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Abstract 
In this paper, the Asymptotic Homogenization Method (AHM) is applied to anisotropic 
viscoelastic composites. The local problems are considered and the effective viscoelastic 
moduli are explicitly determined. A layer viscoelastic composite with periodic structure is 
studied. Each layer is isotropic and homogeneous. Analytic expressions for the effective 
coefficients are derived. Numerical results for predicting the viscoelastic properties of layer 
composite with periodic structure, in particular, two-layer medium is presented. Some 
comparisons with other theories are done. 
 

1- Introduction 
 
Very often, the behavior of the material is not merely elastic. This is because the material 
exhibits hereditary properties and, simultaneously, dissipative effects. Apart from the 
peculiar hysteretic phenomena, hereditary properties are well described by viscoelasticity 
where, whether or not thermal effects are considered, the mechanical response of the 
material is taken and can be influenced by the previous behavior of the material itself. It 
then should not come as a surprise that, along with the progress of continuum mechanics 
the literature has devoted an increasing attention to viscoelasticity. 
 
The viscoelastic and viscoelastoplastic response is observed in a number of materials 
widely used in applications: polymers and plastics, metals and alloys at elevated 
temperatures, concrete, soils, road construction and building materials, biological tissues, 
and foodstuffs. 
 
In recent years, the estimation of the effective moduli of composites has been in demand in 
response to the increase in engineering applications. Various mathematically rigorous 
techniques have been developed to derive the homogenized coefficients of viscoelastic 
materials. The Asymptotic Homogenization Method (AHM); Bensoussan et al. (1978), 
Sánchez-Palencia (1980), Pobedria (1984), Bakhvalov and Panasenko (1989), Oleinik et al. 
(1992) is one of these technique which has been used for calculation of their overall 
properties of different types of composites, moreover it guarantees convergence, i. e. the 
solution of the problem with a periodic microstructure converges to the solution of the 
homogenized problem as the period of the microstructure goes to zero. 
 
 
Actually, the study of viscoelectroelastic behavior of heterogenous piezoelectric solids has 
received considerable attention. For example, the procedure to determine the effective 
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complex electroelastic moduli for a fibrous and laminated composite using the existence of 
a correspondence between quasistatic viscoelectroelasticity and static piezoelectricity when 
linear constitutive response exists is developed in Li and Dunn (2001). The use of the AHM 
for predicting the viscoelastic properties of layered materials have been scantily developed 
in recent works; the problem to estimating the effective moduli is formulated using the 
asymptotic homogenization method where the computational procedure is divided into two 
steps: the effective relaxation moduli are computed in Laplace transform domain and are 
numerically inverse-transformed into time domain in Yeong-Moo et al. (1998); the case of 
multilayered thermoviscoelastic media is examined in Maghous S. et al. (2003) and 
recently in Liu S. et al. (2004). 
 
In the present paper the AHM is applied to the determination of the effective coefficients in 
the case of viscoelastic composites. In Section 2, the three-dimension formulation in 
displacements for static viscoelastic problems is given. The constitutive relations are 
expressed by integrals operators. A brief description of the AHM is formulated in Section 3 
and the viscoelasic effective coefficients are calculated. In Section 4, an example of layer 
composite medium is considered, i.e., a composite made of cells that are periodically and 
perpendicularly along the axis  and each cell may be made of any finite number of 
layers. Each layer is isotropic, homogeneous elastic material. Some examples for two layer 
composite periodically distributed in the  direction are analyzed in Section 5, where the 
analytical expressions for the effective coefficients are obtained and numerical calculations 
are discussed. 
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2- Statement of the problem 
 
The mathematical formulation of the viscoelastic problem in terms of displacements deals 
with the solution of: 
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with respect to three unknown components of the displacement vector under the 
following boundary conditions: 
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where  is the position vector; are the displacement and forces given 
on the surface and of the body respectively with surface 
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1Σ 2Σ 21 Σ∪Σ=Σ ; nG  is the unit 
normal vector to the surface  and denotes the body force components. Σ iX
                      
The constitutive law for a general linear viscoelastic material, which relates the stress to 
prescribed histories of strain is given by: 
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where   are the components of the relaxation tensor. The strain second order 
tensor 

),( txRijkl
G

klε  is expressed as: 

)(
2
1

,, kllkkl uu +=ε .                                                                                                              (4) 

The tensor ),( txRijkl
G  is assumed to be endowed with the same general symmetry and 

positivity conditions as in elasticity: 
),(),(),(),( txRtxRtxRtxR klijijlkjiklijkl

GGGG ===                                                           (5) 
0>∃γ such that ijijklijijkl txR εγεεε >),(G  for almost every vector Σ∈xG . 

The conditions ),(),(),( txRtxRtxR ijlkjiklijkl
GGG == result from the symmetry of the stress 

and strain tensors (see, Christensen R. M. et al. (1979)). The constitutive assumption of 
diagonal symmetry ),(),( txRtxR klijijkl

GG = is consistent with the reciprocity principle state 
by Onsager (see Maghous and Creus (2003). 

 
 

3- Asymptotic Homogenization in Viscoelasticity 
 

 
3.1- Basics Concepts 
We introduce some basic concepts and notations. Let the material function  be a ijklR Y -
periodic function. As usual, Y  is the typical periodic cell, say: 

),0(),0(),0( 321 YYYY ××=   where  and  represent the period of the 21 ,YY 3Y Y -periodicity. 
We set )(ξ

G
ijklijkl RR =  where ),,( 321 ξξξξ =

G
 is the local coordinate (or fast coordinate) and 

),,( 321 xxxx =G  is the global (or slow) coordinate; the global and the local coordinates are 
related to each other by a positive real parameter α  (small parameter) as follows: 

α
ξ xKG
= and

L
l

=α  which represent the ratio between the characteristic length, l , of the 

periodic cell Y , and the characteristic length of the whole domain of the composite. L
 
3.2- Asymptotic Homogenization 
The solution of the problem (1)-(2) is found using the following asymptotic expansion 
analogous to Castillero et al. (1998), Pobedria (1984): 
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where the  order tensor )2( +p )(
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- The local functions of level zero are unit tensors of second order, and: 
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∨
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mnδ  is the Kronecker symbol).                                                          (7) 

 
- The relaxation local kernels of negative level are identically zero, that is: 
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3.3- Computation of the viscoelastic effective coefficients 
Denote the derivative with respect to the fast coordinate iξ  by the symbol ( / ) before the 

subscript and use the symbol ( , ) to denote the derivative with respect to the  slow 

coordinate . ix

Equation (1) can be differentiated and the following formula is obtained: 
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We now substitute the expansions (6) into equation (11), and collect the terms of same 
order of and we have (see Pobedria (1984)): qα
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After some convenient manipulations in equation (15), the coefficients, for each degree  q

of the parameter α  and for each can be equated to a tensorial constant  
and the following expression is obtained as  Pobedria and Ilyushin (1970);  
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Now, problem (1)-(2) is reduced to the homogeneous problem of the viscoelasticity theory 

and the  order tensors  are called viscoelastic effective tensors of  
level, moreover: 
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The solution of the heterogeneous problem (1)-(2) is reduced to the result of two sequences 
of recurrent problems in the periodic cell (Pobedria  (1984, chapter 8)).  

 The effective coefficients  can be calculated by the following operator formulae: 
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In order to find the local function , we need first to solve the following local problem 
analogous to Castillero et al. (1998), 
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with conditions (8) and (10); the relaxation local kernel of first order  is calculated  
and the relaxation kernel tensor of the null approximation  is obtained as follows: 
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thus the viscoelasic effective coefficients are calculated as follows: 
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4-Two phase viscoelastic composite 

 
We consider a layered medium, i.e., a composite formed by cells that are periodically 
distributed along the axis  and each cell is made of a finite number of layers. The axes of 
symmetry of each layer are parallel to each other and the -axis is perpendicular to the 
layers. The relaxation modulus tensor 

3x

3x
R  is a periodic function of the coordinate  and it 

does not depend on  and .  
3x

1x 2x
Under the above considerations, the fast coordinate has the following form ),0,0( ξξ =
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From the local problem (19), the following expression for the effective coefficients is 
obtained: 
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In particular, for a binary layered, the average >< f  is understood as: 
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viscoelastic effective coefficients can be written as follows,  
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In the case where every individual layer is assumed to be isotropic, we have: 
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whereµ  is the shear relaxation modulus and λ  is such that µλ 23 +  characterizes the 
relaxation modulus under isotropic compression. (λ  and µ  are Lame’s constants). 
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Then, equations (22) can be written in the following form: 
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The above effective relaxation moduli are the same that the coefficients reported in 
Maghous et al. (2003). 
 

5- Numerical examples 
 

Example 1 
We consider a two-layer composite, one layer is made of an elastic material and the other is 

made of a viscoelastic material. The moduli of the elastic layer1 is 21.0,20 == υE , and   the 

moduli of the viscoelastic layer2, which is given, using the standard linear solid model 

Christensen (1982) by: 

                                                                                             (24) 38.0,173)( =+= − υtetE
See Yeong-Moo et al. (1998). 

The program for the calculation of the effective coefficients and their graphical time 
dependence representation was made in Mathematica. 
Fig.1-a and Fig.1-b illustrate the variation in time of the effective relaxation modulus 

homogenized  and  respectively for different volume fractions, see equations (21), 
(23d), (23e).  

33
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When the volume fractions for layer1 increase, the behavior of these magnitudes do not 
vary qualitatively since in the initial moment they fall abruptly and after some few seconds 
they remain constant. The increase fraction volume produces an increase of the relaxation 
modules. 
 
Different volume fractions of layer1 are used: 
VF I: the volume fraction of layer1 is 20%.  
VF II:  the volume fraction of layer1 is 40%. 
VF III: the volume fraction of layer1 is 50%. 
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Fig.1-a. Effective relaxation modulus  in time, example 1. 33
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Fig.1-b. Effective relaxation modulus  in time, example 1. 55
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Example 2 
We consider a two-layer composite where each layer is made up of an isotropic viscoelastic 
material with different relaxation times. The relaxation moduli are given as follows:  

38.0,173)( 10/ =+= − υtetE for layer1                                                                          (25) 
38.0,173)( =+= − υtetE for layer2.                                                                            (26) 

The following functional dependence for the Lame’s constants, λ  and µ  is considered  
(see Yeong-Moo et al. (1998)), 

,
)21)(1( υυ

υλ
−+

=
E                                                                                                                  (27) 

)1(2 υ
µ

+
=

E                                                                                                                              (28) 

Analogous to the previous example, Fig.2-a and 2-b show the behavior of the effective 

relaxation moduli  and  for different levels of the volume fraction related to layer1. 

In the case of the effective relaxation modulus , the behavior of this quantity is similar 
in time for different volume fractions of layer 1. 
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Fig.2-a. Effective relaxation modulus  in time, example 2 33
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. 
Fig.2-b. Effective relaxation modulus  in time, example 2. 55

∨

c
 

 
Example 3 

In order to validate our theoretical approach, we consider the numerical data given by 
Maghous S. et al. (2003). A linear elastic behavior is adopted for the layer1 (delayed effects 
are neglected). A Dischinger model is used for the layer2 in the shear mode and linear 
elasticity in the dilatation mode. 
The relaxation functions are defined for            by: t≤τ
 
 

)),(exp(),( 0,2
0,22 tt τϕ

αβ
µ

µτ
)exp()exp(),( ατατ −−−= ttϕ

 µ =

 
 
where K is the (elastic) bulk modulus and                       is considered as constant, here α  
and β  are model’s parameters. 

),(
3
2),( 22 tKt τµτλ −=

)(20,2 τµµ =

The following data have been selected for the viscoelastic layer2 
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02 =β MPa5. MPa85710,2 =µ

 
The stiffness of the elastic layer1 is taken comparable to that of the viscoelastic layer2: 
 
                ,                     and                                          .  
Fig. 3-a and 3-b display for                 the variation in time of   the   homogenized relaxation  

moduli        and       (normalized by the oedometric modulus 11 2µλ + ) for AHM and  

Maghous et al. (2003). Similar behavior is observed, in fact, both coefficients decrease in 

time. 

 
Fig.3-a. Effective relaxation modulus  in time, example 3. 11
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Fig.3-b. Effective relaxation modulus  in time, example 3. 33

∨
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1026.0= daysα 35667=αβ MPa

5.02 =β 0,21 µµ = 0,221 3
), µττλλ −== K 2(

0=τ

11

∨

c
∨

c 33

 10



Example 4  
Every individual layer is assumed to be isotropic with different relaxation time: 
The relaxation moduli are given as follows (similar to example 2):  

2,1,,)( 1 =+= − ieqqtE i
tp

ioi
i υ , for layer  i

The material constants of both layers are shown in the following table: (see Liu et al. 
(2004)). 
 
 iq0 (MPa) iq1 (MPa) ip (1/day) υ  
Layer-I 9.67 x 108 3.22 x 108 0.00658 0.24 
Layer-II  6.1  x 107 1.84 x 108 0.00125 0.2 
 
Figure 4 shows the effective relaxation modulus homogenized c  in time, when the volume 
fraction of Layer-II is 10 %. 

∨

 

         
Fig.4. Effective relaxation modulus 

∨

c  in time, example 4. 
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6- Conclusions 
 

The Asymptotic Homogenization Method is applied to viscoelastic composite media for 
computing their effective coefficients. The local problem has ben considered and the 
effective viscoelastic moduli are explicitly determined. 
A two-layer composite where the laminates are perpendicular to axis , is studied. The 
effective viscoelastic coefficients are derived. Numerical results for different configurations 
of the layers are reported. From the explicit solution (22)-(23), the effective coefficients for 
the pure elastic case are the same as those reported in Rodríguez et al. (1997) and Castillero 
et al. (1998). The effective relaxation moduli (22)-(23) calculated using AHM are the same 
that the coefficients reported in Maghous et al. (2003). 

3x

 

 12



 
7- References 

 
Bakhvalov N. S., Panasenko G. P., Homogenization: Averaging Process in Periodic 
Media, Kluwer, Dordrecht, 1989.  
Bensoussan A., Lions J. L., Papanicolau G., Asymptotic Analysis for Periodic 
Structures. North-Holland, Amsterdan, 1978. 
Castillero J. B., Otero J. A, Rodríguez R., Bourgeat A., Int. J. Solids Structures Vol. 35. 
No. 5-6, 527-541, 1998. 
Christensen R. M. Wily & Sons J., Mechanics of Composite Materials. Cap I. Some 
elements of mechanics, Subsection 1.1. Elasticity Theory Results. New York, 1979. 
Drozdov A. Mechanics of Viscoelastic  Solids. John Wiley & Sons. Chichester, New 
York, Weinheim, Brisbane, Toronto, Singapore, 1998. 
Li J., Dunn M., Viscoelectroelastic behavior of heterogeneous piezoelectric solids. 
J. of Applied Physics. Vol. 89. No. 5, 2893-2903. 2001. 
Liu S., Chen K., Feng X., Prediction of viscoelastic property  of layered materials. I. J. 
Solids and Struct.. Vol. 41, 3675-3688, (2004). 
Maghous S., Creus G. J., Periodic homogenization in thermoviscoelasticity: case of 
multilayered media with ageing. I. J. of Solids and Structures. Vol. 40. 851-870, 2003. 
Oleinik O. A., Shamaev A. S. and Yosifian G. A. Mathematical problems in elasticity 
and homogenization, North-Holland, Amsterdan, 1992. 
Pobedria, B. E. Mechanics of Composite Materials. Moscow State University Press, 
Moscow. 1984. (in Russian). 
Pobedria, B. E., Ilyushin, A. A., Fundamentos matemáticos de la teoría de Visco-
elasticidad. Nauka Pub., Moscú 1970. (in Russian). 
Rodríguez R., Otero J. A., Bravo J., Revista Mexicana de Física., Vol. 43, No. 5, 711-
736, 1997. 
Sánchez-Palencia E., Non Homogeneous Media and Vibration Theory. Lecture Notes in 
Physics 127, Springer-Verlag. Berlin. 1980. 
Yeong-Moo,Sang-Hoon Park, Sung-Kie Youn, I. J. Solids Struct., Vol. 53. No.17, 
2039-2055, 1998. 

 13



List of Recent Technical Reports

46. Eduardo Rodriguez, Scoring Methods for Risk Classification, April 2000
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