Login | Register

Inhibiting dopamine reuptake blocks the induction of long-term potentiation and depression in the lateral entorhinal cortex of awake rats

Title:

Inhibiting dopamine reuptake blocks the induction of long-term potentiation and depression in the lateral entorhinal cortex of awake rats

Caruana, Douglas A., Reed, Sean J., Sliz, Diane J. and Chapman, C. Andrew (2007) Inhibiting dopamine reuptake blocks the induction of long-term potentiation and depression in the lateral entorhinal cortex of awake rats. Neuroscience Letters, 426 (1). pp. 6-11. ISSN 0304-3940

[thumbnail of Post-print: final draft post-refereeing]
Preview
Text (Post-print: final draft post-refereeing) (application/pdf)
CaruanaTextRevised_with_Figs.pdf
779kB

Official URL: http://dx.doi.org/10.1016/j.neulet.2007.08.025

Abstract

Synaptic plasticity in olfactory inputs to the lateral entorhinal cortex may result in lasting changes in the processing of olfactory stimuli. Changes in dopaminergic tone can have strong effects on basal evoked synaptic responses in the superficial layers of the entorhinal cortex, and the current study investigated whether dopamine may modulate the induction of long-term potentiation (LTP) and depression (LTD) in piriform cortex inputs to layer II of the lateral entorhinal cortex in awake rats. Groups of animals were pretreated with either saline or the selective dopamine reuptake inhibitor GBR12909 prior to low or high frequency stimulation to induce LTD or LTP. In saline-treated groups, synaptic responses were potentiated to 122.4 ±6.4% of baseline levels following LTP induction, and were reduced to 84.5 ±4.9% following induction of LTD. Changes in synaptic responses were maintained for up to 60 minutes and returned to baseline levels within 24 hours. In contrast, induction of both LTP and LTD was blocked in rats pretreated with GBR12909. Dopaminergic suppression of synaptic plasticity in the entorhinal cortex may serve to restrain activity-dependent plasticity during reward-relevant behavioral states or during processing of novel stimuli.

Divisions:Concordia University > Faculty of Arts and Science > Psychology
Item Type:Article
Refereed:Yes
Authors:Caruana, Douglas A. and Reed, Sean J. and Sliz, Diane J. and Chapman, C. Andrew
Journal or Publication:Neuroscience Letters
Date:2007
Funders:
  • Natural Sciences and Engineering Research Council of Canada
Digital Object Identifier (DOI):10.1016/j.neulet.2007.08.025
Keywords:memory, olfaction, piriform, parahippocampal, ventral tegmental area, rat
ID Code:6409
Deposited On:26 Oct 2009 18:42
Last Modified:18 Jan 2018 17:28

References:

[1] A.A. Alonso, M. deCurtis, R. Llinás, Postsynaptic Hebbian and non-Hebbian long-term potentiation of synaptic efficacy in the entorhinal cortex in slices and in the isolated adult guinea pig brain, Proc Natl Acad Sci USA. 87 (1990) 9280-9284.

[2] A.F. Arnsten, Catecholamine modulation of prefrontal cortical cognitive function, Trends Cog Sci. 2 (1998) 436-447.

[3] D.M. Bannerman, M. Lemaire, B.K. Yee, S.D. Iversen, C.J. Oswald, M.A. Good, J.N. Rawlins, Selective cytotoxic lesions of the retrohippocampal region produce a mild deficit in social recognition memory, Exp Brain Res. 142 (2002) 395-401.

[4] A. Bjorklund, O. Lindvall, Dopamine-containing systems in the CNS. In: A. Bjorklund, T. Hokfelt (Eds.), Handbook of Chemical Neuroanatomy. Vol. 2: Classical Transmitters in the CNS, Part I, Vol. 2nd, Elsevier, Amsterdam, 1984, pp. 55-122.

[5] R. Bouras, C.A. Chapman, Long-term synaptic depression in the adult entorhinal cortex in vivo, Hippocampus. 13 (2003) 780-790.

[6] R.D. Burwell, The parahippocampal region: Corticocortical connectivity, Ann NY Acad Sci. 911 (2000) 25-42.

[7] D.A. Caruana, C.A. Chapman, Dopaminergic suppression of EPSPs in layer II of the lateral entorhinal cortex in vitro, 2006 Abstract Viewer/Itinerary Planner. Atlanta, GA: Society for Neuroscience Program No. 427.9 (2006).

[8] D.A. Caruana, R.E. Sorge, J. Stewart, C.A. Chapman, Dopamine has bidirectional effects on synaptic responses to cortical inputs in layer II of the lateral entorhinal cortex, J Neurophysiol. 96 (2006) 3006-3015.

[9] N.G. Castro, M.C. deMello, F.G. deMello, Y. Aracava, Direct inhibition of the N-methyl-D-aspartate receptor channel by dopamine and (+)-SKF38393, Br J Pharmacol. 126 (1999) 1847-1855.

[10] C.A. Chapman, R.J. Racine, Piriform cortex efferents to the entorhinal cortex in vivo: Kindling-induced potentiation and the enhancement of long-term potentiation by low-frequency piriform cortex or medial septal stimulation., Hippocampus. 7 (1997) 257-270.

[11] Z. Chen, S. Fujii, K. Ito, H. Kato, K. Kaneko, H. Miyakawa, Activation of dopamine D1 receptors enhances long-term depression of synaptic transmission induced by low frequency stimulation in rat hippocampal CA1 neurons, Neurosci Lett. 188 (1995) 195-198.

[12] M. de Curtis, R.R. Llinas, Entorhinal cortex long-term potentiation evoked by theta-patterned stimulation of associative fibers in the isolated in vitro guinea pig brain, Brain Res. 600 (1993) 327-330.

[13] M.C. Defagot, E.L. Malchiodi, M.J. Villar, M.C. Antonelli, Distribution of D4 dopamine receptor in rat brain with sequence-specific antibodies, Brain Res Mol Brain Res. 45 (1997) 1-12.

[14] P.Y. Deng, S. Lei, Long-term depression in identified stellate neurons of juvenile rat entorhinal cortex, J Neurophysiol. 97 (2006) 727-737.

[15] J.H. Fallon, S.E. Loughlin, Monoamine innervation of cerebral cortex and a theory of the role of monoamines in cerebral cortex and basal ganglia. In: E.G. Jones, A. Peters (Eds.), Cereb Cortex, Plenum, New York, 1987, pp. 41-27.

[16] P.S. Goldman-Rakic, E.C. Muly, 3rd, G.V. Williams, D(1) receptors in prefrontal cells and circuits, Brain Res Brain Res Rev. 31 (2000) 295-301.

[17] C.R. Grunschlag, H.L. Haas, D.R. Stevens, 5-HT inhibits lateral entorhinal cortical neurons of the rat in vitro by activation of potassium channel-coupled 5-HT1A receptors, Brain Res. 770 (1997) 10-17.

[18] B.N. Hamam, M. Sinai, G. Poirier, C.A. Chapman, Cholinergic suppression of excitatory synaptic responses in layer II of the medial entorhinal cortex, Hippocampus. 17 (2006) 103-113.

[19] T.M. Jay, Dopamine: A potential substrate for synaptic plasticity and memory mechanisms, Prog Neurobiol. 69 (2003) 375-390.

[20] T.M. Jay, F. Burette, S. Laroche, Plasticity of the hippocampal-prefrontal cortex synapses, J Physiol Paris. 90 (1996) 361-366.

[21] S. Kourrich, C.A. Chapman, NMDA receptor-dependent long-term synaptic depression in the entorhinal cortex in vitro, J Neurophysiol. 89 (2003) 2112-2119.

[22] J.E. Lisman, A.A. Grace, The hippocampal-VTA loop: Controlling the entry of information into long-term memory, Neuron. 46 (2005) 703-713.

[23] R. Martin-Ruiz, L. Ugedo, M.A. Honrubia, G. Mengod, F. Artigas, Control of serotonergic neurons in rat brain by dopaminergic receptors outside the dorsal raphé nucleus, J Neurochem. 77 (2001) 762-775.

[24] S.J. Mitchell, J.B. Ranck, Generation of theta rhythm in medial entorhinal cortex of freely moving rats, Brain Res. 189 (1980) 49-66.

[25] B.G. Mockett, D. Guevremont, J.M. Williams, W.C. Abraham, Dopamine D1/D5 receptor activation reverses NMDA receptor-dependent long-term depression in rat hippocampus, J Neurosci. 27 (2007) 2918-2926.

[26] N. Nakachi, Y. Kiuchi, M. Inagaki, M. Inazu, Y. Yamazaki, K. Oguchi, Effects of various dopamine uptake inhibitors on striatal extracellular dopamine levels and behaviours in rats, Eur J Pharmacol. 281 (1995) 195-203.

[27] R.D. Oades, G.M. Halliday, Ventral tegmental (A10) system: Neurobiology. 1. Anatomy and connectivity, Brain Res Rev. 434 (1987) 117-165.

[28] S. Otani, O. Blond, J.M. Desce, F. Crépel, Dopamine facilitates long-term depression of glutamatergic transmission in rat prefrontal cortex, Neuroscience. 85 (1998) 669-676.

[29] T. Otto, H. Eichenbaum, Complementary roles of the orbital prefrontal cortex and the perirhinal-entorhinal cortices in an odor-guided delayed-nonmatching-to-sample task, Behav Neurosci. 106 (1992) 762-775.

[30] A. Petrulis, M. Peng, R.E. Johnston, The role of the hippocampal system in social odor discrimination and scent-marking in female golden hamsters (Mesocricetus auratus), Behav Neurosci. 114 (2000) 184-195.

[31] E. Pralong, R.S. Jones, Interactions of dopamine with glutamate- and GABA-mediated synaptic transmission in the rat entorhinal cortex in vitro, Eur J Neurosci. 5 (1993) 760-767.

[32] R.J. Primus, A. Thurkauf, J. Xu, E. Yevich, S. McInerney, K. Shaw, J.F. Tallman, D.W. Gallagher, II. Localization and characterization of dopamine D4 binding sites in rat and human brain by use of the novel, D4 receptor-selective ligand [3H]NGD 94-1, J Pharmacol Exp Ther. 282 (1997) 1020-1027.

[33] J.A. Rosenkranz, D. Johnston, Dopaminergic regulation of neuronal excitability through modulation of Ih in layer V entorhinal cortex, J Neurosci. 26 (2006) 3229-3244.

[34] T.V. Sewards, M.A. Sewards, Input and output stations of the entorhinal cortex: Superficial vs. deep layers or lateral vs. medial divisions?, Brain Res Brain Res Rev. 42 (2003) 243-251.

[35] U. Stäubli, G. Ivy, G. Lynch, Hippocampal denervation causes rapid forgetting of olfactory information in rats, Proc Natl Acad Sci USA. 81 (1984) 5885-5887.

[36] K. Stenkamp, U. Heinemann, D. Schmitz, Dopamine suppresses stimulus-induced field potentials in layer III of rat medial entorhinal cortex, Neurosci Lett. 255 (1998) 119-121.

[37] J.L. Swanson-Park, C.M. Coussens, S.E. Mason-Parker, C.R. Raymond, E.L. Hargreaves, M. Dragunow, A.S. Cohen, W.C. Abraham, A double dissociation within the hippocampus of dopamine D1/D5 receptor and beta-adrenergic receptor contributions to the persistence of long-term potentiation, Neuroscience. 92 (1999) 485-497.

[38] B. Tahvildari, A.A. Alonso, Morphological and electrophysiological properties of lateral entorhinal cortex layers II and III principal neurons, J Comp Neurol. 491 (2005) 123-140.

[39] F.I. Tarazi, N.S. Kula, R.J. Baldessarini, Regional distribution of dopamine D4 receptors in rat forebrain, Neuroreport. 8 (1997) 3423-3426.

[40] X. Wang, P. Zhong, Z. Gu, Z. Yan, Regulation of NMDA receptors by dopamine D4 signaling in prefrontal cortex, J Neurosci. 23 (2003) 9852-9861.

[41] R. Yanagihashi, T. Ishikawa, Studies on long-term potentiation of the population spike component of hippocampal field potential by the tetanic stimulation of the perforant path rats: Effects of a dopamine agonist, SKF-38393, Brain Res. 579 (1992) 79-86.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Research related to the current document (at the CORE website)
- Research related to the current document (at the CORE website)
Back to top Back to top