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HYBRID FLUIDIC HEADING REFERENCE SYSTEM
AND
THE CONTROL OF SYSTEMS WITH PURE TIME DELAY

ABSTRACT

A heading reference system which could have
application in navigational systems has been implemented
by introducing a negative rate feedback loop around a
fluidic vortex rate sensor to continuously maintain zero
rotational rate of the sensor, and hence a fixed orienta-
tion about its axis of sensitivity. The existence of an
inherent pure time delay of appreciable magnitude in the
fluidic rate sensor results in stability problems in the

closed loop system.

This thesis investigates different linear feed-
back compensation circuits which may be readily implemented
fluidically for stabilizing the heading reference system.
The system dynamic performance with proportional-integral-
derivative, proportional-integral and integral controller
types of compensation is evaluated using hybrid computer
simulation techniques. Initially, the system angular rate
response is optimized using the Ziegler-Nichols criterion
to demonstrate the feasibility of attaining acceptable
system transient duration and rate error. The results are
experimentally verified using a 5.0 inches coupling diameter
vortex rate sensor, electronically implemented feedback
loop and a D.C. sensor drive servomotor. The results indi-
cate that the simulation model adequately represents the
experimental heading system, that the system dynamic perfor-
mance justifies a more appropriate optimization technique, and



ii

that a proportional-integral controller offers the best com-
promise between hardware complexity and system performance
in the presence of substantial system noise.

The parameter settings for the proportional-
integral controller are theoretically developed for both
stability 1imit and minimum time-integral of error for a
generalized negative feedback control system containing two
first-order lags plus a pure time delay. The derived opti-
mization equations are verified in the case of the heading
reference system both by hybrid computer simultation and
experimental system performance in terms of minimizing the
system heading error. The closed loop frequency response
for the heading reference system with optimum controller
setting is also theoretically determined. ’

The derived complex set of equations defining the
optimum controller parameter settings are approximated over
a wide range of system transfer function parameter values
by a much simplified set of equations using numerical curve
fitting techniques. The approximation is verified by hybrid
computer simulation and experimental heading system perfor-
mance. The dependency of the heading error upon the system
transfer function parameters is numerically determined over
an extended range of parameter values. The results indicate
that the optimized heading error varies 1linearly with the
system time deiay and non-linearly with the time Tags.
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NOMENCLATURE

t Time, sec.

s Laplace operator (sec"])

Gy Rate sensor gain (in.H20/deg./sec.)

G2 Sensor drive motor gain (deg./sec./volt)

Kc Feedback controller proportional gain '

0, Angular heading input (degree)

9, Angular heading output (degree)

04 Angular heading error (degree)

TL Rate sensor pure time delay (sec.)

T.I Rate sensor time canstant (sec.)

T2 Sensor drive motor time constant (sec.)

TI Feedback controller integration time constant (sec.)
K, = (1/Tp) (sec™!)

TD Feedback controller derivative time constant (sec.)
Yeo Uncompensated system crossover frequency (rad./sec.)
Gco Uncompensated system overall gain at crossover

frequency

AP Rate sensor differential pressure output (in.HZO)

Ep Sensor motor drive voltage input (volt) 5
J Rate sensor polar inertia (in2-1bs)

g Acceleration due to gravity (in./sec?)

APt Turbine differential pressure input (in.HZO)

Gt Turbine gain (deg./sec./in.HZO)

N Rate sensor/turbine drive coupied gear ratio



xiii

Wy Angular rate input (deg./sec.)

Wy Angular rate output'(deg./sec.)
wg Angular rate error (deg./sec.)
K] Compensated overall system proportional gain = GchG2

q Lapiace auxiliary variable
é Phase shift (deg.)
f

Input frequency {cps)

§ Real part of the characteristic equation's root
Q Imaginary part of the characteristic equation's root
M Ratio of two successive absolute amplitude values

(6/Q) System response damping ratio
wn Rate sensor natural frequency (rad./sec.)
z Rate sensor damping coefficient

AP Rate sensor differential pressure at steady-state (in.HZO)

Dimensionless quantities:

2
K, T
T = TL » A = 1L s B = KZTL
L T, |
J
T, +T 12 To+T
c = 12 T, , p = —Lt , P12
7o "o Ty



CHAPTER 1

INTRODUCTION

1.1 General

The potential environmental capability, reliability
and, eventually, low cost of fluidic devices leads one to
conceive many fluidic systems to compete directly with or teo
complement their electrical and mechanical counterparts.
Particularly in spacecraft control, extensive effort has begn
made to develop a hybrid fluidic-mechanical equivalent of the
conventional direction gyro. References 1, 2, 3, 4, 5 and 6
describe some typical hybrid fluidic-mechanical gyros which
consist principally of a pneumatically supported and driven
spjnning spherical free rotor and a fluidic pick-off, as
illustrated in figure 1.1. Such hybrid gyros operate on
conventional gyrodynamic principles wherein the rotor spin
axis remains fixed in inertial space in the absence of ex-
ternal disturbing torques. The gyro relative rotor angular
displacement is generally sensed with a stator referenced
fluidic pick-off which normally utilizes the relative move-
ment between the rotor spin axis and the stator to attain
a variable orifice or a flapper valve operation. The hea-
ding reference signal is proportional to the pick-off

differential pressure signal. This heading signal, as
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FIGURE 1.1 TYPICAL HYBRID DIRECTIONAL GYRO CONFIGURATION
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mentionned in references 1, 4 and 5, is obtained over a
relatively limited angular deviation, normalily in the order
of + 5 to 10 degrees. Such pneumatically supported gyro
rotors typically exhibit increasingly higher drift rates
with increasing rate of stator angular deviation relative
to the rotor spin axis. The precession results directly
from a torque applied to the rotor about the platform axis
through the mechanism of viscous shear within the fluid

boundary layer which supports the rotor.

Such hybrid fluidic-mechanical gyros exhibit
characteristics which are jdeally suited for a nulling direc-
tional servo loop in short duration guidance systems where
heading deviations are minimal. The heading variation ca-
pability as 1imited by acceptable linearity of the gyro
heading reference signal as well as high drift rates at
appreciable rates of change of heading, largely discount
the adaptability of the hybrid gyro in navigation systems
which normally are required to generate an accurate heading
reference over appreciable durations and all péints of the

compass.

The development of a practical, all-fluid angular
rate sensor brought a possible alternative to reaiize a
pneumatic navigational system heading reference without mo-

ving parts; The general configuration of a rate sensor, as
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shown in figure 1.2, consists of a thin cylindrical chamber
with a perforated wall or "coupling ring”. Flow is fed
through the perforated wall across the chamber to exit
through a centrally located outlet. As the differential
pressure output signal is proportional to the sensor rota-
tional rate, it is sufficient to integrate this signal to
obtain the angular displacement, as shown in figure 1.3.
The fluidic rate sensor exhibits performance comparable
with conventional spinning rotor single axis rate gyros

but without the use of moving parts. Fluidic rate sensor
threshold 1imits are typically in the order of 0.1 deg./sec.
(References 1 and 4) to 0.05 deg./sec. {Reference 10) for

5 to 6 inches diameter units.

The fluidic rate sensor has been used in a number
of pneumatic control system applications where its inherent
features of simplicity, reliability and environmental tole-
rance are exploited, such as TIM (Test Instrumentation
Missile) roll attitude control system shown in figure 1.4
(References 7, 8 and 9). Angular motion of the vehicle is
sensed by the vortex rate sensor, output signals from the
vortex rate sensor are combined and amplified in a suitable
fluidic amplifier network and then fed into a two-stage
supersonic reaction amplifier. The final outflow emerges
tangential to the missile skin and the system 1limit cycles

in a dead band around zero attitude error.
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The substitution of vortex rate sensors and flui-
dic integrators for conventional directional gyros would
appear to offer an attractive alternative which avoids the
mechanical complexity and high speed moving parts., However,
practical considerations of rate sensor gain, drift and
linearity limitations, coupled with fluidic integration
inaccuracies tend to limit the attainment of angular heading
by direct integration of the rate sensor output to short

duration and relatively inaccurate reference systems.

An altternative approach was considered to minimize
the limitation associated with the rate sensor signal quali-
ty. The initial concept, as proposed by Aviation Electric
Limited, Montreal, consisted of an electromechanical negative
feedback servo loop around the rate sensor as illustrated in
figure 1.5. The differential pressure output of the fluidic
rate sensor due to vehicle frame rotation is converted into
an electrical signal. This signal is amplified and fed into
a servomotor to form a feedback loop which acts to maintain
the rate sensor at a fixed orientation about its rotational
axis, irrespective of the vehicle frame rotation. Such a
single axis heading reference system might provide an attrac-
tive low cost alternative to a conventional gyro in naviga-
tion and/or stabilization system applications where the
absolute heading deviation of the rate sensitive sensor

axis would be minimal. A typical application for this
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sensor rate feedback approach would be to provide a heading
direction reference in cross-terrian vehicles such as heavy
duty trucks, tracked snow caterpillars and air cushion vehi-

cles for navigational purposes.

1.2 Objectives of the Project

The primary objective of this project is to in-
vestigate different possible compensation techniques which
reduce the system heading steady-state error while maintai-
ning acceptable stabflity margin and transient response.

No attempt has been made to improve the gain/response cha-
racteristics of the commercial fluidic rate sensor used in

this investigation in order to optimize the overall system
performance. Further, there is an advantage to implement

the heading reference system entirely with fluidics to avoid

the necessity for electro-fluidic interfaces. Accordingly, par-
ticular attention will be given to those compensation net-

works which are practically realizable with commercially

available fluidic devices.

Efforts are directed to developing a sophisticated
optimization technique to minimize the system steady-state
heading error. The stabilization of the heading reference
system with a vortex rate sensor induced pure time delay of

appreciab]é relative magnitude is a problem common to many
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industrial processes, particularily in petroleum and chemi-
cal plants where the pure time delay is usually associated
Wwith materijal and/or fluid signal propagation in long trans-
mission pipes. Accordingly, the optimization of the heading
reference system has been extended to cover the more general

case of the industrial process control system.



CHAPTER 2

DIFFERENT SYSTEM FEEDBACK COMPENSATION SCHEMES

2.1 General

The initially conceived heading reference system
outlined in the previous chapter could be represented by the
block diagram illustrated in figure 2.1. Shown is, the rate
sensor differantial pressure output/angular rate input trans-
fer function, which had been experimentally determined using
a servoed hydraulic rate table (Reference 10), incorporates a
first order lag and a pure time delay. From the block diagranm,
it could be easily seen that the overall system open loop
transfer function consists of a second order lag and a pure
time delay. According to the theory of linear control systems
(Reference 11), a zero system rate error, which is the princi-
pal objective of the feedback loop, will be atfﬁined only at
an infinite value of system overall gain (i.e. infinite value
of GIKCGZ)‘ However, the system phase shift introduced by the
rate sensor delay time, being proportional to input signal
frequency, will result in system instability at an appropriate
value of system loop gain. For example, with a time constant
T

are the characteristics of the commercial fluidic rate sensor

= 0.011 second and a delay time TL = 0.010 second, which

used in the experimental program (Aviation Electric Type 1600
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RSO01, Reference 10), it héd been shown that, with a drive
motor time constant T2 = 0.020 second, the system becomes
unstable at the loop gain value of approximately GchGé = 4,0
and at this condition the heading system steady-state drift
rate is 20% of the step rate input (Reference 12). This large
system drift rate is obviously unacceptable for a heading
reference system. Thus, some compensation networks are neces-
sary to reduce the system steady-state rate error while main-

taining acceptable stability margin and transient response.

Some appropriate compensation ciréuits in the form
of linear lags combined with a pure time delay have been
investigated in reference 12, Such compensation techniques,
which have been advocated by several authors to stabilize
industrial process control loops containing transportation lag
(References 13, 14, 15), are essentially devised to remove the
effect of time delay from thé feedback Toop thereby permitting
the forward loop gain to be increased, without encountering
the instability 1imit associated with the time delay. Such
compensation circuits theoretically offer a great improvement
on the system performance. However the hardware implementation
of a perfect pure time delay required in the control loops
introduces some serious practical Timitations. Electronically,
2 pure time delay simulation could be achieved by using Padé
approximation analog circuits, reflection of ultrasonic waves

in crystals, capacitors wheels, tape recorder and digital
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computer storage {Reference 16), even though such methods
tend to be expensive and unwieldy, particularly when the
time delay magnitudes are significant. Fluidically, the
time delay might be generated by acoustic signal propagation
down a transmission Tine. However, the relatively high
speed of sound and the frictional attenuation which occurs
in transmission 1lines undermine the practical feasibility

of this method. An alternative for delaying fluidic signals
has been described in references 17 and 18, where bubbles
are injected into a tube containing water flowing at a
constant rate. The bubbles are sensed at a point downstream
and the delay period ig determined by the water flow rate
and by the tube length between the injector and the sensor.
This bubble tube simulation technique provides an attractive
means to fluidically implement the pure time delay in the
control loop, although it can only be used for delaying fre-

Guency modulated signals.

A number of other techniques for compensating
systems with pure time delay including feedforward compensa-
tion (References 15, 19, 20), sampled control] (References 21,
22, 23) and modern optimal control (References 24, 25, 26)
have been investigated in the literature. Although theore-
tically they offer means for handling processes having a
pure time delay, actual application of those techniques is

largely discounted in the case of the heading reference



-16-

system by practical considerations. For instance, a feed-
forward compensation loop is physically unrealizable since
the system input, in being the relative angular movement
between the vehicle and the ground reference, is not detec-
table in the practical system. Additionally, sampled control
is not recommended for systems with an inexactly defined time
delay (Reference 21), as in the case of the rate sensor where
the time delay magnitude has been approximated (Reference 44)
and varies as a weak function of the supply pressure. Bang-
bang control type as described in reference 24 would probably
result in system self-oscillation with zero input due to the
significant noise content of the fluidic rate sensor output
switching relay devices. Other modern control techniques
using an iterative algorithm which generates an optimal feed-
back control (References 25, 26) require the implementation
of a large memory digital computer for performing necessary
computation in the feedback loop. This approach is obviously

impractical in the case of the heading reference system.

From the above discussion, it is evident that a
relatively conventional compensation scheme which offers a
good compromise between control effectiveness, manageability,
hardware implementation complexities and cost should be
investigated. In this regard, several control possibilities
using different combinations of proportional, integral and

derivative actions in the feedback loop of systems with dead
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time are cited in references 15, 27, 28, 29. Although it
had been shown that the conventional linear compensation
control technigues do not offer the same degree of system
performance improvement as some other more advanced schemes
previously cited (References 15, 19), the trade-off between
performance, cost, reliability, and maintenance considera-
tions has resulted in the continuing wide spread industrial
use of both pneumatic and electronic linear controllers.

In addition, the required linear controllers can be realized
using commercially available no-moving parts fluidic devices
such as operational amplifiers, resistances and capacitances,

as demonstrated in references 30 et 31.

For those reasons, the possibilities of improving
the performance of the initially proposed heading reference
system by introducing in the system feedback loop different
combinations of linear control actions, such as proportional-
integral-derivative, proportional-integral and integral con-

trol have been investigated.

2.2 Different Linear Control Schemes

2.2.1 Proportional-Integral-Derivative Control

The destabilizing effects of the rate sensor pure
time delay could be eliminated by compromising the system

response through the addition of an integral function in the
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proportional feedback loop. The resultant oscillatory tran-
sient response of the proportional-integral control could be
minimized with the addition of a derivative control function.
With such combined control scheme, the heading reference

system could be represented by the block diagram as shown in
figure 2.2, where the transfer function of the ideal propor-

tional-integral-derivative controller is given by:

Controller output - Kc( 1+

Controlier input + Tps ) (2.1)

1

TIs
Different criteria for setting the controller pa-

rameters (Kc' Tis TD) to obtain a so-called optimum system
response have been reported in the literature. Some of the
optimization criteria were developed by trial-and-error
procedure (References 27, 28, 32), while others were esta-
blished using a theoritical analysis (References 33, 34, 35,
36, 37). Typically, such optimization criteria are applica-
ble only to the given type of control system considered
during the investigation. One exception is the Ziegler-
Nichols criterion (Reference 32) which has been developed
for a more generalized case where only the open loop system
amplitude-phase plots are required to determine a set of

optimized controller parameters.

It is convenient initially to evaluate the system

performance using the Ziegler-Hichols criterion to determine
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the feasibility of attaining acceptable order of magnitude
of system transient response while appreciating that the
“angular rate error" rather than the "heading error” will
be optimized. The use of this criterion will result in an
"angular rate error" overshoot of approximately 25% and a
reasonable compromise between the area under the "angular

rate error" curve and the transient oscillatory period.

The optimum controlier parameters are estimated

by Ziegler-Nichols as follows:

0.6
K. = =— (2.2)
c GCo
1 2m
T, = Lx2T (2.3)
I 2 Weo
1 2n
T, = = x —=— (2.4)
D 8 Weo

The Bode diagram of the open loop system without
a compensation circuit is used to evaluate the crossover
frequency (mco) and the corresponding overall gain (Gco) as
shown in figure 2.3, where the rate sensor and feedback drive
motor transfer functions which have been experimentally de-
termined to be (Reference 12):

Fluidic Rate Sensor

AP(s) s.G].e'O'O]s
= (2.5)
Oi(s) 1 ¢+ 0.011s
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Feedback Drive Motor

oo(s) } 62

- (2.6)
Eq (s)  s(1 + 0.02s)

The gain at the -1809 phase shift crossover fre-

quency of we equal to 115 rad./sec. is given by:

o

20 10910 GCo = -10.5 =— GCo = 0.3

Hence, from equations (2.2), (2.3) and (2.4):

K:——-——:——'—:
C co 0.3
Sl 2m 1,21
TI = 55 = o X375 © 0.0273 sec.
co
: 1. o 2nm 1 2m _
TD =3 XE:; = g%*715 ° 0.0068 sec.

2.2.2 Proportional-Integral Control

In practice, it is often preferable to eliminate

the derivative function in controllers where the input

signal contains a significant random noise component such as
is introduced by the fluidic rate sensor in the heading refe-
rence system. The predictive function of the differentiator
in reducing transient response overshoot may be more than off-
set by accentuation of the random noise content of the signal.
Accordingliy, a proportional-integral controller is investiga-

ted, the associated controller transfer function being:
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(2.7)

Controller output _ \ (y , 1 )
Controller input c TIs

Optimized controller parameters (Kc, TI) are
estimated using the Ziegler-Nichols rules for the same
optimization criterion as in the PID controller case pre-

viously described, the pertinent parameter definitions

being:
K, = 0.45 (2.8)
co
1 on
T, = x LT (2.9)
I 1.2 Weo
Hence,
_0.45 _
Kc - 0.3 T 1.5
1,27 . 0.0455 sec.

Ty = 172*115 °

2.2.3 Integral Control

Further simplification of the control circuit may
be attained by using a simple pure integral controlier, the

transfer function being given by:

Controller output _ 1
Controlier input ~ T;s (2.10)
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By setting of a sufficienf]y large integral time constant
TI’ one can maintain system stability while retaining zero
heading rate steady-state error., The optimized controller
integration time constant (TI) estimated by Ziegler-Nichols
is:

1 2w 1

x

T, =
I 1.2 Wap 1.2

=Ny

775 = 0.0455 sec. (2.11)

2.3 System Simulation

The performance of the heading reference system
was simulated using the hybrid computer EAl 680/640, the
fluidic rate sensor delay time being simulated digitally
within the Timits of the memory storage capability (sampled
rate = 100 sampling/sec.) while the remainder of the system

was analogue simulated.

For the purpose of the system simulation study,
the proportional-derivative part of the controller was re-

placed by a lead-lag circuit as given by:

T + TDS
T + (TD/A)S

(2.12)

] + TDS'=

This approximation is reasonable for A = 10 (Reference 29).
Figure 2.4 shows the simulation diagram of the heading

reference system with a proportional-integral-derivative.
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controller.

The time domain heading error responses of the
simulated system to a 10. degs/sec. step rate jnput are
shown in figures 2.5, 2.6 and 2.7 respectively for each of
the three controllers considered above. It could be obser-
ved that the system heading transient response overshoot may
be reduced or eliminated at the expense of steady-state hea-
ding error by suitable adjustment of the controller parame-
ters as examplified in figqure 2.5 by the reduction of the
proportional gain (KC) of the PID controller. Conversely,
the steady-state heading error may be reduced at the expense
of stability by suitable adjustment of the controller para-
meters as examplified ih figures 2.6 and 2.7 by the reduction
of the integfation time constant of the controller. Progres-
sive reduction of integration time constant or increase of
the proportional gain is limited by the onset of rate sensor
time delay induced system instability in the form of sustai-
ned sensor heading oscillations. A quick comparison between
the optimum responses of the system with different control-
lers demonstrates the compromise between heading error res-

ponse and controller complexity.

2.4 Experimental System Performance

An experimental hybrid heading reference system
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incorporating electrical feedback has been assembied to
facilitate performance evaluation. The experimental assem-
bly is shown schematically in figure 2.8, the corresponding
system hardware being shown photographically in figures

2.9 and 2.10.

2.4.1 Experimental System Hardware

The experimental system incorporates the follo-

wing components:

1) Fluidic Vortex Rate Sensor

The fluidic vortex rate sensor utilized (Aviation
Electric Type 1600 RSO1; linearity = 1% to 150 degs./sec.;
noise threshold 1imit 0.05 deg./sec. for 1 Hz bandpass; fTlow '
rate 2.3 scfm at 5 psi) incorporates a 5" diameter slotted
coupling ring and two 0.060" 0.D. pick-off pitot tubes
mounted tangentially to the swirl flow component in the
sensor outlet duct as shown in figure 2.11. The rate senser
frequency response ijs given by the manufacturer as shown in
figure 2.12 and the sensor blocked load static gain has been
experimentally determined at 5 psi supply pressure as given
in figure 2.13. The observed sensor output signal null
offset results probably from small flexing or shifting in

the pick-off drain assembly.
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2) Pressure Transducer

A high sensitivity variable reluctance differen-
tial pressure transducer (Pace Eng. Model CD10; 1.0 psi;
t 0.5% linearity; 1 KHz response) provides the pneumatic/

electrical conversion.

3) Feedback Drive Motor

A D.C. permanent magnet planetary gearmotor has
been utilized to drive the rate sensor (Globe Industries
Type 168A149; 27 volts D.C.; 0.080 amps. maximum no load
current; 0.48 amps. nominal stall current; 1 to 33.28 speed

reduction ratio; 450 rpm maximum no load speed).

The experimentally determined output/input opera-
ting characteristic of the D.C. drive motor shown in figure
2.14 indicated a dead zone which results from commutator
brush friction. An electronic circuit has been specifically
designed as illustrated in figure 2.15 to eliminate the
motor dead zone. The resulting drive motor output/input

operating characteristic is given in figure 2.16.

4) Angular position potentiometer

A continuous rotation potentiometer (New England
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Output Shaft
* Speed, deg /sec

150

00—

1 i 1 o ) ] .
-5 -10 -5

5 10
Drive Motor Input (voits)

!

-50

-100-

-150}-

FIGURE 2.4 DRIVE MOTOR OPERATING CHARACTERISTICS
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I\ Qutput Shaft
Speed, deg /sec
150 -
100 |~
Gain =134 328/5€C
volt
50 -
1 1 L 0 1 -
-15 -10 -5 5 10 5
Drive Motor Input
(volts)
-50 L
-100
-150 - ;
FIGURE 2.6 DRIVE MOTOR OPERATING CHARACTERISTICS

WITH DEAD ZONE ELIMINATION CIRCUIT
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Instrument Co. Type 78PS146, 10 K resistance, 50 mV, noise,
340° function angle) has been used to detect the sensor

angular position.

5) Mechanical Gear Drives

Two pass spring-loaded anti-backlash gearing
between the drive motor and the fluidic rate sensor with
an overall gear ratio of 1 to 56.8 and single pass anti-
backlash gearing between the fluidic rate sensor and the
angular potentiometer have been utilized to give a poten-
tiometer scale factor of approximately 50.0 degs. of rate
sensor relative rotation per total applied pctentiometer

voltage.

6) Support Frame Motor

A D.C. permanent magnet gearmotor has been utili-
zed to rotate the rate sensor support frame through a 48:1
speed reduction friction drive (G.E. 27 volts D.C., 110 rpm

no load speed).
7) Controllers

The feedback controllers are electronically

implemented through an operational amplifier cabinet
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(Zeltex Inc. Series 120; £ 110V. operating voltage) which
could be externally patched to obtain the desired controller
function. Figure 2.17 illustrates the hardware implemen-
tation of the proportional-integral-derivative controller,
where it will be noted that an external bias trim circuit
has been introduced in the buffer amplifier to eliminate

any system steady-state bias. Such bias may result from

the fluidic rate sensor output signal null offset and/or
extraneous steady-state voltages internally generated

within the electrical circuits.

2,4.2 Experimental System Gain Analysis

The experimental system component gains are:

— Rate sensor gain = 0.126 in.HZO/deg/sec (see
figure 2.13)

— Pressure transducer gain = 1.0 volt/in.H20

— Feedback D.C. drive motor gain including the
coupled motor dead zone elimination circuit and the 56.8:1
gear ratio between the motor and the rate sensor = 134/56.8
= 2.35 (deg/sec)/volt (see figure 2.16).

To facilitate the adjustment of the controller

parameters, a gain of 3.49 has been set into the buffer
amplifier such that the overall system gain excluding the

controller is equal to unity, i.e.
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in.H20 volt deg/sec
Overall system gain =0.126 x] x2.35 x3.49

deg/sec in.HZO volt

(excluding the
controller)

=1.0

2.4.3 Experimental System Time Responses

The performance of the heading reference system is
experimentally evaluated by measuring the heading angle
transient of the rate sensor with the angular potentiometer
in response to a step angular rate input applied to the
support frame through the application of a voltage step to

the frame motor drive.

Typical experimental system heading transient
response performance for a 10.0 degs./sec. step rate input
as recorded by a X-Y plotter is shown in figures 2.18a,b,
2.19a,b and 2.20a,b respectively for the PID, PI and I
controller for both optimum and arbitrary controller para-
meter settings. The Y-axis sensitivity was limited by the

plotter response capability.

Experimental results are also plotted together
with the corresponding theoretical responses in figures
2.2la,b, 2.22a,b and 2.23a,b to facilitate direct com-
parison. It is seen that the experimental responses exhibit

approximate correlation with the theoretical predictions,
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the observed random deviations in heading being attributed

to rate sensor noise, mechanical drive system gear backlash,
and heading detected potentiometer resolution. The slower
experimental transjent is attributed to the less than ideal
experimental step rate input which is discussed in more detail

in the next chapter,

2.5 Alternative for Fluidic Implementation of System Feed-

back Loop

A specified feedback linear controller function
for the heading reference system couid be implemented flui-
dically using high gain operational amplifiers (Reference
38) in combination with passive fluidic resistors and capa-
citors. Commonly used proportional, differential and
integral fluidic circuits are shown with the associated
transfer functions in references 30 and 31. Such fluidic
implementation of the system feedback loop would necessitate
the use of a mechanical rotary actuator compatible with the
controller output fluidic signal. A convenient actuator
combining the features of relative simplicity and fluidic
signal compatibility as proposed in reference 39 is a
reversible impulse turbine geared to the rate sensor and
driven directly by the momentum of the feedback controller

output signal.
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The incorporation of a turbine drive, where vig-
cous friction effects may be rendered negligible relative
to the inertia effects by appropriate mechanical design
refinement, facilitates the simple implementation of the
integral controller function as shown in figure 2.24.
Herein, the substantial polar moment of fnertia associated
with high sensivity rate sensor configurations is utilized
to implement the integration function, the transfer function
of the turbine drive plus the rate sensor inertia load (J)

coupled by gear ratio (N) being given by:

Oo(s) 1 Gt
ap (s) T s (3/9)s

(2.13)

where the drive turbine input pressure differential to

output torque gain is given by Gt'

The heading error transfer function of the refe-
rence system with turbine drive, as derived from the system
block diagram shown in figure 2.25, will be: i
o _(s) 1 !

€ = (2.14)
O-(S) e-0.0]S ]

1+ 1+0.011s TIS

where the integration time constant is given by:

T, = —ﬂ/—ﬂl—— (2.15)
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Accordingly, an optimized integration time constant (TI)
may be attained by suitable mass distribution in the mecha-
nical design of the fluidic rate sensor, coupled with
judicious selection of the system gain factors (G1 and Gt).
Reference 39 reported the performance potential of the
heading reference system with turbine drive, wherein a 1.0"
diameter curved vane impulse turbine wheel driven by two
opposed nozzles of approximately 0.018" diameter was postu-

lated.

The above approach would appear to be one of the
most attracf}ve methods of achieving a wholly fluidic hea-
ding reference system with adequate transient response
combined with acceptable steady-state heading error. Actual
implementation of such system would require further study
of the mechanical design parameters and of fluidic signal
impedance matching to realistically evaluate practical
system performance. This study is suggested for a future

research project.



CHAPTER 3

SYSTEM HEADING ERROR MINIMIZATION

3.1 General

The Ziegler-Nichols rules for determination of
optimum controller parameter settings previously described
are based on a somewhat arbitrary performance criterion
(i.e., a compromise of gain and phase margin) as derived
from the performance of typical industrial process control
systems. This method has been utilized as a first estimate
to evaluate the heading reference system feasibility. The
obtained results, while demonstrating feasibility with
regard to acceptable system transient response, indicate
that the Ziegler-Nichols rules could not be considered as
the ultimate optimum criteria, particularily with regard to
the system with the proportional-integra] controller. One
can effectively see by examining the system heading respon-
ses shown in figure 2.6 that the response with optimized
"heading rate" parameter settings is definitely not optimum
with regard to "heading”. This is due to the Ziegler-Nichols
optimum criteria being derived to obtain a good compromise
between amplitude overshoot and oscillation period of the
"heading rate deviation" response to a step rate input,

while the optimization parameter in the system is the
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"heading deviation" which is the time-integral of the rate

deviation response.

As mentioned 1in the previcus chapter, there exists
in the literature a number of derivations of criteria which
define the optimum settings for linear controllers that have
been developed on a more rigorous theoretical basis than that
of the Ziegler-Nichols approach. However, some of the deri-
vations can only apply to systems without pure time delay
(References 37, 40), while others are only applicable to
systems with a first-order lag and a pure time delay subjec-
ted to a load change (References 34, 35, 36). Neither of the
above conditions are satisfied in the case of the hybrid
fluidic heading reference system where:

— the vortex rate sensor transfer function in its
most simplified form contains a first-order lag plus a pure
time delay and the feedback drive motor is represented by
another first-order lag.

— the system is alwdys subjected to a set-point rather

than a load change, i.e., an angular rate input.

Thus, there is a need for developing new criteria
which would provide the optimum settings for the controllers
based on a defined performance requirement appropriate to
the heading reference system as derived in the subsequent

sections,
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3.2 Performance Index and Choice of Controllers

It is obvious that the best heading reference
system will be the one which, when subjected to an angular
input change, will result in a minimum heading error within
a minimum transient time. The system step input transient
response performance obtained previously indicates that
with controller parameter settings given by Zizgler-Nichols
criteria the system will attain steady-state in a relatively
short time, i.e., 0.15 second with PID controller and 0.25
second with PI controlier (see figures 2.5 and 2.6). This
Suggests that, for analysis simplification purpose, a
"minimum steady-state heading error" (i.e., a minimum time-
integral of heading "rate error") alone could be considered

to be an adequate performance index.

In addition, superfluous analysis effort can be

avoided in the developing of an optimization criterion for

the heading system by choosing one of the three controlier i
types considered in the previous chapter, on the basis of
ease of hardware implementation, electronically or fluidi-
cally compatible with an acceptable system performance. A
theoretical analysis had been undertaken by G. Nielson
(Reference 41) to evaluate and compare the three principal
linear control methods 0n a quantitative basis in order to

determine their relative advantages and disadvantages. In
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this analysis, @ normalizéd performance index, which was
defined as the ratio of minimized time-integral controlled
system error by time-integral uncontrolled system error, had
been used ‘as comparison basis for some typical systems con-
sisting of first-order lags and a pure time delay. Accor-
dingly, a decreasing normalized index value means an increa-
sing improvement in response. It is shown by this investiga-
tion that an integral control is relatively sTow whi]e‘a
proportional-integral-derivative control may improve by up
to 20% the normalized performance index value of a propor-
tional-integral control, provided that an jdeal derivative
function can be implemented. It is suggested in reference
41 that it is seldom worthwhile, due to the limitations of
practical derivative control implementation and system noise
effects, to use more complicated controller functions than
that of the proportional-integral type. Fluidic implemen-
tation of the derivative function exhibits much the same
limitations as in the electronically implementation case
with the additional disadvantage of relatively poor amplitude
dynamic range as limited by noise generation. Additionally,
the substantial noise generated by the rate sensor (Refe-
rence 45) would tend to reverse any beneficial controller
derijvative action in improving the heading system response.
Accordingly, only the proportional-integral controller
function is considered for feedback compensation in the

optimization analysis for the heading reference system,
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3.3 Heading Error Minimization

3.3.1 Theoretical Heading Error for a Step Rate Input

The heading reference system with a proportional-
integral controller can be represented by the block diagram
as shown in figure 3.7, where angular rate variables are
used to simplify mathematical analysis. Accordingly, the

system steady-state heading error is given by:

(0]
"

o J we(t)dt (3.1)

0

For convenience, let

K G. and K, = %L

17¢™2 2 1

By introducing the following Lapltace auxiliary variable

the angular rate error for a step rate input of wg deg./sec.

will be given by (see Appendix A)

TLwi 1
wo(s) = — =3 (3.2)
q .- k]TL(KZTL+q)e

Q(T +T1a) (T +T,q)
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According to Laplace transform theory (Reference 42)
)

0o
I we(t)dt = we(s) (3.3)

0
[s 8}

Substituting equations (3.2) and (3.3) in equation (3.1)

0
T]wi 1
% * K TZ(K,T, +q)e 9
q R R L*a/€
[e0]
0
1
= T,w
L™ 2 -q
. K]TL(KZTL+q)e
(T +T4a) (T +T,q)
[0 0]
which gives:
2 (3.4)
0 = 3.4
e K]K2

Equation (3.4) indicates that the defined performance cri-
terion of heading error (Oe) is minimum when K]K2 = .
However, the stability 1imit associated with the rate sensor
time delay in the closed loop system will impose a finite
maximum value on the system gain (K]Kz). Thus, it is ne-

cessary to investigate the system stability conditions.
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3.3.2 Stability Analysis

The phase-shift associated with the pure time

delay in the closed loop system as given by
$ = —360.f.TL degs.

will obviously introduce instability into the system at

some finite loop gain (K]Kz).

In order to determine the system stability condi-
tions, consider equation (3.2) which could be rewritten as

follows:

( (TL+T]q)(TL+T2q)
[ q(TL+T]q)(TL+T2q)+K]TE(K2TL+q)e'q

we(s) = TLw'i

Rearranging the terms gives the equation:

_ . -
2, T]+T2 _— TL
q T, LT
wels) = Tpoy 2 z
3 T]+T2T , T/ KT, : o3
ql+ g + =—=0 + =—=— {(K,T,+q)e
T,+T, L T, T, T, ttelL

(3.5)

Introducing the following dimensionless quantities:




3.6
T.71, L (3.6)

€quation (3.5) becomes:

q2+Cq+D
els) Ty I (3.7)
q3qu2+Dq+A(B+q)e

Using the inverse Laplace transform,

the rate error response
in time domain

is given by:

(x) tioo )
w (1 1 a<+Lq+D _
= \ﬁ\- e quT (3.8)
w 2wi q3+Cq2+Dq+A(B+q)e q
L ~io00

where 1 - (t/TL)

of the auxiliary variable q - TLs in Laplace domain,

The roots of the integrand denominator in equation
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(3.8) which is hereafter called "characteristic equation",
will be of the form:

q, = -Gn + ]Qn

accompanied by its conjugates of the form:

Provided that the stability condition which will

be determined in this section is satisfied, then when:

— Q, = 0 and § = 0 the characteristic equation
contains only real poles, which signifies a system overdam-

ped response

-— 6n = 0 and Q, = 0 the characteristic equation
contains only imaginary poles, which signifies a system

sustained oscillatory response

— Qn 2 0 and Gn # 0 the characteristic equation
contains complex poles, which signifies a system underdamped

response

- Q]=92:Q3 = 0 and 61=62=63 2 0 the characteristic
equation contains a triple real pole, which signifies a

system critical damped response.
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As will be shown later, the ratio of the real part
of the characteristic equation's root over its imaginary
part (én/Qn) will characterize system response damping ratio
and it will be considered as the system primary independent
variable during the heading error minimization procedure,

A smaller value of (dn/Qn) will imply a more osciltlatory

system response.
Since e 9n jis a periodical function, i.e.
-q -{-8 +i0 ) )
e M- e n P e n(cosQn-isinQn)

the characteristic equation has an infinity of roots.

According to the residue thcorem, equation (3.8)

could be rewritten as follows:

we(T) < —
= = > Res.(qn)+Res.(qn) (3.9)
1 4 -
n=o

The residues of a, and En are determined using Laurent's
series theory and 1'Hospital's rules as shown in Appendix A

to be:

Res.(qn)+Res.(En) =X e "X e " (3.10)
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where X = f(q ) and X = f(q)

Substituting the complex representations for a, and En and
trigonometrically manipulating the terms, equation (3.10)

becomes:

-dnr

cos(Q T~ ¢n) (3.11)

Res.(qn)+Res.(an) =|Xn’e 0

where lxnl = f (6n,9n) and o, = gn(dn.ﬂn) as given in

n
Appendix A.

By combining equations (3.9) and (3.11) we obtain the follo-

wing time domain rate error response:

wolT)

[0 6]
-8 T
E:’ane n cos(QnT—¢n) (3.12)

w. =
i
n=0

Equation (3.12) indicates that the system is stable only

for positive values of Gn‘

Further, since the recponse of me(r) is approxima-
ted by its first and obviously dominant component, equation

(3.12) becomes:

e cos(Qor—¢O) (3.13)

The typical form of the system rate error response
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given by equation (3.13) is shown in figure 3.2.

At the response peaks (i.e. points TysTpsTge-e

etc...on figure 3.2) we obtain the following relationship:

w (1) -8 T
d[ ewi J d onle 0 COS(QOT-¢OJ

dt dt

which gives:

-601 —dot _
-8, lxo’e cos(Qor-¢0)—|X0|e QOS1H(QOT—¢O) =0
5
or: tan(Qor-¢o) = -.ﬁg

The times corresponding to these peaks are then given by:

8
= - 9
Q T = -arctan 7, tog, kw (3.14)

Let 'M' be the ratio of two successive absolute amplitude
values (i.e., ratio of az/a], a3/a2... etc ... on figure 3.2)

'M* will be given by combining equations (3.13) and (3.14):

S, 8o
“a (-arctan§~ + ¢0+(k+1)n) 8,
‘X ’e 0 0 cos |-arctan— + (k+1)7
0 QO
" -EQ (-arctan—2-+ ¢ _+km) 8
IXOIE o fo © cos{-arctan 59 + kw}
0

(3.15)
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But:

[
cos|-arctan =2 + (k + 1)w|=-cos |-arctan O . kr
2, 29

Hence, equation {3.15) reduces to:

M=ce %o (3.16)

Equation (3.16) indicates that the ratio of two successive
amplitudes depends on the ratio of the real part of the
characteristic equation's root (60) over its imaginary part
(no), and accordingly, the system amplitude response damping
will be a unique function of the "damping ratio" (60/90).
Figure 3.3 plots M as function of (60/90) on semi-logarithm

coordinates.

3.3.3 Minimization Procedure

Substituting the dimensionless quantities defined
by equation (3.6) into the steady-state heading error as

given by equation (3.4):

3
W w’iTL |:'|]
Yt I R (3.17)
2 ]TZ AB

fquation (3.17) indicates that, while respecting

the stability requirement described previously, {AB) should
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be maximized to attain a minimum heading error (Oe).

This means that, for a specified response damping
ratio (i.e., (50/90) - constant), one should find a root of

the following transcendental characteristic equation:
q3+Cq2+Dq+A(Beg)e d = 0 (3.18)
which has a negative real part and gives a maximum (AB).

Let q = -8 + iR be a root of equation (3.18).
After substitution of this value of (q) into equation (3.18)
and performing some complex algebra manipulations
(Appendix A), the resulting real and imaginary parts are

equalized to zero to maintain:

-53+3026+C(62—92)-DG+ABe6cosQ+Ae6(QsinQ—GcosQ):O (3.19)

-Q3+3629-2C69+DQ—ABe65inQ+Ae5(dsinﬂfﬂcosn)zo (3.20)

Solving equations (3.19) and (3.20) to obtain (AB) as shown

in Appendix A:

2
a3 (382 _1)-202c(2) a0 | (sing-F cosa) 5
Q Q Q ‘(5)9
AB = e
& &3 52 8 § .
—[93(35 yeare(ly -1)-90(5)} (5 sinnrcosa)
L i
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Since (6/9) is constant for a specified response damping
ratio, it is sufficient to differentiate equation (3.21)
with respect to (Q) and let the derivative equal zero to

get a value of () which gives a maximum (AB).

After extensive mathematical manipulations as
described in Appendix A, the required value of (@) for a
maximum (AB) may be shown to be given by the roots of the
equation:
3 (382 -1)-202(c+3) ($)+a(2C+D)
Q2 Q

tanQ = - : % P - (3.22)
93155(3—5§)+92(C+3)(§7 -1)-9(5)(2C+D)+D

The following observations can be made regarding the solution

of equation (3.22):

i) @ = 0 is a trivial root which will be excluded in

the subsequent analysis since the root is meaningless.,

ii) Since a discontinuity might occur in the right hand
side of equation (3.22) and approximate values of equation
roots are not known in advance, a graphical solution of this
equation would appear to be preferred to a numerical solu-

tion which might be divergent.

iii) Since tan Q is a periodical function, equation (3.22)
contains an infinite number of roots. However, only the one

with the smallest positive value, which being probably situated
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between 9 = 0 and Q@ = #/2, will be considered since it

represents the response basic and dominant component.

iv) Since 8 should be always positive due to system
stability requirement, the right hand side of equation
(3.22) is symmetrical with respect to coordinate origin.
Since tan @ is also symmetrical with respect to the origin,
there will be a negative root corresponding to each positive
root, both with the same absolute value. This verifies the
well-known fact that a complex root always appears as a

conjugate pair.

Figure 3.4 illustrates some typical graphical
solutions of equation (3.22) with the experimental heading
system parameter numerical values of T1 = 0.011 sec.,

T, = 0.020 sec. and T, = 0.010 sec., where (6/9) was consi-

2 L
dered as the independent variable. The corresponding varia-
tion of system heading error (oe) with respect to angular
frequency (2) is shown in figure 3.5, the minimum heading

error occuring at the roots defined in figure 3.4.

Once the required root (@) is obtained, (AB) may

be determined from equation (3.21) rearranged as follows:

8)

Q Q

2 2
(:TT +1)[93(f—27 -1)-92C(g)+§20}s1’n9 _(
AB = e

2
+(§? +1)[-293(§)+92§]cosn

(3.23)
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Subsequently (A) may be obtained by simultaneously

solving equations (3.19) and (3.20) (see Appendix A)

§2 $
\ [52(357-1)-290(5)+0Jc059 _(%)Q
+ [92(%)(3-%;) QC(%? -1)—D(§{]sinn
(3.24)

Finally, the controller parameter setting which gives a

minimum heading error is determined by:

T
Ky, = —l;gA and K, = 8 (3.25)

3.4 System Heading Responses in Time Domain

3.4.1 Simulated System Responses to a Step Rate Input

A hybrid simulation of the actual heading system
was carried out using the same simulation technique des-
cribed in chapter 2 to verify the optimization criterion

derived in section 3.3.

a) System with Manufacturer Specified Rate Sensor

Transfer Function

Rate sensor transfer function equation (2.5) with
associated parameter numerical values as specified by the

manufacturer (Reference 10) was initially used for the
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system simulation study. fypica] optimum heading time
responses to a 10.0 degs./sec. step rate input are shown in
figures 3.6a to 3.6d where, with (8/Q) as parameter, a set
of optimum values of (K;) and (K,) are determined following
the procedure described in section 3.3.3. These figures
also show the heading error step input responses for other
than optimum sets of (K1) and (K2) magnitudes as determined
by directly solving equations (3.23), (3.24) and (3.25).for
values of (Q) other than the root of the predicted optimum
equation (3.22). These numerical results verify the deri-

ved minimized heading error criterion

b) System with More Accurate Rate Sensor Transfer

Function

Recent investigations of the fluidic rate sensor
dynamic response (References 43, 44) have indicated that a
more reatistic function than that specified by the manufac-

turer will be of the form:

T
AP(s) G].s.w;.e L (3.26)

T2
0;(s) s +2C9 S+

S

Describing the rate sensor transfer function by
equation (3.26), the heading system theoretical steady-state

heading error will still be given by (see Appendix A):
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0 = —1 (3.4)

A mathematical analysis to minimize the system
heading error when the rate sensor is described by equation
(3.26) is much more complicated than in the previous case where
the rate sensor was represented by a first-order lag plus a
pure time delay. The more accurate sensor representation
results in the characteristic equation becoming a fourth-
order transcendental equation due to the introduction of the
second-order lag in the sensor transfer function. It is
thereby proposed to investigate the simulated system respon-
se using the optimum parameter settings derived in section
3.3.3 for the manufacturer's specified rate sensor transfer
function of the form euTLi/(1+T]s) in order to estimate the

degree of dependency of the optimization criterion upon the

rate sensor transfer function form.

Typical system heading error responses to a 10.0
degs./sec. step rate input are shown in figures 3.7a to 3.7d,
where rate sensor transfer function parameters defined by
equation (3.26) are estimated from the experimental rate sen-
sor step input response at the nominal sensor supply pres-

sure of 5.0 psi to be (Reference 44}):

b, = 84.2 Hz
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Superimposed on the same figures are the minimized heading
error responses of system with original rate sensor transfer
function. It is evident that, except near the stability
limit, the system behavior remains very much the same for
both rate sensor transfer function representations. This
indicates that a first-order lag plus a pure time delay
provides an acceptable representation of the rate sensor
dynamics for purposes of heading system performance predic-

tion.

3.4.2 Simulated System Responses to a More Realistic

Input

In terms of actual application of the system to
provide a heading reference in a land vehicle, a step input
of rate as used in the prior system simulation studies would
not appear to be realistic in that this input corresponds
to an infinite rate of change of vehicle direction at the
instant of the step initiation. A more realistic angular
rate input would be a ramp followed by a constant rate which
corresponds to a vehicle directional heading variation given

by a parabolic function merging with a ramp function at the
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input rate break point as shown in figure 3.8. The dura-
tion of the rate input ramp will be a function of the driver
reaction characteristics as related to the particular vehi-
cle polar inertia about its turning axis. Additionally,

the use of such an input in the system simulation study

will facilitate direct comparison between theoretical re-
sults and data obtained from the experimental set-up where
‘he system input was generated by switching on the high
torque support frame motor driving the high inertia rotary

mounted support frame and coupled rate sensor as shown in

figure 2.9,

Typical time domain heading responses to a rate
input ramp of 100.0degs./sec? slope with 0.1 sec. duration
and saturated at 10.0 degs./sec. are shown in figures 3.9a
to 3.9d, for both optimum and non-cptimum values of (K])
and (Kz). To facilitate direct comparison, system responses
for the two different types of input considered (i.e., ideal
step and ramp plus saturation rate inputs) with same con-
troller parameter settings are plotted together in figures

3.10a to 3.10d.

The following points regarding the results for

differing rate input types are noted below:

— The minimized heading error criterion is valid for



£
T
!
I
|
|
!

Rate Input (degs /sec)

Time (sec)
(a)

Angle Input (degs)

Siope =w‘. degs /sec

Time (sec)
(b)

FIGURE 3.8 MORE REALISTIC SYSTEM INPUT



-87-

1

0.6
f‘; B -
[e g
[+ ]
o - -
[
°04r
£
[17] .
e ]
=
o
[o}
g — - —K|=0.318 , K=63.63
T —--—K=0.544’, K= 42,65

0.2 K|=0.506 , K, = 47.46

! | ! | 5
0 0.1 0.2 0.3 0.4
Time (sec)
(a) (8/52) =1,0
A

0.6
?5
[= ]
[
z
S .
S0.4f — )
o
£
° , - = =
Q
I

0.2~

— - —K|=0.263, Kp= 9388

-——-——Kl =O.800, K2= 3998

K|=0.700, K= 48.15

0 | | | 1 >
0.l 0.2 0.3 0.4

Time (sec)
(b) (3/52)=0.6

FIGURE 3.9 SYSTEM RESPONSES TO A RAMP + SATURATION
RATE INPUT



o
o
1

Heading Egor (degs)
S
]

— -« —K;=0.550, K»=72.37
—--—K=1.056, K;=40.48

0. ———K|=0.884,K=50.70
o \ ] L 1 >
0.l 0.2 0.3 0.9
Time (sec)
(c) (brs2) =0.4
1
»
oy
go.2- /\
s ¢ . ~ — T —
t - - -
W
o ’
[ G
ol
® — . —K=0.632, K»290.84
= -—K|= 1464, K3=44.62
K| =1.239, Kp=54.I3
o | | | i >
0.1 0.2_ 0.3 0.4
Time (sec)
(d) (§/52)=0.2

FIGURE 3.9 SYSTEM RESPONSES TO A RAMP + SATURATION
RATE INPUT



-89-

I 3
$0.4 - ’ i
2
s
]
g ! —— - — Ideal Step Rate Input
b=l X
50.2| Ramp + Saturation Rate Input
T
o) | i | ] o
0.l 0.2 0.3 0.4
Time(sec)
(a) (8§/52)=1.0
I 3
Bo.41
L
A
|
S —
| .
w
o 1
= =
§02
T —— - — Ideal Step Rate Input
Ramp + Saturation Rate Input
] ] I | "
o X 0.2 0.3 5.4 >
Time (sec)
(b) (6/50)=0.6

FIGURE 3.10 OPTIMUM SYSTEM RESPONSES TO DIFFSRENT
RATE INPUTS



0.3

Heading Eorror (degs)
N
1

-90-

——- —Ideal Step Rate Input

(ON N o
Ramp + Saturation Rate Input
0 | i ! ! 5
0.1 .2 0.3 0.4
Time {sec)
(c) (§/80)=0.4
)
0.3
°
o
Y
=
80.2 = v
.
Wi
- -
=
B
o]
£ '
O.
— - ~— |deal Step Rate Input
Ramp+ Saturation Rate Input
0o I 1 ! | >
o.l 0.2 0.3 0.4 -
Time (sec)

(d) (8/52)=0.2

FIGURE 3.10 OPTIMUM SYSTEM RESPONSES TO DIFFERENT

RATE INPUTS



-91-

both types of rate inputs as expected in that the criterion
is based on the minimization of system steady-state heading

error.,

—~ The system transient response is slower with a
ramp plus saturation rate input which is to be expected due to
the initially slower change of rate input as compared with

the step rate input.

— It is evident that the system steady-state minimum
heading error decreases with decreasing damping ratio (&/2).
This ratio, however, is limited by the system transient res-
ponse overshoot. Since the system transient response is more
damped for a ramp plus saturation rate input, a relatively
small damping ratio (8/Q) is acceptable in practice as a ramp
plus saturation rate input is the more accurate representa-

tion of real system operation.

3.4.3 Experimental System Performance

Experimental system performance tests were carried
out, using the same experimental set-up as described in chap-
ter 2, to verify the optimization criterion theoretically
developed. As mentioned before, the experimental system
input was provided by a support frame rotation through the

application of a voltage step to the motor drive shown in
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figure 2.9. It is evident that the system input will at-
tain a constant rate only after a finite transient time
resulting from motor drive time constant and associated
support frame polar inertia. A typical experimental sup-
port frame angular input is shown in figure 3.11a. The
support frame angular rotation was detected by the angular
potentiometer coupling to the rate sensor with the system
feedback loop disconnected. The angular potentiometer
output signal was recorded by a memory scope which has been
triggered approximately 30 milliseconds before the applica-
tion of the supply voltage to the support frame motor drive.
The accuracy with which the assumed ramp plus saturation rate
input (i.e., parabolic plus ramp angle input) used for the
simulated system study represents the experimental system
input is indicated in figure 3.11b where both inputs are

shown superimposed.

Experimental system heading transient response
performance for an angular input shown in figure 3.17 with
optimum and non-optimum controller parameter settings are
shown in figures 3.12a, b to 3.15a, b. Since the rate
sensor “output noise amplitude/input rotational rate" ratio
decreases with increasing input rotational rate (output noise
exhibits only a weak dependency upon rotational rate, refe-
rence 45), a rate input of higher magnitude was applied to the

system with intention of reducing the rate sensor noise
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FIGURE 3.12 EXPERIMENTAL HEADING RESPONSES TO ASTEP
RATE INPUT OF 20 degs/sec, (§/52)=|.0
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FIGURE 3.14 EXPERIMENTAL HEADING RESPONSES TO ASTEP
RATE INPUT OF 20 degs/sec ,(6/52)=0.4



-96-

Heading Error, 0.5 deg/div —

Time, 0.l sec/div —=
(a)K,=0.550,K>=72.37

Heading Error, 0.5 deg/div ———=

Time, 0.1s5ec/div —
(b) K|= 0.884 ,Kp=50.70 (Optimum Setting)

FIGURE 3.14 EXPERIMENTAL HEADING RESPONSES TO ASTEP
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FIGURE 3.15 EXPERIMENTAL HEADING RESPONSES TO A STEP
RATE INPUT OF 20 degs/sec, (§/52)=0.2
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induced heading random deviations observed in the 10.0
degs./sec. rate input results shown in figures 2.18 tb 2.20.
Figures 3.16a, b to 3.19a, b show the experimental respon-
ses together with corresponding theoretical responses to
ideal step and ramp plus saturation rate input. It is seen
that the experimental steady-state responses correlate rea-
sonably with the theoretical predictions, while the experi-
mental transients are somewhat more oscillatory. This may
be attributed to the higher order dynamic behavior of the
rate sensor as suggested by the results of figure 3.7. The
optimization criterion is also verified by the experimental
results, although the difference between optimum and non-
optimum responses is less pronounced than the theoretical
prediction shown in figures 3.6 and 3.9. This difference
ijs attributed to experimental measurement instrumentation
accuracy. Additionally, it is noted that the experimentally
observed random deviations in heading responses with opti-
mized controller parameter settings are reduced as compared
with those obtained with Ziegler-Nichols optimum settings.
This reduction results from the derived optimization crite-
rion requiring a smaller proportional loop gain (K]) and a
greater controller integration gain (KZ) than the equivalent

optimized gains estimated by the Ziegler-Nichols rules.
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3.5 System Frequency Responses

The system closed loop frequency response was
theoretically determined using a digital computerlwith a
complex variable arithmetic operations subroutine. This
program generates the angular frequency within a specified
range and calculates the magnitude and phase angle of the
system from the appropriate closed loop transfer function
representation. The frequency response of the system with
the simplified rate sensor transfer function (equation 2.5)
and with the more accurate rate sensor transfer function
(equation 3.26) is shown in figures 3.20a, b for different
step input optimized controller parameter values (K], K2).
The corresponding system closed loop transfer functions

are given by equations (A.3) and (A.35).

The system frequency response, although of aca-
demic interest, will have 1imited practical significance in
an actual vehicle heading reference system where an input
heading signal frequency l1imit will exist representing the
maximum rate of reversal of heading direction obtainable
within vehicle manoeuvering safety limits. This frequency
1imit will be a function of the vehicle polar jnertia about
jts turning axis coupled with the driver reaction characte-
ristics. This input frequency would be anticipated to be

relatively 1ow (a maximum in the order of 1.0 rad./sec.)
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and the performance of the heading reference system could
be predicted by approximating such a low frequency input
by a series of ramp angular inputs such as previously

investigated.



CHAPTER 4

SYSTEM PARAMETER ANALYSIS AND
SIMPLIFIED CONTROLLER OPTIMUM SETTING EQUATIONS

4.1 General

The availability of system rate sensor, servomotor
and coupling gear train hardware components has limited the
system performance improvement to the adjustment of the feed-
back controller parameters. However, the apparent dependen-
cy of the optimum controller adjustment upon the system
hardware transfer function parameters as shown by equations
(3.23), (3.24) and {3.25) suggests that the system perfor-
mance optimization dependency upon each of the hardware
dependent parameters should be considered in order to obtain

further system improvement.

The optimization procedure developed in the previous
chapter for the heading reference system was general, and
therefore could be applied to any control system with the
same general type of transfer function representation.
However, the determination of the optimum controller para-
meter setting for any given set of system hardware parame:
ters by obta{ning a numerical solution of the derived

system optimization equations (3.22)}, (3.23) and (3.24) is
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time consumming. The reduction of these equations to some
simplified form acceptable for direct practical design

purposesis considered in the subsequent analysis.

4.2 System Parameter Analysis

The system steady-state heading error previously

derived is given by:

w,T

-
rw

(3.17)

@
n
l

1]
-y

1
1T2 AB

Since (AB) is a weak function of the system
parameters as shown by equation (3.23), a mathematical
approach to establish an explicit analytical dependency
of the system heading error (ee) upon individual system
parameter T], T2 and TL would be extremely difficult, if
not unfeasible. An alternate numerical approach was un-
dertaken by which any two of the three system parameters
(T1. Ty and TL) were kept constant and the heading error
was numerically evaluated as a function of the third para-
meter. Since the heading error exhibits the same dependen-
cy upon T, and T,, it is sufficient to analyze the effect
of only one of the lag time constants on the system per-

formance.
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4.2.1 Dependency of the Minimum Heading Error upon TL

The variation of the system minimum heading error
(eemin.) with respect to the pure time delay (TL) was ob-
tained by assigning a realistic range of values to T] and
T2 and subsequently solving successively the system optimum
condition equations (3.22), (3.23), (3.24) and (3.25) for
different values of TL. The results are shown graphically
in figure 4.1 for two selected system response damping

ratios of (6/Q) = 0.6 and 0.2.

It is evident from these results that the minimum
heading error (eemin.) is directly proportional to the pure
time delay (TL) over the selected range. Therefore, any
reduction of the time delay magnitude in the system would
be expected to proportionally reduce the system steady-state

minimum heading error.

4.2.2. Dependency of the Minimum Heading Error upon

T, and T

1 2

The variation of the system minimum heading error
(eemin.) with respect to the time constant T1 (or T2) was
obtained using the same technique as previously, but with
TL and T2 (or T]) kept constant and T] (or T2) varied.

The results are showr graphically in figure 4.2 for two
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FIGURE 4.1 DEPENDENCY OF SYSTEM MINIMUM HEADING

ERROR UPON TIME DELAY
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selected system response damping ratios of (6/Q) = 0.2 and 0.4.

The minimum heading error exhibits a relatively
weak dependency upon either of the system time constants V
T] or T2. After a specific maximum value, the error decrea-
ses with increasing time constant magnitude. This signifies
that a relatively larger time constant would result in a
smaller steady-state minimum heading error, but obviously
at the expense of system transient response time. Accor-
dingly.the selection of the system time constants depends
upon a compromise between the system transient and steady-

state performance requirements.

Direct application of the above analysis to
improve the heading reference system performance was not

considered to be practically feasible, since:

i) With the available experimental rate sensor
configuration, a significant reduction of the pure time
delay (TL) could be attained only by a substantial reduction
of the supply pressure (Reference 44), but at the expense
of significantly increased sensor tine constant (T]). There-
fore, any improvement of the heading system performance
obtaining by decreasing the pure time delay would be largely

compensated by the effect of increasing sensor time constant.
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i1) An improvement of the system minimum heading error
by decreasing the system time constants T] and T2 (i.e.,
toward the left side of the maxima of the curves shown in
figure 4.2) is not practically feasible, since the effective
T] is largely compensated by the interdependent TL for a
given sensor configuration as per i) above and T2 is Timited
by the drive motor characteristics and the associated coupled
insrtia load. The system steady-state minimum heading error
could, however, be improved by increasing the feedback drive
motor time constant T2 (i.e., toward the right side of the
maxima of the curves shown in figure 4.2) through the addi-
tion of suitable mass inertia on the rate sensor. But, as
mentioned before, this heading error improvement would be
obtainable at the expense of slower transient response.
The validity of increasing T2 would depend on the eventual

application of the heading system.

However, this analysis provides a means by which
one could estimate certain appropriate value ranges for ’
the inherent parameters of a general control system repre-
sented by two first-order lags and a pure time delay,
particularly when the system parameters could be indepen-
dently adjusted and the system transient and steady-state

performance requirements are specified.
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4.3 Simnlification of the System Optimum Condition

Equations

As described in the preceding chapter, the optimum
controller parameter setting is obtained by solving respec-
tively equations (3.22), (3.23), (3.24) and (3.25). For
convenience, these equations are rewritten below:

03 (382 -1)-202(c+3) (&) +a(2c+D)
02 Q

tan @ = - > " (3.22)
23 (§)(3-25)+a2(c+3) (55 -1)-a(d) (2¢+D)+D

2 52 8
(% +'|)[Q3(— -1)-92C(§)+QD] sinQ 5
pg =| ® az e~ ()0 (3.23)

82 3(8y.02
+ (92 +1) [—29 (Q)+Q C] cosfd

[92(3§3-1 )-znc(%)m] cosQ 5 |
A= - a* e (@2 (3.24) |

; [92(%)(3—5;)+QC(§;—1)-D(%)} sinQ

(3.25)

A and K2 =
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It is evident that the computational difficulty
consists principally in the solution of equation (3.22) for
a root (2), a procedure which is time consumming for ejther
graphical or numerical methods. Others quantities (i.e.,
AB, A, K] and K2) are obtained through equations (3.23),
(3.24) and (3.25) by direct algebraic ca]culations, There-
fore, the computations involved in the optimization procedure
would be Targely simplified if the solution of equation (3.22)

were no longer required.

Following this approach, the optimum equations
were mathematically manipulated in an attempt to delete the
'Q' terms in equations (3.23) and (3.24) by inserting
appropriate terms into the equations and eliminating those
terms which satisfied equation (3.22).‘ Unfortunatly, the
'Q' terms were not cancelled out in the resulting equations
and accordingly the solution of equation (3.22) is still
required to obtain the optimum controller parameter setting,
A more elaborate analysis to'mathematicaily simplify the

optimum equations appears to be extremely difficult.

An alternate approach is to derive a new set of
controller optimum setting equations which would closely
‘approximate the previously derived exact optimum equations
over a selected practical range of system parameter values

while reducing computation complexity. Such an approach,
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which generally reguires numerical trial-and-error procedu-

res, has been frequently exploited in the literature.

As indicated by équations (3.22), (3.23) and
(3.24) the controller optimum setting is related to the
three characteristic parameters of the system by two dimen-

sionless quantities C and D which were defined as:

C = T, and D = (3.6)

But C can be expressed in term of D as:

T,+T
c -——2 5 (4.1)

T,

This suggests that (T]+T2)//T]T2 and D be considered as
explicit parameters in the development of the new set of
equations, rather than T], T2 and TL individually. For

convenience, let

-y

]+T

~n

E =

2

1

The following numerical procedure was carried

out to investigate, on a quantitative basis, the effects
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of E and D on the controller optimum setting through the

dimensionless quantities AB and A:

— Select an appropriate system response damping

ratio (6/9).
— Assume a constant value for E

— Numerically solve equation (3.22) for a root Q
and compute AB and A from equations (3.23) and (3.24) with

different values of D.

— Repeat the same procedure for other values of E,

The variations of AB and A with respect to D are
shown in figures 4.3 and 4.4 respectively, where E is con-

sidered as parameter. It is to be noted that:

i) A system response damping ratio of (6/9) = 0.4
which corresponds to a successive amplitude ratio of
approximately 25% (see figure 3.3) was selected. Such a
successive amplitude ratio was also considered by several
authors (References 27, 32 and 36) to result in a good
compromise between the response overshoot and transient

oscillatory period.

i1) The minimum value of E ijs 2, which corresnonds to
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a system where the time constants T] and T2 are of equal
magnitude. Although the maximum value of E fis infinite,
the computation has been limited at £ = 5.0 which corres-
ponds to a system where the ratio of (T]/Tz) or (T2/T1) is
approximately 25. A greater ratio signifies that one of
the system time constants is dominant compared to the other
and different criteria developed for systems consisting

of one first-order lag and a pure time delay (References

27 and 36) could be realistically used.

The dependencies of AB and A upon D as shown
graphically in figures 4.3 and 4.4 suggest the following

empirical equations:

AB = ay + u]D + azD2 (4.2)

(=)
1

=B+ B]A + 82A2 (4.3)

0

where Ggs B> Op and 80,

each given value of E, the coefficients a , oy aud a, were

By B, are functions of E. For

determined by fitting a curve of the form of equation (4.2)
through the data points computed from equations (3.22) and
(3.23), the curve fitting procedure being based on the
principle of least squares. Similarly, the coefficients
Bo® B1 and B, were determined for each given value of E by

fitting a curve of the form of equation (4.3) through the
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data points computed from equations (3.22) and (3.24). The
dependencies of these coefficients upon E are shown graphi-

cally in figures 4.5 and 4.6.

Thereby, the optimum controller parameter setting

could be approximated by the following simplified equations:

2

T2 TZ
N L

2 Ty

AB (4.5)

u
Q

+ o
1
T]T

A= |-8 t/; 48. (8 n 28.  (4.6)
= 1t - 482180" T ) 2 .

B
A, K, = — (4.7)
2 1

where Gy @95 O may be determined from figure 4.5 and

Bo’ 81, 82 may be determined from figure 4.6.

4.4 Application of the Simplified Optimum Equations

The performance of the heading reference system
with controller parameter setting determined from the sim-

plified optimum equations (4.5),'(4.6) and (4.7) was
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Tnvestigated to determine the validity of the simplified
optimum criterion. Three different sets of T] and TL
values were experimentally‘attained by varying the rate
Sensor supply pressure, the appropriate corresponding
controller settings being determined in Appendix B. The
System performance was initially evaluated using hybrid
computer simulation, the system heading error responses to

a 10.0 degs./sec. step rate input are shown with the

4.7, 4.8 and 4.9 respectively for rate Sensor supply pres-

Sures of 1.0 psi, 5.0 psi and 10.0 psi.

The responses of System with controller parameter
settings determined from the simplified optimum equations
(4.5), (4.6) and (4.7) correlate reasonably with those obtained
with the exact optimum settings. Depending on the values
of D and E, the approximately optimized systen exhibits
either a Jess oscillatory response with more steady-state
eérror as shown in figure 4.6 or a more oscillatory response
with less Steady-state error as illustrated in figures
4.7 and 4.8, This variation is attributed to the round-off

error resulted fron the numerical curve fitting procedure.

was also expérimentally determined using the experimental

system. The heading error responses of the system with
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both the simplified optimum settings and the exact optimum
settings are shown in figures 4.10a,b, 4.117a,b and 4.12a,b
for a step rate input of 20.0 degs./sec.. The simplified
optimum and corresponding exact optimum system responses are
also plotted superimposed in figures 4.13, 4.14 and 4.15 to

facilitate direct comparison.

It is evident that the errors resulting from the
approximation are insignificant compared to those introduced
by system hardware components such as noise induced random

deviations.
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Heading Error,0.5 deg/div ———

Time, 0.l sec/div ————
(a)Sumphﬁed Optimum Setting

r:m.;!-=

Heading Error, 0.5 deg /div ————

Time, 0 Isec/div _—
(b) Exact Op’rlmum Setting

FIGURE 4.10 EXPERIMENTAL HEADING RESPONSES TO A STEP
RATE INPUT OF 20 degs/sec
(Rate Sensor Supply Pressure= 1.0 psi)
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Time, Q.1 sec/div
{a)Simplified Optimum Setting

Heading Error,0.5 deq/div ———«

Heading Errer, 0.5 deg /div ———»

Time, O, sec/div
(b) Exact Optimum Setting

FIGURE 4.0 EXPERIMENTAL HEADING RESPONSES “C A STEP
RATE INPUT OF 20 degs/sec
(Rate Sensor Supply Pressure= 1.0 psi)
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Time, 0.1 sec/diy ———
{a) Simplified Optimun Setting

-----

Heading Error,0.5deg /div ———=

Time, O,l sec /div ———»-
(b) Exact Optimum Setting

FIGURE 4.11 EXPERIMENTAL HEADING RESPONSES TOASTEP
RATE INPUT OF 20 degs/sec
(Rate Sensor Supply Pressure = 5.0psi)
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Time, 0.l sec/div ———
(a) Simplified Optimun Setting

Heading Error,0.5deg /div —

Time, 0,l sec /div —————»
(b) Exact Optimum Setting

FIGURE 4.1 EXPERIMENTAL HEADING RESPONSES TOASTEP
RATE INPUT OF 20 degs/sec
(Rate Sensor Supply Pressure = 5.0 psi)
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Headmg Error, 0.5 deg/div —————

Time, O.1sec/div ————»
(a) Simplified Optimum Setting

Heading Error, 0.5 deg/div ——

Time, 0.1 sec /div
(b) Exact Optimum Setting

FIGURE 4.12 EXPERIMENTAL HEADING RESPONSES TO A STEP
RATE INPUT OF 20 degs/sec
(Rate Sensor Supply Pressure = 10.0 psi)



-131-

HEEEEEEErY
gL e

!

Time, O.lsec /div ——
(a) Simplified Optimum Setting

Time, O.l sec /div
(b) Exact Optimum Setting

FIGURE 4.12 EXPERIMENTAL HEADING RESPONSES TO A STEP
RATE INPUT OF 20 degs/sec

(Rate Sensor Supply Pressure = 1.0 psi)
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CHAPTER 5
CONCLUSIONS

The investigation into the hybrid fluidic heading .

reference system has led to the following conclusions:

— A directional heading reference about a single
axis is attainable by incorporating a proportionat-integral
controller type of compensation in a negative rate feedback
servo loop around a rotatable fluidic vortex rate sensor
while maintaining transient response heading error and
stability margin level acceptable for moderate directional
rate of change such as anticipated in land vehicle naviga-

tional system application.

— A completely f]ufdic heading reference system is
theoretically feasible by utilizing a reversible impulse
turbine as the feedback actuator. This approach would
simplify the system hardware requirements and merits further

considerations.

— The heading system dynamic performance may be
optimized by selecting the controller parameters in accor-
dance with a theoretical optimization technique derived for

minimizing the time-integral of error of a generalized negative
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feedback control system incorporating a second order lag

plus a pure time delay.

— The rigourously derived complex set of equations
defining the optimum controller settings may be closely
approximated by a much simplified set of equations over

a wide range of system transfer function parameter values.

~— The optimized time-integral of error varies
proportionally with the system pure time delay. Accordingly,
the heading system dynamic performance may be improved by
reducing the rate sensor time delay independent of the rate
sensor time lag as could be attained by rate sensor confi-

guration changes (Reference 44).

— The optimized time-integral of error and the
transient duration may be improved by reducing either or
both of the time lags from a specific value as defined by
the optimization equation for a given system response

damping ratio.

— The optimized time-integral of error may be
improved by increasing eijther or both of the time lags
from a specific value as defined by the optimization equa-
tion for a given system response damping ratio but at the

expense of increased system transient duration.
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~— The second-order lag plus a pure time delay
representation of the fluidic rate sensor (Reference 44)
may be approximated by a first-order lag plus a pure time
delay for purposes of heading reference system performance

prediction.

— The application of the heading reference system
will be limited not by the transient performance but by
the long term drift induced by system noise as evidenced by
experimental heading system response random deviations.
Accordingly, it is suggested that further investigation of
the hybrid heading reference system be concentrated on the
identification and subsequent reduction of internally ge-
nerated system noise in order to attain an acceptable per-

formance over extended duration.
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APPENDIX A

NECESSARY MATHEMATICAL DEVELOPMENT
FOR SYSTEM HEADING ERROR MINIMIZATION

A.1 Rate Sensor Transfer Function Approximated by a 15t

Order Lag Plus a Pure Time Delay

A.1.1 System Closed Loop Transfer Function

From the heading reference system block diagram

shown in figure 3.1:
-T. 5
L 1
G]KCGZe ('T—I?-#])
mo(S) = [wi(s)-mo(s)] (A.1)
('|+T]S)('|+TZS)

For convenience, let

= G.K - .
Ky = G,K.G, and X, =3

Introducing the following Laplace auxiliary variable

equation (A.1) becomes:
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-q q
e K1(K2*TL)

]

[0 (s)-u, (s)

wy(s)
(14T ) (147, 21)
oo

K, (K,T, +q) T2
i e 'I( 2 L+Q) L [mi(s) _ mo(s)]
Q(TL"'T]Q)(TL*Tzq)

Rearranging the terms gives the equation:

-q 2 -q 2
e Ky (K, T, +q)T e K, (K,T, +q)T
mo(s) 1+ 1*2 'L L - 1'Y72°L L wi(s)
Q(TLHIQ)(TL*TZq) Q(TL*T]q)(TL‘f‘Tzq)

(A.2)

Hence, the system closed loop transfer function is given

by:

-q 2
wo(S) ) e KI(KZTL+q)TL

= r: 5 (A.3)
m1(5) q(TL+T]q)(TL+T2q)+e K](KZTUq)TL

A.1.2 Heading Rate Error Time Response

For a step rate input:

L%
q

oW
Yy
wils) = 5
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Substituting the value of mi(s) into equation (A.2):

-q 2 -q 2
e K1(K2TL+q)TL _TLwi e K](KZTL+q)TL

mo(s) =
q(TL+T]q)(TL+T2q) q q(TL+T]Q)(TL+T2q)

which gives:

2 -
KITL(KZTL+Q)E q

T | AT T ATp)
q K]TL(KZTL+q)e
+

Since:
me(s) = mi(s) - mo(s)

the system rate ervor will be:

2 — -
K]TL(K2|L+q)e q

T w. Q(TL+T]Q)(TL+TZQ)

q q K]TE(KZTLH])e-q
+
Q(TL"’T] Q) (TL+T2CI) J
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Rearranging the terms gives the equation

) TLmi 1
me(s) = 3 =3 (A.5)
q - K]TL(KZTL+q)e
q(TL+T]q)(TL+T2q)

which verifies equation (3.2) given in chapter 3.

As given by equation (3.9):

(1) @ -
-0 Z [Res.(qn)+Res.(qn)] (A.6)
Wi n=0

According to the Laurent's series theory, the

residues of q, and En are determined by:

_ (q2+Cq+D)eqT
Res.(qn)+Res.(qn) = 1im =3 (Q-qn)
9>q, q3+Cq2+Dq+A(B+qle

(q2+Cq+D)eqT

+ 1lim

— (a-a,)
9-q, q3+Cq2+Dq+A(B+q)e q n

(A.7)

Using 1'Hospital's rules, equation (A.7) could

be rewritten as follows:
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(2q+C)(q-q,)e"+(q2+Cq+D)eI"
+1(q2+Cq+D) (q-q,)e9"

Res.(qn)+ResL(Eh)=lim
a9, 3q2+2Cq+D+Ae”9-A(B+q)e”9

(2q+C)(q-a,)e"+(q2+Cq+D)e"
+1(q2+Cq+D) (q-g )e"

+1im
9*q, 392+2Cq+D+Ae”-A(B+q)e”9

or:

2 qnT
(qn+an+D)e

Res.(q_)+Res.(q )=
n n 3q§+2an+D-A(B+qn-])e-q“

- gt
(qn+an+D)e n

3q,, +2an+D—A(B+qn-1)e n

- Gy T,. ¥ 9,7
= Xn en +Xne

where

2
qn+an+D

X =
n 2 A 11.-q
3qn+26qn+D A(B+qn 1)e ™ 'n

_2 —
.qn+an+D

" 3q)+2Cq,+D-A(B+q -1)e In

(A.8)

(A.9)

(A.10)
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Substituting the complex representations for a, and En,
equation (A.8) becomes:
(-6n+19n)1 _ (-Sn-iﬂn)r

Xne +Xne

Res.(qn)+Res.(En)

-iQ T
e N ]

-8 T iQ T
_ n n -
= e [Xne +Xn

-8 T
n ..
e [Xn(cosnnr+1s1n9nr)

+Xn(cosQnt—1s1nQntq

-Gnr _ . _
e [(Xn+xn)cosnnr+1(Xn-Xn)sinﬂnT]
(A.11)

Using the identity:
acosx+ibsinx = kcos(x-£)
(where x = /a?-b2 and £ = arctan %P )

equation (A.11) could be rewritten as follows:
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-6 T
Res.(qn)+Res.(6;)=|Xn|e n cos(Qnr-¢n) (A.12)
. _ —) Zy . =
where: |xn| = /(X)X -XP) = 2V X X (A.13)
X -Yn
¢n = arctan i — (A.14)
: Xn+Xn

Substituting the expressions for Xn and ih defined by
equations (A.9) and (A.10) into equations (A.13) and
(A.14) gives:

lx I ) [(c§+n§)(s;’;mf\fc)-z(af‘.n:)(csn-n)-u(zcn-n)]i
nf ~ (5ﬁ+n§)[q(5§+nﬁ)+4cz]-e(sﬁ-ni)(2c5n-n)-n(4csn-n) b

é
n 2 2
-2Ae cosﬂn[(B-an-l)(36n-2c5n-20)-nn(3B+3sn-20+3

é
n . 2
+2Ae 9n51n9n[}Gn(én-28-2)+3nn+3C(B-1)+D}

[~ 2 2,2

ZQn[}C(Qn+5n) +4D§n-C@

2A 6“9 Q &2 Q?4+(C-26_)(B-1) @
+ e nCOS n n+ n+ - n - -

]
. 2
| +2Ae ns1nQ{(B-6n-1)(6ﬁ+D-C6n)+Qn(—B+1-6n+Cﬂ

¢n = arctan -— ) 7 2 3 2 2 7
(62+02) @(sn+nn)-1ocsn+4cJ+8(sn-nn)o-4cnan+zn
s
_ n _ _ 2 _ 2 (. -
2he "cosa, [(B-6,-1)(6240-C6 ) 402 (~B+1-5, +C)]

§
r2he "a sing, 82402+ (c-26,) (B-1)-0]
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Substituting the residues of 9, and En defined by equation
(A.12) into the heading error time response as given in

equation (A.6)

w {1) o _ ® -6 T
e ) = jzi;[kes.(qn)+Res.(qnﬂ = ;E;:lxnle n cos(a,1-¢,)

w
n

(A.15)

which verifies equation (3.13) given in chapter 3.

A.1.3 Development of Minimized Heading Error Equations

As given in chapter 3, the characteristic equation

was:
q3+Cq2+Dg+A{B+q)e 9 = 0 (A.16)
Let q= -6+iQ be a root of equation (A.16).
Subtituting this into equation (A.16) i

(“5”9)3+C(—6+iﬂ)2+D(-6+i9)+A(B-6+1’Q)eQ—i5 = 0

Developing the power terms gives the equation:

(-6343026)+i(3620-23)+C(62-02-2160)
+D(-6+10)+ReS(B-6+iQ) (cosn-isinQ) = O
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Collecting the real and imaginary parts of the above equation:

E53+3926+c(52-92)-Ds+ABe5cosn+Ae5(nsinn-scosnﬂ

8

+1[3629-Q3—2C69+DQ-ABe sinQ+Ae6(6sinQ+9cosﬂﬂ = 0

(A.17)

The real and imaginary parts of equation (A.17) are equalized

to zero to maintain :

—63+3926+C(62—92)-DG+ABe6cosﬂ+Ae6(Qsinﬂ-&cosn) =0 (A.18)

-93+3629-2C69+DQ-ABe65inQ+Ae6(GsinQ+QcosQ) =0 (A.19)

Extracting A from equation (A.18) :

_ =8343026+C(62-02)-Ds+ABeScosg (A.20)
ea(QsinQ-acosQ)

Substituting A into equation (A.19)

-03+3820-2C52+D0-ABelsing

_ es(dsinQ+9cosQ)L63+3926+c(62-92)-DG+ABe6cosQ]
eG(QsinQ-ScosQ)

Rearranging the terms gives:
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r‘ —
[-23+3820-2c62+Da] (2sinQ-6cosq)

{ -[-63+3025+C(82-02)-D8|(6sinQ+c0SR) > = 0
-ABe5[sinQ(Qs{nn—acosn)+cosn(csinn+QcosQﬂ

L. J

or:

[—n3+3529-2C69+DQ](nsinn-dcosn)

-[-83+3026+C(62-22)-D6](8sinn+acosn) =0
-ABes[Qsinzn-Gsinncosn+5cosﬂsinn+ncoszn] (A.21)
Dividing by @, equation (A.21) becomes:
ABe‘s =[-n3+3529-2C5Q+DQ](sinQ- g cosQ)
-[-53+3926+C(62-92)-06](% sinf+cosq) (A.22)

Equation (A.22) could be rewritten as follows:

(%)a

2
ABe = [93(3%3 _])-ggzc(%)+nn](sinﬂ-g-cosﬂ)

3 2
[93(3% - %sj)Jrnzc(‘;—2 -1)-90(%)] (3 sinnrcosa)
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or.:
k3(3§§—-1)-2920(§)+QD}(simr-%cosﬂ)
N -[aa(sg -S‘-S}%)ch(;% -1 )-no(g)] (g singscos?) u(Q)
= 3 =
e(g)e v(Q)
(A.23)

Since (g) is constant for a specified response damping ratio,
it is sufficient to differentiate equation (A.23) with res-
pect to @ and let the derivative equal to zero to obtain a

value of Q@ which gives a maximum AB.

From equation (A.23):

d(AB) Ej%S()ﬂv(n)- %ﬂlu(ﬂ)
R 5 = 0 (A.24)
dq Lv(q)1l

8
Since v(Q) = e(ﬁ)ﬂ as defined by equation (A.23), equation

(A.24) could be rewritten as follows:

8 8
du(Q )9 5
L) D3 6 B2,

dQ

or:
Hu(n)
dq

- (Sula) = 0 (A.25)
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From equation (A.23):

u(R) = [93(33—2 -1)-292c(f—2)+90} (sinq- % cosq)

3 2
—[93(33 - 33)+92C(§; -1)-90(%)} (% sinQ+cosq)

Collecting the 'sin Q' and ‘cos Q' terms gives:

( )
r 2
3(3%; -1)-202¢(8)+ap
ing J Q Q >
sSin 3 2
S 19338 - 83y, 02¢¢8% _1y.ap8
. § [9 (35 - 83)+n2¢(82 1) QDQ]J
u = )
8 52 s (
-~ 9335 -1)-202c(—)+90]
£COS 0 J Q [ Q2 ; 29 . >
§ 6 8 )
- 103(3= - =)+02C(2 -1)-aDp>
[ (35 - ge)earc(Zz -1)-a0)
\ J
\ J
or:
r oy
r 52 8 1
3037 -q3-202C (=) +QD
{30382 _q38% 83 _acl _qpd?
@ [39 oz "0 +Q2.cQa aCo =205
uif2) = « . 5 7
:
' 83 8 52 8
-303=—2 +03(=2)+202C= -aD(2)
+CosQ J al q? 22 f ’
-[3933 —Q3é? +n?c§§ -CQZ-QDg]
\ " J |
.
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Rearranging the terms gives the equation:

. g4 8 52 52
sing [93(57 -1)-92(5)c(55+1)+nn(9—2 +1)]

u(Q) = .
2
+ cosﬂ[;293§— -2n3§+92c§—1-09ﬂ
Q3 Q Q2
or:
2 2
sinQ 93(5— -1)-92(§)C+QD](§—+1)
n2 Q Q2
u(Q) =

+cosﬂ[;293(§)+nzc](§;-+1) (A.26)
Q Q

Differentiating equation (A.26):

-

62 s §2
cosﬂ[ﬂ3(af -i)-ﬂz(a)C+QD](55+ 1)

. 62 6 62
+sing [392(52— -1 )—29C(5)+D](F+1)

d:nn = 9 . 8 52 f
~sinQ [-293(5)+92c](§? £1)
L rcosR [-592(§)+29c}(g—2+1) J

Collecting the'sin Q'and 'cos Q'terms gives:

sinn[mz(éi -1)-29C(§)+D+293(§)-920](§3+1)
du(a) _ a? Q 2 Q2

dQ ~3:82 i _ezpe(G 3 §2
+cosa[22(37 -1)-azcd)vav-eaz (§)rzac] (&5 +1)
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or:

sing {293(§)+92[3(§§ -1)-c] -2nc(§)+n}'(§§-+l)

du(Q) _
_Hé_l -
+c059{93(§§-_1)-92(C+6)(§)+Q(ZC+D) }(g§-+1)

(A.27)

Substituting the expressions of u(Q) and g%égl defined by
equations (A.26) and (A.27) into equation (A.25) gives:

(
223 (8)+02[(352 -1)-c | -20c(8)+D
0 L iz J Q

d | o
) ( 93(§§ -1)-22(+6) (£) 4 (2c+0)
+cosQ(§7 +1) ¢ 5 36 ,
‘ -5 [-29 (5)+Q CJ
J

62
sinQ(= +1) 2
Q2 5[ 3(8% _1y.p2¢c(S ]
Q (92 1)-0 C(Q)+QD

or:

( 293(%)+92 [3(2—: -l)-C]
sing 5 8y, 62 52 5
-20c(8)+0-23(8) (8% _1)4q2¢8 - qpé
| ac(2)+0-03(8) (&3 -1)va2cS; - ap
62
(S5 -1)-92(C+s)(§)
cosf

2
+2(2C+D) r2038> _g2¢8
Q 1Y
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Collecting the terms of equal power Q's:

sinn{ns(g)(3-§§)+nz[s(§; —1)-c-c§§]-n(%)(ZC+D)+D}

' 382 2 8 -
+ €cO0sSQIN (355 -1)-Q (2C+6)(§)+Q(20+D) =0
which gives:

sinQ [ﬂa(%) (3-3—2)+92(C+3)(£—§- -1 )-n(f—z) (2C+D)+D]

- -cosn[na(3§§ -1)-292(c+3)(§)+n(2c+o)]

The value of 2 which gives a maximum AB will be given by

the following equation:

93(3§§ -1)-292(c+3)(%)+9(zc+n)
tanQ = - - 6; > ; (A.28)
93(5)(3-5?)+92(C+3)(a§ - )-Q(a)(2C+D)rD

——— -

This verifies equation {3.22) given in chapter 3.

Once the required root (@) is obtained, (AB) is
determined by equation (A.23) which is rearranged as

follows:
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§2 3082 _1y_o20(8 : |

(92 +])[Q (Qz 1)-0 C(Q)+QD sinQ _(Q)Q

AB = , e & (A.29)
§ 8
(55 +1) [-293(§)+92C]cosn

From equation (A.18):

~63+3026+C(62-02)-D6+Ae’ (Rsinn-scosn) .
ABe® = - (A.30)

cosfl

Substituting equation (A.30) into equation (A.19) gives:

[-03+3620-2C60+D0 Jcosn
+[-63+3926+C(62-92)-DG+Ae5(Qsinn-scosn)]sinn

+Ae6(ssinﬂ+ncosn) cos = 0

or:

E93+3629-2C69+Dﬂ]cosn

+[-83+3026+C(52-22)-D8] sina+Rela = 0

The above equation may be rearranged as follows:

2
(§_)n 'I:QS(BS—Z' '])‘292C(%)+DQ]COSQ ]
Ae ¥ q =

{q3(8y(3- 82 82 8 -
[9 (Q)(3 Qz)*QZC\QZ 1)-90(9) sin®
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Hence:
( 2
2(38% _1y. ]

[ﬂ (392 ]) ZQC(Q)'PDJ cosQ -(Q)Q

A= " 2 2 e &
2(8y¢5_8% S _1yv.pt8y]es
+[n () (3--7)eac (S -1) D(Q)}s1n9
(R.31)

This verifies equation (3.24) given in chapter 3.

A.2 Rate Sensor Transfer Function Approximated by a

2nd grder Lag Plus a Pure Time Delay

A.2.1 System Closed Loop Transfer Function

By approximating the rate sensor transfer function
by a 2nd order lag plus a pure time delay, tha heading refe-
rence system can be represented by the block diagram shown
in figure A.1. The systenm heading rate output is given
by: i

TS

G]KcGzlP;’-]e (5= +1)

; - T1s (s)- A.32
B (s) (s2+2cwn+¢ﬁ)(1+T25) [NI(S) wo(S)] ( : !

For convenience, let
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Introducing the auxiliary variable q = T s, equation (A.32)

becomes:

e‘qxi(xz+{%)

2 2
f%(rn %E'+2CTn %t-+1)(1+rzgi)

w,(s)

[m.i(s)-mo(s)]

-q 3
e KI(KZTL+q)TL

- w; (5)-u (s)]
a(T2q2+22T T q+T}) (T +T,q) [ ! 0

(A.33)

Rearranging the terms of equation (A.33) gives:

..q 3
e K](K2TL+q)TL

w (s)]1 + -
o q(T§q2+2;TnTLq+foTL+T2q)

_q 3
e Ky (K,T,+a)T \
s 2L L v, (s)  (A.34) .
q(T2q“+2gT T q+T)(T, +T,q) *
n n L L L "2

Hence, the system closed loop transfer function is given

by:
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—q 3
mo(s) i e K](K2T2+q)TL

wy(s)  a(T a2l T q+TE) (T +T,q)ve 9K, (K,T, +q)T7
(A.35)

A.2.2.Steady-State Heading Error

For a step rate input:

TL0;
q

9y
(Ui(S) = e— =
S

Substituting the value of wi(s) into equation (A.34):

-q 3
e K, (K, T, +q)T
mo(s) 1 + 1'h2°L L

2 2 2
q(an +2cTnTLq+TL)(TL+T2q)

-q 3
_ TL“i e K](KZTL+q)TL
q Q(Tha®+2eT ) q+TZ) (T, +T,q)
which gives:
( -q 3
e K](KZTL+q)TL
2 2 2
o (s) - TLwi q(an +2§TnTLq+TL)(TL+T2q)
0 -q 3
q .- e K](KZTL+q)TL

q(Tﬁq2+2;TnTLq+Tf)(TL+T2q)

L -
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Since
we(s) =mi(s)-m0(s)

the system rate error will be:

-
-q 3
e KI(KZTL+q)TL
2 2 2 E
o () = TLmi i TLwi q(an +2cTnTLq+TL)(TL+T2q)
& q q . e"qK](KzTL+q)TE
2 2
q(an +2cTnTLq+TL)(TL+T2q)
e'qK](KzTL+q)Ti
_TLey ) q(T2q%+22T T q+TZ)(T +T,q)
..q 3
Q . e K](KZTL+q)TL
q(T§q2+2;TnTLq+TE)(TL+Tzq) J
T, w. 1
- L1 = 5 (A.36)
q e KI(KZTL+q)TL
1 + )
q(an2+2;TnTLq+Tf)(TL+T2q)
L J

The heading steady-state error is given by:

co o]

e, = we(t)dt = w,(s) (A.37)
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Substituting the expression for me(s) in equation (A.37):

[]
- .
o TLm1 1
e” -q 3
q : e K](KZTL+q)TL
+
q(T:q2+2cTnTLq+le_)(TL+T2q)J
O
Hence:
Wy
Op = (A.38)
SLY

Equation (A.38) indicated that the system heading steady-
state error remains the same for both rate sensor transfer

function representations as mentionned in chapter 3.



APPENDIX B

DETERMINATION OF RATE SENSOR PARAMETER VALUES
AND OF SIMPLIFIED OPTIMUM CONTROLLER PARAMETER SETTINGS

B.1 Determination of Rate Sensor Parameter Values

As mentionned in chapter 2, the rate sensor
transfer function and associated parameter values given by
the manufacturer (Reference 10) has been estimated from the
experimental frequency response of the rate sensor at
5.0 psi supply pressure. In the absence of a servoed rate
table with adequate response capabilities, the rate sensor
transient response to an angular rate step input has been
investigated in reference 44 in order to determine the rate
sensor transfer function at various supply pressures. In
this reference, the rate sensor was horizontally suspended
from three long lines and the step input of angular rotation
was generated by impacting a pendulous mass against 3 rigid
beam radially secured to the sensor. The sensor differen-
tial pressure output was detected by a high sensitivity
pressure transducer and the step transient response, as
taken from reference 44, is shown in figures B.1 and B.2
respectively for rate sensor supply pressures of 1.0 psi

and 10.0 psi.



-168-

(1sd O’} = 0anssAd AlCinS)
LNdNI 31vY 4315 V OL ISNOJS3Y HOSNIS 34vyY 1'g 38No1I

sasi|iw ‘awn ]
09 0g ov og oz o1

I [ | I |

—62°0
uoljpuiixosddy

(bt 92uasajay) Ipjuawiiadxy

285800°0= U

,

295 210°0=1 —164°0

— 060

s

) 8inssaid ndinp pIzZIDW.ON

a1y
dv

(



-169-

(1sd 0"0l = 2.nssad Ajddng)
1NdNI 31vH 431S vV OL 3SNO4S3d HOSN3S 31vy 2'8 JdN9ld

sasiiiw ‘aw |

09 (01°] ob o¢ 02

uoiypwitxosddy

(bt d2uasajay) Ipjuawniadxy

| | | \*\_\

_4
2358000=1L

295 2100= 1

62’0

0s'0

)
™~
(o]

ol

) @4nssald indino PIZIDWION

dv

004y

(



-170-

It is evident from these results that an appropriate
transfer function representation of the rate sensor would
be by a second-order lag plus a pure time delay. However,
as demonstrated in chapter 3, a first-order lag plus a pure
time detay with suitably selected parameter values provides
an acceptable representation of the rate sensor dymamics

for purposes of heading system performance prediction.

From the experimental step transient responses
shown in figures B.1 and B.2, the rate sensor transfer func-

tion parameter values are estimated to be:

a) At 1.0 psi supply pressure:

0.008 sec.

T

T 0.017 sec.

1

1
b) At 10.0 psi supply pressure:

T 0.012 sec.

L
T

0.008 sec.

The accuracy with which the assumed transfer func-
tion used for the simuiated system study represents the
actual rate sensor dyrnamics is indicated in figures B.1 and
B.2 where both experimental and corresponding approximate

step transient respoases are shown superimposed.
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B.2 Determination of the Simplified Optimum Controller

Parameter Settings

a) System at 1.0 psi supply pressure

As given above:

T.I = 0.017 sec.
TL = 0.008 sec.
With T2 = 0.020 sec.
D = L _ _{o-008)2 = 0.188

T]T2 0.017x0.02
) T]+T2 0.017+0.02

= = 2.007
JT]TZ v 0.017x0.02

From figure 4.5

a, = -0.0450, ay = 0.572, 0, = 0.011

Substitution of these values into equation (4.5) gives:

AB = -0.045 + 0.572(0.188)+0.011(0.188)%= 0.062

From figure 4.6

Bo = -0.314, By = 1.96, B, = 0.240
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With these values, equation (4.6) gives:

-196+v 1.962-4x0.240(-0.314-0.188) . o p45
2x0.240

A =

The controller parameter setting are given by:

T\7, 1
Ky = A = x 0.245 = 1,303
TE 0.188
B AB | 1 0.062 1
Ky = — = —|—| = x = 31.63
T, AT, 0.245 0.008

b) System at 5.0 psi supply pressure

As given anteriorly, actual values of T.I and T2

were:
T] = 0.011 sec.
TL = 0.010 sec.
With T2 = 0.020 sec.,
Tf (0.01)2
D = = = 0.454
T1T2 0.011x0.02
T.I+T2 0.011+0.020
E = = = 2.09

Vv 172 v0.011x0.020



~173-

From figures 4.5 and 4.6

QR
"

-0.04, ay = 0.58, a, = 0.01

-0.312, By = 1.76, By = 0.239

ko)
1]

By following the same computation procedure as described
above, the following controller parameter values are

obtained:

0.903
54.87

~ -~
i n

c) System at 10.0 psi supply pressure

From section B.1:

= 0.008 sec.
0.012 sec.

—
(1]

With T2 = 0.02 sec.,

2 (0.012)2
D = = = 0.90
T 0.008x0.020

0.0
. I.I+T2 0.008:0.0

2
T, ~ \V0.008x0.020




-174-

With this value of E, figures 4.5 and 4.6 give

-0.034, @y = 0.596, oy = 0.009

Q
1]

n
n

-0.31, B = 1.59, By = 0.238

The controller parameter setting were determined from

equations (4.5), (4.6) and (4.7) as given below:

K1 = 0.98

K 48.07

%]
n
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