even or odd. Under this con-
dition, meds assumes the value zero at all

its even numbered zeros.



(2) If the introduction of one or more zeros in
a given Mm leads to either (2.48) or (2.56)
being satisfied, then the integral of the
given Mm will be negative at all its even

numbered zeros.

(3) If M = M.,M., where the zeros of M, satisfy
m i3 i
(2.48) or (2.56), then the given.Mm is un-

integrable.

(4) In a given medial Mm’ if one or more zeros,
except the first zero, are perturbed towards
the origin, then the resulting Mm is uninte-

grable.

(5) If the last zero of a given medial Mm is
perturbed away from the origin, then the
resulting Mm meets the integrability criterion

at all its even numbered zeros.

2.7 The Integrability of N:

N will be assumed to be given in the factored form,
namely,
2

N_ = s(s? + xl)(s2 X)) . (s

n + Xn) .. (2

The difference between the integrability conditions of
M and N results from the positive constant of integration, K,

which is associated with /Nds. Wherever this is done, the

44

.83)
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integral of N is written as (/Nds + K). The effect of this
constant is equivalent to a shift of the origin along the vertical

axis by the amount =K.

The plots of a typical N and its integral are shown in

VX4
Fig. 2.7. Considering [ N ds at a point as the area
0
enclosed by Nn from the origin up to that point, it can be

concluded that the first minimum of ands is unconditionally

2

negative at s” = =X That is,

lo
vXy

/ N ds < 0 ..(2.84)
0 n

2,7.1 Conditions for the Integrability of N ¢

A given N, will be integrable if

ands + K< 0 at s = SRS ST

Il

J/-}'(z—l ..(2.85)

i=1,2,3,...

and ands + K >0 at s

Since K is positive, (2.85) is equivalent to the follow-

ing two conditions:

(1) ands is negative at all the odd numbered

zeros of Nn’ namely, j/Xl, jvX,, ... etc., and

(ii) the minimum of the maxima of ands is greater

than the maximum of the minima.

We now consider two cases: (a) when n < 3 and (b) when

n > 3.
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2.7.2 Integrability of Nn when n < 3:

With n < 3, the integrability of Nn can be established

almost by inspection.

Consider
N, = s(s® + X,) (s + X.) (2.86)
2 1 5 (2.
then
56 s4 52
szds = *7 (xl + x2) + 5 XX, ..(2.87)
Evaluating (2.87) at s = j/Xl and s = j/xz, we have,
! L3 X%
é deS = ﬁ- Xl - ) ..(2.88)
%2 L s X%°
.é deS = 1—2 X2 - 2 ..(2.89)
Since from (2.88) and (2.89),
IvX, 3vXy
J N,ds > [ N.,ds
0 2 0 2
there exists a positive value of K such that
J
des + K< O
..(2.90)

and N.ds + K > 0

o - o -
X ¥
N =
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where j/iI J/X;

0 <K <| [ des for S N,ds > 0

2
0 0
.. (2.91)

VX, ijl J7¥,
or S des < K < S N2ds for /  N,ds < 0

0 0 o 2

These conditions are illustrated in Figs. 2.8(a) and 2.8(b).

It follows that N, is always integrable.

2
N3 will be integrable, provided
37X,
) N3ds <0 .. (2.92)
0
Let
_ 2 2 2
Ny = s(s” + X)) (s” + X,) (s + Xj) .. (2.93)
fN3ds has a maximum at s = j»’X2 flanked by the two minima at

s = jVXl and s = j¢x3. It now follows that, given

IV,
S N.ds < 0
0 3
there exists a K such that the maximum and minima of (fN3ds + K)

are respectively positive and negative. K must satisfy either

of the following inequalities:

JYX] VX5 IR,
0 < K < min(]| S N.ds| ,| [ N,ds|) for [ N.,ds > 0
- 3 3 3
0 0 0
3vX, 3vXy 3vXy ..(2.94)
or J N.ds| < K < min(| [ N.ds| , S N.ds|) for
3 3 3
0 0 0
3%,
ds < 0



49

M Jo obuey

S usym m@NZ\ I0J M 3O =20TOYD :(e)g gz bta

]

speNys



50

4

0 > SP°N s uoym splNs I0F ¥ FO °oTOUD :(q)8°7 BT

me

M Jo obuey w@mz\

ok R




51
It is possible to derive a simple relationship between the
zeros of N3 which is equivalent to (2.92). Evaluating

fNBds at s = j¢X3, we have, .

—
N

2) ..(2.95)

[\
w

ds = 55 X (—X3 + 2X1X3 + 2X2X3 - 6X1X

Thus, in order that N, is integrable, the relationship to be

3

satisfied is

2

X3

- 2X3(Xl + X2) + 6X.X, > 0 ..(2.96)

172

Example 2.6:

It is required to investigate the integrability of

Ny = s(s® + 1) (s® + 5)(s® + 8) .. (2.97)
Substituting the values of Xy X, and X, in (2.96),
we obtain,
2 P
X3" - 2X3(Xl + x2) + 6X1X2 = =2 ..(2.98)

Hence the given N3 is unintegrable.

Inequality (2.96) also provides a necessary condition

for the integrability of a HP of the seventh or the eighth order.

2.7.3 Integrability of N, when n > 3:

In order to test for the integrability of higher order Nn'
the evaluation of ands at the zeros of Nn becomes essential.

The procedure for this will now be given.

Since a necessary condition for the integrability of Nn is
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X1

/ Nds <0, 1i=1,2,3,... ..(2.99)
0 n
/N _ds should be evaluated at the odd numbered zeros of N first.
n
This will permit the immediate rejection of an unintegrable Nn'
As noted in Theorem 2.4, the n different expressions required

to be tested are obtainable from any one expression by a cyclic

permutation of the Xi's. For this reason, only the expression
JvXq
for [J N _ds will be given.
0

Theorem 2.11:

Jv¥y
1 _ _ 3 _ 1 _ _ 4
é Nnds =137 P(2,n-1,n 2)Xl 57 P(2,n-1,n 3)Xl
1 5
+ Z'O‘P(Zln_l,n_4)xl T e e e s e e s e e e
-1 1
+ (—l)n m P(2,n—l,,)Xln
Jv¥y
+ -t x Ml x s TN Lds (2.100)
2n (n+1) 1 nog n-1 "t :

The proof of this Theorem is similar to that of Theorem 2.4

and is omitted for the sake of brevity.

VX,

Repeated use of (2.100) will enable one to grow [ Nnds
0

by a recursive process. For example:

;7 s(s® + x)ds = 41 ..(2.101)
0
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+ Xl)ds ..(2.102)

/ N,ds ..(2.103)

ds ..(2.104)

the Testing Procedure for the Integrability of N :

(1) A given

(2) N3

N2 is always integrable.

is integrable provided its zeros satisfy the in-

equality (2.96).

(3) For n >

3, Nn is integrable if

jYX,.
2i-1
(a) [ Nnds < 0, i=2,3,4,... .. (2.105)
0
Jv¥q
S Nnds is computed using (2.100). The
0

expression for the integral at other zeros of

N
n

X,
1

are obtained by a cyclic permutation of the

's in (2.100).

and (b) the minimum of the maxima of ands is greater

than the maximum of its minima.
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The constant K, K 2 0, must be chosen to lie
in between the absolute values of the maximum

of the minima and the minimum of the maxima.

Example 2.7:

We wish to investigate the integrability of

2

N, = s(s® + 1) (s? + 5) (s® + 10) (s2 + 15) ..(2.106)

4

From Theorem 2.11,

1 3 1 4 1 3 1 2
* X4[%§ XXy - ap Xt X X7 -7 X XzE]
= -165.8083 ..(2.107)
By a cyclic permutation of the Xi's in (2.107), we similarly

obtain expressions for the other zeros of N,- Evaluating

these, we obtain,

JvX5

/ Nyds = -208.30 ..(2.108)
0

ivX,

/ N,ds = 286.4625 ..(2.109)
0

JvX,

J N,ds = 703.2375 ..(2.110)
0

Hence N, is integrable for

0 < K < 165.8083
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2.9 The Medial Nn:

If the zeros of a given Nn are such that ands assumes

the value zero at all the even numbered roots of Nn' namely,

jvX5s 3¥Xyy <.+ , then N is termed the 'medial N_'. (/N _ds
corresponding to the medial Nn contains s2 as a factor). It

is to be noted that the medial Nn is not a limiting curve in
the same sense as the medial Mm' Unlike the medial Mm’ the
the medial Nn is always integrable, since there exists a range
of K for which ands + K contains only simple imaginary axis
Zeros. The conditions which determine whether a given N, is
medial or not depend on whether n is even or odd. These are

discussed in Theorems 2.12 and 2.13.

Theorem 2.12:

A given N, (n even) will be medial, if and only if

r J =13, .. , n-1 ..(2.111)

SRS
Ol

Proof:
(a) Necessity: If Nn is medial, we have, by definition,

2

_ S 2 2, .2 2 2 2
ands = 577 (s + X2) (s + X4) ce. (87 + Xn) ..(2.112)
. _ 2 2 2
Letting T = (s + X2)(s + X4) cee (8T + Xn) ..(2.113)
we have,
52 2
andS = m T ..(2.114)
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pifferentiating (2.114) with respect to s, we get,

2
_ 2sT sT'
Nn = —z'm (l + T ..(2.115)
j/Xl, VXL, oo ,jvxﬁ_l are zeros of Nn and since T does not
contain these zeros, we have,
sT'! 2
1l + —— =0 for s” = Xy Ky oeee s X4 ..(2.116)

Writing % in the partial fraction form and substituting in

(2.116) , we get,

n

= 2

%___2_§___=0’ S = =X

52+X.
1

from which the necessity follows.

(b) Sufficiency: Starting with any of the given inequali-

ties, say at s2 = —Xl, and proceeding backwards from (2.117)
we observe that (52 + Xl) is contained as a factor in (T + sT').
Similarly, (52 + X3),(s2 + X5), .o ,(s2 + Xn—l) are also shown

to be contained in (T + sT'). Since T contains the rest of

the factors, Nn contains all the required factors.

Hence the Theorem follows.

Theorem 2.13:

A given N, (n odd, n > 1) will be medial if and only if,

the expression

«.(2.117)
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E%l
2 1
. 2%y = 2X 121 Xy — X 2118
E%L .. (2.
1
R LA Sy %y
remains invariant for j = 1,3, ... ,n and is a zero of ands.

(Hence, all the zeros of ands are known)
Proof:

(a) Necessity: If Nn is medial, we must have, by definition,

2
_ s 2 2, 2 2 2 2,2
andS = 3n ¥ 3 (s™ + X2) (s™ + X4) ees (87 + Xn—l) (s + Y)
.. (2.119)
2
_ s 2, 2
= m T (S + Y) ..(2.120)
Differentiating (2.120), we get,
2s7% . 2 sT' 2
n-1 n-1
2 2 2 2 4
= ST _(yv1+ 1 =25 ) +2s%+ 3 25 3} ..(2.122)
n+ 1 i1 s% + X i=1 s + X
1= 2i = 2i
Nn vanishes for 52 = —Xl,--X3,...,—Xn and since T is not zero

for these values, the necessity follows.

(b) Sufficiency: Starting with the given expression Y at
s2 = —Xl (say) and proceeding backwards from (2.122), we observe
that (s2 + Xl) is contained as a factor in

2

2827 + YT + sT'(s2 + Y) .. (2.123)
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similarly, (s® + X3),(32 + XD, el (87

+ X ) are also

n
contained as factors in (2.123). Since T contains the rest
of the factors, it follows from (2.121) that Nn contains all

the required factors. This proves Theorem 2.13.

Figs. 2.9(a) and (b) give the plot of a medial Nn and its

integral for both the even and odd cases.

As an aid in determining the integrability of a given Nn’
it can be noted that if its zeros satisfy either (2.111l) or
(2.118), then N, is integrable and no further tests need be

made.

2.10 Integrability of Hurwitz Polynomials:

/Mds
M

If a given M or N have been found integrable, then

(/Nds + K)
N

integrability conditions of M and N have been summarized in

will each be a reactance function. The

or

2.5.3 and 2.8. If M and N are the even and odd parts of the

same HP, F, then integrability conditions of M and N are nece-

ssary conditions for F to be integrable. Sufficiency can be
established only by a continued fraction expansion of (fNégdi 79)
if each of the coefficients is positive. This will be

/Mds

equivalent to ensuring that is a reactance function.

(/Nds + K)

2.11 Generation of Higher Order Positive Real Functions using

the Integrability Criteria of M and N:

Theorem 2.14:

If M is integrable, then,
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7 (s) = ﬁﬁi;i§$§ .. (2.124)
is a PRF.
Proof:
We have
M2 - M'/Mds
Ev Z2(s) = 5 > ..(2.125)
M® - M

From (2.125), Z(s) will be positive real if,

(M2 - M'/Mds) >0 for 0 < w < « ..(2.126)
s = jw -
Since iﬂ%ﬁ is a reactance function,
S fMes 0 for0cuw<e .. (2.127)
s = jw

Hence (2.126) follows from (2.127). The Theorem is thus proved.

Theorem 2.15:

If N is integrable, then,

- N+ /Nds + K ..(2.128)

z(s) N + N'

is a PRF.

The proof of this Theorem is similar to that of Theorem 2.14

and is omitted for the sake of brevity.

Theorems 2.14 and 2.15 enable one to generate higher order

PRF's given M or N in factored form.
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2.12 Conclusions:

In this Chapter, given the zeros of the even and odd parts
of HP's, necessary and sufficient conditions have been esta-

meds ands + K
M and — are reactance functions.
m n

blished such that

Regarding the integrability of Mm’ an inspection test is

provided by the second zero condition which states that the
X
ratio X shall be greater than 5. Further, the integrals of
1
all the lower order Mm_k's, k=1,2, ... ,m-3 obtained from
the given Mm shall be negative at s = j\/X2 and this is facili-

tated by the application of Theorem 2.4 (a), which enables one

3V, IVX,
to write g M _yds from a knowledge of 6 M _x-19s- These

tests permit the immediate rejection of an unintegrable M-

Sufficiency tests for the integrability of Mm are obtained
IV,

when the different [ Mmds, constructed using Theorem 2.4 (b),
0

alternate in their sign.

A special case of Mm' called the medial Mm’ arises when

meds assumes the value zero at all the even numbered zeros of

Mm. Certain prescribed relationships between the zeros of Mo
are shown to exist in order that Mo is medial. Some proper-
ties of the medial Mm have been discussed. In particular,

if the given Mm can be obtained by the perturbation of one or

more zeros (except the first zero) of the corresponding medial
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Mm towards the origin, then it is unintegrable. This provides
a comparison test for the integrability of M- Also if My
comprises the product of medial Mi and Mj' the given Mo is

unintegrable.

Considering the integrability conditions of Nn' it has
been established that a given Nn’ n < 2, is always integrable.
N3 is integrable provided its zeros satisfy the given inequality
(2.96). The Integrability of Nn's is established by requiring
that ands at all the odd numbered zeros of Nn shall be negative
and that the minimum of the maxima of ands shall be greater
than the maximum of the minima. The latter permits the selec-
tion of a positive value of the constant of integration K. A
special case of N/ called the medial N/ arises when ands

assumes the value zero at all the even numbered zeros of Nn.

The medial Nn is'always integrable since there exists a
positive constant K such that (ands + K) has only simple
imaginary axis zeros. If a given Nn can be identified as
being medial, its integrability can be established without

any further tests.

If M and N are the even and the odd parts of the same

HP, F, then, F will be integrable provided

(i) M and N are integrable,
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and (ii) Tﬁaéggéf is a reactance function.

The latter can be ensured by a continued fraction expansion.

The integrability criteria of M and N have been used to

generate higher order positive real functions.



CHAPTER III

THE INTEGRABILITY OF POLYNOMIALS CONTAINING ONLY
NEGATIVE REAL AXIS ZEROS

3.1 Introduction:

Network functions in which the zeros of the numerator
and the denominator are restricted to the negative real
axis and also interlace with each other are realizable by
lossy two-element-kind networks. Of these, the RC net-
works are attractive whenever weight and size must be mini-
mized. Besides, such networks have assumed even greater
importance with the advent of integrated circuits, where
generally speaking, the realization of inductances is not
practicable. Polynomials with distinct zeros on the nega-
tive real axis are often referred to as RC polynomials(3)

in network theory.

The integrability of RC polynomials can be studied in
two ways. One way is to find the conditions under which
an RC polynomial yields a HP on integration. The other is
to study the conditions under which an RC polynomial will
result when another RC polynomial is integrated. These
two cases will be referred to as 'Hurwitz integrability' and
'RC integrability' of RC polynomials respectively. The
subject matter of this Chapter deals with both these cases

separately.

The Hurwitz integrability of an RC polynomial F (s)

65
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can be investigated using the methods of Chapter II which

require a knowledge of the zeros of its even and odd parts
separately. However, considerable simplification in testing
results if the zeros of F(s) are known. The testing proce-
dures for Hurwitz integrability, established in this Chapter,
assume this knowledge. On the other hand, the RC integra-
bility of F(s) can be established whether its zeros are known

or not employing two different techniques.

3.2 Conditions under which the Integral of an RC Polynomial

is Hurwitz:

Let Fn(s) = (s + Xl)(s + X2) ce. (8 + Xn)
.. (3.1)
0 < xl < X2< < Xn *
Then,
JF _(s)ds + K n A,
n s i
= + I —— + C ..(3.2)
Fn(S) n + 1 j=1 S % Xi 1
where K is the constant of integration and,
(s + X,){/F_(s)ds + K}
A, = 1 = ‘zs) ..(3.3)
1 n
s = =X.
i

* The case when Fn(s) contains a zero at the origin can be
readily excluded since in this case, (/F (s)ds + K) will
have no term containing the first power in s, and hence,

it will not be Hurwitz. If cancel}ation of the factor 's'

is allowed, /F (s)ds/Fn(s) will still be an RC function
for K = g. This special case is not considered.
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an(s)ds + K

C, = Lim { - s )
1 5 e F_(s) n+ 1
n
1
= z X. ..(3.4)
n(n + 1) i =1 *&

As can be seen, Cl is positive, while the Ai's may be positive

or negative. The following equality between Cl’ K and the

A.'s holds:
i

Nl i
- -

.. (3.5)

1]
Nh~MB

In (3.2), separating those Ai's which are negative and

using the identity,

A,

. -
A. X.
i = 1

s + Xi s + X.

S

By
+ T ..(3.6)

for all such residues, (3.2) can be written as,

an(s)ds + K s m A, n-m sB
= + I + I + C .. (3.7)
Fn(s) n+ 1 15 +X 1 s+ Xj 2
where -2,
B, = —— B, >0 ,
I P
and C2 may be positive or negative.

: G'(s) . . : (5)
Since =) is a PRF if G(s) is a HP » the necessary

and sufficient condition for SF(s)ds + K to be Hurwitz is that,



68

an(s)ds + K
F_(s)
n

Re >0 for all w ..(3.8)

53— +Cy 20, for 05 w < = .. (3.9)

The first summation in (3.9), being the sum of monotonically
decreasing functions of w, is itself monotonically decreasing.
In the same way, the second summation is a monotonically
increasing function of w. In Fig. 3.1, these two summations
are plotted against w. The sum of the ordinates of curves

I and II can exhibit only one minimum at Woin’ which can be

found as the real solution of,

m Aixi n-m Bisz
z 5 > 5 = z 5 5 > ..(3.10)
1 (X.° + w®_..) 1 (X + w7 _.)

i min 3 min

Having obtained Woin’ We can rewrite inequality (3.9) as,
2

m Aixi ij min
pX + I + C, >0 .. (3.11)

2 2 2 2 2 -
1l w w” .+ X,

min i min j

which is the condition for an(s)ds + K to be Hurwitz. The
entire range of K satisfying (3.11) will be available as the
suitable choice for the constant of integration. From (3.7),
it also follows that if for any range of K, C2 is positive, then

an(s)ds + K
Fn(S)

is realizable as a driving point immitance
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function by a combination of RC and RL networks in series

JF_(s)ds
or parallel. Since for K = 0, C2 <0, —;%;Tgr— is not reali-
zable this way.
Example 3.1:
Let F(s) = (s + 1)(s + 5) (s + 8) ..(3.12)
then,
301.6665-4K 514.9998-4K 416-4K
JF(s)ds+K _ s , 14 _ 28 _ 12 + 21
F(s) 4 3 s+1 s+5 s+8
.. (3.13)
Fotr an RC-RL decomposition to exist, we must have
(i) K < 75.416 ..(3.14)
514.9998-4K
C e 12 As
and (ii) 3 expandable as —/ = - B, where
14
B < '3— .
The latter condition gives
K > 58.75 .. (3.15)
Hence, choosing a value of K in between 58.75 and 75.416,
F(s) is RC-RL decomposable. Letting K = 60, we obtain
fF(S)dS + K _ s 2.203 4.583s 8.3809 08366
F (s) =7t 571 S+5 s+8 + 0.
.. (3.16)

3.3 Conditions for RC Integrability of a Polynomial:

(6)

In virtue of Lucas' theorem , a necessary condition for

(JF (s)ds + K) to be an RC polynomial is that F(s) also be RC
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in character.

Therefore, given F(s) as in (3.1), we wish to know the condi-

tions under which its integral can be expressed as:

JF_ (s)ds+K = (s + Y)(s + ¥Yy) (s + ¥3) ... (s + Y q) .. (3.17)

o
A

..Y1<Xl< Y2<X2< ee.¥< Xn<Yn+l

K2>0

From a graphical point of view, (3.17) will hold if an(s)ds+K
changes its sign at the consecutive zeros of F(s). This is
contained in the following inequalities:

-X

21
S F(s)ds + K >0 , 1i=1,2,3,...
0
-+ (3.18)
X3i-1
and S F(s)ds + K< 0 , i=1,2,3,...
0

Since only positive values of K are permitted, (3.18) is

equivalent to the following two conditions:

(i) /F(s)ds is negative at all the odd numbered

zeros of F (s) namely, —xl,-x —X5, eess o, and

3’
(ii) the minimum of the maxima of /F(s)ds is greater

than the maximum of its minima.

Fig. 3.2 shows the plots of a given F(s) and its integral.
It can be observed that the area enclosed by Fn(s) will be

always negative between s = 0 and s = —Xl, since the ordinate
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is positive while the abscissa is negative between these two

points. The first minimum of an(s)ds is, therefore, un-

conditionally negative. Two cases are considered:

n < 3 and (b) when n > 3.

3.3.1 RC Integrability of Fn(s) when n < 3:

(a) when

The RC integrability of polynomials up to the third degree

can be established almost by inspection.

Taking
F2(s) = (s + Xl)(s + X2)
we have,
[F (S)ds=§—3+l(x +X)52+XXS
2 3 271 2 172
-Xl
Since S Fz(s)ds <0
0
"X2 —Xl
and S Fz(s)ds > f F2(s)ds,
0 0

..(3.19)

.. (3.20)

.. (3.21)

the necessary and sufficient conditions for the integrability

of Fz(s) are always satisfied. K can be chosen to have any

value such that:

—X R
0 <K<| S F,(s)ds for J F.(s)ds > 0 .. (3.22a)
2 2
0 0
—X2 —Xl —X2
or J F. (s)ds| < K <| f F,(s)ds| for S/ F.(s)ds < 0
2 2 2
0 0 0
..(3.22b)

These conditions are illustrated in Figs. 3.3(a) and 3.3 (b).
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A polynomial F3(s) containing three factors is also RC

integrable provided,

_x3

S F3(S)ds <0 .. (3.23)
0

(3.23) can be expressed as an inequality involving the zeros

of F3(s). To obtain the same, let,
F3(s) = (s + Xl)(s + X2)(s + X3) ..(3.24)

From (3.24), we get,

-X

3
= L x 2rx.2 -
é F.(s)ds = 15 X, { X0+ 2X5 (X + X,) 6xlx2} .. (3.25)
(3.23) will hold if,
2
X" - 2x3(xl + X2) + 6X1X2 >0 .. (3.26)
K has the following range:
X X3 X3
0 < K <min( S F(s)ds| , J/ F(s)ds| ) for [ F(s)ds > 0
0 0 0
-X, -X; -X5 .. (3.27)
or / F(s)ds < K< min(| S/ F(s)ds| ,| S F(s)ds|) for
0 0 0
_X2
S F(s)ds < 0
0

Example 3.2:

To investigate the RC integrability of F3(s) given as:

F3(s) = (s+ 1l)(s + 5)(s + 9) ..(3.28)
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Substituting the values of Xy, X, and Xy in (3.26), we obtain

2
X - 2x3(xl + Xz) + 6X

3 X, =3 .. (3.29)

172

Hence, F3(s) is RC integrable.

3.3.2 RC Integrability of Fn(s) when n > 3:

In order to test the integrability of polynomials containing
more than three factors, the evaluation of an(S)ds at all the
zeros of Fn(s) becomes essential. The formalized approach,
described below to achieve this, has the facility of a
recursive relation. The evaluation of an(s)ds is performed
at the odd numbered zeros of Fn(s) first so that a F(s) which
is not RC integrable could be rejected with less
effort. As noted in connection with the integrability of
M and N in Chapter II, the n different expressions required
to be evaluated are obtainable from any one expression by a
cyclic permutation of the different Xi's. For this reason,
the expression for only gxl Fn(s)ds will be given. The

same is obtained using the following theorem:

Theorem 3.1:

! F_(s)ds = 1 P(2,n-1,n-2)X 3_ L P(2,n-1,n-3)X 4
é n G 1Dy 1 12 'D=Ly 1
1 5
+ %-P(2,n—l,n—4)Xl - ...-...... .......
n-1 1 n
+ (-1) NG P(2,n—l,l~)x1

n 1 n+l 41
+ (-1) m Xl + Xn é Fn_l (s)ds ..(3.30)
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A proof of Theorem 3.1 is similar to that given for M in

Theorem 2,4 and is omitted for the sake of brevity. Repeated

use of (3.30) will allow one to grow él Fn(s)ds by a recursive

technique. For example:

-X, _xlz
S F,(s)ds = ——— .. (3.31)
0 1 2
! 1.3 —Xy
é Fz(s)ds =z xl + X, Fl(s)ds .. (3.32)
0
! 1. 3 1. 4 !
/ F ds = = - — X F d .. (3.
. 3(s) s z xl X, 7 X, + 3 é 2(s) s (3.33)
_xl
1 3 1 4 1 5
F ds == - — =
é 4(S) s z x1 X, X4 15 X1 (x2 + x3) TR SR
_Xl
X4 S F3(s)ds ..(3.34)
0

3.4 Summary of the Testing Procedure:

(i) An RC polynomial Fn(s) is Hurwitz integrable if

the inequality (3.9) is satisfied. Further, if in (3.11)
JF._(s)ds + K

¢ Fp, (5)

2 0, then is realizable as a

2

driving point immittance function by a combination of

RC and RL networks in series or parallel.
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(ii) A second degree RC polynomial is always RC inte-

grable.

A third order RC polynomial is RC integrable

provided its zeros satisfy the inequality (3.26).

Higher order RC polynomials Fn(s), n > 3, are
RC integrable if:
~X2i-1

(a) F_(s)ds < 0 , i = 2,3,4,.. .. (3.35)
0

and (b) the minimum of the maxima of an(s)ds
is greater than the maximum of its
minima.
...Xl
S Fn(s)ds is computed using
Theorgm 3.1. The expressions for the
integral at other zeros of Fn(s) are

obtained by a cyclic permutation of the

X.'s in (3.30).
i

The constant K can be chosen to lie
in between the absolute values of *+he minimum

of the maxima and the maximum of theé minima.

Example 3.3:

To investigate the RC integrability of F4(s) given as:

F4(s) = (s.+ 1) (s + 5)(s + 10) (s + 16) ..(3.36)
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We have from Theorem 3.1,

-X
1

_ 1 3 -1 4 1 5

I Fyls)ds = g X)Xy - 13 Xy (X H X3) 455 Xy

1.4 1.3 1.3 1.2
+ X4[E 12 X1 tERITXy X {EX T -5 X Xz]

= = 354.2 -0(3037)

By a cyclic permutation of the Xi's in the expression for
_xl
J F4(s)ds, we similarly obtain expressions for the other

0
zeros of F4(s). Evaluating these, we obtain,

_X3

S F4(s)ds = =500
0

_x2
J F4(s)ds = 625 ..(3.38)
0

_x4

and S F4(s)ds = 3020.8

0

Hence F4(s) is RC integrable for

0 < K < 354,2 ..(3.39)

Example 3.4:

To investigate the RC integrability of F4(s) given as:

F4(s) = (s + 1l)(s + 72)(s + 9) (s + 15) ..(3.40)

As in the previous example we obtain,
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1
S F,(s)ds = -424.5333
4
0
..(3.41)
_X3
S F4(s)ds = 1555.2000
0

-X

Since i) F4(s) > 0, it follows that the necessary condition
0

for the RC integrability of F4(s) is not satisfied.

3.5 The Medial Fn(s):

If the zeros of a given Fn(s) are such that an(s)ds
assumes the value zero at all the even numbered roots of Mm’
namely, —X2,—X4, «ee. , then Fn(s) is termed the medial Fn(s).
A medial Fn(s) is RC integrable since there exists a K such
that an(s)ds + K is a RC polynomial. Depending upon n
being even or odd, two different relationships exist between
the zeros of Fn(s) such that it is medial. These are dis-

cussed in Theorems 3.2 and 3.3 respectively.

Theorem 3.2:

Fn(s), n even, will be medial if and only if

I~ ns
]
u

= % r 3 =1,3, ... , n-1 .. (3.42)

Proof:

(a) Necessity: If Fn(s) is medial, we have,

_ s 2 2 2
an(s)ds = =T (s + xz) (s + X4) ceieess (8 + xn) .. (3.43)
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by definition.

Letting T = (s + X2)(s + X4) ce. (s + Xn) .. (3.44)
JF_(s)ds = —S_ p? (3.45)
n s)as = n + 1 .. .

Differentiating (3.45) with respect to s, we have,

Fn(s) = Ezé—f (1 + 2s %L
72 n/2 2s
= =T (1 + iil E—I—izi) ..(3.46)
The right hand side of (3.46) must vanish for s = —Xl,—X3,...,

—Xn_l and since T does not wvanish for these values,we must have,

n
2 2s

1l + E s F X =0 for s = —Xl,—X3, cee ¢ —Xn_l ..(3.47)
i=1 2i

(b) Sufficiency: Starting with any of the given equalities,
say at S, and proceeding backwards from (3.47), we observe
that (s + Xl) is contained as a factor in (T + 2sT'). Simi-
larly, (s + X3), (s + XS)’ cee 4 (s + Xn_l) are also shown to
be contained in (T + 2sT'). Since it contains the rest of

the factors, Mm has all the required factors.
Hence the Theorem follows.

Theorem 3.3:

A given Fn(s), (n odd, n > 1) will be medial if and only

if, the expression,



83

n-1
2
2%, - 2xj2 D
- i=1 21 5
Y = —7 ..(3.48)
2
1
1 - 2X,. z o
I o=1 %21 Ty
remains invariant for j = 1,3, ... n and is a zero of an(s)ds.

(Hence all the zeros of an(s)ds are known)

Proof:

If Fn(s) is medial, we must have,

_ s 2 2 2
an(s)ds = o1 (s + XZ) (s + X4) ce. (s + Xn_l) (s +Y) ..(3.49)
_ s 2
= =7 T (s + Y) .. (3.50)
where T = (s + X2)(s + X4) ........ (s + Xn—l) ..(3.51)
Differentiating (3.51l) with respect to s, we get,
72 T 2 T
F (s) = =7 {y(1 + 2s ) * 2s + 2s f—}
n-1 n-1
2 2 2
T 1 2 1
= —— {Y(1 + 25 & ————) + 2s + 2s X }
n+1l ij=1 S + X2i i=1 s + X2i
..13.52)
Since (3.52) must vanish for s = -Xl, —X3, eee , =X we
must have,
n-1
2
2 1
2X., - 2X. )} —
J 321 %21 T %y ,
Y = =T ; J=1,3,.....,0 ..(3.53)
2
1
1 - 2X. .Z % —
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Hence the necessity follows.
(b) Sufficiency: Starting with the given expression at
s = —Xl (say) and proceeding backwards from (3.53), we
observe that (s + Xl) is contained as a factor in,

2

YT + 2YsT' + 2sT + 2s“T? .. (3.54)
Similarly, (s + X3),(s + X5), ee. , (s + xn) are also contained
as factors in (3.54). Since T contains the rest of the factors,

it follows from (3.52) that F (s) contains all the required
factors. This proves Theorem 3.3.

Figs. 3.4(a) and 3.4(b) illustrate these two situations.

3.6 RC Integrability of a Polynomial whose Zeros are not known:

When the zeros of Fn(s) are not known, an alternative
method has to be employed in order to establish its RC inte-
grability. The same is provided by a modification of the
Routh~Hurwitz criterion.

(18) (19,20)

The Routh-Hurwitz criterion and other methods
have been used in the past to determine the negative real axis
zeros of a polynomial. However, all these methods entail

a fair amount of calculation. A very simple algorithm whereby

the number of negative real axis zeros in a given polynomial
(21)

having real coefficients can be determined exists , and is
described below.
Consider the polynomial
F (s) =a_ + a;s + a 52 + + a_s® . (3.55)
n o} 1 2 te n ‘
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Now we write the first two rows of an array as,

a a

n an-1 8n-2 e A o

na_ (n—l)an_l (n—2)an a a

—g e g o

where the second row consists of the coefficients of F'n(s).
If the above array is treated as the first two rows of the

Routh-Hurwitz array, then, we have the following theorem.

Theorem 3.4:

The number of zeros of Fn(s) not on the negative real
axis is equal to the number of sign changes in the first

column of the Routh-Hurwitz array.

Proof:

Let Fn(s) contain only negative real axis zeros. Then
F'n(s) sF'n(sz)
will be an RC impedance function. Therefore,

F(s) Fn(sz)

will be a reactance function and Fn(sz) + sF'n(sz) will

be a HP. Applying the Routh-Hurwitz algorithm to

Fn(sz) + sF'n(sz), we will have the first column without any
change of sign. Suppose Fn(s) has k zeros which do not lie
on the negative real axis. Then the s -+ 52 transformation
will result in the polynomial Fn(sz) + sF'n(sz) having k zeros
in the right half plane. This will lead to k changes of sign
in the first column of the array (3.44). Hence the theorem

follows.
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Example 3.4:

To investigate the RC integrability of F3(s) given as:

3

F3(s) = s~ + 15s2

+ 59s + 45 ..(3.57)
F3(s) is first integrated to obtain,

JF,(s)ds + K = 0.255% + 553 + 29.552 + 455 + K ..(3.58)

The modified Routh-Hurwitz array can now be written as:

0.25 5 29.5 45 K
1.00 15 59.00 45 0
1.25 14.75 33.75 K 0
56.25-K
3.20 3.20 20.25K o o
2.25 51.75+K K 0 0 ..(3.59)
3.2
20.25-K 101.25-5K
—>.25 —5.25 0 0 0
35. 754K
=z K 0 o 0
1 20.25-K (1.5 75-1.8K) 0 0 0o o0

2.25 35.75+K

It follows that [/F(s)ds + K will be a RC polynomial for
0 < K < 20.25. Hence, F(s) is RC integrable for this range

of K.

3.7 Some Properties of the RC Integrable Polynomials(zz):

Theorem 3.3:

Let Bl(s) and Bz(s) be RC integrable such that,



Al(s) fBl(s)ds + K

1

and A2(s) = fB2(s)ds + K2

contain only negative real axis zeros.

If
2 2
Al(s ) + sBl(s )

2 2
Az(s ) + sB2(s )
is a PRF, the functions

Al(s) + Bl(s) Al(s) + Bz(s)

(a) A2(s) + B2(s) ’A2(s) + Bl(s)

Alz(s) + sBlz(s) Alz(s) + sB22(s)

and (b)

1

A22(s) + sB22(s) A22(s) + sBlz(s)

are positive real, while the function

Alz(s) + B, (s)

(c) 5
A, (s) + B,  (s)

may not necessarily be positive real.

Proof:
A (s)

89

..(3.60)

.. (3.61)

.. (3.62)

..(3.63)

..(3.64)

(a) Since EITET is an RC admittance function, the zeros

of Al(s) + Bl(s) designated as —ai's are simple and lie on the

negative real axis. The same holds for the zeros of Az(s) + Bz(s)

which are designated as -B8,'s. Now let,
i

Al(S) = (s + ali)

AZ(S) = 7(s + a2i)
Bl(s) = q(s + bli)
B2(s) = m(s + b2i)

..(3.65)
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where
214 1i
ay; < by, ..(3.66)
214 2i

ay; < bpy

Let us now examine the zeros of Al(s), Az(s) and Bz(s).
From inequality (3.66), it follows that the zeros of Al(s)
and A2(s) as a block interlace with the zeros of Bl(s) and
Bz(s) as a block. The zeros of Al(s) + Bl(s) or —ai's can,
therefore, interlace at the most in pairs with the zeros of

Az(s) + B2(s) or —Bi's. We now write the overall function as,

Al(s) + Bl(s) (s +al)(s +a2)(s +a3) .....
= .. (3.67)
A2(s) + Bz(s) (s +81)(s +62)(s +B3) .....
This can always be arranged as,
(s +al) coe
(s +Bl) ces
s +82) — ..(3.68)

(s +a2) .o

Y
which is of the form YRCl and the latter is a positive real
function .
(b) We have

Alz(s) + sBlZ(s) Al(s) sBl(s)

= +

Al(s)Bl(s) Bl(s) Al(s) ..(3.69)

which is the sum of two RC admittance function. Therefore,
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the negative real axis zeros of Alz(s) + sBlz(s), designated
as -Yi's, alternate with those of Al(s)Bl(s). For the same
reason, the zeros of Azz(s) + sB22(s), designated as —6i's,
alternate with those of Az(s)Bz(s). From the inequality
(3.66), the zeros of Al(s) and A2(s) as a block interlace with
those of Bl(s) and B2(s) as a block. Therefore, the zeros

of Al(s)Bl(s) interlace at the most in pairs with those of
A2(s)B2(s). This leads to the fact that yi's and Gi's them-
selves alternate at the most in pairs. Proceeding as in

(a) above, we can similarly show that

Alz(s) + sBlZ(s)

a,%(s) + sB,%(s)

is a positive real function.

(c) This will be illustrated by means of a counter-

example:
Let A. (s%) + sB. (s2) 2
e 1'% 5By 18 s + a + sb
5 5 = =5 ‘ ..(3.70)
A2(s ) + sB2(s ) s“ + ¢ + sd
Then A.%(s) + B.%(s) 2 .2
’ 1 1 (s + a)” + b
5 5 = 5 5 ..(3.71)
A2 (s) + B2 (s) (s + ¢c)” +4d

If we now choose a =1, b =10, ¢ =1 and d = 1, then the

1(24),

condition for (3.70) to be positive rea namely

bd 2 (/5—/'6)2

is satisfied, while the same for the positive realness of (3.71),

namely,
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1

does not hold good.
Hence, the theorem is proved.

It may be noted that Al(s), Bl(s) and Az(s), B2(s) could,

in general, be the two constituent parts of the Calahan decom-

(25) (26)

position or the Horowitz decomposition

Theorem 3.4:

If Fn(s) is RC integrable, then and only then,
2 2
an(s ) + stn(s )ds + K .. (3.72)

is a HP.

Proof:

(a) Necessity: We have,

j VX, jVX.
1 2 1 2 2 2
I = J sF _(8%)ds = [ s(s“+X,) (s"+X,) ... (s"+X_)ds
0 n 0 1 2 n
..(3.73)
Substituting 52 = p, we have,
-X.
1 i
I=5 é (p + Xl)(p + X2) ce. (p + Xn)dp ..(3.74)
Hence, (3.74) can be rewritten as:
jvX., -X.
i 5 1 i
J sF_(s®)ds = 5 S F_(s)ds .. (3.75)
0 n o M
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It follows from (3.75) that, if Fn(s) is RC integrable,

stn(sz)ds + K
is a

an(sz) is integrable. Therefore, >
an(s )
reactance function.

Hence, the theorem follows.

(b) Sufficiency: If an(sz) + stn(sz)ds + K is a HP, then

stn(sz)ds + K

5 is a reactance function and hence an(sz) is
an(s )

integrable. From (3.75), it now follows that Fn(s) is RC

integrable.
Hence, the theorem follows.

An important implication of Theorem 3.4 lies in the fact
that it indicates the basic similarity between the integra-
bility tests of N, and the RC integrability tests of Fn(s).
From an integrable Nn’ a RC integrable Fn(s) can be readily

constructed as:

Z

F (s) = =2 ..(3.76)
n s S2 > s

Similarly, from a RC integrable Fn(s), we could obtain an

integrable Nn as:

N =s Fn(sz) .. (3.77)

It follows from Section 3.6 that should a given Nn be

not available in the factored form, the corresponding Fn(s)



obtained from (3.76) could be tested for its integrability
using Theorem 3.4 in order to ascertain the integrability

of N_.
n

3.8 Conclusions:

This Chapter has dealt with the integrability of Re€
polynomials Fn(s), whose zeros are known. It is found that
on integration, an RC polynomial may yield a HP under certain
conditions or under more stringent conditions, it may yield
another RC polynomial. The conditions under which either of
these cases occur have been discussed. If Fn(s) is Hurwitz
integrable, then under certain conditions, it is possible to

an(s)ds + K
F_(s)

express as the sum of RC and RL driving point

immitance functions.

If the zeros of Fn(s) are not known, a modified Routh-
Hurwitz criterion has been employed to establish its RC
integrability. Also some properties of RC integrable poly-

nomials have been discussed.

94
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CHAPTER IV

THE DIFFERENTIALS AND INTEGRALS OF THE REAL AND
IMAGINARY PARTS OF POSITIVE REAL FUNCTIONS

4.1 Introduction:

It has been observed earlier that some properties of
network functions are invariant under polynomial differentia-
tion while the same is not the case under polynomial integra-
tion. The investigation of such invariances in the proper-
ties of the real and imaginary parts of a PRF under the
operations of differentiation and integration appear to be

of interest and is carried out in this Chapter(27).

4.2 Real and Imaginary Parts of a Positive Real Function:

m1+nl
Let Z(s) = ———— Dbe a PRF. Then the real and imagi-

m2 + n2

nary parts of Z(s) are:

m.m. - n.n 2
Re 7 (jw) = —= 2 12 = A(‘”z) - R(w) . (4.1)
m,“ - n, B(w*)
s = jw
m.n, = m.n 2
JIm 2 (jw) = —2 ; 122 = 3 “’C(‘”z) = 5% (w) .. (4.2)
m,“ - n, B(w*)
s = jw

It is known that R(w) is positive and bounded for all positive

values of w.

a + a,w° + a w4 + ... + a w2r
o) 2 4

Let R(w) = , r < t ..(4.3)
2 4 2t -
bO + b2w + b4w + ... + b2tw

The coefficients a's and b's can be positive, negative or zero
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with the restriction that ao, bo and the coefficients of w2r

and w2t must each be non-negative. The numerator A(wz) may
centain factors of the type:

(1) wz + 61 ’ 61 real and positive

2n

(ii) (w2 + 62) , n=1,2,..., and 6, real and negative

2

‘. 2 2 =
(iii) (0® + 63)(w + 63), 63 complex

The denominator may contain factors of the type (i) and (iii)
only as it cannot wvanish. for any real and positive value of w.
A polynomial with factors of the type (i) will have all its
terms positive. If factors of the type (ii) are contained in
a polynomial, some terms will be definitely negative. No
augmentation may help to get all the terms positive in this

(28’29). The factors of the type (iii) which may be

case
contained in the numerator or the denominator, may yield terms
with negative coefficients if the real bart of 63 is negative.
However, any negativeness caused by factors of this type can

be removed by suitable augmentation of the numerator and the
denominator by 'rr(w2 + di) , 6i>0. Thus, it follows that all the
coefficients of B(wz) can always be made positive and those of

A(wz) can also be made positive except when it contains

factors of the type (ii).

4.3 Operations on the Real Part of a Positive Real Function:

(i) New function obtained as the polynomial differential

of the real part:
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This may be obtained with respect to w or wz. However, it

can be shown that:

2
2 dA (w™)
dA (w™) —s—
dw - dw - E(wz) ..(4.4)
aB (w?) dB(w?)  F(w?)
dw dw2

If A(wz) contained a factor of the type (ii), that is of the

form (m2 + Gz)zn, then E(wz) will be negative in the immediate
neighbourhood of w2 = |62| . In this case, (4.4) would not be
in an acceptable form as the real part of another PRF. In

all the other cases, A(wz) and B(wz) could be suitably augmented,
if necessary, to have all their terms positive, in which case,
E(wz) and F(wz) will contain only positive terms, making the
derived function (4.4) suitable as the real part of a PRF.
Miyata's procedure(30) can therefore be always employed in

order to synthesize the PRF obtained from the real part.

Example 4.1:

1+ 0t ..(4.5)

Consider R, (w) = Re Z(jw) =
1 (1 + w?)?

(4.5) corresponds to a driving point function

s2 + 8 +1 ..(4.6)

Z.(s) =
1 52 + 2s + 1

A realization of (4.6) has the form given in Fig.4.1l.

The polynomial differential of (4.5) with respect to

w or w2 yields
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Q0%

l

Zl(s) 1

A%

9

Fig.4.1: A realization of Zl(s)
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L2
Rz(w) w 5 ..(4.7)
1 +w

1

(4.7) corresponds to a driving point function

s ..(4.8)
1 + s

ZZ(S)

A realization of (4.8) has been given in Fig.4.2.

(ii) New function obtained as the total differential of

the real part:

(a) Differentiation carried out with respect to w:

We have,
d 2 2 d 2 2

d__{A(wZ)} _ {d—AU) (U) )}B(w ) - {aEB(U) )}A(w ) ..(4‘9)

dw B(wz) B2(w2)
Since the numerator is no longer an even function of w, the
function is not suitable for being the real part of a PRF.

" This can, however, form the odd part of a PRF.
(b) Differentiation carried out with respect to w2:
This gives
, L wh)iBw?) - {4 w?)iaw?
d {A(‘m' )} - dw’ dw ..(4.10)
aw? B (w%) 5% (0?)

While the numerator in this case is an even function of w, it
must satisfy the additional condition of being non-negative for
all w such that 0 < w < =, The condition required to be

fulfilled is,
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Fig.4.2: A realization of Zz(s)
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for 0 < w < = .. (4.11)
when the new function will be suitable as the real part of a PRF,

Example 4.2:

Considering (4.5), the operation carried out with respect
to w gives an odd function. On the other hand, since the condi-
tion expressed by (4.11) is not satisfied, —97 {Rl(w)} is also
unsuitable as the real part of another PRF.dw

(iii) New function obtained as the polynomial integral of

the real part:

(a) Integration carried out with respect to w:

Integrating the numerator and the denominator of (4.3)
term by term,
2
[Alw, )4 .. (4.12)
SB(w™) dw

G(wz)

can be put in the form , provided the constants associated

2
H(w®)
with integration are assumed to be zero so that w in the numera-
tor and the denominator are cancelled. G(wz) is seen to be
non-negative for 0 < w < «, This follows because {wG(wz)} can

be viewed as the area under the curve A(wz) against_g from
w = 0 upto w. Since A(wz) is non-negative over this-range,
wG(wz) is also non-negative over the same. Hence the non-

negativeness of G(wz) follows. Similar argument is applicable
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to H(wz) which comes out to be always positive and finite for
w in the same range. Hence (4.12) corresponds to the real

part of a PRF.

(b) Integration carried out with respect to w?:

This gives,

/aw?)dw? | 1(w?) .. (4.13)
/B (02) dw?- 3 (w?)

In this case, arbitrary but non-negative constants of inte-
gration may . be assumed. Associating I(wz) and J(wz) with the
areas under the curves A(wz) and B(wz) against w2 respectively,
we can, at once, see that the new function I(wz) is non-

negative for 0 < w < «, while J(wz) is always positive over
2
I(w*)

2
J (w*)
form the real part of a positive real function are, therefore,

the same range. All the required conditions for to
met. Augmentation may be employed, if necessary, to render
all the terms of the numerator and the denominator positive.
Miyata's procedure can, therefore, be employed in order to

synthesize the PRF obtained from the real part.

Example 4.3:

The polynomial integral of Rl(w) in (4.5), carried out

with respect to w yields,

4 2
Ry(w) = ;—2F3 = G(wz’ .. (4.14)
o} + 3.3333302 + 5 H(w)

R3(w) corresponds to 3§ driving point function
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2
2,5) = S+ 1.60073s + 2.23610 .. (4.15)

+ 2.79382s + 2.23604

A realization of Z3(s) has been furnished in Fig. 4.3.

The same operation carried out with respect to w2 gives,

w4+
2

2
, = L) .. (4.16)

Ry (w) = > 2
w o+ 3w + 3 J(w™)

where the constants of integration have been assumed to be

Zero.

A convenient method of synthesizing Z4(s) of which R4(w)

forms the real part, is furnished by the Miyata's procedure.

Decomposing (4.16) as,

R, (w) = w* + —3
L) = r .. (4.17)

J(wz) J (w

we obtain the realization for each term separately. The

realization of Z4(s) is shown in Fig. 4.4.

(iv) New function obtained as the total integral of the

real part:

(a) Integration carried out with respect to w:

Consider

2
g A) gy, .. (4.18)
B(w*)

This integral will not be an even function of w, and there-
fore, it will be unsuitable for being the real part of any PRF.

In general, the integral will be 'a transcendental or an inverse
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O .
5%30.84

— 1
Z3(s) 1 —1.34
o

Fig.4.3: A realization of Z3(s)
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Z4(S)

0.393

1.467 ——

Fig.4.4: A Realization of Z4(s)
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trigonometric function.

(b) Integration

In general,

carried out with respect to wz:

2
s 51951 dw? .. (4.19)
B(w*)

K(wz)

cannot be in the form —s where K(wz) and L(wz) are of the

L(w™)

same form as the numerator and the denominator of (4.3) respect-

ively. The new function will not be therefore suitable as the

real part of a PRF

. An exception occurs when the numerator

is a constant and the denominator a perfect square or a perfect

cube etc. In thi

gral as the real p

4.4 Operations on

s case, using the absolute value of the inte-

art, a PRF can be constructed.

the Imaginary Part of a Positive Real Function:

The numerator
‘the denominator is
differentiation or
functions which do
any cancellation t
IE—Eéiﬂl and afte
investigate the po

by w being the ima

of Im Z2(jw) is an odd polynomial in w, while
even. For this reason, the operation of
integration performed on them will yield new
not maintain this relationship even after
hat might take place. We, therefore, consider
r desired operations on this function are made,
ssibility of the resultant function multiplied

ginary part of another PRF. New functions

are obtained by suitable operations on

Im Z(Jw) _ Clu?) .. (4.20)
w B (0?)
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(i) New function obtained as the polynomial differential of

(4.20):

As before,

2
dc(wz) égi%.l
dv - Gu > .. (4.21)
dB(w) dB(w™)
dw dw2
If the numerator of (4.21) is multiplied by w, the resulting
function will be suitable as the odd part of a PRF.
(ii) New function obtained as total differential:
(a) Differentiation carried out with respect to w:
This gives
d 2 2 d 2 2
a A(wz) ) {35 A(w)} B(w®) - {55 B(w™)} A(w®) (4.22)
dw B(wz) B2(w2)

The numerator of (4.22) is an odd function and further multipli-
cation by w makes it even, thereby rendering it unsuitable as
the imaginary part of another PRF. However, this will be
suitable as the real part of a PRF (containing a zero at the

origin) provided

d 2
2 — B(w™)
B(wz) > dg 5 for 0 < w < ® ..(4.23)
A(w) EEA(U) )
2

(b) Differentiation carried out with respect to w™:

This gives
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{—gi-A(wz)} B(wz) - {—é—-B(wz)}A(wz)

’ 2 2
d .
2{A(“’z)}‘= dw I dw .. (4.24)
dw® B(w“) B™ (w™)
Multiplication of the numerator of (4.24) by w makes it
an odd function. A PRF therefore can be constructed by using

the new function as its imaginary part.

(iii) New function obtained as the polynomial integral of

(4.20):

The two cases arising out of the integration being carried
out with respect to w or w2 are corresponding to the two cases
of the real part respectively, as discussed in Section 4.3.
Similar arguments will show that the new functions are suitable

as the imaginary parts of PRF's.

(iv) New function obtained as total integral:

Refering to cases (iv)a and (iv)b of the real part in
Section 4.3, it can be observed that whether the integration
is carried out with respect to w or wz, the resultant function
will not be, in general, suitable for the construction of a PRF.
An exception occurs when the integration is being performed
with respect to wz, the numerator is a constant and the denomi-
nator a perfect sgquare, a perfect cube etc. In this case,

the integral multiplied by w will form the imaginary part of

some PRF.

4.5 Conclusions:

The properties of eight new functions generated after the
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different operations of differentiation and integration from
the real or imaginary part of a PRF have been examined. It

is found that the polynomial differentials of the real part

of a PRF are conditionally suitable as the real part of

another PRF. However, if polynomial integrations are employed
to get the new function, it will always form the real part of
another PRF. Total differentials and total integrals of the
real part do not, in general, yield functions suitable as the
real part of some PRF. In conclusion, it can be said that

the properties of the real part are in a sense invariant with
respect to polynomial integration but not with respect to
polynomial differentiation. This furnishes a sharp contrast to
the PRF itself, which retains invariance of positive realness
under polynomial differentiation rather than under polynomial

integration.

Almost analogous conclusions have been reached for the

Im Z(jw)
w

imaginary part of a PRF. In this case, has been
considered instead of Im Z(jw) and the new function has been
multiplied by w before considering its suitability as the
imaginary part of a PRF. The only important difference lies
in the fact that both polynomial differentiation and polynomial

integration yield invariant functions, i.e. functions which

are suitable as the imaginary part of a PRF.

The accompanying Tables 4.1 and 4.2 summarize these

results.
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TABLE 4.1

FUNCTIONS GENERATED FROM THE REAL PART

111

“ Cperation carried ﬂwmﬁwﬁﬁ the new mmbowwob

Wmnmxﬁwb@ Functicn Derived Function out with respect to| :° suitable as being nwm.

T &Sk real part of another posi-
w oY w . .

j tive real function

! Polynomial W Conditionally suitable

M Differential of 5

w R (w?) w Conditionally suitable

| Real part of a Total w Not suitable

| positive real Differeptial of

| tunction, R (w4 w? Conditionally suitable

General form is

VAENV ) Polynomial ® Always suitable

wWAtnv = R(w?) HdﬁmmeH of

o R(w®) w? Always suitable

!

w Total © Not suitable

Hbﬁm@www of
* R(w®) w2 Not suitable
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TABLE 4.2
FUNCTIONS GENERATED FROM THE IMAGINARY PART

Whether the new function
Operation carried multiplied by w will be
Starting Function Derived Function out with respect to suitable as the imaginary
w or w? part of another positive
real function
Folynomial w Always suitable
General form is UpmmmmeWHmH of -
Clw?) _ =xl(w?) x(w?) /o w? Always suitable
2 w
.wma V‘ oy Total w Not suitable
where x(w?) is Differential of
is the imaginary x (0w2)/y w? Always suitable
part of a posi-
tive real func- Polynomial © Always suitable
tion. Integral of
x(w?) /v w? Always suitable
Total w Not suitable
HSWmWHmH of
x(w?) /v w? Not suitable
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CHAPTER V

POLYNOMIAL DECOMPOSITIONS USING INTEGRALS OF
HURWITZ POLYNOMIALS

5.1 Introduction:

So far, the integrability conditions of HP's and RC poly-
nomials have been discussed. In this Chapter, two new decom-
positions of a HP are presented and possible applications dis-
cussed. The first of these, the "Integral Decomposition",
expresses a HP as the sum of another integrable HP and its
integral. The Integral Decomposition is used to provide an

alternative to Weinberg's
transfer functions by symmetrical lattice structures containing
lossy coils. The second decomposition, termed the "Integro-
differential Decomposition" expresses a HP Q(s) as the sum of

another integrable HP F(s), its derivative and its integral.

A possible use of this decomposition is also indicated.

5.2 The Integral Decomposition of a HP:

The decomposition of a HP into the sum of another HP and
its derivative has been shown to exist(32). This has been
used to realize transfer functions or immittances by symmetrical
lattice structures with lossy coils. The Integral Decomposi-

tion and its use in the synthesis of symmetrical lattices will

now be discussed.

Theorem 5.1:

Given a HP, Q(s), which does not contain only imaginary
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axis zeros, it is possible to decompose Q(s) as:

Q(s) = A F(s) + GS/F(s)ds .. (5.1)

where /F(s)ds is a HP and includes a constant of integration,

A and G being positive real constants.

Proof:

The existence of the above decoumposition is always
guaranteed by a theorem in algebra which states that the roots
(2)

of a polynomial are continuous functions of the coefficients .

If A is made equal to zero, then /F(s)ds = géél-which is
certainly Hurwitz. If A is increased slightly, /F(s)ds will
still be a HP. However, beyond a certain maximum value of A,
the roots of /F(s)ds may move to the right half of the s-plane,
in which case, /F(s)ds is no longer Hurwitz. The procedure

for obtaining the decomposition is now described:

_ .m m-1 m-2
Let Q(s) = s + C__;s + C S t .. +Cis + CJ
* o (5.%)»
Assume that
_ .m-1 m-2 m-3
F(s) = s +d. _,S + d _3S t ... +d,8" +dys + 4
.. (5.3)
where the di's are to be determined. Then
AF(s) + G/F(s)ds = S s™ + (G -2 +3)s™ ! 4+ (G -3 + ad_ .)
m m-1 m=2 m-2'5

Gdl >

+ Ado + GK ..(5.4)
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There are (m + 2) unknowns on the right hand side of (5.4)
and once a suitable choice for the constant A has been made,
the remaining (m + 1) unknowns can be determined one by one

using the following set of equations:

G _ 3
m
d
m—2 _
G ——% +A=C_,
d
m-3 _
¢ =z * Adpoz = Gy
.. (5.5)
Gdl
Gdo + Adl = Cl
GK + Ad = C
o o
Alternatively, it is possible to solve equations (5.5)
simultaneously after making an initial choice of K. Thus, it

is seen that there exists a definite implicit relationship
between A and K. Depending on the choice of K, A will vary

and vice versa¥*,

Since the initial choice of A (or K) is somewhat arbitrary,
it is essential to confirm that /F(s)ds is a HP. This may be
accomplished by using the integrability conditions of F (s)
developed earlier. Should F(s) be unintegrable, it follows

that the initial choice of A was too high. The di's are then

*An upper bound for A is the minimum of {Ci/di}, i=20,1,2,..m1.
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computed again with a lower value of A and the operation

repeated until the new F(s) comes out to be integrable.

It follows that the integrability conditions of F(s) help

in the maximization of A by rejecting an unintegrable F(s).

The Integral Decomposition described above can be used
as an alternative to the Differential Decomposition of Weinberg.
The following example provides an application of this procedure
in the synthesis of a voltage transfer function by an open-

circuited symmetrical lattice.

Example 5.1:

It is required to realize the following voltage transfer

functian:

2 _ s-3
== = 7 3 5 ..(5.6)
1 H(s® + 12s™ + 54s“ + 108s + 80)

The maximization of the gain constant é can be achieved as

described above. It is equal to 6.94. Suppose for the purpose
of this example that A is chosen to be 5. Then from (5.5),
G= 4.0
d, = 5.25
4. = 13.875 .. (5.7)
1
d = 9.6562
o
K= 7.93

Hence, the decomposition can be written as:



116

Q(s) AF(s) + G/F(s)ds

= S{S3 + 5.2552 + 13.875s + 9.6562}

+ 4{0.25s% + 1.755> + 6.93755% + 9.6562s + 7.93} .. (5.8)

JF (s)ds can be seen to be a HP.

From (5.6),

s=-3
E, s?+753+27.755%+38.62485+31.72
E) s345.255%413.875549.6562
H{1 + 1.25 2 2 = }
0.255%41.7553+46.93755%49.65725+7.93
Nr
E—4 D_ 00(5.9)
r

The partial fraction expansion of the numerator and the deno-

minator of (5.9) gives,

-0.085 - §0.0039

N = -0.085 + j0.0039
r s + 2.630L + j3.1027

S + 2.6301 - 33.1027

+

0.0848 - §0.1282 + 0.0848 + j0.1282
s + 0.87 + jl.0711 s + 0.87 - jl.0711

+

..(5.10)

1 1
s ¥ 2.6301 + 33.1027 ' s ¥ 2.6301 -33.1027

H{1l + 1.25(

and D
r

1 1
* 5+ 0.87 + 31.071L T s+ 0.87 - 3L.0711) !

It remains now to compute the permissible range of H for each

pole and choose a value which satisfies all the conditions(34)
E, Zp = Za
for the realization of T O3S g7 ¢ where ZA and ZB
- 1 B A

are positive real. The stronger condition yields,
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H > 0.144.

Choosing H = 1, we obtain,

Z, = 0.5 + n 1 -
0.7507s + 573387 ¥ 0.1174s + 0.1552
_ 1
Z, = 0.5 + -

i
0.8582s + 775797 * 1.0035s + 0.9913

Therefore, the realization of the lattice is as shown in Fig. 5.1.

It is well known that under certain conditions, a lattice
can be equivalently realized by an unbalanced network. Hence
the unbalanced form of realization can b~ obtained using the

above technique under those conditions.

5.3 An Integro-differential Decomposition of a HP:

In the previous section, it was seen that it is possible
to obtain Differential and Integral Decompositions of a HP.
These two aspects may be combined to obtain an Integro-differ-
ential type of a decomposition where a HP is expressed as the
sum of another HP, its derivative and its integral, which is

also a HP.

Theorem 5.2:

Given a HP, Q(s), which does not contain only imaginary

axis. zeros, it is possible to decompose Q(s) as:
Q(s) = AF(s) + BF'(s) + G/F(s)ds ..(5.11)

where SF(s)ds is a HP and includes a suitable constant of

integration, A,B and G being positive real constants.



118

0.3381
0.5 0.7507
—/ A\ {] -
0.1174 0.155
| 0,317 2

Fig.5.1: Symmetrical Lattice Realization of
Voltage Transfer Function using

Integral Decomposition
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Proof: Let the form of Q(s) be as in (5.2) and let
F(s) be as in (5.3). The di's are to be determined.
We have,

G m dp-2 m-1

AF(s) + BF'(s) + G/F(s)ds = & s + {G ——7 + Als
dm-3 m-2

+ {G =z * Ad_, + B(m-1)1}s

E ceeceetceccseceeees +

+ (Gdo+Adl+ZBd2)s + (AdO+GK+Bdl)

.. ((5.12)

This decomposition is always possible for values of A and B
upto a certain maximum. Above these values, JF(s)ds will no

longer be Hurwitz. There are (m + 3} unknowns on the right
hand side of (5.12) and we need to choose twc constants A and B
in this case. Once this has been done, the di's can be

computed one by one using the following set of equations:

9_. = ]
m
d
m-2 _
¢ 1 *A=Cp1
dm—3
G ) + Adm_2 + B(m - 1) = Cm_2 e (5.13)

® © 0 0606 006060600 0600000000000

Gdo + Adl + 2Bd2

I
Q

GK + Ad_ + Bd, = C
o 1 o



With F(s) obtained, it now remains to test its integrability.
If F(s) is found unintegrable, the given Q(s) must be decom-
posed again with lower values of A and B until it becomes

integrable.

5.4 A Possible Application of the Integro-differential Decom-

position in the Synthesis of Transfer Immittances:

Consider two networks Na and N, in tandem, as shown in

b
Fig. 5.2. We have,

120

o = Y12a¥12b  _ N(s) (5.14)
12 Y335 * Y11 D(8)
z z
and z21, = 3 12a+l§b .. (5.15)
22a 11b
The synthesis procedure described below for Yy, May also be
used for realizing a given IPT
Decomposing D(s) by the Integro-differential technique given
in Section 5.3, we obtain,
D(s) = AF(s) + BF'(s) + G/F(s)ds .. (5.16)
Hence (5.14) can be rewritten as
N(s)
AF (s
= ee (5.17
Y12 1+ BE(s) G /F(s)ds ( )
A F(s) A F(s)

Since each of the terms in the denominator of (5.16) is a
PRF, there are four different ways in which Y524 and Y{1p C2n

be identified. These different alternatives are shown in
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Table 5.1. Corresponding to each of these identifications,

Y124 and Yq gy, May be chosen, writing the numerator of (5.17)

as:
N(S) _ Nl(s)NZ(S) (5 18
F(s) ~ F,(s)F.(s) -+ (5.18)
1 2
and identifying,
N, (s)
Y12a T F (s)
.. (5.19)
Nz(s)
Y12b T F, ()
The additional poles contained in Y924 OF Yqi1p May be realized
as private poles. The networks can now be synthesised using
(31)

wherein each inductance is
(35)

either Weinberg's procedure
lossy or by the procedure of Fialkow et el if N(s) does
not have zeros on the positive real axis. The latter may not

result in all inductances being lossy.

5.5 Conclusions:

In this Chapter, two new polynomial decompositions,
namely, the Integral Decomposition and the Integro-differential
Decomposition have been discussed. These two decompositions
along with the Differential Decomposition obtained by Weinberg
possess the following property: if a given HP Q(s) is decomposed

using any of these techniques into a HP F(s), its derivative,

Q(s)
F(s)

This property is used in the synthesis of transfer functions

and/or its integral (also a HP), then is a sum of PRF's.



FOUR WAYS OF IDENTIFYING y,, AND yj,

TABLE 5.1

Y22a Y11p
1 4+ BE'(s) G JF(s)ds
A F(s) A F(s)
1+ G /F(s)ds B F'(s)
A F(s) A F(s)
G [F(s)ds 1 + BE'(s)
A F(s) A F(s)
B F'(s) 1 G /F(s)ds
A F(s) A F(s)

123
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or transfer admittances using symmetrical lattices with

lossy coils or as grounded RLC transformerless networks.



CHAPTER VI

CONCLUSIONS AND SOME SUGGESTED INVESTIGATIONS

6.1 Conclusions:

This thesis has initiated a study concerning the inte-
grals of network functions. The main topics of investiga-

tion have been:

(i) the integrability criteria of poly-
nomials containing simple imaginary
axis zeros or simple negative real

axis zeros.

(ii) the differentials and integrals of the

real and imaginary parts of PRF's and,

(iii) polynomial decompositions using inte-

grals of HP's.

The driving point immittances of lossless networks were
considered first. Given the zeros of M and N, conditions
have been established such that /Mds and /Nds + K contain
only simple imaginary axis zeros. Suitable testing proce-
dures including simple inspection tests have been enunciated.
These inspection tests facilitate the immediate rejection
of an unintegrable M, or an unintegrable N containing three
factors. Once the inspection tests are complied with,
sufficiency tests can be performed in the prescribed manner.

The integrability conditions of M and N are necessary condi-

125
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tions for Tﬁaéggéﬁ to represent the driving point immittance

function of a lossless network.

Two special cases of M and N, called the medial M and
the medial N, arise when their zeros satisfy prescribed rela-
tionships. The medial M is generally unintegrable, while
the medial N is always integrable since a real positive
constant is associated with its integral. The properties of
the integrals of the medial M or the medial N provide addi-
tional criteria which aid in the acceptance or rejection of

the given function as being integrable.

The driving point immittance functions of lossy two-
element-kind networks have also been considered. The condi-

tions for the following two possibilities have been enunciated:

(i) the integral of a RC polynomial being another

RC polynomial and,

(ii) the integral of a RC polynomial being a HP.

It has been shown that the RC integrability conditions of a
polynomial F(s) whose zeros are given, are the same as the
integrability conditions of the odd part of a HP obtained as

N = sF(sz). Thus from an integrable o@d part, it is possible
to obtain an integrable RC polynomial and vice versa. If the
zeros of F(s) are not known, a modified Routh-Hurwitz criterion
has been employed to test its RC integrability. It follows

that a given N, whose zeros are not known, can be tested for



its integrability by ascertaining the RC integrability of
the polynomial obtained as F(s) = g , The Hurwitz
s<+s

integrability conditions of RC polynomials are less strict

than those required for their RC integrability. It is also

JF(s)ds + K
F(s)

expressed as the sum of RC and RL immittances.

shown that under certain conditions can be

It follows that neither the two-element-kind property
nor the positive realness of a driving point immittance
function remains invariant under polynomial integration.
This is in contrast to the operation of polynomial differentia-

tion where this invariance is always guaranteed.

That the above contrast is not general is proved when
the real and imaginary parts of a PRF are considered. It is
found that under polynomial integration, the real part of a
PRF always yields a function which is suitable as the real
part of another PRF. This is not necessarily true under
polynomial differentiation. However, the modified form of
the imaginary part considered here, yields a similar function
under both the operations of polynomial differentiation and

polynomial integration.

Generation of higher order PRF's can be achieved using
the criteria reported in this thesis. Higher order PRF's may
be constructed using the integrability criteria of M or N

or by the polynomial integration of the real or (modified)
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imaginary part.

Two new decompositions of HP's, the Integral Decomposi-
tion and the Integro-differential Decomposition, have been
described. The advantage of these decompositions in yield-
ing functions which can be broken up into a sum, such that
each constituent part is a PRF, has been discussed and their

possible use in network synthesis using lossy coils indicated.

6.2 Some Suggested Investigations:

The foregoing discussions lead to the following problems

which are suggested for further investigations:

(a) It has been proved in Theorem 2.6 that if a given
. . 2 _ .
Mm is unintegrable at s” = X2, then so is Mm+l at the same
point. It appears reasonable to conjecture that a necessary

condition for the integrability of Mm is that Mm be integrable.

+1
In other words, if meds has one or more pairs of complex

zeros, me ds also has at least one pair of complex zeros.

+1

Similarly, one may conjecture that if a given Nn is
unintegrable, then so is Nn+l' Both the above conjectures
have been found to be true for several numerical examples,
but a rigorous proof is essential before their validity can

be established.

(b) Considering the medial Mm, if any one or more of its

even numbered zeros are moved towards the origin, then from
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Theorem 2.9, the integrability is violated. For the case when

m is even, all the equalities (2.48) become inequalities, that

is
m
2 X. 1
I og—=— >3 3=13,5 ciieini., ml
i=1 2i 3j
However, this inequality does not imply unintegrability. This

is obvious when one considers the perturbation of the odd numbered
zZeros. This does not necessarily mean that all the terms in

the summation decrease or increase simultaneously. However,

it is reasonable to conjecture that there exists a function

Y, such that

m
2 X.
z ')'(——'TJY—< Y, j=l'3,5,o--ao.-o-ooo., m_l
i=1 2i j

is a ncessary condition for integrability. A similar result

may be anticipated for the case when m is odd.

(c) Necessary coefficient relationships for two-element
kind network functions are available using the properties of

differentials(g'lS).

Since the polynomial integration
imposes some restrictions on the locations of the zeros, it
is expected that some additional constraints regarding the

coefficient relationships may result using the integrability

criteria.

(d) In Chapter V, two new decompositions, namely the
Integral and the Integro-differential decompositions have been

discussed. It may be possible to extend this to a decomposition
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containing higher order differentials and integrals, and to

2xamine their use in network theory.

It is hoped that this thesis will stimulate the investigation
of further properties and applications of integrals of network

functions.
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