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ABSTRACT

Nonlinear Time-Dependent Analysis of Externally/Internally
Prestressed Reinforced Concrete Beams

Bilal M. El-Ariss, Ph.D.

Concordia University, 1999

A simple procedure for the nonlinear analysis of externally and/or internally prestressed
reinforced concrete beams inciuding the time-dependent effects caused by creep and
shrinkage of concrete and relaxation of prestressing steel is presented. The procedure is
capable of tracing the structural response of these structures through their service load
history as well as throughout the elastic, inelastic, and ultimate load ranges.

Sections can change throughout the length of the member and the variation of the material
properties within the element is accommodated. The section is divided into concrete parts
of different materials and the reinforcement steel is divided into layers of different
properties. Each concrete part and steel layer is considered in a uniaxial state of stress.
Time dependent variation of concrete properties is considered. The instantaneous loss in
the prestressing force due to friction and anchor setting in posttensioned structures is also
recognized. The time domain for which the analysis is required is divided into a number of
time intervals. At any instant, the instantaneous changes in stresses and deformations are
calculated and added to the existing values. For any time interval, the gradual change in
stresses and deformations are determined and added to update the existing values. Also for

each time interval, nonlinear equilibrium equations which are valid for the current



material properties are set up and solved using the displacement method. An initial
stiffness method combined with the unbalanced load iterations for each load increment or
time interval is used for the nonlinear equilibrium.

A series of numerical examples are tested and comparisons are made with other analytical
and experimental data. Numerical data from the nonlinear and time-dependent analyses of

prestressed posttensioned reinforced concrete simple beams are presented.



In the name of “Allah”, the most gracious, the most merciful

ACKNOWLEDGMENTS

The Author’s profound thanks, respect, and gratitude go to his supervisor Dr. H.
Poorooshasb for his encouragement, help, and support.

Special thanks to Dr. M. M. El-Badry who initiated the author’s research, suggested the
topic for the thesis, advised through the course of the work, and provided some financial
support during a portion of the work.

The author’s sincere thanks and respect are due to Dr. R. Bhat for his help and advise.

Also, the author’s special thanks and gratitude go to Dr. A. Hanna for his help and
encouragement.

Thanks are also extended to my colleagues and friends for their support.



DEDICATION

To the memory of my father, my ideal and my example in life. He will always be in my
heart and my mind.

To my mother, sister, brothers, wife, and daughters for their unconditional love, support,
and encouragement.



TABLE OF CONTENTS

Table of Comtents ...t et e e et s e e e s e eeeas i
LISt Of FIGUIES........ooneeeiciee ettt ettt ee e e e ae e s e s e e e sssae s ssmnaserssessssessnnmennes v
LISt Of Tables ...ttt ettt st e st e e nn s aen s e s e snes ix
NOBRLION ...ttt ettt st et s e e s smm s m e enssnnes X
1. INTRODUCGCTION ...ttt ee e e ee et s e s et e n e e s essese e s s s anesananen 1
1.1 BacKgrOUNd .....coooiiiioeiieete e ee et ee e creta e s e s e e e naeeesae s s aeass s sreeasennnnns 1
1.2 Combination of Prestressed and Reinforced Concrete ........c.cccceeeveinoeeeeecnneence. 2
1.3 General Overview of the Problem ..........ccooiiiieeeeee e 3
1.4 Needs in The Research on Unbonded Prestressing......cococceeveeeeececcmmnnececeecennnees 4
1.5 ODJECHVES ...ttt st cr e s enese et cs e s s e e e nesmaes s na s s same s asas e e nnnee 5
LiO  SCOPE et s e s e e e nnene 6
2. LITERATURE REVIEW ...ttt et e e 7
2.1 INETOAUCTION «.eeiieee e e cee e e ee et e e e e ee et ee e s e s ee s seeseseeeas e nmennaannes e nssnnnnncen 7
2.2 Previous WOTK.. ..ttt et eet et e 7
3. BASIC MATERIAL PROPERTIES ... e 21
3.1 INEEOAUCHION ....eeiiiiiiiiiiiiee ettt st ee et sectc e e e s sse s ae s s sssase s e e b e s s nmnmneesenen 21
A O] 1 [o7 ¢ (IO 23
3.2.1 Instantaneous and Long-Term Strains ......ccoooueeieeeeieeieeeeerecceeienecceeeees 23
3.2.2 CONCIete PTOPEITIES ....coiveiiieeiieniiceiiie ittt st seeeae et nn e s nennee 24
3.2.2.1 Compressive SIrENZth.....coccceeiiiiiiiieiieeeeare ittt reeneeseseaceae 24
3.2.2.2 Modulus of ElastiCity ........veeerieeeeieeicieeeeeereeeeeereeeeeecarereeece e e eeeeenees 26
3.2.2.3 Tensile Strength .....cceooemmeeiiiiii e 28
3.2.3 Concrete Short-time Deformations............ccccoiviiiiiiiiinniiiiiieneeeeene 29



3.2.4 Concrete Long-Time Deformations, Creep and Shrinkage .........cccccoeeeeee... 30

T 30 B O ¢ T~ o TSROSO 30
3.2.4.2 SAINKAZE .ot e ce e s e et ranas 34
3.3 Steel ReiNfOrCEMENt ....coueeiiieiiiieete et eeoe s s e e e es 37
3.3.1 Reinforcing StEel...... oottt et st e s e e ne s 37
3.3.2 Prestressing SEEL ......eee ettt et ee s e s e e eoe e s eane e 38
3.4 Comparison Between Prediction Models.........cccoooiiiiiiiriiiriieeceeeneeans 41
3.5 Tension Stiffening Effect ... e 41
3.6 Concrete Under Variable SIESS ...t eee e ens 42
3.6.1 Step-by-Step Method ....oeeneee 43
3.7 Nonlinear Problems..........eeeeeiiiiieciiieiitceie et crceetre e e oo esees 44
3.8 Basic Nonlinear Solution TeChniqUES .......ccc.coieiiiricirieirereecee e 45
3.8.1 Incremental TEChNIQUES ...c.comemmrmiii e 45
3.8.2 Iterative TEChNIQUES .....ccovrreimmiiieiieaeecttee e cae e e re et e seeer e s e seee e 46
3.8.3 Step-Iterative TeChNIQUES .......eeiiiiiiiicciice et 47
3.9  ConVergencCe CriterIOMN ......uuumieieeeeereeireereeeeetreeeeseaeeeesenmeeeeseasnsressssnnsmessssesrsessnnns 47
SHEAR DEFORMATIONS........... et et 61
4.1 INETOGUCTION c.eeeeiiicieeeecetereecerteete ettt e e e ste s sae e e semnne s e ae s e mecenmanens 61
4.2 Axial and Flexure Deformation Analysis ......ccccoeircivrneiiiennnncenniercceneeeen. 62
4.3  Axial, Shear, and Flexure Deformation Analysis .......cceceeeeeerrceeercmeeireccercneeennnen. 62
4.4  Models For Shear Effects.. ..o 63
4.4.1 Variable Angle Truss Model ..ottt 63
4.4.2 Compression Field Theory ...t 66
4.4.3 Modified Compression Field Theory ..o 68

4.5 Proposed Model To Include the Effects of Shear Deformations
in Noncracked MEMDBETS .........oooeiieiimiiiceccecrece ettt sas e enes 70
4.5.1 General RemMarks....c.coooiriiiiioiiiiiicceccrcrtceete e 70
4.5.2 The MethodOIOZY ....cciurieiiiiiitieee e ee e crecs s ens e sreseaas 73

ii



W

4.6 Shear Stresses on a Trapezoidal Cross Section:

Reduced Cross SeCtiONAl AT ........oieeoiueieieectieeeeeeieeeeeeeeteeeestecaeaeeemmeeeeeememreaamees 76

NONLINEAR ANALYSIS OF PRESTRESSED REINFORCED

CONCRETE CROSS SECTIONS ...ttt tetees e s s ea s ae e s e 85
5.1 INETOQUCHION .ttt cee et e s e e e e aa e ae e st s e e s st aee s seeasas e enan 85
5.2 Stress-Strain Relationship - Cross Sectional Analysis.......cccccceeecerrieceeerreennn.e. 86
5.2 1 COMCIOLE ...ttt et e et e et s e e e e seeeemes e s e ee s smsaemanesnanens 88
5.2.2 Steel.. ettt ettt et a s 0]
5.3 Computation of Internal Forces and Moments - Cross Sectional Analysis.......... 91
5.3.1 Concrete Compressive Force and Moment..........ccocccreeeeveccmnnccrerccernnncenn. 91
5.3.2 Steel Force and MOMENL ........ooiiiiiiiiiiiiicccec et eeee e seeeeeseneeae 93
5.3.2.1 Normal steel layers resultant force and moment ........c.c.coueecurmnuenene. 93
5.3.2.2 Internal prestressing steel layers resultant force and moment........... 94
5.4 Equations of Equilibrium.........c.c.ccc..ccc.... T T 94
5.5 DEIIVALIVES wcccuniiiiiceiieteiecentcere ettt se e netse e eesee s e ane s s st e s e samt s e e sessesnecns 95
5.6 Time Dependent Stresses and Strains .......cooccceeeeereeeiiirerrceericeccreeeeeteeeseeeeeeneeens 100
5.6.1 Free Strain Due to Creep and Shrinkage.........ccccocceviimiciiicnccenninnncnnnns 100
5.6.2 Variation of Prestressed Steel Stress Due to Relaxation..........cccceeceeeenniee 101
5.7 AnalysiS Of CTOSS SECHIONS ....uuuuurerrrererirrrreeieeeeeeeeeresnnnteearessesnsssanesssssssnssmneseaemsessse 102
5.8 Verification EXaMPIES........ccoiciiiiiriiiiciicicccciet et ncne e 104
SBEXAMPLE L ottt et 104
S.8.2ZEXAMPIE 2 ..ottt s e e s 106
S.BIEXAMPIE 3 ..ottt ettt s ete e e s e st 106

ANALYSIS OF PRESTRESSED REINFORCED

CONCRETE STRUCTURES ...........oo ettt s ses e e e ese e eeeane 140
6.1 GENEIAL ...ttt e rteee st e e et e e e s n e s s ate e e e s e s e s e e e saaaes 140
6.2 Structural Modeling and DiSCretiZation ........c..eeeeeeecceerrrrreeeeerieeeeercneeeeeeereceensnenes 142

iii



6.3 Initial Prestressing FOTCe. ... .o et re et e 144
6.3.1 Losses Due tO FIICHOM «.co..ueiiieeiieecieeiect et e e 144
6.3.2 Losses Due to ARchorage Set ....... o iiiveiiiiieieieceeecceeeeeee e ee e, 145
6.3.3 Effect of stressing Procedure ...........ccooioiociiiiiiiiciereeceeeceeceneeeeeeens 148
6.4 Member Stiffness MatriX .....ccoveiiriiiiiiiiiccc et seeee e s 149
6.5 FiXed-End FOICES ....coremiiiiiieiieecete ettt ce et ee e aeaes 154
6.6 Calculation of Deformations of @ Member ..o 156
6.7 Imposition of Support ConditionS........ccccueeeeiirieririiicectrrerc e 159
6.8 ANalySsis PrOCEAUIE .ccouneeeeiiiieceeeeee ettt 160
6.9 Verification of the Procedure ...........ooveeoiiiriiiieceececeee e ree e 162
6.9.1 Reinforced Concrete Beam Analysis ..........cooouimiiioiiiniininirceceeeecaee 163
6.9.2 Analysis of Pretensioned Column........ccccooiiiiiiiiiireeieeeee e, 164
6.9.3 Analysis of Prestressed Simple Beam..........c.cocciiiiiiiiinniiiineceneene 165

6.9.4 Simply Supported Beams with Internal unbonded Tendons
Tested by Harajli and compared with the current study .......ccccevrrennnennn.. 169
7. SUMMARY AND CONCLUSIONS ....... ettt ses e seeet et neeas 213
2 SR 1331 111 0 : 1 2 SRR SOTOURRI 213
7.2 Feature of The Current Study .....ccccccmiiiiiiimiirieee e eeeeeeecree e ee e eee e e s s 214
7.3 CONCIUSIONS ...ceiiiiieieete ettt ee et et e e e st e s san e s s anesemeeate s nae e sne s 215
7.4 Recommendations for future study ......ccocooiiiiiiiiiiiiiiiiiie e 217
REFERENECGES ....... ettt ettt et et b s sne e sae s e s e 220

iv



LIST OF FIGURES

Page

Fig. 3.1 Creep and Creep Recovery of CONCIELe ...........oimeiiicriieiiceeeectee et 49
Fig. 3.2 Typical Variation of Shrinkage and Swelling with Time......ccc..cccoevcervivnnirnannenn... 49
Fig. 3.3 Variation of Compressive Strength with Time........cocccooeiiiiiiinincccceeeeeee, 50
Fig. 3.4(a) Stress-Strain Relationship for COncrete..........cccooiriiiirrcieinicecrrrececrrerereeecceeee 51
Fig. 3.4(b) Stress-Strain Relationship for Reinforcing Steel ...........cccooiiiiiniiiiincinirnennen. 51
Fig. 3.4(c) Stress-Strain Relationship for Prestressing Steel ......c..cooocvniiiinivciiinniieneeee. 51
Fig. 3.5 Relaxation Reduction CoeffiCIent Y ....ocovvmiemiiciiiiiinicciiicieeeececee e 53
Fig. 3.6 Comparison Between the ACI and CEB Models for Variation

of Modulus of Elasticity of Concrete with time........c.ccooeviiiiciriiionccciniieerceeeennn. 54
Fig. 3.7 Comparison Between the ACI and CEB Models for Prediction

of Creep Coefficient and Shrinkage Strains (Relative Humidity 40%) ................ 55
Fig. 3.8 Distribution of Stresses in a Uniaxial Reinforced Concrete Element ..................... 56
Fig. 3.9 Tension Stiffening Models ... ittt 57
Fig. 3.10 Incremental TeChNIQUES.....c.coiiiemeeiiieiiiieiieereeecee et ee et et e s e e rsae e e e 58
Fig. 3.11 Iterative TeChNIQUES ..c..ueeeiiiiiiiieieicte et ter e e ee s e e s nne 59
Fig. 3.12 Step-Iterative TEChNIQUES .....ccoommiieiiiiiiiiiieetet ettt eeeesee e 60
Fig. 4.1 Curvature Distribution in Beams With and Without |

Diagonal Tension Cracking ...ttt ettt e et eeeaeae 79
Fig. 4.2 Shear Failure Mechanism in a Beam Without Web Reinforcement ....................... 80
Fig. 4.3 Shear Failure Mechanism in a Beam With Web Reinforcement....................c....... 80
Fig. 4.4 Shear and Diagonal Compressive Stress Distribution..........ccceeeveecirniecirncccirnnenenee. 81
Fig. 4.5 Compression Field Theory for Prestressed Beam Subjected to Shear .................... 81
Fig. 4.6 Force Transmission ACross Cracks .......ooccvioririrciiieeiiccctinreree e cenee e 82
Fig. 4.7 Spacing of Inclined Cracks........cccooiiiiiiiiriiiiieeeiecc e 82
Fig. 4.8 Shearing Stress at any Distance, y;, Using Either Area A’ or A”......ccoovvvvreninnnenn. 83
Fig. 4.9 Shear Deformations in a Differential Element .........cccccccoiiiiiiiiin, 84



.4.10 Shear Deformations of a Differential Element.............ccooccciiiiiiiiieaneen. 84
. 5.1 Typical Cross Sections Treated in the Present Study .....cooecoeevemiiiiieinnnnnnnn. .....108
. 5.2 Division of a Concrete Part into Trapeziums and Rectangles............cc.eveeneeennno... 109
. 5.3 Cross Section and Strain DiStribUtion .......ccc.cccooceeiiinciniceieeee e, 110
. 5.4 Idealized Concrete Stress-Strain Relationship «.c.coeeeceeeeeeeeeeiiieeeieeeeecceeceeenns 110
. 5.5 Prestressed Concrete T-SeCtion ....co..oovvciiviiiniiiicniiereee et re e eneaes 111
B T - I o OOV STRRPRRUR 112

. 5.12(b) Stress Distribution and Strain Distribution in Cross Section........ccccoeveeeeeeen... 127
. 5.13 Moment-Curvature Relationship of Mid-span Cross Section

(Case of Pure Bending) ...cceveeeiiinciecee ettt 128
. 5.14 Moment-Curvature Relationship of Mid-span Cross Section

(Case of Fixed Normal FOrce) ..ot e e e 129
. 5.15 Normal Force-Curvature Relationship of Mid-span Cross Section

(Case bf Fixed Bending MOMENL).......cuuemmeueemrimmeceececiieetecerteceeeeeeeeee e e cenneneneeeens 130
.5.16 Comparison Between This Study and Linear Analysis (CRACK)......ccccccvreeeen.n. 131
.5.17 Comparison Between This Study and Linear Analysis (CRACK)......cccccccceeeeeenn. 132
. 5.18(a) Stress Distribution (Time-Dependent Effects)......cccooveiiiicriniiiiiiinineeiiennees 133
. 5.18(b) Strain Distribution (Time-Dependent Effects).......cccccoociimeiiiinicccvinncinnnnaes 134
. 5.19 Normal Force-Curvature Relationship of Mid-span Cross Section

(Case of Fixed AXial FOICE)...ccommmiiiieiiieeeeceeeeeceeeeecccccree e eeveseeeees e ennaes 135
. 5.20 Normal Force-Curvature Relationship of Mid-span Cross Section

(Case of Fixed AXIAl FOTCE) ..oununnieiieieeeieeeeeeee e rceeeeeeeeeeee s eenesenneeeesseseesnnnenes 136
.5.21 Instantaneous and Time-Dependent Stress-Strain Relationship......ccccooeceeeeeeeee. 137
. 5.22 Comparison Between This Study and Experimental Work by

Priestley, Park, and Lu ....oooeeeeeeeeee e reee s e e e e e 138
.5.23(a) Cross Section of a Single-Tee Beaml.......uueeiiiiiiiiiiiiiicniten e 139
. 5.23(b) Comparison Between this Study and Collins and Mitchell

Layer-By-Layer Approach (1987) for M-\ re€Sponse .......ccccceeeceerectecvruemncncnennnen. 139
. 6.1(a) Typical Reinforced or Prestressed Plane Structure........ccooocceevveeveeieiincconicvcninneees 171

vi



. 6.1(b) Idealization of @ Plane StrUCIULE ........ooeeeeeeeeeeeeeeeeeeee e emmeoneneeeaeaes 171
. 6.2(a) Displacement Components at a Typical Node........cccoeevvmreereeireiicceieeieeieieeee. 171
. 6.2(b) Local Axes and Positive Directions of Member End Forces

and DISPIACEMENLS .......ooooiiiiiicieeereeeetee et ee et ee et ee e e e eeese s seenr s 171
. 6.3(a) A Plane Frame Member with Internal Tendons.....oooveeeeeeeeeeeeeeceeeeeeeeeeeeeeaeeaenns 172
. 6.3(b) A Plane Frame Member with External Tendons.........cccceveeeveeemeeeeeemeneeeeeeeeeeneen 172
. 6.4 Variation of Prestressing Force Along a Tendon Before and After

ANCROT SL.....cieee ettt e e et e e e ee et e s e nenees 173
. 6.5 Calculation of Area A (Case of C at Section K)...ooovvieememeeeiiiieieeeeeeeeeeeeeeee e 173
. 6.6 Calculation of Area A (L, > Tendon Length)....c.ccccocceievemniinninnenciniceeernne. 174
. 6.7 Typical Variation of Prestressing Force (Jacking form Both Ends)........................ 174
. 6.8 Displacements {D’} and {d’} in a Typical Plane Frame Member.......................... 175
. 6.9 Normal Force and Bending Moment Diagrams Due to Unit Forces at the

Three»Coordinates ALENA Of oot 175
. 6.10 Structural Model With Eccentricity at the Ends........cccoeeeemeeeeoemmeeeceeecreeeneee. i76
. 6.11 Division of a Member into Sections and Calculation of Elastic Loads for

Calculating the Deformations .........cccoereeceirrneiieeieirereceetee st eeseeneeeaes 177
. 6.12 Original and Deflected Shape of a Typical Plane Frame Member........................ 178
. 6.13 Comparison Between this Study and experiment, Kang (1977),

and Lin (1973) for the Midspan Deflection ..............cceeeuemeverecemeeeeeeeeeereereveeeeeeees 179
. 6.14 Comparison Between this Study and experiment, Aroni (1968),

and Kang (1977) for the Midspan DefleCtion ........c.ccecoeeeeemireecerinneccrneceeereacene 180
. 6.15 Pretensioned Partially Prestressed Beam.......ccccccoeeieeiiieiienncncccineeneeecceee e 181
. 6.16 Partially Prestressed Beam With External Tendons ..........cooeeeeeieeeiencniiccrencnnee. 182
. 6.17 Deflection Due to Instantaneous, Time-Dependent Effects, and L.L. .................. 183
. 6.18 Deflection Due to Instantaneous, Time-Dependent Effects, and L.L. .................. 184
. 6.19 Deflection Due to Instantaneous, Time-Dependent Effects, and L.L. .................. 185

. 6.20 Deflection Due to Instantaneous, Time-Dependent Effects, and L.L.

for 3 Different Span-to-Depth Ratios......ccccoccieeverneieirenniernrecerceeececeriereeeenae 186

vii



0.2 1 0 ettt e e e e s e s e s et s e s e e e e s eae e s an e e te s e e e es e ennaeae e ns 187
6.29 Deflection Due to Instantaneous, Time-Dependent Effects, and L.L. .................. 195
6.30 L0 ettt s e s e e s e s oo eeamean 196
6.32 Eccentricity Variation along the Span Due to Time-Dependent Effects............... 198
5.33 10 ottt ettt et ettt e st e e m e sa e e e s e st a e e ar s naae e 199
. 6.35 Eccentricity Variation with Time (Time-Dependent Effects) .........ccccocennnnnnn.o.... 201
. 6.36 Midspan Instantaneous and Time-Dependent Deflections.........cccceeecveececrnnnnnnnn. 202
. 6.37(a) Load versus Deflection for Beam of Span 10m......ccccccviiieviiiviciinieereneen. 203
. 6.37(b) Load versus Deflection for Beam of Span 10m........ccccooiiiiiiinnicinieeneen. 203
. 6.38 Moment-Deflection of the Beam (due to prestressing, self weight,
and time-dependent effectS) .....cuuuuiiriiciiiiieeecet et 204
- 6.39 Af,; vs. Deflection (Various Span-to-Depth Ratios) ..o 205
. 6.40(a) Distribution of Top and Bottom Stresses in Concrete Along the Span............. 206
. 6.40(b) Variation of Maximum Compressive Stress in Concrete with Time................. 206
. 6.41 Strain-Deflcction Relation at Deviator (due to time-dependent effects) ............... 207
. 6.42 Stress in External Tendons due to Live Loads ....c.ccccoviieiiiiinniciiiniiiciceencceenn. 207
. 6.43 Variations of the Stress in External Tendons With Different Spans..................... 208
. 6.44 Simple Beam Prestressed with internal unbonded Tendons
Tested by Harajli cocoeeveeeeeeiiiimiiiiiiciiiicee et ceneeeene 208
B.45 B0 -ttt ettt e e et e e e e e e e et e s et s et e e s e nt e s n s et e seneeeaans 209

. 6.48 Comparison Between the Current Study and Experimental

Work By Harajli.....ocoooiic e 212

viil



LIST OF TABLES

Page
Table 1: Values of Constants aand b in Equation 3.1 ..o, 25
Table 2: Relaxation Reduction CoeffiCient ), ......ccoooorriiiiiiiiereccecceeeeeecneees 52

ix



NOTATION

This is a list of symbols which are common in the thesis. All symbols are defined in the text

when they first appear or when they are used in equations.

A,B,and I

DS

{D’}, {D}

et

h,

[H]

ijm.n

Cross-section area of concrete element

Area, first moment, and moment of inertia of the transformed section
Cross-section area of prestressed tendon

Width of rectangular section or width of the flange of a T-section
Depth of compression zone in a fully cracked section
Displacement

Distance between extreme compressive fibre to the bottom reinforcement
layer

Vector of local and global displacements

Modulus of Elasticity

Force

Vector of nodal forces

Stress related to strength of concrete or steel

Flexibility matrix

Stress in prestressing tendon

Yielding strength of normal steel

Tensile strength of concrete

Height of cross-section

Notional member size

Transformation Matrix

Integers

Length of member

Bending moment, positive moment produces tension at the bottom fiber



N Normal force, positive when tensile

P Force

[S] Stiffness Matrix

s, Spacing between cracks

t Time or age

{7} Transformation matrix

T, Tension froce in stirrups

y Coordinate defining location of fibre or reinforcement layer, positive when down
o Modular ratio (ratio of steel modulus of elasticity to concrete modulus of elasticity)
Bc(2-1,) Function describes development of creep with time

By Function to account for the effect of relative humidity and member size on the

development of creep with time

A Increment

€ Normal strain, positive for elongation

n Dimensionless multiplier for calculation of time-dependent change in axial strain
c Normal stress, positive when tensile

T Instant of time

o(tt,) Creep coefficient of concrete

x(t.t,) Aging coeficient of concrete

Y Curvature, positive curvature corresponds to positive moment
{ } Braces indicate a vector, i.e. a matrix of one column

[ 1] A rectangular or square matrix

Subscripts

c Concrete

cs Shrinkage

ns Non-prestressing steel

O Reference point

0 Initial or instantaneous

x1



pPr
ps

Relaxation in prestressing steel
Prestressing steel

Steel

Unit force, unit displacement

Creep effect

xii



CHAPTER ONE

INTRODUCTION

1.1 Background

External prestressing technique uses tendons placed completely outside the
concrete section. The tendons are used to prestress the structural member longitudinally
and they generally represent a portion of the total reinforcement. External prestressing has
become a desirable tool for rehabilitation and strengthening existing structures which have
insufficient strength and/or excessive deflection and cracking. It is very advantageous in
cases where the foundations are fully loaded since external prestressing adds virtually no
extra weight to the structure, nor does it change its appearance. It is being increasingly used
in the newly erected structures as well, particularly bridges. In addition, some traditionally
prestressed bridges were built by incremental launching with the help of some temporary
external tendons to increase central prestress during launching without increasing the cross-
sectional weight. In the past few years, numerous prestressed concrete bridges have been
built in the United States of America and in France using external tendons. This technique
has been used recently in Belgium, Switzerland, Venezuela, Germany, and
Czechoslovakia. In the United States, the primary objective of the development of the
external prestressing technique is to reduce the cost through reducing the web thickness. In
France, external prestressing, developed under the influence of the government, is a way to
improve quality since it leads to a simple tendon lay-out, small construction deviators,

lower frictional losses, and improvement of concreting conditions by eliminating ducts



from webs.

Strengthening by external prestressing is aimed, generally, at reducing the stresses
in the reinforced concrete and hence allowing the structure to take over supplementary live
loads. The external unbonded tendons are supported at end anchorages, deviators or
saddles, and locations of angle changes (at high and low points of draped tendons). This

tendon layout is used whenever the profile of the tendons is to match the moment line.

1.2 Combination of Prestressed and Reinforced Concrete

When a combination of prestressed and nonprestressed reinforcement is
represented in a concrete member (partially prestressed concrete), the flexural strength is
essentially supplied by the tendons, with the nonprestressed steel playing a minor role. For
certain types of construction, a full combination of prestressed and reinforced concrete may
be the best design, making use of the advantages of both. Reinforced concrete has the
advantage of simplicity in construction and lower creep deflection. Prestressing controls
deflection and cracking.

Sorr;e structural elements will be best designed with a combination of reinforced
and prestressed concrete. One occasion for the use of this combination is the case of high
live-load to dead-load ratio, when prestressing alone may produce excessive camber.
Another is the case of high added dead load requiring prestressing in stages.

Nonprestressed steel does not act until the concrete cracks and it does not contribute
significantly toward the precracking strength. Hence, if cracking could result in a primary
or secondary failure, nonprestressed steel may be of no help. Consequently, external

prestressing will be helpful because corroded prestressing steel can be replaced.



1.3 General Overview of the Problem

Reinforced and prestressed concrete structures are designed to satisfy the
requirements of serviceability and safety. The serviceability and the safety requirements of
any structure is greatly affected by large deflections, excessive crack widths, and load.
Therefore to satisfy these requirements, accurate prediction of displacements, internal
forces, and deformations is necessary.

Analytical determination of the displacements, deformations, stresses, and internal
forces of reinforced and prestressed reinforced concrete structures throughout their load
histories is complicated by a number of factors which include nonhomogeneity of the
materials, cracking of the concrete under increasing load, nonlinear material properties of
the concrete, reinforcing steel and prestressing tendons, variation of concrete properties
with time, time-dependent concrete deformations due to creep and shrinkage, and
relaxation of the prestressing steel. Due to these difficulties, engineers in the past have been
relying on empirical formulas derived from numerous experiments for the analysis and
design of concrete structures. Several investigators have taken advantage of the digital
computers to develop analytical solutions for the behaviour of the concrete structures. The
present study is one of such continuing efforts and concerns with the flexural behaviour of
beams prestressed with unbonded internal or external tendons.

The analysis and design of structures with external tendons is conceptually different
from that of structures with internal unbonded tendons. The main difference in behaviour
between external and internal unbonded prestressing is the deflected shapes of the beam
and the tendons. The deflected shape of internal tendons follows the deflected shape of the

beam itself throughout the entire span; however, the deflection of external tendons is



restricted to the deflection of the beam at deviator locations and is different from the
deflection of the beam at all other locations. The deflected shape of the beam is nonlinear
while the deflected shape of the external tendons is rectilinear leading to changes in
eccentricity of the tendons between the points of anchorages and deviators. This is referred
to as "second-order effects”. Such effects may significantly affect the response of the
member and can be more significant in members having high span-to-depth ratios.

The external tendons are not bonded to the concrete or beam, hence the strain
compatibility is not applicable at critical and other sections. This makes the stress in the
external tendons dependent on the deformations of the whole member; therefore, member
dependent and not section dependent. Therefore, proper modeling of the overall beam

deformation becomes necessary.

1.4 Needs in The Research on Unbonded Prestressing

There are several research needs in the area of prestressed concrete involving the
use of external or internal unbonded tendons. These needs are due to the lack of simple and
rational analytical models that are necessary to describe the flexural behaviour of such
beams throughout their loading history up to and including the ultimate limit state.

First, several studies attempted to solve the problem of the ultimate limit state using
limited experimental test data and lower bound curve fitting. In most of these studies, an
equation for the prediction of the stress in the unbonded tendon f,; at ultimate was
proposed. Some of these equations were based on one type of loading, others were derived
based on one épan—to—depth ratio. In a recent study conducted by Naaman and Alkhairi

(1991), the authors showed that these equations tend to produce large scatter in the data



when plotted against the experimentally observed results. The scatter was attributed to the
failure to include important parameters that affect the value of f,;. These parameters
include the relative amount of prestressing and nonprestressing steel, member span-to-
depth ratio, type of loading, and the beam cross-section.

Second, predicting the complete response would require not only modeling the
flexural deformations, but also the effects of shear deformations on the stress increase Af,,,
which is known to be related to the span-to-depth ratio. It should be mentioned that research
has been undertaken to model the effect of shear deformations using empirical rather than
rational approaches, Harajli and Hijazi (1991).

Third, time-dependent material properties have been ignored in most of the
previous work. Elbadry and Ghali (1989) showed that time-dependent effects have proven
to be an important parameter in the flexural analysis for serviceability of concrete structures
with internal tendons. Therefore, there arises a need to account for the time-dependent
effects in the prediction of the flexural response of concrete members with external and/or

internal tendons.

1.5 Objectives

The main objective of this study is to develop a numerical model for the flexural
analysis of externally and/or internally unbonded prestressed reinforced concrete members
throughout their service load history as well as their elastic cracked, inelastic cracked, and
ultimate load histories. Another objective is to examine the effects of different design
parameters such as span-to-depth ratio and the eccentricity of the external tendons on the

flexural behaviour of prestressed concrete members. It is also the objective of this study to



account for the time-dependent effects of creep, shrinkage, and aging of concrete and
relaxation of prestressing steel. Shear deformations are also considered in this study for

noncracked homogeneous members.

1.6 Scope

The scope of this study will be limited to determining the strains, stresses,
displacements, internal forces in the constituent materials for all strength limit states using
the displacement method. The analysis will cover simply supported externally prestressed
reinforced concrete beams. The analysis will account for the various factors that affect the
serviceability and the ultimate limit states such as the time-dependent effects of creep and
shrinkage of concrete and relaxation of the prestressing steel, loading and prestressing, the
effects of the shear force on the flexural deformations, change in geometry and support
conditions, second-order effects due change in tendon eccentricity, span-to-depth ratios,
and yielding of the steel. Cracking and tension stiffening of concrete are also considered
since it is known from research that the neglect of tensile resistance of concrete, customary

in ultimate load calculations, leads to significantly underestimation of deflections.



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

One of the major problems associated with prestressed concrete structures is the
time-dependent loss of prestressing force due to creep and shrinkage of the concrete as
well as relaxation of the prestressing tendons. These phenomena can lead to time-
dependent deformations greatly in excess of the initial instantaneous elastic deformations
of the structure. It should thus be clear that for structures with long spans such as
segmental overhang bridges, these deformations may be very important, especially when
consideration is given to the fact that for these bridges the ends of adjacent cantilevers
should meet at the correct level, grade, and alignment. In addition, excessive deformations
can lead to violation of certain serviceability requirements and are objectionable from an
aesthetic point of view. External prestressing is aimed at reducing the stresses in the
reinforced concrete and hence allowing the structure to support supplementary live loads.
This aim may not be fulfilled if the time-dependent effects are not considered since they
tend to reduce the eccentricity of the external tendons. This will lead to a reduced flexural

rigidity and therefore lead to a reduced flexural strength of the structure.

2.2 Previous Work
The publications that deal with the topics of the long-time behaviour of prestressed

reinforced concrete structures and behaviour of structures with external and/or internal



unbonded tendons are limited in number. In the following sections the available literature,
both analytical and experimental investigations, that has a direct bearing on these topics is
briefly discussed.

The application of the finite element method for the analysis of concrete structures
including the time-dependent effects such as creep, shrinkage, and steel relaxation has
been made by a number of investigators. Selna (1967) analyzed planar reinforced concrete
frames including cracking, creep, and shrinkage by developing a time-dependent
constitutive relations based on linear visco-elasticity. Aas-Jacobsen (1973) studied slender
reinforced concrete frames including creep and geometric nonlinearity. Aldstedt (1975)
analyzed reinforced concrete frames, including the effects of bond slip, creep, and
geometric nonlinearity. Scanlon and Murray (1974) studied the time-depe-ndent deflection
of reinforced concrete slabs utilizing Selna’s formulation of creep. Rashid (1971) studied
two-dimensional problems in concrete creep including the effects of temperature on creep.
Sanduh et al (1967) analyzed plain concrete dams including the effects of creep and
temperature.

In his book on the limit state design of prestressed concrete structures, Guyon
(1960) described the design considerations involved in the design of cantilevered
prestressed concrete bridges built in segments.

The long-time behaviour of four prestressed concrete bridges, built by the
cantilever method in conjunction with a cast-in-situ technique, was studied by Keijer
(1984). For all these bridges, adjacent cantilevers were connected at midspan by means of
hinges. Comparison of the results of an extensive parametric study with measurements of

the vertical deflections of these structures yielded the following conclusion: Concrete



creep had a dominating influence on the deformations of this type of bridges.
Consequently, the creep coeéﬁcient as well as the functional form expressing the creep-
time relationship was of prime importance in predicting the long-time deformations. A
logarithmic creep-time relationship yielded satisfactdry agreement between the calculated
and the observed defiections.

The shrinkage and creep strains in a prestressed cantilever bridge over the Oise
River, in France, were studied by Belmain and Le Bourdelles (1979). According to Danon
(1980) that work was primarily aimed at assessing the accuracy of the recommendations
of the C.E.B and the French Code in predicting creep and shrinkage.

Ghali et al. (1974) presented at step-by-step procedure to calculate the prestress
loss and deformations in multistage prestressed girders. The procedure accounted for
effect of elastic and creep recoveries on the prestress loss, as well as the prediction of
intrinsic relaxation of the prestressing steel reinforcement due to the varying strain.

An in depth study of the various parameters that affect the time-dependent
behaviour of prestressed concrete bridges built by the cantilever method was conducted by
Branson and Christian (1971). During the course of that work, a computer program
capable of predicting the time-dependent stresses, strains, loss of prestress, and deflections
of a segmentally constructed prestressed cantilever bridge was developed.

A computer program capable of analyzing curved segmentally erected concrete
box-girder bridges, was developed by Van Zyle and Scordelis (1978). In that work the
time-dependent properties of concrete and steel were considered. The stiffness method

was used, in conjunction with skew-ended finite elements with eight degrees of freedom at

each of the two end nodes, to perform the analysis.



A procedure for the analysis of time-dependent effects in prestressed concrete
structures constructed in stages was developed and implemented in a computer program
by Khalil (1979). Special attention was paid to the analysis of prestressed concrete cable-
stayed systems. Structural concrete members with up to three‘ different concrete layers,
each having different time-dependent properties, were included. The stiffness method was
used in conjunction with the tangent stiffness method to account for the geometric
nonlinearities.

It should be noted that none of the above references presented a work on the
externally and/or internally unbonded prestressed reinforced concrete members, nor did
they present any significant comparisons between the analytical and experimental data.

Several ihvestigations have been carried out on externally prestressed reinforced
concrete members. The most recent ones are discussed briefly.

El-Habr (1988) developed a finite element model to predict the nonlinear
behaviour of segmental externally prestressed bridge girders. In that model, the joint
stiffness was determined from a parametric study to avoid an ill-conditioned stiffness
matrix or an oscillatory solution.

Naaman (1985, 1990, 1992) and Naaman and Alkhairi (1991) have proposed a
simplified methodology to compute the stress in unbonded internal tendons of flexural
concrete members in the elastic uncracked and cracked range as well as the ultimate or the
nominal resistance. The methodology applies to simply supported beams with a
symmetrical tendon profile. This methodology introduces the strain reduction coefficients
to provide the necessary correlation between member behaviour and the section

behaviour, neglecting the effects of diagonal shear cracking and eccentricity variations
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(second-order effects). Using the strain reduction coefficients, the analysis of a beam with
unbonded tendons is converted to the analysis of a beam with bonded tendons, hence
allowing a conventional sectional (fictitious section) analysis to be performed. It should be
noted that in the case of elastic cracked range, the strain reduction coefficients are used
when only one crack has formed in the beam.

The earliest published application of the finite element method to reinforced
concrete structures was by Ngo and Scordelis (1967, 1970) at the University of California,
Berkeley in 1967. Simple beams were analyzed in which concrete and steel
reinforcements were presented by constant strain triangular elements, and special bond
link elements were used to connect the steel to the concrete. A linear elastic analysis was
performed on beams with predefined crack patterns to determine principal stresses in the
concrete, stresses in the steel reinforcement and bond stresses. Ngo, Scordelis and
Franklin (1970) used the same approach to study shear in beams with diagonal tension
cracks, considering the effects of stirrups, dowel shear, aggregate interlock and horizontal
splitting along reinforcement near the support.

Scordelis (1972, 1984) presented a comprehensive review of the application of the
finite element method for the analysis of reinforced concrete structures. He considered
plane stress systems, plate bending systems, combined plane stress and plate bending
systems, axisymmetric solid systems and general three dimensional solids for both short
and long-time loadings. Schnobrich (1974, 1976) and Wegner (1976) presented similar
surveys of the application of the finite element method for the study of reinforced concrete
structures.

Nilson (1968) introduced nonlinear material properties and nonlinear bond-slip

11



relationship into the analysis and used an incremental load method to account for these
nonlinearities. He analyzed concentric and eccentric reinforced tensile members by using
quadrilateral plane stress elements. Cracking was accounted for by stopping the solution
when an element indicated a tensile failure, and by redefining a new cracked structure.
Franklin (1970) used an iterative procedure with incremental loading technique to trace
the response of two dimensional system from initial loading to failure in one continuous
computer analysis.

Kang and Scordelis (1980) presented a method of accounting for both
nonlinearities of reinforced and prestressed concrete frames. Their method includes the
time-dependent effects due to load history, temperature history, creep, shrinkage, aging of
concrete, and préstress relaxation. The updated Lagrangian approach was used with load
incrementation to trace the behaviour of the structure.

Suidan and Schnobrich (1973) studied beams by using 20-node th;ee-dimensional
elements. Elastic-plastic concrete properties and the von Mises yield criterion were
utilized. Sarne (1975) analyzed prestressed concrete reactor vessels by using three-
dimensional isoparametric elements. He included the time-dependent effects and material
nonlinearity in his analysis. Prestressed concrete reactor vessels were analyzed by Rashid
(1968), and Wahl and Kasiba (1969) by utilizing axisymmetric elements. Further
developments in the analysis of reactor vessels were presented by Zienkiewicz et al.
(1977), Argyris et al. (1973), and Connor and Sarme (1975).

Harajli (1990, 1993) presented a theoretical model for the evaluation of the

influence of the member span-to-depth ratio on the predicted f,; of unbonded prestressed

concrete members at their nominal flexural strength. Strain compatibility approach was
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used to compute the prestress f,;. The simply supported unbonded beam was loaded by
two equal concentrated loads separated by a given distance. The actual and idealized
curvature distribution along the length of the beam were developed at the nominal flexural
strength. In this strain compatibility approach, three major simplifying assumptions are
adopted: 1) linear strain distribution between the concrete and the ordinary steel which
implies that the total elongation of the prestfessing steel between anchorage ends can be
determined from the conventional curvature distribution along the beam length. This
follows from the experimental observation by Mattock, Yamazaki, and Kattula (1971). 2)
The total elongation of the prestressing steel between the anchorage ends is due mainly to
the plastic deformation occurring in the plastic regions. That is the contribution of the
curvature distribution between zero and yield to the total elongation of the tendon is
neglected. 3) At the nominal flexural strength of the beam the stress in the unbonded
tendons is constant along the length, that is the frictional forces are neglected. Taking the
ultimate concrete compressive strain at the beam top fibre according to the ACI Building
Code (1983) and using assumptions 1 and 2, the total increase in the tendon elongation
between the anchorages and the strain increase in the tendon could be derived. The
location of the neutral axis could then be derived and finally the force equilibrium at the
critical section yielded an equation for the prestress f,; from the general compatibility
equation. It was found that increasing span-to-depth ratio reduced the predicted f, in
magnitude. Beams loaded with single concentrated load encountered the highest reduction
in f,¢ with increasing span-to-depth ratio. It was also noted that proposed equation for f,
is excessively conservative for simply supported beams loaded other than with single

concentrated load.
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Tan and Naaman (1993) have proposed a model based on the strut-and-tie method
to predict the strength of a simply supported beam, externally prestressed with tendons
having a single draping point and subjected to a concentrated load at midspan. In this
study the beam is divided into B- and D-regions. The B-regions are those in which the
strain distribution is reasonably linear across the depth of the cross section. In the D-
regions the strain distribution is significantly non-linear over the section. The failure of the
beam in the D-region directly under the load is investigated in this study. The analysis of
the midspan section uses the classical beam theory (compatibility theory) which may not
be strictly correct as the midspan section lies within the D- region below the concentrated
load. This ambiguity is deemed to cause some error, as confirmed later in comparing the
model with available test data.

Muller and Gauthier (1989) developed a finite element computer program for the
ultimate response of simply supported and continuous beams with external tendons. Their
model requires information regarding the moment versus rotation relationship.

Alkhairi and Naaman (1993) developed a nonlinear analytical model for the
prediction of the complete response of beams prestressed with unbonded tendons. Their
mode] takes into account material nonlinearity, span-to-depth ratios, and eccentricity
variations in external tendons. However, their model is applied only for simply supported
beams and does not accept segmental construction.

A series of reports, published by the University of Texas at Austin, USA, on the
research undertaken by Brown, Burns, and Breen (1974), covered problems related to
segmental cantilever bridges. These reports summarized design procedures and criteria

and investigated construction problems. A very powerful product of the research effort
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was a computerized incremental analysis procedure for segmental construction. The
program was verified by Kashima and Breen (1975) who built and tested a model of the
Corpus Christi bridge constructed in Texas, USA. Time-dependent deformations were not
included in this investigation.

Van Zyl and Scordelis (1978) developed a program for the analysis of curved
segmentally erected prestressed concrete box-girder bridges. The structure is idealized as
a series of skew-ended box-girder finite element developed by Bazant and EIl-Nimeri
(1973). Such approach eliminates the need for storing the entire stress history and requires
the stress information only in the interval preceding the one under consideration.

Khalil (1979) has developed a computer program for the time-dependent analysis
of prestressed concrete cable-stayed bridges and other framed structures built in stages.
Creep is considered to consist of recoverable and irrecoverable components and a
Dirichlet series is used to express the creep function of each of the two components.

Several researchers (1985, 1989) discussed the analysis of prestressed bridges.
Detailed comparisons were made between the computed response and that measured in an
actual structure made of precast segments. Good agreement was found, but the time-
dependent effects were minimum because of the advanced age of the segments. the
agreement was very sensitive to the material properties specified in the analysis.

Several other investigations on the behaviour of segmentally erected bridges
include those by Ketchum et al. (1986). These investigations were limited to the linear
stage of structural behaviour. No significant differences between them can be highlighted,
except for the one by Kim (1990) where a parabolistic study was conducted to predict

confidence limits for long-term deflections and internal forces.
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It should be noted that all of the above mentioned models do not consider time-
dependent effects, namely creep, shrinkage, aging of concrete, and relaxation of
prestressing tendons.

Several experimental studies have been carried out on externally/internally
unbonded prestressed reinforced concrete members. A few are discussed briefly.

Harajli (1993) examined the use of external prestressing as a means of
strengthening flexural members. He tested sixteen simply supported beam specimens with
rectangular cross section. All specimens were loaded in four-point bending using two
symmetrical concentrated loads applied at one-third the span length. To simulate actual
conditions of concrete flexural members, large fatigue deformation were induced in the
specimens by cyclic loading before external prestressing was applied. The specimens were
subjected to 5 to 10 thousand cycles of large amplitude fatigue loading at a constant load
range. The load range varied between minimum load P;, and maximum load P,,, equal
to 30 and 80 percent, respectively, of the calculated ultimate flexural load resistance of the
specimens. At the end of cyclic fatigue loading the specimens were externally prestressed
while loaded with P;, and then subjected to monotonically increasing load to failure.
Test results showed that as a result of éxtemal prestressing, the nominal flexural strengths
of the beams were increased up to 146 percent without significant reduction in ductility
and the induced fatigue deflections were reduced by up to 75 percent. He showed that
external tendons using a draped profile were relatively more effective in increasing the
flexural strength than tendons with straight profile. The stress ranges and mean stress
levels in the internal bonded tension reinforcement decreased considerably leading to

improvement in the fatigue life of the strengthened beams.

16



Harajli and Kanj (1991) tested 26 simply supported concrete beams with
rectangular sections prestressed with unbonded tendons and reinforced with and without
ordinary reinforcing steel to study the effects of several parameters on the magnitude of
stress in the prestressing steel fps. These parameters included three different contents of
tension reinforcing (reinforcing index), two different amounts of ordinary reinforcing steel
relative to the prestressing steel (fully prestressed and partially prestressed), and three
different member span-to-depth ratios (20, 13, and 8). For each set of input parameters,
two beams were tested, one beam under single concentrated load at midspan, and the other
beam under two symmetrical third-point loads. The stresses in the prestressing steel and
the. ordinary steel were measured using the electrical resistance gages attached to the
surface of the wires and reinforcing bars at midspan location. The average strain in the
prestressing steel was also measured from the elongation of the tendons between the
anchorage ends. The corresponding tendon elongation was measured using a wire
transducer LVDT attached on either side of the beam and at the same level as the
prestressing steel. The results of their tests seemed to indicate that the type of load
application has no significant influence on f,;. The results showed that Af,; for members
tested under single concentrated load‘;are of the same order of magnitude as the members
tested under two third-point loads. The result of this investigation are in contradiction with
the analytical observations made earlier by the writers and by Loov (1987) where beams
loaded under single concentrated load reported to mobilize the least Af,; at nominal
flexural resistance of unbonded members.

Saeki, Horiguchi, and Hata (1980) conducted an experimental study on the plastic

deformation properties of rectangular and T-sectional beams strengthened by externally
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prestressed cables to increase the ultimate shear and flexural strengths. The external
prestressing was applied after repair of cracks. Saeki et al. (1980) examined the effects of
the effective prestress level of the external cables on the plastic deformation capacity of
the beams. They found that the behaviour of the beams could be ductile when the initial
prestress was controlled at a reasonable stress level. They also compared the experimental
results of the ultimate strength and deformation with the numerical values obtained based
on Pannel’s analysis (1977). The comparison was used in modifying the effective depth of
external cable at failure.

Seible et al. (1990) conducted tests on four concrete beams pretensioned with steel
strand and strengthened externally by external post-tensioned tendons. The beams were
tested under four point loading. The external tendons were harped at two points below the
point of application of the loads at an angle of 4.8 degrees at each point. The test results
showed that the average strength increase of the strengthened members was 115% for the
beams with single strand and 46% for beams with double steel strands. Midspan
deflections at the ultimate load for the strengthened beams were approximately 60% of the
corresponding beam deflection. All beam failures were due to the crushing of the concrete.

Burns, Helwig, Tsujimoto (1991) monitored the change in the prestressing force in
the internal unbonded tendons of a post-tensioned continuous beam. Their study was
limited to the testing of two continuous post-tensioned beams with unbonded tendons. The
two specimens that were tested had rectangular cross sections and one with greater span/
depth ratio than the other (13.6, 17). The beams were continuous over two spans and
supported at the center by a knife edge and by two rollers at the exterior supports. Each

beam had one type of concrete, one type of reinforcing steel, and one type of prestressing
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strands. The prestressing force was monitored during post-tensioning and before and after
the service loads were applied. The tendon force was also monitored during overloading
and the ultimate stage of testing of the beams. It was observed that there was no significant
change in the tendon force under repeated service loads up to the 12 jji compressive
stress level (extreme fiber of the critical section). During single-span overloads, the
tendons slipped into the loaded span which caused the tendons stress to decrease on the
end of the beam with the loaded span and to increase on the end with the unloaded span.
During two-span overloads, the tendon did not experience a significant change in the |
distribution of stress. They also observed that for a given deflection, the increase in tendon
stress for a beam with severe drape is larger than the corresponding increase experienced
by a beam with a less severe drape.

It should be noted that all of the above mentioned experiments do not consider the
time-dependent effects. They are also restricted to one type of concrete and one or two
types of loads.

All of the literature cited above lack the nonlinear analysis of prestressed
reinforced concrete members considering 1) the time-dependent effects of creep and
shrinkage of concrete and relaxation of prestressing tendons, 2) the external/internal
unbonded tendons, 3) the shear deformations, and 4) the comparison of the analytical data
combining 1, 2, and 3 with available experimental observations. It can also be seen form
the above literature that two important factors that affect the behaviour of the prestressed
concrete structures, namely, the partial prestressing ratio and the span-to-depth ratio of
concrete members, were not considered in previous research. Therefore as part of the

present research, an investigation has been conducted into the effects of these two
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important parameters on the behaviour of prestressed reinforced concrete members.
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CHAPTER THREE

BASIC MATERIAL PROPERTIES

3.1 Introduction

Any structural analysis basically invoives the simultaneous satisfaction of the
equations of equilibrium, compatibility relations, and constitutive relations. The equations
of equilibrium and the compatibility relations do not involve the material properties. The
constitutive relations, on the other hand, relate the stresses to strains and are consequently
dependent on the material properties. The material behaviour of the concrete is strongly
time-dependent. Thus, for the overall structural analysis to be adequate, it is essential that
the instantaneous as well as the time-dependent material properties of the concrete and
steel be estimated reasonably accurately. Reinforcing and prestressing steel are considered
homogeneous materials and their properties are generally well defined. On the other hand.
concrete is a composite material of complex nature and its properties depend on many
variables, 1.e. water/cement ratio, aggregates, cement type, humidity, curing, age, time,
and therefore very difficult to define accurately.

Both concrete and steel exhibit various nonlinear material properties. The stress-
strain relation of concrete is not only nonlinear, but also differs in compression and tension
due to the microcracks in the transition zone between the aggregates and the hydrated
cement paste. Tensile cracking is one of the most important factor which contributes to the
nonlinear behaviour of reinforced concrete structures. Reinforcing steel generally exhibits

symmetrical stress-strain relation in tension and compression and its properties are
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generally independent of time. Prestressing steel is used exclusively in tension and its
stress-strain relation is also nonlinear and its shape is different from that for the
reinforcing steel. If a tendon is subjected to a stress of 0.5-0.8 its ultimate strength, the
stress will decrease gradually with time due to relaxation. This relaxation in tension is of
concern in calculation of the time-dependent prestress loss and the associated
deformations. Concrete is unique among structural materials in that it experiences
complex physical and chemical changes (creep and shrinkage) over time, which result in
properties and deformations that are time-dependent. The characteristics of bond between
steel and concrete is of fundamental importance to the behaviour of many reinforced
concrete structures whose stiffnesses are directly related to the bond characteristics. In this
study, it is assumed that perfect bond exists between concrete and reinforcing steel and
concrete and prestressing steel in bonded prestressed concrete members after the transfer
of prestress as in pre-tensioned and post-tensioned beams. For post-tensioned unbonded
beams in which the tendons are not bonded to the concrete, an iterative method with
gradual convergence to the solution, is utilized.

Predicted stresses and deformations in a structure can be considerably in error if
the effects of creep and shrinkage of concrete and relaxation of steel are neglected. For the
analysis of time-dependent stresses and deformations, it is necessary to employ time
functions for strain or stress in the materials involved. Analytical expressions for the
prediction of the magnitude of the concrete and steel properties are given in the

subsequent sections.



3.2 Concrete

The variation with time of properties such as the concrete strength, its modulus of
elasticity, and creep and shrinkage properties as influenced by the concrete mix, the size
and shape of the concrete member, the age at first loading and the duration of load and the
humidity and temperature of the surrounding atmosphere. The development of
prestressing steel relaxation with time is also required. Reliable methods and equations for
prediction of the aforementioned properties of concrete and prestressed steel are available
in the literature and are suitable for incorporation in computer programs for the required
analysis. The most commonly used sources for prediction of these properties are the CEB-

FIP Model Code (1990) and the ACI Committee 209 recommendations (1992).

3.2.1 Instantaneous and Long-Term Strains

One of the most important assumptions in studying the deformations of concrete is
the total strain of concrete at any time may be composed of strains caused by different
phenomena. Davis and Davis (1930, 1937), Glanville (1930), and Troxell et al. (1958)
provided the experimental verification of this commonly accepted assumption in their
studies of creep and shrinkage of concrete. This assumption is used by many investigators
to study the behaviour of concrete structures.

For the present investigation, the total strain €(f) at any time is assumed to be
composed of two components: instantaneous strain and time-dependent strain. The
instantaneous strain is caused by a short time loading while the time dependent strain is of

two types: creep which is stress-dependent and shrinkage which is stress-independent.
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3.2.2 Concrete Properties

Material parameters can be estimated by using empirical expressions derived from
experimental observations and from data available in literature. The ACI Committee 209
(1992) has proposed approximate equations for predicting the variation over time of the
concrete properties from data related to variables such as the composition mix, the
member size, and the environmental conditions. The European practice embodied in the
CEB-FIP Model Code for concrete structures, 1990 (MC-90) uses tables and graphs for
the same purpose, based on the method developed by Risch, Jungwirth, and Hilsdraf
(1973). The recommendations of both the ACI Committee 209 and the CEB-FIP Code
have been widely applied in bridge desigzn.

3.2.2.1 Compressive strength

The compressive strength of concrete is one of its important properties. Many
other properties such as the modulus of elasticity and the tensile strength can be
approximately related to the compressive strength which is influenced by many factors,
among which the water/cement ratio, mix proportions, size of aggregates, admixtures,
type of cement, curing and ambient conditions and the age of concrete are often
mentioned.

For an estimate of the compressive strength, f.’(¢), at any time f, the ACI

Committee 209 (1982) recommends the following equation:

t
(28 3.1
a+btfc( ) ( :

£ =

where f.’(28) is the strength at the age of 28 days, ¢ is the time in days after casting of
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concrete, and a and b are constants. The values of @ and b depend on the type of cement and

the curing conditions, see the following table:

Table 1: Values of Constants a and b in Equation 3.1

Cement Curing a b
type* Condition
I Moist 4.00 0.85
Steam 1.00 0.95
I Moist 3.30 0.92
Steam 0.70 0.98

* Type I is normal cement, Type III is high-early strength cement.

According to the CEB-FIP Model Code (1978), the variation of the compressive
strength with time is as shown in Fig. 3.3. This graph is for concrete of normal cement and
moist cured up to an age of 7 days at approximately 20°C znd for the influence of different

types of cement, the actual age of concrete must be adjusted as follows:

kce
r = %Z[(T+IO)AT] (3.2)

In this formula, T is the average ambient temperature (in °C) and AT is the number
of days during which the average ambient temperature is 7. The coefficient k., depends on
the type of cement and assumes the following values:

k., =1 for normal or slow-hardening cements;
k.. = 2 for rapid-hardening cements;

k

-« = 3 for rapid-hardening high strength cements.
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An expression reported by Ghali and Favre (1986) to approximate the graph in Fig.

3.3 and another expression by Neville et al. (1983) and takes the form:

(3.3)

fo@ ( t )3/2
fJ(28)  1.276\4.2 +0.85¢

3.2.2.2 Modulus of Elasticity

The modulus of elasticity of concrete is defined as the ratio between the stress and
strain in the elastic zone. It is dependent on several factors, notably the strength of
concrete and its age, the properties of the aggregates and cement, and the rate of load
application. Numerous empirical formula for the evaluation of E_ are available in the
literature (Aldstedt, 1975).
(a) ACI 318 (1989) Code:

The value of the modulus of elasticity is estimated by the ACI 318(1989) Code

equation:

1.5 ,
ch»vc 33 /fc (3.4)
where E. (psi) and f’. (psi) are the modulus of elasticity of concrete and its specified
compressive strength; w. (Ib per cu ft) is the unit weight of concrete. For normal weight

concrete, E. (psi) may be taken as 57000 f'c. Equation (3.4) may be rewritten using SI

with E. (MPa), and f’,. (MPa) and w, (kg/m3); the corresponding value of E, (MPa) for

normal weight concrete is 4730 [ f‘c (MPa).



Equation (3.4) or (3.5) gives the secant modulus of elasticity, which is the slope of
the secant drawn from the origin to a point corresponding to 0.40f’. on the stress-strain
curve.

Use of Equation (3.4) or (3.5) will overestimate E. when f”, is higher than 6000 psi

(40 MPa), in which case the following equation is suggested for normal weight concrete:

, 6 .
Ec = 40000 /fc+ 10 psi

E_ = 3300/ + 7000MPa
C fC (3 . 6)

(b) CEB-FIP Model Code 1990 (MC-90):
The modulus of elasticity of concrete, E.(28) (MPa), at age 28 days, for normal-

weight concrete can be estimated by:
1

3
EC(28) = 21500(fcm/f )" (MPa) (3.7)

cmo

where f_,,,, = |OMPa.
When the mean compressive strength f.,, MPa is not known, E.(28) may be
estimated from the characteristic compressive strength, f., (for MPa) at 28 days by the

equation:

1/3

E_(28) = 21500[(f, . +Af)/f,, ] (3.8)

cmo

where Af = 8 MPa.
Equations (3.7) and (3.8) apply when quartzie aggregates are used. For other

aggregates, multiply by a factor varying between 0.7 and 1.2. Equations (3.9) and (3.10)



give the tangent modulus of elasticity, which is equal to the slope of the stress-strain
diagram at the origin. When the modulus of elasticity is for use in an elastic analysis,
without considering creep, the value of E_(28) should be reduced by a factor of 0.85 to
account for the quasi-instantaneous strain (Hognestad, 1951), which occurs shortly
(within one day) after loading.

The modulus of elasticity of concrete at age ¢ may be estimated by:

Ec(t) = BE(:)EC(zs) (3.9)
with
Bg = /Bcc(®) (3.10)
where |

Bcc(t) = exp[s(l — /28/¢)] (3.11)

with s being a coefficient depending on type of cement; s is equal to 0.2, 0.25, and 0.38,
respectively, for rapidly hardening high-strength cements, for normal and rapidly hardening

cements, and for slowly hardening cements.

3.2.2.3 Tensile Strength

Cracking is a major factor contributing to the nonlinear behaviour of reinforced
concrete structures with or without prestressing. The tensile strength of concrete can be
determined from a direct tension test. There are, however, some considerable experimental
difficulties in conducting such a test and the tensile strength is usually measured by

indirect tests such as flexural or cylinder splitting tests. The strength determined from



flexural test, usually referred to as the modulus of rupture, f,. is greater than the direct
tensile strength, f,, because of the biaxial compressive and tensile stresses.

A number of empirical expressions for predicting the tensile strength of concrete
have been suggested. The ACI Committee 209 (1982) recommends the following

equations. For the axial tensile strength,

f,., = 00069 [y £ (3.12)

and for the modulus of rupture,

f,=aff; (3.13)

where v, is in kg/m, f_,, f,» and f° . are in MPa and a = 0.62 for normal weight concrete and

0.47 for light weight concrete. The CEB-FIP Model Code (1978) suggests the following

expressions:

for = 03U,

_ 0.4
fr_ (O'6+%)fct cht
(3.14)

where h is the member depth in m.
3.2.3 Concrete Short-Time Deformations

As the stress is applied to the concrete an instantaneous strain will take place. The

stress-strain relation for the concrete is shown in Fig. 3.4(a).
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3.2.4 Concrete Long-Time Deformations, Creep and Shrinkage

Concrete exhibits two main phenomenon of volume change which may cause
stresses, cracking, or deflections. These are creep (or creep recovery) and shrinkage (or
swelling) and both are time-dependent phenomena. In short, both creep and shrinkage
strains in concrete are assumed to be related mainly to the removal of adsorbed water from
the hydrated cement paste. The difference is that in one case a sustained applied stress is
the driving force, creep, while in the other it is a differential relative humidity between the
concrete and the environment, shrinkage. Therefore, one of the most important
assumptions in studying the deformations of concrete is that the total uniaxial strain in
concrete under sustained stress at any time may be considered as being composed of

instantaneous strain and time-dependent strain.

3.2.4.1 Creep

Creep is defined as the increase in strain under a sustained stress, Fig. 3.1. After
the application of load the strain increases with time due to creep at a decreasing rate.
There are many factors influencing the creep of concrete, some of these factors are: 1) age
at loading, creep in a member loaded at an early age is higher than creep in a member
loaded at a later age, 2) intensity of stress, creep increases with an increase in applied
stress, 3) compressive strength, gain of strength with time causes decrease in creep, 4)
time under loading, longer time under loading causes higher creep, 5) member size, creep
decreases with an increase in the volume/surface' ratio, 6) aggregate content, creep
decreases with an increase in the modulus of elasticity of the aggregate, 7) relative

humidity, creep is higher for lower relative humidity, and 8) ambient temperature, creep
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increases proportionally to the temperature ranging from 10°C to 60°C (Johansen and
Best, 1962). A typical strain-time relationship for a specimen subjected to a sustained
stress (Fig. 3.1a) is shown in Fig. 3.1b.

The creep at time ¢ due to a stress 6.(¢,) applied at time ¢, is given by:

c.(t,)

(3.15)
E_(t,)

e (tt,) = 0(s,1,)

In this study, the creep at time ¢ due to a stress 6(t,) applied at time ¢, is expressed,

based on the stress-strain equation by Hognestad (1951), as follows:

l.7fc'(f0) I.7fc'(t0) 2 3_4fcv(t0)
e () | - t
follo) Solto) ei(to) oo
e(t) = . ¢(t’ to)
177 (3.16)
——
g,(1,)
and
_ € —E,(2,) o(t,)
g(tr) = (eo(to) +( 0.15 ) 1 —0.85(fc’(t0)) q)(t, to) (3.17)

where ¢(z,7,) is the creep coefficient, defined as the ratio of the creep during the period (-

t,) to the instantaneous strain at £,
The relationships recommended by the ACI Committee 209 and the CEB-FIP Code
for predicting the creep coefficient ¢ are briefly described below.
(a) ACI Committee 209 (1992):
For the prediction of the creep coefficient ¢ at any time ¢ for age at loading ¢,, the

ACI Committee 209 recommends the following equation to be used:
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(t—to)o'6

o(s, to) = ¢u (3.18)

0.6
10+ (2 - to)
where ¢ = d_)(too, to) is the ultimate creep coefficient defined as the ratio of creep after

a very long time (10 000 days) for age ¢, at loading. The value ¢, is given by:

q)u = 2.3576 (3.19)

where ¥, is a correction factor, the product of several multipliers depending upon ambient
relative humidity, average thickness of the member or its volume-to-surface ratio, and on
the temperature. For relative humidity of 40%, average thickness 6 in (0.15m) or volume-
to-surface ratio of 1.5 in and temperature 70 °F (21 °C), all the multipliers are equal to unity.

In this case, Y. may be calculated as a function of the age at loading #,:

—-0.118
Y. = 1.25t0

—0.094
1.113 t,

Ye (3.20)
These two equations are applicable for moist-cured concrete and for 1-3 days
steam-cured concrete, respectively. The two equations give Y. = 1.0 when #,=7 and 3
days, respectively.
(b) CEB-FIP Model Code 1990 (MC-90):
The creep coefficient ¢cgp adopted by MC-90 is given as: ¢-gg = OB c(t - to)

where [, is a coefficient describing the development of creep with time after loading; ¢, is

a notional creep coefficient given by:
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0, = bpuB(for)Bt,)

1 — (RH/100)
by = 1+ 1/:
0.46(hy/ b ) (3.21)
where h s = 100mm.
5.3
B(fer) = (3.22)
fcm/fcmo

where f.,,=10MPa and f_,, (MPa) is the mean strength of concrete at age 28 days. The
value f,, may be estimated by: f em = fck + 8MPa, f (MPa) is characteristic
compressive strength of cylinders, 150 mm in diameter and 300 mm in height stored in

water at 20 °C, and tested at the age of 28 days.

1
B(r.) = —— (3.23)
° 0.1+t0'2

The symbol A, (mm) is the notional size 8f member defined by:

c
ho— — (3.24)

where A, and u are the area and perimeter in contact with the atmosphere of the cross-
section of the considered member.

Development of creep with time is expressed by:

_ 0.3
B(t—2,) = (B—t——i—} (3.25)

By (mm) is a function of the notional size h, (mm) and the relative humidity, RH (per cent):
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0.3
ref (3.26)

where f.o¢ = 100mm.

The CEB-FIP (1990) recommendations give additional functions to account for the
effect of both elevated and reduced temperature and the effect of the type of cement used.
When prevailing temperature is higher than 20° C, the effect of temperature on the
maturity of concrete is accounted for by using adjusted age fr in lieu of ¢, or ¢ in all the

equations presented above. The adjusted age is given by:

n

_ B 4000
tr = Z [Atiexp(13.65 AT T(ATS T(AT,-))] (3.27)

i=1

where Ay; is the number of days in which a temperature T(At¢;) prevails for period i.
For the effect of concrete type, the age of concrete at loading ¢,, should also be

adjusted and given by:

9 a
to =ty | ——5 +1 (3.28)
2+(t0'7-)

where ¢, 7 is the adjusted age of concrete according to Equation 3.27 and « is a coefficient
depending on the type of cement and equals to -1, 0, and 0.1 for slowly hardening cement,
for normally or rapid hardening cement, and for rapid hardening high strength cement

respectively.

3.2.4.2 Shrinkage

Shrinkage of concrete is defined as non-stress and non-thermal produced time-
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dependent volume change, Fig. 3.2. Shrinkage is generally considered to arise from loss of
water and volume changes or carbonation. Shrinkage is influenced by several factors. The
major factors are water/cement ratio, volume of cement, aggregate content, relative
humidity, ambient temperature, and member size. Shrinkage generally increases with the
increase of water/cement ratio, and decreases with the increase of aggregate volume, size
of the member, and ambient relative humidity.

A typical variation of shrinkage with time in an unloaded specimen is shown in
Fig. 3.2. As Fig. 3.2 indicates, the shrinkage strain, €.,(f) increases with time, with the
highest rate at early ages, and tends asymptotically towards a final maximum value called
ultimate shrinkage strain (€.;),. The shrinkage strain ecg(t) at any time t is generally related
to the ultimate shrinkage strain (g,,),, by a time function.

The recommendations of the ACI Committee 209 and of the CEB-FIP Code for
predicting the magnitude of shrinkage and its variation with time are summarized below.
(a) ACI Committee 209 (1992):

The free shrinkage which occurs between the end of the curing period, 7, and any

time f is given by:
(e c S) (3.29)
where a is a constant depending on the type of curing; a = 35 for moist-cured concrete and

a = 55 for steam-cured concrete; (€,),, is the ultimate free shrinkage occurring after a long

time (say 10 000 days) and is given by:

(2s), = ~780x10™°y__ (3.30)
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where ¥, is a correction factor, the product of a number of multipliers which depends upon
the same factors mentioned above for y,. The correction factor Y = 1.0 when the period of
initial moist curing is 7 days, the relative humidity of the ambient air is 40%, the average
thickness is 6 in (0.15 m) or the volume-to-surface ratio is 1.5 in.

The free shrinkage between any two ages t, and ¢ can be calculated as the

difference of shrinkage for the periods (¢, 7) and (z,, 7):

ecs(t, to) = scs(t, 7) —ecs(to, 7) (3.31)

(b) CEB-FIP Model Code 1990 (MC-90):
Shrinkage starts at time ¢ (days) when curing is stopped. On the other hand,
concrete immersed in water at time f starts to swell. The shrinkage or swelling at any time

t (days) may be estimated by:

B(r 2.) (3.32)

where B(z, £5) is a function describing the development of shrinkage/swelling with time,

given by:

t—t
B(r, ) = ( > J (3.33)
350(h0/href) +r—t

where h, (mm) is the notional size defined by Equation 3.24 and A_.; = 100mm. €, is the

notional shrinkage given by:

€cso T Ec(fcm)BRH (3.34)
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where

-6
ec(fcm) = 10 [160 + IOBSC(9——fcm/fcmo)] (3.35)

with B¢, equalling 4, 5, or 8, respectively, for slowly hardening céments, for normal or

rapidly hardening high-strength cements; f_,, = 10 MPa.

RH 3
- — S | — <
BRH I.SDI:I (100)] for 40% < RH < 99% (3.36)
ﬁRH = +0.25for RH 2> 99% (soaked in water). (3.37)

Positive Bry indicates swelling and RH (per cent) is relative humidity.

3.3 Steel Reinforcement

The properties of prestressed and nonprestressed steels that are of direct use in
design are the yield strength, f,, or f, and the modulus of elasticity, E,s or E,;. The tensile
strength, f,,, of the prestressed steel is also required in the design. The yield strength of
prestressing steel is usually in the range of 0.85-0.9 f,,,. The modulus of elasticity of the
nonprestressing steel varies little and is generally taken as 200 GPa for all steel types,
whereas for the prestressing steel, the modulus varies depending on the type of steel, e.g.

wires versus bars, and may be as low as 180 GPa.

3.3.1 Reinforcing Steel

The stress-strain relationship of structural steel is well established and easily
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reproducible. Structural steel has the same stress-strain relationship in compression and
tension. In general, the stress-strain curve exhibits a marked yield point, a plastic range,
and a strain hardening range which is sufficient to define its properties in the analysis of
reinforced concrete structures.

In this study, the model used is a bilinear relation as shown in Fig. 3.4 (b) and it is
the same for both tension and compression. Two different material states can be identified
in the stress-strain curve:

I- Linear elastic, stress and strain are proportional up to the yield stage: c.=F¢e
where E is the modulus of elasticity in the primary tension or compression.
Z- Yielded: o, = 0o, + Esh(es —€)

where E, is the strain hardening modulus after yielding, 6y and &, are yielding stress and

y

yielding strain respectively.

3.3.2 Prestressing Steel

Besides a large difference in the magnitude of the tensile strength, the stress-strain
curve of prestressing steel is different from that of reinforcing steel in that there is no
definite yield plateau for prestressing steel. To accommodate this different shape, the
stress-strain relationship given by Naaman (1990) is adopted for prestressing steel in this
study, Fig. 3.4 (c). Since prestressing steel is never subjected to compressive stress, the
compressive stress-strain is not considered.

An important characteristics of prestressed steel and which is of concem in the
analysis of the time-dependent behaviour is the relaxation in stress with time. Relaxation

is a phenomenon similar to creep and is defined as the decrease in stress with time under
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constant strain. Relaxation of prestressed steel is usually determined experimentally and it
is termed as intrinsic relaxation. Intrinsic relaxation increases quickly as the initial stress
in steel approaches its strength. The amount of intrinsic relaxation depends on the type of
steel, temperature, and on the initial stress level in steel. The PCI Committee on

Prestressed Losses (1975) recommends the following equation:

1 c)-pso t
Ac_(t,t ) = —-0 ( —0.55)log(—)
pr o k pso fpy to

Gpso
>
foy =00 (3.38)

where AG(t, 1,) is the intrinsic relaxation at time ¢ in a tendon initially tensioned at ¢, by

with

a stress Gp,q; the time here is in hours and ¢, is not less than 1 hour; Jpy s the yield strength
of steel; k is a constant depending oﬁ the type of steel (=10 and 45 for stress-relieved and
low-relaxation steels, respectively).

Another expression is suggested by Ghali and Trevino (1985) based on
experimental values given in CEB-FIP Model Code (1978) and the FIP report on

prestressing steel (1976). The expression can be written as:

o} 2
Ac_(t,t ) = —kn,c (Lm-—O.SSJ
r o t SO
14 P fpy
Shso
with P50 - 04
Py (3.39)

where & is a constant depending on the steel type (=1.5 and 2/3 for stress-relieved and low-
relaxation steels, respectively); 1, is a dimensionless coefficient depending on the length of

period (#-7,) and is given by is given by:
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t—t
= izn( %+ 1) for O0< (t—to) < 1000

: = 16" 10
0.2
n, = _____0_6 for 1000 <(r—r )<05x10
0.5x10
n, =1 for (t—t0)>0.5><106

(3.40)

In a prestressed concrete member, the prestressing steel commonly experiences a
constantly dropping level of stress and its length shortens continuously with time due o
the effects of creep and shrinkage of concrete. Thus, the actual relaxation is expected to be
smaller than the intrinsic value. Therefore, a reduced relaxation value should be used in
design. The reduced relaxation value to be used in the calculation of loss of prestress in

concrete structure can be expressed as (Ghali and Trevino, 1985):

Acpr = xrAcpr (3.41)

where AG,,, is the intrinsic relaxation and X, is a dimensionless coefficient given by:

X, = e(—6.7+5.32.)Q (3.42)

with A being the ratio of the initial stress, G,,,, in the tendon to its tensile strength, Jpu» and:

AG  —AG
Q = ps pr (3.43)

cypso

where AG,, is the change in the stress in the prestressing steel due to the combined effects
of creep, shrinkage, and relaxation, and AG),, is the intrinsic relaxation as would occur in a
constant-length relaxation test. The value of the total loss is not known as a priori because

it depends on the reduced relaxation. Iteration is required here: the total loss is calculated
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using an estimated value of the reduction factor, A, = 0.7.
The value of the , can be obtained form Table 2 or Fig. 3.5. The graph gives the
value of ¥, as a function of A, the ratio of the initial stress in the tendon to its tensile

strength.

3.4 Comparison Between Prediction Models

Fig. 3.6 and 3.7 show a comparison between the CEB-FIP and ACI prediction
models for elasticity modulus, creep coefficient, and shrinkage strain. The creep
coefficients plotted in Fig. 3.6 for ages at load application of 3, 28, 120, 365, and 1400
days. As Fig. 3.6 indicates, creep and shrinkage values estimated by the two models differ
considerably, particularly for concrete loaded at early ages. This difference can have a
significant effect on the analytical results of structures constructed in stages. Similar
observations were made by El-Badry and Ghali (1989) when comparing the CEB-FIP

(1978) model and ACI (1982) model.

3.5 Tension Stiffening Effects

Primary cracks develop when concrete reaches its tensile strength, In the presence
of reinforcing steel, the concrete between cracks is still capable of sustaining additional
tensile stresses due to the bond between steel and concrete. This phenomenon is known as
tension stiffening. As load is increased, the bond betwéen steel and concrete degenerates
until concrete can no longer sustain additional tensile stresses. Fig. 3.8 shows the stress
distribution in a uniaxial reinforced concrete specimen. At the crack locations the steel

resists the entire tensile force while concrete in tension is only effective between cracks.
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A method to account for tension stiffening used by Scanlon (1971) and modified
by Lin (1973) lumps the tension stiffening in concrete by including an unloading branch
for the concrete in tension. This is depicted graphically in Fig. 3.9a and 3.9b Another
method to include the effect of tension stiffening lumps the effect in steel. In this
approach, depicted in Fig. 3.9¢c, the stiffness of the steel is increased after cracking has
occurred. This was used by Van Greunen, (1979) and Chan (1982).

In the present study, the tension stiffening is include by a linear branch on the

tension side of the concrete stress-strain curve. This is depicted graphically in Fig. 3.9d.

3.6 Concrete Under Variable Stress

Creep of concrete under variable stress conditions makes the time-dependent
analysis more complex. Several approximate methods have been suggested to simplify the
analysis. The most commonly used methods are the effective modulus method by Faber
(1927), the rate of creep method by Glanville (1930), the method of superposition by
McHenry (1943), the rate of flow method by England and Illiston (1965) where creep was
divided first into three components, namely, elastic creep, delayed elastic and flow creep,
and Trost’s approach (1967) of strain history which was later modified by Bazant (1972)
in his method known as the “age-adjusted effective modulus method”. All methods are
based on the assumption that creep is proportional to the applied stress.

Among the various methods, the superposition of creep (the step-by-step method)
and the age-adjusted effective modulus method have been shown to predict creep of
concrete most closely. The two methods will be utilized in the analysis of time-dependent

stresses and strains; therefore, a brief discussion of them is given below.
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3.6.1 Step-by-Step Method

For the analysis under varying stress, numerical solutions are desirable. Step-by-
step method proved to be the most efficient. Such a procedure is completely general and
can be used with any creep function and any prescribed stress and strain relationship that
vary in an arbitrary fashion. The step-by-step analysis can be used to calculate the strain at
any time when the stress history is prescribed or to predict the stress if the variation of
strain is known.

Assume that the stress in concrete varies over a period of time between ¢, and ¢.
For the purpose of the analysis, the period (r-t,) is divided into a number of time intervals
whose length should increase with the age of concrete. For best results, under
continuously vafying stress, the time intervals Az; should be chosen such that their lengths
are approximately equal on the log-time scale (Bazant, 1972). Assume that the stress is
divided into increments introduced simultaneously at the middle of the intervals. Then the
strain at time f;,q 5 is expressed as:

‘. Ac;
j=1

where 7; is the middle of the interval j and Ag; is the stress increment applied at ¢;. Equation

3.44 can be written as:

i-1

Ac; Ac;
€ellivos) = gyl *+ 0isos D1+ 2 F (tj)[l + 0t 050 7))] (3.45)
c\'i o Ec
Thus, 4
8% = T8t 0s, tl.)(ec(’no.s)"zl Ec(t,-)[l +6(t; 05 1)1 (3.46)
. =
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which can be used when the strain history is known to determine the stress G(,,¢ s, at the end

of interval i form the stress increments calculated for all the previous intervals, noting that:

6.(2;+0.5) = 6.(t;-0.5) + Ac; (3.47)

where (£,-0.5) is the beginning of interval i. Successive applications of Equations 3.45 to 3.47
for each time interval gives the variation of the stress with time.

The step-by-step analysis just described has been the basis of a number of computer
programs developed by several researchers to study the behaviour of different structures
under the time-dependent effects of creep, shrinkage, and relaxation.

In this study the equations 3.44 to 3.47 are modified to accommodate for the material
nonlinearity in a manner similar to the modifications shown in equations 3.16 and 3.17, i.e.:

[1.7f(_:<z0>]_ (L?fc'(ro)Jz ) [3.4fc'(ro>]c(t |
{ so(to) 8o(to) 8§(to) °

. = 1+0(; L
€t 4 05) = 2, [1.7fc'(ta)J [1+0(; 0515

83.48)

j=1
2
ao(to)

and

i

€ — eo(to) c(to)
€(t; 0s5) = 2(80(2‘0)4-(—0-—15—-) l—m [L+0(; .05 tj)] (3.49)

Jj=

3.7 Nonlinear Problems
In reinforced concrete structures nonlinearities occur in two different forms. The first

is material or physical nonlinearity which results from nonlinear constitutive laws, cracking



of concrete, and/or yielding of steel. The second is geometric nonlinearity which derives
from large displacements or finite changes in the geometry of the deforming member due

to the presence of large axial forces.

3.8 Basic Nonlinear Solution Techniques
The solution of nonlinear problems is usually attempted by one of three basic
techniques: incremental or stepwise procedures, iterative or Newton methods, and step-
iterative or mixed procedures. The nonlinear equilibrium equation of a member is:
[SHD} = {F} (3.50)
where the nonlinearity occurs in the stiffness matrix [S], which is a function of nonlinear

material properties.

3.8.1 Incremental Techniques
The basis of the incremental or stepwise procédure is the subdivision of the load into a

number of load increments {AF},, {AF},...., {AF},. The total effective load is then given
by:

{F} = 2 {AF}i (3.51)

i=1
In general, these load increments need not be of equal magnitude. The load is
applied one increment at a time, and during the increment, the equations are assumed to be
linear. [S]; is assumed fixed throughout each increment but may take different values
during different load increments. The solution of the linear equations of the ith step of

loading is obtained as an increment of the displacement {AD}; where a fixed value of
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stiffness matrix [$];.; evaluated at the end of previous increment (i-1) is used:
[S1;_{AD}; = {AF},; (3.52)

and where [S], is the initial value of the stiffness matrix computed from the material

properties at the start of the loading (zero load). The total load and displacement vectors at

the end of the ith loading step is given by:

{F}i= Z{AF}j
=1

2, {aD};

j=1 (3.53)

{D};

These displacement increments are accumulated to give the total displacements at
any stage of loading, and the incremental process is repeated until the total load has been
reached. The incremental procedure approximates the nonlinear problem as a series of
linear problems so the nonlinearity is treated as piecewise linear. The procedure is
illustrated schematically in Fig. 3.10 where it can be seen that the results obtained in the
successive load steps tend to drift increasingly away from the true solution. To increase the

accuracy, smaller load increments may be used.

3.8.2 Iterative Techniques
In iterative techniques, the structure is fully loaded and iterations are performed
until equilibrium is satisfied to a certain degree of accuracy. In each iteration, equilibrium
is not necessarily satisfied since an approximated constant value of the stiffness matrix is

used. Therefore, the portion of the total load that is not balanced, which represents the
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discrepancy from equilibrium state, is equal to the difference between the external load and
the internal resisting load. After each iteration, the unbalanced load is used in the next
iteration to compute an additional increment of the displacements using Equation 3.53.
This process is repeated until the unbalanced load or the displacement increments are small
enough to ignore. The total displacement at the end of any iteration is given by Equation
3.52.

Based on the type of stiffness used in the iterations, the iterative techniques can be
classified into two methods: the rangent stiffness method and the initial stiffness method as
shown in Fig. 3.11. Use of the tangent stiffness method generally results in rapid
convergence to the true solution with 2 minimum number of iterations, but requires that the
stiffness matrix be updated in the solution of displacement increments in each iterations.
The initial stiffness method, on the other hand, requires the largest number of iterations but
has the advantage that the same stiffness matrix which was generated in the first iteration

can be used for all iterations.

3.8.3 Step-Iterative Techniques
The step(incremental)-iterative techniques utilize a combination of the incremental
and iterative techniques to achieve better accuracy. The total load is divided into
increments, and for each load increment one of the two iterative techniques is used to

perform the iterations. This technique is shown schematically in Fig. 3.12.

3.9 Convergence Criterion

In solving the nonlinear equilibrium equations by iterative methods, the

47



convergence at the end of an iteration can be measured by two criteria. The first criterion
is the magnitude by which equilibrium is violated. This can be measured by the magnitude
of the residual (unbalanced) forces. The second criterion is the accuracy of the total
displacements. This can be measured by the displacement increments.

For this study the displacement criterion is used as a primary convergence criterion.
But in order to check against equilibrium violation, the unbalanced force criterion is also
provided. Two kinds of displacement tolerances are provided for this study. The first is the
displacement ratio tolerance and the second is the displacement increment tolerance. A
displacement ratio is defined as the ratio between the displacement increment after any
iteration and the total displacement after the previous iteration.

In the first procedure, the maximum absolute displacement increments in the global
directions at all nodes are determined. In the second procedure, the maximum absolute
displacement ratios in the three global directions are determined.

If all components of the displacement increments or ratios are smaller than tolerable
value, then convergence is assumed to have occurred and no further iterations are
performed. Similar procedure is used in the case of unbalanced force convergence criterion
but the force ratios to be used in the second procedure are defined as the ratios of the
unbalanced forces after any iteration to the nodal forces applied at the first iteration. It is to
be noted that the second procedure is preferable to the first, since it is easier to specify
tolerable ratios of displacements or forces than to estimate their absolute values. In addition
to the convergence criteria previously described, a maximum number of iterations must
also be specified in the input data in order to terminate the iteration procedure in case the

specified convergence tolerances are too stringent.
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CHAPTER FOUR

SHEAR DEFORMATIONS

4.1. Introduction

Flexure and shear together lead to a biaxial state of stress. This state of stress will
produce principal stresses. Cracks will form when the principal tensile stress exceeds the
tensile strength of the concrete. The crack will form normal to the direction of the
principal tensile stress. In regions of large bending moments and small shear forces (or in
the absence of the shear forces), the principal stresses, which are due to flexure, are
parallel to the lQngitudinal axis of the member. The principal stresses at the extreme
tensile fibres are responsible for the initiation of flexural cracks perpendicular to the axis
of the member. In regions of high shear forces and small bending moments (or in the
absence of the bending moments), the principal stresses are inclined to the longitudinal
axis of the member. Hence the crack will form in the web and it will be inclined to the
member axis. In regions of high moments and high shear forces cracks usually start
approximately vertically into the beam due to flexure until a critical combination of
flexure and shear stresses develop near the interior end of the cracks. Inclined cracks then
develop as an extension of the vertical cracks. After cracking, the entire mechanism of
shear resistance is altered drastically and the contributions of the aggregate interlock,
dowel action, stirrups, and prestressing steel to the shear resistance of the beam have to be
considered. Therefore, when shear stresses are significant, their effects on the flexural

deformations must be taken into account.
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In this chapter, a simple methodology is described to include the shear effects in

the linear analysis of flexural behaviour of uncracked homogenous beams.

4.2. Axial and Flexure Deformation Analysis

The analysis of a reinforced concrete element subjected to axial and flexural loads
is founded on the basic assumption of plane sections: A cross section which was plane
prior to loading continues to be plane section under loads. This means that the axial, or
longitudinal, strains across the section are linearly proportional to the distance from the
neutral axis, or any other axis that passes through an arbitrarily chosen reference point
within the section. Therefore, the strain distribution can be defined by two variables, i.e.
strain at a reference point and curvature. The axial, or longitudinal, stress at any point,
which depends on the axial strain at that point, can be computed using the appropriate
constitutive relationship of the material. This analysis is used to find the internal forces.
namely axial load and bending moment, resulting from a particular axial strain
distribution. These loads are the stress resultants which can be determined by integrating

the stresses over the cross section.

4.3. Axial, Shear, and Flexure Deformation Analysis

In the previously mentioned analysis, the longitudinal stresses are the principal
stresses acting on the cross section. However, when there is a shearing force acting on the
section, the principal stresses are no longer parallel to the longitudinal axis of the beam
and are inclined to the member axis. The shear stress distribution over the section is not

uniform and therefore the principal tensile and compressive stresses change angle of
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inclination within the section. To incorporate the effects of shear in the analysis, few
models have been developed. The most commonly used models are briefly discussed in
the following sections; namely: the displaced bending moment diagram using Variable
Angle Truss Model which was proposed by Park and Paulay (1975), the Compression
Field Theory (CFT) developed by Mitchell and Collins (1974) and Collins and Mitchell
(1978, 1981), and the Modified Compression Field Theory (MCFT) introduced by Collins

and Mitchell (1985) and Vecchio and Collins (1986)
4.4. Models For Shear Effects

4.4.1 Variable Angle Truss Model

The Variable Angle Truss Model was first introduced by Ritter (1899) who showed
that reinforced concrete beam subjected to combined shear and flexure act like a truss with
concrete struts in compression and stirrups in tension. Later Morsh (1902) explained the
truss mechanism in more detail by implying that the shear is resisted by a continuous field
of concrete struts parallel to diagonal cracks, generally at 45° to the beam axis. The
flexural concrete compression zone and the flexural reinforcement form the top and
bottom chord of the truss. The stirrups form the tension members,l neglecting the concrete
in tension.

In 1910, the ACI Code adopted the 45° truss model with the assumption that a
portion of the total applied shear load is resisted by the tensile strength of the concrete

prior to cracking, Ve, while the remainder is resisted by the vertical stirrups, Vs, assuming
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that the cracks are inclined at a 45 degree. This model is still used in the current version of
the ACI Code with minor modifications.

Park and Paulay (1975) gave a rational methodology to incorporate the effects of
shear on the flexural deformations using the Variable Angle Truss Model. The authors
introduced the concept of the displaced bending moment diagram, where they proposed
that after the formation of diagonal cracks, the tension force in the flexural reinforcement
at sections away from the maximum moment becomes larger than that computed from the
bending moment diagram. This increase is largely dependent on the inclination of the
cracks, i.e. the inclination of the compressive struts. Based on the Variable Angle Truss
Model, Park and Paulay (1975) gave a detailed derivation of the moment increase due to
diagonal tensile cracking based on beam action with and without web reinforcement.
Figure 4.1 shows the additional moment due to shear for a simply supported beam
subjected to a concentrated load at midspan.

To account for the effect of concrete contribution on the force increase in the
flexural tensile reinforcement, Park and Pauly (1975) considered beam action of a beam
without web reinforcement in which diagonal cracks develop at an angle, o, to the
member axis, as shown in Figure 4.2. The moment equilibrium at sections 1 and 2,

requires that:

M, =Tjd = My+V_jdcotx “. 1
where M, is the moment at section 1, M5 is the moment at section 2, V,. is the shear force

resisted by the concrete, jd is the lever arm between the resultant compressive and tensile

forces, and « is the angle of the crack inclination. Solving for T:
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= — + V_cota 4.2)

=75 =7

this shows that the tension force at section 2, 7, is governed by the bending moment at
section 1.

Similarly, the tension induced in the flexural reinforcement by the forces
associated with a beam with web reinforcement is computed by referring to Figure 4.3.

From the equilibrium of force polygon for joint X, one obtains:

V, = Csina = T,sinp (4.3)

The spacing between stirrups, s, iS:

s = jd(cota + cotf) 4.4

Taking moment about the compressive force, C’, at section 1 gives the following relation:

(] (] - S -
M, =Vx=M,+V.cota = Tjd+§TSSII'lB 4.5)
where M’ is the moment at section I, M, is the moment at section 2, V; is the shear force
resisted by the stirrups, T" is the force in the tensile reinforcement, and T is the tensile

force in the stirrups.

Combining the two mechanisms of the concrete and stirrups at section 2:

V_t = V;+ VC
M, =M,+M, 4.6)
T, =T+T

The total tension force in the flexural reinforcement at section 2 is obtained as:
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MI VS
T = —+Vccota+?(cotoc—cotB)

X jd
M_ e,
T.t = j—d'*'zvx
where
i’ = cota—n(cota+cotB)
d 2
and
T] _ Y‘i = V_t_Vc
V., V.

4.7

(4.8)

(4.9)

It is evident from Equation (4.7) that after the formation of diagonal cracks, the

tension force T, in the flexural steel becomes greater than that required to resist the

external moment at that section.

4.4.2 Compression Field Theory

The compression field theory (CFT) developed by Mitchell and Collins (1974) can

be deployed to analyze a beam subjected to shear. In this approach, the shear stresses are

assumed to be distributed uniformly over an effective area of b, wide and d,, deep. The

direction of the principal compressive stresses is assumed constant over the entire cross

section as shown in Figure 4.4. The CFT also assumes that after cracking the concrete

carries no tension and the shear is carried by a field of diagonal compression with angle of

inclination to the longitudinal axis given by:
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E_—§&,
(tanB)” = £ 2 (4. 10)

t— €2

where

&, = longitudinal strain at mid-depth of the web, with tension being considered positive
g, = transverse strain, with tension being considered positive
€, = principal compressive strain, considered to be negative

From Mohr’s circle for strain, the principal tensile strain (Fig. 4.5) in the web is

determined as:

8[ = 8x+8"‘82 (4. 11)

and the shear strain in the web:

Y = 2(g,—¢&,)cotd “4.12)

If a symmetrically reinforced prestressed concrete beam is subjected to a shear
force V, CFT renders a total of five unknowns: the stress in the longitudinal bars, f,; the
stress in the longitudinal prestressing tendons, Jps the stress in the stirrups, f,, the diagonal
compressive stress in the concrete, f>; and the inclination, 6, of the diagonal compressive
stresses. These five unknowns can be solved by using three equilibrium equations, two
compatibility equations, and the constitutive relationships for the materials with reference
to Figure 4.5.

The compressive stress-strain relationship is usually defined from the response of a
standard concrete cylinder test. But due to the influence of shear and diagonal cracks, the

concrete becomes weaker and softer. The softening of the concrete in the web is accounted
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for using the suggested relationship developed by Vecchio and Collins (1986):
€, £5\2
f?. = mea.t[z(éT(;) —(e—’c) :I (4. 13)
where

meax - 1
f. ~ 08-034g,/¢,

<1.0 4. 14)

€', is the strain at the peak stress f’, from a standard concrete cylinder compression test

and is a negative quantity.

4.4.3 Modified Compression Field Theory -

The modified compression field theory (MCFT), developed by Vecchio and
Collins (1986), is basically the CFT but with some adjustments. These adjustments are
consideration of i) the contribution of the tensile stresses in the concrete between cracks
and i1) the contribution of aggregate interlock to shear transfer across the crack.

Vecchio and Collins (1986) recommended that the tensile strength of the cracked

concrete be evaluated using the following formula:

for

fl= —F=—
s /200g,

A more conservative expression for f; is used by Collins and Mitchell (1987):

(4.15)

o0 f .,

" 1+ ./500¢

where o and o, are factors accounting for the bond characteristics of the reinforcement

68



and the type of loading.‘ The CFT assumes that the shearing force is transmitted across the
crack solely by the reinforcement. In addition to the shear transfer due to the
reinforcement, the MCFT accounts for the shear transfer due to aggregate interlock on the
crack surface as shown in Figure 4.6. The maximum shear stress on the crack depends on
the crack width and the limiting value for the shear that can be transferred across the crack
as suggested by Collins and Mitchell (1987) is given by:

= M 4. 17)

et 24w
03+ a+16

where a is the maximum aggregate size. The above expression has been simplified from
the expression developed by Vecchio and Collins (1986). The crack width, w, can be taken

as the product of the principal tensile strain, €;, and the average spacing of the diagonal

cracks, s,,g, Fig. 4.7. Thus

W = €(5,.9 (4. 18)

The spacing of the inclined cracks will depend upon the crack control
characteristics of both the longitudinal and the transverse reinforcement. It is suggested by

Collins and Mitchell (1987) that this spacing be taken as:

1
Smo = (sine + cose)

Sm.r va

(4. 19)

where s, and s,,, are the crack spacing indicative of the crack control characteristics of
the longitudinal and transverse steel, respectively, see Figure 4.7. Neither s, or s,

should be taken less than 100 mm.
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4.5. Proposed Model to Include the Effects of Shear Deformations in Noncracked
Members
4.5.1 General Remarks

The axial and bending deformations are the most commonly considered
deformations in finding the deflections. An additional deflection is produced by the effects
of shear deformations. When shear deformations are large, their effects must be
considered when finding the deflections of the member.

The horizontal shear stresses along any fiber of homogeneous, isotropic, uncracked
beam with a rectangular cross section can be easily derived from considerations of internal
equilibrium of forces in the axial direction of a free body of an element of length dx, Fig.

4.8. The longitudinal shear stress is:

4 |
V= o (4. 20)
and
y=cC
0 = _[ ydA = %b(cz—ylz) (4.21)
y=Y1

where V is the total shear force applied at the section, Q is the first moment of area of the
segment of the cross-section at which the shear is sought, 7 is the second moment of inertia
of the entire cross-section about the neutral axis, and b is the width of the cross section at
which the shear is computed. The horizontal shear stress v is also the vertical shear stress,
because shear stresses on two perpendicular planes must be equal. Substituting Equation

(4.21) in Equation (4.20) leads to the following:
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(8l

Equation (4.22) shows that the distribution of shearing stresses in a rectangular
cross section is parabolic. As it can be seen from Figure 4.8, the shearing stresses are zero
at the top and bottom of the cross section (y = * ¢) edges and maximum at the neutral axis

(v = 0). The shear stress-strain relation for an isotropic material is:

‘Y = Gv (4. 23)

where 7 is the shear strain and G is the shear modulus.

Substituting Equation (4.22) into Equation (4.23) results in the following:

) e

Equation (4.24) indicates that the strains due to shearing stresses also change
parabolically over the depth of the section. Hence, the shear deformations of a member of
rectangular section cause an element of the member of length dx to be deformed as shown
in Figure 4.9. The cross sections will become distorted because the shear strains are zero
at the top and bottom of the section (y = + ¢) edges and maximum at distance y = 0. Lines
ab and ac in Figure 4.9(a) represents the neutral axis (y = 0) of the beam before and after
shear deformations have taken place, respectively, and the angle between them, Y,y is the
shear strain. If the vertical sides at points a and b are assumed to remain vertical at points a
and c, then the top and bottom edges of the member will be parallel to line ac. The
deformation of the element can be easily observed if the shear strain is considered at

different levels, y, along the depth and away from the neutral axis. At each level, the shear
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stress changes parabolically indicating that the shear strain is less than y,,,,. At the outer

edges, the shear strain is zero, and hence the edges are at right angles with the sides.

In structural analysis, it is common to consider an average shear stress acting upon
the cross section. Therefore, in the current study the shear strain of the a member will be,
approximately, considered constant along the depth of the cross section as shown in Figure

4.10. The shear strain is then equal to the average shear stress, v,,,, divided by the shear

modulus of elasticity, G:

ave

Y = é v 4. 25)
where

14
Vave = 7 (4. 26)

r

in which V/A, is the average shear stress obtained by dividing the applied shear force by

the reduced cross-sectional area of the member. The reduced area, A, is as follows:

4, =14
n

r

(4.27)
where A is the cross-sectional area under shear stresses and n is a constant (shear
coefficient), which is dependent on the shape of the cross section, to account for the use of
an average stress. For a rectangular cross section n = 1.2. Substituting Equation (4.27) in
Equation (4.26) and Equation (4.26) in Equation (4.25), we get:

nv
¥ =

= — .2
GA (4. 28)

For an idealized cracked section, the shear flow in the tension zone is constant and
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therefore the shear stress in the tension zone is:

|4
= — p
v b_jd 4. 29)

4.5.2 The Methodology
A differential element of length dx under the action of a pair of shear forces of
magnitude V will experience a shear strain, vy, and deforms as shown in Figure 4.10. The
coordinate x and y are the distance along the longitudinal axis of the member and y is the

deflection. The shear strain is the angle strain according to the following relationship:

=
Y= (4.30)

Substitution of Equation (4.30) into Equation (4.29) gives:

dy nV

—= = — 4.
dx GA (4.31)

Recognizing that the shear force varies throughout the length of the member and can be

expressed as a function V(x), Equation (4.31) becomes:

dy nV(x)
2= 4.32
dx GA ( )

Equation (4.32) allows the computation of the slope at any point in 2 member due
to a pure shear force. By integrating Equation (4.32), the deflection at any point in a

member can be calculated and as a result, the deflected shape of the member can be

obtained as follows:
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x=L

deflection =y= j ("gﬁ{t))d.t (4.33)

x=0

This deflected shape must be superimposed on that produced by any flexural
moments applied on the member.
Differentiation of Equation (4.33) once with respect to x, produces the following

relationship:

|<
8]

__n dV(x)
T GA dx (4.34)

o

dx

From general relationships among varying load, varying shear, and varying
flexural moment along the length of the member, it is known that:

dM(x) _
dx

dV(x) = w(x)
dx dx

V(x)

5 4. 35
_ d " M(x) ( )
- 2

where w(x) is the distributed load applied on the member.

Substitution of Equation (4.35) in Equation (4.34) and rearranging terms give:

[ﬁ} _n M) (4. 36)
shear

Equation (4.36) is the curvature of any section throughout the length of the
member due to pure shear.
It is also known that the curvature due to flexure is given by the following

differential equation:
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2

(d_yj - M(¥) 4. 37)

I EI
x flexure

For the shear deformations to be included in the analysis, the curvature given in
Equation (4.37) must be added to the curvature in Equation (4.36). Therefore the total

curvature with the shear deformations included is give by: ~

d* vy _|d 2 y d* y
2|2 T3
dx dx flexure dx shear

dy _ Mx) | n &M
o EI ~ GA 2

(4. 38)

For a rectangular cross section of a homogeneous elastic material subjected to a
normal force N at an arbitrary reference point and a bending moment M, the analysis can
be performed assuming that two parameters, €, and \, define the strain distribution over
the section. These two parameters are the longitudinal strain at the reference point and the

curvature, respectively. Therefore, the strain at any point in the section is:

€ = €,+ Yy (4. 39)
where v is the distance from the reference point to the point at which the strain is required.

Satisfying the equilibrium requirements for N and M in a linear analysis gives the

strain. €,, and the curvature, V, as:

_ —-BM+A M
- IN-BM . = " Cal (4. 40)
E(Aal - 32) E(Aal - Bz)

A,, B, and [ are the transformed area of the cross section under axial strain, its first and

second moments about an axis through the reference point. Equations (4.40) can be put in
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a matrix format as follows:

[ﬂ i E(—Aa;—__Bz—) [—B ;J Bﬂ (4. 41)

when shear deformations are included in the analysis, Equation (4.41), in accordance with

Equation (4.38), becomes:

I B 0 11 ¥
B M
[8"J =t nE(A I-BY || 2 (4.42)
a
V. E(AaI—BZ) B A, ——(pr— d;V[gx)
P

For a cracked section, the analysis is the same as before and Equation (4.42) can

still be used where now A,, B, and [ are the transformed area of the cracked cross section

under axial stresses, its first and second moments about an axis through the reference point

and A is the area of the cracked cross section under shear stresses.

4.6 Shear Stresses on a Trapezoidal Cross Section: Reduced Cross Sectional Area
Consider a cross section of trapezoidal shape subjected to nonlinear stress

distribution. The constitutive relationship of the material is given by:

2

- 0.85F 2e. (&,
f.=085f, Z— E—o (4.43)

where f'. is the compressive strength of concrete, €, is the strain at stress 0.85f°,

Hognestad (1951), and €, is the strain at any stress level f.. The horizontal shear stresses
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along any fiber of homogeneous, isotropic, uncracked beam with a trapezoidal cross
section can be easily derived from considerations of internal equilibrium of forces in the
axial direction of a free body of an element of length dx. The longitudinal shear stress is:

L7f.VQ(y)

= SEDG) (4. 44)

where E_ is the modulus of elasticity of concrete, Q(y) is the first moment of area of the

segment of the cross-section at which the shear is sought and it is a function of the cross
section depth (y), v is measured from any arbitrary reference point, b(y) is the width of the
cross section in terms of (y) where the shear stress is computed, and [ is the second
moment of inertia of the entire cross-section about an axis through the reference point.
O(). b(y), and I are given in the following formulae:

y=c¢c

Q = _[ydA (4. 45)

y=y

b b

r%_d (Cz B yz) B lg (Cz B y2)+ b_;f (Cz _ y2)+ Tl (C:; ~ y3)_ ?2 (63 B y3)}( 4. 46)

aul—

0 =

b(y) = é(bld—b[c+b2c+b1y—b2y) 4. 47)
3 3
bd™ (b -by)d dy? (bi—b, d\?
e T +d[b2(c_§) (255)e-9) (4. 48)

where b; and b, are the widths of the cross section at the top and bottom respectively, d is

the total depth of the cross section, and c is the depth of the reference point from the top.

From the shear strain energy for a differential element of length dl, the reduced
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area can be obtained as follows:

j L dl da
(4.49)
1 (v
AU = 3 J’ % dl b(y)dy
Substitution of Equation (4.44) into Equation (4.49) gives:
L7f.VO(®y)
4.50
ZGI(eEIb()) dl bly)dy (4.50)
and the total shear strain energy is:
[
AU = lj‘ V. @4.51)
2J) GA, )
0
Rearranging Equation (4.50):
L7f.0()
AU = I G[s E_Ib(y )) bly)dy di
4.52)
L7f.0y) ) 1
AU = 2.[ G( e EI J by DU

Comparing Equation (4.51) with Equation (4.52) will yield the reduced area as follows:

y=c 2
E I
4= | | e |20y @ 4.53)

77,00

=Y

where Q(¥), b(y), and [ are given in Equations (4.46), (4.47), and (4.48) respectively. For a

rectangular cross section, the reduced area A, is A/1.2 where A is the area of the cross

section.
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CHAPTER FIVE
NONLINEAR ANALYSIS OF PRESTRESSED REINFORCED

CONCRETE CROSS SECTIONS

5.1 Introduction

The stresses and deformations in a prestressed reinforced concfete member are
subject to change due to the changing level of loading and over a long period of time due
to creep and shrinkage of concrete and relaxation of prestressing steel. Therefore, the
knowledge of the stresses and strains in different sections along the prestressed concrete
member is important for the prediction of its behaviour. The cross sections commonly used
in prestressed concrete beams are the rectangle, the symmetrical I, the T, the inverted T,
and the box. Composite cross sections may also be used in prestressed reinforced beams
whose stem is precast and the top is a slab cast in place directly on the stem. If no temporary
intermediate support is furnished, the weight of both the slab and the stem will be carried
by the stem acting alone. After the slab concrete has hardened, the composite section will
carry live or additional dead load.

The cross-section of any reinforced or prestressed concrete frames or beams may
be cracked or uncracked depending on the amount of the reinforcing steei, prestressing
steel, and the level of loading. The cross sections considered are assumed to have one axis
of symmetry and subject to a bending moment and an axial force caused by prestressing or
the loading. Perfect bond is assumed between the concrete and the steel; thus at any fiber,

the strains in concrete and steel are equal. Plane sections are assumed to remain plane after
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deformations. Cracks in concrete occur when the stresses exceed the tensile strength of
concrete. The time-dependent properties of creep and shrinkage of concrete and relaxation
of prestressing steel result in loss and thus in time-dependent change of the resultant of
stresses on the cross section. Generally, the nonprestressing steel is present in the
prestressed section. The time dependent effect usually produce a reduction of tension in the
prestressed steel and of compression in the concrete and an increase of compression in the
nonprestressing steel. The concrete in the tension zone is considered while the tensile
stresses are less or equal to the tensile strength of concrete.

This chapter covers the nonlinear analysis of individual reinforced or prestressed
concrete sections by using the equilibrium conditions, compatibility conditions that define
the linear strain distribution, and the material stress-strain relationships described in
Chapter 3. The analysis gives the instantaneous and time-dependent changes in stresses and
strains between consecutive construction or loading stages. The results of this analysis of
the various cross sections of the member are used to determine the changes in the

displacements, reactions, and internal forces in statically indeterminate structures.

5.2 Stress Strain Relationship in Cross Section - Cross-Sectional Analysis

The cross-section of a partially prestressed reinforced concrete member is
composed of different materials and having one axis of symmetry along which the external
load is applied. The cross section may be composed of several concrete parts of different
types. The section may contain more than one layer of prestressed steel and more that one
layer of nonprestressed reinforcement. The concrete parts can be of réctangular or

trapezoidal shape as shown in Fig. 5.1. The cross section is considered to be constructed,
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prestressed, and loaded in stages, therefore, the period of the analysis is divided into time
intervals. The start of each interval coincides with the addition of a new part to the section
or with the app[icafion of loads or prestressing. Thus, at the time ¢;, the cross section is
assumed to be subjected to increments of a normal force and a bending moment of known
magnitude. During the interval i, further changes take place due to the time-dependent
effects of creep, shrinkage, and relaxation. The purpose of the analysis is to determine, for
each time interval, the instantaneous and time-dependent changes in stress in all concrete
parts and prestressing and nonprestressing steel layers.

To analyze any prestressed reinforced concrete cross section, the material
properties must be known: the moduli of elasticity of the prestressing and nonprestressing
steel, E,; and E,;, the modulus of elasticity of concrete, E, the creep and shrinkage
coefficients of concrete, ¢ and €, the tensile strength of concrete, f_,, and the intrinsic
relaxation of the prestressing steel, Ac,,. These properties can be computed using the
mathematical expressions in Chapter 2 based on the American and European practices.
Also needed for the analysis are the geometric properties of the section, the magnitude of
the internal forces (normal force and bending moment) due to the loads and the initial
prestressing force, and the locations of the prestressing and nonprestressing steel layers in
the cross section. For accurate description of the cross section geometry, any concrete
section of irregular shape can be divided into a set of rectangles and/or trapeziums for
which the dimensions are specified, Fig. 5.2.

In the analysis, the actual section is replaced by a transformed section for which the
actual area of any part / is replaced by a transformed area given by (E/E,pA; where E s

an arbitrary chosen value of a reference modulus of elasticity; E; is the modulus of elasticity
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of part i of the section. The member is thus considered to have a modulus of elasticity E,¢
and cross section properties equal to those of transformed section.

In any prestressed reinforced concrete sections, the reference modulus of elasticity
is taken equal to E., the modulus of elasticity of one of the parts, and the reinforcement
area, prestressing and nonprestressing, is replaced by o times the actual area, where o is
the modular ratio (ratio of the modulus of elasticity of steel to the modulus of elasticity of

concrete):

- Es(Eps’ Ens)

E_(t,) 5D

5.2.1 Concrete

Consider a cross section subjected to a normal force, N, at an arbitrary reference
point O and a bending moment, M, Fig. 5.3a. From the assumption that plane sections
remain plane after deformations, two parameters €,,rand y, (or curvature, the slope of the
strain diagram) can thus be used to find the strain distribution along the depth of the cross
section, Fig. 5.3b.

A tensile force, N, a tensile stress, G, and the corresponding strain, € are positive. A
bending moment, M is regarded as positive when producing tension at the bottom fiber.
Positive curvature is associated with a positive moment.

The y-coordinate defines the location of any fiber from an arbitrarily chosen
reference point O; y is positive for fibers below O. The symbol A indicates a change in
value, a positive A represent an increase. Thus, the free shrinkage, A, and the intrinsic

relaxation, AG,,, are always negative quantities.
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Consider a composite section made up of concrete parts of different properties and
reinforced with several layers of prestressing and nonprestressing steel. At the instance
which will be considered the start of any time interval 7, the cross section is subjected to
increments of normal force, AN, at a reference point and a bending moment increment, AM,
given by:

AN = ANextemal— sz (5.2)
AM = Alwe.tremal— ZPjypsj (5.3)

where {AN, AM}, ,..na1 T€PTESENt the change in internal forces due to external loads and the
statically indeterminate effects (if any) on the initial prestressing and other loading applied
at the instant considered, The symbol P refers to the absolute value of the prestressing force
just before transfer in pretensioned tendons, or the force after deducting the losses due to
friction and anchor set in post-tensioned tendons. The subscripts j refers to the jth tendon
prestressed at the instant considered and y,; is its distance from point O. After determining
the strain distribution, the symbols A, B, and / in the equations below are determined. These
symbols are the properties of the transformed section, whether cracked or uncracked.
Assuming the strain in the concrete varies linearly over the depth of the cross-
section, the strain ip the concrete at any level can be found in terms of the strain at a

reference point and the depth of the compression zone (or the curvature):

€& = eref( _)_}y;)

where

Yn = C_do
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For the nonlinear analysis, the parabolic and linear parts of the concrete
compression and the tensile stress-strain relations are given respectively as suggested by

Hognestad (1951), see Fig. 3.4 (a) and Fig. 5.4:

2e e \2
o, =085 fc[——e’ef -[S—CJ ] (5.4)
(2] 0
, € — &
G =085 fc[l -0.15%} (5.5)
cluU (0]
S, = Ecect (5.6)

substitution of the equation of the strain in Equations (5.2) yields to:

2¢ 2e .y 2
_ ref ref 1 2 2 (¥ 2 |y
C. = O.85f'c e ey - sref-zeref(v +8ref 3
o o' n £ -n y
o n
2 2 2
2e £ 2e 2e €
6 = (0.85F ) ref ref+ ref ““ref| refy2
c c I3 e2 2 €y 82 2
° o €o¥n on o'n

Similar substitution of the equation of the strain in Equations (5.3) and (5.4) will
yield the stress in terms of the reference strain and the depth of compression zone (or

curvature).

5.2.2 Steel

The strain in any steel layer whether it is normal steel or internal prestressing steel
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is computed in a manner similar to the concrete strain:

% c—d
s ref v, refl ¢ — do

where

Ys = ds_do

1) Normal Steel:

A rectilinear stress-strain relationship is used for the normal steel, see Fig. 3.4 (b):

Elastic range:

c_=Fg¢ (5.7)

Inelastic range:

o, = Gy + Eshes (5.8)

i) Prestressing steel:

The following stress-strain relationship given by Naaman (1990) is used:

E e

s, = Epep(Q+(l —Q)/[l +(ﬁ)~]w) (5.9)

where N, K, and Q are empirical parameters whose values are recommended by Naaman

(1990) as 6.06, 1.0325, and 0.00625 respectively, see Fig. 3.4 (c).

5.3 Computation of Internal Forces and Moments - Cross-Sectional Analysis
5.3.1 Concrete Compressive Force and Moment

The compressive force of the concrete is computed by integrating the compression
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stress block. For the parabolic part:

“n “n 2¢ e 2¢2 . 2¢ e
J‘ O'Cda - J‘ 0'85fc eref_ ref + 7ref_ - ;ef y €re fy da
_do _do o 80 So_vn o' n eoyn
Ya 2¢ £ 2 ¥n 9 82 2¢ 7 ¥n
I c.da = 085f, ref i;f J da + —-,,ref ref I yda - rej; vzda
80 e 8"y 82}«
—dﬂ o —dO o’ n o n_do
¥, ref E f zefef 28ref 8'2’ef
| o.da = 085f, A+ 5L S5
~d, ®o 8; €o¥n o¥n €¥n
(c-d,) 2 2 2
2¢ € 2e 2¢ €
I c.da = O_SS_f'C|:(_"_ef_ L?:)A +( _ ref refd JB - = ref 7[}
d, & & ec(c—d,) &(c=do))  eXc-d)’

Similarly, taking moment of the compressive force of the concrete about the

reference point, gives:

¥a ¥

. 2e g 2e2 . 2¢
I o.vda = j 0.85f [ aref rif [ 7ref . ;ef]y— ,,rf;y ]yda
-d, -d, 0 € oyn o-n 80}’,,

¥ ¥, v -’ ¥
. : 3 262, 2e e
.[chd“ = 085]"{( grEf ref] J. »da-f-[ ref _ = ;ef] f y da——L I) da:l
o n
0]

-d,, o € -d, oy n -d 8oy n-d,

¥a

2 2
€ 2e 2¢
[ o.vda = 085f [( e'ef ’ef]3+[ ref ’ele ’ef 5LV, (—d,,)“]]
4

= €
-d, © € 80y n o¥n 8 y

o’ n
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o 80

,  (-d)?
((c-—do)--—-——( o) ZD
(c-d,)

5.3.2 Steel Force and Moment

(e 2¢€ 82 782 2¢ 82
j G.vda = O.SSfC[(—e’el__’;_f.’]B,,_[ 2" ref -2 (“ :efc’i )]1_ re_gx
-d, g (c—d,) %o ¢—-a, g,

5.3.2.1 Normal Steel Layers Resultant Force and Moment
This force is obtained by summing up algebraically the forces in all the normal steel
layers:

For elastic behaviour:

ZASI si = ZASI st sz

=1 i=1
c—-d,
Z Ast si= z As:E:tEref(_d_)
i=1 i=1 o

For inelastic behaviour:

n
2 Ast si 2 [As:c\z +A Eshiesi]

i=1 i=1

n n c—d,
Y Aoy = 2 [AS,GH +ASIES,”e,ef(—d ):'
o

i=1 (=1
Similarly for the moment, the total moment is the summation of all the moments:

For elastic behaviour:
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z As¢ .n z A:z s s: i—do)

i=1 i=1

Z A0 ZAn si ref( dﬂ)(d d,)

i=1 i=1

For inelastic behaviour:

2 A51651(d = Z [Aszcu +A Esluesz](d )
i=1 i=1
" c—d;
2 Asz sz ) = Z I:A.ncw + Ag,Eshieref(c_d )](dsi—do)
0

i=1 i=1

5.3.2.2 Internal Prestressing Steel Layers Resultant Force and Moment
Similar to the normal steel layers, the force and the total moment are obtained by

summing up algebraically the forces and the moments in all the individual prestressing steel

layers:

ElA”fG”f = -§1APJ y pj(Q+(1 Q)/[H(I;;?ECJ)N}UN)

2 1Apjo'pj = j;lAP] pj ,,,(Q+(1 Q)/[l +(I;;?::])N:I N)

5.4 Equations of Equilibrium

There are two equilibrium equations, summation of all axial forces must be zero and
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summation of all bending moments about the reference p»int must also be zero:

YF=0

AN+ C+T

i
o

M =0

AM+CyC+T_vS =0

5.5 Derivatives

Newton’s iteration method is used for the solution of the equations of equilibrium
which are a system of nonlinear simultaneous algebraic equations. In this method, partial
derivatives of these equations with respect to the unknowns €, and c are obtained. The

problem becomes one of finding the roots of the linear system:

— 3 3 -

—YF —>»F

asrefz aC2 [Aerefi] _ EF
M

0 0
Je N 5?ZM ac
| " Tref ]

It should be mentioned here that in the previous equations and the following ones,
the formulation for the linear descending and tension parts of the stress-strain curve of the
concrete are not shown. But they are coded and incorporated in the computer programs for

this study. The derivatives of the equations of equilibrium are:

95



= 0.85f

aeref(

(c—-d,)
J‘ C bd)' + Z Ansz nsz+ Z ApSl psi

—d,

(c-d,)

—aref

n

24

e

* Z (APSJEPSJ (c—d

j o bdv+
-d,

i=1 i=1

z AnSl IlSl

efl—l

J

2 Apsx psi

2

dnsi
nsi ns( d )

nsi nslu( _

(c— dp

psj ref(c d

sj)
;Q ApgiE pSJ(

145

Kfpyilc=d,)

EpsjEres(c—d

—
+
/—\

Kfpyilc=d,)

psj))N:l—(l + N)/N(N)e

96

2 4
c _2_._&"4*. ef
& ¢ e2(c—d,) g,(c—d,)

)

))N]—I/N_(Z_l_v) Apsj £, %) ((C

(N=-1)
ref

(

JB 2eref
€ (c—da

-Q)x

)(1 Q)

Epsi{c—dpg))

Kfp.\'j(c —d,)

|
)2

X

))



(c d,)
I C. bdv+ 2 Ansz Cpsi + 2 Apsz psi

~d, i=1 i=1

(c-dn)
I 8 bdy +a z Ansz nsi a z Apsz psi
-d, =1 i=1

2 2
B) _ —2€.f 28, 2€re
a—CZF = O.85f’cl:( > + 5B+ 1

elc-d,)’ e,(c-d,)

n E c-d
z ["z—n:;;ei AnszEnst ref(_&l)}

Q=1 (c—-d,)”
Z AnszEnslu ref —A .E (C - dnsi)
“~ (C d ) nsi nslu ref(c _ do)z

n
9 (c-d)s))
+ Z (ApSJEps,epSJ( -d,) ApsjEpsjepsj (c—d,) Q

j=1

(1-0) E, j€reflc—d, NNTI/V
+Ap515p318psj(c 4 )[ +( Kfp_‘.j(c . ):'

A _E & .(C—dij,)(l—Q)[l (,,Sj € p(c—d,, )N:l-l/lv

Ps;™ psj Ps)

(c~-d,)” Kfpyile- do)
(1+N)
(c— d ) Eij ref(c—dp.v) N N
+AP:/EszepSJ( ) -0)- (—) 1+( Kf,c-d,) ) ] x
E ¢ N _ E e _(c-d, ) 1
N psj=ref —d .\(N ”—N( psj<ref psj
( (K__—-fp_‘.!(c do)) (c psj’ Kfp_\y ) (C_do)(N+l)

97



(c-d,)

aE Z I Gc)bd" + z Ans: nsz(d.s'jn —-d ) + Z APSJGPSJ(dPSI 0)]
—d,) r=1 _/ =1
3 3 N ke
——YM = o vbdy + Y A o (d. —d)+
aeref agref —2[0 c aeref,- = nsi nsi‘"sjn

ZA O psi(d = dg)
ref,-n psj

< 2 28rej" 4e ref 2
=108 Z_ B I~
(O ch(eo si) {e 2c—d,) Elc=d,) ]
4
sref[(c—do)z——(—d") ,,D
2e, (c—d,)”

dr
Z AllSl ns:( UI)(dns: )

+ l-l 0

-d i
ZAIISI nslu( _ - )(dn.s'l o)

=1

- (c-d,y) (c-d,,
+ Z (AijEijFdL;j)—Q APSJEPS_] ( ) (1 —Q)X

Jj=1

(14 (Bt YT (1, (-0

[H( ’}é} :f((z—::)sj))Nj]—(l+N)/N(N)€£1e\}-l)( I?,;%C(_C_d_,;_f_;) )X

98



(c-d,) m
d d
-a—EzM = 87[ j S \bdy + 2 AnSlGnSl(den—dO) + Z AP-UGPSJ(dI’SI O)J

—d" i=1 j =1
(c-d,)
J I = 8 bd A d. .
dac “T j Oc¥ y+_z "“G"ﬂ( sjn a z APSJ p:J psj"do)
-d, i=1 i=1

d = (_2)efef 2E’ref J efef( (‘d0)4 ]]
=—> M = 0.85f, =+ S | — (c—d,)+ —F—
2 Kei(c-do)- e (c-d,)’) 26 (c-d,)’

o

(dn.ﬂ do) (c— dnsi)
g ot 2 _A E & -~ (d _d)
g[ nsi nsz ef ( do) nsi~ nsi ef(c_do)z si o
+
n
(dnst d ) (C—dnsi) :l
’ ] — A E __(dn '—do)
g[ 15{ n:lt ref (c do) sifnsni€® ref(c—da)z st
m
o (c=dys)
+ Z{ psl psj ij(TTS APSJEPSJSPSJWQ
+A F ¢ (1‘Q)[ +( psj "ef(c dPSJ)) ]-I/N
Psi” psiPsi(c = d,) Kf,(c—d,)
—A,E € .———(C—dij)(l - Q)[l +(Epsjaref(c_dpsj))N:I_VN
psj _Ps] (c-d )2 Kfpvj(c—do)
0 )
(1 + V)

(c- psiCref(c —dps;

*AosiEpsiosi cd ) )“'Q) (‘) 1+(EKfp_\'j(C—da) ))N} T

N( Epsjeref )N(c—d )(N 1) N(Epsjeref(c dpsz)) 1 }
Kf,jlc-d,) psj Kf,y (c—do)(NH)

99



5.6 Time Dependent Stresses and Strains

The analysis of the time-dependent effects is based on the displacement method in
which the free strain due to creep and shrinkage is treated as an initial strain (Zienkiewicz,
1977). In the analysis by the displacement method, initial strains are artificiality restrained
by forces which are subsequently eliminated by application of equal and opposite forces on
the entire cross section. In the present work, the steps of analysis suggested by Ghali and

Favre (1986) are used.

5.6.1 Free Strain Due to Creep and Shrinkage

Let 1}, t5,... represent time instants at which external loads or prestressing are
applied. The symbol Ac(;) will be used to represent a stress increment introduced at time
t;, and sustained without change in magnitude up to time ¢. In reinforced and prestressed
concrete, the reinforcement restrains the deformation due to creep and shrinkage. The
restraint subjects the concrete to stress increments which develop gradually. Let AG (¢ .5)
represent the stress increment gradually developed between tjand z;,y. The analysis will be
done step-by-step; thus, for any interval i, the stress increments during early intervals will
be known from the preceding calculations. Assume that both Ac (¢))and AG (¢}, .5;) are
known forj =1, 2,..., i-1. [t is required to calculate the hypothetical free strain which would
occur in the absence of the reinforcement during interval ¢; to ¢;,, with ¢ > j. A stress

increment AG(f;) produces creep during the interval considered equal to:

Ac(t;)
E—c(?_)'[q)([,q, 1> tj) - 0(z;, tj)]

and in this study, the creep is:
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A .
XIS WX o

(1.7fc'(zj))_ (1.7fc'(zj))2 . 3.4F (1))

80([_,')

Lo £ =0, ¢
' L7f () Oz 15 =000 £)]

ei(tj)

and

€t~ (1)) Ao(ty)
[80(tf)+( 0.15 )l'o.ss(fc'(tj)) (Ol 1)) = 000 )]

Therefore, for the purpose of the present analysis, the two increments AG.(z;) and
AG(£;41.1j) are considered lumped together to produce the creep during the interval i.

Shrinkage during the same interval is Aeg_[(t;, |, t;). Thus, the total hypothetical
free strain which would occur between ¢; and ¢, is the addition of creep and shrinkage.

Stresses will develop in any time interval when the free strain in concrete is not free
to occur due to the presence of the reinforcement or due to attachment to other concrete

parts having different creep or shrinkage parameters.

5.6.2 Variation of Prestressed Steel Stress Due to Relaxation
As defined in Chapter 3, the intrinsic relaxation, AG,,, is the reduction with time in
the stress of a prestressing tendon when it is stretched and held at aconstant length between
two fixed points. The amount of intrinsic relaxation occurring during a given period of time
depends to a great extent on the stress level in the steel at the beginning of the period

considered. In the absence of relaxation tests, the magnitude of the intrinsic relaxation can
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be determined from empirical equations such as those given in Chapter 3.

In a concrete member, creep and shrinkage cause an additional reduction in the steel
stress, and therefore, the prestressing steel exhibits smaller relaxation loss as compared to
the intrinsic relaxation obtained from a constant-length relaxation test. Ghali, Sisodiya, and
Tadros (1974) employed a step-by-step procedure to account for the effect of variation in
the prestress level on the magnitude of relaxation. Ghali and Trevino (1985) presented a
more accurate reduction coefficient, X, The reduced relaxation, AG,,, can thus be

expressed as

AG,, = X,AC (5.10)

pr pr

where

X, = e(-6.7+5.3l)Q (5.11)

with A being the ratio of the initial stress, G, in the tendon to its tensile strength, f,,, and

Ac__—AGC
O = ps pr (5.12)

cpso

where AG, is the change in stress in prestressing steel during a given period of time due to
the combined effects of creep, shrinkage, and relaxation. This value is generally not known
a priori as it depends on the reduced relaxation. Therefore, iteration is necessary; first as
assumed value of x,= 0.7 is used to calculate AG,, and later adjusted by using Equation

(5.11) or Fig. 3.5 if necessary.

5.7 Analysis of cross sections
When the two parameters that define the strain distribution {Ag,(t;,1, 2), Vnlfree of

the hypothetical free strain due to creep and shrinkage during the period ¢; to ;| are known,



then the time-dependent changes in stress and strain occurring in each concrete part and
steel layer between ¢; and t;, | can be determined assuming that the material properties ¢. X,
€cs» and AG ,, are known for the time interval considered.

The hypothetical free strain can be prevented by introducing an artificial stress

whose distribution over the jth concrete part is defined by the stress at point O:

2

, (26,06 (tiv108) (€0t 10 1)

A . 1. =0.85 i -
[( 0'C)restrmm]j fC(t”'I)I_ 80([i+l) 80([1'-{»1)
or
, € c(t; 1o t)-€ (1)
_ ref i+ i o\ i+l
[(Acc)reslraint]j - 0'85fc(ti+ 1)[1 -0.15 Scu—Eo(tl-+ 1) :|

Integrating the stress block of the concrete part j represent the resultants of the
artificial restraining stress, AN, AM_; (as described in the equations above). The
integration is preformed for all concrete parts and the A, B, and [ are the cross section area,
its first and second moments about an axis through the arbitrary reference point O.

Relaxation of the prestressing steel is the reduction in the tension of the tendons and
in the compression in the concrete at the same level and thus causes tensile strains in the
concrete at the tendon levels. The strain in concrete due to relaxation of prestressing steel

can be artificially prevented by the application of the forces:

n
AV, = 3 (45,4,
k=1

n
AM,, = Z (AG,, A5 55,
k=1
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where the summation is performed for the prestressing steel layers tensioned before or at
ti: A gpr and yy, . are the cross section and the y-coordinate of the kth prestressing steel layer.

Addition of all of the forces in the concrete parts as well as the steel layers results
in {AN, AM),,sirains» the total force which would artificially prevent creep, shrinkage, and
relaxation.

The artificial restraint is eliminated by the application of {AN, AM), .c;rpin: D @
reversed directions on an adjusted transformed section composed of the area of concrete in
each part, multiplied by E/E, 4, plus the area of reinforcements, multiplied by E/E .« This
produces the change in strain distribution which is used to determine the change in the

stresses of the different materials according to their constitutive laws.

5.8 Verification Examples

A computer program was coded in this study for the instantaneous and time-
dependent nonlinear analysis of prestressed reinforced concrete sections. This program can
be used for the analysis of concrete members with any cross section shape having one axis
of symmetry and reinforced with or without prestressing This program is suitable for the
nonlinear analysis of composite members made of concrete parts of different properties and

steel layers (prestressing or nonprestressing) of different properties.

5.8.1 Example 1
A midspan cross section of an 80 ft (24.4 m) simple beam, see Fig. 5.5, is analyzed.
The section has one layer of tensile nonprestressing steel, A, = 10 in? (6452 mm?), and one

layer of compression nonprestressing steel, A’ =4 in? (2581 mm?). The prestressing steel
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has an area of Aps =3 in? (1936 mm?). Given data: E(t,) = 4000 ksi (27600 MPa), Eps =

27000 ksi (186200 MPa), E,;; = 29000 ksi (200000 MPa), §(z.5,) = 1.5, c = 0.8, Ao, (t.1,)

=-13ksi (-89.6 MPa), e, = -300x10°9, fe: = 0.5 ksi (3.45 MPa). Consider a reference point

at the top fiber. The section has been analyzed for a variety of loadings and for all behaviour

from elastic to the ultimate load. The analysis has been performed for the instantanenus and

time-dependent responses. The results of the current study have been compared to the

linear analysis of CRACK (El-Badry, M.M., 1985). The following cases were studied:

1- Pure bending moment see Figs. 5.5(a) - 5.7(b).

2- Constant normal force (prestressing force) and varying bending moment, see Figs.
(5.8(a) - 5.10(b).

3- Constant bending moment and changing normal force, see Figs. 5.11(a) - 5.12 (b).

4- Moment-curvature diagram for the case of pure bending, see Fig. 5.13.

5- Moment-curvature diagram for the constant normal force and varying bending moment,
see Fig. 5.14.

6- Normal force-curvature diagram for the case of constant bending moment and changing
normal force, see Fig. 5.15.

7- Comparison with CRACK (El-Badry, M.M., 1985), see Figs. 5.16 and 5.17.

8- Time-dependent analysis (stress and strain distributions), normal force-curvature
diagram, and comparison between instantaneous and time-dependent responses for the
case of normal force and bending moment, see Figs. 5.18(a) - 5.20.

9- Stress-Strain relationships for the instantaneous and time-dependent effects, se Fig. 5.21.
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5.8.2 Example 2
The beam shown in Fig. 5. 22 was one of the pretensioned specimen tested by
Priestley, Park, and Lu (1971) and was made from concrete with the following properties:
- =449 MPa (6.5 ksi), €', = -0.0025. and f,, = 2.9 MPa (0.42 ksi). The member was
pretensioned using two 7mm (0.27 in) diameter wires with a total area of 77 mm?> 0.12 inz).
The wires had a rounded stress-strain curve which could be represented by the following

modified Ramberg-Osgood function:

0.968 }

3
fop = 200x10 epf{0.032+ —7%
[1+(135¢,.)°]

. -3 .

The prestressing of the member was such that Ae = 4.24x10 ~. This beam has

been used in the current nonlinear analysis to verify the short-term moment-curvature
response. [t can be seen that there is a good agreement between the obtained theoretical

results and the experimental data.

5.8.3 Example 3
The analytical results from the current study were compared to the analytical results
of the analysis of short and long-term moment-curvature responses of the cross section
shown in Fig. 5.23(a) using the layer-by-layer approach by Collins and Mitchell (1987). see
Fig. 5.23 (b). The beam is precast pretensioned single-tee beam whose section is shown in
Fig. 5.23(a).The low relaxation prestressing strands were tensioned to a stress of 1400 MPa
(203 ksi) in the pretensioning bed, prior to casting of the concrete. The stress-strain

relationship of the strands is given by the following formula:
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10,0.10

3
fpr = 200x10 e,,f{o.025+
[1+(118e,,)"]

0.975 }

except that the strands are assumed to rupture at a strain of 0.04 (i.e. 4%). Collins and
Mitchell (1987) used a computer program (PLANE) to compute the moment-curvature
response. In their analysis, the cross section was represented by eight layers and the eight
steel layers lumped at their C.G. For the long-term response, the creep coefficient of the
concrete is assumed to be equal to 2.7 and that the concrete was first loaded when its
compressive strength was 25 MPa (3.6 ksi). The initial tangent modulus of elasticity of the
concrete is therefore equal to 7430 MPa (1077 ksi). For the long term application of
loading, the compressive strength of concrete will be 35 MPa (5 ksi) and the cracking stress
will be 2 MPa (0.29 ksi). It will be assumed that the prestressing strands will lose 3% of
their initial stress due to relaxation and will rupture at a strain of 0.054. In addition to the

creep and relaxation, it is assumed that a concrete shrinkage strain of -0.48x10™3 occurs.
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Fig. 5.1 Typical Cross Sections Treated in the Present Study
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Fig. 5.2 Division of a Concrete Section into Trapeziums and Rectangles
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Depth of Cross Section (in)
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Depth of Cross Section (in)
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Depth of Cross Section (in)
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Mid-Span Moment (k.in)
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Fig. 5.13 Moment-Curvature Relationship of Mid-span Cross Section
(Case of Pure Bending Moment)
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Mid-span Moment (k.in)

Normal Force is fixed (-600 k) (-2669 kN)
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Fig. 5.14 Moment-Curvature Relationship of Mid-span Cross Section
(Case of Fixed Normal Force)



Bending moment is fixed (1000 k.in) (113 kN.m)
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Fig. 5.15 Normal Force-Curvature Relationship of Mid-span Cross Section
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N =-100 k (-445 kN)
M = 500 k.in (56.5 kN.m)

0.2 0.1 0.0 -0.1 -0.2 -0.3
I i I 1 I
0 -
5 -
10 [ .
c
S 15 - .
Q
03] L .
wn
é 20 | -
O - 4
ks
£ 25 - N
Q.
[0 - 4
a
30 u
#——% Current Study (Nonlinear Analysis)
i (G—© Linear Analysis, CRACK (Ei-Badry, M.M., 1985) |
35 - 7
40 .
| | 1 | i |
0.2 0.1 0.0 -0.1 -0.2 -0.3

Fig. 5.16 Comparison Between This Study and Linear Analysis, CRACK

~ (El-Badry, M.M., 1985)

Stress (ksi)

131

10

15

20

25

30

35

40



N = -600 k (-2669 kN)
M = 1000 k.in (113 kN.m)
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Due To Time-Dependent Effects
(If M is increased over 41000 k.in, the tensile steel ruptures)

N =-600 k (-2669 kN)
M = 41000 k.in (4633 kN.m)
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Fig. 5.18(a) Stress Distribution
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Due To Time-Dependent Effects
(If M is increased over 41000, the tensile steel ruptures)

N =-600 k (-2669 kN)
M = 41000 k.in (4633 kN.m)
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Mid-span Moment (k.in)

Due To Time-Dependent Effects
N =-600 k (-2669 kN) (constant)
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Fig. 5.19 Moment-Curvature Relationship of Mid-span Cross Section

(Case of Fixed Axial Force)
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Mid-span Moment (k.in)

Instantaneous and Time-Dependent Effects

N =-600 k (-2669 kN) (constant)
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Fig. 5.20 Moment-Curvature Relationship of Mid-span Cross Section

(Case of Fixed Axial Force)
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Stress-Strain Relationship due to N and M
(Instantaneous and Time-Dependent)

N =-600 k (-2669 kN), M = 41000 k.in (4633 kN.m)
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Fig. 5.21 Instantaneous and Time-Dependent
Stress-Strain Relationship
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CHAPTER SIX
ANALYSIS OF PRESTRESSED REINFORCED

CONCRETE STRUCTURES

6.1 General

A general procedure and equations for the short and long term nonlinear analysis of
planar reinforced concrete sections using the mathematical models for the material
properties were presented in the preceding chapters. The procedure yields the solution for
the changes in stresses and strains due to external loads applied at the section. In the present
chapter the changes in the stresses and strains will be used in the analysis of prestressed
reinforced concrete members. The time-dependent effects are most significant in structures
made up of members of different ages and material properties such as bridges built up of
precast prestressed concrete members carrying a cast-in-situ concrete deck. Cracking
substantially reduces the flexural rigidity of reinforced concrete members especially under
increasing loads.

Depending on the method of applying the prestress, prestressed concrete structures
are classified into pre-tensioned and post-tensioned structures. The first step in
pretensioning is the stressing of the high strength steel tendons between the abutments of a
pretensioning bed. The concrete is then placed in the form and after the desired concrete
strength has been reached, the tendons are cut and the member becomes préstressed by
transferring the prestress to the concrete. In the postensioning the prestress is transferred

gradually to the concrete while the prestressing steel is tensioned against the hardened
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concrete, and anchored against it immediately after the tensioning operation. Depending on
whether the prestressing steel is grouted or ungrouted after the tensioning operation or if
the tendons are placed outside the concrete section, posttensioned structures are further
classified as bonded, unbonded, or externally prestressed structures.

In the analysis of the prestressed reinforced concrete structures, the variation of the
stress in the prestressing steel during various stages of loading is an important factor since
the behaviour of the structure is dependent largely on the amount of prestress acting on
them. In pretensioned structures, the prestress loss takes place before the transfer of the
prestress due to shrinkage and creep of concrete and the relaxation of prestressing steel. At
the transfer of the prestress, the loss is due to the elastic shortening of the concrete and after
the transfer, the loss is due the relaxation of the prestressing steel and the load history. In
postensioned members, the loss takes place during the tensioning operation due to the
friction between the prestressing steel and the duct and the anchorage slip. After the transfer
of the prestress, the loss is due to shrinkage and creep of concrete, the relaxation of
prestressing steel, and the effects of the load history.

This study aims at finding the displacements, internal forces, stresses and strains of
the concrete, reinforcing steel and the prestressing steel of the reinforced member at any
time during their service by using a numerical procedure which includes the material
nonlinearity and the time-dependent effects of creep and shrinkage of concrete and the
relaxation of the prestressing steel. The numerical procedure is based on the displacement

method of structural analysis.
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6.2 Structural Modeling and Discretization

A typical planar reinforced or prestressed reinforced concrete structure is shown in
Fig. 6.1(a). In the analysis by the displacement method, the frame is idealized as an
assemblage of straight beam elements connected at the nodes (joints), Fig. 6.1(b). If
external tendons are present, these tendons are modeled as truss elements. The external
tendons are connected to the structure at the deviator and the anchorage locations (nodes)
with one degree of freedom at each node, translation in the longitudinal direction of the
tendon. The reinforced concrete member is modeled as a beam element with two nodes and
one plane of symmetry in which the external loads are applied. Each node has three degrees
of freedom, two translation and one rotation defined with respect to an arbitrarily chosen
global systerﬁ of axes, see Fig. 6.2(a). The global coordinate system is fixed in the space
and is common for all elements. Equilibrium equations for the entire structure are derived
and solved in this global coordinate system. Since the centroid of the transformed section
changes position with time due to varying concrete properties, cracking, and load history,
a reference axis is arbitrarily chosen for each member and is kept unchanged through all
steps of analysis. The nodes of the member are loqated at the intersections of the reference
axes of the individual members, Fig. 6.1(b). The reinforced concrete member with external
tendons must have at least one node at the support (anchorage zone) or at the deviator
location.

A local system of axes is defined for each individual member as follows, Fig.
6.2(b). Let O and O, be the nodes of the element. Oy is the origin of this local coordinate
system. The axis connecting the two nodes, O; and O,, is the x* axis. The axis x* coincides

with the reference axis of the element and is directed from O, to O,. The y* and z* are
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perpendicular to the x* axis with y* lying in the plane of the frame. For a typical element,
a number of sections is defined with the first and the last sections at nodes O, and O,
respectively. The stiffness matrix of the member, the fixed-end forces, and the
displacements at its two ends and the internal forces at the various sections are evaluated
in the local coordinate system x*y*z* (El-Badry, M.M, 1988).

The concrete element can be of a variable cross section over its length. It can be
made up of several concrete types with different material properties. Material properties
and ages can also vary from member to member. The geometry of each concrete part is
defined by its dimensions and depths from the top fibers. The cross section is assumed to
remain plane at all stages of loading and time. A member may contain several prestressing
tendons and nonprestressing steel layers. A prestressing tendon may be internal or external,
bonded or unbonded. Perfect bond between the concrete and the prestressing steel is
assumed for pretensioned structures. The tendon is defined by its profile, cross-sectional
area, and its initial tensioning force. A nonprestressing steel layer is defined by its cross-
sectional area and its depth from the top fibers. Concrete and the reinforcing steel are
assumed to be perfectly bonded together. A steel layer, consisting of prestressing or
nonprestressing, may extend over a portion or the full length of the element. Thus the
number of steel layers may be different from section to section, see Fig. 6.3 (a). An external
tendon is defined by its profile, cross-sectional area, modulus of elasticity, tensile strength,
and its initial prestress. The external tendon is considered as an assemblage on truss
elements. Each truss element has two nodes and each node has one degree of freedom, axial
translation. The truss elements that form the external tendon interconnect at their nodes.

These nodes are located at the intersections of the centroidal lines of the truss elements. The
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nodes of any truss can be at two consecutive deviators or one node can be at one deviator
location and the other node at an anchorage zone, Fig. 6.3(b).

External loads can be in the form of concentrated loads or couples acting at any
point on the axis of the member and/or distributed loads.

The time period for which the structure is analyzed is divided in several time
intervals. The start or the end of the any interval coincides with the addition of parts of the
member, with the application of the loads, or the application of the prestressing. In each
interval, the analysis gives the instantaneous and the time-dependent changes in
displacements at the nodes, three forces (normal, shearing, and bending moment) at the two
ends of individual members, and the reactions at the supports. The changes in stresses and

strains of individual sections are calculated using the procedure in Chapter 5.

6.3 Initial Prestressing Force

In pretensioned members, the initial prestressing force required in the analysis is the
force in the tendons immediately before transfer. In the case of posttensioning, the initial
forces in the tendons are computed from the jacking force at the tendon ends and the
instantaneous losses due to friction and anchor setting. Such losses result in a variation in

the initial force over the length of the tendon.

6.3.1 Losses Due to Friction
When a tendon is tensioned by a jack, the force produced is not constant along the
length of the tendon due to friction between the tendon and the duct. It is customary to

consider the frictional losses to be consisting of two components: the curvature and the
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wobble frictional losses. Curvature frictional loss results from the intended change of angle
of the tendon profile. Wobble friction loss occurs due to imperfection in the tendons as
unintentional misalignment of the ducts. This type of friction affects both straight and
curved tendons and depends on the friction coefficient and the tendon length. The
prestressing force at any point along the tendon after occurrence of friction losses can be
calculated by the following (Lin, 1956):

—(18;; + ks;;)

where P; and P; are the prestressing forces at two consecutive sections, with section Z closer
to the jacking end; s;; and 6;; are, respectively, the length of the tendon and the change in
its slope, in radians, between section i and j; i and & are the curvature and wobble friction
coefficients, respectively. A range of values for i and k has been suggested by the ACI
Committee 343 (1977). The angle 8;; is computed from the tendon profile and the length s;;

is calculated from the following equation:

J i
s=[ds={ J1 + (dy/dx)*dx (6.2)
i X;

where dy/dx is the slope of the tendon with y being the depth of the tendon from the
reference axis. The integration in Equation (6.2) is performed numerically. Successive
application of Equation (6.1) starting from the jacking end gives the variation of the

prestressing force along the tendon length.

6.3.2 Losses Due to Anchorage Set

When the jacking force is transmitted from the jack to the anchorage device, a small
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slip occurs in the anchor before the tendons can be firmly gripped. The amount of this
anchorage slip can be in the range from 2 to 10 mm, depending on the prestressing system,
and is usually provide by the suppliers of the anchorage device. The loss of prestress due
to anchorage set can be particularly important in short members.

When the anchor sets a distance 0, a sudden drop in the jack force takes place and
the friction force reverses direction over a certain length L, from the jacking end, Fig. 6.4.
Beyond the length L, the anchor set has no effects and the force in the tendon remains the
same as just before the anchoring operation. Since the initial and the reversed friction forces
depend on the same friction coefficients, the two curves AC and BC, representing the
variation of P with the distance s before and after the anchor set, have equal and opposite
slope and are thus symmetric about line EC. Therefore, in order to define the curve BC, it
is sufficient to determine the location of point C, i.e., the length L.

The total shortening of the tendon over the length L, is equal to the anchorage set .
From Fig. 6.4, the change in tendon length due to anchor set is also equal to the area ABC

divided by A where A, and E,; are the cross sectional area and the modulus of

ps’
elasticity of the prestressed tendon, respectively. In the analysis, the prestressing force
without considering the anchorage set is first determined at each section of the member by
Equation (6.1). Consider any section k at which the prestressing force is Pj. The shaded
area A shown in Fig. 6.5 can be calculated as follows:

k-1

Area(A) = Y s;(P;+P;)-2P.s, (6.3)

i=1

where j =i + 1 and s; is the length of tendon from the anchor to the location of section k.
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The location of point C and the variation of the prestressing force after anchor set

are determined using the following steps:

I. Set k =2, i.e., the section next to the jacking end.

2. Calculate the shaded area A at section h from Equation (6.3) and compare with the

quantity 8A,.E,;.

3. If the area A is less than SAPSEPS, then the length L, is larger than the length of the tendon
up to the section k, i.e. 5. Take k =k + 1 and go to step 2.

4. If the area A is equal to 8A,.E,,, point C lies at the section k and the length is equal to s.
The prestressing force at C is then P, = P;. Ge to step 6.

5.If the area A is greater than 8ApSEps, then point C lies between sections (k - 1) and &, and
L, has a value between Stk-1) and . In this case, calculation of the area A and
comparison with 8A,.E,; should be repeated for various points between sections (k -
1) and &. Calculate the prestressing force P, at point C from Equation (6.1).

6. At any section ¢ form the jacking end point C, the loss in prestressing AP; due to anchor
set is given by:

AP; = 2(P;-P,) (6.4)

Thus, calculate the prestressing force after the anchor set as:

P, =P,—AP; = P,~2(P;,~P;) = 2P -P,; (6.5)

where P; and P’; are the prestressing forces at section i before and after the anchor set. The
curve BC can thus be defined.

When the tendon is short, the length L can be larger than the total tendon length
and the anchor set can affect the value of the prestressing force at the other end of the

tendon, Fig. 6.6. The unknown value to be determined in this case is the drop APp in the
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prestressing force at the other end of the tendon. The value of APp can be obtained by
equating the area ABD’D in Fig. 6.6 to the quantity 8APSEPS. Thus:

Area(ABD'D) = Area(A)+APpsp (6.6)

n-1
Area(ABD'D) = Y s;(P;+P;)-2Ppsp+APps), (6.7)

i=1

Area(ABD'D) = dA (6.8)

psEps

where n is the total number of sections in the member, Pp, is the force at the other end of
tendon before anchor setting and s, is the total tendon length. From Equations (6.6), (6.7),
and (6.8):

: n-1
1
APp = g[SApSEpS— Z 5;;(P;+P)) +2PDSD} (6.9)

i=1

The prestressing force P’; at any section { after anchor set (curve BD’) is given by:

P, = 2P,-P,— AP (6.10)

6.3.3 Effect of Stressing Procedure
One of the technique used frequently in practice in order to reduce losses due to
friction and anchor set is to use jacking from the two end of the tendon. When jacking takes
place at both ends, the procedure described in the preceding two subsections are applied
measuring the parameters g; and s; from each end. This gives two values of the
prestressing force at each section, only the larger of the two values is of significance. Fig.
6.7 shows a typical variation of the prestressing force after losses due to friction and anchor

set along a post tensioned tendon jacked from both ends (curve BCEC'B”).

148



6.4 Member Stiffness Matrix

If a member has variable cross section properties throughout its length, then it has
a variable flexural rigidity accordingly. Further variation of stiffness along the length of the
member can also be expected after occurrence of cracking. The slope of the moment-
curvature diagram of a section represents the flexural rigidity of the section. After cracking,
or depending on the stress level, the moment-curvature is nonlinear and its slope at any
point depends on the magnitude of the moment applied. Thus, when a member is subjected
to high load levels, the flexural rigidity, E7, will vary from section to section according to
the variation of the bending moment over the member length. One approach to account for
the variation in the stiffness is by dividing the structure into elements of small lengths and
assigning uniform axial and bending stiffnesses to each element. Another approach is to use
longer elements and account for the variation in the stiffness within the element.

In analyzing a structure by the stiffness (displacement) method, a set of
simultaneous equations, that is proportional to the number of the nodes in the structures,
must be solved. The stiffness coefficients for a nonprismatic element can be developed in
a variety of ways, e.g., column analogy or virtual work.

A more desirable approach in c;‘alculating the stiffness of a nonprismatic element is
by evaluating the flexibility matrix of the element and then obtaining the stiffness matrix
by inversion. The flexibility coefficients at the member ends can be obtained by the unit-
load method (Ghali and Neville, 1978). This approach was adopted by El-Badry, M.M.
1988, and is used in this study.

Fig. 6.8 shows a typical plane frame member in its undeformed and deformed

states. The member has six degrees of freedom, {D’}, located at the two ends (nodes) O,
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and O,. The total deformations of the member consist of two components: rigid body
displacements and deformations due to internal strains. The rigid body displacements do
not change the stresses and strains in the member nor the forces at its ends. Such
displacements can be excluded from the total deformations by fixing the member at one of
its end, i.e. Oy, as shown in Fig. 6.8. The member in its configuration has at node O, three

degrees of freedom, {d’}, which are related to {D’} by geometry as follows:

{d’}3.\71 = [H]3_t6{D'}6xl (6.11)
where [H] is given by:
-100-1 0 O
(Hl=|0 100 -1 [ (6.12)
0010 O -1

with [ being the length of the member. The elements of {d’} represent the relative
displacements of end O; with respect to end O,.

Generate the flexibility matrix [f] corresponding to the three displacements at the
free end O;. According to the unit-load method, any element in the flexibility matrix is
given by:

l {

0 0

where f;; is the displacement at coordinate i due to a unit force applied at coordinate j; N;

and M

«i are the normal force and the bending moment at any section at a distance x for end

Oy due to a unit force at coordinate i, with i = 1, 2, or 3, see Fig. 6.9; £p; and y; are the strain
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at the reference point O and the curvature produced at the same section by a unit force
applied at coordinate j, with j = I, 2, or 3. Recall that the cross section of the member has
an axis of symmetry in the plane of the frame. The reference axis O[O, intersects the axis
of symmetry at the reference point O. The force N; acts at O and the moment M,; is about
an axis through O in the plane of the cross section.

Thus from Fig. 6.9 and Equation (6.13), the elements of any column j of the matrix

[f] are:

{ [ {

fij = ~[eodx faj = —[wxdx f3j = Jwdx (6.14)
0 0 0

The integrals in the equations are evaluated numerically using the values of €, and
¥ determined as described in Chapter 6 at a number of sections for which the geometry and
cross section areas of reinforcements are given as data. For the analysis of the instantaneous
effects, use the modulus of elasticity of concrete and the properties of the transformed
section at the time of application of the load. When the analysis is for the time-dependent
effects during a period ¢; to t;,, the age-adjusted modulus of elasticity and the propeﬁies
of the age-adjusted transformed section are to be used to give the age-adjusted flexibility
matrix.

Inversion of the flexibility matrix will give a 3x3 stiffness matrix corresponding to
the coordinates at end O;. The forces at end O, are obtained by equilibrium and thus the
stiffness matrix for the six coordinates is generated:

[s'] = [HI'[f1'1H] (6.15)

151



where [S’] is the member stiffness matrix in the local coordinates and [H] is given by
Equation (6.12). The stiffness matrix will be expressed in terms of the reference modulus
of elasticity, E,5 and A, B, and [, the transformed section properties with respect to the
reference point O.

In order to generate the structure stiffness matrix, member stiffness matrices must
be transformed from local coordinate system to the global systemn. Such transformation can
be performed by the following equation:

(s,1 = [TI'[STT] (6.16)

where [S,,,} is the member stiffness matrix in global coordinates, the subscript m refers to

the member number; [7] is a transformation matrix given by:

[T] = {[’] [O]] (6.17)
(O] [z]
with matrix [¢] given by:
csO
[t]|—s c O (6.18)
001

where ¢ = cos o and s = sin o, with o being the angle between the global and local
coordinates, measured from the global x-axis to the local x*-axis, Fig. 6.2(b).

When external prestressing cables are present, Fig. 6.10(a), theﬁ these cable
contribute to the stiffness of the beam element. The external tendon is treated as an
assemblage of truss elements. Each truss element has two nodes located at the centroidal

lines of the individual truss element. Each node has one degree of freedom, axial
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translation. The conventional stiffness of a truss element with two degrees of freedom is:

[S,] = glé[l ‘1] (6.19)
11

The contribution of the external tendon to the stiffness of the element can be
computéd by transforming the local stiffness matrix of the external tendon (truss element)
[S,] to the local coordinates of the beam element. This transformation is formed by
geometrical relationship of displacements as shown in Fig. 6.10(c) (Ghali and Neville,
1989):

[S,)yansy = (TRY [S)ITR] (6.20)

where [TR] is a transformation matrix and is given as follows:

[TR] = [cos(a) —sin(ot) —acos(a) O 0 0 } (6.21)
0 0 0 cos(o) —sin(a) —bcos(a)

o is the slope of the external tendon as shown in Fig. 6.10(b) and (c) and a and b are the
eccentricities (if any) of the two end of the external tendon, see Fig. 6.10(c).

The transformation of the truss element stiffness matrix to the local coordinates of
thg element will yield the following truss stiffness matrix at the two nodes of the element

as follows, Fig. 6.10(c):
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2 pi

c* -SC -aC?

_sC S§* ascC

(51 . = EA|-aC® asc a*C’
titransf | - 5
_c* sc ac’

SC -S> -aScC

ool Yol You
SC -§° -bSC
aC? -aSC -abC?
c* -sc -bC?
-SC S§* bsC

| bC? -bSC -abC* —bC* bSC b C? ]

where C is cos(a), S is sin(at), and @ and b are as before.

(6.22)

The transformed stiffness matrix of the external tendon (truss element) [S;1;,gngr is

then to be added to the element local stiffness matrix [S’] to get the local stiffness matrix

of an element with external tendons.

6.5 Fixed-End Forces

The fixed-end forces are those forces which when applied at the two ends of a

member will lock or suppress the nodal displacements when the member is subjected to

non-nodal loading. These restraining forces confine the effects of member loads to within

the respective members. When non-nodal loads are applied on the member, the three

displacements at the free end, Oy, of the member, treated as a cantilever, can be obtained

by the unit-load method as follows:

[ {

Ad'| = -[Aeydx Ad', = —[Aydx
0

0

l

0

Ad'y = [Aydx

(6.23)

where Agp and Ay are the change in strain at the reference point O and in curvature

produced at any section due to the external loads applied on the cantilever.

154



The change in the fixed-end forces at the three local coordinates at the free end are
obtained by the stiffness approach:
-1
AF = —[f] {Ad
{AF}o, [f] {Ad'} (6.24)
The forces at the fixed end, O, can be determined by equilibrium, therefore, the
change in the six fixed-end forces are evaluated by:

{AF'} = [HI'{AF},, + {AR} (6.25)

The first three elements in vector { AR} are zero, while the last three are the changes
in the three reactions due to the external loads applied on a cantilever fixed at end O,. To
determine the changes in the time-dependent fixed-end forces during any interval ¢; to t;,
Ag(t;41-t;) and Ay(z;, .2;) are calculated at the different sections using the properties of the
age-adjusted transformed section and the flexibility matrix is replaced by the age-adjusted
flexibility matrix. Using Equations (6.23), (6.24), and (6.25) gives the changes in the time-
dependent displacement {Ad’(¢;,.¢;) }, the changes in the fixed-end forces {AF'(t; 1.8 Y o1-
and the increments {AF'(¢;,,2;) } of the six fixed-end forces at the two ends of the member,
respectively. Before assemblage of the overall load vector, the forces {AF”} for all member
must be transformed from local coordinates to global coordinates as follows:

{AF,_} = [T]'{AF} (6.26)

where {AF,,} is the load vector in global coordinates for member number m and [7] is given

by Equation (6.17).
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6.6 Calculation of Deformations of a Member

This section concerns with the numerical evaluation of the deformations, t.e.
elongation, deflection, and rotation in a frame member. The most suitable technique for the
calculation of the deformations is the method of elastic weights (Ghali and Neville, 1978).
In this method, the curvature diagram in a beam is treated as a distributed transverse load
referred to as the elastic load or weight, acting on a conjugate beam. The length of the
conjugate beam is equal to that of the actual beam, but the support conditions are changed.
Fixed and free ends in the actual beam are changed respectively to free and fixed in the
conjugate beam. A simple support remain unchanged. The deflection and the rotation at any
point in the actual beam are calculated respectively as the bending moment and the shearing
force due to elastic loads on the conjugate beam. Fig. 6.11(b) shows an example of the
curvature diagram in a typical prestressed member, Fig. 6.11(a). This diagram can be
obtained from the curvature values determined at a number of selected sections along the
member. In the present analysis, the sections need not necessarily be chosen at equal
spaces, but two sections with zero distance apart must be selected at the points of abrupt
changes in the curvature distribution, i.e. at the location of a sudden change in the cross
section dimensions or reinforcement areas or at a point where a concentrated couple is
applied. A part of the curvature diagram between any two sudden changes, is approximated
by a straight line between each two consecutive sections or by a series of parabolas over
each of the three sections. In the latter case, the corresponding length of the member, must
be divided into an odd number of sections, i.e. an even number of spaces. By such an
approximation, the curvature diagram on the actual member can be replaced by equivalent

concentrated elastic loads on the conjugate beam as shown in Fig. 6.11(c).
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The equivalent concentrated forces corresponding to a load varying linearly
between any two sections / and (i+1) can be obtained. For a parabolic variation over three

sections (i-1), i, and (i+1), which are not equally spaced, the equivalent loads are given by

(El-Badry, M.M.. 1988):

3
5/(3s5;,+4ds,) s(s;+2s,) 5]
si+s, s, s (s;+s,)
Qi1 (13492 3 3,.34a 3.2 3| | Vi-1
0. | = =% +2s;s,—s, s;+s, +4s;5,.(5,+5,) =5, +285,5, +5_ v, | (627
4 4
12 s/(s;+5,) 5iS, s (s;+5s,)
Qiv 3 Viel
s, 5.(2s,+5s,) s (4s,+3s,)
| si(spts)) s si+s, |

where s;and s, are the spacing to the left and to the right of section ;. When the load on each
spacing or on each two consecutive spacings are replaced by equivalent concentrated force,

the forces are assembled in a vector {Q} and therefore:

{0}, = [Al il (6.28)

where n is the total number of sections in the member and the elements of the matrix [A]
are functions of spacings between sections. The elements of the ith column in [A] represent
equivalent concentrated loads at all sections when at section /, y; = 1, while at all other
sections, Y =0.

The deflection d’5 and the rotation d’; at the free end of a cantilever fixed at end O,

can now be expressed in terms of {y} as:

%] [l {w} (629)

d'z = _[x.l xvz xv3

dy=-[111 | [a] <} (6.30)

The right hand sides of these two equations represent respectively the bending
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moment and the shear at end Oy of a conjugate cantilever fixed at end O; and subjected to
the equivalent concentrated elastic loads {Q}.

Equation (6.30) gives the value of the integral J.\ydx evaluated over the member
length. The displacement 4’| represents the total change in the member length and is equal
to —Ieodx evaluated over the total length. The value of this integral can be obtained by
Equation (6.30) simply by replacing y by €, thus

di=-[111 1] [a]{eo} (6.31)

Equations (6.29) to (6.30) are employed in the present study to obtain the flexibility
coefficients in Equation (6.14) and the displacement components in Equation (6.24). An
equation similar to (6.29) can be used to obtain the deflection at any section in a general
plane frame member. Fig. 6.12 depicts such a member in its original and deflected shapes.
The deflection &, at any section & is the sum of two components §;; and the deflection of
the chord, i.e. the straight line joining the two displaced ends of the member (line O’;0’,
in Fig. 6.12), and &y, the deflection measured from the chord. The component 8, can be

obtained from the displacements D', and D’5 of the ends O; and O, by linear interpolation;

thus
[—x, x;
The component 8,; can be expressed in terms of {y} as:
8Zlc = [-%1 X, X5 in] [A:I {v} (6.33)
where
. X . .
x; = T(l'xk) i<k

(6.34)
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and .
. . . .
X = T(l—x,-) >k
(6.35)
Equation (6.33) represents the bending moment at section k of a conjugate simple

beam supported at O’ and O’, and subjected to the equivalent concentrated elastic load

{Q}.

6.7 Imposition of Support Conditions

There are several methods for incorporating the boundary conditions into the
unconstrained structure stiffness equation without rearranging the stiffness matrix. The
objective is to modify the structure stiffness equation such that the expected solution will
be obtained by the usual way of solving [K]{r}={F} where {r} remains the solution vector
(displacements) and {F'} the known load vector. The method used here is the penalty
method.

Suppose that a nodal displacement r,, along direction n is prescribed to take a value
O, the procedure for imposing this boundary condition is by making some minor
adjustments of the nth row of the equation [K]{r}={F} as follows:
1- The stiffness element k,,, is modified to:

k,,+H (6.36)

nn(constraint) — "“nn

k

where H is calculated as:

H = k,x107° (6.37)

2- The element F, of the load vector is modified to:

F =F +Hx3 (6.38)

n(constraint)
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The above two steps are repeated for each prescribed displacement. Note that this
modification does not disturb the symmetry of [K].
After solving the simultaneous equilibrium equations in the usual way for the nodal
displacements {r}, the reaction R,, along direction n, can be calculated as:

R, = Hx(8-r,) (6.39)

6.8 Analysis Procedure

In a nonlinear problem, the structure stiffness matrix depends on the final deformed
shape of the structure and the stress level, i.e. on the displacements and forces. The final
deformed shape of the structure is not known in advance and therefore iterative techniques
have to be employed. Two iterative techniques are commonly used: initial stiffness
procedure and tangent stiffness procedure.

In this study, the initial stiffness procedure is used where for each construction
stage, load application, or time interval, the total load is applied, the stiffness is kept
constant, and iterations are performed until equilibrium conditions are satisfied to an
acceptable degree of accuracy. In each iteration, equilibrium is violated because an
approximate structure stiffness is used. For each iteration, a linear conventional analysis is
performed, as discussed below, using an approximate stiffness to obtain the instantaneous
and time-dependent displacements at the nodes, reactions at the supports, internal forces in
the members, and strains at the various sections. Using the strains obtained, the stresses are
computed form the material stress-strain relationships. From the stresses, the forces in each
member are calculated. The calculated forces are different from the applied forces. This

difference represents unbalanced forces which are applied on the structure in the next
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iteration to compute additional displacements, reactions, internal forces, and strains. These
additional values are added tc the previous values to obtain the total values. [terations are
stopped when the unbalanced forces are less by a predetermined level of accuracy. If
unbonded tendons are present, the change in the length of the member is computed form
the final nodal axial and rotational displacements in the member local coordinates.
Dividing this change in length by the original length of the member yields the average
change in strain which is considered the same as for the unbonded tendons. Therefore, the
change in the prestressing force can be obtained. The unbalanced force of the unbonded
tendon is applied and the iterative procedure is repeated until the change in the member
length is less than a specific tolerance. A newly calculated prestressing force in the
unbonded tendons is to be used in the next time interval. When the analysis is for the time-
dependent changes, the stiffness to be used in the respective time interval is the age-
adjusted stiffness.

For each iteration within a construction stage, load application or time interval, the
linear stiffness analysis is used as follows to determine the increments of nodal
displacements and member end forces:

1) The structure is idealized to a set of elements connected together at the joints (nodes).

2) The global structure coordinates and the local coordinates for each member are set.

3) For each member, the stiffness matrix is generated, rotated into structure coordinates
and positioned in the global structure stiffness matrix [K]. When the analysis is for the
time-dependent changes, the stiffness to be used in this step is the age-adjusted
stiffness.

4) Loads applied directly at the nodes, in global coordinates are placed directly in the load
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vector {F}. Loads equivalent to loads applied on the members are calculated at the end
nodes, negatives of fixed-end actions, then rotated into structure coordinates and placed
into the load vector {F}.

5) The global structure stiffness matrix [K] and the load vector {F} are corrected for the
known support conditions.

6) Joint displacement are found by solving a set of equilibrium equations {D} = [K]’1 {F}.

7) The displacement corresponding to each member is extracted form {D} and then
rotated into member coordinates. The final member end actions can be found by
multiplying the member stiffness matrix by its end joint displacements, and then adding
the resulting vector to the member fixed end actions.

It is worth noting that the analysis presented in this chapter has an advantage over
the standard finite element techniques, particularly when nonprismatic members are
involved. The essential feature of the present analysis is that the actual deflected shape of
as member is obtained by integrating the actual strains and curvatures. In the finite element
method, the deflected shape of a member is usually assumed as a function of the
displacements at the nodes and equilibrium between the external and internal forces is
satisfied only at the nodes. A large number of elements is usually needed to overcome this

drawback especially for cases where nonlinear behaviour is expected.

6.9 Verification of the Procedure
The current analysis was performed using the program CPF, developed by El-
Badry, M.M., 1989, after modifications to include the instantaneous and time-dependent

nonlinear analysis of prestressed reinforced concrete beams and to include internal
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unbonded and external tendons in the analysis. A series of studies were undertaken to verify
the program satisfactorily modeling the nonlinear behaviour of a variety of concrete
structures. The results of some of these verification studies are reported in the following
sections.

Externally and internally prestressed beams with the same cross section
configurations but different tendon profiles and different span-to-depth ratios are studied.
Also beams with internal unbonded tendons are examined. Theses studies were performed

to show that the nonlinear response of the concrete is modeled satisfactorily

6.9.1 Reinforced Concrete Beam Analysis

A simplé reinforced beam tested analyzed by Kang (1977) and Lin (1973) was
selected for comparison and is shown in Fig. 6.13. The results of the current analysis on the
same beam were compared with experimental values as well as with Kang’s and Lin’s
analytical results. The beam has a rectangular cross section throughout its length. It has two
#4 compression steel bars and 5 #9 tension steel bars. The concrete has a compressive
strength of 5.62 ksi (39 MPa), tensile strength of 0.611 ksi (4.21 MPa), and a maximum
compressive strain of 0.0038. The #4 steel bars has a modulus of elasticity of 29200 ksi
(201000 MPa), a yielding strength of 50.1 ksi (345.4 MPa), a strain hardening modulus of
144 ksi (993 MPa), and a rupture strain of 0.2. The #9 steel bars has a modulus of elasticity
of 30700 ksi (212000 MPa), a yielding strength of 80.1 ksi (552 MPa), a strain hardening
modulus of 418 ksi (2882 MPa), and a rupture strain of 0.139. Geometric nonlinearity was
neglected in both Kang’s and Lin’s analysis.

In Fig. 6.13, load-deflection curves at midspan are plotted. Experimental and
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analytical results by Kang’s analysis, Lin’s analysis, and the current analysis are shown
together for comparison. In the experiment, about 30% of the ultimate load was first
applied and removed. The beam was then loaded again up to the ultimate load. The load-
deflection curve shown in Fig. 6.13 corresponds to the second cycle of loading. In the three
analyses, the midspan load was applied in one cycle. The difference between the
experimental and the analytical results in the lower load level can be attributed to the effects
of load reversal. The three analyses predict the ultimate load same as that of the
experimental value. It can be seen that the load-deflection curve of the current analysis is
closer to that for the experiment than those of Kang’s and Lin’s analyses especially at the
ultimate load level. This can be attributed to the fact that in Kang’s analysis the section is
divided into a number of concrete layers as opposed to a closed form solution in the current
study and that the stress-strain curve for concrete in Lin’s analysis is assumed elastic-
perfectly plastic as opposed to a concrete stress-strain curve with a parabola in the current

study.

6.9.2 Analysis of Pretensioned Column
A pretensioned column was tested and analyzed by Aroni (1968) and Kang (1977)
was used for comparison and is shown in Fig. 6.14. The 60 in. (1524 mm) long column was
axiaily pretensioned with four 0.198 in. (5 mm) diameter high tensile steel wires. The
prestress was released at 14 days after casting of concrete and cured under water until 28
days after casting, when the eccentric load was applied up to failure. The initial prestressing
force was 15600 lbs (69.4 kN). The geometric nonlinearity was neglected.

The eccentric compression is simulated by an equivalent concentric compression
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and a moment. It can be seen from Fig. 6.14 that a good agreement was obtained between

the experimental results and the analytical results for Aroni, Kang, and the present study.

6.9.3 Simply Supported Prestressed Beam

Fig. 6.15(a) shows a pretensioned partially prestressed simple beam. The midspan
cross section of the beam is shown in Fig. 6.15(b). The section is constant over the span
with the exception of the location of the prestressed steel. The beam is pretensioned with a
tendon depressed at points B and C with the profile shown in Fig. 6.15(a). The beam carries
a uniform dead load of intensity 14 kN/m (0.96 k/ft) introduced at age to at the same time
as the prestress transfer. At time ¢, long after f,, a uniformly distributed live load is
introduced. It is fequired to determine the response of the beam.

Tension in prestress tendon just before transfer = 1250 kN (281 kip), moduli of
elasticity of concrete at age ¢, and ¢ are E(t,) =24 GPa (3481 ksi) and E_(¢) =30 GPa (4350
ksi), E; = 200 GPa (29000 ksi) for all reinforcement, ¢(z,2,) = 2, x(z.t,) = 0.8, j;u = 1860
MPa (270 ksi), reduced relaxation for the period (t-to) = -90 MPa (-13 ksi), shrinkage for
the same period €.,(%,2,) = -300x10°®. Assume high-bond quality of reinforcement and
tensile strength of concrete f,, = 2.5 MPa (0.36 ksi). Cracking is considered in this example.

The same beam is now posttensioned with external tendons with three different
profiles, see Fig. 6.16. Material properties are the same as above. It is required to study the
instantaneous and log-term response of the beam and evaluate the different parameters that
affect the behaviour such as span-to-depth ratio and eccentricity changes.

It can be seen from Figs. 6.17 to 6.29 that the deflection of the beams is affected by

the time-dependent effects of creep, shrinkage, and relaxation. The time-dependent effects
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increase with the span; i.e. the span-to-depth ratio. These figures also show that the
deflections are smaller in beams with external tendon than those in beams with internal
tendons. The deflection of the external tendon is restricted to the deflection of the beam at
the deviator locations, and it is different from the deflection of the beam at any other
location. Also, the eccentricity variations were found to be affected by the time-dependent
material properties and the span-to-depth ratios, Figs. 6.30 to 6.35. The ratio of the
eccentricity after time-dependent effects to the corresponding eccentricity at the initial
loading for the same section, e(t)/e(t,), was plotted versus the ratio of distance between the
support and the section to the beam span, X/S, for different span-to-depth ratios, S/d,,. It can
be seen that the ratio e(t)/e(t,) is equal to unity over the supports and at the deviators. At all
other locations, the eccentricity considering the time-dependent effects become smailer
than the initial eccentricities. The ratio e(r)/e(t,) decreases with the increase in span-to-
depth ratio. Therefore, the change in eccentricity becomes signiﬁcant when the span-to-
depth ratio increases and has to be considered.

Fig. 6.36 shows the instantaneous and long-term deflections of the simply
supported beams. It can be seen from these graphs that the time-dependent effects yield
deflections much larger than those due to instantaneous effects. These deflections may even
be larger than the deflections specified for serviceability requirements. The graphs also
indicate that the profile of the external tendons has no effects on reducing the time-
dependent deflections. It can be concluded that the time-dependent effects may
significantly affect the response of the member regardless of the tendon profile.

Figs. 6.37 (a) and (b) show the load-deflection and the moment-deflection

behaviour of the analyzed simple beam of 10 m (33 ft) span respectively. The external
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prestressing was applied after time-dependent effects took place under the self-weight of
the beam. The curves shown in these figures are similar to the load-deflection and the
moment-deflection response of flexural concrete members observed in many experimental
studies. The graph in Fig. 6.37 (a) indicates that the load-deflection response of the
strengthened beam was improved. This is indicated by the increase in the stiffness of the
concrete member (expressed as the slope of the load-deflection response) after
strengthening and applying live load. As shown in Fig. 6.37 (a), external prestressing led
to a stiffer load-deflection response. Fig. 6.37 (b) shows the residual deflection in the beam
after prestressing and it can be observed that the time-dependent effects are an important
factor in the analysis and can yield members with residual deflection even after
strengthening.

Fig. 6.38 shows the moment-deflection curve for the analyzed beams. It can be seen
that a reduction in the flexural stiffness of the beam occurs due to the loss in the prestressing
force. The instantaneous behaviour of the beams yields small deflection associated with a
relatively large bending moment. After the transfer of the prestress, beams with high span-
to-depth ratios exhibit large deflections associated with relatively small increase in bending
moment. This is due to a reduction in the flexural stiffness which results in a reduced
prestressing force and continuous change in the eccentricity between the external cables
and the beam. Therefore members with high span-to-depth ratios may reach high and
unacceptable deflections due to the time-dependent effects only and well before the
application of live loads.

Figs. 6.39 (a) and (b) show the variation of the stress increase in external tendons

Afps versus midspan deflection. Fig. 6.39 (a) shows that the rate of the stress increase, Afy,
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decreases with increasing the span-to-depth ratio. Fig. 6.39 (b) shows a continuing decrease
in Af,s and this can be attributed to the high deformations within the maximum moment
region compared to the deformations elsewhere along the beam. The curves in the Figs.
6.39 (a) and (b) follow the same trend shown in most of the literature (i.e. Naaman, 1990,
Naaman and Alkhairi, 1991, Alkhairi and Naaman, 1993, and Harajli, 1993).

Fig. 6.40 (a) shows the distribution of top and bottom fiber stresses against one half
of the span of the beam. It can be seen from Fig. 6.40 (a) that sudden change in the stresses
occur at the location of the external tendon deviators. It can also be noticed that the time-
dependent effects do not have significant influence on the top stresses. The largest change |
in the top stress occurs at the location of the deviators. This is due to the loss in prestressing
taking place between the initial loading and the end of the time-dependent effects. It can
also be seen that the time-dependent effects significantly increase the bottom fibre
stresses.This may lead to cracking of the beam before the application of the live loads. This
is due to the non-existence bond between the concrete and the external tendons. Fig. 6.40
(b) shows the compressive stress at concrete top fiber versus time. It can be seen from this
figure that the relation is nonlinear during a period of 1400 days despite the fact that the
stress distribution at initial loading is linear. This can be attributed to the nonlinear creep
effects resulting from the sustained compressive stress on concrete which in turn affects the
time-depende;lt behaviour of the beam.

Fig. 6.41 shows that the relation between the strain in the external cables and the
beam deflection due to the instantaneous and time-dependent effects can be considered
linear. This agrees with Harajli (1993).

The live load was applied on the beam after the time-dependent effects have taken
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place. Fig. 6.42 shows the relation between the live load and the ratio of the maximum
stress to the initial stress in the external tendons. It can be seen from Fig. 6.42 that this
relation is linear, which agrees with Harajli (1993). Fig. 6.42 also shows that for beams with
low span-to-depth ratios, the stress in the external tendon increases at a low rate as the live
load increases as opposed to beams with high span-to-depth ratios. It is also worth noting
that after the time-dependent effects have taken place the stress ratio in beams with high
span-to-depth ratios is less than the stress ratio in beams with low span-to-depth ratios. This
is due to the loss in prestressing resulted from large deflections due to time-dependent
effect in beams with high span—to-depth ratios. Large deflections result in a decrease in
eccentricity between the tendons and the beam and hence, a decrease in the bending
moment from external tendons. It has to be mentioned that the ratio of the prestressing
stress to initial stress varies nonlinearly with the span as shown in Fig. 6.43. This nonlinear
variation in the stress is due to the loss in prestressing after time-dependent effects,
variations in the eccentricity, and crack development in the beam which all occur at an

increasing pace as the span-to-depth ratio increases.

6.9.4 Simply Supported Beams with Internal unbonded Tendons Tested by
Harajli and Compared With The Current Study

This verification is used to check the moment-deflection response of beam

specimens with internal unbonded prestressing tendons and tensile reinforcing steel loaded

to flexural failure. Harajli (1995) tested a total of 26 simply supported beam specimens with

internal unbonded tendons. Four of these beam specimens are used for comparison with the

current procedure.These beams have rectangular cross section whose dimensions are 5"x9"
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(127mmx229mm). The span of the beams is 120" (3048 mm). The depths of the reinforcing
tensile steel and the prestressed wires form the top fiber are 8" (203 mm) and 6.3" (160
mm), respectively, see Fig. 6.44. The ducts for the prestressing wires were 2mm thick
smooth plastic tubes with a 12 mm (0.47 in) internal diameter. A summary of reinforcement

and strength parameters of the various beam specimen is given in the following table:

Concrete Grade of P/ Effective Yield stress
dcs? o n E:f:i:f i S‘:'{‘Pf' R/s‘;ez' 4 Suengthf,  swelf,,  preswessf, of Ristecl,
gn & (ksi) (ksi) (ksi) (ksi)

P2R3-3 2-1/3 point 2 (7 mm) 2 (6 mm) 6.8 215 125 40
load 0.12 plain bars (46.9 MPa) (1482 MPa) (862 MPa) (276 MPa)

P2R3-0 2-1/3 point 2 (7 mm) 2 (6 mm) 356 207 127 40
load 0.12 plain bars (38.6 MPa) (1427 MPa) (876 MPa) (276 MPa)

P3R3-3 2-1/3 point 3 (7 mm) 2 (6 mm) 6.75 207 128 40
load 0.18 plain bars (46.5 MPa) (1427 MPa) (882.6 MPa) (276 MPa)

P3R3-0 2-1/3 point 3 (7 mm) 2 (6 mm) 5.98 207 [23 10
load 0.18 plain bars (41.2 MPa) (1427 MPa) (848 MPa) (276 MPa)

It can be seen from Figs. 6.45 to 6.48 that there is a good agreement between the
current procedure and the experimentally observed applied midspan moment versus
deflection. The maximum deflections at the collapse load are in close agreement. The slight
differences in deflection are partly due to stress-strain model of the prestressing steel and

the shear effects which are neglected in the nonlinear analysis.
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Fig. 6.12 Original and Deflected Shape of a Typical
Plane Frame Member
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Fig. 6.37 (a) Load versus Deflection for Beam of Span 10m
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Fig. 6.40 (a) Distribution of Top and Bottom Stresses in Concrete along the Span
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Fig. 6.40 (b) Variation of Maximum Compressive Stress in Concrete with Time
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CHAPTER SEVEN

SUMMARY AND CONCLUSIONS

7.1 Summary

An efficient numerical procedure for the material nonlinear analysis of planar
reinforced and externally and/or internally prestressed concrete frames including the time-
dependent effects due to creep and shrinkage of concrete and relaxation of the tendons has
been presented. The method is capable of predicting the displacements, internal forces.
stresses and strains of these structures throughout their service load history, as well as
throughout elastic, inelastic, and ultimate load ranges.

The stress-strain relationship of concrete has long been recognized as being
nonlinear. In accounting for this nonlinearity, concrete, reinforcing steel, and the
prestressing steel are assumed in this study to be in states of uniaxial stress. Their strain
states are traced throughout the analysis. For concrete, the material is modeled as a parabola
and a linear descending part in the compression and a linear relation in the tension. For the
reinforcing and prestressing steel, the relation is bilinear and multilinear, respectively.

The time-dependent effects of creep and shrinkage become significant parts of the
long term behaviour of reinforced concrete beams. Nonlinear analyses of reinforced
concrete structures in which these strains are not included, will give incorrect distribution
of stresses.

In the time-dependent analysis, the time domain is divided into a number of time

intervals. For each time interval, nonlinear equilibrium equations are set up and solved by



the stiffness method. I[terative technique is used for the solution of the nonlinear
equilibrium equations. At any instant f;, the instantaneous changes in stresses and
deformations are calculated and added to the existing values. Also for any time interval, ¢,
the time-dependent change in stresses and deformations taking place between ¢; and 1;, | are
determined and added to update the existing values. In this study, creep and shrinkage of
concrete and steel relaxation are included and recognized in every time interval.

In order to account for the varied material properties within a reinforced concrete
element, the element is divided into a discrete number of concrete parts and steel layers of
different properties.

Finally, a series of numerical examples are analyzed by the current study to
investigate the 'validity of the present procedure. The results are compared with

experimental data and other theoretical results.

7.2 Feature of The Current Study

This study addresses and combines into a single package various issues involving
the use of unbonded tendons in flexural members. To the best of the author’s knowledge,
none of the studies to date dealt with these issues in a simultaneous manner. These issues
include: 1) the time-dependent effects of creep and shrinkage of the concrete and relaxation
of the prestressing steel on the flexural behaviour of beams prestressed with bonded and/or
unbonded internal and /or external tendons from zero load up to failure, 2) the difference
in flexural behaviour between beams prestressed with bonded/unbonded internal versus
external tendons and the time-dependent effects on the loss of eccentricity associated with

the use of external tendons, 3) the calculation of the instantaneous and time-dependent
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deflections at any section from the real strains and curvatures at the various sections

throughout the span of the beam, 3) the effect of varying of the tendon profile geometry and

the effects of the span-to-depth ratios on the flexural behaviour of beams, and 4) the

instantaneous and time-dependent analysis of beams with different concrete types and

different steel types subjected to various loading types.

7.3 Conclusions

The following conclusions can be drawn from the studies performed in the current

analytical work:

Y

2)

For beams with low span-to-depth ratios (from 13 to 20) and subject to instantaneous
(self weight and prestressing) and time-dependent effects, the deflection of a beam
with internal tendons is almost similar to that of beam with external tendons and
having the same profile. This is because beams with low span-to-depth ratios are
characterized as being very stiff, thus produce very small vertical deflections.
Therefore, beams with external tendons and having low-span-to-depth ratios can be
analyzed the same way as beams prestressed with internal bonded tendons.

Time-dependent effects have proven to decrease the eccentricity between the external
tendons and the beam. The ratio of the eccentricity after time-dependent effects to the
corresponding eccentricity at the initial loading for the same section, e()/e,q) is equal
to unity over the support and at the deviators. At all other locations the eccentricities
considering the time-dependent effects become smaller than the initial eccentricities,
Figs. 6.30-6.35. This will lead to large deflections and deformations and therefore

lead to a reduced stiffness of the member.



3)

4)

6)

7)

The time-dependent effects have yielded deflections about five times those of the
instantaneous effects regardless of the external tendon profile geometry and
regardless of the span-to-depth ratios, Fig. 6.36. Therefore, the aim of the external
prestressing, which is generally to reduce the stresses in the reinforced concrete and
hence to allow the structure to support additional live load, may be weakened if
time-dependent effects are not considered.

Beams with high span-to-depth ratios exhibit large deflections associated with
relatively small increase in the bending moments. This is due to a reduction in the
flexural stiffness which is a result of a reduced prestressing force and continuous
change in eccentricity between the external cables and the beam at the section of
maximum bending moment. Therefore, members with high span-to-depth ratios may
reach high and unacceptable deflections due to the time-dependent effects only and
well before the application of live loads.

The rate of the stress increase, Af,,, in the external tendons decreases with increasing
the span-to-depth ratio, Figs. 6.39 (a) and (b). This is due to the loss in prestressing
resulting form large deflections due to time-dependent effects and the eccentricity
variations of the cables.

The relation of the compressive stress at concrete top fiber versus time is nonlinear
during a period exceeding 4 years, Fig. 6.40 (b), despite the fact that the stress
distribution at initial loading is linear. This can be attributed to the nonlinear creep
effects resulted from the sustained compressive stress on concrete which in turn
affects the time-dependent behaviour of the beam.

For the same span-to-depth ratio, external tendons with horizontal profile have
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8)

proven to yield beams with instantaneous and long-term deflections smaller than
those of beams with one point or two-point draped tendon profiles. This is because
beams with horizontal external tendons have constant eccentricity throughout their
spans whereas beams with draped external tendon profiles have decreasing
eccentricity between the deviator and the anchorage zones, see Figs. 6.19-6.27.
Therefore, the instantaneous (self-weight and prestressing) and time-dependent
effects are more significant in beams with draped external tendon profiles than those
with horizontal tendon profiles. But when live load is applied, beams with horizontal
tendons exhibit more deflections (at midspan section) than those of beams with one
or two-point draped tendons. This can be attributed to the section of maximum
moment of the beam with horizontal tendon profile losing eccentricity at a faster rate
under live load, Figs. 6.19-6.27. This will yield higher deflections.

The load-deflection response may be improved after strengthening, Fig. 6.37 (a). This
was caused by an increase in the stiffness of the concrete member, expressed as the
slope of the load-deflection response, after strengthening and loading. This increase
in the load-deflection slope has slowed down the rate of the deflection resulting in an
improved flexural behaviour of the member. Therefore, external prestressing

improves the flexural resistance of the concrete members.

7.4 Recommendations for future study

The following possible avenues can be pursued as an extension of the current

analytical investigation:

D

In Chapter 5, a methodology was presented to model the effects of shear deformations
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3)

4)

5)

6)

on the behaviour of homogeneous noncracked members. This methodology combines
the effects of shear, axial force, and flexure and provides an accurate modeling of the
strain and curvature for elastic analysis. An analytical investigation can be carried out
using this methodology to accommodate nonlinear analysis of nonhomogeneous
cracked members and therefore to study the effects of shear deformations on the
behaviour of prestressed concrete members. In these members, the dowel action
contributed by internal strands and normal steel and the aggregate interlock can be
studied analytically.

Slippage of the external tendons at deviator locations can be examined closely with
special attention given to the frictional losses at these locations.

This study can be extended to include continuous beams to study the effect of loading
one or more spans on the stress in unbonded tendons. Harajli and Kanj (1990)
concluded that the ratio of loaded spans to the total number of spans between the
anchorage ends is more important than the factor of span-to-depth ratio.

Analysis of segmentally erected prestressed concrete elements with joints can be
explored. Limited work has been done addressing this issue, EI-Habr (1988) and
MacGregor et al. (1989).

The use of fiber reinforced concrete can be examined and compared to concrete
beams with normal reinforcement. The ductility of beams prestressed with fiber
reinforced plastic (FRP) tendons can also be studied and compared to that of beams
prestressed with conventional steel tendons.

Geometric nonlinearity, P-A effects, resulting form large deflections can be examined

to study its effect on the flexural behaviour of externally prestressed reinforced
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7

concrete members. Iterative analysis has to be performed to account for geometric
nonlinearity since the deformed geometry of the member is not known in advance.
Experimental work on the subject including all or some of the parameters mentioned

above will be helpful and complementary to the analytical work.

219



REFERENCES

Aas-Jackobsen, K., “Design of Slender Reinforced Concrete Frames,” Bericht Nr. 48,

Institu Far Baustatik, Eth, Zurich, 1973.

Abdel Karim, A.M., “Analysis and Design of Precast/Prestressed Concrete Sliced-Girder
Bridges,” Ph.D. Dissertation, University of Nebraska at Lincoln, Nebraska, November,
1991.

ACI Committee 343, “Analysis and Design of Reinforced Concrete Bridge Structures,”
ACI Report 343-77, American Concrete Institue, Detroit, 1977.

ACI Committee 318, “Building Code Requirements for Reinforced Concrete (ACI 318-

83),” American Concrete Institute, Detroit, Michigan, 1983.
ACI Committee 209, “Prediction of Creep, Shrinkage, and Temperature effects in
Concrete Structures,” Designing for Creep and Shrinkage in Concrete Structures, Special

Publication, No. SP-76, American Concrete Institute, Detroit, 1990.

ACI Committee 209, “Prediction of Creep, Shrinkage, and Temperature effects in

Concrete Structures,” American Concrete Institute, Detroit, 1990.

Aldstedt, E., “Nonlinear Analysis of Reinforced Concrete Frames,” Division of Structural

Mechanics Institute of Technology, University of Trondheim, Norway, 1975.

Alkhairi, F. M. and Naaman, A. E., "Analysis of Beams Prestressed with Unbonded
Internal or External Tendons," ASCE, Journal of Structural Engineering, Vol. 119, No. 9,
September 1993.

Argyris, J.H,, et al., “Recent Developments in the Finite Element Analysis of Prestressed

220



Concrete Reactor Vessels,” PaperH1/1, 2nd International Conference on Structural

Mechanics in Reactor Technology, Berlin, West Germany, September, 1973.

Aroni, S., “Slender Prestressed Concrete Columns,” UC-SESM Report No. 67-10,

Division of Structural Mechanics, University of California, Berkeley, 1967.

Bazant, Z.P., “Prediction of Concrete Creep Effects Using Age-Adjusted Effective
Modulus Method,” Journal of the American Concrete Institute, ACI Proceedings, Vol. 69,
No. 4, April 1972.

Bazant, Z.P.,, and El-Nimeiri, M., “Stiffness Method for Curved Box Girders at Initial
Stress,” Journal of Structural Division, ASCE Proceedings, Vol. 100, No. ST10, October
1973, pp- 1851-1874.

Bazant, Z.P., and Najjar, L.T., “Comparison of Approximate Linear Methods for Concrete
Creep,” Journal of the Structural Division, ASCE Proceedings, Vol. 99, No. ST,
September 1973.

Bazant, Z. P. and Oh, B. H., "Deformation of Progressively Cracking Reinforced Concrete

Beams,” ACI Journal, V. 81, No. 3, May-June 1984, pp. 268-278

Branson. D. E. and Christian, M.L., “Time-Dependent Concrete Properties Related to
Design Strength and Elastic Properties, Creep and Shrinkage,” Special Publication, No.

SP-27, American Concrete Institute, Detroit, pp. 257-267.
Branson, D. E. and Trost, H., "Unified procedures for Predicting the Deflection and
Centroidal Axis Location of Partially Cracked Nonprestressed Concrete Members,"” ACI

Journal, Proceedings, V. 79, No. 2, March-April 1982, pp. 119-130.

Brondum-Nielsen, T., "Ultimate Limit States of Cracked Arbitrary Concrete Sections

8%
(8]
Pt



Under Axial Load and Biaxial Bending,"” Concrete International: Design & Construction,

V. 4, No. 11, Nov. 1982, pp. 51-55.

Brendum-Nielsen, T., "Ultimate Flexural Capacity of Partially or Fully Prestressed
Cracked Arbitrary Concrete Sections Under Axial Load Combined with Biaxial Bending,"
Concrete International: Design & Construction, V. 5, No. 1, Jan. 1983, pp. 77-78.

Brondum-Nielsen, T., "Ultimate Flexural Capacity of Fully Prestressed, Partially
Prestressed, and Nonprestressed Arbitrary Concrete Sections under Symmetric Bending,”

ACI Journal, January-February 1986.

Brown, R.C.. Jr.,, Bums, N.H., and Breen, J.E., (1974), “Computer Analysis of
Segmentally Erected Precast Prestressed Box Girder Bridges,” Centre of Highway

Research, University of Texas at Austin, Austin, Texas.

Burns, N. H., Helwig, T., and Tsujimoto, T., "Effective Prestress Force in Continuous

Post-Tensioned Beams with Unbonded Tendons,” ACI Structural Journal, January-

February 1991.

Campbell, T. I and Kodur, V. K., "Deformation Controlled Nonlinear Analysis Prestressed

Concrete Continuous Beams," PCI Journal, September-October 1990.

CEB-FIP, Model Code for Concrete Structures, Comite Euro-International du Beton -

Federation International de la Precontrainte, Paris, 348 pp., 1978.

CEB-FIP, Evaluation of Time dependent Behavior of Concrete, Comite Euro-International

du Beton, Bulletin d’information No. 199, Paris, Aout 1990.

Chan, E.C., “Nonlinear Geometric, Material, and Time Dependent Analysis of Reinforced
and Prestressed Concrete Shells with Edge Beams,” UC-SESM Report No. 82-08,

222



Division of Structural Engineering and Structural Mechanics, University of California,

Berkley, California, December 1982.

Chen, J., You, C., Bazant, Z. P, "Deformation of Progressively Cracking Partially
Prestressed Concrete Beams," PCI Journal, January-February 1992.

Collins, M.P., “Towards a Rational Theory for RC Members in Shear,” Journal of the
Structural Division, ASCE, Vol. 104, pp. 649-666, April 1978.

Collins, M.P. and Mitchell, D., “Shear and Torsion Design of Prestressed and Non-
Prestresses Concrete Beams,” Journal of the Prestressed Concrete Institute, Vol. 25, No. 5,

Sept.-Oct. 1980, Discussion and Closure PCI Journal, Vol. 26, No. 60, Nov.-Dec. 1981.

Collins, M.P. and Mitchell, D., “Evaluating Existing Bridge Structures Using the Modified
Compression Field Theory,” American Concrete Institute Publication, “Strength

Evaluation of Existing Concrete Bridges,” PCI SP-88, pp. 109-141, 1985.

Collins, M.P. and Mitchell, D., Prestressed Concrete Basics, First Edition, Canadian

Prestressed Concrete Institute, 1987.

Connor, J.J, and Samne, Y., “Nonlinear Analysis of Prestressed Concrete Reactor Pressure
Vessels,” Paper H2/2, 3rd International Conference on Structural Mechanics in Reactor

Technology, London, September 1975.

Davis, R.E., and Davis, H.E., “Flow of Concrete under Sustained Compressive Stress.”
Proceedings American Society for testing and Materials, part II, Vol. 30, pp. 707-730,
1930.

Davis, R.E., and Davis, H.E., and Brown, E.H., “Plastic Flow and Volume Changes in

Concrete,” Proceedings American Society for testing and Materials, part II, Vol. 37, pp.

N
8]
W



317-330, 1937.

El-Ariss, B. and El-Badry, M.M., “Serviceability and Strength of Externally Prestressed
Concrete Structures,” published in the CSCE 1996 Annual Conference, Structural
Specialty, May 29-June 01, Edmonton, Alberta, Canada. 1996.

El-Badry, M.M., “Serviceability of Concrete Structures,” Ph.D. Dissertation, Department
of Civil Engineering, The University of Calgary, Calgary, Alberta, November 1988.

El-Badry, M.M. and Ghali, A., User’s Manuel and Computer Program CRACK, Research
Report No. CE85-1, Department of Civil Engineering, The University of Calgary, Calgary,
Alberta, Canada, January 1985, (Revised February1986).

El-Badry, M.M. and Ghali, A., User’s Manuel and Computer Program CPF: Cracked
Plane Frames in Prestressed Concrete, Research Report No. CE85-2, Department of Civil
Engineering, The University of Calgary, Calgary, Alberta, Canada, January 1985,
(Revised March 1989).

El-Badry, M.M., and Ghali, A.”” Serviceability Design of Continuous Prestressed
Concrete Structures,” Prestressed Concrete Institute, PCI Journal, Vol. 34, No. 1, January-

February 1989.

El-Habr, K.C., "Finite Element Analysis of Externally Prestressed Segmental Construc-

tion,” MS Thesis, University of Texas at Austin, Texas.
England, G.L. and Illiston, J.M., “Method of Computing Stress in Concrete from a History
of Measured Strain,” Civil Engineering and Public Works Review, London, Vol. 60, pp.

692-694, April 1965.

Faber, O., “Plastic Yield, Shrinkage and Other Problems of Concrete and Their Effects on

224



Design,” Minutes of Proceedings of Institute of Civil Engineers, Vol. 225, Part [, London,

1927.

Franklin, H.A., “Nonlinear Analysis of Reinforced Concrete Frames and Panels,” Ph.D.
Dissertation, Division of Structural Engineering and Structural Mechanics, University of

California, Berkeley, UC-SESM Report No. 70-5, March 1970.

Ghali, A. and Favre, R., "Concrete Structures: Stresses and Deformations,” London, New

York: Chapman and Hall, 1986 and 1994.

Ghali, A. and Neville, A.M., Structural Analysis: a Unified classical and Matrix
Approach, 3rd. Edition, London, New York, Chapman and Hall, 1989.

Ghali, A. Sisodiya, R.G., and Tadros, G.S., “Displacements and Losses in Multistage
Prestressed Members.” Journal of the Structural Division, ASCE, Vol. 100, No. ST11,
November 1974.

Ghali, A. and Trevino, J., "Relaxation of Steel in Prestresses Concrete,” PCI Journal, V.

30, No. 5, September-October 1985, pp. 82-94.

Gilbert, R.I.,, and Wame, R.F., “Nonlinear Analysis of reinforced Concrete Slabs with
Tension Stiffening,” UNICIV Report No. r-167, University of New South Wales,
Kensington, N.S.W., Australia, January 1977.

Glanville, W.H., “The creep or Flow of Concrete Under Load,” Department of Scientific

and Industrial Research, building Research Technical Paper, No. 12, 1930.
Greunen, J.V,, “Nonlinear Geometric, Material, and Time Dependent Analysis of

Reinforced and Prestressed Concrete Slabs and Panels,” UC-SESM Report No. 79-3,

Division of Structural Engineering and Structural Mechanics, University of California,

225



Berkley, California, October 1979.

Guyon, Y., “Prestressed concrete,” Edited by W. M. Johns, London, Contractors Record

and Municipal Engineering, 543 pp., 1960.

Harajli, M.H.,” Effect of Span-Depth Ratio on the Ultimate Steel Stress in Unbonded
Prestressed Concrete Members,” ACI Structural Journal, Vol. 87, No.3, May-June 1990.
Harajli, M.H., "Effect of Span-Depth Ratio on the Ultimate Steel Stress in Unbonded
Prestressed Concrete Members,"” ACI Structural Journal, May-June 1990.

Harajli, M.H., “Strengthening of Concrete Beams by External Prestressing,” PCI Journal,
Vol. 38, No. 6, November-December 1993.

Harajli, M.H. and Hijazi, S.A., "Evaluation of the Ultimate Steel Stress in Partially
Prestressed Concrete Members," PCI Journal, January-February 1991.

Harajli, M.H. and Kanj, M.Y., “Experimental Study of the Behaviour of Unbonded
Partially Prestressed Beams in Flexure,” Report Published in 1990, The American

University of Beirut, Beirut, Lebanon, 1990.

Harajli, M.H. and Kanj, M.Y,, "Ultimate Flexural Strength of Concrete Members

Prestressed with Unbonded Tendons," ACI Structural Journal, November-December 1991.

Harajli, M.H., and Wehbe, [.A., “Analysis of Flexural Concrete Members Strengthened
using External Prestressing,” American Society of Civil Engineering, ASCE-SAS,
Proceedings of the First Regional Conference and Exhibition-Advanced Technology in

Civil Engineering, Manama, Bahrain, pp. 219-232, September 18-20, 1994.

Hognestad, E., “A Study of Combined and Axial Load in Reinforced Concrete Members,”

University of Illinois Engineering Experiment Station, Bulletin Series No. 399, Bulletin

226



No. I, November 1951.

Kang, Y.J., “Nonlinear Geometric, Material and Time Dependent Analysis of Reinforced
and Prestressed Concrete Frames,” UC-SESN Report No. 77-1, Division of Structural
Engineering and Structural Mechanics, University of California, Berkley, California,

January 1977.

Kang, Y.J., and Scordelis, A.C., “Nonlinear Analysis of Prestressed Concrete Frames,”
Journal of the Structural Division, ASCE, Vol. 106, No. ST2, Pro. Paper 15191, February,
1980, pp- 445-462.

Kashima, S. and Breen, J.E., “Construction and Load Tests of Segmental Precast Box
Girder Bridge Model,” Center of Highway Research, University of Texas at Austin,
Austin, Texas, pp. 261, 1975.

Ketchum, M.A., “Redistribution of Stresses in Segmentally Erected Prestressed Concrete
Bridges,” UC-SESM Report No. 86-07, Division of Structural Engineering and Structural
Mechanics, University of California, Berkeley, California, May 1986.

Khalil, M.S., “Time Dependent Non-Linear Analysis of Prestressed Concrete Cable-
Stayed Girders and Other Concrete Structures,” Ph.D. Dissertation, Department of Civil

Engineering, University of Calgary, Calgary, Alberta, April 1979.
Kim, J.K., “Prediction of Time-Dependent Deformations of Concrete and Bridge
Deflection Probability,” Ph.D. Dissertation, Department of Civil Engineering,

Northwestern University, Evanston, Illinois, December 1990.

Kline, T.R., “Strengthening a Prestressed Double Tee Beam,” Concrete Repair Digest

Journal, Aberdee Group, December 1995 - January 1996.

227



Lin. C.S., “Nonlinear Analysis of Reinforced Concrete Slabs and Shells,” Ph.D.
Dissertation, Division of Structural Engineering and Structural Mechanics, University of

California, Berkley, California, UC-SESM Report No. 73-7, April 1973.

Lin, C.S., “Nonlinear Analysis of Reinforced Concrete Shells of General Form,” Journal

of the Structural Division, ASCE, Vol. 101. No. ST3, March, 1975.

Loov, R., "Flexural Strength of Prestressed Beams with Unbonded Tendons,” Lecture

presented to the North East Forestry University, Harbin, China, June 1987.

MacGregor, R.G, Kreger, M.E., and Breen, J.E., “Strength and Ductility of a Three-Span
Externally Post-Tensioned Segmental Box Girder Model,” A Preliminary Review Copy
Submitted to Texas State Department of Highways and Public Transportation, Report No.
365-3F, 279 pp., January 1989.

Mattock, Alan H., Yamazaki, Jun, and Kattula, Basil T., "Comparative Study of
Prestressed Concrete Beams, With and Without Bond," ACI Journal, Proceedings V. 68.

No. 2, February 1971, pp. 116-125.

Mengotto, M. and Pinto, P. E., "Method of Analysis for Cyclically Loaded R.C. Plane
Frames, Including Changes in Geometry and Non-Elastic Behaviour of Elements Under
Combined Normal Force and Bending,” IABSE Preliminary Report for Symposium on
Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated

Loads, Lisbon, 1973, pp. 15-22.

Mitchell, D. and Collins, M.P., “Diagonal Compression Field Theory - A Rational Model
for Structural Concrete in Pure Torsion,” ACI Journal, Vol. 71, pp. 396-408, Aug. 1974.

Morsch, E., “Concrete-Steel Construction,” McGraw Hill, New York, 1909, pp. 368,

(English translation by E.P. Goodrich of third edition of Der Eisenbetonbau, first edition



1902).

Muller, J., and Gauthier, Y., "Ultimate Behaviour of Precast Segmental Box-girders with
External Tendons,"” External Prestressing in Bridges; ACI SP 120-17, Proc., Int. Symp., A.
E. Naaman and J. E. Breen, eds., American Concrete Institute (ACI), Detroit, Michigan,

355-373.

Naaman, A. E., "Partially Prestressed Concrete: Review and Recommendations,” PCI

Joumnal, V. 30, No. 6, November-December 1985. pp. 31-71.

Naaman, A. E., "New Methodology for the Analysis of Beams Prestressed with External
or Unbonded Tendons,” External Prestressing in Bridges, SP-120, American Concrete

Institute, Detroit, 1990, pp. 339-354.

Naaman, A.E., “External Prestressing for Rehabilitation-Analysis and Design
Implications,” Proceeding of the 3rd International Workshop on Bridge Rehabilitation,
Bridge Rehabilitation. Andrzej S. Nowak and Balthasar Novak (Editors), organized by

The technical University Darmstadt and The University of Michigan, June 1992.

Naaman, A. E. and F. M. Alkhairi, "Stress at Ultimate in Unbonded Post-Tensioning
Tendons - Part I: Evaluation of the State-of-the-Art, Part 2: Proposed Methodology,” ACI
Structural Journal, Vol. 88, No. 6, September-October 1991, pp. 641-651.

Naaman, A. E. and F. M. Alkhairi, "Stress at Ultimate in Unbonded Post-Tensioning
Tendons - Part II: Proposed Methodology,” ACI Structural Journal, Vol. 88, No. 6, pp.
683-692, November-December 1991.

Naaman, A.E., and Breen, I.E., (Editors), External Prestressing in Bridges, ACI

Publication SP-120, Proceedings of an International Symposium, American Concrete

Institute, Detroit, Michigan, USA, 1990.

229



Neville, A.M., “Properties of Concrete,” Pittman Publishing, Second Edition, 1973.

Neville, AM., Dilger, W.H., and Brooks, J.J, Creep of Plain and Structural Concrete,
Construction Press, London and New York, 361 pp., 1983.

Ngo, D., and Scordelis, A.C., “Finite Element Analysis of Reinforced Concrete Beams,”

ACI Journal, Vol. 64, No. 3, March 1967.

Ngo, D., Scordelis, A.C., and Franklin, H.A., “Finite Element Study of Reinforced
Concrete Beams with Diagonal Tension Cracks,” UC-SESM Report No. 70-19, Division
of Structural Engineering and Structural Mechanics, University of California, Berkeley,
December 1970.

Nilson, A.H., “Finite Element Analysis of Reinforced Concrete,” Ph.D. Dissertation,
Division of Structural Engineering and Structural Mechanics, University of California,

Berkeley, March 1967.

Nilson, A.H., “Nonlinear Analysis of Reinforced Concrete by Finite Element Method,”
ACI Journal, Vol. 65, No. 9, September 1968.
Park, R. and Paulay, T., “Reinforced Concrete Structures,” A Wiley-interscience

publication, New York, 1975.

Priestely, ML.J.N, Park, R., and Lu, F, “Moment Curvature Relationship for Prestressed
Concrete in Constant Zones,” Magazine of Concrete Research, Vol. 23, No. 75-76, pp.69-
78, June-September 1971.

Proceedings of the First International Conference: “Deterioration and repair of Reinforced

Concrete in the Arabian Golf, The Bahrain Society of Engineers, Vol. 1, 529 pp., Vol. 2,
250 pp., Bahrain, October 26-29, 1985.

230



Proceedings of the Third International Conference: “Deterioration and repair of
Reinforced Concrete in the Arabian Golf, The Bahrain Society of Engineers, Vol. 1, 733
pp.. Vol. 2, 339 pp., Bahrain, October 22-24, 1989.

Rashid, Y.R., “Ultimate Strength Analysis of Prestressed Concrete Pressure Vessels,”

Nuclear Engineering Design, Vol. 7. 1968

Rashid, Y.R., and Reckenhauser, W. “Pressure Vessel Analysis by Finite Element
Techniques,” COnference on Prestressed Concrete Vessels, Institute of Civil Engineer,

London, 1968.

Rashid, Y.R., “Nonlinear Analysis of Two-Dimensional Problems in Concrete Creep,”

Journal of Applied Mechanics, Transactions of ASME, Paper No. 71-APNW-25, 1971.

Ritter, W., “Die Bauweise Hennebique,” (Construction Techniques of Hennebique),

Schweizerische Bauzeitung, Zurich, Feb. 1899.

Rusch, H., Jungwirth, D., and Hilsdrof, H., “Kritische Sichtung der Einflusse von
Kriechen und Schwinden des betons auf das Verhalten der Tragwerke,” Beton and

Stahlbetonbau, Vol. 68, Nos. 3, 4, and 5, 1973.

Same, Y., “Material Nonlinear Time-Dependent There-Dimensional Finite Element
Analysis for Reinforced and Prestressed Concrete Structures, Ph.D. Dissertation,
Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge,

1975.

Sandhu, R.S., Wilson, E.L., and Raphael, J.M., “Two-Dimensional Stress Analysis with
Incremental Construction and Creep,” UC-SESM Report No. 67-34, Division of Structural
Engineering and Structural Mechanics, University of California, Berkeley, December

1967.

231



Scanlon, A., “Time Dependent Deflections of Reinforced Concrete Slabs,” Ph.D.
Dissertation, Department of Civil Engineering, University of Alberta, Edmonton, Canada,

December 1971.

Scanlon, A., and Murray, D.W., “Time Dependent Reinforced Concrete Slab Defiections,”
Journal of the Structural Division, ASCE, Vol. 100, No. ST9, September 1974.

Schnobrich, W.C., “Finite Element Determination of Nonlinear Behaviour of Reinforced
Concrete Plates and Shells,” Proceedings of the Symposium on Nonlinear Techniques and
Behaviour in Structural Analysis, Transport and Road Research Laboratory, Department

of Environment, England, 1974.

Schnobrich, W.C., “Behaviour of Reinforced Concrete Predicted by Finite Element
Method,” Proceedings of the Second National Symposium on Computerized Structural

Analysis and design, George Washington University, Washington D.C., March 1976.

Scordelis, A.C., “Finite Element Analysis of Reinforced Concrete Structures,”
Proceedings of the specialty Conference on Finite Element Methods in Civil Engineering,

Montreal, June 1972.

Scordelis, A. C., "Computer Models for Nonlinear Analysis of Reinforced and Prestressed

Concrete Structures,” PCI Journal, November-December 1984.

Seible, F., Priestley, M., and Kirshnan, K., “Strengthening Techniques of Reinforced
Concrete Bridges Superstructures,” Research Report No. SSRP-90/06, Department of
Applied Mechanics and Engineering Sciences, University of California, San Diego, USA,
pp- 165, December 1990.

Selna, L.G., “Time-Dependent Behaviour of Reinforced Concrete Structures,” UC-SESM

Report No. 67-19, Division of Structural Engineering and Structural Mechanics,

232



University of California, Berkeley, 1967.

Selna, L.G., “Creep, Cracking and Shrinkage in Concrete Frame Structures,” Journal of

the Structural Division, ASCE, Vol. 95, No. ST12, December 1969.

Suidan, M.T., and Schnobrich, W.C., “Finite Element Analysis of Reinforced Concrete,”
Journal of the Structural Division, ASCE, Vol. 99, No. ST10, October 1973.

Tan, K. H. and Naaman, A. E., "Strut-and-Tie Model for Externally Prestressed Concrete

Beams,” ACI Structural Journal, November-December 1993.

Tao, X. and Du, G., "Ultimate Stress of Unbonded Tendons in Partially Prestressed
Concrete Beams," PCI Journal, V. 30, No. 6, pp. 72-91, November-December 1985.

Troxell, G.E, Raphael, J.M., and Davis, R.E., “Long-Time Creep and Shrinkage Tests of
Plain and Reinforced Concrete,” Proceeding ASTM, Vol. 58, pp. 1101-1120, 1958.

Van Zyle, S.F., “Analysis of curved Segmentally Erected Prestressed Concrete Box Girder
Bridges,” Ph.D. Thesis, SESM Report No. 78-2, University of California at Berkeley,
Berkeley, California, 1978.

Vecchio, F.J. and Collins, M.P.,, “The Modified Compression Field Theory for Reinforced
Concrete Elements Subjected to Shear,” Journal of the American Concrete Institute, Vol.

83, No. 2, pp. 219-231, March-April 1986.

Wahl, HW.,, and Kasiba, R.J., “Design and Construction Aspects of Large Prestressed
Concrete (PWR) Containment Vessel,” ACI Journal, Vol 77, No. 5, May 1969.

Wegner, R. “Finite Element Models of Reinforced Concrete,” Preprint, Proceedings of the

U.S. - Germany Symposium on Formulation and Computational Methods in Finite

233



Element Analysis, Massachusetts Institute of Technology, Cambridge, August 1976.

Ziadat, G., “Time-Dependent Analysis of Prestressed Concrete Segmental Bridges,” Ph.D.

Dissertation, University of Bristol, Bristol, U.K., November 1988.

Zienkiewicz, O.C., Owen, D.R.J., Phillips, D.V.,, and Nayak, G.C., “Finite Element
Methods in the Analysis of Reactor Vessels,” Paper M5/1, 1st International Conference on

Structural Mechanics in Reactor Technology, Berlin, West Germany, September, 1977.

Xanthakos, P.P., (Editor), Bridge Strengthening and Rehabilitation, Printice Hall PTR,
1996.



