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Abstract

Robust Credibility and Kalman Filtering
Mike Tam

Credibility theory is an experience rating technique in insurance used to combine
an estimate of the expected claims of a contract with the estimate of the expected
claims of a portfolio of similar contracts. However, the credibility estimate remains
sensitive to large (outlying) claims. In this thesis, robustification of some classical
credibility models are presented via robust Kalman filtering. Credibility theory has
been shown to be a special case of the Kalman filter (De Jong and Zehnwirth, 1983),
thus existing research on the robustification of the Kalman filter, for example, Cipra
and Romera (1991), can be applied to robustifying Kalman filter credibility models
(Kremer, 1994). After describing in some detail the classical and robust models of
credibility, we present an implementation of a robust Kalman filter credibility model

and apply it to Hachemeister’s dataset (Hachemeister, 1975).



Acknowledgements

It has been both a privilege and a pleasure to write this thesis under the guidance
of Professor José Garrido. His constant encouragement and abundant patience were
pivotal in the completion of this thesis. To José goes my sincere thanks. I also
would like to express my deepest gratitude and appreciation to Philippe, Claudette,
George, and my parents who have given me their unwavering support, without which
this thesis would not have been written. Finally, I dedicate this thesis to my wife,

Sandy, for her refusal to let me give up.

iv



Contents

Introduction 1
1 Credibility Theory 3
1.1 Limited Fluctuation Credibility . . . ... . ... ... ........ 4
1.2 Exact Credibility . . ... .. .. .. ... ... ... ... 6
1.3 The Classical Model of Bithlmann . . . . . ... .. ... ....... 12
1.4 The Bithlmann-Straub Model . . . . . .. ... ... ... ....... 20
1.5 The Hachemeister Regression Model . . . ... ... .. ....... 23
1.6 Empirical Credibility . . . . . . ... .. ... ... ... ....... 30
2 Robust Credibility Models 33
2.1 Robust Statistics . . . .. .. ... .. L. 34
22 Kinsch'sModel . . . .. .. .. L. 36
2.3 Gisler and Reinhard’s Model . . . . . . .. ... . ... ........ 39
2.4 Kremer’s Robust Regression Model . . . . ... .. ... ....... 41
3 The Kalman Filter Applied to Credibility 45
3.1 The Discrete Kalman Filter . . . . . ... ... .. ... ....... 45
3.2 Empirical Credibility with the Kalman Filter. . . . . . . ... .. .. 51
3.3 Robust Kalman Filtering in Credibility . . ... ... ... ...... 57
3.4 An Empirical Robust Kalman Filter Credibility Model . .. ... .. 61



4 Numerical Illustrations

4.1 Classical Credibility Estimates . . . . . . .. . .. ... ... .....

4.2 Robust Credibility Estimates . . . ... ... ... ... .......

4.3 Kalman Filter Estimates

Conclusion

A Hachemeister’s Dataset

References

65
65
68
74

(4

79

82



List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Al

A2

Bihlmann’'s Model . . . . . . ... .o 66
Biithlmann and Straub’s Model . . . . . . . . . ... ... ... .. .. 67
Hachemeister's Model . . . . . . . . ... .. .. ... ... .. .... 68
Bihlmann’s Model with X5, =7,000. . . . . . . . ... ... .... 69
Kiinsch’s Model with X512 =7,000 . . . . . . ... ... ....... 70
Bihlmann and Straub’s Model with X5, =7,000 . . . . ... .. .. 71
Gisler and Reinhard’s Model with X5,,=7,000 . . .. ... ... .. 71
Hachemeister’'s Model with X5, =7,000 . . . . . . ... ... .... 71
Kremer’s Robust Regression Model with X5, =7,000 . ... .. .. 72
Kalman Filter (Hachemeister) Model for Contract No. 5 . . ... .. 74

Robust Kalman Filter (Hachemeister) Model for Contract No. 5 with
X5,12 = 7,000 ............................... 75

Claim amounts from private passenger bodily injury (Hachemeister,



List of Figures

4.1
4.2
4.3
4.4

Hachemeister’'s Model for Contract No. 5 . . . . . .. .. ... . ...
Kremer’s Robust Regression Model with X5, =7,000 . .. ... ..
Kalman Filter (Hachemeister) Model for Contract No. 5 . . ... ..
Robust Kalman Filter (Hachemeister) Model for Contract No. 5 with

X5,12 = 7000 ...............................



Introduction

Credibility theory is an experience rating technique in actuarial science. Experience
rating is the process whereby the experience of an individual risk is used to calculate
the premium rate for that individual. In Credibility theory, the premium for an
individual risk is computed by combining the experience of the individual with the
experience of a larger collective. However, estimation of the credibility premium can
be adversely affected by larger than normal claims. In that case, robust methods can
be used to provide a robust credibility premium. The Kalman filter is also useful
in credibility theory. Various credibility models have been shown be special cases of
the Kalman filter. In applying the Kalman filter to credibility, we can also look to a
robust Kalman filter to provide a robust credibility premium.

In this thesis, I review the application of robust statistical methods and the
Kalman filter to credibility theory. Using some results available in the credibility
literature, I also discuss an empirical robust Kalman filter credibility model and some
of the difficulties that can arise in the implementation. Finally, some numerical results
are presented.

In chapter 1, a review of credibility theory is given. The limited fluctuation
approach to credibility is discussed first. This is followed by a discussion of exact
credibility. The greatest accuracy approach to credibility is presented next. This
approach includes the models of Biihlmann, Biihlmann and Straub, and Hachemeister.
Finally, some empirical estimators of the parameters of the credibility premium are

shown.



In chapter 2, the application of robust statistics to credibility is examined. A brief
review of some results from robust statistics which are useful in robust credibility is
followed by an elaboration of the robust credibility models of Kiinsch, Gisler and
Reinhard, and Kremer.

In chapter 3, the Kalman filter and its connection with credibility theory is pre-
sented. Two methods of obtaining empirical credibility estimators in the Kalman
filter framework are then given. Finally, a robust Kalman filter is considered and one
of the empirical non-robust Kalman filter credibility models is adapted to provide an
empirical robust Kalman filter credibility model.

In chapter 4, numerical results of the the various models and estimators discussed
in the previous chapters are presented. In this chapter, an attempt is made to compare
the performance of the various models using a dataset of claim amounts both with
and without an outlier.

In the conclusion, a summary of the thesis is given as well as what further work

may be done in the area of robust credibility and Kalman filtering.



Chapter 1

Credibility Theory

Credibility theory is an experience rating technique in actuarial science. It is used
to determine the expected claims experience of an individual risk when those risks
are not homogeneous, or the claims history of the individual risks are scarce, but the
experience of the collective is extensive. Given that the individual risks are embedded
in a heterogeneous collective, the objective of the various credibility formulas is to
calculate the weight which should be assigned to the individual risk data to determine
a credible mean of that risk. Here, we define risk to be either uncertainty arising from
the possible occurrence of given events; or individuals or entities covered by financial
security systems.

In determining an insurance premium, we would like the premiums collected to
cover the expected severity of future claims, and that each individual risk be assigned
a premium commensurate with the risk that it contributes to the collective. If the
second condition is not met, the preferred risks would be overcharged, while the sub-
standard risks would be undercharged. A premium which is not experience-rated
would tend to drive away “safe” risks and attract selection against the insurer.

The following solution was suggested by Whitney (1918),
M;=(1-2)m+ZM;.

Here, M} is the credibility adjusted mean. It is a weighted average of the overall



mean m, and Mj;, the mean for individual risk j. The credibility factor Z is a
number between 0 and 1, which is assigned to the individual risk premium. When
the individual data is profuse, Z is close to 1.

Credibility theory is used extensively in setting rates for automobile insurance,
but we can find credibility theory in other insurance applications. Credibility is often
used in experience rating claims in group insurance or in determining the worker’s
compensation premium for a particular employer. Use of credibility can also be found
in loss reserving. Loss reserves are funds set aside to pay the benefits of existing and
future obligations. When claims are incurred but not yet reported to the insurer,
credibility theory can be used to estimate this amount.

Credibility theory can also be used in more general statistical problems such as
predicting economic factors. In the regression model by Hachemeister (1975), the
effects of inflation in each U.S. state are modeled by a simple trend line. To better
predict the effects of inflation, the state trend is consolidated with the country-wide
trend to form the credibility adjusted trend line. We discuss the Hachemeister model
in more detail in section 1.5.

In this chapter, we review some credibility models. We first discuss the limited
fluctuation approach of credibility which was introduced by Mowbray (1914). In
the ensuing section, the relationship between credibility theory and the exponential
family of distributions is developed. Afterwards, the following three sections review
the greatest accuracy approach of credibility, in particular, the models of Bithlmann
(1969), Biithlmann and Straub (1970), and Hachemeister (1975). In the final section,

some empirical estimators are described.

1.1 Limited Fluctuation Credibility

Limited fluctuation credibility is used to provide the exposure that is required to

assign full credibility to the individual data. We may say, for example, that the



estimator ; of §; is given full credibility when, for some k& > 0, the probability that

d; is within 100k% of 6; is at least 1 — e. Thus for € > 0,
Pr(|; — 0;] < k] >1—e€. (1.1)

This is analogous to determining the minimum sample size required to generate a
100(1 — €)% confidence interval of length k. If n is the number of observations asso-
ciated with the parameter ;, and a Normal approximation is used, we can derive a

value ng, such that (1.1) holds for n > ny.

Example 1.1 Let &(-) represent the distribution function of a normal random varia-
ble with mean 0 and variance 1. If éj is a Binomial proportion estimator, we can show
that full credibility can be given to 9J- if n > ng = y*(1 — 6;)/(k%9;), where &(y) =
1 — ¢/2. Based on n observations, we have E[f;] = 6;, and Var[d;] = 6,(1 — ;) /n.

Then

Pr(|6; — 8;] < kb;] = Pr[—k0; <8, — 6; < k6,]

B  __ 6i—6 k6,
—0;)/n = V0;(1-6;)/n T /6;(1—8;)/n

=Pr[\/67j(1
>1—c€.

By the Central Limit Theorem, _f\/%ﬁ will be approximately distributed as a
FAC S ]

standard normal random variable if n is large. We have

(D[ k6, }_@[ —k6; }:1—6
V0;(1L —6;)/n V0i(1—86;)/n ’

hence,

k0, L.
@{ 9j<1—9,-)/nJ‘1 /2,

then

k6;

. V6;(1—8;)/n’




and

2
y* (1 —6;)
no=__k2_9;_a_

is the smallest number of observations needed for full credibility.

When n < ng, we can also find Z for partial credibility, that is, for 0 < Z < 1.

Let 0 =(1-Z)m+ Z;, where m is the mean of the collective data. The error of

using 6% is
02—0;=20;—0;)+ (1 —Z)(m—6;).
The term Z (éj — 0;) describes the error due to the estimate of the individual mean.

If we require this error to be bounded absolutely by k6; with probability 1 — ¢, then

we have
Pr[Z|0; — 6;| < kb;]=1—¢.

Using the normal approximation and the result from Example 1.1, we can derive Z
k8;

in the case of partial credibility. We have y = Z )

280 - G)/n

yz(l - 91) Mo ’

SO

Since Z cannot be greater than 1, we take Z = min(, /7=, 1). If Z < 1, there is partial

credibility.

1.2 Exact Credibility

For a fixed time period ¢, the yearly claim amounts X, for r = 1,... ,t, occur de-
pending on an unobservable risk parameter ©, which has the structure distribution
function U(6). The claim amounts are not dependent on time, therefore given © = 6,

the X, are conditionally independent and identically distributed. The conditional



distribution of the claims experience random variables X, given the risk parameter
© =0, is described by the distribution function F(zy,... ,z.|8).

To derive the individual risk premium p(©) = E[X|©], based on the observations
X1,..., X, consider approximating p(©) by a function g(Xj,...,X;) which mini-
mizes the squared-error loss function. That is, we wish to determine g such that

given Xi,...,X:,
R(g) =E[u(©) — g(X1,-.. . Xo)]?
is minimized. We know that when R is of this form, it is minimized when
9(X1, ..., X)) =E[u(O)[Xy,... , X, (1.2)

which is the posterior Bayes estimator. The conditional expectation in (1.2) is called
the exact credibility estimator.

In practice, since we do not always know the distribution functions F(z|d) and
U(8), we may wish to adopt a semi-parametric approach by considering only those
functions g which are linear combinations of the observations. Thus, by minimizing

:R(CO’ R Ct) = E[.u'(e) —Co — z chr]2

r=1

VA
— ,forr=1,...,¢ or equivalently

over all ¢y, ..., ¢, we find that ¢, = =
c “ & s2+at t

at
= S irat’ (1.3)
where a = Var{E[X|O]} and s? = E{Var[X|O]}. Also, ¢p = (1 — Z) p with p =

E{[1(©)]}. Hence,

MO =c+) aX.=(1~-2)p+2ZX, (1.4)

r=1
where 1(©;), is the optimal linear credibility premium under the least-squares crite-

rion.



Exact credibility refers to the situation where the exact credibility premium co-
incides with the optimal linear credibility premium. Exact credibility appears in the
original model of Bithlmann (1967), where only one contract is considered.

The parameters u, s?, and a are called the structural parameters. According
to Goovaerts and Hoogstad (1987), the parameters are called structural since these
parameters should estimated from the data. Since the structural parameters p, s2,
and a would have to be known for i(©,) to be calculated, we cannot consider the
linear credibility estimator a statistical estimator. We will return to this point in
section 1.6.

Even when both F(z|f) and U(f) are known, the resultant credibility formula
may not be tractable. Bailey (1950) showed that if the conditional distribution is
given by the Binomial distribution and the prior distribution is the Beta distribution,
then exact credibility occurs. Bailey, in the same paper, also demonstrated exact
credibility in the Poisson-Gamma case. For similar results, see also Mayerson (1964).

Jewell (1974) generalized the results of Bailey and Mayerson. He showed that,
for the exponential family of functions and its conjugate priors, the exact credibility

premium equals the linear credibility formula. We now prove this result.

Proposition 1.1 (Jewell, 1974) Given F(z|f) and its conjugate prior U(f), the
Bayesian credibility premium in the least-squares sense, based on these distributions,
coincides with the linear credibility formula if F(z|) is a function from the single-

parameter exponential family.

Proof Consider the single-parameter exponential family with natural parametrization

_ p(z)e®

where p(z) and q(f) are arbitrary functions such that f(z|6) is a proper density. Let

8 € ¥ and z € §2. Consider also, the conjugate prior distribution

_ q(f)~foe=b=0
U = = o z)

8



To see that u(#) is the natural conjugate prior of f(z|6), note that

9(z,0) = f(z|0)u()
p(x)e—-o(z+zo)

Let

) _ p(x)e—0(1+10)
k(x)—/ﬂ (@) do,

then the posterior distribution of 8 given z is

q(8) Vot lip(g)e-bl=t=0)
k(z)

w(8lz) =

Let ¢(z) = p(z)/k(z), then

w(f|z) = C(J;)(Z—):im)
Since the posterior density w(6|z), with parameters tg+1 and zo+z, is also a member
of the exponential family, it follows that u(6) is conjugate for f(z|9).

The likelihood function of 8 is given by

_ p(z1) - -p(z)edThmr =

El - @F
then
JEGER p(z)e I Ta et
= I3 [9(8)]*q(8)%c(to, Zo)
Elp(®)lz1,... 7 / Han) - e T e (1.6)
9 [a(8)]*q(8) o c(to, Zo)
Let

q(e)—(to+t)e—0(zo+z‘ﬁ=1 zr)
C(to +t,z9 + Z:.___l iL‘,-) ’
which is analogous to u(), so [, v(8)df = 1. After simplifying the equation in (1.6),

v(f) =

we can write the expectation as

6_0(=°+Z:‘=1 )

Ep®)lz1; -z =/19 £ q(8)to+t dg,

- / 1(0)u(6) d6 .
9




Next, we differentiate v(f) with respect to 4,

d 4
@U(o) = [ (fo +t)—x ((6) ( o-rz Ir>] v(0) -

But from equation (1.5), we have

p(z)e %=
/Q—_q(e) dr=1.

Thus,
[ ’ —0z
q(6) = J p(z)e " dz.
Q
Since

q'(0) = —A zp(z)e % dr

it follows that E[X 8] = u(8) = —¢'(6)/q(8). So now we have

;511(9) = {(to +t)u(8) - <$0 + Z Ir)} v(6) - (1.7)

If v(0) equals zero at both the upper and lower limits of ¥, integrating both sides of
(1.7), we get

/19 d—‘é—v(&) df = /19 [(to + t)u(8)v(8) — (:ro + Z xr> U(@):I do

r=1

or

0= (t +t)/ u(&)v(é’ )df — (130 + Z .’17,-) .

r=1

Hence,

[ @ do = 2 Tem 72

to+t

and therefore,

Elu@)lz1,--- 2] =

_ to ﬂ_*_ 4 y+---+x
to+t/) to to +t ¢
=(1-2)u+ Zz,



t

to+t
So for distributions in the exponential family and their conjugate priors, the exact

where Z =

credibility formula can be written as a linear combination of the prior mean and the
individual data.

2
%[IE(;#I?]]} = %, note that, as in equation (1.7),

(6) = [tore(8) — zo]u(8),

To show that tg =
EU

2

(592“(9) = [top(0) — zoju'(6) + ton’(8)u(6) .

But with
q"(0) = / 22 p(z)e % dz,
Q

we have E[X?|0] = ¢"(6)/q(0). It then follows that

d

4.1(0) = — Va{x16].
Then
d? 2
2 4(6) = [ton(0) — zo[?u(8) — to Var[X|6]u(®). (1)

do?

If we assume that u(@) equals zero at both endpoints of ¥, we have

Z
p= /0 p(0)u(8) do = t—;’

Then, integrating both sides of (1.8) with respect to 8, we obtain
0 = Efton(0) — zo)* — to E{Var[X|O]}
-8 [ue) ~ 2| ~toB(varixio]
— £ Var[u(@)] — to E{Var[X|0]}.

Thus,

t, = BLVarlX|O]} >
Var[u(0)]

S
o

11



1.3 The Classical Model of Biihlmann

In this section, we discuss the classical credibility model of Biihlmann (1969). In
this model, an entire portfolio of contracts is now considered, and a linear credibility
estimator is sought. Instead of a single risk parameter ©, we now have risk parameters
©; for j = 1,2,... ,k, where k is the number of contracts in the portfolio. The
claim amount for the jth contract at time r for r = 1,...,t is given by Xj;,. The

assumptions of the model are:

(B1) The contracts (X;,0;) for j = 1,... ,k are independent and identically

distributed.

(B2) For every contract j = 1,... .k, and for a given ©;, the claim amount
random variables Xji, ... , Xj; are conditionally independent and identically
distributed.

The first assumption implies that claim armounts from one contract are independent
of claim amounts from another contract. The second assumption asserts that within
a contract, the claim amounts at time r = 7’ are independent of claim amounts
occurring at times r # r’. For ©; = ©, the classical Bithlmann model coincides with
the exact credibility model.

When a semi-parametric approach is used to obtain the credibility estimator, we
can relax assumption (B2) to equality of the first two moments of the conditional

distribution of X, given ©;. That is, for 7 =1,... ,k,

(B2") E[X;+|©;] = u(©;) and the covariance matrix of the claim amounts at

time periods r = 1,2,... ,t equals 0?(0;)1,

where 0%(0;) = Var[X;,|©;] and I is the ¢ x t identity matrix.
Before we state the main results of this section, we will need to prove the following

covariance relationships.

12



Lemma 1.1 For any 7,7 = 1,... ,k and r,7' = 1,... ¢, let u = E[u(0;)], a =
Va.r{,u(@j)], and 52 = E{Va.r[XJ,.lG)J]} Then

(i) Cov[Xir, u(©;)] = adyj,
(i) Cov[Xjm,X;] = a+ s%6.~, and
(iii) Cov[X;m~, Xir] =0, for i # j.
The function ¢;; is the Kronecker delta, which is defined such that, for any ¢ and 7,

1 ifi=j7,
6ij =
0 ifi##7.
Proof The following proof can also be found in Goovaerts et al. (1990). We first prove

(i). For any random variables X, Y, and © the covariance of X and Y can be written

as
Cov[X, Y] = Cov{E[X|O], E[Y|0]} + E{Cov[X, Y|O]}. (1.9)

Setting X = X, Y = u(0;), and © = O;, we have
Cov[Xer, u(8;)] = Cov{E[Xir|O;], E[u(8;)|0;]} + E{Cov[X:r, u(©;)16,]}. (1.10)

The conditional expected value of u(©;) given ©; is again u(©;). If ¢ = 7, then by
definition, the conditional expectation of X, given ©; is equal to x(©;). Conversely, if
¢ # j, the conditional expectation of X, given ©; is equal to u, and so Cov{y, £(©;)] =
0. Therefore, the first term on the right of (1.10) reduces to Cov[u(©;), u(©;)] =
Var([u(9;)] 6;;. Given ©;, the random variable u(®;) is degenerate, so the second

term on the right of (1.10) vanishes. We are then left with
Cov[Xir, u(©;)] = Var(u(6;)] = ady; .
To prove (ii), let X = X, Y = X, and © = ©; in (1.9). Then
Cov[Xjm, Xjr] = Cov{E[X;~|0,], E[X;|0;]} + E{Cov[X;m, X;-|O;]}.

13



The first term on the right side can be written as
Cov[u(0;), u(©;)] = Var[u(0;)] = a.

For a given ©;, the X, for r = 1,... ,t are conditionally independent, so for r # r’,

the conditional covariance of X~ and X}, given ©; equals zero. When r =1/,
E{Cov[Xjr, X;-|0;]} = E{Var[X;~|0,]} = s*.
Thus,
Cov[Xjr, Xjr] = a + §28pm.
Finally, to see that (iii) is true, let X = X, Y = X}, and © = O, to get
Cov[ Xy, Xir] = Cov{E[X;~|0;], E[Xir|O;]} + E{Cov[X;m, Xir|O;]}

By assumption (B1), the conditional covariance of Xj,» and X;., given O;, equals
zero. The conditional expectation, given ©;, of X~ and X; equals x(©;) and p,
respectively. Thus, the covariance of these two conditional expectations equal zero,

again by (B1). It follows that the covariance of X~ and X,, also equals zero. O

We now prove two theorems relating to the best linear approximation to the
conditional expectation E[u(©)[X;,...,X:]. The first theorem gives the optimal

inhomogeneous credibility estimator for the individual risk premium.

Theorem 1.1 (Bithlmann, 1969) If the hypotheses (B1) and (B2') are satisfied,
then the optimal inhomogeneous linear estimator (©;) of u(©;), in the least-squares

sense is
a0;) = (1-2)p+2X;, (1.11)

where XJ‘ = %‘Zi:l Xjr, and u= E[,U,(@J)]

14



Proof The procedure here follows the presentation in Goovaerts et al. (1990). For a

given j, we wish to minimize

: 2
Rnn(co;---,¢ct) = E [,u(@j) —Co— Z erXjr} )
r=1
over ¢ and all ¢j for r =1,... ,t. Differentiating R, with respect to ¢y and c; for
each ' =1,... ,t and setting the results equal to zero, we get

a t
Beg o = 2B [”(91') ~c— erXjr] =0

r=1

and

a :R‘n.h =-2FE {Xj-,-l l:,u(@_,) — Cop — Z er.erJ } =0.

aCj r r=1

Simplifying the equations, we obtain

t
E [,u(@j) — ¢y — Z cj,.Xjr] =0, (1.12)
r=1
and for every ' =1,2,... ,¢,
t
E{Xjr:[p(ej) —Cp — Z erXjr]} =0. (113)
r=1

Multiplying (1.12) by E[X}s] and subtracting it from (1.13), we obtain
t
0 = Cov[Xjm, w(©;) — co— Y ¢jrXyr]
r=1

t
= COV[XJ',-I,/J,(@J')] — COV[X]'-,-I, Co] it COV[XJ-,./, Z erXj,-] .

r=1

Since Cov[Xjr, o] = 0 and Cov[Xjr, S i, ¢irXjr] = 3 b Cov[Xjm, Xjr], We have

t
Z ¢cjr Cov[Xr, Xjr] = Cov[u(0;), Xjm] - (1.14)

r=1

From (1.12) and (1.14), we obtain the following system of equations:

t
CO'*‘:UZCJ'r:#a

r=1

t
s’cjw +a E Cjr = a,

r=1
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for 7' =1,... ,t. The system of equations is symmetric with respect to the c;,, so we

can write ¢;j; = ¢jp = --- = ¢jy = ¢. The system then reduces to

co+utc=p,

s’c+atc=a.

We find that
a A
CcC = = —,
s2+at t
with Z = z_at_ as postulated in (1.3). It follows that
sc+at
co=(1-2)u
and so
MO =(1-2u+2%;. .

In the foregoing theorem, we can see that equation (1.12) guarantees the unbi-
asedness of the linear estimator. In the ensuing theorem, where we investigate an
homogeneous estimator, we will need to impose a condition which will provide us
with the property of unbiasedness. To understand why unbiasedness is important in
an insurance framework, consider the concept of unbiasedness as one of the principles
of premium calculation, that the expected financial loss to the insurer is zero. Ad-
herence to this rule ensures that the expected value of future claims be equal to the
expected value of future premium payments.

In practice, inhomogeneous premium rules are more logical than homogeneous
rules. This can be seen intuitively since no past claims should not imply that there is
no risk of future claims. Under an inhomogeneous rule, even if X, = 0, a premium
would still be assessed. However, if we do not want to consider linear affine functions

of the past observations, we have the following theorem for the homogeneous case.
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Theorem 1.2 (Biihlmann, 1969) If the hypotheses (B1l) and (B2') are satisfied,
then the optimal unbiased homogeneous linear estimator (©;) of 1(©;), in the least-

squares sense is
£O;)=(1-2)X +2X;, (1.15)

where X; = 37/ Xjr, and X = ¢ Zg— Xi=wn Z] L1 2 X

Proof In the inhomogeneous case, ¢y was the amount of collateral data to be used.
In the homogeneous case, if we merely minimized E[u(©;) — S_¢_, ¢;rX;.]?, subject
to the constraint E[u(9;)] = 3¢_, ¢;» E[X;,], over all ¢;1, ... , ¢, the solution would
be ¢;r = % for - = 1,...,t. The estimator for x(©;) would then be X;, which
satisfies the unbiasedness constraint. However, this estimator does not incorporate
any information from the collective. This can also be seen by noting that if there are
no claims for risk 7, Z;l cjrXjr would equal zero, so no premium would be charged
for this risk. If we want to incorporate the collateral data into our estimator, we must

re-formulate the minimizing equation as:

:Rh(cjir) = ﬂ(@ Z Z c]zr ]zr s

i=1 r=1

foreach#,7=1,... ,kandr=1,...,¢t.
Since we require the unbiasedness of the linear estimator, we must have

Bu©)] = 323 e ElXiel.

=1 r=1
But this can be written as . = Zf=1 S _. Cjir, hence Zf=1 S ciir =1
Multiplying Zle Zf,=1 cjr — 1 by the Lagrange multiplier A and subtracting the
result from R, results in

k t
-{ha\(cjir) = /-1'(@ Z Z c]zr _711' —-A I:Z Z Cjir — ]—} -

=1 r=1 =1 r=1

Differentiating Rpx with respect to cj# for every 7’ and 7/, and setting the result
equal to zero gives us

o k t
Benn Rir = —2E {X,-,-,,, [ﬂ(ej) >3 cj,-,Xj,.,J } —A=0, (1.16)

i=1 r=1
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fori=1,...,kand ¥ =1,...,t. Thus

A
-5 = E[in’r’ﬂ(ej)] - Z Z C]zr z'r’ijr]
i=1 r=1
kot
= B[X;iru(0;)] —m? - Z Z cjir{E[Xjirr Xjir] — m?}
i=1 r=1
E ot
= COV[in'r', #(ej)] - Z Z Cjir COV[in'r', inr] .
=1 r=1

Since Cov{Xjy, u(©;)] = ady; and Cov{Xjyr, Xjir] = a + sb for 7/ = 7 and zero for

7 # i, we have

._.% = a&i,j — Z Z CJU- a-—+ Sorr’)

i=1 r=1
- 2 -—
=ady; —a Z Cjitr — S Cjirps - (1.1{)
r=1
Since the system of equations is symmetric with respect to the c;;r, we write the cj;,

as ¢jyr. Then Y i_, Cjinrs = tcji. From (1.17),

a&vj -+ = atcji:r/ + 82 Cjilps -

3

So,

a&v,— + )\/2

1.18
at + s? ( )

Cjirr =

Since Zle Z:=1 cjir = 1, it follows that
(5= at+ 32
at + Akt
T at+s? Zat+s?

Let Z = _at__ then

at + s2’

1-2)
kZ/a

o >

18



Inserting this into (1.18), we get

aby; + (1 — Z)a/kZ

Gr = at + s2
_ (1 —Z+ kZ&vj)a
(et +s2)kZ
Finally,
t
(1 - Z) at5IJ
DD e Xgiw = gt Sy X+ ZZ e X
i'=1r'=1 i'=1r=1 oz
=(1—Z)X+ZXJ d

The asymptotic behaviour of Z and the structural parameters a and s> are intu-
itively appealing. As the number of time periods becomes arbitrarily large, Z will
approach one. As the individual data increases in size, the collective data will no
longer be required. However, in practice, it is difficult to partition the collective into
strictly homogeneous sub-classes. Even when t approaches infinity, Z may remain
significantly less than one.

When a decreases to zero, Z will tend to zero. This can be seen by noting that
a is the “between contracts” variance. When a = 0, there is no variation between
contracts and the entire portfolio is homogeneous. The best linear estimate under
the least-squares criterion then is the mean of the collective. If a approaches infinity,
Z approaches one. The collateral data is so heterogeneous that the individual data
should not be combined.

When s2? approaches zero, Z will tend towards one. Since s is the “within con-
tract” variance, if s2 = 0, then the individual data is completely homogeneous and the
collective data is not required. If s? increases without bound, however, the individual
data contains so much heterogeneity that it is not useful in estimating the individual

mean.
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1.4 The Biihlmann-Straub Model

The Biihlmann-Straub (1970) model is a generalization of the classical Biithlmann
model. In the Biihlmann-Straub model, natural weights are assigned to the data and
are allowed to vary with time. If a portfolio can be divided into sub-groups, with each
contract in the jth sub-group having the same risk parameter ©;, and if the number
of contracts in the jth sub-group is w;, then the w; contracts in the jth sub-group can
be replaced by their average. Then allowing the weights to vary with time, we add
the index r to w; to indicate the dependence on time. The natural weights are then
written as wjr for j = 1,... ,kand 7 = 1,... ,t, and are considered as the number
of contracts grouped into an average contract. We may also consider cases where the
weights are given by other types of exposure such as premium volumes. The special
case which coincides with the classical Bithlmann model is just the Biithimann-Straub
model with constant weights.

So now, each contract § = 1, ...,k is made up of the average of a group of contracts
with the weights wj1,... ,w;, varying with time. We would also like all contracts to
have the same expectation of claim size as a function of the risk parameter ©;. The
assumptions of the Biihlmann-Straub model are as follows: For 5 = 1,... ,k and

r.r'=1,...,t,

(BS1) E[X;r|0;] = u(0;),
Cov[Xjr,Xjr,lej] = 5,-,—!0'2(@3')/'1,0]',-.

(BS2) The contracts (Xj,©;) for j = 1,...,k are independent. The variables
O1,...,0 are identically distributed. The observations X, have finite

variance.

As is evident in assumption (BS2), the independence between the contracts still holds.
In (BS1), since Cov[Xj., X;~|©;] = 0; for r,7’ = l, ,t and 7 # 7/, the indepen-
dence within the contracts remains as well. The equality of the first moment of the

observations is still true; however, due to the introduction of the weights which vary
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with time, the variance of the observations are no longer homogeneous with respect

to time.

We introduce the following notation for convenience:

r=1
k k t
w = E 'U)j = E E 'lUJr ,
i=1 j=1 r=1

N
[
'M?“
N

j=1
fLw
— ir
Xjw = E ” Xir s
=1 7
Ew ELt
Y.
— J — T
Xuw = E TU—ij = E Xir
i=1 j=1 r=1

. w.
J YT
i

H><
g
[
M o
N[N
21
g
[
M -
M -
NN

LY
I
-
©,
I
oA
.
I
-

In the Biithlmann-Straub model, the individual estimator is X}, and the estimator for
the collective in the homogeneous case is X.,. The credibility weights Z;, are such

that

aw;
R 1.1
Zi awj + s2 (1.19)

where a = Var[u(©;)] and s? = E[c?(©;)]. The credibility estimator for x(©;) then
is
2(0;)=(1—-2;) Xow+ Z;Xjw - (1.20)

To prove the optimality under the least-squares criterion of these credibility estima-

tors, we need the following covariance relations:
Lemma 1.2 The following covariance relations hold:

(1) Cov[u(©;), Xir] = ady;,
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(ii) Cov[Xjr, Xir] =0 for i # 7,

(i) Cov[Xjm, Xir] = @ + 807 [wir,

(iv) Cov[Xjr, Xjuw) = Cov[Xjw, Xjw] = a + s? Jwj,
(v) Cov[ Xy, Xew| = Cov[Xaw, X:uw] =a/Z,

(vi) Cov[Xy, Xuw] = $*/w + aw;/w,

(vii) Cov[Xumw, Xuw] = s%/w +a 35, (wj/w)?.

The proof of Lemma 1.2 is similar to that of Lemma 1.1. Using computations
analogous to those in the proof of Lemma 1.1, and the notation specified in this
section, Lemma 1.2 can be easily demonstrated.

Equation (1.20) specifies the homogeneous credibility estimators in the Bithlmann-
Straub model. If X., is replaced by u = E[u(©;)], we obtain the inhomogeneous

credibility estimators.

Theorem 1.3 If the Biihlmann-Straub assumptions (BS1) and (BS2) hold, then the

optimal linearized inhomogeneous credibility estimator of x(9;) is
O;) = (- Z)u + ZiXs (1.21)
where p = E[u(©,)] and Z; is as in (1.19).

The derivation of (1.21) is similar to that of the inhomogeneous optimal credibil-
ity estimators in Bithlmann'’s classical model. There, the solution was provided by
minimizing

Rar(co, - -, cie) = E[u(0;) — Z cir X Jr
r=1
To prove Theorem 1.3, we would use the same technique. However, the number of
claims associated with each claim amount random variable Xj,, is now no longer

necessarily equal. Therefore, the term a Y ¢_, c;, is not equal to atc, but is instead
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equal to aw;c;. And the term ¢ = (1 — Z;) i, is not uniform across contracts as in
the classical Biihlmann case. For complete details, refer to Goovaerts et al. (1990).

In the homogeneous case, we have the following theorem.

Theorem 1.4 The solution of the following minimization problem,

min . /.L(@ Z Z c]zr 1.r 3

€5i1,C5i2y---1Cjit

j=1 r=1
fori=1,... .k and for each j =1,... ,k, subject to the constraint
[u(e Z 2 C]zr ir] 1
j=1 r=1
is
/1(63) =(1- Zj) KXoy + ZiXjuw - (1.22)

where Z; is as in (1.19).

The proof of Theorem 1.4 can also be found in Goovaerts et al. (1990). As in
the classical Biihlmann case, it is necessary that the minimization be accomplished
over all linear combinations of claim amounts of the portfolio for each contract. Then,
with an application of the Lagrange multiplier method to the unbiasedness restriction

as the constraint equation, the result follows.

1.5 The Hachemeister Regression Model

The regression credibility model was originally proposed by Hachemeister (1975).
Because the effects of inflation in claim figures had become a major problem in rate-
making, Hachemeister developed a model which could be used to evaluate the credibil-
ity of state (or contract) trends against country (or portfolio) trends when estimating
the expected severity of claims.

Viewing inflation as a factor which varies with time, Hachemeister proposed a
simple linear regression model with time as the independent variable. In this credi-

bility model, the net risk premiums are no longer time-independent, and inflation is
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modeled by a linear trend, which can be seen as an extension of the Biihlmann-Straub

model.

The assumptions of the Hachemeister regression model are:

(H1) The risk parameters, ©1,... ,©; are independent and identically distrib-

uted. The contracts j = 1,... , k are independent.

(H2) E[X;|9;] =Y;8(0;), for j =1,...,k, where § is an unknown regression
vector of length n and Cov[X,|©;] = ¢*(©;) W

The design matrix Y; has full column rank n and dimension ¢ x n, where n is an
arbitrary value denoting the number of factors being considered. The matrix is chosen
in advance and determines the type of trend that is modeled. For example, if we wish

to model a quadratic trend, then the design matrix for each contract would have the

same form,
1 11
1 2 4
Yj=
1 t ¢

In general, for each contract,
Y] = (Zjl: ... 1Kjt),7

where Y. = (yjr1, Yjr2, - - - , Yjrn)- In the foregoing example, Y, = (1,7,7?).

The fixed weight matrix WJ-“1 has dimension ¢ X t, and assumes the following form

l/wj]_ .. 0
-1 : .. :
W= : . : ,
0 .- l/w]t
where the wj, for r = 1,... ,t, are the average number of claims for Xj,.



Since Hachemeister’s model no longer requires that the conditional expectation

of the claims be the same for all time periods, we write the

value at time r as
E[X;:©;] = 1 (©;)-

The mean values of the model at different points in time

represented by the ¢ x 1 vector

for j =1,... . k. The vector of regression coefficients is
3(05) = [5u(©;), ... . 3n=1(0;)]'.
so that u(©;) =Y;8(0;), as in (H2).

Example 1.2 If Y; = (L,...,1) and W;' = diag(1/w,

ter’'s model reduces to Bithlmann and Straub’s model, since
ur(9;) = Bo(05)
and
Var[X;-|0;] = 0*(8;) /wjr ,

forr=1,...,¢t

the conditional expected

for a given contract are

,l/wjt), Hachemeis-

We now derive the credibility adjusted regression coefficients for a contract. De-

note by X ;, the vector of claim amount random variables (X 1. --. ; Xj¢) for contract

J. We will require the following definitions:

E[5(0;)] =8,
Cov[B(0;)] = A,
E[a2(@j)] = 32 .
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Lemma 1.3 The following relations hold:
(i) E[g(0;)]=EX,]=Y;8,
(ii) Cov([8(0;), X}] =AY},
(iii) Cov{u(0;), Xj] = Cov{E[X}|0;]} = Y;AY],
(iv) E{Cov[X;|9;]} = s> W;T.
Proof To prove (i), note that E[u(©;)] = E[X,] is obvious since u(0;) = E[X|8;].
Then,
E[p(9;)] = E[Y;5(0;)]
= Y]é .
We next prove (ii). Since
Cov[B(8;), X;] = Cov[B3(9;), B(9;)Y]
=AY’
To prove (iii), we use the proof of (ii),
Cov[p(©;), X;] = Cov[Y;5(0;), X]
= Cov[Y;5(0;)]
= Y]A.Y; .
Finally, to prove (iv), we have
E{Cov[X,|©;]} = E[¢*(6;) W} ]
=s" Wit O
Suppose the claim severity random vector X ; for contract j, can be written as the

sum of the mean claim amounts of the contract and some random error term, that is,

X.j = E(ej) +¢;
= Y,6(0)) +¢, (1.23)
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where El¢;] = 0, and

Covle,] = E{Cov[X; — (6,)[O;]} + Cov{ELX; — u(©;)5]}
= E{Cov[X,(0;]}

=sWit.
Let ®; = s> W;'. As a measure of accuracy, we wish to minimize the sum of squares
8[8(9,)] = [X; — Y;8(0,)] ®;' [X; — Y;8(9;)] - (1.24)
The weighted least-squares solution of 8(8) is the individual estimator of 3(9;):

B.=(Y;®7 Y)Y 8t X, (1.25)

= (Y;W; Y;)7 Y; W, X, (1.26)

with the latter equation being a consequence of assumption (H2).
Our optimal (credibility) estimator for §(9;) is to be restricted to estimators of

the form
£(©;) =1+TX;, (1.27)

where 7 is an arbitrary ¢ x 1 vector and I' is an arbitrary ¢ x ¢ matrix. We seek to

minimize the expected squared error
R(7,T) = E{[8(6;) =7 + T X, [8(8;) =y + T X, ]}, (1.28)

over all vectors 7y and matrices I of appropriate dimensions. The first order derivatives

of R(v,T’) set equal to zero are

Io}
2R =E[g(6;)~3-T ] =0.
and
8 '
sp R =E{(8(6;) —1 - T X, Xj} =0.
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It follows that
E[8(©;,)]=7+T E[X]], (1.29)

and
E[3(9;) X}] = vE[X}] + T E[X,;X]]. (1.30)

Multiplying (1.29) by E[X] and subtracting the result from (1.30), we obtain

Cov[8(©;), X;] =T Cov[X,], (1.31)
I' = Cov[3(8;), X}] {Cov[X A (1.32)

And from (1.29), we get
7 = E[8(8;)] — Cov{u(©;), X;] {Cov[X,]} " E[X,]. (1.33)

The general form of our optimal linear estimator then is
8(9;) = E[B(©,)] + Cov[B(6;), Xj] {Cov[X,;]} 7 {X; — E[X,]}. (1.34)

Note that this general form does not depend on the assumptions (H1) and (H2).
Equation (1.34) will be useful in deriving the Kalman filter in chapter 3. We now

derive the credibility estimator of 3(©;).

Theorem 1.5 (Hachemeister, 1975) The optimal linearized estimator of §(9;) is

given by
B(9;)=(1-2;)8+2Z;8,, (1.35)
where

Z;=AY;® Y, (I+AY;®;1Y;)™}
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Proof From Lemma 1.3, (1.31) becomes
L(®;+Y;AY) =AY, (1.36)
If we post-multiply both sides of (1.36) by ®;' Y, we find that
FY;I+AY; <I)J-"1 Y;)=AY] @;1 Y;.
Let Z; = AY; @7 Y; T+ AY;®;'Y;)™", then
L'Y; =127, (1.37)
Combining this with (1.36), we obtain
F®; +Z;AY;=AY].
This immediately yields
F=(1-Z;)AY;®;. (1.38)
We have, from (1.37) and (1.38), that
(I - Z]) AY_; QJ—I Yj = Zj y
or
I-Z)A=2Z;(Y; 27" Y;)™"
Inserting this into (1.38) and post-multiplying the result by X, we arrive at
PX;=2;(Y;9;Y,)7 Y; 97 X,
=2Z; éj'
From (1.29),
Y=8—-AY;(®; +AY;-)“1YJ-H

=p-Y;Z;8
=(I-2;)8.



The final form of our estimator for 3(9;) is

B(6;)=(-2Z;)8+72; 8, (1.39)
with
Z;=AY; @j‘l Y;I+AY; @j'l Y;)
and where éj is the estimator based on individual experience. O

Since the design matrix is assumed to be nonrandom, the estimator for u(©;), for

any Yj, is

aO,)=Y;[(I~2Z)3+Z; 5] (1.40)

1.6 Empirical Credibility

Our development of the credibility estimator, thus far, has been strictly theoretical.
For practical application, certain parameters of the credibility estimators in, for ex-
ample, equations (1.11), (1.15), and (1.40), need to be estimated. In this section
we introduce estimators of the collective mean § = E[3(O;)] and the structural pa-
rameters A = Cov[3(0;)] and ®; = E{Cov[X,|0;]} based on the collective data.
When we recast the credibility estimator with the empirical estimators in place of the
theoretical ones, we obtain an empirical credibility estimator.
An estimator of the collective mean § is
) k -1 ok
B= (Z Zj) > Z8,, (1.41)
j=1 Jj=1

which is due to De Vylder (1981). This estimator is the solution to the minimization
problem

k / k
goef[s-Seg) s[@—m@]},
=1

Jj=1
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where Zf__:l F; =Iand S is a non-negative definite weighting matrix. The constraint
that the sum of the F; be equal to I guarantees the unbiasedness of the estimator
since E[éj] = (. Furthermore, under the restriction that _ﬂ: converges to (3 in quadratic

mean, we obtain also that é is consistent. Since
Jlim B3 - f]* =
Chebyshev’s inequality with € = A4/ E[é — ]2 yields

Prfl6 - 81 > < 5 E[f - 6"

Thus é converges weakly to 3 as k — oc.
With different choices of the weighting matrices F;, we are able to obtain other

estimators of 8. For example, Hachemeister selected the matrices

k -1
F; = (Z Y, Wt Y,-) Y; Wity

Jj=1

For the parameters A = Cov[3(9;)] and ®; = s> W, De Vylder (1981) suggested
k
A= Z ;(8,- B)B, - By (1.42)
and &, = 8> W1, where
2 1 o N )
T kt-n) ; (& =Y B)Wi(X; ~Y;8) (1.43)

The estimator éi is the average of the individual weighted sum of squared residuals,
while A is the credibility-weighted average of the covariance matrices of the individual
regression estimators éj.

Since the estimators for the structural parameters contain parameters which have
yet to be estimated, they are called pseudo-estimators. In practice, the empirical
estimators é and A require an iterative procedure to obtain a numerical result as we

would need to replace the Z; in (1.41) and (1.42) with ZJ-, which depend on values yet
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to be computed. Note that in this case, é and A are no longer necessarily unbiased.
- ~t

Also, as A is non-negative definite and symmetric, (A + A )/2 is used in place of

A at each iteration to yield a symmetric, but not necessarily non-negative definite,

estimate.



Chapter 2

Robust Credibility Models

In credibility, the need for robust statistical methods arises due to larger than normal
claims. In credibility, departure from assumptions are less of a concern than outlying
claims. If excess claims occur, the variance of claims within a contract will increase,
leading to a small or zero credibility factor even for contracts which did not incur an
excess claim. For these contracts, the credibility premium would mostly consist of
the average over the entire portfolio. In the case of the contract which did incur a
large claim, since the mean of the contract is very sensitive to outliers, the effect of
a large claim would be to exaggerate the expected claim amount of the next period.
This large individual premium will offset the small credibility factor, leading to a
credibility premium which is too high.

Early treatments of robust methods in credibility theory can be found in Gisler
(1980) and Klugman (1985). In this chapter, we review some results in robust statis-
tics and the robust credibility models of Kinsch (1992), Gisler and Reinhard (1993),
and Kremer (1991).
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2.1 Robust Statistics

Robust statistics is an extension of classical parametric statistics. In theories of clas-
sical parametric statistics, optimal procedures are derived under exact parametric
models. In robust statistics, models are assumed to be only approximately valid.
Thus, procedures are developed with the intention that they be optimal in a neigh-
bourhood of strict parametric models. In this section, we review some results from
robust statistics which we will use later on. Further coverage of robust statistics can
be found in Huber (1981) and Hampel et al. (1984).

Suppose we have some functional T'(Fp), where Fj is a family of probability dis-
tributions of some parametric model. Let A, be the probability measure which puts
mass 1 at the point z. Let 2 be the sample space under consideration. If A, is in

the domain of T', we define the influence function as the following:

Definition 2.1 The influence function (/F) of T at F is given by

IF(@: T, F) = lim T((1 —€)F +:A¢] — T(F)

in those z € 2, where this limit exists.

The influence function was introduced by Hampel (1968). In (2.1), € is the per-
centage of contamination in the population of F'(-). Thus, as the amount of contami-
nation approaches zero, the influence function describes the effect of an infinitesimal
contamination of the point z on the estimate, divided by the mass of contamination.

The influence function is related to the Gateaux derivative of T. The functional
T is Gateaux differentiable at F' in the domain of T, if there exists a real function

h(z) such that for all G in the domain of T the following holds:
?%T[(l —€)F + eGlimo = /h(x) dG(z), (2.2)
When G = A,, we obtain the influence function IF(z;T, F). If G = F, then

/ h(z) dF(z) = 0. (2.3)
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Thus, with h(z) = IF(z; T, F), the first-order von Mises expansion of T" at F evaluated

at G is given by

T(G)=T(F)+ / IF(z;T, F)d(G — F)(z) + remainder. (2.4)
The empirical distribution function for the random variables X,... , X, is
1 « _
Fn(z) = ; Z I(—oo,z](Xi)y (20)
i=1

where n is the number of observations and (4 is the indicator function of the set A.
If the observations X; are iid, then by the Glivenko-Cantelli theorem, sup,. |F,(z) —
F(z)| — 0 with probability 1, so the empirical distribution function £, will converge

to F with probability 1. Let G = F,, in (2.4), so that we obtain
T(F,) =T(F)+ /IF(.’I.’; T, F)d(F, — F)(z) + remainder.
The remainder term will tend to zero as n — oo in most cases, hence
n~/? {[T(Fn) —T(F)] - / IF(z;T, F) an(x)}

converges to zero in probability.

Evaluating the integral for a sample X;, i = 1,... ,n, we obtain
VR [T(F) = T(F)l ~n™2 ) IF(X:;T, F). (26)
i=1

The expression on the right is the sum of n independent and identically distributed
random variables. Therefore, by the Central Limit Theorem, the term on the right is
asymptotically normal. This limiting result thus is obtained also for the left side of
(2.6). From (2.3), [ IF(z;T, F)dF = 0, consequently, /n[T'(F,) — T(F)] is asymp-

totically normal with mean zero and variance
V(T,F) = / IF(z; T, F)?dF. (2.7)

We now define an M-estimator. The maximum likelihood estimator is defined as

the value T,, = T, (X}, ... , X,) which maximizes []l.; fr.(X:), or equivalently,

> [~ log fr, (X:)] = min!

i=1
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Huber (1964) generalized this to

n

Z p(X;:, T) = min!, (2.8)

=1
where p is an arbitrary function. If p has a derivative ¥(z,8) = (9/96)p(z,8), then
T, must satisfy
> U(X:,Ta) =0. (2.9)
i=1
Definition 2.2 An M-estimator, T, is defined implicitly as the solution of either

equation (2.8) or (2.9).
To derive the influence function of an M-estimator, define T'(F’) by
[wmrENdF@ =0, (2.10)

and insert F; = (1 — €)F + €G for F. Then, differentiating with respect to ¢ at e =0

and solving for the influence function yields

Ylz, T(F)]

FETE) = T, e dr o) (10
From (2.7), the asymptotic variance is
V(T, F) Yz, T(E) (2.12)

T —{J(0/06) . Ol dF W)}

2.2 Kiinsch’s Model

Kiinsch’s model (Kiinsch, 1992) is a robustified version of Bithlmann’s classical model.
Taking the same assumptions as the Biihlmann homogeneous case (c.f. section 1.4),

Kiinsch proposed to replace X; — X in



with T; — T, to get
iR(O;) =X +2(T;~T), (2.13)

where T is a robust estimator of the mean for contract 7, and where T = £ Sk Ty

The robust estimator T} is defined as the implicit solution of

> (X /T;) =0, (2.14)

with ¥(z) = max[—c;, min(z — 1, ¢;)], where 0 < ¢; <1 and ¢s > 0.

Since E[T;] = E[T), the robust credibility premium is unbiased. A scale estimator
is used to take into account the non-negativity of the claim amounts and also so
that larger mean values will result in larger variances. The ¥-function that we use
here will result in an estimate of the claim amount at time r for contract j such
that the percentage amount by which the observed claim amount Xj. exceeds the
robust estimator T lies in the interval [~c1, o). Thus, claims are truncated at both
ends. According to Kiinsch, the choice of ¢; and ¢, is not very crucial. He suggests
¢1 = ¢ = 1 for small samples and ¢; = 1,¢; = 1.5 or 2 for moderate samples.
We notice that if ¢; = 1 and ¢; = 0o, then (2.13) reduces to the non-robust linear
credibility premium.

An algorithm to solve for 7; in (2.14) can be developed by considering ¥(z). We
first define ¥(z) = ¥(z) + 1. Since we can also write ¥(z) = max[l — ¢;, min(z,1 +

¢2)] — 1, we have
¥(2z) = max[l — ¢;, min(z, 1 + ¢)].

Then S°%_, $(X;r/Ty) = They B(X5r/T3) =t =0, or 2 S, §(X;r/T;) = 1. Hence

r=1

1/2
m 1 - 7 m m
I = [; > WX/ Ty ’)] ™.

The convergence of the iterative algorithm follows from Huber (1981) section 8.6.
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The credibility factor is given by

Cov{E[T}]0,], u(©;)}

Z = E{Var[T;|0;]} + Var{E[T;|0,]}

(2.15)

The denominator is equal to Var[T}]. Therefore, in order to obtain an empirical
credibility factor based on robust statistics, we require the variance of 7;. An unbiased

estimator of the denominator is
1 k
D BCEEE
j=1

We can estimate Cov[T}, X;] using

1

k-1

-

(T; = T)(X; — X).

Jj=1

We know that Cov[T}.X;] = Cov{E[T};|9,],E[X;|0;]} + E{Cov|[T},X,]|®;}, so we
need an estimator for E{Cov[T}, X;]|®;}. The derivative of ¥[z/T(F)] is given by

0 oz T
3 Wle/T(F)] = {T( F)] =

The function ¢'[z/T(F)] will be equal to 1 in the interval ((1—c;)T(F), (1+c2)T(F)),
so from (2.11), we have

Ylz/T(E)T(F)?

IF(z;T, F) = TP (@)

An estimator for the influence function then is

—~ V(X /T;)TE ¢
IF(X;r, Ty) = =3 L
2 et Xird(1—en)Ty<Xr<(14e2)T5]

?

The linearization (2.6) then suggests that we use

k t
1 — —
o0k g > TF(X5r, T5) (Ko = X5)
to estimate E{Cov[T}, X;]|©;}. Finally,
w1 e (T = DX = X) — e Ty Tt IF (X, T) (X ~ X;)
B S (T = T)(X; = X)

Z =

(2.16)
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2.3 Gisler and Reinhard’s Model

Gisler and Reinhard’s treatment of robustness in credibility (Gisler and Reinhard,
1993) resulted in a robustified version of Biihlmann and Straub’s credibility model.
The assumptions of the Bithlmann-Straub model are used again here (see section 1.5).
Gisler and Reinhard proposed to partition the credibility estimation of the individual
mean into two parts. The first part consists of the “ordinary part”, p,(©j;); the
second, the excess (outlying) part, pzs(©;). The robust credibility premium can then

be expressed as
pf(0;5) = 1o(0;) + 12s(9;) - (2.17)
The ordinary part of the individual premium is defined as
1o(©;) = E[T}]9;], (2.18)
where T is a robust statistic for contract j. The excess part is defined as
/ixs(@j) = Hzs -

Thus, all risks in the portfolio are assumed to be equally exposed to outlying events.

We write as the ordinary part of the robust credibility premium
£0(©;) = iz + Z3(T; — piry), (2.19)

where ur, = E[T}]. Generalizing Kiinsch’s method in the previous section, the robust

estimator Tj is implicitly defined as

t
> wirt(X;/T;) =0, (2.20)
r=1

. -1/2
where ¢(2z) = min(z — 1, cw;; / ).

This -function has a single truncation point which depends on the amount of

exposure at time 7 for contract j. We use cw]-_,.l/ ? since Var[X;-|9;] = 0%(0;)/wjr

Two choices for c are c = /median; - (w;,) and ¢ = @ where w = £ 35, 3L wjr.
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ij,.mm< _1/2) Zwﬁmm( 1+ —1/> 1

= E {wsr min[Xe, (1 + cw},*)T;] - T;} .

r=1

Hence,

t
> wjy min[X;r, (1 + cw;, ) Tj] = w;T5,

r=1

1/2

with w; = S5, wj,. Let¢jr =1+ cw;,.'", so that

t
Wyr .
T; =Z 2 min(Xjr, ¢;r T5).

r=1 Wy
After we have computed T}, define as the ordinary loss ratio T}, = min(X;r, c;rT}).
then the excess loss ratio is XS, = Xjr — T}

The credibility factor for this model is

w; Var[ur(0;)]

% = EVarlT516,]} + w; Varlur, (6;)]

(2.21)

where 47,(9;) = E[T;|©;]. The asymptotic variance of T; will be required in order
to estimate Var[T;-|©;]. The empirical influence function corresponding to our -
function is
T - T,

1= 3o (wir/w;)eir gy x50)
We take Var[T}-|9;] = w;;'V(T, Fo,), then

2o (=17 Y (T~ T)° (2.23)

J z- <=
[ = 20 (wir/w) s Iy, ]

Let 8% = ¢ Z "1 52 be the estimator for the expected variance of T;. We can use §%

fl?(XJ'ﬁ :’}) =

to estimate ar, the variance of ur,(9;). That is,

1[N w; 52
aT-—-—{Z;J(Tj—T)? (k - )w}, (220

@ |4
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where o = w™! Z_’;:l w;[1 — (wj/w)]. Note that @r may become negative since it is
defined as a difference of two quantities.

Define the robust collective mean to be

k _1
ﬁr=( z) > Ty, (2.25)
j=1 j=1
where
- w-&T
Z: = —J 2.26
7 (wjar + 82) (2.26)
The excess collective mean then is
1 &
,[l‘zs = E Z ’LUj‘YSj, (227)
j=1
with XS; = (1/w;) >, w;»XS;r. Finally,
A7) = ftas + i + Z;(T; — fir) (2.28)

is the empirical robust credibility premium for contract j.

2.4 Kremer’s Robust Regression Model

The treatment of large claims in the case of regression credibility by Kremer (1991)

starts by taking the credibility adjusted estimator for u(©;):
A(O;) =Y;((I-2;)8+Z; 5]. (2.29)

The weighted least-squares estimator for the individual claims éj is then replaced by

a more general estimator B;, where B; is robust. Then
£%(©;) = Y; (I - Z;) B+ Z; B,]. (2.30)

At this point, only assumption (H2) of Hachemeister’s regression model is required.

In order to determine the optimal matrices Z;, the risk
E{Y;[(I-Z;)8 + Z,;B;] — u(©;)}?,
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is minimized with respect to Z;. Kremer proves that
Z;=AA+R+N)™ (2.31)

where A = Cov[3(9;),B,], R = E{Cov[B,|0]}, and N = E{B(9;)[B(9;) -
B(©;)I'}-
Turning now to the problem of deriving the robust estimator of the individual

claim amounts B, the following sum of squared residuals is considered
8(8(6;)] = [X; — Y;8(9;)]1®8;'[X; — Y;8(0;), (2:32)

where ® = E{Cov[X,]|0,]}. Let ;' = Q;Q;, where Q; is a ¢ x ¢ matrix. Then, the
weighted sum of squared residuals is given by
2
S[B(e;)] = Z {Zl 05 (Xjr — ¥;.8(8; )]} :
To get a robust estimator, squared deviation is replaced with a general p(-), for
example, the one-sided Huber function:

z2/2 ifz<e,
pr(z) = (2.33)

c ifzx>c

and the corresponding 7 function:

z fr<e,
V() = (2.34)
c ifr>ec

Then the optimization problem becomes

> b [Z ¢ (Xjr — Y;.B;)

i=1

= min! . (2.35)

If the derivative ¢’ of p exists, then B; must satisfy

Z w [Z qzr (XJ"' - Y]r ]):l Z er gt = O - (236)

=1 r=1
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for 7 =1,...,n. Solving for B;, the robust estimator of u(9;) is
i) =Y;{A(A+R+N)"'B,+ I - AA+R +N)'|g}. (2.37)

In order to implement this robust regression credibility model, some empirical

estimators are required. Similar to the non-robust regression case, Kremer estimates

B by
k
Z F;B;. (2.38)

where Z§=1 F; = I. Then from (2.32) and assumption (H2) of the Hachemeister
model, let ®; = s> W, where s* and W are defined as in section 1.5. Next, the

weights W are factored into
Wj = P; P]' s

so that ;' = (s7! P;)'(s7! P;). Rewrtite (2.35) as

t

Z {prf-)(Xgr Y, B J)/s]zmin!. (2.39)

i=1
Kremer assumes s = 1, and if the derivative ¥ of p exists, we have

t

Z 111 [Z Pg Xj" ]T' J)

i=1

Z pﬂ' =g’ =0. (240)

To estimate A = A + R + NN, note that since A = Cov[B,], it can be estimated
by
k
A=) "F;(B;-B)B,- 5. (2.41)
j=1
One notes that N — 0 when B(©;) is close to 3(©;). Therefore, the zero matrix is
taken as estimator for N. The expected covariance of B; given ©; is given by the

matrix R. Then by (2.12),

=3 F (YW, ¥, L5 (v [T R -1 B)]

. (242)
Jj=1 {Ez—l (4 [Z:‘—l pzr) (XJr - Jr B])] }2 4
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where the derivative 1/ of v is with respect to the B;. Finally, A is estimated by

- ~

A=A-R.

Remark 2.1 The foregoing assumes a general €;. With Hachemeister’s assump-

tions, (2.32) becomes

8[8(0,)] = [X; - Y;8(0,)]1®; ' [X; — Y;8(9;), (2.43)
where ®; = s> W;, but with W; = diag(wj1, ... ,w;;). Then, (2.40) can be written
more simply as

t ~(X,;, ~Y.. B,
Zw[,/wj ( Js Y, B;) TrY, =0. (2.44)
r=1

Remark 2.2 Kremer notes that if B; is the weighted least-squares estimator, R =

(Y;V=1Y;)~! and
Z; =AR I+ AR™H?,
which is the credibility factor under Hachemeister’s model.

Remark 2.3 Equation (2.41) is the general case of (1.42). Therefore, we can take
equation (2.41), with possibly a different choice of F;, as an alternative estimator for

A. In equation (1.42), we had F; = Z;/(k — 1).
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Chapter 3

The Kalman Filter Applied to
Credibility

In this chapter, we discuss the Kalman filter and its application to credibility theory.
Connections between credibility theory and the Kalman filter were first investigated
by Mehra (1975). De Jong and Zehnwirth (1983) then formulated some famous
credibility models as Kalman filters.

We first derive the filter from results of section 1.5. We then embed the Bithimann-
Straub and Hachemeister models within the Kalman filter framework. We also review
two empirical implementations of the Kalman filter as applied to credibility models.
Finally, we describe a robust Kalman filter by Cipra and Romera (1991) and present

Kremer’s (1994) robust credibility model based on a robust Kalman filter.

3.1 The Discrete Kalman Filter

The Kalman filter (Kalman, 1960) is a recursive technique which is used to estimate
the state of a linear dynamic system from measurement data corrupted by noise. In
what follows, we will consider only discrete systems, that is, we will assume that

measurements are observed at equally spaced points in time. The continuous-time
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analog of the discrete Kalman filter is usually referred to as the Kalman-Bucy filter
(Kalman and Bucy, 1961). We refer to filtering as the estimation of the state S, when
the time of the desired estimate coincides with the time of the last measurement. In
other words, given the sequence of observations X™ = {X;,...,X,;}, we wish to
estimate S, when t = 7. In other cases, we may have either a smoothing problem
(t < 7) or a prediction problem (t > 7).

The Kalman filter is based on a state space model. We regard the state of a
system as the least amount of information about the past that is needed to predict
the description of the system at a future point in time. In the following formulation,
the state of the system is described by a linear difference equation. Thus, it is sufficient
to know the current state of the process in order to predict the state at any other
point in time.

The unknown state of the system at time ¢ is denoted by S,, and is referred to
as the state vector. The measurements X, consist of linear combinations of the state
variables corrupted by a sequence of uncorrelated random errors u,, which have mean
Ely,] = 0 and covariance matrix E[y,u;] = U,. In state space form, we write the

measurement equation and system equation, respectively, as
X, =H:S, +u, (3.1)
and
Si=A5, ,+v, . (3.2)

The matrix H;, which is known at time ¢, describes the linear combinations of
the state variables which make up X,. We assume that the sequence of system
errors v,, has mean vector Efy,] = 0 and covariance matrix Efv,v;] = V;, where v,
is independent of the observation errors u,. Furthermore, from the independence
assumption, E[u,v;_,] = 0 for all natural s. Finally, it is assumed that the system
matrix A, and the covariance matrix of both the observation errors and the system

errors are known in advance.
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At time ¢, we have observations up to time ¢ — 1. As above, denote the ¢ past
observations {X,_;, X, ,,...,Xo}, by X', Also, let Sm_l = E[S,|X"*"!] be the
estimator of S, at time ¢, given observations up to time ¢t — 1. After observing X,,
we would like to update our estimate of S,; thus, we seek Sqt-

We adopt here a linear Bayes approach to derive the Kalman Filter. Accordingly,

let the class of estimators Sqn be restricted to affine functions of the form
7 +ILX,. (3.3)

If X, is an m x 1 vector, then v and I' are of dimensions m x 1 and & x m, respectively.
Following De Jong and Zehnwirth (1983), we derive the discrete Kalman filter by
finding the linear minimum variance estimator of S,. Consider equation (3.2), given

observations X'}, we have
E[S,IX1] = A IS,y X + Elu XY,

or
_Sqt_l = Atgt_m..l:
since E[v,| X" '] = 0. Given X!, the covariance matrix of S, is
Cov[S,|X*] = A, Cov[S,_,|X*"|A] + Covly,] .
Let us denote the above covariance matrix by P,,_;, then

Pyi—1 = APy 1AL+ Ve (3.4)

Interpreting the foregoing from a Bayesian perspective, we see that Sqt—1 and
P,:—1 are the mean and covariance, respectively, of the distribution of S, prior to
observing X,. To determine the optimal linear affine Bayes’ rule for S,, we must

minimize the risk function

R=E[(y+TX,~S8)(y+TX, - S5,)] (3-5)
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over all vectors 7y and matrices I' of appropriate dimensions. Here, v+ X, is the
estimate of S, after incorporation of the measurement X,. The contribution of the
new measurement is I'’X,. The solution to the minimization of (3.5) is given by (1.34).

Based on measurements up to time t — 1, we find that

E[S,|X"] = E[S,|X*!] + Cov[S,, Xi| X '{Cov[X,| X"} HX, — E[X,| X'}
= E[S,|X*"] + Cov[S,, (S;H; + ;)| X" |{Cov[H.S, + u,|X* ']} !
x {X, - B[X,|X"7']}
= Syimy + Py HY[HL Py, HL + U HX, - H, 5, ).

Let
K = Py H{[H Py, H; + U, |, (3.6)

where K, is called the Kalman gain. The optimal inhomogeneous linear Bayes rule

can be written as
St = Syemr + Ku[X, — HeSy,_y]. (3.7)

Thus we can see that the Kalman gain matrix determines the amount by which the
innovations X, — Hz$z|t_1 contribute to the prior estimate in order to obtain the
updated estimate.

We now derive the covariance of S, after observing X,. The error covariance of

S,, given X', is defined as
Py = E[( -S )(qu S,
However, given t observations, E[S,] = Squ so that
Py, = Cov[S,, — S,].
Furthermore,

-Stlt = St[t—l + K [H,S, +u, ~ Htﬁtlt—l]
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or
Sy — S, = [ - KH(Sy—; — S,) + Ko,
Upon taking covariances of both sides, we see that
P = I - K.H; Py [I — K. Hy] + K. UK], (3.8)

since E[(St“_1 — S.)w;]) = 0. By direct substitution of the Kalman gain matrix K,

from equation (3.6) into equation (3.8), and after some manipulation, we find that
Pt[t = [I - Kth]Pt[t—l- (3-9)

We now show how some credibility models can be implemented using the Kalman

filter.

Example 3.1 The credibility model of Bithlmann and Straub can be shown to be a
special case of the Kalman filter. Let the risk parameter of a fixed contract be the
random variable ©. Then, from the assumptions of the Bithlmann-Straub model in

Section 1.4, we have
E[X.|0] =u(©) and  Var[X,[0] = 0*(©)/w,
where all w;, > 0. Let X, = Z:=1 wi X;/wy, wy, = Z;l w;, and p = E[p(©)]. By
Theorem 1.3, the optimal inhomogeneous linear estimator for p(©) is
A0;)=010—-Z)pu+ Z.X,, (3.10)

where Z, = aw, /(aw, + s?), a = Var[u(0)], and s*> = E[c%(0)].

In the measurement and system equations (3.1) and (3.2), let H, =1 and A; = 1.
In addition, let U; = s2/w; and V, = 0. To start the Kalman filter recursions, we
use the initial values .Smo = u and Pojg = a. We note that the above variables are all
scalars, so in the sequel, we drop the bold-face and underline notation.

At time ¢, from equation (3.7), we have

St[t - (1 - Kt)‘gt[t—l + KtXt . (311)
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And since A; = 1, we have

(3.12)

(3.13)

(3.14)

(3.15)

§t|z—1 = S'z—ut-l =(1- Kz-1)5t-1|t—1 + K1 X,
we can apply (3.11) repeatedly for ¢, —1,...,1 to get
57tlt =(1-K)1-Ke)---(1-Ky)p
+(1-K)(1-Ki)---(1—- K2) K1 Xy
+ st + (l - Kt)(l - K—t—l)Kt—2Xt—2
+ (1 - K)Ki 1 Xe1 + K X,
It can also be shown that
- awy
K, =
‘ a Z::l w; + 82
and
as®
P,
it S wi+s
From (3.14), we find that
t—1 2
| K, = az§=1 wl-i-s2
ay ;. qwi+s
for ¢ > 1, thus (3.13) can be recast as
- 32 a a
Stlt = W1X1+”'+ thXt-

L+
a Z::l w’: + 32 a Z‘f:l wi + 32 a Z::I 'lUi + s

We let Z, = aw;./(aw,. + s?), then

A Z
Sue=0~Z)u+ w—‘(le1 + - we Xy)
t.

=(1—Zt)#+Zt)—(t-

This form is equivalent to the Bithimann-Straub credibility formula in (3.10).



Example 3.2 Hachemeister’s model can also be shown to be a special case of the
Kalman filter. Let the risk parameter for contract j be ©. Then, from the assumptions

of the Hachemeister model in Section 1.5, we have for contract j,
EX.|0]=Y,5(©) and  Var[X;|0] = 0*(9)/w,

where Y, is a 1 x n design matrix and w, > 0. Let A, = [}}], V., = 0, and
U, = s?/w;. Also, let H, = Y, = [10]. The filter is started with the initial
conditions Solo = E[3(0)] = B and Pop = Cov[F(0)] = A. The Kalman recursions

for the Hachemeister model then are

Stlt = Stlt—l + K, [X. — H, Stlt—l]l 5

K, =Py Eﬁ (H, Py _H.; + 'Sg/wt)—1 s
and

Pt[t—l = (1 - K_:Et)Pt[t—l .

In this example we have S, = (So ¢, S1,)’- So for the choice of the matrix A, given
in this example, the slope S'1,z|z-1 and intercept 5'0,):[:-1 in _S-t[t—l will change over time.
With this A,, the estimate at time t of S, will be S—tlt = (SO,tIt + ‘gl.tlt:gl,t[t),- The
choice of H, ensures that the estimate of X, be equal to the first element only of S_q:
for each ¢. To interpret V; and U;, note that in taking V, = 0, we are assuming that
no system errors are present so that the evolution of the states is deterministic. On

the other hand, the error in observing the true state of the system is given by U;.

3.2 Empirical Credibility with the Kalman Filter

In this section, we describe two implementations of the Kalman filter in credibility
theory. We have seen that we can embed a credibility model within a Kalman filter

framework. However, the Kalman filter is composed of certain parameters which
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require estimation in practice. The parameters are P,;_;, the covariance of S, prior
to the ¢-th observation; Py, the error covariance of Sqt; U, the covariance matrix of
the random errors u,; and V,, the covariance matrix of the random errors u,. Along
with an estimate for the collective mean, we may then derive an empirical credibility
estimate of —Stlt'

The first implementation we discuss is due to Ledolter, Klugman, and Lee (1991).
We consider first, an individual series of observations. For a single series X;,... , X,
for r = 1,...,t and 7 = 1,...,k, which corresponds to realizations of the risk

parameter O;, the following measurement model is observed:
L= H', §Y .
Xie=H;; S¢" + uje » (3.16)

where H;, is an n-dimensional column vector. For the starting values to begin the
iterative Kalman process, Ledolter et al. suggest using a vector of zeros for S((,J‘()) and
a diagonal matrix with large (but finite) diagonal elements for Pg()). This is similar
to using a non-informative prior in a Bayesian framework since for moderate values
of ¢, the initial choice for SC(,JI(), will be dominated by the data.

@

ft—1» W€ require an estimate of Vj;. The covari-

In order to compute a value for P
ance matrix Vj; is considered to be time-invariant; thus, V;, = V. Following the
paper by Ledolter et al., we assume that u; and u;, are both normally distributed.
Thus we have u; ~ N(0,Uj:) and vy, ~ N(0,V;). For carrying out the maximum
likelihood estimation of V;, we assume further that Uj; = 07(©;)/w;: and that the
covariance matrix of S ;Jt)_l is proportional to ¢?(©;). Then the log-likelihood function
is

0 n 1o 1 :
€(0;(0;), V;) = —;logaf(@j) -5 Z fir — 7‘2@ Z (Xjr — ﬁ-jr_Sf[l_l)Q/fjr J
= =1 AT

r=1

where f;r = H;, P _| H', + 1/wj,.

rir—1

Maximization of ¢ with respect to o2 yields the following maximum likelihood



estimate
1 < :
GO;) = = 3 (Xor — Hy SY )/ fir-
r=1

We then replace 02(©;) by 62(©;) to get the concentrated log-likelihood function

1< n .
(V) =5 log fir — 510857(9;) -
2 £ 2

Since we have k risk classes from which %k concentrated log-likelihood functions
arise, we can pool the information to form a better estimate of V;. Accordingly,
Ledolter et al. assume that the V;’s are identical across the k risk groups and that
the k£ groups are independent of each other. Then the £ concentrated log-likelihood
functions are added and a common V which maximizes the collected concentrated
log-likelihood is determined numerically. The maximum likelihood estimate of each

02(©;) from all risk classes then is an average of the o7(©;),

Z Z (XJT - —]r r[r—l) /er .

j=1 r=1
This method derives the individual estimators of u(©;) by applying the Kalman

filter to the k separate series of observations. If we assume that V equals zero, we

obtain the weighted least squares estimates used in Hachemeister’s model.

From the k separate Kalman filters, we have E[S, tlt] = 59 and Cov [Qt(ft) -89 =

P£|Jt) From this, we introduce

50 =859 +e (3.17)

Ejt

where e, ~ N (0,07 Ptlt) The ¢;, are independent across the k risk classes. To get

the credibility estimators, Ledolter et al. introduce a second equation
S =B, +¢&7 (3.18)

at time ¢. The random term ft(j) is normal with mean vector zero and covariance

matrix o §2;.
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Since qujﬁ) has a normal distribution by (3.17), and since the mean Qt(j) is also

normal (by (3.18)), we obtain the Bayes shrinkage estimator of §4(j) as

54. = J—t]t +(I Z;)B,, (3.19)

where Z; = Q, (2, + Pfl’t))‘l. To estimate B, and §2;, we may use the methods
described in Section 1.6, in particular, (1.41) and (1.42). In this case, an iterative
approach will be required.

The second implementation of the Kalman filter applied to credibility is from

Kremer (1995). In this paper, the Kalman recursions for a single contract are written

in the following form:

Sx+1|t =A K X; +(I-K; H:)S_m_l], (3.20)
K, =Py Hy [H, Py, Hy + U] 7, (3.21)

and
Pige = A I - K Hy) Pye A2+1 + Vi (3.22)

The recursions are initialized with S,y = B; and Pyp = A;. If we have £ risk classes,
we estimate B, with the simple regression estimator
=(HH)'H X,

where H = (H};, Hyy,--- , Hyp) and X = (Xi1, Xo1,--- - Xk1)- The 1 x n matrix
H;, is from (3.16).

Kremer assumes that A; is proportional to the identity matrix, that is, A; = fi L.
Let Uj;; = s?/wj:, where s? = E[0?(0;)]. Thus, if the variance of X}, is given by

E[X; — H,, S92, we obtain that U, = E{Var[X,:|0;]} equals
B[th ]tgtu)]2 H;'t -
From this, we get

2
. S ’
E[le —Ejlﬁgj)F = ‘w_1’+f1H H

1 2=j1
j1
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Let ¢; = (X;1 — H;; B;)? and Q = (q1, @2, - - - , ax)'- If we define M as

- -

1/wn E.uﬁlu
1/wa i21_,21

Vwin Hy Hy

then

si

Q=M
- fi

The linear regression estimator of ¢ = (s2, f1) is then given by
=MM)"'M'Q. (3.23)

With the initial values §2, B ,and Ay, suppose that at time t > 1, we have the
1, £1

estimators S_Ef:)_p f]jc, A;, and PY  arrived at by application of the Kalman filter

tjt—1°

equations (3.20), (3.21), and (3.22). We then proceed as follows.
We determine the value of 5, using equations (3.20) and (3.21). After the
values 52_)1“ are available for each § = 1,...,k, we can compute an estimate of the

collective mean by
£ *(J)
—B-t Z Jjt —H—llt (3-24)

with Z, _; Fjt = I. We refer to section 1.6 for a discussion on possible choices of the
matrix Fj;.

We may now estimate A,y by

* (J) > 7 -
Ay = stm,t B, 1)k — Biy)' (3.25)

where the F,t are weighting matrices such that Z F;; = I. The choices for F,t are

similar to those for F;,.
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To estimate Uj,¢+1, we car use
U a2
Jt+l = Sep 1/wj,t+1

where 52, is an estimator of s?,,. Starting with 52 from (3.23), we can determine

§2,, recursively through

22 _ (=2
§t = max(5,,,0), (3.26)
where
L
=2 A 7 A
3t+1—Z§ ‘ Wje+1( X041 — _H_Jz-}-l—t-‘-l - E :wjt*l 4151 At+1H]t-1- (3.27)

With starting point A = f; I and equation (3.25), we estimate V. with
vt+l = At-é-l — A, Az A; . (3*28)

Through repeated application of the equations (3.20), (3.21), and (3.22), at time

t + 1, we can arrive at the empirical credibility estimator S Ej)m of S9.

Remark 3.1 In practice, one may have difficulties with the initial value BI. From
the definition of H, if the design matrices H;, at time 1 for each contract j are
identical, the matrix H' H will be singular. An alternative estimator for the initial
value Sf,’lg can be determined by taking a Bayesian approach where the initial estimate
is obtained by relying on prior knowledge of contract ;7. In the absence of clear prior
knowledge, one may wish to use last year’s claims data or data from a similar contract.

If data on the contract of interest already exists, another initial value may be the
estimate, based on existing data, one obtains by using a non-evolutionary credibility
model (e.g., Hachemeister’s model). For example, if there are ¢ observations on
contract j, we may estimate, by Hachemeister’s model, the credibility estimator based
on the first r < t observations. This credibility estimator would then be used, via the

Kalman filter, to get the credibility estimator at time ¢t > r.



Remark 3.2 In equations (3.24) and (3.25), the estimation is done using the up-
dated estimates of Qt(j). However, these estimates represent the credibility adjusted
estimates of §_§j ). We note that in the classical credibility models, the individual
estimators are normally used. However, the advantage of Kremer’s estimators B, .,

and A,,; is that they share the same recursive structure as St(ljt).

3.3 Robust Kalman Filtering in Credibility

In Section 2 of this chapter, we showed how the Kalman filter could be applied to
credibility theory. In particular, it was shown that both the Bihlmann-Straub and
Hachemeister models were special cases of the Kalman filter. However, both these
credibility models are sensitive to large claims; therefore, in order to robustify these
models, we will need a robust Kalman filter. The robust Kalman filter that we next
describe is due to Cipra and Romera (1991). In their paper, a robust Kalman filter
is developed by using M-estimators.

Following the notation of Section 2, if

d| | Prls(Sye—r — S

; (3-29)

e, U;Y? (X, - H.S,)

then S, = S,,, minimizes

d - R
2 ] || = Gumr = S Pue-1(Syey — 8) + (X, — HiS)YUTH(X, — HLS,).

€

(3.30)

Define

D1t Q.

tlt—1 §t|t—1 = : ' tjt—1 =

Dnt [0

o7



and

g1t by,
U X, =1 |, UYH = ;|
Omt th
where a,, ¢ =1,... ,nand b, 7 =1,... ,m are n dimensional row vectors. Then,
with
du €1
dnt €mt
we can reformulate (3.29) as
dgt = Pgt —auS, for g=1,...,1[
ert =9rt —b.,S, for r=1... , m
It is clear that
(Sﬂt—l -S,) Pt—[-tl—l (St[t—l —5,) = Z (Pgt — Q<7t§t)2 (3.31)
q=1
and
(X, — H.S,) U7 (X, —H.S) = D (5 — bS,)> (3.32)
r=1

In order to robustify the Kalman filter, we replace quadratic loss with a general

function p. Then S-tlt is the value of S, which satisfies

Z P1q(Pgt — B Se) + Z p2r(grt — b, S,) = min!. (3.33)
g=1 r=1
Alternatively, if the derivative ¢ of p exists,

> aptig(Par — ageSye) + > Brthar(9re — by Sype) = 0. (3.34)

g=1 r=1
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In general, the normal equations indicated by (3.34) can not be solved explicitly.

However, an approximation is available. From (3.34), we have

- ' 2 (pqt - th-S:t ) (grt g )
Z 8q¥19(Pgt — 8 Sye) =+ Z b tor(gre — b-t§t|t) _~tlt =0
=1 Dqt — th§z|t r=1 grt — Qrtﬁt[t
(3.35)
We approximate Sqt with St[t—lv then
Z '71qt_qt(pqt _qt_zlt Z 'V"rtbrt(grt t[t) =0, (3~36)
q=1
where
Uq(D S Yor(grt — b S
it = 1¢(Pgt — et — 1) and Ao = (g t Dot 1) (3.37)
Dqgt — th§t|t—1 brt—‘itlt 1
With
[y = diag(Mies - -+ »Yine)y Toe = diag(yare, - -, Yome)s

the normal equation (3.36) can be written as

P20 Py Sy — Su) + U U2 L0 U2 (X, — HL §,) = 0. (3.38)

tlt—1 t[t 1

Solving for S #je» We obtain the recursive formula for the robust Kalman filter

Sye =Sy + P2 TR P2 H, (U T U2

tjt—1 tit—1

1/2 2 (3-39)
- 1 7 a
+ H, Pt]t—l Fltl P:[{ 1 H;)~ - (X, - H, §t|t—l)'
The robust error covariance is given by
2 1p1/2 2 e p - 2
Py = Ptlli—l ry le/z—1 - Ptlli—l ry Ptl|{-1 H, (Utl/z Lz Utl/ (3.40)

+ H. Ptllﬁl Pl—tl PtII/tQ-1 H;)_l H, Ptlt—l F Pt1|i° 1°
Example 3.3 A robust Bithlmann-Straub model can be defined by using our robust
Kalman filter. For a contract j, let H, = 1, U; = s?/w;, A; = 1, and V, = 0, where
s? = E[0?(©)]. Assume that the errors d, do not produce any outliers, consequently,

we take
Y1) = 2.
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We also assume that 1), is independent of r, that is,
Yar(-) = ¥(-).

Let
— 711(91: — by S't[t)
g1t — by St[t
1/2 A
— "b[wt (Xt - Stlt)/St]
wt1/2 (Xt - Stlt)/st

Yt

Then for a general ¥(-), we have from equation (3.36),

a1t (P1e — a1 Supe) + bie ¥(g1e — bre Sype) = 0. (3.41)
Rewriting this as
Pq-zl_l (§t|:-1 - S‘tlt) + % (si/w) 7 [ X — Svtlt] =0, (3.42)
we obtain
Sye = Syemr + Pt e 5 (Xt — Sie1) (3.43)

Pji—1 e we + s¢
as the updated credibility estimate of S; at time f. The variance of S; — S'm is given
by

P = Py [Pt|z—-1 + (Sf/wt)/%]_l Pyt

Py e W (3.44)

= Pt|t—1 - 2 -
Pit—1 v we + 57

Example 3.4 For the Hachemeister case, let U, = s2/w,, where as in the previous
example, s2 = E[c?(©)]. Let A, equal I, an n x n identity matrix, and V, = 0. We
further assume that H, is now an n-dimensional row vector. As before, we assume
that the errors d, do not produce any outliers and that ¥, = %. Finally, I's; can now
be replaced by v I.

With m = 1, equation (3.36) becomes

Z .a_:;t(pqt - gqtﬁtlt) + 7 01, (91e — b.lt-‘st[t) =0, (3.45)

q=1
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or
Pt—|t1 1 (_;lz— .‘St[t) +% (St Jwe) T Hy (X — —t—tlt) = 0. (3.46)
Then, from equation (3.39), we have

Sue = Sye-1 + Pyt Hy [H, Pyes Hy + 77 (s2/w)] ™ (Xe — H, Syey)

Ptlt 1_H47twt
H,Py 1 H v w + 52

= —S—tlt—l

S (X~ H,8y), (3.47)

where

Ylw, 2 (X: — t[t)/st]
1/2 (X: — H, __tlt)/st

~ =
The robust error covariance matrix is given by equation (3.40), where

Py =Pye—1 — Py Hy [H, Py H, + vt (s? Jw)] ™ H, Py
Ptlt—l ﬁ; _H.g Pt]t—-l Yt We

/ : 3.48
H, Py 1 Hy v we + 57 ( )

= Pt[t—l -

3.4 An Empirical Robust Kalman Filter Credibil-
ity Model

In this section we present an implementation of a Hachemeister’s regression model
via robust Kalman filtering. For more general regression problems, one may want to
adapt Kremer’s procedure from the second part of section 3.2.

Consider the state space model (3.1) and (3.2). The observations of class j at
time t are scalar, thus X, = X is a scalar, H;; = H;, is a 1 xn vector, and u;, = uj

is a scalar. The state space model becomes

X]t = H S “+ Ujt 4 (3.49)
SP = A, 89, +v,. (3-50)

61



The recursions are initialized for each risk class 7, for j = 1,... , k. Thus, we have
for the j-th risk, at time ¢ = 1, Sgé = B, and Pg()) = A;. Further, we assume V, = 0,
and A, = [§1].

We attempt to employ a Bayesian approach to begin the Kalman recursions.
Assuming t observations are available, we use these points to determine our initial
estimates. For our initial value of s? = E[s2(©,)], we use the §2 computed from
Hachemeister’s model, in particular, from equation (1.43). Our initial estimate of Py,
is the A from (1.42). As before, B, represents the estimator for the collective mean,
and A; denotes the covariance of the Qt(j). We estimate B; by é from Hachemeister’s
model, for example, equation (1.41).

We now can proceed to the next recursion of the filter. However, we have not yet

specified the robustifying functions. In equation (3.34), we take ¥, to be

d’lr(I) =I.

For the robustifying function corresponding to outliers arising from the measurement
errors, we use the one-sided Huber function. Letting v, = ¥y where ¥y is from

(2.34). Then from (3.34),

=, NO N A ()
> " ah (Poje — @5 Saye ) + Vetbr (g15e — 01785, ) =0, (3.51)
q=1
or
ENIRION ) ~(4) ;12 = (7)
(PE-Iyt)—l) ' (ﬁtlt—l - §t|t ) +_Iijt thl/ "r/’H(XJ't - Ejt §t|t) =0. (3-52)

Let Uj;; = s?/wj;. Our robust Kalman filter then is

1/2 1/2 2,07}
a(q A (5 ; w, sswl (X34 —~—H., S
i = S + PG, H, < z )u’m e (K~ HyeSur) (3.53)
t —H—jt Ptlt—l —‘Fl-jt Wiy + h
and
_ . PY) H. H.PY .
P(]) — Po) tlt—1 =2t S=jt + tjt—-1 It _ (3-54)

tt tt—1 " ;
H;, Py E_;t wje + S¢

tlt—1
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In order to compute §t|t from (3.53), we need an estimate of s2. We can use (1.43)

as a function of ¢, that is,

‘ - JT/B)

k
82 = k(t_nzz s : (3.55)

where ,Bj is the weighted least-squares estimate based on ¢ observations. For additional

robustness, one may prefer to use a robust estimate for g] This estimator will require
that we begin the recursions at time ¢t = n + 1.
The following describes a procedure for implementing Kremer’s method for finding

the preceding estimators via the Kalman filter.
1. Define A and H,.

2. Determine S(()JK), =B, Péjlt)J = A, and &

3. Fort=1,2,...,do steps 4-6.

4. For j

1,2, ..., k, do steps i-iv.

. 5(7) a()
(1) Compute §t[t_1 = A, §t_1|:—1-

(ii) Compute Pt[t L= AP llt AL
(iii) Compute Stlt from (3.53).

(iv) Compute PY from (3.54).

t|t

5. Compute B, = S.+_, Fj, St(ft)7 where Fj, = ¢ L.

J=
6. Compute § from (3.55).

With small modifications, this is the algorithm that was followed to get the
Kalman filter credibility estimates in the next chapter. In addition to the difficulties
that were mentioned in the Remark 3.1, an additional problem may arise in con-
nection with Hachemeister’s model. If the estimator in equation (3.26) is used to

estimate s?, we will encounter difficulties when 52 is taken to be zero since equation
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2. This problem can be avoided by using (3.55). How-

(3.53) requires division by s
ever, (3.55) is neither robust nor in recursive form. Clearly, further work is required

in finding more adequate empirical estimators.
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Chapter 4

Numerical Illustrations

In this chapter, we present results from the credibility models previously discussed.
The data that is analyzed is from Hachemeister (1975). There are five contracts and
twelve periods for each contract. We first present the estimates based on the classical
credibility models of Biihlmann, Biihlmann and Straub, and Hachemeister. These
estimates will be based on Hachemeister’s original data set and on Hachemeister’s
data set with the twelfth observation of contract five (X3 12) replaced with an outlier.
We then report estimates based on the corrupted data using the robust credibility
models of Kiinsch, Gisler and Reinhard, and Kremer. Finally, the results using the

robust Kalman filter are presented.

4.1 Classical Credibility Estimates

The estimates for the Biihlmann, Biithlmann and Straub, and Hachemeister models
are shown in Tables 4.1, 4.2, and 4.3, respectively. These estimates are based on the
data which is uncorrupted by outliers.

The estimators for the structural parameters for the Biihlmann and Bithlmann and

Straub model are taken from Goovaerts and Hoogstad (1987). For the Hachemeister
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model, we use the estimator

ol M

k
Y5,
J=1
for 8, and
1,5 s A
(zD JZ; B, =8B, - b)Y

for A. Additionally, we use the design matrix

rather than the one used in Goovaerts and Hoogstad (1987).

In Table 4.1, the credibility estimates of Biihlmann’s model are shown. The credi-
bility factor is Z = 0.95. The estimate of the collective mean is X = 1,671. Estimates
of the structural parameters are @ = 72,310 and 52 = 46,040. The credibility factor is
quite high using the Bihlmann model. This is due to the fact that the “within con-
tracts” variance 32 is small compared to the “between contracts” variance @. With
less heterogeneity within a contract, more credibility is assigned to the individual

data.

i 1 2 3 4 5

X; |2064 1511 1,822 1,360 1,599
A(©;) | 2,044 1,519 1814 1,376 1,602

Table 4.1: Biihlmann’s Model

Table 4.2 shows estimates of the Bihlmann and Straub model. The estimate
of the collective mean is X.,, = 1,684. Estimates of the structural parameters are

@ = 89,639, and §% = 139,120,026. The results here are similar to the results in
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Table 4.1. However, the credibility factor for contract 4 is low compared to the other
contracts. Since we now take the number of claims into account, we can see from
table A.2 that the number of claims for each time period for contract 4 is quite low
compared with the rest of the portfolio. The relatively small amount of experience of

contract 4 leads to a smaller credibility factor.

j 1 2 3 4 5

X, | 2061 1511 1,806 1,353 1,600
A(©;) { 2,055 1,524 1,793 1,443 1,603
Z; | 098 093 090 073 096

Table 4.2: Bihlmann and Straub’s Model

Table 4.3 gives the results from Hachemeister’s model. Figure 4.1 shows the
actual trend of contract 5 resulting from Hachemeister’s model. The estimates of
the collective regression parameters are é = [1';258]. Estimates of the structural
parameters are @ = [ 1en 456 | and §2 = 49,870,187. We can see from Figure 4.1
that the credibility line for contract 5 is closer to the individual least-squares line than
to the collective line. Looking at the number of claims for contract 5 in Table A.2, we
note that the number of claims at each time period is quite extensive. Adding up the
number of claims for each contract, we find that ws = 36,110, which makes up 20.7%

of the aggregate number of claims of the total portfolio. Therefore there seems to be

adequate experience to assign high credibility to the individual data of contract 5.
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Figure 4.1: Hachemeister’'s Model for Contract No. 5

4.2 Robust Credibility Estimates

In this section, we compare the estimates given by the classical models of Biihlmann,
Biihlmann and Straub, Hachemeister with the robust credibility models of Kiinsch,
Gisler and Reinhard, and Kremer. Without outliers, the robust models give the
same results as their non-robust counterparts. However, by introducing an outlier
into Hachemeister’s data set, we can see that the robust credibility models greatly
mitigate the influence of a single outlying observation.

The last observation of the fifth contract (X;12) in the uncontaminated data set

is 1,690. We wish to observe the effects on the credibility estimates when we replace
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that observation by X5 2 = 7,000.

Table 4.4 list the results of Bithlmann’s model. The credibility factor is Z = 0.55.
The collective estimate is X = 1,760. The structural parameters are @ = 54, 813
and 5% = 533,627. As expected, with an outlying claim in contract 5, the expected
variance of the claims has greatly increased. Accordingly, the credibility factor has
decreased significantly. Each of the individual estimates have been “pulled” towards

the collective mean.

7 1 2 3 4 )

X; ]2064 1,511 1,822 1,360 2,041

A(©;) | 1.927 1,622 1,794 1,539 1,915

Table 4.4: Biihlmann’s Model with Xj5,, = 7,000

Table 4.5 are the results of Kiinsch's model with truncation points ¢; = 1 and

c2 = 1.5. The credibility factor is Z = 0.67. The average of the robust estimates is

T = 1,720. We also have

k
,;i—l > (T; = T)(X; — X) = 52,770,
Jj=1
1 o i
£t — 1k > oD IF(Xm T)(X;r — X;) = 32,453,

j=1 r=1

and

k
> (T; = T)* =79,142.

=1

1
k-1
The credibility factor using Kiinsch’s model is greater than in the non-robust
Biihlmann case. Also, each of the credibility estimates have moved closer to their
individual estimates indicating that robustifying Biihlmann’s model has helped in

mitigating the effect of the large claim. However, in Kiinsch’s model the sample
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mean of the portfolio is still used as the estimator for the collective mean. Since the
sample mean is not robust, the large claim in contract 5 still has a substantial effect

on the estimates.

j 1 2 3 4 5
X; |2064 1,511 1,822 1,360 2,041
T; |2064 1,511 1,822 1,360 1,841

2%(©;) | 1,989 1,620 1,828 1,520 1,841

Table 4.5: Kiinsch’s Model with X5, = 7,000

Results from Biihlmann and Straub’s model are in Table 4.6. The estimate of the
collective estimator is X, = 1,959. Estimates of the structural parameters are given
by & = 4,336 and 5% = 1,788,061,134. The large value of 5° has caused the credibility
factor to be virtually zero for each contract. Only the large number of claims for
contract 1 has allowed that credibility factor to remain far from zero. However, the
credibility factor of 0.20 for contract 1 is still a big decrease from 0.98 in the case
with no large claims. Each credibility premium is now mainly the premium based on
the entire portfolio.

Values from Gisler and Reinhard’s model are in Table 4.6. The estimate of the
excess mean is [izs = 74. The estimate of the ordinary mean is jir = 1,733. Estimates
of the structural parameters are ar = 65,396 and §% = 378,151,153. The credibility
factors are now in a more reasonable range. The credibility factor for contract 1
is now closer to the credibility factor in Biihlmann-Straub model without outliers.
Contract 5, with its large number of claims, also enjoys a high credibility factor. We
can explain the low credibility factor for contract 4 by recalling that the exposure for

this contract is relatively low.



1 2 3 4 5

=

X;» | 2,061 1,511 1,806 1,353 2,103
A(©;) | 1,979 1,938 1954 1953 1,971
Z; | 020 005 003 001 0.08

Table 4.6: Bithlmann and Straub’s Model with X5, = 7,000

j 1 2 3 4 5

T; 2,061 1,511 1,806 1,353 1,698
2t (©;) | 2,117 1,635 1,858 1,648 1,776
Z; 095 0.77 070 042 0.86

Table 4.7: Gisler and Reinhard’s Model with X5 ;o = 7,000

In Table 4.8, results from Hachmeister’s model are shown. The collective estimate

is 8 = [“%7]. The estimates of the structural parameters are & = [ 5055 2a ]

and §* = 1,377,156,010.

7 1 2 3 4 5

5, [1&°] [17°] (M7 ] [*2s] [35%]
B@) | [ ['35¢] [*e7] (56" ] [328]

z; | [08 o] [ o] [0 owo ) [003 oar) [083 0¥l

Table 4.8: Hachemeister’s Model with X5 ;o = 7,000

Table 4.9 describes the results from Kremer’s robust regression credibility model.
We show here the special case of Hachemeister’s model. The computations were done

assuming a one-sided Huber function. The M-estimator B ; was computed by iterated

re-weighted least-squares.
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The tuning constant ¢ for the one-sided Huber function is usually taken to be 1.345,
since for this value, the M-estimator will be 95% efficient at the normal distribution.
We retain this convention, however, we note that since we have not estimated the
scale parameter in (2.44), we need to multiply 1.345 by an estimate of scale. For

this, we use &, the expected variance of the robust means from the Kiinsch model.

Finally, to adjust the truncation point for claims volume, we use ﬁ\/ E§=1 S, Wi

Our ad hoc procedure for calculating the truncation point ¢ then is

= (1.34567 /kt) \/Z?:l et Wir s

which for our example is ¢ = 19,982.

The collective estimate is § = [ 14°]. The estimates of the structural parameters

25,488 1,8:9] d 52

are a = [ 1,879 238 = 64,618,028. Figure 4.2 compares the Hachemeister

non-robust trend estimate with the robust estimates from Kremer’s robust regression
model. It is clear that truncating the claims has a big effect on the estimate of the
trend. The line provided by the Hachemeister model can be seen to be pulled towards
the large claim. The line from Kremer’s robust regression credibility model, fits the

data quite well.

j 1 2 3 4 5
B, =l I -l I ol N -~ R o
~R - -
gy | [&°] [ [ %] [
z; | [83338] [8623%] [8833%] [8393%] [8%233]
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Figure 4.2: Kremer’s Robust Regression Model with Xj,, = 7,000
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4.3 Kalman Filter Estimates

We conclude our examples with estimates from the non-robust and robust versions of
the Kalman filter applied to the Hachemeister dataset with and without an outlier.
The implementation of the filter is based on section 3.4.

We begin with a non-robust version of the Kalman filter applied to the data which
contains no outliers. We can then compare these estimates to the robust Kalman filter
in the presence of a large claim.

Table 4.10 shows the estimates of the non-robust Kalman filter. The collective
estimator is § = [1;283] The estimate for s? is 49,870,186. We omit the estimates
for a and Z; as the computations of these matrices are embedded in the recursions
and were not computed explicitly. Figure 4.3 shows the results of the Kalman filter
graphically. The estimates of 5(©;) given by Table 4.10 are similar to the estimates

in Table 4.3. Looking at Figure 4.3, we can see a similar relationship between the

credibility line and the collective line that we saw in Figure 4.1.

j 1 2 3 4 5
Ao | [M°] [ [M°] [ ]

Table 4.10: Kalman Filter (Hachemeister) Model for Contract No. 5

Finally, we compare the robust and non-robust Kalman filter as applied to the
data with X312 = 7,000, an outlier. The collective estimator in the non-robust case
is 8 = ["42°], and in the robust case, 3 = [*%7]. In both cases, s*> = 1,377,156,010.
Figure 4.4 compares the regression lines from the two models. In the robust case, we
use for the truncation point ¢ = 0. This is to recognize that at time ¢, we expect
convergence to an estimate, and so the residual X;; — H, Sm_l should be small. The

graphs in Figure 4.4 are similar to Figure 4.2. In Figure 4.4, we see that truncating
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Figure 4.3: Kalman Filter (Hachemeister) Model for Contract No. 5

the claims have improved the fit greatly. It appears that a robust Kalman filter can

be useful in reducing the difficulties in credibility estimation that are caused by large

claims.
7 1 2 3 4 5
8Oy | M%7 ['5°] [ [ [3)
~R o .
B | M2 [M¥f] ['&°] [%F] ['%°]
Model for Contract No. 5 with

Table 4.11: Robust Kalman Filter (Hachemeister)

Xsylg = 7,000
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Conclusion

In this thesis, we have reviewed some of the developments in credibility theory leading
up to the treatment of large claims using robust Kalman filtering methods. The
Kalman filter is considered useful in credibility theory as it also provides a unified
framework in which to apply credibility. In chapter 2, we stated why robustness
in credibility should be pursued and we saw in chapter 4 that, indeed, large claims
effects can be detrimental to credibility estimation. Robust methods which have
already been applied to a variety of credibility models was reviewed in chapter 2.
Thus, robustification of the Kalman filter allows for efficient processing of credibility
estimates which are robust against large claims.

Parameter estimation is also very important in credibility theory as the credibil-
ity formulas cannot be applied until the structural parameters have been estimated.
Parameter estimation was discussed in the classical, robust, and Kalman filter ap-
proaches to credibility. Some difficulties in estimating parameters when applying the
Kalman filter were noted.

In conclusion, we point out some areas where further work may be done. We
have seen that clear solutions to the estimation of the structural parameters and the
choice of initial values in the robust empirical Kalman filter credibility model have
not yet been developed. Estimators have been proposed in the case of the non-robust
Kalman credibility model; however, the question of empirical estimators based on
data for the robust case has yet to be resolved. The choice of the initial estimate to

start the recursive procedure is also an important question. Finally, we note that in

7



both estimating the initial value and estimating the model parameters, one should

seek estimators which are robust.
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Appendix A

Hachemeister’s Dataset

The following tables contain private passenger automobile data used by Hachemeister
in his 1975 article. The first table contains the claim amounts while the second table
contains the number of claims. Both tables are split by state with each column
representing a state. The rows correspond to the time periods. For this data, each

time period is equal to three months.
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1,738 | 1,364 | 1,759 | 1,223 | 1,456
1,642 | 1,408 | 1,685 | 1,146 | 1,499
1,794 | 1,597 | 1,479 | 1,010 | 1,609
2,051 | 1,444 | 1,763 | 1,257 | 1,741
2,079 | 1,342 | 1.674 | 1,426 | 1,482
2,234 | 1,675 | 2,103 | 1,532 | 1,572
2,032 | 1,470 | 1,502 | 1,953 | 1,606
2,035 | 1,448 | 1,622 | 1,123 | 1,735
2,115 | 1,464 | 1,828 | 1,343 | 1,607
2,262 | 1,831 | 2,155 | 1,243 | 1,573
2,267 | 1,612 | 2,233 | 1,762 | 1,613

2,517 | 1,471 | 2,059 | 1,306 | 1,690

Table A.1: Claim amounts from private passenger bodily injury (Hachemeister, 1975)
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7,861 | 1,622 | 1,147 | 407 | 2,902
9,251 | 1,742 | 1,357 | 396 | 3,172
8,706 | 1,523 | 1,329 | 348 | 3,046
8,575 | 1,515 | 1,204 | 341 | 3,068
7,917 | 1,622 998 | 315 | 2,693
8,263 | 1,602 | 1,077 | 328 | 2,910
9,456 | 1,964 | 1,277 | 352 | 3,275
8,003 | 1,515 | 1,218 | 331 | 2,697
7,365 | 1,527 896 | 287 | 2,663
7,832 { 1,748 | 1,003 | 384 | 3,017
7,849 | 1,654 | 1,108 | 321 | 3,242
9,077 | 1,861 | 1,121 | 342 | 3,425

Table A.2: Number of claims from private passenger bodily injury (Hachemeister,

1975)
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