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Abstract

Klüppelberg and Stadtmüller (1998, Scand. Actuar. J., no. 1, 49–58) obtained a
simple asymptotic formula for the ruin probability of the classical model with constant
interest force and regularly varying tailed claims. This short note extends their result
to the renewal model. The proof is based on a result of Resnick and Willekens (1991,
Comm. Statist. Stochastic Models 7, no. 4, 511–525).
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1 The model

We investigate the ruin probability of the renewal model. In this model the claims, Xn,

n ≥ 1, form a sequence of independent, identically distributed (i.i.d.), and nonnegative

random variables with common distribution function F , and the interarrival times, Yn,

n ≥ 1, form another sequence of i.i.d. nonnegative random variables, which are independent

of the random variables Xn, n ≥ 1, and are not degenerate at 0. The locations of the

successive claims, τn =
∑n

k=1 Yk, constitute a renewal counting process

N(t) = #{n ≥ 1 : τn ∈ [0, t]}, t ≥ 0,

where, by convention, the cardinal number of the empty set is 0. Therefore, the total

amount of claims accumulated up to time t ≥ 0 is represented as a compound sum

S(t) =

N(t)∑
n=1

Xn, t ≥ 0,
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with S(t) = 0 when N(t) = 0. Let C(t), t ≥ 0, be a nonnegative and nondecreasing

stochastic process, denoting the total amount of premiums accumulated up to time t ≥ 0,

let δ > 0 be the constant interest force (that is, after time t a capital x becomes xeδt), and

let x ≥ 0 be the initial surplus of the insurance company. Then the total surplus up to

time t, denoted by U(t), satisfies the equation

U(t) = xeδt +

∫

[0,t]

eδ(t−y)C(dy)−
∫

[0,t]

eδ(t−y)S(dy), t ≥ 0. (1)

Assume that the total discounted amount of premiums is finite, that is,

C̃ =

∫

[0,∞)

e−δyC(dy) < ∞ almost surely. (2)

The ruin probability is defined by

ψ(x) = Pr (U(t) < 0 for some t ≥ 0) .

If C(t) = Ct, t ≥ 0, with C > 0 a deterministic constant and N(t), t ≥ 0, is a Poisson

process with intensity λ > 0, then the model above is reduced to the classical one.

The asymptotic behavior of the ruin probability of the classical model has been ex-

tensively investigated in the literature. In particular, Klüppelberg and Stadtmüller (1998)

considered the asymptotic behavior of the ruin probability for the case of regularly varying

tailed claims. We say that F = 1− F is regularly varying with index −α < 0, denoted by

F ∈ R−α, if there is some slowly varying function L(·) such that

F (x) = x−αL(x), x > 0.

For this case, Klüppelberg and Stadtmüller (1998, Corollary 2.4) proved that

ψ(x) ∼ λ

αδ
F (x). (3)

[Hereafter, all limit relationships are for x → ∞ unless stated otherwise; for two positive

functions a(·) and b(·), we write a(x) ∼ b(x) if lim a(x)/b(x) = 1 and write a(x) & b(x)

if lim inf a(x)/b(x) ≥ 1.] In doing so, they applied a quite sophisticated Lp transform

technique. However, their approach does not work now since in the current general case we

can not obtain Sundt and Teugels’ (1995) integral equation (2), which is the starting point

of Klüppelberg and Stadtmüller (1998).

Furthermore, Asmussen (1998, Corollary 4.1(ii)), Kalashnikov and Konstantinides (2000),

and Konstantinides et al. (2002) also obtained results similar to (3) for some larger classes

of heavy-tailed distributions. We also refer the interested reader to Tang (2004) for some

parallel discussions in a discrete time model.
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2 An important preliminary

We denote a randomly weighted series by

W =
∞∑

n=1

θnXn, (4)

where {Xn, n ≥ 1} is a sequence of i.i.d. nonnegative random variables with common dis-

tribution function F , and {θn, n ≥ 1} is another sequence of nonnegative random variables,

independent of {Xn, n ≥ 1}. The following result is the one-dimensional version of Theorem

2.1 of Resnick and Willekens (1991):

Lemma 1. Consider the randomly weighted series (4) above with F ∈ R−α for some α > 0.

We have

Pr (W > x) ∼ F (x)
∞∑

n=1

Eθα
n

if one of the following assumptions holds:

1. 0 < α < 1 and

∞∑
n=1

E
(
θα+ε

n + θα−ε
n

)
< ∞ for some ε > 0;

2. 1 ≤ α < ∞ and

∞∑
n=1

E
(
θα+ε

n + θα−ε
n

) 1
α+ε < ∞ for some ε > 0.

The merit of this lemma is that no information about the dependence structure of the

sequence {θn, n ≥ 1} is requested.

3 The main result

Theorem 1. Consider the renewal model introduced in Section 1 with F ∈ R−α for some

α > 0. We have

ψ(x) ∼ Ee−δαY1

1− Ee−δαY1
F (x) (5)

if one of the following assumptions holds:

1. the premium process {C(t), t ≥ 0} is independent of {Xn, n ≥ 1} and {Yn, n ≥ 1};
2. the total discounted amount of premiums, defined by (2), satisfies that

Pr
(
C̃ > x

)
= o

(
F (x)

)
.
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Remark. Comparing (5) with (3), we have successfully extended the result of Klüppelberg

and Stadtmüller (1998) to the renewal model. Assumption 1 above has been used by

Glukhova and Kapustin (2001) and Boikov (2002), while assumption 2, which does not

require the independence between the premium process and the claim process, allows for a

more realistic case that the premium rate varies as a deterministic or stochastic function of

the current surplus, as that considered by Petersen (1989), Michaud (1996), and Jasiulewicz

(2001).

Proof of Theorem 1. We define the discounted values of the surplus process (1) as

Ũ(t) = e−δtU(t) = x +

∫

[0,t]

e−δyC(dy)−
∞∑

n=1

Xne−δτn1(τn≤t), t ≥ 0,

where 1A denotes the indicator function of an event A. It is clear that

ψ(x) = Pr
(
Ũ(t) < 0 for some t ≥ 0

)

and that

x−
∞∑

n=1

Xne−δτn ≤ Ũ(t) ≤ x + C̃ −
∞∑

n=1

Xne−δτn1(τn≤t), t ≥ 0. (6)

Using the first inequality of (6) and Lemma 1, we have

ψ(x) ≤ Pr

( ∞∑
n=1

Xne−δτn > x

)
∼ F (x)

∞∑
n=1

Ee−δατn =
Ee−δαY1

1− Ee−δαY1
F (x).

Thus, in order to complete the proof of Theorem 1 it suffices to prove that

ψ(x) & Ee−δαY1

1− Ee−δαY1
F (x). (7)

For this purpose, by the second inequality of (6) we derive

ψ(x) ≥ Pr

( ∞∑
n=1

Xne−δτn1(τn≤t) > x + C̃ for some t ≥ 0

)

= Pr

( ∞∑
n=1

Xne−δτn > x + C̃

)
. (8)

Under assumption 1 of Theorem 1, by conditioning on C̃ and applying Fatou’s lemma and
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Lemma 1 in turn, we obtain

lim inf
x→∞

ψ(x)

F (x)
≥ lim inf

x→∞
1

F (x)

∫

[0,∞)

Pr

( ∞∑
n=1

Xne−δτn > x + y

)
Pr

(
C̃ ∈ dy

)

≥
∫

[0,∞)

lim inf
x→∞

Pr
(∑∞

n=1 Xne−δτn > x + y
)

F (x + y)

F (x + y)

F (x)
Pr

(
C̃ ∈ dy

)

=
Ee−δαY1

1− Ee−δαY1
.

Hence, relation (7) holds. Under assumption 2 of Theorem 1, from (8) we have that for an

arbitrarily fixed number l > 0,

ψ(x) ≥ Pr

( ∞∑
n=1

Xne−δτn > (1 + l)x

)
− Pr

(
C̃ > lx

)
.

Then, applying Lemma 1 again,

lim inf
x→∞

ψ(x)

F (x)
≥ lim inf

x→∞
1

F (x)
Pr

( ∞∑
n=1

Xne−δτn > (1 + l)x

)
− lim sup

x→∞

Pr
(
C̃ > lx

)

F (x)

=
Ee−δαY1

1− Ee−δαY1
lim inf

x→∞
F ((1 + l)x)

F (x)
− lim sup

x→∞

Pr
(
C̃ > lx

)

F (lx)

F (lx)

F (x)

=
Ee−δαY1

1− Ee−δαY1
(1 + l)−α.

Hence, relation (7) also holds since the number l above can be arbitrarily close to 0. ¤
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