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Abstract
We consider a superprocess with coalescing Brownian spatial motion. We first point out a

dual relationship between two systems of coalescing Brownian motions. In consequence we can
express the Laplace functionals for the superprocess in terms of coalescing Brownian motions,
which allows us to obtain some explicit results. We also point out several connections between
such a superprocess and the Arratia flow. A more general model is discussed at the end of this
paper.

Résumé
Nous considérons un super-processus avec mouvement Brownien spatial coalescent. Nous

soulignons dábord une relation de dualité entre deux systèmes de mouvements Browniens coa-
lescents. Il en résulte une expression des fonctionnelles de Laplace pour ces super-processus en
termes de mouvements Browniens coalescents, ce qui nous permet dobtenir certains résultats ex-
plicites. Nous soulignons aussi plusieurs relations entre un tel super-processus et le flot d’Arratia.
Un modèle plus général est discuté en conclusion d’article.
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1. Introduction

In this paper we mainly consider the following branching-coalescing particle system which
can be described intuitively as follows. A collection of particles with masses execute coalescing
Brownian motions. Meanwhile the masses for these particles evolve according to independent
Feller’s branching diffusions. Upon coalescing the two particles involved merge together to one
particle where the mass of the new particle is the sum of the masses of the coalescing particles.

The above-mentioned particle system can be described using a measure-valued process Z.
More precisely, the support of Zt represents the locations of the particles at time t, and the
measure Zt assigned to each supporting point stands for the mass of the corresponding particle.
This process Z, which we call the superprocess with coalescing Brownian spatial motion (SCSM),
was first introduced in [5]. It arises as a scaling limit of another measure-valued process, which
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was referred to in [3] as the superprocess with dependent spatial motion (SDSM). SDSM arises as
a high density limit of a critical branching particle system in which the motion of each particle
is subjected to both an independent Brownian motion and a common white noise applied to all
the particles. More precisely, the movement of the ith particle is governed by the equation

dxi(t) = σ(xi(t))dBi(t) +
∫

R
h(y − xi(t))W (dy, dt),

where (Bi) is a collection of independent Brownian motions which is independent of the white
noise W ; see [3]. A similar model was also studied in [14].

It was shown in Theorem 4.2 of [5] that, after appropriate time-space scaling, SDSM converges
weakly to SCSM. A functional dual for SCSM was given in Theorem 3.4 of [5]. In addition, using
coalescing Brownian motions and excursions for Feller’s branching diffusion, a construction of
SDSM was found in [5], an idea that initially came from [4]. In this paper we always denote
such a SCSM as Z.

One of the most interesting problems in the study of a measure-valued process is to recover a
certain duality relation concerning the measure-valued process. Such a dual relationship often
leads to the uniqueness of the measure-valued process; see [12] for some classical examples on
super Brownian motion and related processes. It is not hard to show the existence of Z as a
high density limit of the branching-coalescing particle systems. The main goal of this paper is to
propose a new way of characterizing the measure-valued process Z via duality, in which the self-
duality for coalescing Brownian motions plays a key role. To this end, we first point out a rather
general duality on two coalescing Brownian motions running in the opposite directions. With
this duality we can express certain Laplace functionals for Z in terms of systems of coalescing
Brownian motions.

We could carry out some explicit computation thanks to the above-mentioned duality. In
particular, we first show that, starting with a possibly diffuse initial finite measure Z0, Zt

collapses into a discrete measure with a finite support as soon as t > 0. Then we can identify
Zt interchangeably with a finite collection of spatially distributed particles with masses. When
there is such a particle at a fixed location, we obtain the Laplace transform of its mass. The
total number of particles in Zt decreases in t due to both branching and coalescing. When there
is only one particle left at time t, we also recover the joint distribution of its location and its
mass. Eventually, all the particles will die out. We further find the distribution of the location
where the last particle disappears. Coincidentally, super Brownian motion shares the same near
extinction behavior.

Connections between superprocesses and stochastic flows have been noticed before. In [11] a
superprocess was obtained from the empirical measure of a coalescing flow. Arratia flow serves
as a fundamental example of a coalescing flow. In this paper we point out several connections
between Z and the Arratia flow. More precisely, the support of Zt at a fixed time t > 0 can
be identified with a Cox process whose intensity measure is determined by the Arratia flow. A
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version of Zt can be constructed using the Arratia flow. The general Laplace functional for Z

can also be expressed in terms of the Arratia flow.
Replacing the Feller’s branching diffusion by the square of the Bessel process (BESQ) to

incorporate immigration, we introduce and discuss a more general model at the end of this
paper. Since dimension is a parameter for BESQ representing the immigration rate, in addition
to the measure-valued process for the mass, in the model we introduce another measure-valued
process to describe the dimension. The simultaneous mass-dimension evolution of such a model
can also be characterized by coalescing Brownian motions.

The rest of this paper is arranged as follows. As a preliminary, we first state and prove a
duality relation on coalescing Brownian motions in Section 2. In Section 3, we define the process
Z as a weak limit of the empirical measures for the branching-coalescing particle systems. Then
we proceed to prove the duality between Z and coalescing Brownian motions. The uniqueness
of Z follows from such a duality immediately. We continue to study several properties of this
process in Section 4. We further discuss the connections between the Arratia flow and Z in
Section 5. At the end of this paper, we propose a more general model and establish its duality
in Section 6.

2. Coalescing Brownian motions and their duality

An m-dimensional coalescing Brownian motion can be described as follows. Consider a system
of m indexed particles with locations in R that evolves as follows. Each particle moves according
to an independent standard Brownian motion on R until two particles are at the same location.
At this moment a coalescence event occurs and the particle of higher index starts to move
together with the particle of lower index. We say the particle with higher index is attached to
the particle with lower index, which is still free. The particle system then continues its evolution
in the same fashion. Note that indices are not essential here, the collection of locations of the
particles is Markovian in its own right, but it will be convenient to think of the process as taking
values in Rm rather than subsets of R with at most m elements. For definiteness, throughout
this section we will further assume that the particles are indexed in increasing order of their
initial positions: it is clear that the dynamics preserve this ordering. Call the resulting Markov
process X = (X1, . . . , Xm).

Write 1{B}(.) for the indicator function of a set B. The distribution of X(t) is uniquely
specified by knowing for each choice of y1 < y2 < . . . < yn the joint probabilities of which
“balls” X1(t), X2(t), . . . , Xm(t) lie in which of the “boxes” ]y1, y2], ]y2, y3], . . . , ]yn−1, yn]. That
is, the distribution of X(t) is determined by the joint distribution of the indicators

I→ij (t,y) := 1{Xi(t) ∈]yj , yj+1]}

for 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1 and y = (y1, . . . , yn).
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Suppose now that Y := (Y1, . . . , Yn) is another coalescing Brownian motion. The distribution
of Y(t) is uniquely specified by knowing for each choice of x1 < x2 < . . . < xn the distribution
of the indicators

I←ij (t,x) := 1{xi ∈]Yj(t), Yj+1(t)]}
for 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1 and x = (x1, . . . , xm).

The next “balls-in-boxes” duality is crucial in characterizing the distributions of the measure-
valued processes considered in this paper.

Theorem 2.1. Suppose in the notation above that X = (X1, . . . , Xm) is an m-dimensional
coalescing Brownian motion and Y = (Y1, . . . , Yn) is an n-dimensional coalescing Brownian
motion. Then for each t ≥ 0 the joint distribution of the m× (n− 1)-dimensional random array
(I→ij (t,Y(0))) coincides with that of the m× (n− 1)-dimensional random array (I←ij (t,X(0))).

Theorem 2.1 can be seen from Theorem 8 of [15], which concerns a more elaborate duality on
a system of Brownian motions. In such a system, some Brownian motions run forwards in time,
and the others run backwards in time. Those Brownian motions running in the same direction
coalesce whenever they meet, and those running in the opposite direction reflect on each other.
Theorem 8 of [15] shows that the order of coalescing and reflecting does not change the joint
distribution of the system. Other dualities on coalescing-reflecting Brownian systems can also
be found in [16].

In this paper we will give a direct proof of the “balls-in-boxes” duality. We first prove
the counterpart of Theorem 2.1 for continuous time simple coalescing random walks, which is
interesting in its own right. Notice that X is a coalescing Brownian motion if and only if Xi is
a (FX

t )-Brownian motion for each 1 ≤ i ≤ m, and (Xj − Xi)/
√

2 is a (FX
t )-Brownian motion

stopped at 0, where (FX
t ) denotes the filtration generated by X. Then Theorem 2.1 follows from

a straight forward martingale argument proof of the convergence of the scaled random walk to
Brownian motion.

For discrete time simple coalescing random walks the “balls-in-boxes” duality is evident from
Fig. 7 of [15]. But the duality seems to be less apparent for continuous time simple coalescing
random walks.

A p-simple random walk on Z is a continuous time simple random walk that makes jumps
at unit rate, and when it makes a jump from a certain site it jumps to the right neighbor
with probability p and to the left neighbor with probability 1− p. An m-dimensional p-simple
coalescing random walk is defined in the same way as the coalescing Brownian motion at the
beginning of this section. When p = 1/2 we just call this particle system a simple coalescing
random walk.

Some notation is useful to keep track of the interactions among the particles in the coalescing
system. Let Pm denote the set of interval partitions of the totality of indices Nm := {1, . . . ,m}.
That is, an element π of Pm is a collection π = {A1(π), . . . , Ah(π)} of disjoint subsets of Nm



5

such that
⋃

i Ai(π) = Nm and a < b for all a ∈ Ai, b ∈ Aj , i < j. The sets A1(π), . . . Ah(π)
consisting of consecutive indices are the intervals of the partition π. The integer h is the length
of π and is denoted by l(π). Equivalently, we can think of Pm as a set of equivalence relations
on Nm and write i ∼π j if i and j belong to the same interval of π ∈ Pm. Of course, if i ∼π j,
then i ∼π k ∼π j for all i ≤ k ≤ j.

Now we want to introduce the state space for the simple coalescing random walk. Given
π ∈ Pm, define

αi(π) := minAi(π)

to be the left-hand end-point of the ith interval Ai(π). Put

Zm
π := {(x1, . . . , xm) ∈ Zm : x1 ≤ . . . ≤ xm and xi = xj if i ∼π j}

and

Ẑm
π := {(x1, . . . , xm) ∈ Zm : x1 ≤ . . . ≤ xm and xi = xj if and only if i ∼π j}.

Note that Zm is the disjoint union of the sets Ẑm
π , π ∈ Pm.

Write X = (X1, . . . , Xm) for the p-simple coalescing random walk. If X(t) ∈ Ẑm
π , then the

free particles at time t have indices α1(π), . . . , αl(π)(π) and the ith particle at time t is attached
to the free particle with index

min{j : 1 ≤ j ≤ m, j ∼π i} = max{αk(π) : αk(π) ≤ i}.

In order to write down the generator of X, we require a final piece of notation. Let {ek
i : 1 ≤

i ≤ k} be the set of coordinate vectors in Zk; that is, ek
i is the vector that has the ith coordinate

1 and all the other coordinates 0. For π ∈ Pm, define a map Kπ : Zm
π → Zl(π) by

Kπ(x) = Kπ(x1, . . . , xm) :=
(
xα1(π), . . . , xαl(π)(π)

)

Notice that Kπ is a bijection between Zm
π and {x ∈ Zl(π) : x1 ≤ x2 ≤ . . . ≤ xl(π)}, and we write

K−1
π for the inverse of Kπ. For brevity, we will sometimes write xπ for Kπ(x).
Write B(Zm) for the collection of all bounded functions on Zm. The generator G of X is the

operator G : B(Zm) → B(Zm) given by

Gf(x) := p

l(π)∑

i=1

f ◦K−1
π (xπ + el(π)

i ) + (1− p)
l(π)∑

i=1

f ◦K−1
π (xπ − el(π)

i )

− l(π)f ◦K−1
π (xπ), f ∈ B(Zm), x ∈ Ẑm

π , π ∈ Pm.

This expression is well-defined, because if x ∈ Ẑm
π , then xπ, xπ + el(π)

i and xπ − el(π)
i are all in

{x ∈ Zl(π) : x1 ≤ x2 ≤ . . . ≤ xl(π)}.
Note: From now on we will suppress the dependence on dimension and write el(π)

i as ei.
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Write Z′ := Z + 1
2 = {i + 1

2 : i ∈ Z}. An n-dimensional q-simple coalescing random walk on
Z′n and its generator H can be defined in the obvious way. Such a process, with q = 1− p, will
serve as the process dual to the p-simple coalescing random walk on Zm in the following way.

Fix x ∈ Zm with x1 ≤ . . . ≤ xm and y ∈ Z′n with y1 ≤ . . . ≤ yn. Put

I→ij (t,y) := 1{Xi(t) ∈]yj , yj+1]}
and

I←ij (t,x) := 1{xi ∈]Yj(t), Yj+1(t)]}
for 1 ≤ i ≤ m and 1 ≤ j ≤ n− 1.

Lemma 2.2. Suppose in the notation above that X = (X1, . . . , Xm) is an m-dimensional Zm-
valued p-simple coalescing random walk and Y = (Y1, . . . , Yn) is an n-dimensional Z′n-valued
(1−p)-simple coalescing random walk. Then for each t ≥ 0 the joint distribution of the m×(n−
1)-dimensional random array (I→ij (t,Y(0))) coincides with that of the m× (n− 1)-dimensional
random array (I←ij (t,X(0))).

Proof. For a bounded function g : {0, 1}m(n−1) → R, a vector x ∈ Zm with x1 ≤ . . . ≤ xm, and
a vector y ∈ Z′n with y1 ≤ . . . ≤ yn, set

ḡ(x;y) := g (1{]y1, y2]}(x1), . . . , 1{]yn−1, yn]}(x1), . . . , 1{]y1, y2]}(xm), . . . , 1{]yn−1, yn]}(xm)) .

We may assume that X and Y are defined on the same probability space (Ω,F ,P). We need to
show that

(2.1) P[ḡ(X(t);Y(0))] = P[ḡ(X(0);Y(t))].

For x ∈ Zm, put ḡx(·) := ḡ(x; ·), and for y ∈ Z′n, put ḡy(·) := ḡ(·;y). In order to establish
(2.1), it suffices by a standard argument (cf. Section 4.4 of [7]) to show that

(2.2) G(ḡy)(x) = H(ḡx)(y)

(recall that G and H are the generators of X and Y, respectively).
Fix x ∈ Ẑm

π and y ∈ Ẑ′n$ for some π ∈ Pm and $ ∈ Pn. Put

I+ := {i : 1 ≤ i ≤ l(π), xαi(π) +
1
2

= yαj($) for some 1 ≤ j ≤ l($)}
and

I− := {i : 1 ≤ i ≤ l(π), xαi(π) −
1
2

= yαj($) for some 1 ≤ j ≤ l($)}.
Similarly, put

J− := {j : 1 ≤ j ≤ l($), yαj($) −
1
2

= xαi(π) for some 1 ≤ i ≤ l(π)}
and

J+ := {j : 1 ≤ j ≤ l($), yαj($) +
1
2

= xαi(π) for some 1 ≤ i ≤ l(π)}.
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For each i ∈ I+ there is a unique j ∈ J− such that xαi(π) + 1
2 = yαj($) and vice versa. Fix

such a pair (i, j), we can verify that

ḡy ◦K−1
π (xπ + ei) = ḡx ◦K−1

π (y$ − ej)

by considering all the possible scenarios. In addition, it is easy to see for i′ 6∈ I+ that

ḡy ◦K−1
π (xπ + ei′) = ḡy ◦K−1

π (xπ)

and for j′ 6∈ J− that

ḡx ◦K−1
$ (y$ − ej′) = ḡx ◦K−1

$ (y$).

Similarly, for any i ∈ I− there exists a unique j ∈ J+ such that xαi(π) − 1
2 = yαj($) and vice

versa. For such a pair (i, j) we have

ḡy ◦K−1
π (xπ − ei) = ḡx ◦K−1

π (y$ + ej).

Furthermore, we see for i′ 6∈ I− that

ḡy ◦K−1
π (xπ − ei′) = ḡy ◦K−1

π (xπ)

and for j′ 6∈ J+ that

ḡx ◦K−1
$ (y$ + ej′) = ḡx ◦K−1

$ (y$).

Lastly, note that

ḡy ◦K−1
π (xπ) = ḡ(x;y) = ḡx ◦K−1

$ (y$)

and so

G(ḡy)(x)−H(ḡx)(y) = p
∑

i∈I+

(
ḡy ◦K−1

π (xπ + ei)− ḡy ◦K−1
π (xπ)

)

+ (1− p)
∑

i∈I−

(
ḡy ◦K−1

π (xπ − ei)− ḡy ◦K−1
π (xπ)

)

− p
∑

j∈J−

(
ḡx ◦K−1

$ (y$ − ei)− ḡx ◦K−1
$ (y$)

)

− (1− p)
∑

j∈J+

(
ḡx ◦K−1

$ (y$ + ei)− ḡx ◦K−1
$ (y$)

)

= 0,

as required. ¤
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3. Existence and uniqueness

A construction of Z was given in [5] using Feller’s branching excursions. In this paper we
adopt a weak convergence approach, which is commonly used in the study of measure-valued
processes.

Recall that a nonnegative valued process ξ is a Feller’s branching diffusion with initial value
x ≥ 0 if it is the unique strong solution to the following stochastic differential equation

ξ(t) = x +
∫ t

0

√
γξ(s)dB(s),

where γ is a positive constant and B is a one-dimensional Brownian motion. (ξ(t))t≥0 is a
martingale. Its one-dimensional marginal can be characterized by its Laplace transform

(3.1) P [exp{−λξ(t)}] = exp
{
− 2λx

2 + λγt

}
;

its extinction probability is then given by

P{ξ(t) = 0} = exp
{
−2x

γt

}
;

see Sections II.1 and II.5 of [12].
Observe that independent Feller’s branching diffusions are additive; i.e. if ξ and η are two

independent Feller’s branching diffusions (with the same parameter γ), then ξ + η is also a
Feller’s branching diffusion. This fact will be used repeatedly in our discussions.

Write MF (R) for the space of finite measures on R equipped with the topology of weak
convergence. For any µ ∈ MF (R) and any real valued function f on R, put

〈µ, f〉 =
∫ ∞

−∞
f(x)µ(dx).

Given Z0 ∈ MF (R), put z̄ := Z0(R). For any positive integer m, let (ξ(m)
1 , . . . , ξ

(m)
m ) be a col-

lection of m independent Feller’s branching diffusions each with initial value z̄/m. Choose
(x1, . . . , xm) to be i.i.d. samples from distribution Z0/z̄. Let (X(m)

1 , . . . , X
(m)
m ) be an m-

dimensional coalescing Brownian motion starting at (x1, . . . , xm). Moreover, we always assume
that (ξ(m)

i ) and (X(m)
i ) are independent. Let δx denote the point mass at x ∈ R. Then

Z
(m)
t :=

m∑

i=1

ξ
(m)
i (t)δ

X
(m)
i (t)

defines a MF (R)-valued process. From now on we will suppress the dependence of m in both
ξ
(m)
i and X

(m)
i .

Recall that a collection of processes {Zα, α ∈ I} with sample paths in D(MF (R)) is C-
relatively compact if it is relatively compact and all its weak limits are a.s. continuous. The
proof of the next lemma is standard; see, e.g. the proofs for Lemma 3.2 of [18] and Proposition
II.4.2 of [12].
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Lemma 3.1. {Z(m)} is C-relatively compact.

Proof. We first check the compact containment condition. For any ε > 0 and T > 0, choose a
compact set K0 ⊂ D(R) such that P{X1 ∈ Kc

0} < ε2. Let K := {xt : x ∈ K0, t ≤ T}. Then K

is compact in R, and

P{X1(t) ∈ Kc, ∃t ≤ T} ≤ P{X1 ∈ Kc
0} < ε2.

Define

IK := {1 ≤ i ≤ m : Xi(t) ∈ Kc, ∃t ≤ T}
and put

Nm := #IK =
m∑

i=1

1{Xi(t) ∈ Kc,∃t ≤ T},

where #IK denotes the cardinality of the index set IK .
Conditioning on Nm, by the additivity for Feller’s branching diffusions, we see that

∑
i∈IK

ξi(t)
is a Feller’s branching diffusion with initial value Nmz̄/m. Then by Doob’s maximal inequality,

P



 sup

0≤t≤T

∑

i∈IK

ξi(t) > ε

∣∣∣∣∣∣
Nm



 ≤ Nmz̄

mε
.

Therefore,

P

{
sup

0≤t≤T
Z

(m)
t (Kc) > ε

}
≤ P



 sup

0≤t≤T

∑

i∈IK

ξi(t) > ε



 ≤ P[Nm]z̄

mε
≤ z̄ε.

For any f ∈ C2
b (R), we are going to show that {〈Z(m)

. , f〉} is C-relatively compact in D(R).
By Itô’s formula, we have

〈Z(m)
t , f〉 =

m∑

i=1

[
z̄

m
f(xi) +

∫ t

0
f(Xi(s))dξi(s) +

∫ t

0
ξi(s)f ′(Xi(s))dXi(s)

+
1
2

∫ t

0
ξi(s)f ′′(Xi(s))ds

]
.

The additivity for ξi(t) gives that if

P

[
sup

0≤s≤t

m∑

i=1

ξi(s)

]
< ∞ and P


 sup

0≤s≤t

m∑

i,j=1

ξi(s)ξj(s)


 < ∞, t > 0,

then
{∑m

i=1

∫ ·
0 ξi(s)f ′′(Xi(s))ds

}
is C-relatively compact following from Arzela-Ascoli theorem

and Proposition VI.3.26 of [8].
Note that the quadratic variation

〈
m∑

i=1

∫ .

0
ξi(s)f ′(Xi(s))dXi(s)

〉

t

=
m∑

i,j=1

∫ t

0
ξi(s)ξj(s)f ′(Xi(s))f ′(Xj(s))d〈Xi, Xj〉s,
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where 〈Xi, Xj〉s = s− Tij ∧ s and Tij := inf{s ≥ 0 : Xi(s) = Xj(s)}. By Arzela-Ascoli theorem
again, {〈∑m

i=1

∫ .
0 ξi(s)f ′(Xi(s))dXi(s)〉.} is C-relatively compact. Theorem VI.4.13 and Proposi-

tion VI.3.26 of [8] then imply that the collection of martingales
{∑m

i=1

∫ .
0 ξi(s)f ′(Xi(s))dXi(s)

}

is C-relatively compact.
Similarly,

{∑m
i=1

∫ .
0 f(Xi(s))dξi(s)

}
is also C-relatively compact. Moreover,

1
m

m∑

i=1

f(xi) → 〈Z0, f〉 a.s..

{〈Z(m)
· , f〉} is thus C-relatively compact. Consequently, by Theorem II.4.1 of [12] we can con-

clude that {Z(m)
· } is C-relatively compact.

¤

Write Z for the weak limit of {Z(m)}. The Laplace functional of Z can be obtained from the
duality in Theorem 2.1. As a result, its uniqueness is settled.

In the sequel we always write (Y1, . . . , Y2n) for a coalescing Brownian motion starting at
(y1, . . . , y2n) with y1 ≤ . . . ≤ y2n. Given (ai) and t > 0, put

(3.2) ht(·) :=
n∑

j=1

aj1{]Y2j−1(t), Y2j(t)]}(·).

Theorem 3.2.

(i). Any limit point Z of {Z(m)} in C(MF (R)) satisfies the following duality relation: given
aj > 0, j = 1, . . . , n, for any y1 ≤ y2 ≤ . . . ≤ y2n and any t > 0, we have

P [exp {−〈Zt, h0〉}] = P
[
exp

{
−

〈
Z0,

2ht

2 + γtht

〉}]
.(3.3)

(ii). Any limit point Z of {Z(m)} in C(MF (R)) has the Markov property.
(iii). The family {Z(m)} has a unique limit point Z in C(MF (R)).

Proof. We might assume that (Yi) is independent of (ξi). First conditioning on (ξi(t)), by
Theorem 2.1 we have

P


exp



−

m∑

i=1

n∑

j=1

ξi(t)aj1{]y2j−1, y2j ]}(Xi(t))





∣∣∣∣∣∣
(ξi(t))




= P


exp



−

m∑

i=1

n∑

j=1

ξi(t)aj1{]Y2j−1(t), Y2j(t)]}(xi)





∣∣∣∣∣∣
(ξi(t))


 .

(3.4)

Now take expectations on both sides of (3.4) and then condition on (xi) and (Yi(t)). Since
ξ1(t), . . . , ξm(t) are independent of each other, and they are independent of (xi) and (Yi(t)), it
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follows from (3.1) that

P
[
exp

{
−〈Z(m)

t , h0〉
}]

= P

[
P

[
exp

{
−

m∑

i=1

ξi(t)ht(xi)

}∣∣∣∣∣ (xi), (Yi(t))

]]

= P

[
m∏

i=1

exp
{
− 2z̄ht(xi)

m{2 + γtht(xi)}
}]

= P
[
P

[〈
Z0

z̄
, exp

{
− 2z̄ht

m(2 + γtht)

}〉m∣∣∣∣ (Yi(t))
]]

= P
[〈

Z0

z̄
, exp

{
− 2z̄ht

m(2 + γtht)

}〉m]
.

(3.5)

Let m →∞ in (3.5). Then

lim
m→∞P

[
exp

{
−〈Z(m)

t , h0〉
}]

= lim
m→∞P

[(
1−

〈
Z0,

2ht

m(2 + γtht)

〉)m]

= P
[
exp

{
−

〈
Z0, exp

{
2ht

2 + γtht

}〉}]
.

Let Z be any limit point of {Z(m)}. To prove (3.3) it suffices to show that

P [exp {−〈Zt, h0〉}] = lim
m→∞P

[
exp

{
−〈Z(m)

t , h0〉
}]

.(3.6)

To this end we can suppose that y1 < y2 < . . . < y2n. Then for small enough ε > 0, similar to
(3.5) we have

P


exp



−

n∑

j=1

ajZ
(m)
t (]y2j−1 + ε, y2j − ε])








− P

exp



−

n∑

j=1

ajZ
(m)
t (]y2j−1 − ε, y2j + ε])








≤ 1− P

exp



−

n∑

j=1

ajZ
(m)
t (]y2j−1 − ε, y2j−1 + ε]∪]y2j − ε, y2j + ε])








= 1− P
[〈

Z0

z̄
, exp

{
− 2z̄

∑n
j=1 aj1{]Y ′

2j−1(t), Y
′′
2j−1(t)]∪]Y ′

2j(t), Y
′′
2j(t)]}

m(2 + γt
∑n

j=1 aj1{]Y ′
2j−1(t), Y

′′
2j−1(t)]∪]Y ′

2j(t), Y
′′
2j(t)]})

}〉m]

≤ 1− P{∩2n
j=1{Y ′

j (t) = Y ′′
j (t)}} ,

(3.7)

where (Y ′
1 , Y

′′
1 , . . . , Y ′

2n, Y ′′
2n) is a coalescing Brownian motion starting at (y1− ε, y1 + ε, . . . , y2n−

ε, y2n + ε). Clearly, the right hand side of (3.7) converges (uniformly in m) to 0 as ε → 0+.
Therefore, (3.6) follows readily.

By the Markov property for (Xi) and (ξi), and arguments similar to (3.5) and (3.6) we can
show that, for any 0 ≤ t1 < . . . < tk < t and any nonnegative bounded continuous functions
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(fi), we have

P

[
exp

{
−

k∑

i=1

〈Zti , fi〉 − 〈Zt, h0〉
}]

= lim
m→∞P

[
exp

{
−

k∑

i=1

〈Z(m)
ti

, fi〉 − 〈Z(m)
t , h0〉

}]

= lim
m→∞P

[
exp

{
−

k∑

i=1

〈Z(m)
ti

, fi〉
}
P

[
exp

{
−〈Z(m)

t , h0〉
}∣∣∣ (ξi(s)), (Xi(s)), s ≤ tk

]]

= lim
m→∞P

[
exp

{
−

k∑

i=1

〈Z(m)
ti

, fi〉
}

exp
{
−

〈
Z

(m)
tk

,
2ht−tk

2 + γ(t− tk)ht−tk

〉}]

= P

[
exp

{
−

k∑

i=1

〈Zti , fi〉
}

exp
{
−

〈
Ztk ,

2ht−tk

2 + γ(t− tk)ht−tk

〉}]
.

The Markov property for Z follows readily.
Since all the limit points of {Z(m)} have identical marginal distribution because of (3.3), by the

Markov property they also have the same joint distribution. We thus establish the uniqueness
for Z. See Theorem 4.4.2 of [7] and Theorem 3.3 of [18] for similar proofs.

¤

Remark 3.3. The duality (3.2) also gives, for any 0 < s < t,

P [exp {−〈Zt−s, hs〉}] = P [exp {−〈Zs, ht−s〉}] .

The moments of Z can be obtained immediately from (3.3).

Proposition 3.4. Given aj > 0, j = 1, . . . , n, for any y1 ≤ y2 ≤ . . . ≤ y2n and t > 0, we have

P [〈Zt, h0〉] = P [〈Z0, ht〉]
and

P
[〈Zt, h0〉2

]
= P

[〈Z0, ht〉2
]
+ γtP [〈Z0, ht〉] .

Martingale problem is often used to characterize a superprocess. Z is the solution to the
martingale problem (see [5]): for any ψ ∈ C2(R),

Mt(ψ) := 〈Zt, ψ〉 − 〈Z0, ψ〉 − 1
2

∫ t

0
〈Zs, ψ

′′〉ds, t ≥ 0,

is a continuous martingale relative to (Ft)t≥0 with quadratic variation process

〈M(ψ)〉t = γ

∫ t

0
〈Zs, ψ

2〉ds +
∫ t

0
ds

∫

∆
ψ′(x)ψ′(y)Zs(dx)Zs(dy),

where ∆ = {(x, x) : x ∈ R}.
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But a remarkable feature of such a martingale problem is that its solution is not unique.
For example, let ξ1 and ξ2 be two independent branching diffusions each with initial value 1.
Let B1 and B2 be two independent Brownian motions. Assume that (ξ1, ξ2) and (B1, B2) are
independent. Then Z ′t := ξ1(t)δB1(t) + ξ2(t)δB1(t) is another solution to this martingale problem;
also see [18] for a similar counter example.

Uniqueness of the solution to a martingale problem is often established by finding an appro-
priate dual process via the method of martingale duality; see Section 1.6 of [6] for an introduction
of such an approach. Notice that the duality (3.3) is not a consequence of the martingale du-
ality corresponding to the above mentioned martingale problem. Not surprisingly, it can not
guarantee the uniqueness of the solution.

4. Some properties

Our first result in this section is a straight forward consequence of Theorem 3.2.

Proposition 4.1. For any y1 ≤ y2 ≤ . . . ≤ y2n and t > 0, we have

P


exp



−λ

n∑

j=1

Zt(]y2j−1, y2j ])








= P


exp



−

2λ

2 + λγt

n∑

j=1

Z0(]Y2j−1(t), Y2j(t)])






 , λ > 0.

(4.1)

Proof. Observe that the function
∑n

j=1 1{]Y2j−1(t), Y2j(t)]}(·) takes values either 0 or 1, then
(4.1) follows readily from (3.3).

¤

Proposition 4.1 allows us to carry out some explicit computation on Z. We are going to first
study the probability that Zt does not charge on an arbitrary finite interval.

Throughout this section, for any x, y, a and b, we write

(4.2) x̃ :=
x− y√

2
, ỹ :=

x + y√
2

, ã :=
a + b√

2
and b̃ :=

b− a√
2

.

Proposition 4.2. Given a < b and t > 0, we have

P{Zt(]a, b]) = 0} =
1

2πt

∫ ∞

−∞
dx

∫ ∞

0
dy exp

{
−2Z0(]x̃, ỹ])

tγ
− (x− ã)2

2t

}

(
exp

{
−(y − b̃)2

2t

}
− exp

{
−(y + b̃)2

2t

})

+
2√
2πt

∫ ∞

b̃
dx exp

{
−x2

2t

}
.

(4.3)
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Proof. Letting λ →∞ in (4.1) we have

P {Zt(]a, b]) = 0} = P
[
exp

{
− 2

γt
Z0(]Y1(t), Y2(t)])

}]

= P
[
exp

{
− 2

γt
Z0(]Y1(t), Y2(t)])

}
; Y1(t) 6= Y2(t)

]
+ P{Y1(t) = Y2(t)},

where (Y1, Y2) is a coalescing Brownian motion starting at (a, b).
To find the distribution of (Y1, Y2), one could rotate the coordinate system anti-clockwise by

π/4. Under the new coordinate system (Y1, Y2) becomes a process (Y ′
1 , Y

′
2) such that Y ′

1 is a
Brownian motion starting at ã, Y ′

2 is a Brownian motion starting at b̃ and stopped at 0, and
Y ′

1 and Y ′
2 are independent. Since Y1 = (Y ′

1 − Y ′
2)/
√

2, Y2 = (Y ′
1 + Y ′

2)/
√

2 and Y1(t) = Y2(t) iff
Y ′

2(t) = 0, then (4.3) just follows from the reflection principle for Brownian motion.
¤

Write St for the support of Zt. Intuitively, starting with particles with total initial mass
Z0(R), as soon as t > 0 the particles near −∞ and ∞ will die out due to branching. Zt is then
expected to be supported by a finite set because of coalescence. The next two results concern
the cardinality of St.

Proposition 4.3. Given a < b and t > 0, we have

P[#St∩]a, b]]

=
b− a√

πt
− 1√

2πt2

∫ b

a
dz

∫ ∞

−∞
dx

∫ ∞

0
dyy exp

{
−2Z0(]x̃, ỹ])

tγ
− (x−√2z)2 + y2

2t

}
.

(4.4)

Proof. It is easy to see from (4.3) that for any z ∈ R,

P{Zt(dz) 6= 0}

=
dz√
πt
− dz√

2πt2

∫ ∞

−∞
dx

∫ ∞

0
dyy exp

{
−2Z0(]x̃, ỹ])

tγ
− (x−√2z)2 + y2

2t

}
.

(4.5)

Then (4.4) is obtained by taking integrals on both sides of (4.5) from a to b.
¤

Proposition 4.4. With probability 1, #St < ∞, ∀ t > 0.
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Proof. Given s > 0, we first claim that P[#Ss] < ∞ if Z0 has a bounded support. Suppose that
Z0(]− b, b]) = 1 for some b > 0. Then by (4.5),

P[#Ss] =
∫ ∞

−∞
P{Zs(dz) 6= 0}

=
1√

2πs2

∫ ∞

−∞
dz

∫ ∞

−∞
dx

∫ ∞

0
dyy

(
1− exp

{
−2Z0(]x̃, ỹ])

sγ

})
exp

{
−(x−√2z)2 + y2

2s

}

=
1√

2πss

∫ ∞

−∞
dx

∫ ∞

0
dyy

(
1− exp

{
−2Z0(]x̃, ỹ])

sγ

})
exp

{
−y2

2s

}

≤ 1√
2πss

∫ ∞

0
dy

∫ y+
√

2b

−y−√2b
dxy exp

{
−y2

2s

}

< ∞.

Our claim is proved.
Now given any integer j, let ηj(s) be the Feller’s branching diffusion with initial value ηj(0) :=

Z0(]j, j + 1]). Since
∞∑

j=−∞
P{ηj(s) 6= 0} =

∞∑

j=−∞

(
1− exp

{
−2ηj(0)

γs

})
≤

∞∑

j=−∞

2ηj(0)
γs

=
2z̄

γs
,

by Borel-Cantelli lemma we have that, with probability 1, ηj(s) 6= 0 for only finitely many values
of j.

Therefore, for any t > 0, with probability 1, Zt/2 must have a bounded support. The Markov
property for Z, together with the claim from the first part of the proof, implies that #St < ∞
a.s..

Finally, by the Markov property for Z we conclude that P{#St < ∞, ∀ t > 0} = 1. ¤

By Proposition 4.4, as soon as t > 0, St becomes a finite set. For any z ∈ St, we associate it
with a particle located at z with mass Zt({z}). We can thus identify Zt interchangeably with
a collection of spatially distributed particles with masses. As time goes on, the total number
of particles decreases either because two “alive” particles coalesce into one particle, or because
each particle disappears due to its branching.

Since #St < ∞, a small neighborhood of z contains at most one particle in Zt. When there
is such a particle, we want to find the distribution of its mass. Formally, we are looking for an
expression of

P [exp{−λZt({z})}; Zt({z}) > 0] .

Until the end of this section we put

qt(·) := 1{]Y1(t), Y2(t)]}(·), t ≥ 0,

for the coalescing Brownian motion (Y1, Y2) starting at (a, b).
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Proposition 4.5. For any z ∈ R and t > 0, we have

P [exp{−λZt(dz)}; Zt(dz) > 0]

=
dz√
2πt2

∫ ∞

−∞
dx

∫ ∞

0
dyy

(
exp

{
−2λZ0(]x̃, ỹ])

2 + λγt

}
− exp

{
−2Z0(]x̃, ỹ])

tγ

})

exp

{
−(x−√2z)2 + y2

2t

}
.

(4.6)

Proof. We fix (ξi(t)) first. Apply Theorem 2.1 to random variable

exp

{
−λ

m∑

i=1

ξi(t)q0(Xi(t))

}
1

{
m∑

i=1

ξi(t)q0(Xi(t)) > 0

}
.

Then condition on (Y1(t), Y2(t)) and take an expectation with respect to (ξi(t)). Similar to the
proofs for Theorem 3.2 and for Proposition 4.1 we have that

P

[
exp

{
−λ

m∑

i=1

ξi(t)q0(Xi(t))

}
;

m∑

i=1

ξi(t)q0(Xi(t)) > 0

]

= P

[
exp

{
−λ

m∑

i=1

ξi(t)qt(xi)

}
;

m∑

i=1

ξi(t)qt(xi) > 0

]

= P

[
exp

{
−λ

m∑

i=1

ξi(t)qt(xi)

}]
− P

[
m∑

i=1

ξi(t)qt(xi) = 0

]

= P

[
exp

{
−2λ〈Z(m)

0 , qt〉
2 + λγt

}]
− P

[
exp

{
−2〈Z(m)

0 , qt〉
γt

}]
.

(4.7)

Recall that x̃, ỹ, ã and b̃ have been defined in (4.2). Therefore,

P [exp{−λZt(]a, b])}; Zt(]a, b]) > 0]

= P
[
exp

{
−2λ〈Z0, qt〉

2 + λγt

}]
− P

[
exp

{
−2〈Z0, qt〉

γt

}]

=
1

2πt

∫ ∞

−∞
dx

∫ ∞

0
dy

(
exp

{
−2λZ0(]x̃, ỹ])

2 + λγt

}
− exp

{
−2Z0(]x̃, ỹ])

tγ

})

exp
{
−(x− ã)2

2t

} (
exp

{
−(y − b̃)2

2t

}
− exp

{
−(y + b̃)2

2t

})
.

(4.8)

So, (4.6) is obtained by letting b → a+.
¤

At a fixed time t > 0, with a positive probability there can be only one particle (with a
positive mass) left. When this happens, we are interested in the joint distribution of the mass
and the location of that particle. More precisely, we want to find an expression for

P [exp{−λZt(R)}; Zt(R) 6= 0, St ⊂ dz] .
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Proposition 4.6. For any z ∈ R and t > 0, we have

P [exp{−λZt(R)}; Zt(R) 6= 0, St ⊂ dz]

=
dz√
2πt2

∫ ∞

−∞
dx

∫ ∞

0
dyy exp

{
−2λZ0(]x̃, ỹ])

2 + λγt
− 2Z0(]x̃, ỹ]c)

γt
− (x−√2z)2 + y2

2t

}

− dz√
πt

exp
{
−2z̄

γt

}
.

(4.9)

Proof. For xi := Xi(0) we put

B :=

{
m∑

i=1

ξi(t)1{]Y1(t), Y2(t)]c}(xi) = 0

}
=

{
m∑

i=1

ξi(t)(1− qt(xi)) = 0

}
.

It follows from Theorem 2.1 that

P

[
exp

{
−λ

m∑

i=1

ξi(t)

}
;

m∑

i=1

ξi(t)1{]a, b]}(Xi(t)) > 0,

m∑

i=1

ξi(t)1{]a, b]c}(Xi(t)) = 0

]

= P

[
exp

{
−λ

m∑

i=1

ξi(t)

}
;

m∑

i=1

ξi(t)qt(xi) > 0, B

]

= P

[
exp

{
−λ

m∑

i=1

ξi(t)qt(xi)

}
;

m∑

i=1

ξi(t)qt(xi) > 0, B

]

= P

[
exp

{
−λ

m∑

i=1

ξi(t)qt(xi)

}
; B

]
− P

[
m∑

i=1

ξi(t)qt(xi) = 0;B

]

= P
[
exp

{
−2λz̄

∑m
i=1 qt(xi)

m(2 + λγt)

}
exp

{
−2z̄

∑m
i=1(1− qt(xi))

mγt

}]
− P

{
m∑

i=1

ξi(t) = 0

}
,

(4.10)

where in obtaining the last equation we have used the fact that, given (Y1(t), Y2(t)) and (xi),
random variable exp {−λ

∑m
i=1 ξi(t)qt(xi)} and event {∑m

i=1 ξi(t)(1− qt(xi)) = 0} are indepen-
dent.

Now letting m →∞ in (4.10) we have

P [exp{−λZt(R)}; Zt(R) 6= 0, St ⊂ (a, b)]

= P
[
exp

{
−2λ〈Z0, qt〉

2 + λγt
− 2〈Z0, 1− qt〉

γt

}]
− exp

{
−2z̄

γt

}

=
1

2πt

∫ ∞

−∞
dx

∫ ∞

0
dy exp

{
−2λZ0(]x̃, ỹ])

2 + λγt
− 2Z0(]x̃, ỹ]c)

γt

}
exp

{
−(x− ã)2

2t

}

(
exp

{
−(y − b̃)2

2t

}
− exp

{
−(y + b̃)2

2t

})

+
2z̄√
2πt

exp
{
− 2

γt

} ∫ ∞

b̃
dx exp

{
−x2

2t

}
− exp

{
−2z̄

γt

}
.

(4.11)
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Finally, (4.9) is obtained by letting b → a+ in (4.11).
¤

Remark 4.7. Let λ = 0 in (4.11). We then obtain a result on the range of St.

The total number of particles in Z will decrease one by one. Put

τ := inf{s ≥ 0 : #Ss = 1}.
Then τ < ∞ is the first time when there is exactly one particle left. The distribution of τ is
given in the following Proposition.

Proposition 4.8.

P{τ ≤ t} =
∫ ∞

−∞
dz

(
1√
2πt2

∫ ∞

−∞
dx

∫ ∞

0
dyy exp

{
−2Z0(]x̃, ỹ]c)

γt
− (x−√2z)2 + y2

2t

}

− 1√
πt

exp
{
−2z̄

γt

})
+ exp

{
−2z̄

γt

}
.

(4.12)

Proof. Observe that

P{τ ≤ t} =
∫ ∞

−∞
P {Zt(R) 6= 0, St ⊂ dz}+ P{Zt(R) = 0},

then (4.12) follows from Propositions 4.6 and 4.1.
¤

Let
T := inf{t ≥ 0 : Zt(R) = 0}.

T is the time when all the particles disappear. Its distribution can be easily found from Propo-
sition 4.1.

P{T ≤ t} = P{Zt(R) = 0} = exp
{
−2z̄

γt

}
.

Note that super Brownian motion has the same extinction time distribution.
Let F denote the location of the last particle immediately before extinction, i.e. {F} = ST−.

We could recover the explicit distribution for F .

Proposition 4.9. F has the same distribution as XT , where X is a Brownian motion with
initial distribution Z0/z̄, and X and T are independent.

Proof. We first assume that

Z0 =
m∑

i=1

ciδxi , ci > 0, i = 1, . . . ,m.

Then by Theorem 3.2,

Zt =
m∑

i=1

ξi(t)δXi(t), t ≥ 0,
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where (ξi) is a collection of independent Feller’s branching diffusions with initial values (ci),
(Xi) is a coalescing Brownian motion starting at (xi), and (ξi) and (Xi) are independent.

Write

Ti := inf{t ≥ 0 : ξi(t) = 0}, i = 1, . . . , m.

Then

T = max
1≤i≤m

Ti.

Therefore,

F =
m∑

i=1

Xi(Ti−)1{T = Ti} =
m∑

i=1

Xi(T )1{T = Ti}.

Our first observation is that

P{Ti ≤ t} = P{ξi(t) = 0} = exp
{
−2ci

γt

}
.

Put c :=
∑m

i=1 ci. Then P{T = Ti} = ci/c, and F = Xi(T ) with probability ci/c. Our
second observation is that conditional on {T = Ti}, the distribution for T is the same as its
unconditional distribution. So, F has the same distribution as the random variable obtained by
running a Brownian motion X with initial distribution P{X(0) = xi} = ci/c, i = 1, . . . ,m, and
stopping it independently at time T . As a result, F has the desired distribution.

By conditioning on Zε and letting ε → 0+, the conclusion in the proposition also follows for
any general initial measure Z0.

¤

Remark 4.10. This near extinction behavior is the same as that for super Brownian motion (see
Theorem 1 of [17]), which appears to be coincidental.

5. Connections with the Arratia flow

Arratia flow is a stochastic flow which describes the evolution of a continuous family of
coalescing Brownian motions on R. We refer to [1] for a detailed account and [2] for a survey on
stochastic flows. We also refer to [10] for more recent work on stochastic flows. By definition,
the Arratia flow is a collection {φ(s, t, x) : 0 ≤ s ≤ t, x ∈ R} of real-valued random variables
such that

• the random map (s, t, x) 7→ φ(s, t, x) is jointly measurable,
• for each s and x, the map t 7→ φ(s, t, x), t ≥ s, is continuous,
• for each s and t with s ≤ t, the map x 7→ φ(s, t, x) is non-decreasing and right-continuous,
• for s ≤ t ≤ u, φ(t, u, ·) ◦ φ(s, t, ·) = φ(s, u, ·),
• for u > 0, (s, t, x) 7→ φ(s + u, t + u, x) has the same distribution as φ,
• for x1 < . . . < xm the process (φ(0, t, x1), . . . , φ(0, t, xm))t≥0 has the same distribution

as a coalescing Brownian motion starting at (x1, . . . , xm).
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Fix t > 0, it is known that {φ(0, t, x) : x ∈ R}, the image of R under the map φ(0, t, .), is a
discrete set (see Theorem 12 of Chapter Three in [1]). In this section, let . . . < x−1(t) < x0(t) <

x1(t) < . . . be a sequence of random variables such that

(5.1) {φ(0, t, x) : x ∈ R} = {xi(t) : i = . . . ,−1, 0, 1, . . .}.
Since Brownian motion has continuous sample paths, the Arratia flow is order-preserving; i.e.
φ(0, t, x1) ≤ . . . ≤ φ(0, t, xm) whenever x1 ≤ . . . ≤ xm. Set

Πi(t) := sup{x : φ(0, t, x) = xi(t)}.
Write φ−1(0, t, x) for the pre-image of x under map φ(0, t, .) Then (Πi(t)) determines a partition
on R such that φ−1(0, t, xi(t)) = [Πi−1(t), Πi(t)[.

The Arratia flow is closely associated to the process Z studied in the previous sections. We
first want to show that the Laplace functional of Zt for a continuous test function can be
expressed in terms of (xi(t)) and (Πi(t)).

Proposition 5.1. Given any nonnegative bounded continuous function f , we have for t > 0,

P [exp {−〈Zt, f〉}] = P

[
exp

{
−

〈
Z0,

2hf
t

2 + γthf
t

〉}]
,(5.2)

where hf
t (·) :=

∑∞
i=−∞ f(Πi(t))1{]xi(t), xi+1(t)]}(·).

Proof. For yj = j/2n, Theorem 3.2 yields

P


exp



−

n2n∑

j=−n2n

f(yj)Zt(]yj−1, yj ])








= P

[
exp

{
−

〈
Z0,

2
∑n2n

j=−n2n f(yj)1{]φ(0, t, yj−1), φ(0, t, yj)]}
2 + γt

∑n2n

j=−n2n f(yj)1{]φ(0, t, yj−1), φ(0, t, yj)]}

〉}]
.

(5.3)

Observe that φ(0, t, yj−1) 6= φ(0, t, yj) if and only if yj−1 < Πk(t) ≤ yj for some k. Letting
n →∞ in (5.3), (5.2) follows from the continuity for f and the finiteness for Z0.

¤

We then consider the support St for Zt. Since St is a discrete set, we can identify it with a
measure-valued process by placing a unit mass on each point of St. For any y1 ≤ y2 ≤ . . . ≤ y2n,
by Proposition 4.1,

(5.4) P
{
Zt(∪n

j=1]y2j−1, y2j ]) = 0
}

= P
[
exp

{
− 2

γt
Z0(∪n

j=1]Y2j−1(t), Y2j(t)])
}]

.

We thus get the following characterization of the avoidance function for St.

(5.5) P
{
St ∩ ∪n

j=1]y2j−1, y2j ] = ∅} = P
[
exp

{
− 2

γt
Z0(∪n

j=1]Y2j−1(t), Y2j(t)])
}]

.

Consequently the distribution of St is uniquely determined by (5.5); see Theorem 3.3 of [9].
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(5.5) suggests a connection between St and the Arratia flow. Let It(dy) be a random measure
on R such that

It

(∪n
j=1]y2j−1, y2j ]

)
=

2
γt

n∑

j=1

Z0 (]φ(0, t, y2j−1), φ(0, t, y2j)]) , y1 ≤ y2 ≤ . . . ≤ y2n.

Proposition 5.2. Given t > 0, St can be identified with a Cox process with a finite random
intensity measure It.

(5.4) also leads to a result on the occupation time for Z. For any Borel set B in R,
∫ t

0
dsP{Zs(B) = 0} =

∫ t

0
dsP [exp {−Is(B)}] .

A particle representation for Zt is available by using the image of the Arratia flow as a skeleton.
Given (xi(t)) as in (5.1), let (ηi(t))

∞
i=−∞ be independent non-negative random variables such that

P [ exp{−ληi(t)}| (xi(t))] = exp
{
−2λZ0(φ−1(0, t, xi(t)))

2 + λγt

}
.

Proposition 5.3. Given t > 0, we have

(5.6) Zt
D=

∞∑

i=−∞
ηi(t)δxi(t).

Proof. Define

Z
(m)
t :=

m2m∑

i=−m2m

η
(m)
i (t)δφ(0,t,i/2m),

where
(
η

(m)
i

)m2m

i=−m2m
is a sequence of independent Feller’s branching diffusions with initial values

(Z0([(i− 1)/2m, i/2m[))m2m

i=−m2m , and in addition, (η(m)
i ) is independent of {xi(t)}.

For any aj ≥ 0, j = 1, . . . , n, and y1 ≤ . . . ≤ y2n, by the same argument as in the proof for
Theorem 3.2, we have

lim
m→∞P

[
exp

{
−〈Z(m)

t , h0〉
}]

= lim
m→∞P

[
m2m∏

i=−m2m

exp
{
−2Z0([(i− 1)/2m, i/2m[)ht(i/2m)

2 + γtht(i/2m)

}]

= lim
m→∞P

[
exp

{
−

m2m∑

i=−m2m

2Z0([(i− 1)/2m, i/2m[)ht(i/2m)
2 + γtht(i/2m)

}]

= P
[
exp

{
−

〈
Z0,

2ht

2 + γtht

〉}]

= P [exp {− 〈Zt, h0〉}] .
Therefore,

Z
(m)
t

D→ Zt.
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Further, by the definition of (xi(t)) and the additive property for Feller’s branching diffusions
we obtain that

Z
(m)
t =

∞∑

i=−∞

∑

Πi−1≤j/2m<Πi

η
(m)
j (t)δxi(t)

D→
∞∑

i=−∞
ηi(t)δxi(t).

Putting these together gives (5.6).
¤

This interplay is remarkable. On one hand, Z can be constructed using the Arratia flow; on
the other hand, Z tells us how an initial measure Z0 is transported over time under both the
Arratia flow and the branching.

6. A more general model

As Steven Evans pointed out to me that the proof of Theorem 3.2 only uses the branching
property of the Feller’s diffusion. This suggests that we can replace the Feller’s branching
diffusion by the square of the Bessel processes (BESQ) to incorporate immigration. We are
going to carry it out in this section.

For x ≥ 0 and δ ≥ 0 the square of δ-dimensional Bessel process starting at x, denoted by
BESQδ(x), is a non-negative valued process ξ which solves the following stochastic differential
equation

ξt = x +
∫ t

0

√
γξsdBs + δt,

where B is a one-dimensional Brownian motion.
Applying Itô’s formula we obtain the following partial differential equation for V (λ, t) :=

P [exp{−λξt}],
∂V

∂t
+

γλ2

2
∂V

∂λ
+ δλV = 0, V (λ, 0) = exp{−λx}.

Then we can recover the Laplace transform for ξt as

(6.1) P [exp{−λξt}] =
(

2
2 + λγt

) 2δ
γ

exp
{
− 2λx

2 + λγt

}
.

Notice that the Feller’s branching diffusion is just BESQ0. We refer to Chapter XI of [13] for a
more detailed introduction on the Bessel processes.

It is easy to see from (6.1) that BESQδ(x) is additive in both δ and x; i.e. if {ξi, i =
1, . . . , m} is a collection of independent processes such that each ξi is BESQδi(xi). Then

∑m
i=1 ξi

is BESQ
Pm

i=1 δi(
∑m

i=1 xi).
Now we are going to modify the process Z defined in Section 3 by letting the masses of the

particles be governed by BESQs. Since the dimension is an additional parameter for BESQ, we
need to introduce another measure-valued process ∆ to describe the evolution of the dimension.
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As in Section 3, we first consider two systems of interacting particles. Given Z0 ∈ MF (R),
write z̄ := Z0(R) and Z̄0 := Z0/z̄. For any m, choose x1, . . . , xm to be i.i.d. random vari-
ables with common distribution Z̄0. Given ∆0 ∈ MF (R), write δ̄ := ∆0(R) and ∆̄ := ∆0/δ̄. Let
x′1, . . . , x

′
m be i.i.d. random variables with common distribution ∆̄. Let (X1, . . . , Xm, X ′

1, . . . , X
′
m)

be a 2m-dimensional coalescing Brownian motion starting at (x1, . . . , xm, x′1, . . . , x
′
m).

Let (ξ1, . . . , ξm) and (δ1, . . . , δm) be two collections of m independent processes such that ξi

is BESQ0(z̄/m) and δi is BESQδ̄/m(0). We further assume that (xi) and (x′i) are independent,
and (X1, . . . , Xm, X ′

1, . . . , X
′
m), (ξi) and (δi) are all independent.

Now we are ready to define the two MF (R)-valued processes

Z
(m)
t :=

m∑

i=1

ξi(t)δXi(t) +
m∑

i=1

δi(t)δX′
i(t)

and

∆(m)
t :=

m∑

i=1

δ̄

m
δX′

i(t)
.

Similar to Lemma 3.1 we can show that both {Z(m)} and {∆(m)} are C-relatively compact in
D(MF (R)). They have unique weak limits by Theorem 6.1, which we will prove shortly.

Let Z and ∆ be the weak limits for {Z(m)} and {∆(m)}. Intuitively, {(Z0(B), ∆0(B)) :
B ∈ B(R)} describes the initial mass-dimension distribution on R, and {(Zt(B),∆t(B)) : B ∈
B(R), 0 ≤ t < ∞} describes the simultaneous mass-dimension evolution for such a model, which
we call a super square of Bessel process with spatial coalescing Brownian motion.

As before, write (Y1, . . . , Y2n) for an 2n-dimensional coalescing Brownian motion starting at
(y1, . . . , y2n) with y1 ≤ . . . ≤ y2n. For any nonnegative constants aj , bj , j = 1, . . . , n and t > 0,
let ht be defined as in (3.2) and let

h′t(·) :=
n∑

j=1

bj1{]Y2j−1(t), Y2j(t)]}(·).

The next result determines the joint distribution for (Zt(B), ∆t(B)), B ∈ B(R).

Theorem 6.1. For any aj ≥ 0, bj ≥ 0, j = 1, . . . , n and any y1 ≤ . . . ≤ y2n, we have

P
[
exp

{−〈Zt, h0〉 − 〈∆t, h
′
0〉

}]

= P
[
exp

{
−

〈
Z0,

2ht

2 + γtht

〉
−

〈
∆0,

2
γ

ln
(

1 +
γtht

2

)
+ h′t

〉}]
.

(6.2)
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Proof. We might assume that (Yi) is independent of (ξi) and (δi). To prove (6.2), again, we first
fix (δi) and (ξi). It follows from Theorem 2.1 that

P[exp{−〈Z(m)
t , h0〉 − 〈∆(m)

t , h′0〉}]

= P

[
exp

{
−

m∑

i=1

ξi(t)h0(Xi(t))−
m∑

i=1

δi(t)h0(X ′
i(t))−

m∑

i=1

δ̄h′0(X
′
i(t))

m

}]

= P

[
exp

{
−

m∑

i=1

ξi(t)ht(xi)−
m∑

i=1

δi(t)ht(x′i)−
m∑

i=1

δ̄h′t(x′i)
m

}]
.

(6.3)

We then fix (xi) and (x′i), and take expectations with respect to (ξi) and (δi). By (6.1) the right
hand side of (6.3) is equal to

P




m∏

i=1

(
2

2 + γtht(x′i)

) 2δ̄
γm

exp
{
− 2z̄ht(xi)

m(2 + γtht(xi))
− δ̄h′t(x′i)

m

}


= P




〈
Z̄0, exp

{
− 2z̄ht

m(2 + γtht)

}〉m
〈

∆̄0,

(
1 +

γtht

2

)− 2δ̄
γm

exp
{
− δ̄h′t

m

}〉m

 ,

(6.4)

where we condition on (Yi) to obtain the equality.
Let m →∞ in (6.4). We finally have

P
[
exp

{−〈Zt, h0〉 − 〈∆t, h
′
0〉

}]

= lim
m→∞P

[
exp

{
−〈Z(m)

t , h0〉 − 〈∆(m)
t , h′0〉

}]

= lim
m→∞P

[〈
Z̄0, 1− 2z̄ht

m(2 + γtht)

〉m 〈
∆̄0,

(
1− 2δ̄

γm
ln

(
1 +

γtht

2

))(
1− δ̄h′t

m

)〉m]

= lim
m→∞P

[〈
Z̄0, 1− 2z̄ht

m(2 + γtht)

〉m 〈
∆̄0,

(
1− 2δ̄

γm
ln

(
1 +

γtht

2

)
− δ̄h′t

m

)〉m]

= P
[
exp

{
−

〈
Z̄0,

2z̄ht

2 + γtht

〉}
exp

{〈
∆̄0,

2δ̄

γ
ln

(
1 +

γtht

2

)
+ δ̄h′t

〉}]

= P
[
exp

{
−

〈
Z0,

2ht

2 + γtht

〉
−

〈
∆0,

2
γ

ln
(

1 +
γtht

2

)
+ h′t

〉}]
.

¤

Remark 6.2. Notice that ∆ is just the process Z in Theorem 3.2 with γ = 0.

The generalized model considered in this section will not die out if µ > 0. Many of the
properties in Section 3 and 4 can be discussed in a similar fashion. But we leave the details to
interested readers.
Acknowledgement: The author is grateful to Steven Evans for a suggestion that results in
Section 5 of this paper. The author thanks Carl Müller for a helpful comment. He also thanks
an anonymous referee for very helpful comments.



25

References

[1] R. Arratia, Coalescing Brownian motions on the line, Ph.D. thesis, University of Wisconsin, Madison 1979.

[2] R. W. R. Darling, Isotropic stochastic flows: a survey, Diffusion Processes and Related Problems in Analysis

(M. Pinsky and M. Wihstutz, eds.) 2 75–94. Birkhäuser, Boston, 1992.
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