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Abstract

We consider a risk model with a constant dividend barrier. An explicit expression is obtained

for the joint distribution of the surplus immediately prior to ruin and the deficit at ruin,

discounted by the ruin time. Such an expression involves known results on the joint distribution

at ruin for a classical risk model with single premium rate. The joint distributions related to

the time periods when dividends are paid are also discussed. In particular, a new expression is

obtained for the expected present value of the total amount of dividend payments until ruin.
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1. Introduction and Preliminary Results

The following risk model with a constant dividend barrier is considered in this paper. Let

{Nt} be a Poisson process with intensity λ. Let Xi, i = 1, 2, . . ., be i.i.d. positive random

variables with a common density function p, a common distribution function P , and a finite

mean µ. {Nt} and {Xi} are independent. For u ≥ 0 the surplus process is defined by

(1.1) U∗
t = u +

∫ t

0
c(U∗

s )ds−
Nt∑

i=1

Xi,

where

c(x) :=





c, for x ≤ b,

0, for x > b.
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c, b > 0 are constants.

In such a surplus process u ≥ 0 represents the initial surplus. The claims are arriving

according to {Nt}. Xi represents the size of the i-th claim. c(x) represents the rate at which

the premium is collected when the current surplus is x. {U∗
t } stands for a surplus process for a

model in which the insurance company would pay a dividend at rate c once the surplus reaches

level b, and stop the payment when the next incoming claim brings the surplus down to below

level b. Notice that ruin occurs with probability 1 in such a model.

Write

Ut := u + ct−
Nt∑

i=1

Xi,

Then {Ut} is the surplus process in a classical risk model with a single premium rate. The

evolution of {U∗
t } can be intuitively described as follows. {U∗

t } behaviors like {Ut} between

0 and b. But whenever {U∗
t } reaches level b it stops growing and keeps it value at b for an

exponential time with mean λ−1 until the next claim brings it to under b.

Set T ∗(u) := inf{t ≥ 0 : U∗
t < 0} and ψ∗(u) := P{T ∗(u) < ∞}. T ∗(u) is the so–called ruin

time, and ψ∗(u) is the probability of ever ruin given that the initial surplus is u. For u, δ, y ≥ 0,

let

W ∗(u; δ, x, y)dxdy = E[e−δT ∗(u);U∗
T ∗(u)− ∈ dx,−U∗

T ∗(u) ∈ dy], 0 ≤ x < b,

and

W ∗(u; δ, b, y)dxdy = E[e−δT ∗(u); U∗
T ∗(u)− = b,−U∗

T ∗(u) ∈ dy].

We can define T (u), ψ(u) and W (u; δ, x, y) for {Ut} in the same way.

Risk models with a dividend barrier have been studied by many authors. We refer to Lin

et al (2003) and Gerber and Shiu (2004) for surveys on the previous work. In particular, the

distribution of ruin time for a model with a constant dividend barrier was discussed in Gerber

(1979). In Lin et al (2003) the Gerber–Shiu discounted penalty function was further considered

for the classical risk model with a constant barrier. More precisely, for δ > 0 the discounted

penalty function can be written as

mb,w(u) := E
[
e−δT ∗(u)w(U∗

T ∗(u)−,−U∗
T ∗(u))

]
,
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where w is a positive function. By solving the corresponding integro–differential equations,

expressions of mb,w(u) were obtained for certain choices of w. Work on renewal risk models

with a constant dividend barrier can be found in Li and Garrido (2004).

The optimal dividend problems have been addressed by several authors. See Gerber and Shiu

(1998) for an earlier work, and Dickson and Waters (2004) for a recent work on the classical

risk model. Also see Gerber and Shiu (2004) for work on a Brownian risk model.

A similar model (risk model with a two–step premium rate) was studied in Zhou (2003). In

that model the surplus process is also define by (1.1), but with a premium function

c(x) :=





c1, for r ≤ b,

c2, for r > b,

where ci > λµ, i = 1, 2. The joint distribution at ruin was obtained in Zhou (2003) for such a

model.

Although the above–mentioned model with a two–step premium rate does not exactly include

the risk model with a dividend barrier considered in this paper, nevertheless, the approach there

can be implemented under the current setting. The key in analyzing such a model is to know

when R first attains level b before ruin. Write

T (u, b) := inf{0 ≤ t < T (u) : Ut = b}

with the convention that inf ∅ = ∞. T (u, b) is then the time when dividend is first paid. Put

W (u; δ, y)dy := E[e−δT (u); T (u) < ∞,−UT (u) ∈ dy].

Let ρ(δ) and ρ̄(δ) be the nonnegative and the negative solutions to

(1.2) ct + λ(p̂(t)− 1) = δ, δ ≥ 0,

where p̂ denotes the Laplace transform of p.

Expressions for the Laplace transform of T (u, b) have been obtained before. In Gerber and

Shiu (1998) it was shown that, under the condition of positive safety loading c > λµ,

(1.3) E[e−δT (u,b)] =
eρ(δ)u − ψ(u)
eρ(δ)b − ψ(b)

.
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In Zhou (2004) the following formula was found.

(1.4) E[e−δT (u,b)] =
eρ(δ)u − ∫∞

0 W (u; δ, y)e−ρ(δ)ydy

eρ(δ)b − ∫∞
0 W (b; δ, y)e−ρ(δ)ydy

.

In fact, a formula similar to (1.4) even holds for a risk model perturbed by a Brownian motion.

Its proof is an application of strong Markov property. We also want to point out that the

positive safety loading condition is not necessary in obtaining (1.4).

The joint distribution of the ruin time, the surplus immediately before ruin and the deficit

at ruin have been studied intensively, often under the condition of positive safety loading, since

the celebrated work of Gerber and Shiu (1997). More precisely, with c > λµ, combining (2.8),

(3.13) and (5.1) in Gerber and Shiu (1997) we have

(1.5) W (u; δ, x, y) :=





λp(x+y)(e−ρ(δ)(x−u)−e−ρ(δ)xψ(u))
c(1−ψ(0)) , for x > u,

λp(x+y)(ψ(u−x)−e−ρ(δ)xψ(u))
c(1−ψ(0)) , for 0 < x ≤ u.

Work in this line can also be found in Chiu and Yin (2003), in Wu et al (2003), and in Zhang

and Wang (2003). We will add one more expression for W (u; δ, x, y) in this paper.

Observe that the distribution of ct − ∑N(t)
i=1 Xi has a point mass at x = ct, and it has a

density function (denoted by g(x, t)) for x 6= ct. For x ≤ 0 write ĝx :=
∫∞
0 e−δtg(x, t)dt for the

Laplace transform of g on the t variable. For x > 0 write ĝx := 1
ce
− (δ+λ)x

c +
∫∞

x
c
+ e−δtg(x, t)dt.

Lemma 1.1. For any u, δ, x, y > 0, we have

(1.6) W (u; δ, x, y) = λ
(
ĝx−u(δ)− e−ρ(δ)xĝ−u(δ)

)
p(x + y).

Proof. Write π(t;u, x)dt for the probability that ruin has not not occurred by time t and that

there is an upcrossing of the surplus process {Ut} at level x between time t and time t + dt.

Then it was pointed out in Gerber and Shiu (1997) that

(1.7) f(u, t, x, y) =
λ

c
p(x + y)π(t;u, x), 0 ≤ x < u + ct, y ≥ 0,

where f(u, t, x, y)dtdxdy := P{T (u) ∈ dt, UT (u)− ∈ dx,−UT (u) ∈ dy}. We have abused notions

by writing dt, dx, dy for both intervals and their lengths.

The following duality was used in Gerber and Shiu (1997). Flip the sample path of U upside

down and run it backwards. More precisely, define

Ũs = Ut − U(t−s)−, 0 ≤ s ≤ t.
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Observe that the time reversal of a Poisson point process is still a Poisson point process with

the same distribution. Then (Us, 0 ≤ s ≤ t) and (u + Ũs, 0 ≤ s ≤ t) have the same joint

distribution. Moreover, π(t; u, x)dt is equal to the probability that, starting from 0, the process

{Ũt} upcrosses level x−u between time t and time t+dt, and {Ũt} never reaches level x before

t. Observe that, in the absence of claims over time period [t, t + dt], {Ũt} upcrosses level x− u

between times t and t + dt if and only if Ũt ∈ [x− u− cdt, x− u]. Applying Markov property

it is evident that

(1.8) π(t; u, x)dt =
(

g(x− u, t)−
∫ t

0
g(−u, t− s)dH(s)

)
cdt, 0 ≤ x− u < ct,

where H is the distribution function of T̃ (x) := inf{t ≥ 0 : Ũt = x}.
It is known that

(1.9) E
[
e−δT̃ (x)

]
= e−ρ(δ)x.

We first consider the case x > u. Notice that H(s) = 0 for s < x
c . Taking Laplace transforms

on both sides of (1.8), by (1.9) we obtain that

∫ ∞

x−u
c

+
e−δtπ(t; u, x)dt = c

(∫ ∞

x−u
c

+
e−δtg(x− u, t)dt−

∫ ∞

x−u
c

+
e−δtdt

∫ t

0
g(−u, t− s)dH(s)

)

= c

(∫ ∞

x−u
c

+
e−δtg(x− u, t)dt− e−ρ(δ)xĝ−u(δ)

)
.

In addition,

P
{

T (u) ∈
[
x− u

c
,
x− u

c
+

dx

c

]
, UT (u)− ∈ [x, x + dx],−UT (u) ∈ [y, y + dy]

}

= e−λ x−u
c

λdx

c
p(x + y)dy.

Therefore, (1.7) implies that

W (u; δ, x, y) =
λ

c
e−

(δ+λ)(x−u)
c p(x + y) +

∫ ∞

x−u
c

+
e−δtf(u, t, x, y)dt

= λ
(
ĝx−u(δ)− e−ρ(δ)xĝ−u(δ)

)
p(x + y).

Similarly, we can show that (1.6) also holds for x ≤ u.

¤



6

Remark 1.2. The expressions for π were also obtained in Wu et al (2003) and in Zhang and

Wang (2003) for perturbed risk models.

The rest of this paper is arranged as follows. In Section 2 we first find an expression for

W ∗(u; δ, x, y). Since

mb,w(u) =
∫ b

0
dx

∫ ∞

0
dyw(x, y)W ∗(u; δ, x, y) +

∫ ∞

0
dyw(b, y)W ∗(u; δ, b, y),

an expression of mb,w(u) follows readily for any w. In this way we generalize the results in Lin

et al (2003) to all the possible choices of w. The proof is an adaption of that in Zhou (2003),

which involves intensive applications of Markov property.

This approach is different from that used in Lin et al (2003) and some other related work

which relies on solving certain integro–differential equations. One advantage of our approach

is that it is closely connected to the previous work on Gerber–Shiu functions for the classical

risk models. It also goes around some technical issues like the differentiability when dealing

with differential equations.

The distribution is also found in Section 2 for the last time when dividend is paid before ruin.

In Section 3 we discuss the distribution of the durations for dividend payments. In particular, a

new formula is derived for the expected present value of the total amount of dividend payments

until ruin. Explicit results are obtained for a model with exponential claims in Section 4.

2. Joint distribution at ruin

Put

W̄ (u; δ, x, y)dxdy := E
[
e−δT (u); T (u, b) = ∞, UT (u)− ∈ dx, UT (u) ∈ dy

]
.

Apply strong Markov property at T (u, b), we have

W̄ (u; δ, x, y)dxdy

= E{e−δT (u); T (u, b) = ∞, UT (u)− ∈ dx, UT (u) ∈ dy}

= E{e−δT (u); UT (u)− ∈ dx, UT (u) ∈ dy} − E
[
e−δT (u); T (u, b) < ∞, UT (u)− ∈ dx, UT (u) ∈ dy

]

= W (u; δ, x, y)dxdy − E
[
e−δT (u,b)

]
E

[
e−δT (b); UT (b)− ∈ dx, UT (b) ∈ dy

]

= W (u; δ, x, y)dxdy − E
[
e−δT (u,b)

]
W (b; δ, x, y)dxdy.
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Therefore,

W̄ (u; δ, x, y) = W (u; δ, x, y)− E
[
e−δT (u,b)

]
W (b; δ, x, y).(2.1)

Theorem 2.1. Given 0 ≤ u < b, 0 < x < b and y > 0, we have

(2.2) W ∗(b; δ, b, y) =
λp(b + y)

δ + λ− λ
∫ b
0 p(z)E[e−δT (b−z,b)]dz

,

(2.3) W ∗(b; δ, x, y) =
λ

∫ b
0 p(z)W̄ (b− z; δ, x, y)dz

δ + λ− λ
∫ b
0 p(z)E[e−δT (b−z,b)]dz

,

and

(2.4) W ∗(u; δ, x, y) = W̄ (u; δ, x, y) + E
[
e−δT (u;b)

]
W ∗(b; δ, x, y).

Proof. Starting from level b the surplus process {U∗
t } spends an exponential time at level b

until the first claim arrives. For the event {U∗
T ∗(u)− = b, U∗

T ∗(u) ∈ dy} to occur either that claim

causes ruin, or {U∗
t } first jumps to between 0 and b, then comes back to level b before ruin and

starts all over again. Apply Markov property at the jumping time,

W ∗(b; δ, b, y) =
λ

λ + δ

(
p(b + y) + W ∗(b; δ, b, y)

∫ b

0
p(z)E

[
e−δT (b−z,b)

]
dz

)
.

Similarly, starting from b, for the event {U∗
T ∗(u)− ∈ dx, U∗

T ∗(u) ∈ dy} to occur the first claim

can not cause ruin. Consequently, {U∗
t } first jumps to somewhere between 0 and {U∗

t }. Then

either ruin occurs before {U∗
t } comes back to level b, or {U∗

t } comes back to level b and starts

all over again. It follows that

W ∗(b; δ, x, y) =
λ

λ + δ

(∫ b

0
p(z)W̄ (b− z; δ, x, y)dz + W ∗(b; δ, x, y)

∫ b

0
p(z)E

[
e−δT (b−z,b)

]
dz

)
.

Then (2.2) and (2.3) are obtained by solving the respective equation.

Starting from u either ruin occurs before {U∗
t } ever reaches level b, or {U∗

t } reaches b before

ruin. (2.4) also follows from strong Markov property. ¤

Write W (u; x, y), W ∗(u;x, y) and W̄ (u; x, y) for W (u; 0, x, y), W ∗(u; 0, x, y) and W̄ (u; 0, x, y)

respectively. With positive safety loading, by (1.5) we obtain

(2.5) W (u; x, y) :=





λp(x+y)(1−ψ(u))
c(1−ψ(0)) , for x > u,

λp(x+y)(ψ(u−x)−ψ(u))
c(1−ψ(0)) , for 0 < x ≤ u.
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More general expressions for W (u; x, y) in terms of p and ψ for a classical model with either

positive, negative or zero safety loading can be found in Schmidli (1999).

Observe that with positive safety loading, we have

lim
δ→0+

E[e−δT (u,b)] = P{T (u, b) < ∞} =
1− ψ(u)
1− ψ(b)

,

(see, eg., Proposition 7.1.10 in Asmussen (2000)). Moreover,

W̄ (u; x, y) = W (u; x, y)− P{T (u, b) < ∞}W (b; x, y)

= W (u; x, y)− 1− ψ(u)
1− ψ(b)

W (b;x, y).

We can then obtain the joint distribution of (U∗
T ∗(u)−, U∗

T ∗(u)) by letting δ → 0+ in Theorem

2.1. Similar results were obtained in Zhou (2004) for a risk model with variable premium rate.

Proposition 2.2. Given 0 ≤ u < b, 0 < x < b and y > 0, with positive safety loading, we have

W ∗(b; b, y) =
λp(b + y)(1− ψ(b))

λ(1− ψ(b))− λ
∫ b
0 p(z)(1− ψ(b− z))dz

,

W ∗(b; x, y) =
λ

∫ b
0 p(z) [(1− ψ(b))W (b− z; x, y)− (1− ψ(b− z))W (b;x, y)] dz

λ(1− ψ(b))− λ
∫ b
0 p(z)(1− ψ(b− z))dz

,

and

W ∗(u;x, y) = W (u; x, y)− 1− ψ(u)
1− ψ(b)

W (b; x, y) +
1− ψ(u)
1− ψ(b)

W ∗(b; x, y).

We can also find an expression of the Laplace transform of T ∗(u).

Proposition 2.3. Given 0 ≤ u < b, we have

E
[
e−δT ∗(b)

]
=

λ(1− P (b)) + λ
∫ b
0 p(z)

(
E

[
e−δT (b−z)

]− E [
e−δT (b−z,b)

]
E

[
e−δT (b)

])
dz

δ + λ− λ
∫ b
0 p(z)E[e−δT (b−z,b)]dz

(2.6)

and

(2.7) E
[
e−δT ∗(u)

]
= E

[
e−δT (u)

]
− E

[
e−δT (u,b)

]
E

[
e−δT (b)

]
+ E

[
e−δT (u,b)

]
E

[
e−δT ∗(b)

]
.

Proof. Take integrals on both sides of (2.2), (2.3) and (2.4). Recycling the proof in Theorem

2.1 we see that
∫ b−

0
dx

∫ ∞

0
W (b− z; δ, x, y))dy = E

[
e−δT (b−z)

]
− E

[
e−δT (b−z,b)

]
E

[
e−δT (b)

]
.

Then (2.6) and (2.7) follow.

¤
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Our last result in this section concerns the last time when a dividend is paid before ruin.

Set

T ′(u, b) := sup{0 ≤ t ≤ T (u) : Rt = b}

with convention that sup{∅} = 0.

Theorem 2.4. For 0 ≤ u ≤ b, we have

E
[
e−δT ′(u,b)

]
=

λ(1− P (b))E
[
e−δT (u,b)

]

λ + δ − λ
∫ b
0 p(z)E

[
e−δT (b−z,b)

]
dz

Proof. Starting from b, the next claim arrives after an exponential time. Conditioning on the

size of that claim we have that

E
[
e−δT ′(b,b)

]
=

λ

λ + δ

(
1− P (b) + E

[
e−δT ′(b,b)

] ∫ b

0
p(z)E

[
e−δT (b−z,b)

]
dz

)
.

Moreover, T ′(u, b) ≥ T (u, b) if and only if T (u, b) < ∞. An application of strong Markov

property at time T (u, b) gives

E
[
e−δT ′(u,b)

]
= E

[
e−δT (u,b)

]
E

[
e−δT ′(b,b)

]
.

The assertion of this theorem thus follows.

¤

3. Present value of dividends until ruin

Write Ri (resp., Li) for the time when {U∗
t } reaches (resp., leaves) level b from below (resp.,

above) for the i-th time. Then 0 ≤ R1 < L1 < R2 < L2 < . . ., and Li − Ri represents the

duration of the i-th period of premium payment. The Laplace transform of R1 is given by

either (1.3) or (1.4). Let M := sup{i : Ri < T (u)} with sup ∅ := 0. M then stands for the

total number of premium payment periods before ruin.

Write p0 := P{R1 < ∞} and p1 := P{R2 < ∞|R1 < ∞}. With positive safety loading it is

easy to see that

p0 = P{T (u, b) < ∞} =
1− ψ(u)
1− ψ(b)

.

Starting from level b, after the first downward jump the overall probability of ruin before {U∗
t }

ever climbs back to b again is

1− P (b) +
∫ b

0
p(z)P{T (b− z, b) = ∞}dz = 1− P (b) +

∫ b

0
p(z)

ψ(b− z)− ψ(b)
1− ψ(b)

dz.
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So,

p1 :=
∫ b

0
p(z)

1− ψ(b− z)
1− ψ(b)

dz.

Our next result is a consequence of strong Markov property for {U∗
t }.

Proposition 3.1. P{M = 0} = 1− p0 and P{M = k} = p0(1− p1)pk−1
1 , k ≥ 1. Given M = k,

{Li −Ri, i = 1, . . . , k} are i.i.d. exponential random variables with mean λ−1. {Ri+1 − Li, i =

1, . . . , k − 1} are i.i.d. random variables with a common Laplace transform

E
[
e−δ(R2−L1)|M = k

]
=

1
p1

∫ b

0
p(y)E

[
e−δT (b−y,b)

]
dy, δ ≥ 0.

The two sequences are also independent.

Remark 3.2. It follows from Proposition 3.1 that the total dividend time
∑M

i=1(Li − Ri) is a

(defective) geometric summation of i.i.d. exponential random variables. A somewhat similar

work on duration of the time in red for the classical risk model can be found in Dos Reis (1993)

and in Dickson and Dos Reis (1996).

Let δ ≥ 0 be the force of interest for valuation. The present value of the total amount of

dividend payments until ruin is

Dδ(u, b) := 1{M≥1}
M∑

i=1

∫ Li

Ri

ce−δtdt =
c

δ
1{M≥1}

M∑

i=1

(
e−δRi − e−δLi

)
.

Theorem 3.1 gives an explicit description on the distribution of Dδ(u, b). It allows us to carry

out some detailed computations. The next theorem concerns the expected value of Dδ(u, b).

Theorem 3.3. For 0 ≤ u ≤ b and δ ≥ 0, we have

(3.1) E[Dδ(u, b)] =
cE

[
e−δT (u,b)

]

λ + δ − λ
∫ b
0 p(y)E

[
e−δT (b−y,b)

]
dy

.
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Proof. By Proposition 3.1, we obtain

E [Dδ(u, b)]

=
c

δ
E

[ ∞∑

m=1

m∑

i=1

(
e−δ(R1+

Pi−1
j=1{(Lj−Rj)+(Rj+1−Lj)})

)∣∣∣∣∣ M = m

]
P{M = m}

− c

δ
E

[ ∞∑

m=1

m∑

i=1

(
e−δ(R1+

Pi−1
j=1{(Lj−Rj)+(Rj+1−Lj)}+(Li−Ri))

)∣∣∣∣∣M = m

]
P{M = m}

=
c(1− p1)

δ
E

[
e−δT (u,b)

] ∞∑

m=0

pm
1

m∑

i=0

(
λ

(λ + δ)p1

∫ b

0
p(y)E

[
e−δT (b−y,b)

]
dy

)i

− c(1− p1)
δ

E
[
e−δT (u,b)

] ∞∑

m=0

pm
1

m∑

i=0

λ

λ + δ

(
λ

(λ + δ)p1

∫ b

0
p(y)E

[
e−δT (b−y,b)

]
dy

)i

=
c(1− p1)E

[
e−δT (u,b)

]

λ + δ

∞∑

m=0

pm
1

m∑

i=0

(
λ

(λ + δ)p1

∫ b

0
p(y)E

[
e−δT (b−y,b)

]
dy

)i

=
c(1− p1)E

[
e−δT (u,b)

]

λ + δ

∑∞
m=0

[
pm+1
1 −

(
λ

λ+δ

∫ b
0 p(y)E

[
e−δT (b−y,b)

]
dy

)m+1
]

p1 − λ
λ+δ

∫ b
0 p(y)E

[
e−δT (b−y,b)

]
dy

=
c(1− p1)E

[
e−δT (u,b)

]

(λ + δ)
(
p1 − λ

λ+δ

∫ b
0 p(y)E

[
e−δT (b−y,b)

]
dy

)
(

p1

1− p1
−

λ
λ+δ

∫ b
0 p(y)E

[
e−δT (b−y,b)

]
dy

1− λ
λ+δ

∫ b
0 p(y)E

[
e−δT (b−y,b)

]
dy

)

=
cE

[
e−δT (u,b)

]

λ + δ − λ
∫ b
0 p(y)E

[
e−δT (b−y,b)

]
dy

.

¤

Remark 3.4. It was shown in Gerber and Shiu (1998) that, with positive safety loading,

(3.2) E [Dδ(u, b)] =
eρ(δ)u − ψ(u)

ρ(δ)eρ(δ)b − ψ′(b)
,

where ψ′ is the derivative of ψ. One can compare (3.2) with (3.1). It would be interesting if

one can find a simple way to reconcile these two results.

By an optimal dividend barrier we mean a value b∗ ≥ u such that

E [Dδ(u, b∗)] = sup
b≥u

E [Dδ(u, b)] .
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Remark 3.5. Set δ = 0 in (3.1),

E [D0(u, b)] =
cP{T (u, b) < ∞}

λ− λ
∫ b
0 p(y)P{T (b− y, b) < ∞}dy

=
c(1− ψ(u))

λ
(
1− P (b)− ψ(b) +

∫ b
0 p(z)ψ(b− z)dz

) .

It is not hard to see that with positive safety loading,

lim
b→∞

∫ b

0
p(z)ψ(b− z)dz = 0.

Then

lim
b→∞

E [D0(u, b)] = ∞.

So, there is no meaningful optimal dividend barrier in this situation.

On the other hand, for δ > 0, we have

lim
b→∞

E
[
e−δT (u,b)

]
= 0.

Then it follows form Theorem 3.3 that

lim
b→∞

E [Dδ(u, b)] = 0.

So, the optimal dividend barrier always exists for δ > 0.

4. An example

In this section we consider a model in which the claim size Ui follows an exponential distri-

bution with mean β−1. We assume that c > λβ−1. Then p(x) = βe−βx and p̂(s) = β
β+s .

Equation (1.2) has a positive solution

ρ(δ) =
λ + δ − cβ +

√
(cβ − λ− δ)2 + 4cβδ

2c

and a negative solution

ρ̄(δ) =
λ + δ − cβ −

√
(cβ − λ− δ)2 + 4cβδ

2c
.

It is known that ψ(u) = λ
cβ e

u(λ−cβ)
c and E

[
e−δT (u)

]
= eρ̄(δ)u

(
1 + ρ̄(δ)

β

)
. See Proposition 1.2 in

Chapter IV of Asmussen (2000).
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It follows from Gerber and Shiu (1998) or Zhou (2004) that

E[e−δT (u,v)] =
(β + ρ(δ))eρ(δ)u − (β + ρ̄(δ))eρ̄(δ)u

(β + ρ(δ))eρ(δ)v − (β + ρ̄(δ))eρ̄(δ)v
.

By (1.5) we can find a formula for W (u; δ, x, y).

W (u; δ, x, y) :=





λβe−β(x+y)(cβe−ρ(δ)(x−u)−λe−ρ(δ)x+u(λ−cβ)/c)
c(cβ−λ) , for x > u,

λ2βe−β(x+y)(e(u−x)(λ−cβ)/c−e−ρ(δ)x+u(λ−cβ)/c)
c(cβ−λ) , for 0 < x ≤ u.

Then by (2.1) we can reach an expression for W̄ (u; δ, x, y), which leads to explicit, but rather

complicated, expressions for W ∗(u; δ, x, y) by Theorem 2.1.

The expression of E
[
e−δT ∗(u)

]
is simpler. Since

∫ b

0
p(z)E

[
e−δT (b−z,b)

]
dz =

∫ b

0
βe−βz (β + ρ(δ))eρ(δ)(b−z) − (β + ρ̄(δ))eρ̄(δ)(b−z)

(β + ρ(δ))eρ(δ)b − (β + ρ̄(δ))eρ̄(δ)b
dz

=
βeρ(δ)b − βeρ̄(δ)b

(β + ρ(δ))eρ(δ)b − (β + ρ̄(δ))eρ̄(δ)b

and

∫ b

0
p(z)E

[
e−δT (b−z)

]
dz =

∫ b

0
βe−βzeρ̄(δ)(b−z)

(
1 +

ρ̄(δ)
β

)
dz

= eρ̄(δ)b − e−βb.

Then by (2.6)

E
[
e−δT ∗(b)

]
=

λ
{

e−βb + eρ̄(δ)b − e−βb − eρ̄(δ)b
(
1 + ρ̄(δ)

β

)
βeρ(δ)b−βeρ̄(δ)b

(β+ρ(δ))eρ(δ)b−(β+ρ̄(δ))eρ̄(δ)b

}

δ + λ− λ βeρ(δ)b−βeρ̄(δ)b

(β+ρ(δ))eρ(δ)b−(β+ρ̄(δ))eρ̄(δ)b

=
λ(ρ(δ)− ρ̄(δ))e(ρ(δ)+ρ̄(δ))b

(δβ + (δ + λ)ρ(δ))eρ(δ)b − (δβ + (δ + λ)ρ̄(δ))eρ̄(δ)b
.

Hence, E
[
e−δT ∗(u)

]
, 0 ≤ u ≤ b, follows readily.

By Theorem 2.4, we have

E
[
e−δT ′(u,b)

]
=

λβe−β(b+y)[(β + ρ(δ))eρ(δ)b − (β + ρ̄(δ))eρ̄(δ)b]
[δβ + (λ + δ)ρ(δ)] eρ(δ)b − [δβ + (λ + δ)ρ̄(δ)] eρ̄(δ)b

.
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By Theorem 3.3,

E[Dδ(u, b)]

=
c (β+ρ(δ))eρ(δ)u−(β+ρ̄(δ))eρ̄(δ)u

(β+ρ(δ))eρ(δ)b−(β+ρ̄(δ))eρ̄(δ)b

λ + δ − λ
∫ b
0 βe−βy (β+ρ(δ))eρ(δ)(b−y)−(β+ρ̄(δ))eρ̄(δ)(b−u)

(β+ρ(δ))eρ(δ)b−(β+ρ̄(δ))eρ̄(δ)b dy

=
c
[
(β + ρ(δ))eρ(δ)u − (β + ρ̄(δ))eρ̄(δ)u

]

(λ + δ)
[
(β + ρ(δ))eρ(δ)b − (β + ρ̄(δ))eρ̄(δ)b

]− λβ(eρ(δ)b − eρ̄(δ)b)

=
c
[
(β + ρ(δ))eρ(δ)u − (β + ρ̄(δ))eρ̄(δ)u

]

[δβ + (λ + δ)ρ(δ)] eρ(δ)b − [δβ + (λ + δ)ρ̄(δ)] eρ̄(δ)b
.

(4.1)

With some algebra it is easy to check that (4.1) is exactly the same as (7.8) in Gerber and Shiu

(1998).

Acknowledgement The author thanks Elias Shiu and an anonymous referee for very helpful

comments.
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